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Price Discovery in U.S. Corn Cash and Futures Markets: The

Role of Cash Market Selection

Abstract

Using daily data from 182 spatially separated U.S. cash markets for the years 2006-2011, I investigate

price discovery for corn. With a large number of cash markets available, I take into account explicitly

the issue of market selection, which has been neglected in previous work. I find that empirical results

concerning price discovery based on corn cash and futures markets vary with selection of cash markets.

The cointegration relationship between corn cash and futures prices only holds for 52 cash markets based

on logarithmic prices. And the informational source roles of futures and cash prices are equal in the long

run for 49 out of these 52 markets. In the short run, the unidirectional causality from cash to futures

prices is most possible no matter whether the cash market is cointegrated with the futures market or

not. While the vast majority of causal relationships are linear, the causality from futures to cash prices

is more likely to be nonlinear, especially for cash markets cointegrated with the futures market. For

quantitative measures of the relative contributions of the futures market and an associated cointegrated

cash market to the price discovery process, information share model and common factor model draw the

same conclusion qualitatively and find that the contribution of the futures market is more likely to be

small than a cash market.

Keywords: Corn, Error Correction Model, Cointegration, Causality, Price Discovery

JEL Codes: D84, G13, G14, Q13, Q14, R12

1 Introduction

Price discovery, from the perspective of financial markets, is interpreted as an equilibrium price searching

process (Schreiber & Schwartz, 1986), a news collecting and interpreting process (Baillie, Booth, Tse &

Zabotina, 2002), and an implicit trading implied information incorporation process (Lehmann, 2002). From

the perspective of futures markets, price discovery usually refers to the use of futures prices in determining

expectations of future cash market prices (Schroeder & Goodwin, 1991; Yang, Bessler & Leatham, 2001; Yang,
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Yang & Zhou, 2012), and thus incorporates the aforementioned process-based definition. Farmers, agricultural

commodity trading and processing corporations, hedgers, speculators, economists, and policymakers are all

concerned about the price discovery performance of commodity futures markets, which provides information

to economic entities when they make decisions on production, storage, processing, and consumption (Black,

1976; Yang & Leatham, 1999). The use of commodity futures markets is thus closely related to their price

discovery performance (Yang, Bessler & Leatham, 2001; Yang, Yang & Zhou, 2012).

Several statistical tests and methods have been associated with price discovery research. A prediction

hypothesis tested in several studies (Yang, Bessler & Leatham, 2001; Yang, Yang & Zhou, 2012) investigates

the long-run informational causality between cash and futures markets, an important factor determining the

significance of futures markets in price discovery (Purcell & Hudson, 1985). The test imposes restrictions

on the loading matrix (equivalently, the matrix of adjustment coeffi cients) of an error correction model

(ECM), such as α defined in case (c) of Equation (1) in Section 2.2, and examines whether a specific price

series is weakly exogenous, i.e., whether a zero-row in the loading matrix corresponds to that series. A weakly

exogenous series serves as a major information source in the long run and a unidirectional cause of movements

in other series. Besides, the Hasbrouck’s (1995) information share and the Gonzalo and Granger’s (1995)

common factor weight measurements can be adopted to quantitatively evaluate the relative contributions of

the cointegrated cash and futures prices to the price discovery process. Recent applications of at least one of

these two approach to price discovery research in financial markets include Cabrera, Wang and Yang (2009),

Chen and Gau (2009), Poskitt (2009), and Tao and Song (2010). The information share model measures

the contribution of a specific market by decomposing the innovation of the implicit common effi cient price

into the innovation of the price of that market while the common factor model assumes the effi cient price to

be a linear combination of the cointegrated price variables and uses the normalized absolute weight of each

variable to calculate its contribution. Futhermore, the linear Granger causality test is popularly employed to

explore the short-run informational causality between cash and futures markets, and the nonlinear Granger

causality test needs to be applied to handle potential nonlinear relations among variables. Combinational

applications of these two tests to price discovery research are common (Bekiros & Diks, 2008a; Qiao, Li &

Wong, 2008; Shu & Zhang, 2012; Silvapulle & Moosa, 1999). The linear Granger causality test assumes a

parametric linear time series model and determines whether the lags of one variable should be included in

the equation for another variable. While the linear Granger causality test has an appealing parametric form,

the nonlinear Granger causality test has the advantage that no specific linear parametric form is assumed.

For the U.S. corn market, Garbade and Silber (1983) found that the futures market dominates the cash

market in terms of price discovery; Yang, Bessler and Leatham (2001) demonstrated that the futures market

leads the cash market in the long run, but futures prices fail to be an unbiased estimate of cash prices;

Hernandez and Torero (2010) supported the price discovery role of the futures market. However, empirical

2



evidence can be mixed on statistical test results associated with price discovery research across markets,

commodities, and time periods. Particularly, the effect of market selection on results of price discovery

research has been discussed, but at least for the U.S. corn market, not addressed explicitly in previous

literature. For example, Garbade and Silber (1983) provided cross-commodity evidence of the importance of

market size to the price discovery role of a futures market. Schroeder and Goodwin (1990) collected price

data for both non-centralized direct and centralized terminal fed cattle markets1 to explore differences in

the regional price discovery process of cash markets between these two market types, and concluded that

large volume markets in major cattle feeding regions serve as dominant price discovery locations. Goodwin

and Schroeder (1991) tested cointegration relationships of regional cash markets using price data for both

direct and terminal slaughter cattle markets, and demonstrated that market volumes and types can influence

cointegration significantly. Schwarz and Szakmary (1994) pointed out that price leadership in cash and futures

markets is a function of their relative market sizes. Schroeder (1997) indicated that plant level prices, instead

of Agricultural Marketing Service ones, are the most relevant price data for market performance analysis.

Lyons (2001) explained that a significant share of price determination is not likely to happen in the foreign

exchange futures market since it is much smaller than its associated cash market. Cabrera, Wang and Yang

(2009) drew a similar conclusion on Euro and Japanese Yen exchange rates. Theissen (2002) revealed that

the price discovery contribution of a stock trading system is positively related to its market share. Mattos

and Garcia (2004) found that, for Brazilian thinly traded agricultural futures markets, higher trading volume

is linked to the existence of long-run equilibrium relationships between cash and futures markets. Bohl, Salm

and Schuppli (2011) described the relationship between the investor structure of a stock index futures market

and its price discovery function.

This study investigates price discovery between U.S. corn cash and futures markets with a focus on how the

results of the aforementioned statistical tests associated with price discovery research change with different

cash markets selected for analysis. Correspondingly, the focus of price discovery is broadly defined based on

the statistical approaches adopted. The predication hypothesis emphasizes that price discovery happens in a

market whose prices do not respond to disturbances in the long-run equilibrium relationship characterized in

an ECM, such as β′Xt−1 in case (c) of Equation (1) in Section 2.2. The information share and common factor

models quantitatively measure the contribution of a market to the price discovery process by stressing how

much that market contributes to the common effi cient price through variance and weight decompositions,

respectively. The (non)linear Granger causality test exams price discovery via lead-lag relationships among

price series and determines whether adding lagged values of a price variable XP1 improves the prediction

1The prices of terminal markets are determined at by auction while those of direct markets are decided by negotiated sales

in each geographic area (Koontz, Garcia & Hudson, 1990). A terminal market usually has a larger trading volume than a direct

market.
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power of another price variable XP2 from only XP2 lagged values. Specifically, we attempt to discern whether

the long-standing empirical results of cointegration between U.S. corn cash and futures prices and price

discovery in the futures market are robust to the selection of cash markets. If so, we show how the futures

market leadership changes with selection of cash markets. If not, we show how the relationship between cash

and futures markets varies with selection of cash markets.

The remainder of the paper is organized as follows. Section 2 presents the empirical framework. Section

3 describes the data. Section 4 shows the empirical results and Section 5 provides conclusions.

2 Empirical Framework

Since data stationarity affects the modeling of price variables, we first determine the integration order of each

price series using unit root tests. Second, we apply Johansen’s trace and maximum eigenvalue tests (Johansen,

1988; Johansen, 1991) to investigate cointegration relationships for each pair of cash-futures price series be-

cause causality test should be based on an ECM instead of an unrestricted vector autoregressive model (VAR)

for cointegrated series as suggested by Engle and Granger (1987). Besides, possible structural breaks in the

long-run relationship are explored for each cash-futures price series pair with Hansen and Johansen’s (1999)

recursive cointegration method which can reveal the (in)stability of the identified cointegration relationship.

For each cash market that is (not) cointegrated with the futures market, (a VAR in differences2) an ECM

is adopted for modeling. With the proper model specification, we perform statistical tests associated with

price discovery research discussed in Section 1. For all cash-futures price series pairs, cointegrated or not,

a linear Granger causality test based on the raw natural logarithm data is performed. Meanwhile, with the

linear relationship between each pair of cash and futures prices being purged away using a VAR in differences

or an ECM, the nonlinear Granger causality is tested by applying Diks and Panchenko’s (2006) method to

the VAR-in-differences- or ECM-filtered residuals. Before the nonlinear Granger causality test, the BDS

test (Broock, Scheinkman, Dechert & LeBaron, 1996) is applied to investigate nonlinearities of the residuals

and thus determine the appropriateness of the nonlinear test. For each cointegrated cash-futures pair, the

prediction hypothesis is tested to examine the long-run informational causality and the information share

and common factor models are utilized to calculate the relative contributions of cash and futures markets to

the price discovery process.

