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A Comparison of Parametric and Nonparametric Estimation Methods for 

Cost Frontiers and Economic Measures   

1. Introduction 

 The study of producer theory uses several tools for exploring the structure of cost. 

Estimates of frontier functions, and the distances that firms are from the frontier provides insight 

into how firms with similar technological access and marketing opportunities achieve different 

levels of production efficiency. Frontier estimation also provides insight for both managers and 

economists regarding where cost savings exist for multi-product output firms. Parman et al. 

illustrate that it is possible to calculate multi-product scale economies and product-specific 

economies of scale that measure the potential for cost savings through the adjustment of output 

mix using Data Envelopment Analysis (DEA). Calculations of economies of scope from frontier 

estimation estimates illustrate how savings are achieved through producing multiple outputs in 

the same firm versus each output in a separate firm.  

 Traditionally, cost functions have been estimated using parametric methods with two-

sided errors (i.e. OLS) where more efficient firms lie below the “average” frontier and less 

efficient firms lie above the “average” frontier (Christenson et. al. 1973, Diewert et. al. 1988). 

The result of such an estimation from a two-sided error model is thus an average cost function 

for the firms and not truly an estimation of the best practices (Greene 2005). Farrell (1957) used 

piece-wise linearization to envelope production data. In his analysis, all firms were either on or 

below the production frontier. In this way, the firms that reside on the frontier are relatively 

efficient, while those who resided below the frontier experience some amount of inefficiency. 

The distance from inefficient firms to the estimated frontier is calculated as a ratio of estimated 

minimum production inputs for a given output to actual production inputs for a given output was 
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then used as a metric to determine relative efficiency among firms. Later works by Farrell and 

Fieldhouse (1962), and Afriat (1972) eliminated the restriction of constant returns to scale 

technology using the nonparametric approach. Charnes, Cooper and Rhodes (1978), while 

evaluating the technical efficiency of decision making units coined the name Data Envelopment 

Analysis (DEA) used today to describe the evolved method developed by Farrell. 

 The DEA method was later augmented using the works of Samuelson (1938) and 

Shephard (1953) to highlight the dual relationship between costs and production to provide an 

envelope method to estimate relative cost efficiency among firms. Färe, Grosskopf, and Lovell 

(1985) provided a method using the dual cost approach with DEA to estimate cost efficiency. In 

this case, a cost frontier (minimum) is calculated rather than a production frontier (maximum) 

and thus efficient firms lie on the frontier, but inefficient firms lie above the frontier.   

Aigner, Lovell and Schmidt and Meeusen and Van den Broeck; and Battese and Coelli 

suggest a method of estimation known as the stochastic frontier estimation based on maximum 

likelihood. They argue that the stochastic frontier conforms more closely to economic theory 

building a frontier where the observations of cost lie either on, or above a cost frontier. Like 

traditional parametric estimation methods, the stochastic frontier method requires the 

specification of a functional form, and all the assumptions that traditional parametric estimation 

methods must satisfy remain for the function to be consistent with economic theory. Battese and 

Coelli have expanded this method to include panel estimation of a stochastic frontier using the 

software program Frontier V4.11.   

                                                            
1 Frontier V4.1 written by Tim Coelli are available online at : http://www.uq.edu.au/economics/cepa/frontier.php 
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Regression based methods with two-sided errors have been used to envelope the data 

such as the Conditional Ordinary Least Squares method (COLS) (Greene 2005), and Modified 

Ordinary Least Squares Method (MOLS) (Afriat 1972). These methods involve either altering 

the intercept (COLS) or shifting the production/cost function up/down based upon an expected 

value of the inefficiency distribution (MOLS). These methods are not without challenges and 

restrictions since the COLS method requires a homoscedastic distribution and the frontier 

function may not be the same as the minimized sum of squared errors. Also, the MOLS method 

cannot guarantee that the data is enveloped. A shift or intercept change only affects the 

calculation of the distance from the frontier calculations but does not affect calculations of 

marginal costs or incremental costs.   

A less investigated parametric method uses OLS, restricting the errors to take on only 

positive values in the case of a cost function. This method does not require any prior assumptions 

of distribution and envelopes the data. Further, since it is not a shift, it allows for the marginal 

cost calculations to be based off of a parametric curve fitted to frontier firms.   

 The nonparametric approach to frontier estimation has as a few advantages to parametric 

methods. The most important is that it envelopes the data such that it conforms to economic 

theory. That is, the cost function is the minimum cost to produce an output bundle (Mas-Colell et 

al. 1995). As mentioned above, this is a disadvantage to the traditional parametric methods. 

Another cited advantage is that it does not require the specification of a function and thus is not 

technologically restrictive. In addition, the nonparametric method does not require the imposition 

of curvature required for a cost function (Featherstone and Moss 1994).  

 Recently, studies by Chavas and Aliber (using the dual DEA method shown by Färe et al. 

1995) and Chavas et al. (2012) discuss methods for calculating economies of scope. These 
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articles developed nonparametric frontier estimation and associated incremental cost calculations 

to determine cost savings from producing multiple outputs simultaneously. However, the 

methods for calculating multi-product and product-specific scale economies nonparametrically 

are relatively new (Parman et. al.) and have not been compared to other methods. Such a 

comparison will evaluate the relative efficiency of the nonparametric approach to estimate the 

economies of scale measures.  

 This research examines the robustness of four different estimation approaches to evaluate 

their ability to estimate a “true” cost frontier and associated economic measures. The manuscript 

will evaluate three parametric methods including a two-sided error system, OLS with only 

positive errors, and the stochastic frontier method. The fourth method will be the DEA method 

(Färe et. al.) augmented to calculate multi-product and product-specific economies of scale 

(Parman et. al.). The robustness of the four estimation methods is examined using simulated data 

sets from two different distributions and two different observation quantity levels.   

