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Relative Performance of Semi-Parametric Nonlinear Models in Forecasting Basis 
 

Abstract 

Many risk management strategies, including hedging the price risk using forward or futures contracts 

require accurate forecasts of basis, i.e., spot price minus the futures price. Recent literature in this area has 

applied nonlinear time-series models, which are refinements of the linear autoregressive models that 

allow the parameters to transition from one regime to another. These parametric nonlinear models, 

however, involve complex estimation problems, and may diminish forecasting accuracy, especially in 

longer horizons. We propose using a semi-parametric, generalized additive model (GAM) that may 

improve the forecasting performance with its simplicity and flexibility while still accounting for 

nonlinearities in local prices and basis. Empirical results based on weekly futures and spot prices for 

North Carolina soybean and corn markets support evidence of nonlinear effects in basis. In general, 

generalized additive models seem to yield better forecasts of basis.  

 

Key words: basis, futures markets, forecasting, generalized additive models, nonlinear models 
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Relative Performance of Semi-Parametric Nonlinear Models 

in Forecasting Basis 
 

Introduction 

Many risk management strategies, including hedging the price risk using forward or futures 

contracts, involve forming price expectations and making storage decisions, which in turn 

require accurate forecasts of basis, i.e., spot price minus the futures price (CBOT, 1990; 

Hatchett, Brorsen, and Anderson, 2010). Market frictions and uncertainties involved in 

production may cause nonlinearities in prices over time, increasing the basis unpredictability. As 

a result, level of confidence in forming expectations of future basis may diminish, obstructing 

producers’ ability to effectively manage their price risk.  

Basis forecasting has been an area of continued research interest. The most typical 

approach to forecasting basis in the literature has been averaging historical basis levels across 

years. This approach is widely used because of its simplicity and usually referred as the naïve 

forecast. One disadvantage of using historical averages is that they do not incorporate current 

market information. Earlier studies have used different number of years in their historical 

moving averages. Dhuyvetter and Kastens (1998), for example, conclude that longer averages 

ranging from three to seven years is optimal, while Taylor, Dhuyvetter, and Kastens (2006) find 

that the one-year average is optimal for harvest basis forecasts for several crops. More recently, 

Hatchett, Brorsen, and Anderson (2010) revisit this commonly-used historical moving average 

approach to forecast basis and conclude the optimal length of moving average is not constant 

over time and suggest using longer moving averages in the absence of structural breaks and last 

year’s basis in the presence of structural changes. 
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Another common approach to forecasting basis has been using mean-reverting time-

series models such as linear autoregressive integrated moving average (ARIMA) models (Jiang 

and Hayenga, 1997; Sanders and Manfredo, 2006). However, it has been generally found that 

naïve forecast models perform better in the long horizon, while some linear time-series models 

perform well only in the short horizon. The more recent literature in this area has applied 

smooth-transitioning autoregressive (STAR) model, which is a refinement of the autoregressive 

model that allows the parameters to smoothly transition from one regime to another (Sanders and 

Baker, 2012). In a similar area, Goodwin and Piggott (2001), in their study of spatial linkages 

between crop markets, use a threshold autoregressive (TAR) model, which allows for discrete 

regime switches. Although these approaches follow a long progression of the development of 

time-series methods for identifying nonlinear effects in empirical models, several issues remain 

in practice. First, the variable causing the “regime shift” is assumed to be known even though 

economic theory rarely dictates a likely candidate. Second, there is typically little or no guidance 

on what the most appropriate functional form or transition function for a given application might 

be. Finally, the specifications applied in recent work typically involve a significant number of 

additional parameters to be estimated, and thus add significantly to the complexity of estimation 

and hypothesis testing. 

