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Abstract

Managers of businesses that involve agricultural commodities need price forecasts in order to
manage the risk in either the sale or purchase of agricultural commodities. Sometimes the most
important forecasting component is simply whether the price will move up or down. Such binary
forecasts are commonly referred to as qualitative forecasts. This paper examines whether qualitative
forecasting of commodity prices can be improved by the inclusion within the model specification of
price forecasts for other commodities. We use hog prices as a test case and find strong support for
the inclusion of other commodity price forecasts in the best forecasting models. Unfortunately, the
out-of-sample performance of these models is mixed at best. Still, the results suggest qualitative
forecasts can be improved through the inclusion of other commodity price forecasts in our models.
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1 Introduction

Commodity price forecasting has a long history in both the agricultural economics literature and

in the real-world application of farm and agribusiness management. People managing businesses

that involve agricultural commodities need price forecasts in order to optimally plan their actions,

including the use or non-use of hedging in order to manage their output or input price risk. Thus,

the ability to generate quality forecasts of commodity prices is important.

The question this research seeks to answer is if commodity price forecasting models can be

improved by the addition of forecasts of other, related commodity prices. While structural price

forecasting models have commonly included variables that relate to other commodity markets (such

as cattle slaughter data being included in a hog price forecasting model), the inclusion of the price

forecast itself is new and untested as far as we know. Such a method is equivalent to a hybrid

structural-reduced form model as the included commodity price forecasts are essentially a composite

of information deemed useful to forecasting that commodity.

Because in many situations, the key part of a price forecast is whether the price will move up

or down in the future, we focus here on qualitative forecasts of the direction of price changes. We

test the ability of included commodity price forecasts to improve the qualitative forecasts of hog

prices using data on three other commonly forecast commodity prices: cattle, corn, and soybeans.

We forecast hog future prices both with and without other price forecasts included in the model

to examine the relative forecast performance. We do all this within a Bayesian model uncertainty

framework that is well-suited to the estimation and comparison of multiple models.

The paper proceeds with a literature review section, followed by an explanation of the method-

ology employed. Next we describe the data and present the results. The final section presents some

conclusions.

2 Background and Literature Review

Price volatility is a fundamental feature of agricultural markets and one of the main sources of

risk in commodity markets. Futures markets play a crucial role in the pricing and distribution of

commodities. For farmers, processors, and other participants in commodity markets to properly
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manage their risks and attempt to maximize profits, commodity price forecasts are often useful.

These agents are continually looking for improved forecasts, as witnessed by the long history of

research on this topic.

Cromarty and Myers (1975) noted that parsimony is desirable in model selection and good

forecasting models are designed to incorporate new information as it becomes available, which makes

the Bayesian framework ideal. Brandt and Bessler (1981) examined the empirical accuracy of several

composite forecasting techniques for U.S hog prices based on the individual forecasts of econometric,

ARIMA, and expert opinion methods and provided empirical evidence on the usefulness of composite

forecasting. Brandt and Bessler (1983) found that combining forecasts from individual methods into

a composite reduced the forecast error below that of any individual approach and that the use

of price forecasts in developing a market strategy can improve the average price received for the

product. Brandt (1985) later developed alternative forecasting approaches generating commodity

price forecasts that can be combined with hedging to reduce price variability. Feather and Kaylen

(1989) suggested a procedure for the formation of a conditional ”composite” qualitative forecast,

the theoretical development of which was followed by an empirical application using quarterly hog

prices. The results showed the composite allows the possibility of avoiding reliance on an inferior

forecasting method.

Gerlow et al. (1993) on the other hand, shed light on forecasting performance evaluation, using

several economic criteria, which are zero mean returns, zero risk-adjusted mean returns, the Merton

test of market timing ability, and the Cumby-Modest test of market timing ability, to evaluate a set

of well-known hog price forecasting models. Dorfman (1998) created a new Bayesian method to form

composite qualitative forecasts and showed that forming composite forecasts from a set of forecasts

in the Bayesian framework improved performance in an application to the hog prices. Dorfman

and Sanders (2006) also introduced a systematic Bayesian approach to handle model specification

uncertainty in hedging models, which they then applied to data on the hedging of corn and soybeans

and on cross-hedging of corn oil using soybean oil futures.

In this paper, we are interested in investigating whether the forecasts of one commodity can

help improve the forecasts of a second commodity. Hog, cattle, corn, and soybean are chosen in this

paper because they are the four most common commodities that have been looked at the agricultural
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economics literature on forecasting. Essentially, we propose a new form of composite forecasting

where model specification uncertainty is taken to include the possible inclusion of the forecasts from

models of other, related commodities. We demonstrate this by constructing qualitative hog price

forecasts with a set of models some of which include price forecasts for cattle, corn, or soybean

prices.