2. Data 

 The data for the analysis were generated using a modified Monte Carlo procedure found 

in Gao and Featherstone (2008) run on the SHAZAM software platform with the code found in 

Appendix A at the end of this document. A normalized quadratic cost function involving 3 inputs 

(x1, x2, x3) with corresponding prices (w1, w2, w3), and 2 outputs (y1, y2) with corresponding 

prices (p1, p2) was used. The normalized quadratic cost/ profit function is used since it is a self-

dual cost function and a flexible functional form (Lusk et al.). The input and output prices (wi, pi) 

are simulated randomly following a normal distribution. The assumed distributions for the output 

prices and input prices shown below were set to provide observed prices strictly greater than zero 
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with different means and standard deviations to ensure some variability in input/output quantity 

demands and relative prices. They are:  

 

 w1 ~ N (9, 0.99) 
 w2 ~ N (18, 1.98) 
 w3 ~ N (7, 0.77)         (1) 
 p1 ~ N (325, 99) 
 p2 ~ N (800, 99) 

The input price variability was set proportionate to its mean while the output prices have 

different relative variability to represent products in markets with different volatilities.  

 The outputs (yi) and inputs (xj) are determined as a function of input and output prices 

using an assumed underlying production technology. All prices are normalized on the input price 

w3 and cost is scaled by w3 to impose homogeneity. To ensure curvature holds, the “true” cost 

function is concave in input prices and convex in output quantities. The assumed parameters also 

satisfy symmetry (bij=bji). The assumed parameters (Table 1) are used to determine the output 

quantities y1 and y2
2.  The general form of the normalized quadratic cost function is: 
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  (2) 

 Output quantities (shown below) are calculated using the assumed parameters of the cost 

function (Table 1) and the output prices generated in equation 1.  
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  (3) 

                                                            
2 The analysis also was completed for alternative assumptions on input. 
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 Using Equation 2, a positive random cost deviation term is added to the cost function 

following a half-normal distribution that alters the cost efficiency where the absolute value of e 

is distributed e~N (0,1000)3. The inclusion of this term adds cost inefficiency to the data such 

that firms are off the frontier effectively increasing their production cost while keeping the 

output quantities the same.  The level of inefficiency is half-normally distributed. 

 An additional data set4 is generated assuming a uniform distribution. The uniform 

deviation ranged from zero to 900. The normal distribution standard deviation of 1,000 generates 

a mean and standard deviation for cost efficiency roughly equivalent to a uniform distribution 

with a range from zero to 900.  

 From equation 2, and using Shephard’s Lemma where (C(W,Y)/wi)=xi, the factor 

demands for inputs x1 and x2 are recovered. Factor demand for x3 is found by subtracting the 

product of quantities and prices for x2 and x3 from the total cost.  

 

  

1 1 11 1 12 2 11 1 12 2

2 2 12 1 22 2 21 1 22 2

3 1 1 2 2, )

x b b w b w a y a y

x b b w b w a y a y

x C W Y e x w x w

    
    

   

  (4) 

The input quantities (xi’s) are then adjusted (xi
a) by the cost efficiency (CE) effectively 

increasing the input demands proportionate to the costs generated for each firm (equation 5). 

 a i
i

x
x

CE
   (5) 

 Using the above method, 400 observations were simulated where firms produce a 

combination of both outputs. Fifty firms were generated producing only y1 with another 50 firms 

producing only y2 which is accomplished by restricting either y1 or y2 to equal zero and re-

                                                            
3 The analysis also examined alternative normal standard deviations. 
4 The analysis was run using 2500 observations. The results were robust for 500 and 2500 observations 
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running the simulation for 50 separate observations each. Thus, a total of 500 observations were 

generated with summary statistics shown in Table 2. In Table 2, xi
n represents inefficient input 

quantities for the normal error distribution and xi
u represent the inefficient input quantities for the 

uniform distribution. The summary statistics for the multi-product scale, product-specific scale, 

scope, and cost efficiencies for each data point from the “true” cost function are shown in Table 

3. Summary statistics for the economic measures are independent of the distribution of cost 

“inefficiency”. Figures 1 through 4 provide a visual representation of the multi-product scale and 

scope economies as well as cost efficiencies and product-specific scale economies calculated 

from the “true” cost function. 

 While the cost efficiency for each firm is altered under a uniform versus a half-normal 

distribution (Figure 2), the MPSE, PSE’s, and economies of scope are identical for each data 

point (Table 3) for the “true” cost function due to the input prices (wi’s) and output prices (pi’s) 

being the same. Thus, the output quantities (yi’s) remain unchanged (Equation 3). The input 

quantities (xi’s) are adjusted such that the deviation in input quantity used by each firm is 

uniformly distributed. In effect, the uniform data evenly distributes the quantity of firms at each 

relative distance from the frontier, rather than most firms being clustered around the mean 

distance as in the half-normal case. 

 A third data set is simulated using the half-normal distribution. This set uses the same 

data points as the half-normal case but excludes the single output firms. In this set, there are 400 

firms each producing both y1 and y2. This data is used to evaluate each method’s ability to 

estimate incremental costs accurately when no zero output firms are observed in the data.   

 The difference between the “true” estimates and each of the four methods are evaluated. 

This is done by subtracting each model’s estimate from the “true” measure calculated with 



8 

 

Monte Carlo simulation. Since an approximation of the “true” measure is key, the statistics 

reported are the difference between the “true” measures and what was estimated by each method. 

Using this approach, any possible bias from each approach can be determined. A positive 

difference implies that the model underestimates the measure being evaluated and conversely, a 

negative difference indicates the model overestimates the measure being evaluated. The mean 

absolute deviation is also reported for all four methods allowing for the comparison of average 

absolute deviation from zero. 

 Cumulative density functions are presented for the differences between the true measures 

and the estimated measures to produce visual representation of both bias and deviation. If there is 

no difference between the estimated measure and the true measure, the cumulative density 

function is a vertical line at zero. 