2As discussed in Section 3, the unit root test results show that all of the price series are not stationary in levels but stationary

in differences at the 5% significance level.
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2.1 Unit Root Test

Two approaches with the null hypothesis of a unit root are adopted to test nonstationarity: the augmented

Dickey-Fuller (ADF) test (Dickey & Fuller, 1981) and the Phillips-Perron (PP) test (Phillips & Perron, 1988).

Since failure to reject the null of a unit root does not decisively mean that a unit root exists, unit root tests

may not behave well in telling a unit root and weakly-stationary alternatives apart. Hence, Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test (Kwiatkowski, Phillips, Schmidt & Shin, 1992) with the null hypothesis of

stationarity is also applied. These three tests are implemented for both price levels and their first differences.

A brief introduction of technical details is given in Appendix A following Zivot and Wang (2006).

2.2 Cointegration and an Error Correction Model

Let a p× 1 vector Xt
3 be represented in an ECM:

H0: ∆Xt = µ+ ΠXt−1 +

k−1∑
i=1

Γi∆Xt−i + et, where t = 1, ..., T . (1)

In Equation (1), ∆Xt = Xt −Xt−1, Π and Γi are p× p coeffi cient matrices, µ is a p× 1 deterministic term.

Three possible cases for Equation (1) of interest are: (a) if Π has full rank p, Xt is stationary in levels and a

VAR in levels should be adopted, i.e., Xt = µ+
∑k
i=1 ΠiXt−i+et, where Π1 = Γ1 +Π+Ip, Πi = Γi−Γi−1 for

i = 2, ..., k − 1, and Πk = −Γk−1; (b) if Π has zero rank (Π = 0), it does not contain long-term information

and a VAR in differences should be adopted, i.e., ∆Xt = µ+
∑k−1
i=1 Γi∆Xt−i + et, for Xt being I(1) and not

cointegrated; (c) if Π has rank r ∈ [1, p−1] for Xt being I(1), i.e., Xt has r linearly independent cointegrating

vector(s) and p−r common stochastic trend(s), it can be written as Π = αβ′, where α and β are p×r matrices

with rank r, and β′Xt ∼ I(0) is stationary. Π is the long-run impact matrix, and Γi for i = 2, ..., k − 1 are

the short-run impact matrices. The rows of β′ constitute a basis for the r cointegrating vectors and the

elements of α apportion the effect of the cointegrating vectors to the evolution of ∆Xt. Equation (1) thus

can be written as ∆Xt = µ+ αβ′Xt−1 +
∑k−1
i=1 Γi∆Xt−i + et. Since for any r× r nonsingular matrix M , we

have αβ′ = (αM)(M−1β′) = (αM)[β(M−1)′]′ = α∆β∆, the factorization Π = αβ′ is not unique and only

identifies the space spanned by the cointegrating relations. Further restrictions on the model are needed to

establish the uniqueness of α and β.

We adopt the trace and maximum eigenvalue tests (Johansen, 1988; Johansen, 1991) to assess cointe-

gration. Two models are considered in this study: (a) H1(r): µ = µ0 (unrestricted constant), ∆Xt =

µ0 + αβ′Xt−1 +
∑k−1
i=1 Γi∆Xt−i + et, and the cointegrating relations β

′Xt may have a non-zero mean; (b)

3 In this study, p = 2, and Xt =

 Ct

Ft

, where Ct and Ft stand for cash and futures prices, respectively.
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H∗1 (r): µ = µ0 = αδ
′
(restricted constant), ∆Xt = α(β′Xt−1 + δ

′
) +
∑k−1
i=1 Γi∆Xt−i + et, and the cointegrat-

ing relations β′Xt have a non-zero mean δ
′
. Both the trace test and maximum eigenvalue tests are based on

the estimated eigenvalues, λ̂1 > λ̂2 > · · · > λ̂p, of the matrix Π, whose rank equals the number of non-zero

eigenvalues. The eigenvalues equal the squared canonical correlations between ∆Xt and Xt−1 corrected for

lagged ∆Xt and µ, and are thus within the range of zero and one. Furthermore, the recursive cointegration

approach by Hansen and Johansen (1999) is employed to test the stability of the cointegration relationship

(or lack thereof). Studies such as Bessler, Yang and Wongcharupan (2003), Diamandis, Georgoutsos and

Kouretas (2000), Yang (2003), and Yang, Yang and Zhou (2012) have adopted this method for similar pur-

poses. A brief introduction of technical details of cointegration analysis following Zivot and Wang (2006) and

the recursive cointegration approach following Hansen and Johansen (1999) is given in Appendix B.

2.2.1 Prediction Hypothesis Test

To determine the long-run informational causality between cash and futures markets, the prediction hypoth-

esis as indicated by Yang, Bessler and Leatham (2001), Yang, Yang and Zhou (2012), and Zhong, Darrat and

Otero (2004) is represented as:

H2|H1: B
′
α = 0. (2)

For the p = 2 case, that is: (1) α1 = 0 if the cash price leads the futures price (B
′

= (1 0)), (2) α2 = 0 if the

futures price leads the cash price (B
′

= (0 1)), and (3) α1 6= 0 and α2 6= 0 if a bidirectional information flow

exists between the cash price and the futures price (B
′

= (1 1)), in the long run, since a weakly exogenous

series serves as a major information source and a unidirectional cause of movements in other series. The

predication hypothesis thus emphasizes that price discovery happens in a market whose prices do not respond

to disturbances in the long-run equilibrium relationship characterized in an ECM, such as β′Xt−1 in case (c)

of Equation (1)4 . Following Yang, Bessler and Leatham (2001), Yang, Yang and Zhou (2012), and Zapata

and Rambaldi (1997), the prediction hypothesis is tested jointly with restrictions imposed on the matrix of

cointegrating vectors of an ECM, such as β defined in case (c) of Equation (1), if they are not rejected.

Particularly, we consider5 :

4To be more specific, α1 = 0 (α2 = 0) indicates that the cash (futures) price does not respond to disturbances in the long-run

equilibrium relationship, and |α1| = |α2| 6= 0 says that the responses of the cash and futures prices to disturbances are of

the same magnitude. Based on the ECM in Equation (1), we examine whether the influence of disturbances in the long-run

equilibrium relationship, β1Ct−1 + β2Ft−1, on ∆Ct (∆Ft) is zero for α1 = 0 (α2 = 0), and whether the influences on ∆Ct and

∆Ft are equivalent in magnitude for |α1| = |α2| 6= 0.
5To be more specific, this hypothesis can be written as:

H2, joint: (1 1)

 β1

β2

 = 0⇔ β1 = −β2.
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H2, joint: R
′
β = 0, where R

′
= (1 1) for the p = 2 case. (3)

2.2.2 Relative Contributions to Price Discovery

For a commodity, such as corn, traded in many markets, its price in a specific market is determined by the

news collecting and interpreting process in one or more of these markets (Baillie, Booth, Tse & Zabotina,

2002). Two approaches can be adopted to examine the relative contributions of cointegrated I(1) price series

to the price discovery process: (1) the information share model (Hasbrouck, 1995); and (2) the common factor

model (Gonzalo & Granger, 1995). Recent studies using at least one of these two approaches for cointegrated

series includes Cabrera, Wang and Yang (2009), Chen and Gau (2009), Poskitt (2009), and Tao and Song

(2010). Both models use an ECM as a basis, but differ in their perspectives of price discovery measurement.

Information Share Model If there exist p− 1 cointegration relationships for a system with p I(1) price

variables, these p variables are driven by one common stochastic trend known as the implicit common effi cient

price (Baillie, Booth, Tse & Zabotina, 2002), which is driven by new information and thus serves as the

source of permanent movements in all price series. The information share measures the price discovery

contribution of a specific market by decomposing the innovation of the common effi cient price into the

innovation of the price of that market. In detail, we rewrite an ECM using a moving average representation:

∆Xt = et + Ψ1et−1 + Ψ2et−2 + · · · , where Ψi (i = 1, 2, . . .) is a p× p matrix and can be estimated following

a unit innovation. The term Ψ(1) · et, where Ψ(1) = Ip + Ψ1 + Ψ2 + · · · , constitutes the long-run impact

of an innovation on each of the price variables (Stock & Watson, 1988). For a p-variate system with p − 1

cointegration relationships, matrix Ψ(1) has identical rows (Hasbrouck, 1995). The variance of the common

effi cient price innovations can be expressed as: ΨΩΨ
′
, where Ψ denotes the common row of matrix Ψ(1), and

Ω stands for the covariance matrix of the disturbance term from an ECM. The information share approach

is thus performed through the decomposition of ΨΩΨ
′
into components associated with price innovations in

all markets.