3 Methodology

The Basics

In this paper, we used the Bayesian approach to deal with model specification uncertainty. To

forecast hog price movements, we start with a set of possible forecasting models, estimate them

all, and see which have the most posterior support from the data. This is done in two parts: the

estimation of each model and the computation of each model’s support.

For a given model j, assume a linear regression model:

y = Xjβj + εj , j = 1, . . . ,M, (1)

where y is the vector of observations on hog prices assumed identical in all models, Xj is the matrix

of the independent variables for the jth model considered, εj is the vector of random errors for the

jth model, and j denotes the model in the set of M models considered. The differences between the

models are restricted here to the matrix X of independent variables.

The prior distribution on the regression parameters βj can be specified as

p(βj) ∼ N(b0j , σ
2
jV0j), j = 1, . . . ,M, (2)

where N represents the multivariate normal distribution, b0j is the prior mean of the regression

parameters for the jth model and σ2
jV0j is the prior covariance matrix. The prior on σ2

j is specified

as an inverse-gamma distribution, which is equivalent to a gamma distribution on σ−2
j ,

p(σ−2
j ) ∼ G(s−2

0j , d0j), j = 1, . . . ,M, (3)
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where G stands for the gamma distribution, s−2
0j is the prior mean for the inverse error variance, and

d0j is the prior degrees of freedom. A higher value of d0j indicates a more informative prior (Koop,

2003).

The likelihood function for each model can be specified as

Lj(y|βj , σ2
j , Xj) = (2πσ2)−n/2exp{−0.5(y −Xjβj)

′
σ−2
j (y −Xjβj)}, j = 1, . . . ,M, (4)

where the εj are assumed to follow a standard form of identically and independently distributed

normal random variables.

Given these priors and the above likelihood function, the joint posterior distribution of βj and

σ2
j is derived according to Bayes Theorem that the posterior distribution is proportional to the prior

distribution times the likelihood function. The joint posterior distribution is

p(βj , σ
2
j |y,Xj) ∼ NG(bpj , Vpj , s

2
pj , dpj), j = 1, . . . ,M, (5)

where

Vpj = (V −1
0j +X

′

jXj)
−1, (6)

bpj = Vpj(V
−1
0j b0j + (X

′

jXj)β̂j), (7)

dpj = d0j + nj , (8)

and

s2pj = d−1
pj [d0js

2
0j + (nj − kj)s2j + (β̂j − b0j)

′
(V0j + (X

′

jXj)
−1)−1(β̂j − b0j)], (9)

where NG represents the joint normal-gamma distribution, β̂j and s2j are the standard OLS quantities

and nj and kj are the rows and columns of Xj , respectively. Equations (6) to (9) together help

define the parameters in the distribution. s2pjVpj is the posterior mean of the variance, bpj is the

posterior mean of the coefficients, which are the weighted averages of the parameters of the prior

distribution and the parameters that are derived from the maximum likelihood estimator based on

the data, and dpj is the posterior degrees of freedom.

For each model, after generating point forecasts using the posterior means of the parameters
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found above and the actual values of the independent variables, we convert the point forecasts into

directional forecasts using the simple rule:

ft =

 1 if P̂t - Pt−1 > 0

0 if P̂t - Pt−1 ≤ 0
, (10)

where ft is a dichotomous variable denoting a price forecast of either up (1) or down (0) and Pt

denotes the commodity price at t time period. The set of ft are our qualitative forecasts.

Model Specification Uncertainty

Now we describe the process for handling model specification uncertainty. First, a discrete prior

weight is assigned to each model

p(Mj) = µj ,

M∑
i=1

µj = 1. (11)

Here we choose to use uninformative priors across the model specification, so all models are treated

equally. In this case, µj = 1/M, ∀j. Then, using the above results for the posterior distributions

shown in (5), we derive the marginal likelihood functions by integrating out the parameter uncer-

tainty to leave a marginal likelihood for each model,

p(y|Mj) = cj [|Vpj |/|V0j ]1/2(dpjs
2
pj)

−dpj/2, (12)

where

cj =
Γ(dpj/2)(d0js

2
0j)

d0j/2

Γ(d0j/2)πn/2
, (13)

and Γ is the Gamma function. The marginal likelihood measures how well the model fits on average,

where the averaging is over parameter values with posterior support. As shown in equation (12),

the smaller the posterior mean of the variance is, the larger the marginal likelihood will be, which

indicates that the better the model fits, the larger the marginal likelihood will be. Combining (11)

and (12) by Bayes Theorem, the posterior probability of each model is given by

p(Mj |y) ∝ µj [|Vpj |/|V0j ]1/2(dpjs
2
pj)

−dpj/2 = µjp(y|Mj), j = 1, . . . ,M. (14)
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Dividing each value in (14) by the sum of the unnormalized posterior probabilities across all M

models produces normalized posterior model probabilities that sum to one. Denote these normalized

posterior probabilities by

ωj =
µjp(y|Mj)

M∑
i=1

µjp(y|Mj)

, j = 1, . . . ,M. (15)

These posterior probabilities ωj are the key to evaluating both general model specification uncer-

tainty and the advantage of including forecasts of other commodity prices in the forecasting model.

