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Abstract

This paper studies the demand structure of the blue crab market in the Chesa-
peake Bay. In addition to providing empirical results regarding the economically im-
portant fishery, the paper offers a useful example of the potential for inverse demand
system estimations for seafood where quantities are often defined prior to prices, and
a variety of products are obtained from a single system. This is done with a nonlinear
Inverse Almost Ideal Demand System coupled with seasonal patterns and control-
ling for endogeneity. The model used in this paper is able to address seasonality in
demand in terms of varying flexibilities over seasons and deals with endogeneity in
accordance with biological stock assessment data. Empirical results show significant
season-varying market behaviors. The results also indicate the presence of endogene-
ity in the demand system. The flexibilities are calculated according to the estimates
before and after controlling for endogeneity. Most market categories are price inflex-
ible across seasons. The #1 Male, #2 Male, Female, and Mixed categories are neces-
sities, while the Soft and Peeler category is a luxuary. Cross-category flexibilities
suggest that most categories are quantity substitutes.

Key words: endogeneity, seasonality, blue crab
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Introduction

Inverse demand systems have become a popular approach for fish and vegetable

demand analysis in recent decades, in which the commodities usually have highly

inelastic supplies in the short term (Barten and Bettendorf 1989; Burton 1992; Eales

and Unnevehr 1994; Holt and Bishop 2002; Park, Thurman, and Easley 2004; Lee

and Kennedy 2008; Grant, Lambert, and Foster 2010; Dedah, Keithly, and Kazmier-

czak 2011; Thong 2012). In this sense, inverse demand systems are appropriate for

most agricultural products (Holt 2002). In this paper, a demand analysis is un-

dertaken for an important species in the Chesapeake Bay using an Inverse Almost

Ideal Demand System (IAIDS). Blue crab is not only a crucial component of the

Chesapeake Bay ecosystem, but also the largest source of crabs in the U.S., ac-

counting for 50 percent of the total blue crab harvests with values ranging from

$46–103 million annually (Bunnell, Lipton, and Miller 2010; Miller et al. 2011).

This paper concentrates on a local fishery market that comprises five categories

based on sizes and sexes. Since fish of different sizes generate differing market

values, they should be treated differently in economic studies instead of a unified

biomass (Asche et al. 2012). The recent trend of fishery research suggests that fish-

eries management should implement policies that are responsive to fish sizes and

ages (Smith 2012). The estimated flexibilities from the demand analysis on dif-

ferentiated products of a species can help fisheries managers with the process of

policy making. The own-category flexibilities tell the direct effects of policies tar-

geting a specific market category, while the cross-category flexibilities indicate the

indirect effects on other market categories.

One of the challenges in estimating inverse demand systems is the existence

of endogeneity. The common practice in these studies is to treat quantities as ex-

ogenously determined and, therefore, fishers do not take actions based on their

price expectations (Burton 1992; Eales and Unnevehr 1994; Holt and Bishop 2002;
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Dedah, Keithly, and Kazmierczak 2011; Xie and Myrland 2011; Thong 2012). How-

ever, an endogeneity issue can arise when the quantity formulation process is, to

some extent, linked to market prices. This might happen in fish demand when har-

vest decisions are based on price expectations in the current period, which tends to

jeopardize the demand relationship. Failure to account for endogeneity may bias

parameter estimates, which could provide misleading information to policy mak-

ers. In recent decades, the endogeneity problem in demand estimation has been

considered and tested (LaFrance 1993; Kadiyali, Vilcassim, and Chintagunta 1996;

Dhar, Chavas, and Gould 2003; Park, Thurman, and Easley 2004; Grant, Lambert,

and Foster 2010), but there are only a few researches addressing this problem in

fish demand (Park, Thurman, and Easley 2004).

This study accounts for potential endogeneity in fish demand with the biologi-

cal content of the species. The most common approach to control for endogeneity

is to use instuments that are correlated with the endogenous variables but inde-

pendent of the error terms in the estimated demand equations. Within the con-

text of fisheries, the stock assessment for a fishery provides a good instrument for

dealing with endogeneity since it is an objective measure of the stock status that is

correlated with harvests, but clearly exogenous to the market in the year following

the assessment. This study follows an approach that specifies the explicit quan-

tity equations from the supply side, and jointly estimates the demand and supply

equations (Kadiyali, Vilcassim, and Chintagunta 1996; Villas-Boas and Winer 1999;

Dhar, Chavas, and Gould 2003). The resulting model generates unbiased estimates

based on biological properties of a nature resource system.

