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Abstract 

Pesticides efficiency decreases with their global application by farmers. Within a strategic 
dynamic framework, this results in a classic intertemporal production externality. We analyze 

tax and subsidy schemes that can be used in order to internalize this externality. We show 
that they are able to restore socially optimal paths but that final time of pesticide use differs. 

With these schemes, farmers have a tendency to switch to alternative pest-control technology, 
as integrated pest management, earlier than is optimal. A lump-sum transfer is shown to be 
necessary to obtain a switching time equal to the socially optimal one, for the subsidy case 
only. Furthermore, the socially optimal switching time can be later than the one obtained 

under a situation without control. 

Keywords stock externality, pest resistance, technology change. 

JEL code Q10, Q3, H23, C73. 



2 
 

 
1 Introduction 
 
Pests are well-known for being difficult to manage because they often develop resistance 

to pesticides. Resistance has been documented for a long time in several ways. For instance, 
Georghiou (1986) enumerated pest species found to be resistant at one or more locations for at 
least one crop season for various pesticides. Carlson (1977) aggregated resistant pests for major 
crop areas at various points over time and measured farmer pesticide use choices over time for 
various pesticide classes. The design of resistance management programs has consequently been 
a question of huge interest. For instance, Roush (1989) critically reviewed a list of resistance 
management tactics to bring to the fore the most promising tactics for general use in resistance 
management. 

In a dynamic framework, effectiveness of a pesticide can be considered as a stock that is 
declining over time because of pest resistance (like a non-renewable resource). Regev et al. 
(1983), in an extension of Regev et al. (1976), developed a theoretical model in order to 
determine optimal pesticide use in this framework. They compared the optimal solution with the 
competitive solution in order to bring to the fore intertemporal production externalities at work 
and to derive some policy recommendations. These recommendations were quite basic since they 
consisted in tax per unit of pesticide use or in restrictions on pesticide use. The major purpose of 
our work is to refine the policy recommendations that can be formulated with respect to the 
internalization of such intertemporal production externalities, especially by explicitly taking into 
account the possibility of farmers to switch to other technologies than pesticide use. 

 
The quite recent development of transgenic agriculture has induced a wide literature that 

focus on refuge policies. Within the framework of refuge policies, farmers can cultivate trangenic 
crops resistant to pest upon the condition that some refuge areas are cultivated with conventional 
crops. The main idea is to avoid the development of pests that are resistant to transgenic crops 
and to biological control (specially for Bt crops). Some authors followed a quite similar 
dynamical theoretical framework as Regev et al. (1983) in order to study the optimal 
management of pest resistance with refuge policies. For instance, Laxminarayan and Simspon 
(2002) derived the optimality conditions for the refuge size in a stylized dynamic model adapted 
from epidemiology; Ambec and Desquilbet (2012) added a spatial setting into the basic dynamic 
setting and compared the performance of refuge areas and taxes on pesticide varieties. Other 
authors proposed to assess economically the effets of refuge policies. For instance, Hurley et al. 
(2001) assessed their impact on agricultural productivity, on conventional pesticide use, and on 
pest resistance; Frisvold and Reeves (2008) focused on their welfare impacts by taking into 
account producer surplus, consumer surplus, seed supplier profits, and commodity program costs; 
Qiao et al. (2009) proposed an assessment applied to a developing country framework. All these 
papers mainly focus on a single technology that allows farmers to struggle against pests: 
transgenic crops. The purpose of our work is to consider the possibility of farmers to switch to 
technologies that constitute an alternative to a single pesticide use, without specifying this 
technology.  

Another part of the recent literature concerned with pest resistance focus on R&D targeted 
towards technologies that can struggle against pests. Some authors focused on innovation process 
of the biotechnology sector. For instance, O’Shea and Ulph (2008) studied the role of pest 
resistance in biotechnology R&D investment strategy; Yerokhin and Moschini (2008) studied the 
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impact of intellectual property rights on the investments in biological innovations which value 
can be reduced to zero because of pest resistance. Here the new technology is mainly understood 
as an alternative molecule of pesticide or as transgenic crops. Other authors focused on new 
technologies that rely on farmers’ strategies. For instance, Mullen et al. (2005) described the role 
of public investments in pest-management R&D and emphasized the development of integrated 
pest management (IPM) strategies. The IPM concept was first developped by Stern et al. (1959). 
It is a multidisciplinary concept which main principle is to combine chemical, mecanical and 
biological control strategies against pests. Mullen et al. (2005) summed up that “the antithesis of 
IPM is applying broad-spectrum pesticides on a fixed schedule related to the physiological 
development of the crop, irrespective of pest populations”. Knight and Norton (1989) explained 
that one of the motivations for the development of IPM strategies had been the problem of pest 
resistance. IPM is thus an alternative technology that is at farmers’ disposal in order to struggle 
against pests. For instance, Llewellyn et al. (2007) studied the case of integrated weed 
management strategies. They investigated the determinants of the adoption of these strategies by 
Western Australian grain growers. We seek to design a framework that is able to consider 
alternative pest-control technologies as IPM in order to study into more details the policy that can 
be implemented in order to internalize intertemporal production externalities linked with pest 
resistance.  