Models which receive higher posterior probabilities are better supported by the data, indicating that

those models are preferred choices and can be expected to yield better forecasting performance.

4 Data

Data on the four commodity prices were collected from the CME Group, using monthly futures

prices for lean hogs ($/lb), live cattle futures ($/lb), corn futures ($/bushel), and soybean futures

($/bushel).

Possible independent variables were selected based on ones commonly employed in previous

studies in the literature. For the hog price forecasting models, these variables include the natural

log of monthly disposable personal income (billion dollars), monthly commercial cattle slaughter

(million heads), monthly broiler-type poultry eggs hatched (million eggs), the monthly number

of sows farrowing (thousand heads), and monthly pork cold storage (million pounds). For the

cattle price forecasting models, the independent variables considered are the same as the hog price

forecasting model except pork storage is not included.

In the corn price forecasting model, the exogenous variables considered are monthly corn exports

(million units), monthly corn inventory (million bushels), monthly lagged acres planted for corn

(thousand acres), and monthly fuel ethanol production (million gallons). For the soybean price

forecasting model, the independent variables considered are the same things as in the corn model

except the ethanol variable is not included.

Data come from Chicago Mercantile Exchange (CME), National Agricultural Statistics Services

(NASS), and National Ocean Atmospheric Administration (NOAA).
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All data are monthly extending from January 1981 to December 2012. We used the first 29 years

for in-sample estimation, and then evaluated out-of-sample forecast performance over the last 36

observations, which are from 2010 to 2012.

Table 1 shows the set of variables considered in the model specification and the total number of

forecasting models estimated for each of the four commodity prices.

5 Empirical Results

Table 2 presents the posterior probabilities for the hog price forecasting model specification. The

probabilities shown in Table 2 are the probability that each of the variables listed belongs in the true

model. These probabilities show that there is clear and overwhelming support for the inclusion of

DSPI, HATCH, SF, PKST, and forecasts of cattle prices in the hog price forecasting model. Other

variables have little to no posterior support for inclusion in the hog price forecasting model. In terms

of helping to uncover a model specification, the Bayesian approach provides excellent guidance.

Table 3 presents the out-of-sample forecasting performance of the 36 qualitative forecasts for the

four best and worst forecasting models among the 240 specifications estimated. These best models

perform quite well, with the top model accurately forecasting the direction of price movement in

30 out of 36 cases (83.33 percent). The next three models correctly forecast 29 out of 36, only one

forecast worse. Interestingly, these best forecasting models all have longer autoregressive processes

(with 9 or 10 lags) than the posterior model probabilities suggested would be best and also include

corn price forecasts, not the cattle price forecasts favored by the posterior model probabilities.

Table 4 presents the forecasting performance of the five most probable and five least probable

models; these are the models with the highest and lowest posterior model probabilities. The most

probable models are those that one would be most likely to choose ex ante before seeing out-of-sample

forecasting performance. Unfortunately, what Table 4 shows is that the most probable models have

forecasting performances, as measured by percent of correct predictions, that are noticeably worse

than the best hog price forecasting models in Table 3. The most probable model correctly forecasts

23 out of the 36 price change signs (63.89 percent) with the other models in Table 4 predicting from

18 to 24 correctly. These most probable models do forecast more than 50 percent of the directions
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of movement correctly, which is some consolation, but their performance is not as good as hoped.

We also formed a composite forecast using the posterior model probabilities to construct a

weighted average of all the 240 individual model forecasts. Because this is qualitative forecasting,

if the sum of the posterior model probabilities on the set of models that predicted 1 is greater than

0.50, the composite forecast is a 1. The composite qualitative forecast correctly forecast 23 out of

36 out-of-sample price movements, the same as the most probable model.

Overall, the most probable models for hog prices displayed only slightly above average forecasting

performance among the entire set of models estimated. Yet, while the forecasting performance of

the most probable models is not what we might have hoped for, we do find that the best forecasting

models include price forecasts of another commodity price (corn in our case). This suggests that it is

worth pursuing how commodity price forecasts can be improved by the inclusion of other commodity

price forecasts in the forecasting models.