It is acknowledged in the forecasting literature that the more complicated and 

sophisticated the forecasting model is, the poorer forecasting performance that particular model 

yields. Furthermore, simple models are difficult to improve upon for more distant-horizon 

forecasting. To this extend, we propose using a nonparametric, generalized additive model 

(GAM) that may improve the forecasting performance with its simplicity and flexibility, and at 

the same time, will still account for nonlinearities in the local prices and basis. 
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In particular, we aim to compare the forecasting accuracy of GAM to those of other 

nonlinear but parametric time-series models, such as TAR and STAR. In addition, we perform 

forecasting using standard naïve and linear AR models for comparison of the forecasting 

performance between linear and nonlinear models. Our application is to corn and soybean 

markets in North Carolina. Preliminary results support evidence for nonlinearities in basis in 

these markets. Forecasts based on semi-parametric, nonlinear generalized additive models seem 

more accurate than their linear counterparts. 

 

Earlier Work on Basis Forecasting 

There is extensive literature analyzing the determinants of basis using structural models. Factors 

used as explanatory variables include seasonality, demand (consumption), supply (production), 

inventories, storage costs (carrying charge), transportation costs (for the non-delivery points), 

insurance, and interest rate (Martin, Groenewegen, and Pidgeon, 1980; Garcia and Good, 1983; 

Bailey and Chan, 1993).  

Earlier studies on forecasting basis generally test the forecasting accuracy of using 

moving averages of various lag lengths to form basis expectations. Hauser, Garcia, and Tumblin 

(1990), for example, compare several naïve models with one- or three-year historical averages to 

forecast soybean basis for 10 Illinois elevators and find that historical average models perform 

comparably to models incorporating current market information. Kastens, Jones, and Schroeder 

(1998) compare relative performance across various competing naïve and futures-based localized 

basis forecasts for corn, soybean, wheat, and livestock in Kansas and Missouri using regression 

models of forecast errors. They show that complex regression models capturing nonlinearity do 
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not improve forecasting accuracy, and suggest that historical localized basis to deferred futures 

contract should be used as a forecast. Tonsor, Dhuyvetter, and Minert (2004) study weekly basis 

on live cattle and feeder cattle in Kansas. They find that using time-to-futures-contract-

estimation technique does not improve forecasting efficiency and the optimal number of years to 

include in a historical average depends on the particular time period. They also show that 

incorporating current basis information increases forecast accuracy.  

Taylor, Dhuyvetter, and Kastens (2006) compare basis forecasting methods for wheat, 

soybeans, corn, and milo basis in Kansas. They distinguish between harvest and post-harvest 

basis forecasts. They find that while the optimal harvest and post-harvest basis forecast for corn, 

milo, soybeans basis is the historical one-year average, the optimal harvest and post-harvest basis 

forecasts for wheat are the historical five-year and one-year averages, respectively. They show 

that incorporating current market information (i.e. basis deviation from historical average) 

improves forecast accuracy for post-harvest basis. Sanders and Manfredo (2006) also compare 

basis forecasting methods for soybean, soybean oil, and soybean meal in Central Illinois. They 

consider three naïve models (the historical five-year average for the month being forecasted, 

basis in the same month a year ago, the most recent observed basis) and two time-series models 

(and ARMA and VAR models). They show that the historical five-year average (as argued as the 

best in the literature) is not the best method for all commodities. They further show that time-

series models do better for short-horizon forecasts but the gain from using them is much smaller 

in long-horizon forecasts. 

More recently Hatchett, Brorsen, and Anderson (2010) reassess the earlier studies on the 

optimal length of moving historical averages to be used in basis forecasts of hard wheat, soft 

wheat, corn, and soybeans. They find that the optimal forecast length is generally shorter than 
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what previous studies suggested and argue that this is due to structural changes. They 

recommend using longer moving averages for locations or time periods when there were no 

structural changes and the previous year’s basis when a structural change occurred. 

Our paper takes somewhat a similar approach and revisits methods to forecasting basis. 

However, our main focus is on the performance of nonlinear (and non-parametric) time-series 

models as recent developments in commodity markets signal nonlinearities in prices over time. 