3. Estimation Methods 

3.1 The Two-Sided Error System Equation 

The traditional two-sided error system involves specification of a cost function and single 

frontier of input quantities and costs from observed prices and outputs. This method fits a curve 

with observations residing both above and below the fitted curve. The two-sided error method 

for this study was estimated using the SHAZAM software package using a normalized quadratic 

cost function with input prices normalized on w3 (equation 6).   
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 (6)  
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 (7)  

Once the parameters shown in Equations 6 and 7 are estimated, the marginal costs are calculated 

by:  

 1 1 11 1 12 2 11 1 21 2

2 2 22 2 12 1 12 1 22 2

;mcy a c y c y a w a w and

mcy a c y c y a w a w

    
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 (8)  

For the normalized quadratic function with two outputs, the incremental costs for each output 

are: 

 

2
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The costs of producing a single output are: 
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  (10) 

 Once the marginal costs, incremental costs, and single output costs have been estimated, 

the multi-product scale economies (MPSE), economies of scope (SC), and product-specific scale 

economies (PSEyi) can be calculated:  
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  Cost efficiency is not calculated for the two-sided error system since the deviations from 

the “frontier” are two sided.   

3.2 The OLS Estimator with Positive Errors 

A one-sided error model is estimated similar to the two-sided error model with the 

difference being the error term is one sided and input demand equations (7) are not estimated. 

Equation 6 is estimated with the restriction that ei ≥0 for all i using the General Algebraic 

Modeling Software (GAMS) program. The objective function minimizes the sum of squared 

errors subject to constraints that define the error. Firms on the frontier exhibit errors equal to 

zero while those with inefficiency exhibit positive errors. The calculations of MPSE, PSE, and 

SC are identical to the two-sided error model using the coefficient estimates from the one-sided 

error model. 

3.3 The Stochastic Frontier Cost Function Estimator 

The stochastic frontier estimation method uses FRONTIER Version 4.1 by Coelli. It is 

based off the stochastic frontier methods of Battese and Coelli (1992, 1995) and Schmidt and 

Lovell (1979). One of the primary differences between the stochastic frontier method and the 

OLS two-sided error method is the error term. Specifically, the error term consists of two 

elements, Vit which are random variables assumed to be iid N(0,ᆓ2), and Uit which is a non-

negative random variable capturing inefficiency. Uit is assumed to be half-normal for this 

analysis and defines how far above the frontier a firm operates. The resulting cost function is:  
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 (14) 
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For simplicity 14 can be rewritten as follows: 

  ( , )i i i iC W Y X B V U    (15)  

The cost efficiency (CE) from the stochastic frontier method takes on a value between 

one and infinity since Ui ≥ 0. The cost efficiency from the nonparametric method and the one-

sided error model is evaluated by taking the minimized total costs estimate dividing it by the 

actual total costs resulting in cost efficiency estimates between 0 and 1. 

 i

i i

X B
CE

X B U



  (16) 

The calculations of marginal costs, incremental costs, the MPSEs, the PSEs, and the 

economies of scope are the same as those shown in the two-sided error model above using the 

estimated parameters.  

Each of the methods used to estimate the dual cost function are parametric. Symmetry 

and homogeneity are imposed in the estimation process. Curvature and monotonicity are not and 

in an empirical estimation they would need to be examined to ensure the cost function estimated 

is consistent with economic theory. 

3.4 The Nonparametric Approach 

 The nonparametric approach for estimating multi-product scale, product-specific scale 

and scope economies follow Parman et al. (2013). The cost (Ci) is determined for each firm 

where costs are minimized for a given vector of input prices (wi) and outputs (yi) with the choice 

being the optimal input bundle (xi
*).   
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where there are “n” producers. The vector Z represents the weight of a particular firm with the 

sum of Zi’s equal to 1 for variable returns to scale. From the above model, the costs and output 

quantities can be estimated. The output quantities (yi) constrain the cost minimizing input bundle 

to be at or above that observed in the data. Total cost from the model (Ci) is the solution to the 

cost minimization problem including the production of all outputs for the ith firm. The cost of 

producing all outputs except one (Ci,all-p) where p is the dropped output and is determined by 

either forcing one of the outputs to equal zero or by dropping the pth output constraint.   

 Cost efficiency identifies a firm’s proximity to the cost frontier for a given output bundle. 

It is the quotient of the estimated frontier cost (Ci) and the actual cost (ATCi) the firm incurred 

producing their output bundle.  

 i
i

i

C
CE

ATC

 
  
 

  (18) 

The calculation for economies of scope are: 

 
,( )i p i

p
i

i

C C

SC
C

 
   
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
  (19) 

The calculation of multi-product economies of scale uses the shadow prices on the output 

constraints (17) to calculate marginal cost. MPSE is then: 
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Product specific economies of scale (PSE) require the calculation of the incremental costs (ICi,p): 

 , ,i p i i j p
j

IC C C j     (21) 

Average incremental costs (AICi,p) are determined by dividing incremental costs by individual 

output: 

 ,
,

,

i p
i p

i p

IC
AIC

y
   (22) 

Using the average incremental cost and the marginal cost calculation above, the PSEs are:  

 ,
,

,

i p
i p

i p

AIC
PSE

MC
  (23)  

 When estimating the frontier nonparametrically using a data set with no single output 

firms, it is not possible to estimate the incremental costs by forcing one of the output constraints 

to zero (Equation 17). Thus, the only alternative is to drop one of the constraints. However, when 

an output constraint is dropped, the program may allow some of the output for the dropped 

constraint to be produced resulting in an overstatement of the cost of that one output (Ci,p) which 

will cause an over statement of economies of scope (equation 19) and an understatement of 

product specific scale economies (23). 

 Thus, the additional product-specific production costs from an output being produced 

when it shouldn’t must be. The procedure for adjusting in a two goods case is as follows: the cost 

of producing y1 only (Ci,1) assumes that only (y1
1) is being produced. However, the optimization 

program allows some yi,2
1

 to be produced in this situation overstating the cost of producing y1 
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only (Ci,1). To remove the additional cost, the percentage contribution of yi,1
1 to cost is multiplied 

by the cost of producing y1 only, yielding an adjusted cost (Ca
i,1). This new adjusted cost is then 

used in the calculation of incremental costs and associated economic measures: 

 
1
,1

,1 ,1 1 2
,1 ,2

a i
i i

i i

y
C C

y y

 
  

 
  (24) 

 The analysis evaluates the difference between the “true” measures of cost efficiency, 

economies of scope (scope), multi-product scale economies (MPSE), and product-specific 

economies of scale (PSE) from the four modeling approaches. The statistics and results presented 

are not the economic measure calculations but the difference between the model estimates and 

the “true” measure.  