 
We propose to develop a single pest and single crop management model. We assume, like 

in the non-renewable resources literature3, that there is a backstop technology with respect to the 
pesticide, i.e. a technology that does not increase the pesticide resistance of the pest population. 
This technology can be new molecule of pesticide, transgenic crop resistant to pests or IPM 
strategies. In order to do so, we mainly rely on Regev et al. (1983) work. Their competitive 
solution relied on the assumption that farmers were non-strategic: they were static maximizers 
that did not take into account effects of their actions on the dynamics of the system. This 
assumption was a plausible one in the 1980s. Nowadays, progress of knowledge allowed farmers 
to be perfectly aware of the phenomena of pest resistance (see for instance Bentley and Thiele, 
1999, for a literature review applied to developing countries). Furthermore, pest resistance is a 
spatial phenomena (see for instance Georghiou and Mellon, 1983 or Peck et al., 1999 or Peck and 
Ellner, 1997) that can be at work at a local level. As a consequence, the number of farmers 
concerned with the phenomena of pest resistance can be small. Within such a framework, the 
farmers perfectly know the effects of their actions on the dynamic of the system. 

One question of interest is thus to think of farmers that consider the impact of their 
choices on the stock of the pesticide effectiveness. In this work, we propose to extend the 
question of Regev et al. (1983) to strategic farmers. For this purpose, we have to resort to 
differential games theory. Within the framework of differential games, it is necessary to make 
strict assumptions on the specifications of the functions in order to obtain closed form solutions 
both for the steady states and for the paths. Closed form solutions are essential to bring to the fore 
intertemporal production externalities in a quite general case. Indeed, to do so, solutions obtained 
in the MPNE case have to be compared to the solutions obtained in the socially optimal case. In 
most works concerned with differential games, functions are assumed linear quadratic. Here, we 
explore the results of Long and Shimomura (1998) by choosing homogeneous functions that are 
more general than linear quadratic functions. In a companion paper of Long and Shimomura 
(1998), Cornes et al. (2001) developed non-cooperative differential games based on concepts of 
                                                       
3
 See for instance Amit (1986). 
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open-loop Nash equilibrium and Markov perfect Nash equilibrium in order to investigate the 
question of pest resistance in a differential game setting. These concepts of equilibrium differ by 
the fact that players commit themselves at the beginning of the game for the entire horizon of 
time in the open-loop case. In the Markov perfect case, they revise their decision at each period 
of time according to the state of the stock. Applied to the pesticide case, an open-loop structure 
means that farmers are able to commit themselves with respect to their pesticide application for 
an entire time horizon. Since farmers can observe the state of the pesticide effectiveness at each 
period of time, we focus on the Markov perfect equilibrium concept in which farmers are able to 
revise their decision at each period of time according to the state of the pesticide effectiveness. 
Cornes et al. (2001) developed a discrete time model with three periods and a continuous time 
one with an infinite number of periods. For clarity of presentation of results, we concentrate on a 
continuous time model. 

Cornes et al. (2001) assumed that the terminal time was fixed (to three in the discrete time 
model and to infinite in the continuous time one). As Example 1 of Long and Shimomura (1998), 
we assume a free finite terminal time that is endogenous: the planners (farmers and central 
planner) choose the final time of the pesticide use. Furthermore and contrary to Cornes et al. 
(2001) and Example 1 of Long and Shimomura (1998), we assume that there is a backstop 
technology with respect to the pesticide, i.e. a technology that does not increase pesticide 
resistance of the pest population. In order to consider this possibility of an alternative pest-control 
technology without a priori knowledge on the exact form of this technology, we introduce a scrap 
value function that reflects the value attached by the decision-maker to the pesticide effectiveness 
that is left over at the terminal time. This assumption is linked with technologies evocated 
previously: new molecule of pesticide, transgenic crops and IPM. A new molecule of pesticide is 
generally used in combination with old one that must still be effective. In order to avoid that pests 
develop resistance to transgenic crops, it is generally imposed by government to keep traditional 
crops on which pesticide could still be effective. IPM strategies consist in combination of 
mechanical, chemical and biological control that can be effective only if chemical control works. 

 
In section 2, we will present the model and assumptions. Section 3 will be devoted to the 

derivation of the Markovian perfect Nash equilibrium. This will help us to bring to the fore in 
section 4 the inefficiencies that can occur in such a framework. Section 5 will be devoted to the 
schemes that can be used in order to obtain a socially optimal switch to an alternative pest-control 
technology. Finally, we will conclude. All technical proof will be relegated to an appendix. 

 
2 The model 
 
We consider n  symmetrical farmers that use pesticides in order to produce a homogenous 

good. Each farmer i  applies a quantity ,i ta  of pesticide at time t . The effectiveness of this 
application is given by , .i t ta e  where te  denotes the effectiveness of the pesticide under 
consideration. We know that pests develop resistance to pesticide over time. We assume that 
resistance is a negative linear function of the pesticide application. Therefore, the motion of the 
pesticide effectiveness over time is given by:  

 ,
=1

=
n

t i t
i

e b a   (1) 

where b  measures the sensitivity of the pesticide efficiency to the amount of pesticide applied; it 



5 
 

is a constant that is exogenously given. We consider that the pesticide effectiveness is like a non-
renewable stock that declines over time. The pesticide effectiveness before pests develop 
resistance is exogenously given: 0 max=e e . 