 

Methodology 

We propose using potentially fully-nonparametric and nonlinear models to forecast basis in grain 

markets. Specifically, we use the Generalized Additive Models (GAM) proposed by Hastie and 

Tibshirani (1986, 1990). These models assume that the mean of the response variable depends on 

an additive predictor through a link function. The appealing feature of GAMs is their ability to 

deal with highly nonlinear and non-monotonic relationships between the response and the set of 

explanatory variables without imposing strict parametric restrictions in the model. 

Consider a standard linear regression model given by:  

(1)  
𝑦𝑡 = 𝛽0 + �𝛽𝑗𝑋𝑗𝑡 + 𝜀𝑡

𝑘

𝑗=1

, 
 

where 𝑦𝑡, the response variable, is assumed to be a linear additive function of 𝑘 independent 

variables, 𝑋𝑗𝑡, 𝑗 = 1,⋯𝑘. Additive models generalize this linear model by modelling the 

dependent variable as: 
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(2)  𝑦𝑡 = 𝛽0 + �𝑓𝑗(𝑋𝑗𝑡) + 𝜀𝑡

𝑘

𝑗=1

 , 

 

 

where 𝑓𝑗(⋅) is an unspecified smooth nonparametric function. Estimation of this model can be 

accomplished by fitting a weighted additive model through a backfitting algorithm. The 

estimated nonparametric components, 𝑓𝑗(∙), can be thought of as estimates of the functions 

transforming each explanatory variable so as to maximize the fit of their additive combination to 

the dependent variable, subject to constraints about the smoothness of the link function. We 

focus on two types of link functions; locally weighted regression smoothers (LOESS) and cubic 

smoothing splines (SPLINE), which have well-understood properties. 

Specifically, we model the basis as an additive function consisting of parametric and 

nonparametric terms. We argue that previous period’s basis has linear and nonlinear effects on 

the current period’s basis, while time trend has linear effects: 

(3)  𝑏𝑎𝑠𝑖𝑠𝑡 = 𝛽0 + 𝛽1𝑡𝑟𝑒𝑛𝑑𝑡 + 𝛽2𝑏𝑎𝑠𝑖𝑠𝑡−1 + 𝑓1(𝑏𝑎𝑠𝑖𝑠𝑡−1) + 𝜀𝑡.  
 

The actual values of 𝑓1(∙) are not meaningful per se, but the shape of the fitted function reveals 

the nature of any estimated nonlinearities in the basis. We consider various metrics of the 

goodness of fit, providing a guide as to whether the fitted nonlinear function is distinguishable 

from and favorable to a linear fit. We, then, compare the forecasting accuracy of different models 

using various forecast error criterions. 

 

 

 



 
 
 

9 
 

Data and Empirical Results 

There have been several important developments in corn and soybean markets since 1990s. For 

instance, soybean production in Brazil and Argentina has increased dramatically between 1990 

and 2002. This put downward pressure on the U.S. prices (Plato and Chambers, 2004). Corn, 

soybean, and wheat futures contracts experienced poor convergence between late 2005 and 2008. 

Low contract storage rates at the Chicago Board of Trade (CBOT), structural problems in the 

delivery mechanism, and changes in storage market conditions caused cash prices to be delinked 

from futures prices (Irwin et al., 2011). Irwin and Good (2009) conclude that a new era with a 

permanent upward shift in the level of price and volatility started for corn, soybean, and wheat 

prices after 2006. Bekkerman, Goodwin, and Piggott (2008) also show that soybean markets 

have experienced instability between 2007 and 2008 due to lower supply and stable demand and 

the increase in the probability of soybean rust infections. These developments in corn and 

soybean markets can be observed in Figure 1, in which North Carolina spot prices are presented. 

In particular, we observe a permanent upward trend in prices toward the end of the sample, for 

both corn and soybean markets.   