If innovations of different price variables are uncorrelated, i.e., the covariance matrix Ω of the disturbance

term is diagonal, the information share of market j is given by:

ISj =
ψ2
jΩjj

ΨΩΨ′ , (4)

where ψj is the j-th element of Ψ, and Ωjj is the j-th diagonal element of Ω. Generally, innovations of

different price variables are correlated, i.e., Ω is not diagonal, the information share is not unique, and upper

Based on the ECM in Equation (1), the hypothesis tested is whether Ct − Ft characterizes β′Xt−1.
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and lower bounds are constructed by orthogonalizing Ω (Hasbrouck, 1995). Let a lower triangular matrix F

be the Cholesky factorization of Ω such that Ω = FF
′
, the information share of market j is given by:

ISj =
[(ΨF )j ]

2

ΨΩΨ′ , (5)

where (ΨF )j is the j-th element of ΨF . Since Cholesky factorization requires an ordering of the prices,

the spread between the lower and upper bounds can be large, especially when innovations of different price

variables are highly correlated. Baillie, Booth, Tse and Zabotina (2002) and many others provided evidence

that the average information share can be used to identify price discovery contributions across markets.

Common Factor Model The common factor model assumes the aforementioned common effi cient price

to be a linear combination of the associated cointegrated price variables and focuses on the weight of each

variable. Although the contemporaneous correlation is incorporated in the design of the information share

model, it is not in that of the common factor model. In detail, the price vector Xt is decomposed into

a permanent and a transitory component with the former being a function of the current values of Xt,

observable as:

Xt︸︷︷︸
p×1

= A1︸︷︷︸
p×(p−r)

ft︸︷︷︸
(p−r)×1

+ A2︸︷︷︸
p×r

zt︸︷︷︸
r×1

, (6)

where ft ∼ I(1) is the permanent component or the common effi cient price, zt ∼ I(0) is the transitory

component, and r = p− 1. Two restrictions are imposed for the identification of the permanent component:

(1) ft is a linear combination of the current values of Xt, and (2) the transitory component has no permanent

effect on Xt. Let the linear combination be ft = F
′

∗Xt, where F
′

∗ is a (p − r) × p matrix orthogonal to the

matrix of cointegrating vectors, α, in an ECM. Naturally, the elements of normalized F∗ can be considered as

measurements of contributions to price discovery of different price variables. Specifically, the contributions

to price discovery of all markets are contained in vector ω given by:

ω
′

=

abs(F
′

∗) ·


1
...

1


p×1



−1

abs(F
′

∗), (7)

where abs(·) stands for the operation of taking absolute values (Cabrera, Wang & Yang, 2009). We do not

care about the signs of the elements of F∗ since only their magnitudes provide price discovery contribution

measurements.
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2.2.3 Linear Granger Causality Test

Based on cases (b) and (c) of Equation (1), the null hypothesis of the linear Granger causality test is

formulated as:

H3: Γi,12 = 0 or Γi,21 = 0 for i = 1, ..., k − 1, (8)

where Γi,mn represents the mn-th element of matrix Γi. Intuitively, if Γi,12 = 0 (Γi,21 = 0) for i = 1, ..., k− 1

is rejected, but Γi,21 = 0 (Γi,12 = 0) for i = 1, ..., k − 1 is not, then futures (cash) prices Granger cause

cash (futures) prices unidirectionally from a linear perspective. If both Γi,12 = 0 (Γi,12 6= 0) and Γi,21 = 0

(Γi,21 6= 0) for i = 1, ..., k−1, then no (bidirectional) linear Granger causality exists between cash and futures

prices. An ECM (A VAR in differences) is used to examine prices that are (not) cointegrated (Qiao, Li &

Wong, 2008). For an ECM, this step does the short-run linear Granger causality test, and the long-run one

is performed through the aforementioned prediction hypothesis test (Gurgul & Lach, 2012).

2.2.4 Nonlinear Granger Causality Test

One problem with the linear Granger causality test is that the common nonlinear relationships among vari-

ables are ignored (Shu & Zhang, 2012). Before the nonlinear Granger causality test, data nonlinearities are

examined (Francis, Mougoué & Panchenko, 2010; Dergiades, Martinopoulos & Tsoulfidis, 2013) by applying

the BDS test suggested by Broock, Scheinkman, Dechert and LeBaron (1996) to the residuals from an ECM

or a VAR in differences (Dergiades, Martinopoulos & Tsoulfidis, 2013; Fujihara & Mougoué, 1997). The

BDS test essentially inspects the validity of the identically and independently distributed (i.i.d) assumption

on time series6 .

Shu and Zhang (2012), Francis, Mougoué and Panchenko (2010), Dergiades, Martinopoulos and Tsoulfidis

(2013), Fujihara and Mougoué (1997), Silvapulle and Moosa (1999), Ajayi and Serletis (2009), and Dergiades

(2012) gave a formal description of the nonlinear Granger causality test. The nonparametric nonlinear causal

relationship testing method developed by Baek and Brock (1992) is modified by Hiemstra and Jones (1994)

to investigate the causal relationships between stock prices and trading volumes. A brief introduction of the

method is provided as follows.

Consider two strictly stationary and weakly dependent time series, {R1,t: t = 1, ..., T} and {R2,t: t =

1, ..., T}. Let the m−length lead vector of R1,t be Rm1,t, and the lR1−length and lR2−length lag vectors of

R1,t and R2,t be R
lR1
1,t−lR1

and R
lR2
2,t−lR2

, respectively. For given values of m ≥ 1, lR1
≥ 1, and lR2

≥ 1, and an

arbitrarily small constant ε > 0, R2,t does not strictly nonlinearly Granger cause R1,t if:

6For a formal description of the BDS test, we can refer to Dergiades, Martinopoulos and Tsoulfidis (2013), and Fujihara and

Mougoué (1997). For all technical details, we can refer to Broock, Scheinkman, Dechert and LeBaron (1996).
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Pr(||Rm1,t −Rm1,s|| < ε | ||RlR11,t−lR1
−RlR11,s−lR1

|| < ε, ||RlR22,t−lR2
−RlR22,s−lR2

|| < ε)

= Pr(||Rm1,t −Rm1,s|| < ε | ||RlR11,t−lR1
−RlR11,s−lR1

|| < ε), (9)

where Pr stands for probability, || · || stands for maximum norm, and s, t = max(lR1
, lR2

) + 1, ..., T −m+ 1.

The left hand side of Equation (9) is the conditional probability that two arbitrary m−length lead vectors

of R1,t are within a distance ε of each other, given that the corresponding two lR1−length lag vectors of R1,t

and two lR2
−length lag vectors of R2,t are within a distance ε of each other. The right hand side of Equation

(9) is the conditional probability that two arbitrary m−length lead vectors of R1,t are within a distance ε of

each other, given that the corresponding two lR1
−length lag vectors of R1,t are within a distance ε of each

other. Equation (9) states that if R2,t does not strictly nonlinearly Granger cause R1,t, then adding lagged

values of R2,t does not improve the prediction power of R1,t from only R1,t lagged values. By representing

the conditional probabilities in Equation (9) in terms of the corresponding ratios of joint probabilities, we

have:

C1(m+ lR1 , lR2 , ε)

C2(lR1
, lR2

, ε)
=
C3(m+ lR1 , ε)

C4(lR1
, ε)

, (10)

where

C1(m+ lR1
, lR2

, ε) ≡ Pr(||Rm+lR1
1,t−lR1

−Rm+lR1
1,s−lR1

|| < ε, ||RlR22,t−lR2
−RlR22,s−lR2

|| < ε), (11a)

C2(lR1
, lR2

, ε) ≡ Pr(||RlR11,t−lR1
−RlR11,s−lR1

|| < ε, ||RlR22,t−lR2
−RlR22,s−lR2

|| < ε), (11b)

C3(m+ lR1
, ε) ≡ Pr(||Rm+lR1

1,t−lR1
−Rm+lR1

1,s−lR1
|| < ε), (11c)

C4(lR1 , ε) ≡ Pr(||RlR11,t−lR1
−RlR11,s−lR1

|| < ε). (11d)

The correlation-integral estimators of C ′js in Equation (11a - 11d) are:

C1(m+ lR1
, lR2

, ε, n) ≡ 2

n(n− 1)

∑
t<s

∑
s

I(R
m+lR1
1,t−lR1

, R
m+lR1
1,s−lR1

, ε)× I(R
lR2
2,t−lR2

, R
lR2
2,s−lR2

, ε), (12a)

C2(lR1 , lR2 , ε, n) ≡ 2

n(n− 1)

∑
t<s

∑
s

I(R
lR1
1,t−lR1

, R
lR1
1,s−lR1

, ε)× I(R
lR2
2,t−lR2

, R
lR2
2,s−lR2

, ε), (12b)

C3(m+ lR1
, ε, n) ≡ 2

n(n− 1)

∑
t<s

∑
s

I(R
m+lR1
1,t−lR1

, R
m+lR1
1,s−lR1

, ε), (12c)

C4(lR1
, ε, n) ≡ 2

n(n− 1)