This paper also addresses seasonality issues that arise because of changing con-

sumption patterns over the year, changing biological processes, and seasonal vari-

ation in the weather. These factors may cause demand cycles for fish with dif-

ferent sizes and genders. The existence of cycles in prices and quantities in the
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market may suggest season-varying demand. During the last decade, a number of

studies have recognized the importance of seasonality in the demand for agricul-

tural products (Herrmann, Mittelhammer, and Lin 1992; Eales and Unnevehr 1994;

Johnson, Durham, and Wessells 1998; Grant, Lambert, and Foster 2010). In these

studies, seasonal patterns are examined by including binary variables for shifting

the demand equations, or the number of season-varying elasticity estimates are

limited. In this paper, the seasonal effects are illustrated by estimating season-

specific flexibilities.

The article is organized as follows. The next section discusses the Chesapeake

Bay blue crab fishery and regulations imposed on it. Then, the extended IAIDS

model is described, including how seasonal effects and endogeneity are addressed.

This is followed by an overview of the data and how they are treated in this study.

The estimation results are then discussed in the next section, followed by the last

section, which draws some conclusions.

Background

The blue crab fishery in the Chesapeake Bay is regulated under three jurisdictions,

Maryland, Virginia, and the Potomac River Fisheries Commission. A number of

policies have been proposed to protect the abundance of blue crabs. Given the

effectiveness of current policies in reserving biological population, associated eco-

nomic implications to the area are of interest when evaluating fishery policies. The

bio-economic model developed by Bunnell, Lipton, and Miller (2010) uses a set of

inverse demand equations that regress market prices on quantities, seasonal dum-

mies, and disposable income for blue crabs in the Chesapeake Bay. However, the

demand equations are with constant slope forms, making it impossible to test eco-

nomic theories and examine the relationships between various market categories.
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Harvested blue crabs in the Chesapeake Bay are divided into five market cate-

gories based on sizes and sexes labeled as #1 Male, #2 Male, Female, Soft and Peeler

(SP hereafter), and Mixed. Blue crabs in the #1 Male category are larger than those

in the #2 Male category. Female crabs constitute an individual category; they are

smaller than those in the #1 Male, but similar to ones in the #2 Male. Crabs that are

less marketable and gender unclassified are reported as Mixed. They are similar in

size to those in Female. SP is the most valuable category in the market, with prices

much higher than other categories.

To illustrate how the market changes over seasons, average prices, quantities,

and market shares from April to November, during which the fishing season for

blue crabs in the Chesapeake Bay is regulated, are presented in the three figures.

This provides preliminary insights into how the blue crab fishery market changes

on an annual basis. By looking at the real price data in Figure 1, we see that the

#1 Male receives higher prices than the #2 Male or Female due to larger sizes. The

SP category receives the highest prices compared to others. The prices for the #1

Male, #2 Male, Female, and Mixed demonstrate a decreasing trend over a fishing

season. Figure 1 also shows that prices for the #2 Male, Female, and Mixed move

together during a season, which may imply close relationships among the three

categories.

Growing patterns over a year may result in changing quantities for categories,

as shown in Figure 2. In the Chesapeake Bay, blue crabs grow discontinuously

through a series of molts; a process that is highly dependent on water temperature

(Bunnell, Lipton, and Miller 2010). Prior to molting, blue crabs become peelers as

they prepare to separate their hard shells from their bodies. After molting, there

are 24 to 48 hours for crabs to harden their shells, which is the perfect timing for

harvesting soft shell crabs. Late spring and early summer is the mating season for

mature males and maturing females, during which females are experiencing their
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last soft shell stage (Bunnell and Miller 2005). This explains the peak of SP harvests

occurring in the mating season, May and June, as indicated in Figure 2. After the

maturity molt, females cease molting, but males do not stop (Hines et al. 2003).