 The parametric estimators are specified knowing the “true” functional form: the 

normalized quadratic cost function. Therefore, the differences may represent a “best case 

scenario” for each parametric method in that the true functional form is known with only the 

parameter estimates being unknown.  

4. Results 

 Table 4 shows the parameter estimates and standard errors for the parametric methods for 

all three data sets. The parameter estimates from each method were different under the same 

distributional assumptions, and different for the same method under different distributional 

assumptions with the exception of the OLS positive errors model which yielded the same 

parameter estimates for the uniform and half-normal distributions. For both the two-sided error 

system, and the stochastic frontier estimation, different distributional assumptions yielded 

changes in magnitude as well as sign changes for various parameter estimates. Also, when 

comparing the 500 observation half-normal case to the 400 observation half-normal with no zero 
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outputs case, there were changes for all three estimation methods as well as changes in 

magnitude for the estimated parameters. The calculation for the standard errors using GAMS was 

conducted using the method from Odeh et. al. (2010). 

 Curvature was checked for each estimation method and each simulation to ensure that it 

was not violated (Table 5).  A curvature violation implies that the shape of the cost frontier 

estimation does not conform to the “true” cost function which is known in this case, and that it 

violates the economic theory of the cost function. To check these conditions, the eigenvalues are 

calculated for the “b” (price) and “c” (output) matrices where the eigenvalues for “b” should be 

negative (concave in prices) and “c” values should be positive (convex in outputs). Each 

parametric model violated curvature in every simulation for either the “b” or “c” matrices or 

both. The one-sided error model and the two-sided system violated curvature of both the “b” and 

“c” matrices for the 400 observations simulation. 

4.1 Cost Efficiency 

 Cost efficiency differences evaluate each model’s ability to estimate the frontier since it 

is the ratio of estimated minimum cost to actual total cost. The two-sided error model was not 

examined because it does not estimate a frontier. The OLS Positive Errors and Nonparametric 

models performed well for all three data sets in estimating the frontier with average differences 

below 0.03 in absolute value and standard deviations below 0.04 (Table 6). The most accurate 

estimation of cost efficiency was the nonparametric model under the uniform distribution 

simulation with the average, standard deviation, and mean absolute deviation close to zero.   

 The stochastic frontier method performed almost as well under the half-normal 

simulation with the average closest to zero, and under the 400 observation simulation with an 
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average difference of -0.028 but much worse under the Uniform simulation (Figure 5) with an 

average difference of -0.198, mean absolute deviation of 0.198, and standard deviation of 0.118. 

This implies that estimating efficiency measures with the stochastic frontier method may be 

dependent on the correct assumption of the error distribution. 

 In all cases, the average differences were below zero implying that the OLS positive 

errors, Stochastic Frontier, and Nonparametric models slightly over estimated the cost 

efficiencies for most of the firms. This is confirmed by examining the mean absolute deviation in 

the uniform and 400 observations cases being the same the absolute value of the mean. This is 

expected given the simulation procedure. Frontier methods envelope the observed data, thus cost 

efficiencies are overestimated unless there are a significant number of firms where the simulated 

error is zero. However, the averages were close to zero in most cases with low standard 

deviations. 

4.2 Economies of Scope 

 Differences in estimates of economies of scope for the four different methods raised more 

issues than the cost efficiency estimates. For the half-normal and uniform simulations, the two-

sided error system had an average furthest from zero at -0.30 in with a standard deviation similar 

to the other methods (Table 7). For the 400 observation simulation, the Stochastic Frontier 

Method was furthest from zero at -2.32. Due to scaling, the stochastic frontier method 

cumulative density is not visible in Figure 6 for the 400 observations case. 

 The OLS Positive Errors Model and Nonparametric Model estimated economies of scope 

closely with averages for the half-normal distribution of -0.08 and -0.09 respectively and 

standard deviations around 0.07 and 0.03 respectively (Table 7). The estimates of scope for the 
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uniform distribution from the OLS Positive Errors Model and Nonparametric Model were less 

than 0.02 in absolute value with low standard deviations. The average and standard deviation for 

the Nonparametric method under the uniform distribution were affected by a few observations 

being significantly off (Figure 6). For the 400 observation data set, the Nonparametric method 

had the lowest standard deviation (0.04) and an average closest to zero in absolute value (0.07) 

(Table 7).   

 The three parametric estimation methods over estimated economies of scope in all 

simulations except for the case of a normal distribution where the OLS Positive Errors Model 

under estimated economies of scope slightly. In many cases, the parametric methods strictly over 

estimated scope where the absolute values of the means were the same as the mean absolute 

deviations (Table 7). The Nonparametric Model slightly over estimated scope in both the half-

normal and uniform simulations but slightly underestimated scope in the 400 observations data 

set.  

 The most robust estimator of economies of scope appears to be the Nonparametric 

approach with averages close to zero in all three simulations and low standard deviation. The 

OLS Positive Errors Model does not perform as well in the case of 400 observations simulation, 

nor does the Stochastic Frontier Model and the standard Two-sided Error System under the half-

normal and uniform simulations. Measures of economies of scope are suspect using any of the 

methods when there are no zero output observations in the data sample. 

4.3 Multi-product Economies of Scale 

 An accurate estimation of MPSE requires both a close approximation of the true frontier 

and marginal costs. It is possible to have a very good approximation of MPSE but be off on 
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economies of scope and PSEs due to the necessary estimation of incremental costs for scope and 

the PSEs. 

 The nonparametric approach appears to be the most robust estimator of MPSE (Figure 7). 