Figure 2 presents plots of basis in North Carolina grain markets. Similar to Figure 1, we 

can observe increased volatility in basis after 2006. The large increase in the soybean basis 

toward the end of the sample period can be attributed to recent developments in these markets. In 

April 2012, soybean futures prices hit a seven-month high due to strong export demand from 

China (16% increase from previous month, 44% increase from previous year), the announcement 

by USDA about increased sales of soybeans to China and other destinations, and decreased 

supply in South America due to adverse weather (DJN, 2012).   
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All these events in corn and soybean markets suggest possible structural changes and 

nonlinearities in the basis behavior. Thus, these two commodities provide a good avenue to test 

forecasting performance of generalized additive models. 

Weekly local spot prices of corn and soybean are provided by North Carolina State 

University, Grain Marketing Extension Program.1 Specifically, corn prices are for the cities 

Candor, Candor, Cofield, and Roaring River for the sample period of January 1988-July 2013; 

and soybean prices are for the cities Elizabeth City, Fayetteville, and Raleigh for the sample 

period of January 1980-July 2013. 

For the futures price data we use the settlement prices of corn and soybean contracts 

traded at the Chicago Mercantile Exchange (CME) Group. The data are obtained from the 

Commodity Research Bureau (CRB). We construct a continuous futures price series by rolling 

over the nearby contracts at the end of the month preceding the delivery month. All price series 

are recorded weekly on Wednesdays. 

We start with splitting the whole sample at the cutoff dates to “holdout” the last 24 

observations for forecast evaluations. Then with the first part of the sample, we estimate a simple 

linear AR(p) and two GAMs, with LOESS and SPLINE smoothers, respectively. From each of 

these models, we compute multi-period forecasts for horizon 1 to 24 (weeks). Using the holdout 

data, we compute the Mean Absolute Percent Error (MAPE) of forecasts. Finally, we compare 

the forecasting performance of different models based on these statistics.  

Table 1 presents the estimation results of autoregressive GAM for NC soybean markets. 

The model allows for a linear trend term, however the previous period’s basis has a linear 

                                                      
1 Weekly data are proprietary; however, monthly and annual summaries can be downloaded from 
http://www.ces.ncsu.edu/depts/agecon/piggott/grainmarket/datasets.html   
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parametric and a nonlinear nonparametric component. We use LOESS smoother in the GAM.2  

Linear trend estimates are practically zero. Both linear and smooth components of last period’s 

basis are significant in all three soybean markets. Figure 3 shows the nonlinear effects of 1tbasis −  

on tbasis . We observe that when the last period’s basis is small, its effect on this period’s basis is 

closer to a linear effect. However, a large and negative 1tbasis −  has a larger and positive effect on 

the current period’s basis. This holds in all three soybean markets, Raleigh, Fayetteville and 

Elizabeth City. A large and positive basis in the previous period, on the other hand, triggers a 

large and negative response in the current period’s basis in Raleigh and Fayetteville markets. The 

same nonlinear response, however, is positive in Elizabeth City markets (though, more subtle in 

size).  

Table 2 presents the estimation results of GAM for North Carolina corn markets. The 

results are very similar to those reported for soybean markets. In particular, both linear and 

smooth components of last period’s basis are significant in all corn markets. Again, linear trend 

term seems to be practically zero. Figure 4 shows the nonlinear effects of 1tbasis −  on current 

period’s basis. A large and negative 1tbasis −  has a larger and positive effect on the current 

period’s basis. Similar to soybean markets, we observe asymmetric response to last period’s 

basis. In particular, a large positive basis in the last period leads to a much smaller change in the 

current period’s basis compared to a negative 1tbasis −  of the same size. 

Table 3 and 4 report the forecasting performance of semi-parametric GAMs and the 

linear AR model. In soybean markets (Table 3), in general, forecast errors measured by MAPE 

from GAMs are smaller than those from a linear AR model. In addition, as the forecast horizon 

                                                      
2 Results with SPLINE smoother are similar, and therefore they are not reported for the sake of brevity.  
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increases, forecast accuracy decreases somewhat quickly. In general, SPLINE smoother leads to 

better forecasts compared to LOESS smoother in GAMs. Elizabeth City has the smallest one-

step-ahead forecast errors. Forecasting performance for Raleigh and Fayetteville are very similar. 