∑
t<s

∑
s

I(R
lR1
1,t−lR1

, R
lR1
1,s−lR1

, ε), (12d)

where n = T + 1−m−max(lR1
, lR2

), and I(·) denotes a kernel that equals 1 when both vectors are within

the maximum-norm distance ε of each other, and 0 otherwise. Using the joint probability estimators given

10



in Equation (12a - 12d), the strict nonlinear Granger noncausality condition in Equation (9) can be tested

as follows. For m ≥ 1, lR1
≥ 1, and lR2

≥ 1, and an arbitrarily small constant ε > 0, we have:

√
n

[
C1(m+ lR1

, lR2
, ε, n)

C2(lR1 , lR2 , ε, n)
− C3(m+ lR1

, ε, n)

C4(lR1 , ε, n)

]
∼ N(0, σ2(m, lR1

, lR2
, ε)), (13)

where σ2(m, lR1
, lR2

, ε) is the asymptotic variance of the modified Baek and Brock test statistic7 . Under

strict stationarity of R1,t and R2,t, Equation (9) is actually a statement about the invariant distribution of

the (lR1 + lR2 +m)−dimensional vector (R
lR1
1,t−lR1

, R
lR2
2,t−lR2

, Rm1,t). If we let m = lR1 = lR2 = 1, Equation (9)

can be represented as ratios of joint distributions of (R1,t, R2,t, R1,t+1):

fr1,t,r2,t,r1,t+1(R1,t, R2,t, R1,t+1)

fr1,t,r2,t(R1,t, R2,t)
=
fr1,t,r1,t+1(R1,t, R1,t+1)

fr1,t(R1,t)
. (14)

The major drawback of Hiemstra and Jones test is that it tends to reject too often under the null of no

nonlinear Granger causality, especially for small values of ε (Diks & Panchenko, 2005; Diks & Panchenko,

2006). A modified test statistic is introduced to address this issue by Diks and Panchenko (2006). Their

restated null hypothesis is:

q ≡ E
[
fr1,t,r2,t,r1,t+1(R1,t, R2,t, R1,t+1)fr1,t(R1,t)− fr1,t,r2,t(R1,t, R2,t)fr1,t,r1,t+1(R1,t, R1,t+1)

]
= 0. (15)

And the modified test statistic is:

Tn(ε) =
n− 1

n(n− 2)

n∑
i

[f̂r1,t,r2,t,r1,t+1(r1,it, r2,it, r1,it+1)f̂r1,t(r1,it)

−f̂r1,t,r2,t(r1,it, r2,it)f̂r1,t,r1,t+1(r1,it, r1,it+1)]. (16)

The local density estimator of each dz−variate random vector Z at zi is expressed as:

f̂z(zi) =
(2ε)−dz

n− 1

∑
j,j 6=i

I(zi, zj , ε) for zi = R1,it, R2,it, R1,it+1. (17)

Diks and Panchenko (2006) showed that, for lR1 = lR2 = 1, if the sequence of bandwidth values is determined

by εn = Cn−β for any C > 0 and β ∈ (1/4, 1/3), Tn(ε) converges to a standard normal distribution:

√
n

[Tn(ε)− q]
Sn

D−→ N(0, 1), (18)

where Sn is the estimated standard error of Tn(·). The test statistic in Equation (18) is applied to the

residuals from an ECM or a VAR in differences.
7See the appendix in Hiemstra and Jones (1994) for a detailed derivation of the variance.
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Figure 1: All Cash Markets with Available Data and Location Information

3 Data

An unbalanced panel of daily corn cash price data obtained from GeoGrain Inc. includes over 4,000 markets

and covers a 7-year period from September 2005 to March 2011, totaling more than 3.5 million observations.

Figure 1 plots the universe of markets with available data and location information. To select markets with

the largest numbers of observations, Figure 2 illustrates the 182 markets (indexed as market 1 to 182) used

in this study. On days such as holidays where prices are missing in each market, we omit the observations

and assume a smooth continuity of prices (Goodwin & Piggott, 2001) as if the missing data does not appear.

Other missing prices are approximated by cubic spline interpolation. The percentage of missing observations

ranges from 0.3% to 5.24% of the whole sample across markets, which covers a 6-year period from January

2006 to March 2011, totaling 1316 observations for each market. Futures prices of the nearest maturity

contracts are also provided by GeoGrain Inc. For the rest of this study, prices are converted to their natural

logarithms. Figure 3 plots the price series of the futures and all of the 182 cash markets. As one might have

expected, these price series are very close to each other. The correlation coeffi cient between the price series

of the futures market and that of a cash market ranges from 0.9879 to 0.9972. The unit root test results

show that all of the price series are not stationary in levels but stationary in differences at the 5% significance

level8 .
8Detailed numerical results are available upon request.
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Figure 2: The 182 Cash Markets
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Figure 3: Price Series of the Futures and All of the 182 Cash Markets

13



4 Empirical Results

Empirical results are listed in Table 1 - 29 . The optimal number of lags of an ECM or a VAR in differences is

selected by Bayesian Information Criterion (BIC). The nonlinearities of the residuals from an ECM or a VAR

in differences are decided based on the significance of the BDS statistics, which indicates the appropriateness

of the nonlinear causality testing (Dergiades, Martinopoulos & Tsoulfidis, 2013). For the Diks-Panchenko

nonlinear Granger causality test, we present results for lags lR1 = lR2 = 1. The constant C in the bandwidth

εn is set at 7.5 (Bekiros & Diks, 2008a; Bekiros & Diks, 2008b), close to the value 8 for ARCH processes

(Diks & Panchenko, 2006). The β in the bandwidth εn is set at 2
7 (Bekiros & Diks, 2008a; Bekiros & Diks,

2008b), its theoretical optimal value (Diks & Panchenko, 2006). As a result, the bandwidth εn is set at

1 approximately. Generally, a larger (smaller) p value can be expected with a smaller (larger) bandwidth

(Bekiros & Diks, 2008a; Bekiros & Diks, 2008b).

Among the 182 cash markets we investigate, 130 (71.43%) of them are not cointegrated and 52 (28.57%)

of them are cointegrated with the futures market10 . We plot the cash markets (not) cointegrated with the

futures market using blue (red) points in Figure 4. Meanwhile, in Figure 5, price series of the futures market,

a cash market cointegrated with the futures market, and a cash market not cointegrated with the futures

market are plotted to show a typical cash market (not) cointegrated with the futures market. The explicit

relationship among a cash market, the company (indexed as C1 to C60) it belongs to, and the existence of

cointegration with the futures market is listed in Table 3. It shows that 29 (43.94%) companies own cash

markets cointegrated with the futures market, and the other 37 (56.06%) do not. Since several companies

(marked with a yellow background in Table 3) own cash markets cointegrated and not cointegrated with the

futures market within a specific state, and several companies (marked with a red background in Table 3)

own cash markets cointegrated and not cointegrated with the futures market both within a state and across

states, there exist some overlaps in counting the number of the companies. If we remove these companies (C3,

C4, C11, C14, C15, and C43), among the remaining 54 companies, 23 (42.59%) of them own cash markets

cointegrated with the futures market, and the other 31 (57.41%) do not. We also analyze the cointegration

relationship (or lack thereof) between a cash market and the futures market for each state based on both cash

markets and the companies owning them (see Table 4). Unlike the other six states (IA, IN, OH, MN, KS, and

NE) where the number of the cash markets which are cointegrated with the futures market is smaller than

that of the cash markets which are not11 , IL has 23 cash markets all cointegrated with the futures market.

Actually, these 23 cash markets in IL alone contribute to almost half of the 52 cointegration relationships

found in this study with the contribution ratio being 23/52 (44.23%). If the cointegration relationships are

9Some detailed numerical results not presented are available upon request.
10All tests in Table 1 - 2 are performed at the 5% significance level.
11 IN is an exception since it has 8 cash markets that are cointegrated with the futures market and 7 cash markets that are

not.
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Table 1: Cash Markets not Cointegrated with the Futures Market, Cointegration

Rank = 0 (VAR in Differences)

Market RCT1 LGC2 NLGC3

1-26 (IA), 43-47 (IN), 51-56 (KS), 66-77 (MN), 97 (NE), Y C→F N

101-107 (NE), 111-124 (OH), 126-128 (OH)

27-37 (IA), 57-62 (KS), 96(NE), 98-100 (NE), 125 (OH) Y N N

38-41 (IA), 93 (MN), 108-109 (OH) S C→F N

42 (IA), 78-88 (MN) Y C↔F N

48 (IN) Y F→C C↔F

49 (IN) S C→F C↔F

95 (NE) S N N

63-64 (KS), 89-91 (MN), 110 (OH) Y C→F C→F

65 (MN) Y C→F F→C

92 (MN) S C↔F N

94 (MN) S C→F C→F

50 (KS), 129 (OH) S F→C N

130 (OH) Y F→C F→C
1 Recursive cointegration test: Y for stability of the lack of a cointegration relationship, and S for

existence of some structural breaks in the lack of a cointegration relationship.
2 Linear Granger causality test: C for cash prices, F for futures prices, → for unidirectional linear