It has an average difference closest to zero in all three simulations and the lowest standard 

deviation in both the half-normal case and 400 observation cases (Table 8). Its mean absolute 

deviation is also lowest except compared to the OLS Positive Errors model under the uniform 

distribution. The standard deviation was only slightly higher for the nonparametric approach 

compared to the OLS Positive Errors model in the uniform case with a standard deviation of 0.05 

for the Nonparametric model and 0.04 for the OLS Positive Errors model (Table 8). All average 

differences except OLS Positive Errors in the uniform case were negative implying that MPSE 

was, for the most part, over estimated by the models. 

 Of the four modeling methods in all three simulations, the two-sided error system had the 

largest average differences from zero and the highest standard deviations (Table 8). No 

observations were correctly estimated for MPSE (Figure 7) in any of the three simulations. The 

standard two-sided system approach never approaches the zero difference. 

 The Stochastic Frontier method results were mixed. While it was out performed by the 

nonparametric approach in all simulations, it was close to the “true MPSE’ in the case of the 400 

observations. However, in the uniform distribution simulation, it did not perform well with an 

average difference of -0.21 and standard deviation of 0.26 (Table 8). 

4.4 Product-Specific Economies of Scale 

 The estimation of the PSEs for both y1 and y2 for the half-normal and uniform simulations 

yielded similar results for all three parametric type estimations (Table 9). The parametric 
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approaches appear to slightly outperform the nonparametric approach in the estimation of PSE1 

(Figure 8 Panel A) in the half-normal simulation but performed similarly in the estimation of 

PSE2 (Figure 8 Panel B) under the same distribution in terms of absolute distance from zero. For 

the uniform simulation, the PSE1 and PSE2 estimates from the Nonparametric Model were 

similar to both the Stochastic Frontier Method and the two-sided error systems with the OLS 

Positive Errors Model being the closest to zero under the uniform simulation (Table 9). 

 Under the half normal and the uniform simulations, the two-sided error system and the 

stochastic frontier underestimated PSE’s for y1 and y2. OLS Positive Errors under estimated PSEs 

under both distributions except for the half-normal PSE1. In the 400 observation simulation, OLS 

overestimated both PSEs where that was not the case for the Nonparametric Model and OLS 

Positive Errors Model. 

 The average difference and standard deviation for the PSEs from the Stochastic Frontier 

Method in the 400 observation simulation are off significantly (Table 9). Of the parametric 

methods, it appears that two-sided error system performed best when there were no single output 

firms having the lowest standard deviations and averages fairly close to zero, especially for PSE2 

(Figure 9 Panel B). 

 In the 400 observations simulation, while the standard deviation was higher for the 

nonparametric method than OLS and OLS Positive Errors, the average for PSE1 was closest to 

zero using the nonparametric method and closer than OLS Positive Errors and the Stochastic 

Frontier Method for PSE2 (Table 9).  None of the methods accurately predict the PSEs when 

there were no zero observations (Figures 8 and 9, panel C). 
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 The challenge for each model in the 400 observations simulation is that there are no firms 

producing only a single output. This requires each method to extrapolate estimates out of sample 

for the purpose of calculating incremental costs.  If the smallest firms are not efficient, a linear 

projection will be inaccurate depending on the amount of inefficiency of the smaller firms. 

5. Implications of the Results 

 Results suggest the two-sided error system is least accurate for estimating a frontier 

function and associated cost measures. This method lacks consistency with the economic 

definition of a cost function. This is apparent in that it does not, in any simulation, robustly 

estimate the MPSE or the economies of scope. 

 The stochastic frontier method appears susceptible to incorrect distributional assumptions 

on the one sided error as it estimates the frontier much closer to the “true” frontier under a half-

normal distribution rather than the uniform distribution. Results also suggest that the stochastic 

frontier method has difficulty extrapolating when there are no zero output firms as shown by its 

inability to accurately estimate economies of scope or PSEs for the 400 observations simulation. 

However, in the case of a normal distribution it accurately estimates the frontier and, with the 

existence of zero output observations, accurately estimates economies of scope and PSEs. 

 The OLS positive errors model appears to accurately project the cost frontier regardless 

of the distributional assumption and whether there are no single output firms.  However, like the 

stochastic frontier method, the OLS positive errors method has difficulty extrapolating when 

there are no single output firms. Thus, under no single output cases, the economies of scope 

estimations from the positive errors model may be incorrect, as may be PSE estimates.   
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 The nonparametric method in all three simulations is fairly robust in estimating the “true” 

cost frontier and associated economic measures. It is also the model most capable of handling 

data with no single output firms as shown by its proximity to zero in estimating economies of 

scope and PSEs. It does not appear to be particularly susceptible to distributional assumptions. 

 It is important to remember that all of the parametric methods used the correct function 

form (normalized quadratic). These results may be different should the data not be consistent 

with that functional form. Functional form and statistical assumptions are not necessary in the 

case of the nonparametric method, thus, the results will likely be more robust. Therefore, if a 

researcher is unsure of model specification or the data generation process, the nonparametric 

approach may be a good alternative to parametric estimation. 

6. Conclusions  

 Four methods for estimating a cost frontier and associated economic measures were 

examined under three different simulations including a half-normal distribution, uniform 

distribution, and a data set with no single output firms. The first method examined was a 

traditional two-sided error system regression with costs residing above and below the fitted 

curve. The second was the stochastic frontier method initially proposed by Aigner, Lovell, and 

Schmidt where the error term ensures all observations lie on or above the cost frontier. The third 

method was an OLS regression where the error term was restricted to take on positive values 

only ensuring that all observations lie on or above the cost frontier. Finally, a nonparametric 

DEA method proposed by Färe et. al. using a series of linear segments was used to trace out a 

cost frontier. For each simulation, cost efficiency, economies of scope, multi-product scale 
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economies, and product specific scale economies were calculated and compared to the known 

values from the “true” cost frontier.   

 The results show that the three frontier estimators are capable of estimating the “true” 

frontier in some simulations however; the stochastic frontier method was not as robust as the 

nonparametric method or the OLS Positive Errors Model. This result was also observed in the 

calculation of multi-product scale economies where all three frontier functions estimated the 400 

observations data set and the half-normal data set close, whereas the Stochastic Frontier Model 

was not. The OLS method could not estimate a frontier and corresponding cost efficiency and 

was the furthest from the “true” calculation of multi-product scale economies indicating it was 

not close in estimating marginal cost. 