This is not surprising as these two markets are geographically very close to each other. 

In corn markets (Table 4), we observe that forecast errors and MAPEs are much smaller 

compared to those reported for the soybean markets. Similar to soybean markets, nonlinear 

GAMs lead to better forecasts for corn basis almost at all horizons than the linear AR model 

does. Except for Cofield, a SPLINE smoother in GAM results in better forecast accuracy than 

the LOESS smoother. As usual, forecast errors increase with the forecast horizon.    

 

Concluding Remarks 

In this paper, we suggest using semi-parametric Generalized Additive Models (GAMs) as an 

alternative to traditional parametric time-series models in forecasting basis. Using weekly North 

Carolina corn and soybean basis data, we show that nonlinear effects obtained from GAMs were 

significant. Semi-parametric GAMs in almost all cases yield better forecasts than a linear model. 

What remains is adding forecasts from various parametric, nonlinear models, such as TAR and 

STAR. Moreover, bootstrapping of forecast standard errors needs to be performed to determine 

confidence intervals of forecasts based on GAMs.    



 
 
 

13 
 

References  

Bailey, W. and K.C. Chan. 1993. “Macroeconomic Influences and the Variability of the 

Commodity Futures Basis.” The Journal of Finance 48(2):555-573. 

Bekkerman, A., B.K. Goodwin, and N.E. Piggott. 2008. “Spatio-Temporal Risk and Severity 

Analysis of Soybean Rust in the United States.” Journal of Agricultural and Resource 

Economics 33(3):311-331.  

CBOT. 1990. Understanding Basis: The Economics of Where and When. Chicago: Chicago 

Board of Trade. 

Dhuyvetter, K.C. and T.L. Kastens. 1998. “Forecasting Crop Basis: Practical Alternatives.” 

Proceedings of the NCCC-134 Conference on Applied Commodity Price Analysis, 

Forecasting, and Market Risk Management. St. Louis, MO. 

[http://www.farmdoc.illinois.edu/nccc134]. 

DJN. 2012. “Soybeans Hit New 7-Month Closing High.” Dow Jones Newswires, April 12, 2012. 

Web. http://www.agriculture.com/news/crops/soybes-hit-new-7month-closing-high_2-

ar23528  

Garcia, P. and D. Good. 1983. “An Analysis of the Factors Influencing the Illinois Corn Basis, 

1971-1981.” Proceedings of the NCCC-134 Conference on Applied Commodity Price 

Analysis, Forecasting, and Market Risk Management. St. Louis, MO. 

[http://www.farmdoc.illinois.edu/nccc134]. 

Goodwin, B.K., and J.P. Piggott. 2001. “Spatial Price Integration in the Presence of Threshold 

Effects.” American Journal of Agricultural Economics 83(2):302-317. 

Hastie, T.J. and R.J. Tibshirani. 1986. “Generalized Additive Models.” Statistical Science 

1(3):297-318. 

Hastie, T.J. and R.J. Tibshirani. 1990. Generalized Additive Models, 1st ed. London: Chapman 

and Hall.  

Hatchett, R.B., B.W. Brorsen, and K.B. Anderson. 2010. “Optimal Length of Moving Average to 

Forecast Futures Basis.” Journal of Agricultural and Resource Economics 35(1):18-33. 

http://www.agriculture.com/news/crops/soybes-hit-new-7month-closing-high_2-ar23528
http://www.agriculture.com/news/crops/soybes-hit-new-7month-closing-high_2-ar23528


 
 
 

14 
 

Hauser, R.J., P. Garcia, and A.D. Tumblin. 1990. “Basis Expectations and Soybean Hedging 

Effectiveness.” North Central Journal of Agricultural Economics 12(1):125-136. 

Irwin, S.H. and D.L. Good. 2009. “Market Instability in a New Era of Corn, Soybean, and Wheat 

Prices.” Choices 24(1):6-11. 