 
We disregard other inputs than pesticide for simplicity and assume that each farmer’s 

profit increases with the effective amount of the pesticide that he applies, at a decreasing rate: 
 

/2
, ,= , 0 < < 1i t i t ta e


     (2) 

where / 2  is the elasticity of the profit to the effective amount of the pesticide applied. This 
assumption does not seem excessive in view of the high use of pesticide by farmers despite the 
effects on their health for instance (see Mullen et al., 2005 for instance). 

To sum up, the current pest-control technology is used by farmer i  until some future time 
iT  when he will use an alternative pest-control technology. At time iT , since we do not make any 

assumption on the form of the alternative pest-control technology, we assume that the alternative 
pest-control technology brings in a net return of:  

 = exp( ( )) =
Ti

T T ii i Ti

e
E e t T dt




   

where the effectiveness of the pesticide at time iT , Ti
e , is a proxy of the net benefit from the stock 

of the pesticide effectiveness left over at the terminal time iT  and   is a fixed discount rate. Ti
E  

is also named a scrap current value function. It represents the maximum current value of an 
integral of future utility flow starting from time iT  with an initial stock of the pesticide 
effectiveness Ti

e . 

 
The economic problem is defined as the choice of the amount of pesticide to apply, ,i ta , 

and the switching time to the new technology, iT  which maximize:  

 ,0
exp( ) exp( )

Ti
i t T ii

t dt E T      (3) 

subject to (1) and 0 max=e e  and , 0i ta  . For the sake of clarity the last constraint will be omitted 
in the continuation. 

Finally, our model is mainly a development of Example 1 of Long and Shimomura (1998) 
in which we add a scrap value function in the same way as Regev et al. (1983).  

 
3 The Markovian Perfect Nash Equilibrium (MPNE) 
 
We look first at the situation in which the n  farmers play a differential game. Farmer i  

looks for a strategy of pesticide application ignoring the strategy chosen by the other farmers. 
Each farmer strategy is a function of the pesticide effectiveness, te , that is easily observable: 

( )te . Therefore, te  sums up the influence of the past at time t . Each farmer is perfectly aware 
of the fact that the others select their strategy on the basis of the current pesticide effectiveness. 
This is why we assume that the farmers’ strategy are Markovian.4 

                                                       
4
 See Chapter 4 of Dockner et al. (2001) for more details on Markovian equilibriums. 
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For the purpose of the resolution, it is convenient to transform variables. We define a new 
control variable 

1/2
, ,=i t i t tc a e    that induces modification of equations (1) and (2) as, respectively, 

2
,

=1
= n i t

t i
t

c
e b

e
   and , ,=i t i tc


    . More precisely, the MPNE of the game modified is the 

solution of problem: 

 ,0
max exp( ) exp( )

Ti
i t T ii

c t dt E T


        

 
22

, ( )
. . : = j ti t

t
j it t

ec
s t e b

e e





 
   

 
  

 0 max=e e  
 

We use the Pontryagin’s maximum principle in order to solve this problem. We focus on 
a symmetrical solution. We define the Hamiltonian of this problem in current value: 

 
22

,
, , ,

( )
( , , ) = j ti t

i t t t i t i t
j it t

ec
H c e c b

e e

 
 



 
       

 
  

If ( )i te  is a solution to this problem and iT  the optimal switching time (from farmer’s i  point of 
view), then there exists a continuous function ,i t  that satisfies the conditions: 

 ,1 2 ( )
( ) = i t i t

i t
t

b e
e

e
  

   (4) 

 
 , , ,= ( ( ), , )i t i t e i t t i tt

H e e     (5) 

 

 
2( )= i t

t
t

bn e
e

e


  (6) 

 

 
2

,

=

( ) 1( ) = 0i t i t
i t t t t

t t Ti

bn e
e e e

e
  




 
     

 
 (7) 

Based on Long and Shimomura’s (1998) result, we assume that farmer i ’s strategy is of the form 
( ) = .i t i te e   if all other farmers use strategies that are homogeneous of degree one: 
( ) = .j t j te e  , j i . 

Equation (4) is the usual marginal condition of long-run profit maximization. It states that, 
for each period of time, the marginal profit of pesticide application is equal to its marginal cost. 
The cost is a measurement of future losses implied by increasing resistance. It is given by farmer 
i ’s private shadow price ,i t . Equation (5) defines the dynamics of the co-state variable ,i t . 
When equation (6) is also valid, we can conclude, as in Example 1 of Long and Shimomura 
(1998), that: 

 
Remark 1 If 2 > 0n  and farmers’ strategies are of the form ( ) = .i t i te e  , then there 
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exists a unique MPNE for which the equilibrium strategy of farmer i  is 
2

, =N N N
i t i ta e  where 

 
=

2
N

i b n




. The resulting time path of the pesticide effectiveness is 

2

max= exp( )N N
t ie e nb t . 