Granger causality,↔ for bidirectional linear Granger causality, and N for no linear Granger causality.
3 Nonlinear Granger causality test: C for cash prices, F for futures prices, → for unidirectional

nonlinear Granger causality, ↔ for bidirectional nonlinear Granger causality, and N for no nonlinear

Granger causality. For all cash markets, nonlinearities of the residuals from the VAR in differences

are confirmed by the BDS statistics.
4 All tests are performed at the 5% significance level.
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Table 2: Cash Markets Cointegrated with the Futures Market, Cointegration Rank = 1

(ECM)

Market RCT1 H2,joint
2 PHT3 AISc

4 CFWc
5 LGC6 NLGC7

131 (IA) Y R F↔C 0.4927 0.4247 C→F N

132 (IA) Y R F↔C 0.4404 0.1949 C→F F→C

133 (IA) Y F F↔C 0.4878 0.4343 N N

134 (IA) Y R F↔C 0.4577 0.2015 C→F N

135 (IA) Y R F↔C 0.5141 0.5629 C→F N

136 (IA) Y R F↔C 0.5084 0.5246 C→F N

137 (IA) Y R F↔C 0.4580 0.1691 C→F C→F

138 (IA) Y R F↔C 0.4758 0.3109 C→F N

139 (IN) Y F F↔C 0.5811 0.9377 C→F N

140 (IN) Y F F↔C 0.5456 0.7477 C→F F→C

141 (IN) Y F F↔C 0.4617 0.1372 C→F N

142 (IN) Y F F↔C 0.5539 0.7749 C→F N

143 (IN) Y R F↔C 0.6203 0.7969 C→F N

144 (IN) Y F F↔C 0.4235 0.1343 N N

145 (IN) Y F F↔C 0.4026 0.2041 N N

146 (IN) Y R F↔C 0.5260 0.7075 C→F N

147 (IL) Y F F↔C 0.4609 0.3587 F↔C F→C

148 (IL) Y R F↔C 0.5016 0.4917 F↔C F→C

149 (IL) Y F F↔C 0.5172 0.7271 C→F N

150 (IL) Y R F↔C 0.6160 0.7742 C→F F→C

151 (IL) Y R C→F 0.6137 0.7560 C→F F→C

152 (IL) Y R C→F 0.6183 0.7440 C→F N

153 (IL) Y F F↔C 0.5030 0.5192 C→F N

154 (IL) Y R F↔C 0.5438 0.9314 C→F N

155 (IL) Y F F↔C 0.5204 0.7608 C→F N

156 (IL) Y F F↔C 0.5229 0.7857 C→F N

157 (IL) Y R F↔C 0.6039 0.7818 C→F N

158 (IL) Y R F↔C 0.5728 0.9997 N N

159 (IL) Y F F↔C 0.4418 0.2259 C→F N

160 (IL) Y R C→F 0.6439 0.7429 C→F C→F

161 (IL) Y F F↔C 0.5374 0.7384 C→F N
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Market RCT1 H2,joint
2 PHT3 AISc

4 CFWc
5 LGC6 NLGC7

162 (IL) Y R F↔C 0.6134 0.7300 C→F N

163 (IL) Y R F↔C 0.5078 0.5623 C→F N

164 (IL) Y R F↔C 0.5367 0.7441 C→F N

165 (IL) Y F F↔C 0.3981 0.2223 C→F N

166 (IL) Y R F↔C 0.5718 0.8671 C→F N

167 (IL) Y F F↔C 0.5161 0.5901 C→F N

168 (IL) Y F F↔C 0.5489 0.9076 F↔C F→C

169 (IL) Y F F↔C 0.4423 0.2380 C→F F→C

170 (OH) Y F F↔C 0.5379 0.7268 C→F N

171 (OH) Y F F↔C 0.5415 0.7501 C→F N

172 (OH) Y F F↔C 0.4501 0.1527 C→F N

173 (OH) Y F F↔C 0.5003 0.4863 C→F N

174 (MN) Y R F↔C 0.4417 0.1569 C→F N

175 (MN) Y R F↔C 0.4389 0.1701 C→F N

176 (MN) Y R F↔C 0.4283 0.2556 F→C C→F

177 (MN) Y R F↔C 0.4398 0.1509 C→F N

178 (MN) Y R F↔C 0.4315 0.1291 C→F N

179 (KS) Y R F↔C 0.4964 0.4393 F↔C F→C

180 (NE) Y R F↔C 0.4979 0.4644 C→F N

181 (NE) Y R F↔C 0.5095 0.5484 C→F N

182 (NE) Y F F↔C 0.4785 0.2339 N N

1 Recursive cointegration test: Y for stability of the cointegration relationship, and S for existence of some

structural breaks in the cointegration relationship.
2 F for failure to reject the null hypothesis, and R for rejecting the null hypothesis.
3 Prediction hypothesis test: C for cash prices, F for futures prices, → for unidirectional information flow, and

↔ for bidirectional information flow.
4 The average information share of a cash market. Results are rounded to 4 decimal places. The average

information share of the futures market= 1−AISc.
5 The common factor weight of a cash market. Results are rounded to 4 decimal places. The common factor

weight of the futures market= 1− CFWc.
6 Linear Granger causality test: C for cash prices, F for futures prices, → for unidirectional linear Granger

causality, ↔ for bidirectional linear Granger causality, and N for no linear Granger causality.
7 Nonlinear Granger causality test: C for cash prices, F for futures prices,→ for unidirectional nonlinear Granger

causality, ↔ for bidirectional nonlinear Granger causality, and N for no nonlinear Granger causality. For all

cash markets, nonlinearities of the residuals from the ECM are confirmed by the BDS statistics.
8 All tests are performed at the 5% significance level.
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counted based on companies, the 13 companies in IL alone still have a contribution ratio that is almost

50%, i.e. 13/29 (44.83%). Since IL River delivery facilities provide adequate commercial flows of corns

for the delivery process (Irwin, Garcia, Good & Kunda, 2011), the cash markets in IL are closely related

to the futures market. The high contribution ratios are thus to be expected. Furthermore, the numerical

results in Table 4 are visualized qualitatively in Figure 6. For a specific state (IA, IN, OH, MN, KS, or

NE), the ratio of cash markets in it which are cointegrated with the futures market and that of companies

in it owning cash markets cointegrated with the futures market decrease as its distance to IL increases12 .

In sum, we show that the selection of cash markets affects cointegration between cash and futures markets.

This result confirms Goodwin and Schroeder’s (1991) work which stated that market volumes and types are

two significant factors influencing cointegration, and extends their conclusion from the case of regional cash

markets to our case of cash and futures markets. Meanwhile, our result supports Schroeder’s (1997) statement

that plant level prices, instead of Agricultural Marketing Service ones, are the most relevant price data for

market performance analysis since the lack of cointegration between U.S. corn cash and futures markets is

not found in recent studies using aggregate cash price data. For the stability of the cointegration relationship

(or lack thereof), the recursive cointegration test shows no structural breaks for 169 cash markets and some

structural breaks (less than 15% of the whole sample) for the remaining 13 which all belong to those not

cointegrated with the futures market. Since most cointegration relationships (or lack thereof) are stable, it

is highly possible that the structural breaks are due to idiosyncratic reasons based on the selection of cash

markets, such as tentative new pricing policies and temporary changes in demand and supply for a specific

cash market.

For the 130 cash markets not cointegrated with the futures market, both the linear and nonlinear Granger

causality tests present mixed results. For the linear Granger causality test, 90 cash markets show causal

relationships from the cash market to the futures market, 4 reveal the inverse, 13 indicate bidirectional and

23 find no causality. The existence of the vast majority of unidirectional causality from the cash market

to the futures market and bidirectional causality between them, and an extra small ratio of unidirectional

causality from the futures market to the cash market, is because many cash markets not cointegrated with the

futures market are operated by big local companies at non-delivery points, whose prices, which incorporate

information from the futures market to some extent, are largely determined by local supply and demand, and

these market conditions as a whole affect futures prices. The reason for the lack of linear causality between

the cash market and the futures market for the remaining 23 cash markets is that adding lagged cash prices

does not improve the prediction power of the futures prices from only lagged futures prices and vise visa based

on the 5% significance level. Schroeder’s (1997) statement is further enhanced since these results are not

discovered in previous studies using aggregate data. In the first three columns of Figure 7, coeffi cients Γ1,12

12One exception exists for IA and NE as marked in yellow background in Table 4.
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Figure 4: Cash Markets Cointegrated (in Blue) and not Cointegrated (in Red) with the Futures Market
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Cash Market 93 not Cointegrated with the Futures Market
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Table 3: The Relationship among a Cash Market, the Company It belongs to, and the Existence of