Figure 2 illustrates that quantities for all market categories are not uniformly

distributed across periods, showing evident seasonality. Summer, from June to

August, is the most favorable growing period for male crabs since warm water is

crucial for crab molting and growing. Most males grow up to the size of the #1

Male and are harvested in summer months. The largest number of females are

harvested in September and October, which are also the highest monthly quanti-

ties for all categories. This may be attributed to fishery policies that are intended to

protect adult female crabs during the summer spawning period. Figure 2 also indi-

cates that quantities for the #2 Male and Mixed have small magnitudes, implying

that the #2 Male and Mixed categories have little impacts on the whole market.

Figure 3 presents the average monthly expenditure shares for the five market

categories, which also illustrate seasonality of the blue crab market. At the begin-

ning of a fishing season, the #1 Male accounts for the largest expenditure share up

to 60 percent due to its relative large harvest. The #1 Male category is surmounted

by the SP in May. This is because majority of soft and peeler crabs are harvested

in late spring and early summer. The expenditure share for the Female peaks in

October and November.

Model Specifications

Inverse Almost Ideal Demand System

Eales and Unnevehr (1994) develop the IAIDS model that holds most of the de-

sirable properties of the famous Almost Ideal Demand System (AIDS) by Deaton

and Muellbauer (1980). The IAIDS system has gained popularity for studying fish
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and agricultural products in recent years (Grant, Lambert, and Foster 2010; Dedah,

Keithly, and Kazmierczak 2011; Thong 2012). Here the IAIDS is used to analyze the

blue crab demand because the nonlinear structure provides a way of investigating

season-varying behaviors in the market.

The derivations of the IAIDS model are presented in Eales and Unnevehr (1994).

The functional form that will be estimated is given by:

wi = αi + ∑
j

γij ln qj + βi ln Q, (1)

where wi is the expenditure share for commodity i; ln qj is the logarithm of quantity

for the jth commodity; the translog term ln Q is expressed as:

ln Q = α0 + ∑
j

αj ln qj +
1
2 ∑

i
∑

j
γij ln qi ln qj.

Equation 1 forms a nonlinear system of equations.1 To avoid estimation com-

plexity, the translog index, ln Q is usually replaced with the Stone’s quantity index,

ln Q∗ = ∑i wi ln qi. This is similar to the Stone’s price index in the AIDS model sug-

gested by Deaton and Muellbauer (1980). Although this approximation results in

a favorable linear system of equations, potential bias may arise due to collinearity

of variables (Deaton and Muellbauer 1980). As with other demand systems, the

adding-up, homogeneity, and symmetry restrictions can be imposed and tested.

These restrictions are expressed as: ∑i αi = 1, ∑i γij = 0, ∑i βi = 0 (adding-up);

∑j γij = 0 (homogeneity); γij = γji, ∀i 6= j (symmetry).

The behavioral response parameters in ordinary demand are defined as elastic-

ities. The counterparts in inverse demand systems are flexibilities, denoting how

prices change in response to quantity changes. Differentiating equation (1) with

1There is difficulty in estimating the parameter α0 in the nonlinear model due to the flatness
of maximum likelihood function in α0 (Deaton and Muellbauer 1980; Moschini, Moro, and Green
1994). In this study, α0 is set to zero, since Moschini, Moro, and Green (1994) argue that zero value
of α0 has minimal impact on elasticity/flexibility estimates (Dhar, Chavas, and Gould 2003).
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respect to ln qj, ∀j yields the own- and cross-category flexibilities:2

fij = −δij +
γij + βi

(
wj − β j ln Q

)
wi

, (2)

where δij is the Kronecker delta (δij = 1 if i = j, and δij = 0 otherwise). The scale

flexibility is the sum of fij over j under the homogeneity restriction:

fi = −1 +
βi

wi
. (3)

Interpretations of flexibilities are similar to elasticities in ordinary demand.

Demand for a commodity is said to be flexible if the own-category flexibility is

less than −1 and inflexible if it is greater than −1 and less than zero. For cross-

category flexibility, the negative number indicates gross quantity substitutes be-

tween goods, while the positive number denotes gross quantity complements. The

scale flexibility is interpreted as the percentage change in a normalized price (i.e.,

price divided by expenditure) due to a scale expansion in the consumption bundle

(Park and Thurman 1999). A commodity is classified as a necessity if its scale flex-

ibility is less than −1, or defined as a luxury if greater than −1 and less than zero

(Eales and Unnevehr 1994).