 

We see that when n  approaches 2


, the amount of pesticide applied tends to infinity 

because farmers know that they will not be able to apply pesticide the time after: their 
effectiveness will be too low. Further computations state that: 

 
2

max
, 2= exp 0

( 2 ) 2
N

t i t

n e n t
a

b n n

 
 

        
 

 max= exp 0
2 2

N
t t

n e n t
e

n n

 
 

       
 

This means that the effectiveness and the application of pesticide decline over time but until 
when? To answer this question, we need to achieve the resolution of the problem by determining 
the optimal switching time (from farmer’s i  point of view) N

iT . To do so, we can directly apply 
Theorem 7.6.1 of Leonard and Long (1992). The condition is valid for an Hamiltonian function 
in present value. We work with an Hamiltonian in current value. Standard computations lead to 
equation (7) that is the necessary transversality condition. Equation (7) controls the switch to a 
new pest-control technology and it states that the optimal switching time (from farmer’s i  point 
of view) is such that the value of the optimal Hamiltonian evaluated at T  equals the marginal 
scrap value. We obtain: 

 
Proposition 1 The optimal switching time (from farmer’s i  point of view) from the 

pesticide use to an alternative pest-control technology is 

 
 

 
 

2

2

max

21 1= 1 ln ln
21

N
iN

i N NN
i ii

nb
T

e nnb

 


    

                

.5 It increases with maxe .  

 
Since N

iT  is different from infinity, some effectiveness is left over before switching to an 
alternative pest-control technology. This effectiveness reflects the need of pesticide effectiveness 
of the alternative pest-control technologies.  

The optimal switching time (from farmer’s i  point of view) from the pesticide use to an 
alternative pest-control technology is a function of all parameters. We check that the optimal 
switching time (from farmer’s i  point of view) increases with the initial effectiveness of the 
pesticide, maxe . 

                                                       
5
 We assume that the set of parameters is such that: 0N

iT  . 
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4 The intertemporal production externality 
 
To value the efficiency of the previous MPNE, we need to specify the socially optimal 

solution. Indeed, the MPNE should be inefficient since farmers do not take into account both the 
impact of their own pesticide application on the pesticide effectiveness and the impact of the 
other farmers’ pesticide application on the effectiveness. The implication is that they may 
overuse pesticide in order to benefit from their effectiveness before the other farmers apply them. 
In order to check this, we first characterize the socially optimal solution and then compare it to 
the MPNE. 

 
4.1 The socially optimal solution 
 
We assume here that an agricultural authority seeks to maximize the aggregated profit of 

the n  farmers. This authority thus chooses the amount of pesticide applied by each farmer i  at 
time t , , =1( )n

i t ia , and the switching time to an alternative pest-control technology, T , that 
maximizes the present value of the future aggregated profits. To make comparisons easily, we 
follow a similar resolution method as for the MPNE, we make the same variable transformation 
as previously and we again assume symmetrical solutions. The agricultural authority solves the 
following problem: 

  
0

max exp( ) exp( )
Ti

t Tn c t dt nE T
      

 
2

. . : = t
t

t

nbc
s t e

e
  

 0 max=e e  
The Hamiltonian of this problem in current value is: 

  
2

( , , ) = t t
t t t t

t

nbc
H c e n c

e

    

where t  reflect the social shadow price of the stock of pesticide effectiveness. We know from 
the concavity of this Hamiltonian and from the Mangasarian conditions that the optimal solution 
of the problem satisfies: 

 1 2= t t
t

t

nbc
nc

e
    (8) 

 

 
2

2= t t
t t

t

nbc

e

    (9) 

 

 
2

= t
t

t

bnc
e

e
  (10) 
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2

=

= 0t t
t t t t

t t T

bnc n
nc e ne

e
 


 

    
 

 (11) 

 
In order to be able to easily compare this solution with the MPNE, we choose to assume 

again a rule such that =t tc e  and we show that it is possible to find a > 0   such that 
conditions (8), (9) and (10) are checked. We finally show that: 

 
Proposition 2 There exists a unique    such that the decision rule te  is a socially 

optimal rule of pesticide application that maximizes the profit of farmers. 
(i) The socially optimal pesticide application is 

22

max= exp( )ta e nb t     where 

=
(2 )bn







. The resulting time path of the pesticide effectiveness is 

2

max= exp( )te e nb t  . 

(ii) The socially optimal switching time from the pesticide use to an alternative pest-

control technology is 
 

 
 

 

2

2

*

*
* **

max

21 1= 1 ln ln
21

nb
T

enb

 


    

                

.6 It increases 

with maxe . 

 
We see from standart computations that the socially optimal paths of pesticide application 

and of pesticide effectiveness decline over time as for the MPNE paths. 
The socially optimal switching time from the pesticide use to an alternative pest-control 

technology is a function of all parameters. We check that the variations of the socially optimal 
switching time is the same as in the MPNE case with respect to the initial effectiveness of the 
pesticide, maxe . 

 
4.2 The inefficiencies of the MPNE solution 
 
The expressions of T   and N

iT  are too complex to be compared on analytical grounds. 
We can only conclude that they are different. We have run a set of simulations in order to derive 
more conclusions.7 The results are summarized in Table 1, 2, 3, 4 and 5 of Appendix A.4. The 
main conclusion is that the swtiching time from pesticide use to an alternative pest-control 
technology is later in the socially optimal case than in the MPNE: 

N
iT T   

In order to explain this result it is important to compare the pesticide application and 
effectiveness in both cases. We now turn to this comparison. 