Cointegration with the Futures Market

State Cash Market not Cointegrated Company Index Cash Market Cointegrated Comany Index

with the Futures Market with the Futures Market

IA 1-17 C1 131-132, 136 C9

18, 36 C2 133 C10

19 C3 134 C3

20, 38-41 C4 135 C4

21-26 C5 137 C11

27-35 C6 138 C12

37 C7

42 C8

IN 43-44, 48 C14 140 C14

45-46 C15 141, 146 C15

47 C16 144 C17

49 C11 142-143, 145 C11

139 C13

IL 147-148 C18

149, 153-156 C19

150-152 C20

157 C21

158 C22

159 C23

160 C24

161 C25

162 C26

163 C27

164, 166-168 C13

165 C28

169 C29

OH 108-117, 124 C30 172 C36

118 C31 173 C37

119-121 C14 170-171 C14

122-123, 126-128 C32

20



State Cash Market not Cointegrated Company Index Cash Market Cointegrated Comany Index

with the Futures Market with the Futures Market

OH 125 C33

129 C34

130 C35

MN 65-68 C38

69 C11

70, 76-77 C39

71-75, 80-88 C8

78-79 C40

89-91, 94 C41

92 C42 176 C44

93 C43 174-175, 177-178 C43

KS 50 C45 179 C54

51 C46

52 C47

53 C48

54 C49

55, 62 C50

56 C51

57-61 C52

63-64 C53

NE 95-96, 98-102, 104, 106~107 C55 180-181 C59

97 C56 182 C60

103 C57

105 C58
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Table 4: Analysis of the Cointegration Relationship (or Lack thereof) between a

Cash Market and the Futures Market for Each State

State Based on Cash Markets Based on Companies

Not Cointegrated1 Cointegrated2 Not Cointegrated3 Cointegrated4

IA 42 (84.00%) 8 (16.00%) 8 (57.14%) 6 (42.86%)5

6 (60.00%) 4 (40.00%)6

IN 7 (46.67%) 8 (53.33%) 4 (44.44%) 5 (55.56%)

1 (33.33%) 2 (66.67%)

IL 0 (0.00%) 23 (100.00%) 0 (0.00%) 13 (100.00%)

0 (0.00%) 13 (100.00%)

OH 23 (85.19%) 4 (14.81%) 7 (70.00%) 3 (30.00%)

6 (75.00%) 2 (25.00%)

MN 30 (85.71%) 5 (14.29%) 8 (80.00%) 2 (20.00%)

7 (87.50%) 1 (12.50%)

KS 15 (93.75%) 1 (6.25%) 9 (90.00%) 1 (10.00%)

9 (90.00%) 1 (10.00%)

NE 13 (81.25%) 3 (18.75%) 4 (66.67%) 2 (33.33%)

4 (66.67%) 2 (33.33%)

1 The number (ratio) of cash markets in each state which are not cointegrated with the futures

market.
2 The number (ratio) of cash markets in each state which are cointegrated with the futures

market.
3 The number (ratio) of companies in each state owning cash markets not cointegrated with

the futures market.
4 The number (ratio) of companies in each state owning cash markets cointegrated with the

futures market.
5 Overlaps in counting the number of the companies are not adjusted in this row.
6 Overlaps in counting the number of the companies are adjusted in this row by removing the

companies owning cash markets cointegrated and not cointegrated with the futures market for

each state.
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Figure 6: Qualitative Visualization of Numerical Results in Table 4

and Γ1,21 are plotted for a better understanding of the linear Granger causality test results13 . Obviously,

when the price series of a cash market linearly Granger causes that of the futures market but not the inverse,

the coeffi cients of lagged cash prices in the futures equation, Γi,21’s, will be relatively large but those of

lagged futures prices in the cash equation, Γi,12’s, will be relatively small, and vise verse. And when there

exists bidirectional (no) causality between the price series of a cash and the futures market, the coeffi cients

of lagged cash prices in the futures equation, Γi,21’s, and those of lagged futures prices in the cash equation,

Γi,12’s, will be relatively large (small) at the same time. For the nonlinear Granger causality test, 7 cash

markets show causal relationships from the cash market to the futures market, 2 reveal the inverse, 2 indicate

bidirectional and 119 find no causality. Hence, the causal relationships between most cash markets and the

futures market are linear, even nonlinearities of the residuals from a VAR in differences are confirmed by the

BDS test for all cash markets. For the aforementioned 23 cash markets which show no linear causality with

the futures market, no nonlinear causality with the futures market is discovered either. We also find that:

13Coeffi cients Γi,12’s and Γi,21’s associated with cash markets 48, 50, 56, 103, 129, and 130 are not plotted in Figure 7. The

optimal numbers of lags corresponding to these six markets are 3, 4, 3, 4, 4, and 2, respectively in VAR in levels representation.

Γ1,12 = 0.467, Γ2,12 = 0.154, Γ1,21 = 0.0595, and Γ2,21 = 0.0201 for market 48; Γ1,12 = 0.544, Γ2,12 = 0.305, Γ3,12 = 0.148,

Γ1,21 = 0.0941, Γ2,21 = 0.0346, and Γ3,21 = 0.0253 for market 50; Γ1,12 = −0.00555, Γ2,12 = 0.0426, Γ1,21 = 0.192, and

Γ2,21 = 0.0813 for market 56; Γ1,12 = −0.0175, Γ2,12 = 0.0327, Γ3,12 = −0.0973, Γ1,21 = 0.337, Γ2,21 = 0.0738, and

Γ3,21 = 0.192 for market 103; Γ1,12 = −0.0992, Γ2,12 = 0.0729, Γ3,12 = 0.211, Γ1,21 = 0.0544, Γ2,21 = −0.0109, and

Γ3,21 = −0.000210 for market 129; Γ1,12 = 0.165, and Γ1,21 = 0.0937 for market 130.

23



­0.5 0 0.5
0

5

10

15

20

25

VAR in Differences (C →F); Γ1,12
Optimal Lags=2 in VAR in levels Representation

­0.5 0 0.5
0

5

10

15

20

25

VAR in Differences (C →F); Γ1,21
Optimal Lags=2 in VAR in levels Representation

­0.5 0 0.5
0

1

2

3

4

5

6

7

VAR in Differences (C ↔F); Γ1,12
Optimal Lags=2 in VAR in levels Representation

­0.5 0 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

VAR in Differences (C ↔F); Γ1,21
Optimal Lags=2 in VAR in levels Representation

­0.5 0 0.5
0

1

2

3

4

5

6

VAR in Differences (N); Γ1,12
Optimal Lags=2 in VAR in levels Representation

­0.5 0 0.5
0

1

2

3

4

5

VAR in Differences (N); Γ1,21
Optimal Lags=2 in VAR in levels Representation

­0.5 0 0.5
0

2

4

6

8

10

12

ECM (C→F); Γ1,12
Optimal Lags=2 in VAR in levels Representation

­0.5 0 0.5
0

2

4

6

8

10

12

ECM (C→F); Γ1,21
Optimal Lags=2 in VAR in levels Representation

Figure 7: Histograms of Coeffi cients Γ1,12 and Γ1,21

(a) the nonlinear Granger causality test may enhance the result of the linear one (see markets 63, 64, 89,

90, 91, 94, 110, and 130); (b) the nonlinear Granger causality test may result in a different conclusion from

that of the linear one (see markets 49 and 65). These two cases have been found in previous literature (e.g.,

Bekiros & Diks, 2008a, 2008b; Fujihara & Mougoué, 1997; Nazlioglu, 2011; Shu & Zhang, 2012; Silvapulle &

Moosa, 1999).

For the 52 cash markets cointegrated with the futures market, model H∗1 (1) is adopted. Results of the

prediction hypothesis test, the linear and nonlinear Granger causality tests, the information share and the

common factor weight are all mixed. Yang, Bessler and Leatham (2001) found that futures prices are the

primary informational sources of cash prices in the long run for corn. However, in this study, 3 cash markets

show unidirectional long-run causal relationships from the cash market to the futures market, and 49 reveal

bidirectional causality based on the results of the prediction hypothesis test. Thus, the informational source

roles of futures and cash prices are generally equal in the long run. This result is consistent with Yang,

Bessler and Leatham (2001) when they examined the prediction hypothesis for pork bellies and hog between

January 1, 1992 and March 31, 1996, and Minneapolis Grain Exchange wheat, cotton and feeder cattle

between April 1, 1996 and June 30, 1998. For the linear Granger causality test, 1 cash market shows a

causal relationship from the futures market to the cash market, 42 reveal the inverse, 4 indicate bidirectional

and 5 find no causality. These results are similar to those of the cash markets not cointegrated with the

futures market. As what we do for cash markets not cointegrated with the futures market, coeffi cients Γ1,12
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and Γ1,21 are plotted in the last column of Figure 714 . Using weekly data for year 1994-2009, Hernandez

and Torero (2010) found that, for lags up to 10, corn futures returns Granger cause spot returns for all

lags, but the inverse causality only happens for lags 1, 7 and 8 based on the 5% significance level. They

also conducted the linear Granger causality test by segmenting the whole sample based on both two-year

periods and U.S. farm programs (1990, 1996, 2002, and 2008 Farm Bills), and showed that, generally, the

linear Granger causality from the futures market to the cash market still holds, but the inverse does not.