6 Conclusions

The Bayesian model specification procedure applied here to the qualitative forecasting of hog prices

provided clear signals for the model specification of our hog price forecasting model. Unfortunately,

the models with the highest model probabilities based on the in-sample data did not deliver above

average out-of-sample qualitative forecasting performance. Still, the fact that the best perform-

ing model specifications, as measured by out-of-sample percent correct predictions, contained price

forecasts for a different commodity (corn) suggest that the idea of improving commodity price fore-

casting by including other forecasts in the model is correct. We need to do some more work on

choosing the correct model for forecasting, but we are headed in the correct direction.
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Table 1. Variables used to predict commodity prices

Dependent Variable Lags Exogenous Variables

PH AR(3) ∼ AR(12) DSPI; CTSL; HATCH; SF; PKST

(cents per pound)

(240 models)

PCA AR(3) DSPI; CTSL; HATCH; SF

(cents per pound)

PC AR(3) EXPORTc; INVTc; ACRESc; ETHANOL

(cents per bushel)

PS AR(3) EXPORTs; INVTs; ACRESs;

(cents per bushel)

As listed in Table 1, in the hog forecasting model, the hog price (PH) to be forecast is the monthly
lean hog futures price ($/lb) as given by CME group. Among the exogenous variables considered for
the hog forecasting model, DSPI denotes the monthly disposable personal income (billion dollars)
which has been taken natural logarithm; CTSL denotes monthly commercial cattle slaughter (mil-
lion heads); HATCH denotes monthly broiler-type poultry eggs hatched (million eggs); SF denotes
monthly number of sows farrowing (thousand heads); PKST denotes monthly pork cold storage (mil-
lion pounds). In the cattle forecasting model, the cattle price (PCA) to be forecast is the monthly
live cattle futures price ($/lb) as given by CME group. The independent variables considered are ba-
sically the same things as in the hog model except the PKST variable. In the corn forecasting model,
the corn price (PC) to be forecast is the monthly corn futures price ($/bushel) as given by CME
group. Among the exogenous variables considered for the corn forecasting model, EXPORTc de-
notes monthly corn export (million units); INVTc denotes monthly corn inventory (million bushels);
ACRESc denotes monthly lagged acreages planted for corn (thousand acres); ETHANOL denotes
monthly fuel ethanol production (million gallons). In the soybean forecasting model, the soybean
price (PS) to be forecast is the monthly soybean futures price ($/bushel) as given by CME group.
The independent variables considered are the same things as in the corn model except the ETHANOL
variable.
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Table 2. Hog price forecasting model specification (240 models)

Model Traits Post Probability

Include AR(3) 0.991

Include DSPI 1.000

Include CTSL 0.019

Include HATCH 0.983

Include SF 1.000

Include PKST 0.999

Include Cattle Forecasts 0.929

Include Corn Forecasts 0.034

Include Soybean Forecasts 0.038

No Forecasts <0.001
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Table 3. Top 4 and bottom 4 hog price forecasting models

by the percentage of correct out-of-sample forecasts

Top 4 models % forecasts correct Post Probability

1) AR(10)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.8333 <0.001

+Corn Forecastst

2) AR(8)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.8056 <0.001

+Corn Forecastst

3) AR(9)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.8056 <0.001

+Corn Forecastst

4) AR(9)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 0.8056 <0.001

+SFt−1+PKSTt−1+Corn Forecastst

Bottom 4 models % forecasts correct Post Probability

1) AR(5)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1+PKSTt−1 0.4444 <0.001

2) AR(5)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.4444 <0.001

3) AR(4)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1 0.4444 <0.001

+Cattle Forecastst

4) AR(4)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2+PKSTt−1 0.4444 <0.001

+Cattle Forecastst
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Table 4. Top 5 and bottom 5 hog price forecasting models by posterior probability

5 Most Probable Models Post Probability % forecasts correct

1) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1+PKSTt−1 0.908 0.6389

+Cattle Forecastst

2) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1+PKSTt−1 0.035 0.5833

+Soybean Forecastst

3) AR(3)+DSPIt+HATCHt−1,t−2+SFt−1+PKSTt−1 0.030 0.6667

+Corn Forecastst

4) AR(3)+DSPIt+CTSLt−1,t−2+SFt−1+PKSTt−1 0.011 0.5000

+Cattle Forecastst

5 )AR(4)+DSPIt+HATCHt−1,t−2+SFt−1+PKSTt−1 0.007 0.5556

+Cattle Forecastst

5 Least Probable Models Post Probability % forecasts correct

1) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1 <0.001 0.6111

+PKSTt−1+Soybean Forecastst

2) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2+SFt−1 <0.001 0.6667

+PKSTt−1+Corn Forecastst

3) AR(12)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 <0.001 0.6389

+SFt−1+PKSTt−1+Soybean Forecastst

4) AR(12)+CTSLt−1,t−2+HATCHt−1,t−2 <0.001 0.6111

+SFt−1+PKSTt−1+Cattle Forecastst

5) AR(12)+DSPIt+CTSLt−1,t−2+HATCHt−1,t−2 <0.001 0.6667

+SFt−1+PKSTt−1+Corn Forecastst

Composite forecasts 0.6389
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