 
For clarity sake, we first reason on the same time N

it T T    for the MPNE case and for 

                                                       
6
 We assume that the set of parameters is such that: 

* 0T  . 
7
 The idea of the simulations is to put values on our parameters. The parameterization is not made on empirical basis because we do not want to 
restrict ourselves to a specific case. As a consequence, we run a set of simulations for different feasible values of the parameters. 
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the socially optimal case. Equations (4) and (8) are usual marginal conditions of long-run profit 
maximization. They state that, for each period of time, the marginal profit of pesticide application 
is equal to its marginal cost. The cost, that is a measurement of future losses implied by 

increasing resistance, is not the same in the MPNE case, ,2 ( )i t i t

t

b e

e

 
, and in the socially optimal 

case, 2 t t

t

nbc

e

 . Indeed, it is a private cost in the MPNE case and it is a collective cost in the 

socially optimal case. Furthermore, the shadow price ( ) differs in both cases. The difference 
between both can easily be understood by comparing the dynamic of the co-state variable in the 
MPNE case: 

  2 2
, , ,= ( 1)i t i t i t i ib n        

with the one in the socially optimal case: 
 2=t t tbn     
In the MPNE case, farmers value the impact of their own pesticide use on the pesticide 

effectiveness, 2
tb  . Whereas the social planner values the impact of each farmer pesticide use 

on the pesticide effectiveness: 2
tbn  . In addition, in the MPNE case, 2( 1)n    reflects the 

assumption according to which farmers use Markovian strategy: each one knows perfectly that 
the others use a rule that is a function of the pesticide effectiveness at each period of time. This 
term implies that in the MPNE case each farmer is going to use more pesticide than it would have 
been socially optimal to use. The idea is that in order to benefit from effective pesticide, it is 
optimal for each individual farmer to use pesticide before the other farmers. 

These intuitions are analytically confirmed by Proposition 3. 
 
Proposition 3 The comparison between the MPNE and the socially optimal path without 

considering the switching time from the pesticide use to an alternative pest-control technology 
allows us to conclude that: 

(i) the amount of pesticide applied in the MPNE case is higher than the amount applied in 

the socially optimal case until the time, 
  2 2 ( 2 )= ln > 0

2( 1) ( 2 )
a n n

t
n n

  
 

      
    

, after which 

the amount applied in the MPNE case can be lower than the amount applied in the socially 
optimal case: > <N a N

t t ia a t t T T    . 

(ii) the effectiveness of the pesticide is always lower in the MPNE case than in the socially 
optimal case: <N N

t t ie e t T T    . 

 
Conclusion (ii) confirms the previous intuitions: in the MPNE case, farmers overexploit 

the common that, here, is the effectiveness of the pesticide. The implication is that the 
effectiveness of the pesticide is lower in the MPNE case than in the socially optimal case. At first 
glance, one can be quite surprised by the second part of result (i) that states that the amount of 
pesticide applied in the MPNE case can be lower that the amount applied in the socially optimal 
case. This result is valid after a first regime during which the amount of pesticide applied in the 
MPNE case is higher than the amount applied in the socially optimal case, which fits more 
closely to the intuitions. This can help us explain the surprising part of the results. Indeed, in a 
first phase, farmers apply more pesticide in the MPNE case than in the socially optimal case. By 
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doing so, they contribute to the decrease of the stock of pesticide effectiveness until a time at 
which they begin to apply less pesticide than in the socially optimal case because of pesticide 
reducing drastically in efficiency: this is the second phase. Another interpretation of at  can be to 
consider that this is the time of overexploitation of the stock of pesticide effectiveness in the 
MPNE case. 

The time at  is a function of the number of farmers, n , of a proxy of the elasticity of the 
profit to the effective amount of pesticide applied,  , and of the discount rate,  . Basic 
comparative static allows us to conclude that: 

 
Remark 2 The time at  decreases with the number of farmers, n , and with the discount 

rate,  .  
 
These results are direct when one keeps in mind the interpretation of at  as the time of 

overexploitation of the stock of pesticide effectiveness. Indeed, when the discount rate increases, 
the value of the future decreases and the stock of pesticide effectiveness is exhausted early. In the 
same way, when the number of farmers increases, the stock of pesticide effectiveness is 
exhausted early. 

 
To achieve our comparisons, we now need to compare the paths of both the pesticide 

application and effectiness after N
iT . Between N

iT  and *T , both the pesticide effectiveness and 
application tend to zero in the MPNE case because of the switch to alternative pest-control 
technology. The consequence is that, between N

iT  and *T , both the pesticide effectiveness and 
application must be higher in the socially optimal case than in the MNPE case. 

Finally, we can conclude from simulations presented in Table 1, 2, 3, 4 and 5 of Appendix 
A.4 that (i) the final (at T) pesticide application is lower in the socially optimal case than in the 
MNPE case, *

N

N

T T
a a  , and (ii) that the final pesticide effectiveness is lower in the MNPE case 

thant in the socially optimal case, *
N

N

T T
e e  . 