Seasonality

The strategy of capturing seasonality in the IAIDS model is proposed by Eales and

Unnevehr (1994). However, the corresponding flexibilities are not seasonally ad-

justed in their study. In this paper, season-varying flexibilities are reflected by esti-

mated coefficients associated with seasonal variables, indicating different market

behaviors over the year.

Following Eales and Unnevehr (1994), the intercept αi and αj in equation (1)

2The steps of flexibility derivations are presented in Eales and Unnevehr (1994).
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can be decomposed into different parts including seasonal dummies Ds, s = 1, 2.

The modified functional form of IAIDS is:

wi = αi + ∑
s

λisDs + ∑
j

γij ln qj + βi ln Q, (4)

where

ln Q = α0 + ∑
j

(
αj + ∑

s
λjsDs

)
ln qj +

1
2 ∑

i
∑

j
γij ln qi ln qj.

In practice, the intercept αi and αj can include any relevant dummy variables.

For example, Dedah, Keithly, and Kazmierczak (2011) study external effects of

policy regulations and health information on demand. Additional restrictions,

∑i λis = 0, ∀s, are required to meet the adding-up constraint.

In this paper, the flexibilities are then adjusted to capture seasonal effects:

fijs = −δij +
γij + βi

(
αj + λjs + ∑k γkj ln qks

)
wis

, (5)

fis = −1 +
βi

wis
, (6)

where wis and ln qks are seasonal expenditure share and logarithm of quantity, re-

spectively.

Endogeneity

As indicated earlier, an endogeneity problem arises when a set of explanatory vari-

ables become endogenous in equation (4). Whenever there are unaccounted fac-

tors affecting harvest quantities and related to price formation, treating quantities

as exogenous variables would result in biased estimates.

To control for potential endogeneity, an approach is used that a system of equa-
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tions is jointly estimated, including both the inverse demand equations and the ex-

plicit quantity equations using instruments from the supply side (Kadiyali, Vilcas-

sim, and Chintagunta 1996; Villas-Boas and Winer 1999; Dhar, Chavas, and Gould

2003). The quantity equation for the ith product is represented as:

qit = ηT
i xit, (7)

where qit is the quantity for product i at time t; xit contains a set of instruments that

illustrate the quantity formation; ηi are the coefficients. The assumption associated

with this specification is that the quantity can be exogenously explained by specific

shifters (instruments) from the supply side. In this study, the quantity equations (7)

are assumed to take reduced forms similar to Dhar, Chavas, and Gould (2003). This

specification can generate consistent estimates of the parameters in the correctly

specified demand equations (4) (Villas-Boas and Winer 1999).

A common choice of instruments xit is to use lagged terms of endogenous vari-

ables, since they are easily obtained by researchers (Villas-Boas and Winer 1999;

Park, Thurman, and Easley 2004; Grant, Lambert, and Foster 2010). This strategy

might be challenged due to potential correlations between the previous quantities

and current prices. One would argue that fishers may make their harvest decisions

in a present period based on their price expectations in future periods. However,

this correlation could be small for a local fishery because the short-term supply is

inelastic.

Besides lagged terms, equation (7) can also include other explanatory variables.

Fish stock variables could be a good instrument choice. In classical fisheries eco-

nomics, harvest is usually modeled as a function of fish stock and fishing effort

(Gordon 1954; Smith 1969). The rationale behind this choice is that harvest is de-

pendent on the amount of fish in the stock that is predetermined at the beginning

of each period.
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The empirical form of equation (7) in this study includes current fish stock and

harvest in previous period to represent the supply side. The reduced function form

is:

ln qit = ηi0 + ηi11(m∈i) ln Smt + ηi21( f∈i) ln S f t + ηi3 ln qit−1, (8)

where Smt and S f t are estimated fish stocks for males and females at time t, re-

spectively; qit−1 is the harvest in a previous period; 1(m∈i) (1( f∈i)) is an indicator

function that equals one if the ith market category includes males (females), and

zero otherwise. The joint estimation with raw stock data lacks of convergence

maybe because the magnitudes of fish stocks are much larger than the logarithms

of quantites in the demand equations (4). Here all fish stock data were converted to

logarithms in equation (8). Given the specified quantity equations, we can jointly

estimate the system of equaions (4) and (8). The resulting parameters are estimated

from the model controlling for endogeneity.