 The Stochastic Frontier Model appears to be less robust for estimating the “true” 

measures that require calculating incremental costs such as economies of scope and product-

specific scale economies. Though the two-sided error model was less accurate in obtaining the 

“true” estimates in the half-normal and uniform simulations, the Stochastic Frontier method was 

less accurate in estimating scope economies or product specific economies of scale when there 

were no single output firms. 

 Overall, the nonparametric approach estimated the frontiers and associated economic 

measures close to the “true” values considering no special assumptions or specifications were 

required in its estimation. It’s estimation of the frontier was about as close, or closer to the “true” 

values as any of the methods examined and its calculations of MPSE and economies of scope 

were the closest in several of the scenarios presented. The nonparametric approach did not 

significantly fail to estimate PSEs compared to any other method. Therefore, it appears that the 

DEA method is robust for estimating scale and scope measures. 
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Table 1 Assumed coefficients used in cost function for data simulation for half-normal and 
uniform distributions. 
Coefficient Value 
A1 30.0 
A2 80.0 
A11 0.50 
A12 1.00 
A21 0.6 
A22 0.50 
B0 20.0 
B1 10.0 
B2 35.0 
B11 -0.09 
B12 -0.15 
B22 -0.47 
C11 1.44 
C12 -0.24 
C22 2.29 

 

 

 

 

  



27 

 

Table 2 The average, standard deviation, minimum and maximum for the input/output quantities 
and input prices in half-normal (xi

n) and uniform (xi
u) cases. 

N=500 Average Standard Deviation Minimum Maximum

x1
n 42.29 11.95 13.35 88.33 

x2
n 69.85 23.29 38.44 268.76 

x3
n 2602.60 1154.75 152.95 8083.87 

x1
u 36.93 8.644 14.06 68.89 

x2
u 60.16 10.25 38.43 136.13 

x3
u 2302.06 1027.79 147.92 6585.05 

w1 
9.05 0.98 5.42 11.98 

w2 
17.95 1.88 13.15 24.70 

w3 
6.98 0.78 4.85 9.75 

y1 
11.67 5.90 0.00 30.19 

y2 
14.31 7.53 0.00 37.92 

 

 

  



28 

 

Table 3 Summary statistics for efficiency calculations from generated data including half-normal 
and uniform distributions.  

Economic Measure Average 
Standard 
Deviation Minimum Maximum 

------Half-normal Distribution------ 
Multi-product Scale 
Economies 
 

0.931 0.108 0.772 1.989 

Cost Efficiency 0.721 0.177 0.129 1.000 

Scope 0.096 0.051 0.037 0.513 

Product-specific Scale 
Economies for y1 
 

0.728 0.246 0.000 0.957 

Product-specific Scale 
Economies for y2 

0.763 0.257 0.000 0.995 

------Uniform Distribution------ 

Cost Efficiency 0.799 0.133 0.268 1.000 

------400 Observations------ 

Multi-product Scale 
Economies 

0.918 0.082 0.773 1.989 

Cost Efficiency 
0.751 0.159 0.129 1.000 

Scope 
0.085 0.028 0.062 0.514 

Product-specific Scale 
Economies for y1 
 

0.808 0.047 0.678 0.957 

Product-specific Scale 
Economies for y2 

0.848 0.041 0.733 0.996 

Note: Economies of Scope, Multi-product Scale Economies, and Product-specific Scale 
economies are identical for the half-normal and uniform distributions 
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Table 4 Parameter estimates and standard errors for three simulations of each parametric model  

 N= 500 Half-Normal Distribution N=500 Uniform Distribution N=400 No Zero Outputs 

 Two-sided 
Errors 

One-sided 
Errors 

Stochastic 
Frontier 

Two-sided 
Errors 

One-sided 
Errors 

Stochastic 
Frontier 

Two-sided 
Errors 

One-sided 
Errors 

Stochastic 
Frontier 

A1 

 
28.83 
(4.67) 

56.05 
(3.61) 

32.00 
(27.32) 

29.77 
(2.05) 

56.05 
(1.88) 

28.90 
(3.74) 

60.92 
(23.12) 

76.82 
(5.24) 

302.28 
(12.03) 

A2 

 

79.33 
(3.83) 

88.39 
(2.75) 

46.05 
(21.10) 

80.18 
(1.62) 

88.39 
(1.43) 

78.24 
(4.41) 

52.38 
(17.58) 

54.74 
(4.40) 

-221.34 
(10.46) 

A11 

 

0.49 
(0.05) 

-9.73 
(2.42) 

2.91 
(19.55) 

0.47 
(0.04) 

-9.73 
(1.26) 

3.04 
(1.85) 

1.17 
(0.39) 

24.21 
(3.51) 

-45.54 
(22.64) 

A12 

 

0.67 
(0.19) 

-3.83 
(1.39) 

-7.58 
(11.78) 

0.56 
(0.08) 

-3.83 
(0.72) 

1.31 
(1.57) 

1.91 
(0.75) 

-16.74 
(1.78) 

-88.03 
(21.90) 

A21 

 

0.54 
(0.69) 

-5.00 
(1.71) 

1.69 
(14.72) 

0.76 
(0.03) 

-5.00 
(0.89) 

4.45 
(1.59) 

0.12 
(0.29) 

-34.24 
(2.71) 

65.82 
(18.24) 

A22 

 

-1.16 
(0.15) 

0.44 
(1.13) 

5.61 
(9.84) 

-0.39 
(0.07) 

0.44 
(0.58) 

1.66 
(1.26) 

-1.67 
(0.59) 

-0.99 
(1.50) 

78.41 
(18.03) 

B0 

 

684.95 
(60.23) 

360.20 
(100.29) 

-2011.12 
(42.22) 

401.01 
(26.66) 

360.20 
(52.15) 

460.56 
(1.34) 

689.81 
(80.79) 

-194.91 
(42.64) 

-4270.54 
(1.82) 

B1 

 