 
To sum up, we have shown that the switching time from the pesticide use to an alternative 

pest-control technology is earlier in the MPNE case than in the socially optimal case. This can be 
explained by the fact that the over-application of pesticide by farmers in the MPNE case 
considerably reduces the pesticide effectiveness and their profits. This means that, in the MPNE 
case, it is more interesting for farmers to switch to alternative pest-control technologies sooner 
than in the socially optimal case since the common constituted by the pesticide effectiveness is 
already exhausted. 

 
5 Toward the restoration of the socially optimal solution 
 
Once the inefficiencies that are at work have been brought to the fore, the question of 

their internalization remains. In this section, we propose to try some strategies in order to restore 
efficiency. We have two inefficiencies here:  

 the intertemporal production externalities that are brought to the fore by the 
difference between the MPNE and socially optimal paths of pesticide application 
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and effectiveness, 
 the switching time from the pesticide use to an alternative pest-control technology 

that is later in the socially optimal case than in the MPNE case. 
Since there is two inefficiencies, one can think of two instruments in order to correct 

them. We will first check if tax or subsidy designed in order to internalize externalities are able to 
reach the optimal switching time from the pesticide use to an alternative pest-control technology. 
We will show that it is not the case and we will look for a policy that is able to restore both the 
socially optimal paths and switching time. 

 
5.1 Obtaining the socially optimal paths of pesticide application and 

effectiveness: equivalence between tax and subsidy 
 
The externality leads to suboptimal paths both for the amount of pesticide applied and for 

the pesticide effectiveness. Two ways exist in order to internalize this externality and to obtain 
the socially optimal paths of pesticide application and effectiveness: it is possible either to tax the 
profits from pesticide application or to subsidize the ambient pesticide effectiveness. In this 
subsection, we propose to ignore the horizon of time that will be the subject of the next 
subsection. 

 
In the tax case, the idea is that a tax,  , on the profits generated by pesticide application 

will give farmers incentives to reduce pesticide application. The Hamiltonian in current value 
becomes: 

 
22

,
, , ,

( )
( , , ) = (1 ) j ti t

i t t t i t i t
j it t

ec
H c e c b

e e

 
  



 
       

 
  

Only equation (4) and (7) are modified with respect to the MPNE case. The first order condition 
now states that, for each period of time, the marginal net profit of pesticide application is equal to 
its marginal cost that now includes the tax: 

 1 1
,

( )( ) = 2 ( )i t
i t i t i t

t

e
e b e

e
      (12) 

 

Proposition 4 The optimal tax on profits, 
1

22= 1 > 0
( 2)
n

n







  

   
, is such that there 

exists a MPNE for which the equilibrium strategy of farmer i  is equal to the socially optimal one. 
The resulting time path of the pesticide effectiveness is also equal to the socially optimal one.  

 
We see that the optimal tax,   , is a function of the number of farmers, n , and of a proxy 

of the elasticity of the farmers’ profit to the effective amount of pesticide applied,  . Some basic 
computations allow us to conclude that: 

 
Remark 3 The optimal tax on profits decreases with   and increases with n .  
 
As a consequence, when the elasticity of the farmers’ profit to the effective amount of 

pesticide applied increases, the optimal tax decreases since farmers are more reactive to the price 
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signal. Furthermore, when the number of farmers increases, the competition between them is 
stronger in the MPNE case and there is a need for a stronger fiscal incentive in order to restore 
efficiency. 

 
In the subsidy case, the intuition is that since farmers know perfectly how their pesticide 

application has an impact on the pesticide effectiveness, subsidizing the ambient level of 
pesticide effectiveness by t  will give them incentives to reduce their pesticide application. Such 
a subsidy scheme assumes that, at each time, the agricultural authority perfectly knows the 
pesticide effectiveness. The Hamiltonian in current value becomes: 

 
22

,
, , ,

( )
( , , ) = ( 1) j ti t

i t t t i t t t i t
t t

ec
H c e c e b n

e e

 
  

 
         

 
 

Only equations (5) and (7) are modified with respect to the MPNE case. The dynamic of the co-
state variable is now reduced by the value of the subsidy which means that farmers are going to 
give more value to the pesticide effectiveness since the co-state variable enters in a negative way 
into the Hamiltonian function:  

 , , ,= ( ( ), , )i t i t t e i t t i tt
H e e       (13) 

It is precisely the main aim of this subsidy. 
 
Proposition 5 The optimal ambient subsidy, 

1

= ( 1) > 0t t in e
    
  , is such that there 

exists a MPNE for which the equilibrium strategy of farmer i  is equal to the socially optimal one. 
The resulting time path of the pesticide effectiveness is also equal to the socially optimal one.  

 
As for the optimal tax, the optimal subsidy, t

 , is a function of the number of farmers, n , 
and of a proxy of the elasticity of the farmers’ profit to the effective amount of pesticides applied, 
 . In addition, because the subsidy is proportional to the pesticide efficiency, it is a function of 
the discount rate,  , of the time, t , of the sensitivity of the pesticide efficiency to the amount of 
pesticide applied, b , and of the initial effectiveness of the pesticide, maxe . 

 
Remark 4 The optimal ambient subsidy on the pesticide effectiveness increases with t , n  

and   and decreases with b  and maxe .  
 