The next step is to test if endogeneity problem exists in the inverse demand sys-

tem. Following Dhar, Chavas, and Gould (2003) and LaFrance (1993), the Durbin,

Wu and Hausman (DWH) approach is used to test for endogeneity. The test is

represented as the difference between the estimates from the controlled and un-

controlled models. The DWH statistic is specified as:

DWH = (θu − θc)
T [Var (θu)−Var (θc)]

−1 (θu − θc) , (9)

where θu is the parameter vector estimated from the endogeneity-uncontrolled

model, and θc is the vector of estimates from the endogeneity-controlled model.

The null hypothesis of DWH test is that there is no endogeneity issue in the origi-

nal model. Under the null hypothesis, DWH statistics is asymptotically distributed

as χ2 (k), where k is the number of potential endogenous variables.
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Data

Data used in the analysis are monthly time series from 1994 to 2007 for five market

categories of blue crabs: #1 Male, #2 Male, Female, SP, and Mixed. The number

of total observations is 111. The study period after 1994 was chosen because of

the change in the blue crab fishery management in Maryland. In 1994, Maryland

Department of Natural Resources (MDNR) implemented a mandatory reporting

scheme for fishers (Miller et al. 2011). Pre 1994 data are considered to be less reli-

able.

The quantity of landings and prices are obtained from the MDNR. The monthly

harvest data are combined from logbook records of crab fishers, and the monthly

price data are from the MDNR monthly survey of seafood dealers. Since this is

the demand analysis for the Chesapeake Bay region, ideally we could also use

data from Virginia and the Potomac River Fisheries Commission. However, there

is no category-specific data for these management agencies. The assumption is

made that the demand for blue crabs in Maryland is representative for the whole

Chesapeake Bay area (Bunnell, Lipton, and Miller 2010).

Prices are converted to real terms using the consumer price index (CPI) with

the base CPI = 100 in 1982. Since there are only combined quantity of landings for

soft shell crabs and peelers in the data set, averages of the prices were taken to rep-

resent the prices for the combined market category, SP. The monthly quantity and

price data range from April to November for each year. To account for seasonality

in the model, April and May were grouped as Spring, June to August as Summer,

and September to November as Fall.

As mentioned before, the stock assessment estimates are used as instruments to

control for endogeneity. For the blue crab fishery, the Winter Dredge Survey is con-

ducted during inactive fishing periods in the Chesapeake Bay to assess the stock

status each year (Miller et al. 2011). The survey estimates how many harvestable

13



crabs are available before fishing season starts, and contains sex-specific stock as-

sessment data. To make the annual stock data compatible with the monthly fishery

data, the stock data were converted to monthly data by adjusting actual harvests

in each month. For example, the stock status for April is the initial data from the

stock assessment survey each year. The stock for later months is subtracted by the

commercial, recreational harvests, and natural mortalities in the previous month.3

Empirical Results

Seasonal IAIDS Estimates and Tests

The nonlinear IAIDS model (4) is estimated using the nonlinear seemingly unre-

lated regression (NLSUR) method. Results are presented in Table 1: a base model

that does not control for endogeneity, and a model in which endogeneity is cor-

rected using the stock instruments.

To avoid singularity, the equation assocated with the Mixed category is dropped.

The coefficients of this equation are recovered from the adding-up constraint. The

system estimates are not invariant to the deleted equation in the presence of serial

correlation when dealing with time series data. This problem may result in incon-

sistent estimates. To test for serial correlation, the Durbin-Watson (DW) statistics

are calculated from the predicted residuals for the estimated equations in the base

model, the model with the homogeneity constraint, and the model with both ho-

mogeneity and symmetry constraints (Durbin and Watson 1971). The results are

presented in Table 2. It shows that the test statistics range from 1.589 to 2.091 in the

three models, which are all higher than the lower critical value, 1.539, at the five

percent significance level. The results indicate that there is little evidence of severe

3In most blue crab studies in the Chesapeake Bay, the recreational harvests are assumed as eight
percent of the total harvests, and the natural mortality rate is assumed to take 0.9 (Bunnell, Lipton,
and Miller 2010; Miller et al. 2011).
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serial correlation in the residuals of the models.

By further looking at the results in Table 2, the DW statistics change for all cat-

egories when the homogeneity restriction is imposed. However, there are only

slight changes on DW statistics when the symmetry restriction is imposed con-

ditional on homogeneity. This implies that serial correlation may be introduced

through the the imposition of homogeneity, which is also found in Deaton and

Muellbauer (1980).