Irwin, S.H., P. Garcia, D.L. Good, and E.L. Kunda. 2011. “Spreads and Non-Convergence in 

Chicago Board of Trade Corn, Soybean, and Wheat Futures: Are Index Funds to Blame?” 

Applied Economics Perspectives and Policy 33(1):116-142. 

Jiang, B. and M. Hayenga. 1997. “Corn and Soybean Basis Behavior and Forecasting: 

Fundamental and Alternative Approaches.” Proceedings of the NCCC-134 Conference on 

Applied Commodity Price Analysis, Forecasting, and Market Risk Management. St. Louis, 

MO. [http://www.farmdoc.illinois.edu/nccc134]. 

Kastens, T.L., R. Jones, and T.C. Schroeder. 1998. “Futures-Based Price Forecasts for 

Agricultural Producers and Businesses.” Journal of Agricultural and Resource Economics 

23(1):294-307. 

Martin, L., J.L. Groenewegen, and E. Pidgeon. 1980. “Factors Affecting Corn Basis in 

Southwestern Ontario.” American Journal of Agricultural Economics 62(1):107-112. 

Plato, G. and W. Chambers. 2004. “How Does Structural Change in the Global Soybean Market 

Affect the U.S. Price?” Washington DC: U.S. Department of Agriculture, Electronic 

Outlook Report from the Economic Research Service, OCS-04D-01. 

Sanders, D.R. and M.R. Manfredo. 2006. “Forecasting Basis Levels in the Soybean Complex: A 

Comparison of Time Series Models.” Journal of Agricultural and Applied Economics 

38(3):513-523. 

Sanders, D. J. and T. G. Baker. 2012. “Forecasting Corn and Soybean Basis Using Regime-

Switching Models.” Proceedings of the NCCC-134 Conference on Applied Commodity 

Price Analysis, Forecasting, and Market Risk Management. St. Louis, MO. 

[http://www.farmdoc.illinois.edu/nccc134]. 



 
 
 

15 
 

Taylor, M.R., K.C. Dhuyvetter, and T.L. Kastens. 2006. “Forecasting Crop Basis Using 

Historical Averages Supplemented with Current Market Information.” Journal of 

Agricultural and Resource Economics 31(3):549-567. 

Tonsor, G.T., K.C. Dhuyvetter, and J.R. Mintert. 2004. “Improving Cattle Basis Forecasting.” 

Journal of Agricultural and Resource Economics 29(2):228-241. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 
 

16 
 

FIGURES 

 
1a) Soybean prices 

 
1b) Corn Prices 
Figure 1.  Soybean and corn prices in North Carolina markets. 
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1a) Soybean basis 

 
1b) Corn basis 
Figure 2. Soybean and corn basis in North Carolina markets. 
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Figure 3. Nonlinear effects of 1tBasis −  on tBasis  in North Carolina soybean markets. 

Note. y1, y2, y3 denote Raleigh, Fayetteville, and Elizabeth City soybean markets, respectively. 
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Figure 4. Nonlinear effects of 1tBasis −  on tBasis  in North Carolina corn markets. 

Note. y1, y2, y3 denote Candor, Cofield, and Roaring River corn markets, respectively. 
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TABLES 

Table 1.  Autoregressive GAM Estimation Results for North Carolina Soybean Markets. 

  Raleigh Fayetteville Elizabeth 
  Linear Parameters 

  Estimate Pr > |t| Estimate Pr > |t| Estimate Pr > |t| 
  

     
  

Intercept 1.25 0.12 -1.43 0.23 1.58 0.24 
trend 0.00 0.00 0.01 0.00 0.00 0.12 

Linear(basis_1) 0.80 <.0001 0.81 <.0001 0.77 <.0001 
  

     
  

  Smoothing Parameter 
  Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq 
Loess(basis_1) 0.62 <.0001 0.62 0.00 0.71 <.0001 

Note. LOESS smoother is used.  

 

Table 2.  Autoregressive GAM Estimation Results for North Carolina Corn Markets. 