26.18 
(26.17) 

-267.67 
(104.00) 

1833.84 
(107.89) 

20.20 
(0.75) 

-267.67 
(54.07) 

12.97 
(1.17) 

25.65 
(1.74) 

103.79 
(46.62) 

3225.37 
(8.11) 

B2 

 
70.13 
(5.25) 

-200.80 
(66.17) 

825.29 
(104.11) 

57.29 
(2.34) 

-200.80 
(34.40) 

48.74 
(1.71) 

68.61 
(4.74) 

56.44 
(26.04) 

2109.47 
(6.91) 

B11 

 

0.34 
(0.18) 

46.59 
(89.08) 

-834.08 
(74.46) 

-0.09 
(0.08) 

46.59 
(46.36) 

-65.45 
(1.00) 

0.12 
(0.17) 

-210.43 
(34.17) 

-529.61 
(8.11) 

B12 

 

0.83 
(0.51) 

143.01 
(34.06) 

-297.13 
(62.21) 

0.20 
(0.23) 

143.01 
(20.21) 

-28.37 
(1.05) 

0.22 
(0.50) 

195.80 
(14.26) 

-1076.81 
(10.09) 

B22 

 

2.85 
(1.88) 

27.48 
(26.88) 

-135.50 
(114.14) 

0.64 
(0.87) 

27.48 
(14.90) 

-8.34 
(1.17) 

0.25 
(1.80) 

2.74 
(10.34) 

-283.21 
(13.61) 

C11 

 

2.29 
(0.15) 

1.64 
(0.18) 

2.20 
(1.25) 

1.76 
(0.06) 

1.64 
(0.09) 

2.05 
(0.50) 

-0.35 
(1.67) 

-1.41 
(0.64) 

22.91 
(13.05) 

C12 

 
-0.78 
(0.53) 

-0.25 
(0.07) 

0.10 
(0.35) 

-0.48 
(0.02) 

-0.25 
(0.04) 

-0.75 
(0.19) 

1.40 
(1.25) 

0.013 
(0.53) 

-15.66 
(8.36) 

C22 

 
3.13 

(0.68) 
2.41 

(0.12) 
3.16 

(0.78) 
2.66 

(0.04) 
2.41 

(0.06) 
2.38 

(0.32) 
1.32 

(0.97) 
6.40 

(0.43) 
14.66 
(5.63) 
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Table 5 Eigenvalues for “B” (prices) and “C” (outputs) matrices for each model and 
simulation  

Half-Normal Uniform No Zero Outputs

B C B C B C 

------Two-sided Error System------ 

3.09 3.50 0.70 2.80 0.41 2.10 

0.09 1.80 -0.10 1.50 -0.40 -1.14 

X √ X √ X X 

------Stochastic Frontier------- 

-37.0 3.20 3.10 2.90 677 34.8 

-931 -2.20 -76.0 1.40 -1489 2.60 

√ X X √ X √

------OLS Positive Errors------ 

180 2.40 180 2.40 118 6.00 

-106 1.50 -106 1.50 -325 -1.50 

X √ X √ X X 

Note: The known cost function is concave in prices (B matrix) and convex in outputs(C 
matrix). For concavity, the matrix must yield negative eigenvalues and for convexity the 
matrix must yield positive eigenvalues. A “√” implies correct curvature while “X” 
implies a curvature violation. 

 



31 

 

 

Table 6 Statistics for simulated cost efficiency differences for the OLS positive errors, stochastic 
frontier, and nonparametric estimations  
 Average Standard 

Deviation 
Minimum Maximum Mean 

Absolute 
Deviation 

------Half-normal Distribution------ 
OLS Positive Errors 
 

-0.020 0.039 -0.277 0.063 0.023 

Stochastic Frontier 
 

-0.015 0.043 -0.304 0.155 0.024 

Nonparametric 
 

-0.025 0.041 -0.530 -0.003 0.026 

------Uniform Distribution------ 
OLS Positive Errors 
 

-0.011 0.013 -0.062 0.122 0.013 

Stochastic Frontier 
 

-0.198 0.118 -1.478 -0.058 0.198 

Nonparametric 
 

-0.004 0.007 -0.079 0.000 0.004 

------400 Observations------ 
OLS Positive Errors 
 

-0.017 0.023 -0.173 0.015 0.017 

Stochastic Frontier 
 

-0.028 0.049 -0.351 0.139 0.039 

Nonparametric 
 

-0.022 0.032 -0.386 -0.003 0.022 
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Table 7 Statistics for economies of scope differences from all four methods from all three data 
sets. 
 Average Standard 

Deviation 
Minimum Maximum Mean 

Absolute 
Deviation 

------Half-normal Distribution------ 

Two-sided Error System -0.300 
 

0.057 -0.474 -0.194 0.300 

OLS Positive Errors -0.082 
 

0.067 -0.291 0.093 0.088 

Stochastic Frontier -0.101 
 

0.056 -0.266 0.052 0.103 

Nonparametric -0.089 
 

0.030 -0.249 0.029 0.089 

------Uniform  Distribution------ 

Two-sided Error System -0.300 
 

0.058 -0.489 -0.191 0.300 

OLS Positive Errors 0.010 
 

0.023 -0.044 0.190 0.018 

Stochastic Frontier -0.158 
 

0.041 -0.312 -0.091 0.158 

Nonparametric -0.019 
 

0.079 -0.904 0.017 0.020 

------400 Observations------ 

Two-sided Error System -0.148 
 

0.115 -0.437 0.152 0.175 

OLS Positive Errors -0.187 
 

0.053 -0.376 -0.048 0.187 

Stochastic Frontier -2.324 
 

0.607 -4.109 -0.142 2.324 

Nonparametric 0.070 
 

0.036 0.025 0.514 0.070 
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Table 8 Statistics for Multi-product Scale Economies differences from all four methods from all 
three data sets. 
 Average Standard 