The economic constraints, homogeneity and symmetry, are tested using the

likelihood ratio (LR) test.4 Three different tests are conducted: the model with

homogeneity verses the base model, the model with homogeneity and symmetry

verses the base model, and the model with homogeneity and symmetry verses the

model with homogeneity. The LR test results reject homogeneity (χ2 = 24.61),

joint homogeneity and symmetry (χ2 = 33.74), but cannot reject the case of homo-

geneity and symmetry conditional on homogeneity (χ2 = 9.13) at the five percent

significance level. It is not surprising since rejections of these economic restrictions

also exist in other studies regarding fish demand (Xie and Myrland 2011; Thong

2012).

Although the data show evident seasonality, the seasonal IAIDS model is sta-

tistically tested against the non-seasonal IAIDS also using the LR test. The null

hypothesis that the seasonal and non-seasonal models are statistically identical is

rejected (χ2 = 23.37). This result suggests that seasonality does impact the blue

crab demand.

Here we briefly discuss the coefficient estimates in the base model. Ten sig-

nificant coefficient estimates out of eleven at the one percent significance level are

associated with the #1 Male, Female, and SP. This indicates that these three cate-
4Two sets of economic restrictions were imposed on the seasonal IAIDS model. The first case

only imposes homogeneity, while the second imposes joint homogeneity and symmetry. No con-
sideration was given to the case with only the symmetry restriction, since it is equivalent to the
case of joint homogeneity and symmetry given that the adding-up constraint must hold.
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gories have more market influence than the others, not surprising since the three

account for over 99 percent of the total expenditures. Each market category has a

significant coefficient associated with its own equation. Not many seasonal coef-

ficients show significance in the model. However, the sign and magnitude of the

seasonal coefficients coincide with the trends in Figure 3.

The coefficient estimates from the model controlling for endogeneity are also

presented in Table 1. The system of equations (4) and (8) are jointly estimated us-

ing the NLSUR method. The equations associated with the #1 Male, Female, and

SP in the market have more significant estimates than the other two. The test for

endogeneity relative to the base model according to equation (9) is implemented.

The DWH statistic is 771.132, which is much higher than the critical value of χ2 (5)

at five percent significance level. The test rejects the null hypothesis that estimates

from the base model are consistent, which indicates strong evidence of endogene-

ity in the inverse demand system for the blue crab fishery. This result also suggests

that not considering the endogeneity issue may generate erroneous results.

According to the results of several tests, the economic constraints and the ex-

ogenous assumption are rejected. Hence, the estimates from the endogeneity-

controlled model with seasonal patterns are more preferred than other models.

In the following analysis, the flexibility resutls are interpreted based on the model

correcting for endogeneity.

Seasonal Flexibility Estimates

The flexibilities are estimated by seasons based on the parameter estimates before

and after controlling for endogeneity. The results are presented in Table 3 and

Table 4. Following LaFrance (1993) and Dhar, Chavas, and Gould (2003), we can

calculate the absolute percentage difference between the flexibility estimates from

the two models to get:
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APD =
100| fu − fc|
0.5| fu + fc|

,

where fu and fc are flexibility estimates from the uncontrolled and controlled en-

dogeneity models, respectively. The last row of Table 4 presents the mean APD

(MAPD) by market category over seasons. The average of these MAPD is 349.6

percent, implying that there is significant difference between the flexibility esti-

mates with and without accounting for endogeneity.

Comparing results from Table 3 and Table 4, 38 out of 60 cross-category flexi-

bilities increase in magnitudes, which implies that the relationships between some

categories become stronger after considering endogeneity. This finding has pol-

icy implications; a policy designed for protecting one category may have greater

price effects on other categories than it would be suggested by a model that ne-

glected endogeneity. When implementing fishery policies to target a specific cate-

gory, managers should take into account the effects on other categories.

The estimated flexibilities vary across seasons, as shown in Table 4. Regarding

scale flexibilities, blue crabs in the Chesapeake Bay appear to be necessities for all

categories, except for the SP category in the spring and summer. It suggests that

the SP category is a luxury in this market. Note that the scale flexibility for SP in

the fall is the only one greater than zero. It is difficult to provide an economically

resonable explanation for this result. This positive scale flexibility may not be very

reliable due to the small quantities of SP in the fall.