  Candor Cofield Roaring River 
  Linear Parameters 
  Estimate Pr > |t| Estimate Pr > |t| Estimate Pr > |t| 
  

     
  

Intercept 2.19 0.10 0.62 0.56 -3.71 0.00 
trend 0.00 0.04 0.00 0.20 0.00 <.0001 

Linear(basis_1) 0.86 <.0001 0.91 <.0001 0.85 <.0001 
  

     
  

  Smoothing Parameter 
  Estimate Pr > ChiSq Estimate Pr > ChiSq Estimate Pr > ChiSq 
Loess(basis_1) 0.57 <.0001 0.11 <.0001 0.31 <.0001 

Note. LOESS smoother is used.  
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Table 3. Relative Forecasting Performance of GAM in North Carolina Soybeans Markets. 

    Horizon: 
Location: Model: 1 2 3 4 6 8 12 18 24 
      

  
Raleigh 
  

AR 29.16 79.90 67.12 57.95 50.30 48.17 55.21 58.36 77.01 
GAM_LOESS 26.60 47.53 55.85 41.94 30.10 24.41 42.30 44.92 56.42 
GAM_SPLINE 12.09 29.80 41.84 32.09 26.51 21.45 38.66 42.29 54.56 

  
Fayetteville 
  

AR 23.98 63.59 57.70 50.57 44.76 44.06 52.45 56.23 75.52 
GAM_LOESS 25.67 46.54 55.31 41.67 29.75 24.11 42.26 44.78 58.20 
GAM_SPLINE 14.56 37.51 45.79 36.25 30.85 25.49 40.36 43.36 50.85 

  
Elizabeth 
City 

AR 9.60 13.46 132.56 195.14 268.05 2630.50 1789.16 1335.60 1031.09 
GAM_LOESS 8.93 15.78 168.28 139.78 113.24 648.63 457.72 333.89 273.18 
GAM_SPLINE 6.36 15.40 162.17 133.17 106.02 628.51 444.48 325.74 267.76 

Note. Comparison criteria reported in the table is MAPE (Mean Absolute Percent Error). GAM_LOESS is an autoregressive GAM model with 
aLOESS smoother; and GAM_SPLINE represents an autoregressive GAM model with a SPLINE smoother. AR is the linear autoregressive 
model.  
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Table 4. Relative Forecasting Performance of GAM in North Carolina Corn Markets. 

    Horizon: 
Location: Model: 1 2 3 4 6 8 12 18 24 
      

  
Candor 
  

AR 3.8288 5.2238 9.5958 11.8347 14.4313 16.3996 17.0985 22.4286 44.3645 
GAM_LOESS 2.7693 2.7683 6.5582 5.9302 5.5573 5.4053 12.186 18.4007 47.2713 
GAM_SPLINE 0.5823 0.5828 4.1151 3.8813 3.8512 3.8713 11.1096 18.2775 45.2877 

  
Cofield 
  

AR 2.254 2.998 12.766 15.916 20.14 23.04 25.872 30.578 279.456 
GAM_LOESS 2.233 2.232 11.039 9.354 8.284 7.808 11.052 18.343 334.607 
GAM_SPLINE 4.29 4.29 12.912 10.805 9.8 9.353 12.533 19.454 321.039 

  
Roaring 
River 

AR 14.1478 14.2608 14.5546 16.2424 16.3691 16.627 18.0582 23.616 37.391 
GAM_LOESS 15.0965 10.7115 9.248 9.885 7.9719 7.5948 8.3278 9.5603 22.2997 
GAM_SPLINE 11.8719 10.5247 10.0739 11.1757 12.5875 11.8464 11.9767 12.8971 22.4454 

Note. Comparison criteria reported in the table is MAPE (Mean Absolute Percent Error). GAM_LOESS is an autoregressive GAM model with a 
LOESS smoother; and GAM_SPLINE represents an autoregressive GAM model with a SPLINE smoother. AR is the linear autoregressive model.  

 