Deviation 
Minimum Maximum Mean 

Absolute 
Deviation 

------Half-normal Distribution------ 

Two-sided Error System -0.443 
 

0.361 
 

-2.917 
 

-0.067 
 

0.443 

OLS Positive Errors -0.257 
 

0.658 
 

-5.995 
 

0.104 
 

0.272 
 

Stochastic Frontier -0.084 
 

0.183 
 

-1.577 
 

0.107 
 

0.107 
 

Nonparametric -0.002 
 

0.096 
 

-0.678 
 

0.739 
 

0.049 
 

------Uniform Distribution------ 

Two-sided Error System -0.482 
 

0.609 
 

-7.857 
 

-0.068 
 

0.482 
 

OLS Positive Errors 0.023 
 

0.044 
 

-0.124 
 

0.515 
 

0.027 
 

Stochastic Frontier -0.210 
 

0.258 
 

-3.384 
 

-0.030 
 

0.210 
 

Nonparametric -0.012 
 

0.054 
 

-0.277 
 

0.114 
 

0.029 
 

------400 Observations------ 

Two-sided Error System -0.371 
 

0.300 
 

-4.642 
 

-0.065 
 

0.371 

OLS Positive Errors -0.087 
 

0.131 
 

-1.331 
 

0.105 
 

0.103 

Stochastic Frontier -0.074 
 

0.152 
 

-0.727 
 

0.177 
 

0.118 

Nonparametric -0.009 
 

0.137 
 

-0.821 
 

0.743 
 

0.058 
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Table 9 Statistics for Product-specific Scale Economies differences for y1 and y2 from all four 
methods and all three data sets 
 Average Standard 

Deviation
Minimum Maximum Mean 

Absolute 
Deviation

 ------Half-normal Distribution------ 
 Two-sided Error System 0.099 0.024 0.047 0.147 0.099 
y1 OLS Positive Errors -0.056 0.039 -0.130 0.140 0.064 
 Stochastic Frontier 0.111 0.018 0.081 0.176 0.111 
 Nonparametric 

 
0.128 
 

0.202 
 

-0.259 
 

0.573 
 

0.202 
 

 Two-sided Error System 0.053 0.011 0.022 0.081 0.053 
y2 OLS Positive Errors 0.075 0.016 0.037 0.148 0.075 
 Stochastic Frontier 0.060 0.006 0.004 0.072 0.060 
 Nonparametric 

 
0.027 
 

0.099 
 

-0.344 
 

0.303 
 

0.085 
 

 ------Uniform Distribution------ 
 Two-sided Error System 0.098 0.025 0.024 0.147 0.098 
y1 OLS Positive Errors 0.012 0.013 -0.012 0.049 0.013 
 Stochastic Frontier 0.056 0.018 0.012 0.093 0.056 
 Nonparametric 

 
0.020 
 

0.123 
 

-0.241 
 

0.299 
 

0.097 
 

 Two-sided Error System 0.052 0.011 0.002 0.075 0.052 
y2 OLS Positive Errors 0.005 0.002 0.000 0.011 0.005 
 Stochastic Frontier 0.004 0.004 -0.008 0.012 0.005 
 Nonparametric 

 
-0.004 
 

0.053 
 

-0.186 
 

0.126 
 

0.039 
 

 ------400 Observations------ 
 Two-sided Error System -0.218 0.054 -0.368 -0.048 0.218 
y1 OLS Positive Errors -0.421 0.296 -4.110 -0.066 0.421 
 Stochastic Frontier 1.696 32.94 -619.9 120.5 6.480 
 Nonparametric 

 
0.187 
 

0.310 
 

-0.311 
 

0.957 
 

0.266 
 

 Two-sided Error System -0.036 0.015 -0.086 0.000 0.036 
y2 OLS Positive Errors 0.302 0.028 0.042 0.373 0.302 
 Stochastic Frontier -9.224 248.9 -4952 444.3 18.15 
 Nonparametric 0.132 0.209 -0.248 0.937 0.183 
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Figures 

 

 

 

 
Note: the MPSE calculations for both the half-normal and uniform error distribution is identical. 

Figure 1 Frontier Multi-Product Scale Economies Cumulative Frequency for Simulated Data.  
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Figure 2 Frontier Cost Efficiencies Cumulative Frequency for both Half-normal and Uniform 

Distributions. 
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Note: The Economies of Scope calculations for both the half-normal and uniform error distribution is identical. 

 

Figure 3  Frontier Economies of Scope Cumulative Frequency 
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Note: The PSE calculations for Y1 and Y2 for both the half-normal and uniform error distribution are identical 

 

Figure 4 Frontier Product-Specific Scale Economies 
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Panel A: Half-normal Distribution 

 
Panel B: Uniform Distribution 

Panel C: Differences 400 Observations 

Figure 5 Differences between frontier cost efficiency and estimated cost efficiency for the 
nonparametric, frontier, and OLS positive errors models 
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Panel A: Half-normal Distribution 

 
Panel B: Uniform Distribution 

 
Panel C: 400 Observations 

Figure 6 Differences between frontier Economies of Scope and estimated Economies of Scope 
from Two-sided Errors, OLS Positive Errors, Frontier, and Nonparametric models. 
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Panel A: Half-normal Distribution 

Panel B: Uniform Distribution 

 
Panel C: 400 Observations 

 
Figure 7 Differences between frontier Multi-product Scale Economies and estimated Multi-
product Scale Economies from the Two-sided Errors, OLS Positive Errors, Frontier, and 
Nonparametric models. 
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Panel A: Y1 Half-normal Distribution 

 
Panel B: Y1 Uniform Distribution 

Panel C: Y1 400 Observations 

 
Figure 8  Differences between frontier Product-specific Scale Economies for Y1 and estimated 
Product-specific Scale Economies for Y1 from the Two-sided Errors, OLS Positive Errors, 
Frontier, and Nonparametric models. 
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Panel A: Y2 Half-normal Distribution 

Panel B: Y2 Uniform Distribution 

Panel C: Y2 400 Observations 

Figure 9 Differences between frontier Product-specific Scale Economies for Y2 and estimated 
Product-specific Scale Economies for Y2 from the Two-sided Errors, OLS Positive Errors, 
Frontier, and Nonparametric models. 
 

 