Hence, cash market selection and the corresponding data frequency may affect the linear Granger causality

test results. For the nonlinear Granger causality test, Hernandez and Torero (2010) pointed out that, for lags

lR1 = lR2 = 1, there exist bidirectional information flows between the futures market and the cash market,

which are not discovered in this study. While for 40 of the 52 cash markets, we find no nonlinear Granger

causal relationships with the futures market, 3 show unidirectional nonlinear causality from the cash market

to the futures market, and 9 reveal the inverse. Similar to the cash markets not cointegrated with the futures

market, the vast majority of causal relationships are linear. For the relative contributions to price discovery,

the lower and upper bounds of the information share differ largely due to the strong correlation between the

residuals from an ECM. As suggested by Baillie, Booth, Tse and Zabotina (2002), the mean of the lower and

upper bounds is used to identify price discovery contributions across markets. Qualitatively, the common

factor weight and the information share average draw the same conclusion about the relative contributions of

the futures market and a specific cash market to the price discovery process15 : the former (latter) finds that

the contribution of the futures market is smaller for 30 (28) cash markets. This empirical result is also found

in Tao and Song’s (2010) work which investigated the Hong Kong Hang Seng index markets, and Theissen’s

(2002) work which examined floor and screen trading systems in Germany. Quantitatively, however, these

two methods differ considerably in numerical results for most cash markets16 . As pointed out by Baillie,

Booth, Tse and Zabotina (2002), we are not indicating that one method is better than another since they

differ in the perspective of price discovery and have their own merits (de Jong, 2002). Nonetheless, it is worth

14Coeffi cients Γi,12’s and Γi,21’s associated with cash markets 133, 144, 145, 147, 148, 158, 168, 176, 179, and 182 are

not plotted in Figure 7. The optimal numbers of lags corresponding to these ten markets are 4, 2, 2, 3, 3, 2, 2, 3, 2, and 2,

respectively in VAR in levels representation. Γ1,12 = −0.0637, Γ2,12 = 0.0310, Γ3,12 = 0.0916, Γ1,21 = 0.00901, Γ2,21 = −0.0665,

and Γ3,21 = 0.0794 for market 133; Γ1,12 = −0.120, and Γ1,21 = 0.0889 for market 144; Γ1,12 = 0.0972, and Γ1,21 = 0.0895

for market 145; Γ1,12 = 0.321, Γ2,12 = 0.149, Γ1,21 = 0.169, and Γ2,21 = 0.0109 for market 147; Γ1,12 = 0.350, Γ2,12 = 0.145,

Γ1,21 = 0.121, and Γ2,21 = −0.0212 for market 148; Γ1,12 = 0.0313, and Γ1,21 = 0.121 for market 158; Γ1,12 = −0.247, and

Γ1,21 = 0.306 for market 168; Γ1,12 = 0.507, Γ2,12 = 0.209, Γ1,21 = 0.0637, and Γ2,21 = 0.00820 for market 176; Γ1,12 = −0.103,

and Γ1,21 = 0.128 for market 179; Γ1,12 = −0.0571, and Γ1,21 = 0.167 for market 182.
15Two exceptions are cash markets 148 and 173 for which the information share average finds that the cash market contributions

more to the price discovery process while the common factor weight reveals an opposite result. However, the numerical results

provided by the two approaches are almost identical for each of these two cash markets.
16For cash markets 131, 133, 135, 136, 153, 160, 163, 167, 179, 180, and 181, the absolute values of the differences are smaller

than 0.1.
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mentioning that the absolute value of the difference of the relative contributions of the futures market and a

specific cash market to the price discovery process is larger under the common factor weight than that under

the information share average.

5 Conclusions

With a special attention paid to the role of cash market selection, this study examines dynamic relationships

between U.S. corn cash and futures prices for 182 cash markets spreading across 7 states from January 2006

to March 2011. To explore whether the long-standing empirical results of cointegration between cash and

futures prices and price discovery in the futures market are robust to the selection of cash markets, we apply

an ECM or a VAR in differences to our observational data, and investigate how results of various statistical

tests associated with price discovery research change with different cash markets selected for analysis.

First, the prevalent cointegration relationship between corn cash and futures prices only holds for 52

cash markets based on logarithmic prices at the 5% significance level. Although neglect of cointegration

between cash and futures prices, if it does exist, leads to an underestimate of hedge ratios and affects hedge

performance (Kroner & Sultan, 1993), our result shows that whether it is necessary to take cointegration into

consideration is cash market dependent. Meanwhile, for the whole sample period in this study, structural

breaks only have minor effects on the stability of the lack of cointegration for 13 cash markets. Hence, any

further conclusion is not seriously affected without breaking the whole sample period into subperiods for

these 13 cash markets.

Second, the informational source roles of futures and cash prices are equal in the long run for 49 out of

the 52 cash markets cointegrated with the futures market based on the prediction hypothesis test. We fail to

detect futures prices being the sole primary information source in the long run for all the 52 cash markets.

Hence, plant level cash price data in this study shows that cash prices are useful in providing price movement

information in the long run.

Third, although causal flows may not exist between cash and futures prices in the short run, the unidirec-

tional causality from cash to futures prices is most possible if short-run causal flows exist no matter whether

the cash market is cointegrated with the futures market or not. From a linear perspective, the plant level

cash price data also shows usefulness of cash markets in providing price fluctuation information in the short

run. As mentioned above, one potential explanation for this result is that many cash markets are operated by

big local companies, whose prices, which incorporate information from the futures market to some extent, are

largely determined by local supply and demand, and these market conditions as a whole affect futures prices.

Besides, the importance of cash markets cointegrated with the futures market in providing price discovery

function in both the long run and short run may partially be explained by the failure of convergence between
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futures and cash prices at the delivery points during the sample period in this study, which can affect the

price discovery role of the futures market (Adjemian, Garcia, Irwin & Smith, 2013; Aulerich, Hoffman &

Plato, 2009; Garcia, Irwin & Smith, 2011; Hoffman & Aulerich, 2013; Irwin, Garcia, Good & Kunda, 2011;

Karali, McNew & Thurman, 2013).

Fourth, the vast majority of causal relationships between cash and futures prices are linear no matter

whether the cash market is cointegrated with the futures market or not. However, our nonlinear Granger

causality test result does support the viewpoint that the linear Granger causality test has low power in

detecting nonlinear relationships among price variables which may be due to influences of market microstruc-

ture, the role of noise traders, nonlinear transaction cost functions (Abhyankar, 1996), diverse agents’beliefs

(Brock & LeBaron, 1996), heterogeneous investors’goals (Peters, 1994), herd behavior (Lux, 1995), asym-

metric storage behavior (Ahti, 2009), and time-varying price volatility (Nazlioglu, 2011) since the nonlinear

Granger causality test provides different conclusions from those of the linear one for several cash markets.

Unlike linear causal flows, nonlinear ones from futures to cash prices are common if nonlinear causality exists.

Hence, with the plant level cash price data, the causality from futures to cash prices is more likely to be

nonlinear, especially for cash markets cointegrated with the futures market.

Fifth, while the information share model and the common factor model draw the same conclusion about

the relative contributions of the futures market and a specific cash market to the price discovery process

qualitatively, i.e. the contribution of the futures market is more likely to be small than a cash market, the

absolute value of the difference of the relative contributions of these two markets is larger under the common

factor weight than that under the information share average.

In general, our study provides evidence that empirical results of price discovery research based on corn cash

and futures markets vary with selection of cash markets. This study concentrates on futures prices directly,

and future work can be extended to incorporate the interest cost and/or rate (Garbade & Silber, 1983;

Yang, Bessler & Leatham, 2001; Zapata & Fortenbery, 1996). An application of symmetric and asymmetric

GARCH models is also of interest to examine whether the conditional variances and covariances account for

the existence of the nonlinear Granger causality.
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Appendix A: Unit Root Test

Augmented Dickey-Fuller (ADF) Test

The ADF test applies a parametric autoregression to the approximation of the ARMA structure of errors in

the test regression. We need to consider ∆yt = β′Dt+θyt−1 +α1∆yt−1 +α2∆yt−2 + · · ·+αp∆yt−p+ut, where

Dt is a vector of deterministic terms such as constant and trend, and ut is serially uncorrelated by setting

p large enough. The disturbance ut is assumed to be homoskedastic. The hypotheses are: Null: θ = 0 vs.

Alternative: θ < 0. The number of augmenting lags can be determined by minimizing the Schwartz Bayesian

information criterion (SBIC), the Akaike information criterion (AIC), or Hannan-Quinn information criterion

(HQC), or lags are dropped until the last lag is statistically significant. The t-statistic, ADFt = tθ=0 = θ̂
se(θ̂)

,

and normalized bias statistic, ADFn = T θ̂
1−α̂1−···α̂p , are based on the least squares estimates.

Phillips-Perron (PP) test

The PP test corrects for any serial correlation and heteroskedasticity in the error ut of the test regression. We

need to consider ∆yt = β′Dt + θyt−1 + ut, where Dt is a vector of deterministic terms such as constant and

trend, and ut is I(0) and may be heteroskedastic. The hypotheses are: Null: θ = 0 vs. Alternative: θ < 0.