The sensitivity of the subsidy to the number of farmers can be interpreted as the one of the 

tax. Furthermore, the subsidy increases with time because it is proportional to the pesticide 
effectiveness that decreases with time. This decrease has to be compensated by the subsidy in 
order to slow down the pesticide application. It is for the same reason that the subsidy decreases 
with the initial effectiveness of the pesticide and with the sensitivity of the pesticide efficiency to 
the amount of pesticide applied. The subsidy also increases with the discount rate. Equation (13) 
helps to understand this. We see that the subsidy intervenes in the definition of the shadow price 
of the stock of pesticide effectiveness. Since this shadow price increases over time with the 
discount rate, the subsidy must decrease with the discount rate to compensate the effect of the 
discount rate increase on the shadow price. 

 
The fact that the optimal subsidy is a function of time can be a problem for 
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implementation purposes. Indeed this means that it has to be adjusted at each period of time by 
the regulator. We can thus conclude that tax and subsidy are only theoretically equivalent. Both 
are able to make farmers behavior result in the socially optimal paths of pesticide application and 
effectiveness but the question remains as to whether both schemes allow for a socially optimal 
switch from pesticide application to an alternative pest-control technology. 

 
5.2 Obtaining the socially optimal switching time: tax versus subsidy? 
 
Once the equivalence between tax and subsidy has been shown for the path of pesticide 

application and effectiveness, what remains to check is if the socially optimal switching time can 
be obtained with such schemes. Intuitively, we cannot expect to reach this result. This can be 
seen with the modified transversality conditions: 

  
2

, ,
,

=

11 = 0i t i t
i t t t t

t t Ti

bnc
c e e

e
 




 
      

 
 (14) 

for the tax case and: 
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=

1 = 0i t i t
i t t t t t t
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c e e e

e
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for the subsidy case. The fiscal schemes seem to have an impact on the switching time from 
pesticide application to an alternative pest-control technology. Proposition 6 confirms this 
intuition. 

 
Proposition 6 (i) In the tax case, the switching time from the pesticide use to an 

alternative pest-control technology is 
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.8 As before, it 

increases with maxe . 
(ii) In the subsidy case, the switching time from the pesticide use to an alternative pest-

control technology is 
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nb
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.9 As 

before, it increases with maxe . 

(iii)The switching time in the subsidy case is always lower than the switching time in the 
socially optimal case: iT T   . 

 
If we recall, 

                                                       
8
 We assume that the set of parameters is such that:  > 0iT 

. 
9
 We assume that the set of parameters is such that:  > 0iT 

. 
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, the switching time in the 

socially optimal case, and 
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, the switching time in 

the MPNE case, we see that they are different from the switching times obtained in the subsidy 
and tax cases. The equations of the switching times are too complex to conclude in a general way 
on the ranking of switching times. We can only conclude that a subsidy decreases the switching 
time with respect to the socially optimal case.  

 
It is well known that taxes and subsidies have distributional effects. In order to delete 

these distributional effects, we then propose to add to the fiscal schemes a lump-sum transfer. 
Such a modification will have an effect only on the transversality condition. We obtain the results 
stated in Proposition 7. 

 
Proposition 7 (i) When we add a lump-sum transfer to the subsidy, we reach the socially 

optimal paths of pesticide application and effectiveness, and the socially optimal swtiching time. 
(ii) When we add a lump-sum transfer to the tax, we again reach the socially optimal 

paths of pesticide application and effectiveness but not the socially optimal switching time.  
 
Technically, for the tax case with a lump-sum transfer, the tax also intervenes in the first 

order condition that is used to derive the switching time (see equation 12). Equation 12 is 
different from the first order condition of the socially optimal case (see equation 8). Indeed, the 
shadow price of the pesticide effectiveness, i , is also a function of the tax to be taken into 
account. It explains why the switching time is formally different from the socially optimal one. 
More intuitively, the inefficiency of the lump-sum transfer in the tax case is due to the non-linear 
effect of the tax on the shadow price of the pesticide effectiveness. 

 
The comparison between the switching times in the different cases is unclear. The general 

conclusions that we can derive are related to the sensitivity of the differences to the parameter 
values. The conclusions are summarized in the following remark. 

 
Remark 6 The differences between all switching times are increasing with or 

independant of parameters maxe  and b .  
 
In order to obtain more interesting results, we have run a set of simulations. For the 

following set of parameters,  
= 1b , max = 1e 000, = 0.04 , = 0.001  and = 50n  

we obtain the following ranking: 
 < <N LST T T T T      (16) 
 
In order to test the robustness of this ranking, we have run a set of simulations in which 
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parameters n ,   and   vary. The results are summarized in Table 6, 7, 8, 9 and 10 of Appendix 
A.14. Having in mind Remark 6, we have also run a set of simulations in which parameters maxe  
and b  are lower than the previous set.  

The simulations show that the differences between all switching times decrease with the 
discount rate,  , and are independant of the sensitivity of the pesticide efficiency to the amount 
of pesticide applied, b . This last result must come from the low values taken in the simulations 
but we know from Remark 6 that these value are the only one for which the ranking in (16) can 
be reversed.  

Furthermore, the difference between the switching time in the socially optimal case and 
the switching time in the subsidy case, T T   , is the lowest one. This means that the ambient 
subsidy leads to a solution very close to the socially optimal case, even when no lump-sum 
transfer is associated to the subsidy.  