The results in Table 4 show that most significant own-category flexibilities in

three seasons are greater than −1, indicating inflexible demand for these market

categories. These numbers mean that a one percent increase in quantity results

in less than one percent decline in the corresponding normalized price. However,

there are some unexpected results for own-category flexibilities, such as Female in

the summer and SP in the fall.
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The cross-category flexibilities show relationships between products. A neg-

ative flexibility implies quantity substitutes, while a positive flexibility indicates

quantity complements. All significant cross-category flexibilities are negative ex-

cept between #2 Male and Mixed. This complement pattern between #2 Male and

Mixed may be because they have prices and quantites that move together over

seasons in the blue crab market, as illustrated in Figure 1 and Figure 2.

Conclusions

Using both commercial harvest and price data and biological stock assessment

data, this paper investigates the demand structure for the blue crab fishery in the

Chesapeake Bay. This analysis of the market for this iconic species can be used to

evaluate various fishery policies in terms of socio-economic outcomes.

Future research would benefit from collecting more data to cover all markets

in the Chesapeake Bay, although the markets in the area are similar. In addition,

the quantity equations used in the paper are reduced forms. It would be useful

to develop structural forms of the quantity equations to deal with endogeneity.

Such a practice would help build a bio-economic model based on a solid biolog-

ical foundation. As pointed out by Smith (2012), fisheries economics is moving

towards more complex ecosystem-based and biology-intrinsic approaches instead

of simple models. Separating economic studies of natural resources from their

own characteristics may potentially cause problems. Another direction is to ex-

tend the current work to welfare evaluations of fishery policies. Although current

fishery policies do work for preserving fish populations, there are associated socio-

economic costs due to harvest restrictions. It would be worth studying the overall

effects from a broader perspective.

Although this paper can be improved in some ways, it still contributes to the
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fish demand literature. This study analyzes a local fishery in the Chesapeake Bay

addressing two important issues, endogeneity and seasonality, that are common

to most analysis for fish demand.

A potential problem in estimating inverse demand systems is the presence of

endogeneity. It is likely that endogeneity exists in many fisheries. We found that

accounting for endogeneity is important. Failure to do so can generate incorrect

results. This paper follows the framework in Dhar, Chavas, and Gould (2003) to

control for endogeneity by explicitly expressing quantity equations from the sup-

ply side. A system of demand and supply equations are jointly estimated. The

quantity equations are assumed to be explained by a set of instrumental variables,

using biological stock assessment data that are exogenous to the market. Empirical

results show that there is strong evidence of endogeneity in the inverse demand

system for blue crabs in the Chesapeake Bay.

For perishable products, there are seasonal variations in demand due to dif-

ferent growing patterns. The nonlinear form of the IAIDS model can be used to

examine seasonal effects. In most studies that address seasonality, the market be-

havior estimates, elasticities or flexibilities are not seasonally adjusted. This study

takes advantage of the nonlinear feature of the IAIDS model to estimate season-

varying flexibilities. Specifically, the results show that most categories are price

inflexible. All market categories are gross quantity substitutes over seasons except

for the #2 Male and Mixed. The #1 Male, #2 Male, Female, and Mixed categories

are classified as necessities, while the SP category is sorted as a luxury.

The results from this study have policy implications. The estimates from the

demand system can provide insights into policy making for fishery managers. The

Chesapeake Bay blue crab policies frequently target one or a subset of the market

categories. For instance, a policy of fishing closure is used to protect female crabs

during spawning seasons. This analysis shows that the effects of specific policies
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on other categories need to be taken into account, especially with the presence of

endogeneity.
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Figure 1: Average monthly prices over years for blue crab categories

Source: data from Maryland Department of Natural Resources (MDNR).
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Figure 2: Average monthly harvests over years for blue crab categories

Source: data from Maryland Department of Natural Resources (MDNR).
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Source: data from Maryland Department of Natural Resources (MDNR).
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Table 2: Durbin–Watson tests in the base model and models with constraints

#1 Male Equation #2 Male Equation Female Equation SP Equation

Base Model 2.091 1.656 1.852 1.991
Homogeneity Imposed 1.878 1.609 1.933 1.623
Homogeneity and Symmetry Imposed 1.825 1.603 1.953 1.589

The Mixed equation is not reported because it is dropped in the process of estimation.
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