The test statistics are given by PP -Zt = ( σ̂
2

λ̂
2 )

1
2 tθ=0− 1

2 ( λ̂
2−σ̂2

λ̂
2 )(T ·se(θ̂)

σ̂2
) and PP -Zθ = T θ̂− 1

2
T 2·se(θ̂)
σ̂2

(λ̂
2
−σ̂2),

where σ̂2 is the sample variance of the least squares residual ût, and λ̂
2
is the Newey-West long-run variance

estimate of ut using ût. They are consistent estimates of the variance parameters σ2 = limT→∞
1
T

∑T
t=1E[u2

t ]

and λ2 = limT→∞
∑T
t=1E[ 1

T (
∑T
t=1 ut)

2], respectively. Under the null hypothesis that θ = 0, the Phillips-

Perron PP -Zt and PP -Zθ statistics have the same asymptotic distributions as the Augmented Dickey-Fuller

t-statistic and normalized bias statistics. Two advantages of the PP test over the ADF test are: (a) we

do not have to specify a lag length for the test regression; (b) the PP test is robust to general forms of

heteroskedasticity in the error term ut.

Kwiatkowski-Phillips-Schmidt-Shin (KPSS) Test

We need to consider yt = β′Dt+ηt+ut, ηt = ηt−1 +εt, εt ∼WN(0, σ2
ε), where Dt is a vector of deterministic

terms such as constant and trend, and ut is I(0) and may be heteroskedastic. The hypotheses are: Null:

σ2
ε = 0 vs. Alternative: σ2

ε > 0. The test statistic is the Lagrange multiplier statistic given by KPSS =
1
T2

∑T
t=1(

∑t
j=1 ûj)

2

λ̂
2 , where ût is the residual of a regression of yt on Dt, and λ̂

2
is a consistent estimate of

the long-run variance of ut using ût. Under the null, KPSS converges to a function of standard Brownian

motion which depends on the form of the deterministic terms Dt. If Dt = 1, KPSS d−→
∫ 1

0
[W (r)−rW (1)]dr,

where W (r) is a standard Brownian motion for r ∈ [0, 1]. If Dt = ( 1 t )
′
, KPSS d−→

∫ 1

0
[W (r) +
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r(2− 3r)W (1) + 6r(r2 − 1)
∫ 1

0
W (s)ds]dr. Critical values from the asymptotic distributions are obtained by

simulation methods.
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Appendix B: Cointegration Analysis and the Recursive Cointegra-

tion Approach

Cointegration Analysis

Johansen’s Trace Statistic

Johansen’s trace statistic, LRtrace(r0) = −T
∑p
i=r0+1 ln(1− λ̂i) is likelihood ratio statistic testing the nested

hypotheses:

null : r = r0 vs. alternative : r > r0.

The idea is that: if rank(Π) = r0, LRtrace(r0) will be small since λ̂r0+1, ..., λ̂p will be close to zero; if

rank(Π) > r0, LRtrace(r0) will be large since some of λ̂r0+1, ..., λ̂p will be nonzero. The asymptotic null

distribution of LRtrace(r0) is a multivariate version of the Dickey-Fuller unit root distribution that depends

on the dimension p− r0 and the specification of the deterministic term. We can refer to Hansen and Juselius

(1995), and Osterwald-Lenum (1992) for critical values.

Johansen’s Sequential Testing Procedure

Johansen’s sequential testing procedure (Johansen, 1992) is a consistent way to determine the number of

cointegrating vectors. Hypotheses are tested in the following order: H∗1 (0), H1(0), H∗1 (1), H1(1), ..., H∗1 (p),

H1(p). For example, H∗1 (1) can only be rejected if also H∗1 (0) and H1(0) are rejected, and H1(1) can only be

rejected if also H∗1 (0), H1(0) and H∗1 (1) are rejected. Testing is terminated and the corresponding hypothesis

is accepted at the first failure to reject the null hypothesis in the testing sequence.

Johansen’s Maximum Eigenvalue Statistic

Johansen’s maximum eigenvalue statistic, LRmax(r0) = −T ln(1 − λ̂r0+1) is likelihood ratio statistic testing

the hypotheses:

null : r = r0 vs. alternative : r = r0 + 1.

The idea is similar to that of the trace statistic. The asymptotic null distribution of LRmax(r0) is a com-

plicated function of Brownian motion that depends on the dimension p − r0 and the specification of the

deterministic term. We can again refer to Hansen and Juselius (1995), and Osterwald-Lenum (1992) for

critical values.

36



Hansen and Johansen’s Recursive Cointegration

For a statistical model with parameter space θ = (θ1, θ2) in which we want to check constancy of θ1, recursive

analysis can be performed. Hansen and Johansen (1999) focus on two models: (a) "Z-representation" —base

the recursive estimates of all parameters on the likelihood function L(t)(θ1, θ2) = Πt
s=1f(Xs|Xs−1, ..., X−k+1, θ1, θ2),

where X−k+1, ..., Xs−1 are the basis of observations for s = 1, ..., t; (b) "R-representation" —estimate out

θ2 = θ̂
(T )

2 (θ1) using the full sample likelihood by solving ∂ lnL(T )(θ1,θ2)
∂θ2

= 0, and then base the recursive

estimates of θ1 on the likelihood function L
(t)
conc(θ1) = L(t){θ1, θ̂

(T )

2 (θ1)}. In the cointegrated VAR model,

θ1 represents the cointegrating relations, the adjustment parameters, and the error covariance, and θ2 repre-

sents the short-run dynamics, i.e., the coeffi cients of the changes. The results from the "R-representation" are

more relevant in recursive cointegration analysis. The derivation is shown briefly here. Let X∗t = (X
′

t , 1)
′
and

β∗ = (β
′
, δ

′
)
′
, Equation (1) can then be written as ∆Xt = αβ∗

′
X∗t−1 +

∑k−1
i=1 Γi∆Xt−1 + et, for t = 1, ..., T .

We assume the errors to be independent and Gaussian with mean zero and covariance matrix Ω, and fix

the initial values X−k+1,..., X0. The parameter space includes α, β
∗, Γi for i = 1, ..., k − 1, and Ω for

some r = 1, ..., p. The constant term µ = αδ
′
is restricted in a way such that the model does not allow for

deterministic trend. Hence, the model is H∗1 (r). Let Z0t = ∆Xt, Z1t = X∗t−1, Z2t = (∆X
′

t−1, ...,∆X
′

t−k+1)

and Γ = (Γ1, ...,Γk−1). Equation (1) can be written as:

Z0t = αβ∗
′
Z1t + ΓZ2t + et for t = 1, ..., T ,

and its maximum likelihood estimation based on all data consists of a reduced rank regression of Z0t on Z1t

corrected on Z2t. Let R
(T )
0t and R(T )

1t be the residuals from regression of Z0t and Z1t on Z2t respectively.

The superscript T means that the estimation of short-run dynamics is based on the full sample. We have

R
(T )
0t = Z0t−M (T )

02 {M
(T )
22 }−1Z2t, R

(T )
1t = Z1t−M (T )

12 {M
(T )
22 }−1Z2t, and R

(T )
et = et−M (T )

e2 {M
(T )
22 }−1Z2t, where

M
(t)
ij =

∑t
s=1 ZitZ

′

jt, and M
(t)
ej =

∑t
s=1 etZ

′

jt for i, j = 0, 1, 2. The remaining analysis is based on regression

equation:

R
(T )
0t = αβ∗

′
R

(T )
1t +R

(T )
et for t = 1, ..., T ,

where Γ = (Γ1, ...,Γk−1) has been filtered out. This equation is called the "R-representation" whose con-

struction implies that any rejection of stability is caused by changes in the long-run structure instead of shifts

in short-run dynamics. Let the product moment matrices for i, j = 0, 1, e be ST (t)
ij = 1

t

∑t
s=1R

(T )
it R

(T )′

jt =

1
t [M

(t)
ij −M

(T )
i2 {M

(T )
22 }−1M

(t)
2j −M

(t)
i2 {M

(T )
22 }−1M

(T )
2j +M

(T )
i2 {M

(T )
22 }−1M

(t)
22 {M

(T )
22 }−1M

(T )
2j ]. The maximum

likelihood estimator of the cointegrating space is determined by the solution to the eigenvalue problem

|λS11−S10S
−1
00 S01| = 0, which yields eigenvalues 1 > λ̂1 > λ̂2 > · · · > λ̂p > 0 and λ̂p+1 = 0, and eigenvectors

V̂ = (v̂1, ..., v̂p+1) which are normalized as V̂
′
S11V̂ = I. The maximum likelihood estimators of β∗ and α are
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β̂
∗

= (v̂1, ..., v̂r) and α̂ = S01β̂
∗
. Only the space spanned by the vectors β∗ can be estimated without further

identifying restrictions on β∗, and δ̂ is contained in the last row of β̂
∗
such that the estimation of constant

term µ can be performed as µ̂ = α̂δ̂
′

. We use the p − r smallest non-zero eigenvalues λ̂− = (λ̂r+1, ..., λ̂p)

to construct trace test statistic Trace = −T
∑p
i=r+1 ln(1− λ̂i) for cointegration rank, whereas the r largest

eigenvalues λ̂+ = (λ̂1, ..., λ̂r) are used for testing hypotheses on the cointegrating space.
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