We can also observe from the simulations that the difference, on the one hand between 
the switching time in the tax case with a lump-sum transfer and the socially optimal case, 

lsT T   and, on the other hand between the switching time in the tax case with a lump-sum 
transfer and the subsidy case, lsT T  , are reversed for high number of agents, n , for high 
elasticity of the farmers’ profit to the effective amount of pesticide applied,  , and for low initial 
effectiveness of the pesticide, maxe . This means that the ranking in (16) is not robust to these 
parameter values since lsT   can become lower than T   or lower than T  . Another result shows 
the instability of the tax case: when maxe  is small, the switching time from the pesticide use to an 
alternative pest-control technology in the tax case, T  , become lower than in the MPNE case, 

NT . 
 
Finally, the main implication of all these simulations is that a robust ranking is as follows: 
 < <NT T T    

This means that a subsidy on the ambient pesticide effectiveness fails to achieve the socially 
optimal switching time from pesticide use to an alternative pest-control technology. Proposition 7 
shows that if a lump-sum transfer is added to the subsidy, the socially optimal solution is 
achieved. This result seems to be mainly due to the fact that a lump-sum transfer deletes 
distributional effects induced by the subsidy. However, a tax on farmers’profits generated from 
pesticide application, even when a lump-sum transfer is added to it, fails to achieve the socially 
optimal solution. This result is mainly due to the form of the schemes *  and    that can be seen 
in Propositions 4 and 5. The tax is more basic than the subsidy since the tax does not depend on 
the effectiveness of pesticide over time (the tax is only a function of parameters   and n ); the 
subsidy can be adjusted over time and with respect to the other parameters. As a consequence, a 
scheme that is designed with respect to the ambient effectiveness of pesticide has better chance to 
achieve the socially optimal solution (pesticide application and effectiveness path plus switching 
time to an alternative pest-control technology) than a scheme that is not designed like this. 

 
6 Conclusion and discussion 
 
This paper is concerned with the question of the internalization of intertemporal 

production externalities. We concentrate on pest resistance: it is well known that the amount of 
pesticide applied by farmers decreases their effectiveness over time. Developments in dynamic 
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game theory literature show how it is possible to assume that, on the one hand, each farmer is 
perfectly aware of the impact of his decisions on the pesticide effectiveness. On the other hand, 
we assume that each farmer does not know how the other farmers act. We thus model the 
intertemporal production externalities in the pesticide case as a differential game. Furthermore, 
we add to the picture a scrap value of the switch from the pesticide use to an alternative pest-
control technology.  

The first step is to bring to the fore the intertemporal production externalities that are at 
play. In order to do this, we solve and compare two problems for the complete time horizon (and 
not only at the steady state as it is commonly the case): the MPNE one and the socially optimal 
one. We show that the effectiveness of the pesticide is always (over time) lower in the MPNE 
case than in the socially optimal case. We thus propose to assimilate the stock of pesticide 
effectiveness to a common that is overexploited by farmers because of externalities. The second 
step concerns the switching time from the pesticide use to an alternative pest-control technology. 
We show that it is later in the socially optimal case that in the MNPE case. 

 
We then look for the fiscal schemes that can be implemented in order to internalize these 

intertemporal production externalities. We show that both a tax and a subsidy are able to 
internalize them. We then explore the full potential of a dynamic model by studying the times of 
switch from pesticide application to an alternative pest-control technology. We show that tax and 
subsidy do not lead to the same switching time. When one adds a lump-sum transfer to the 
subsidy, the switching time from the pesticide use to an alternative pest-control technology 
becomes the same one as in the socially optimal case. This result underlines the importance of 
designing an additional redistributive policy in order to couterbalance the unwanted effects that a 
fiscal scheme can have.We show that this result is not validated in the tax case: when one adds a 
lump-sum transfer to the tax, the socially optimal switching time from the pesticide use to an 
alternative pest-control technology is not reached. This is mainly due to the non-linear effect of 
the tax on the shadow price of the pesticide effectiveness.  

The lack of effectiveness of taxes in the pesticide case was recently confirmed empirically 
by Skevas et al. (2012): they shew that both pesticide taxes and a price penalty on pesticide 
impact on water organisms are unable to considerably reduce pesticide use. They obtained the 
same result in the subsidy cases as in the tax cases. Contrary to this last result, we show that a 
subsidy can be efficient. However, the subsidies that they studied are not the same as the one 
studied in our work. They considered a subsidy on the use of low-toxicity pesticides, subsidies on 
research and development of low-toxicity alternatives, and subsidies on R&D of more 
environmental friendly pesticides. We rather consider an ambient subsidy: a subsidy that is a 
function of the ambient effectiveness of pesticide. We show that, in a dynamical framework and 
when a lump-sum transfer is added to this ambient subsidy, both the socially optimal paths of 
pesticide effectiveness and application, and the switching time from the pesticide use to an 
alternative technolgy can be reached. 

 
The study of the switching time to an alternative pest-control technology can have 

interesting implications from a public policy perspective. Indeed, if the aim of the policy-maker 
(an agricultural authority in our work) is simply to internalize intertemporal production 
externalities, it is necessary to implement basic internalizing schemes. However, if the policy-
maker is also concerned by the socially optimal switch from the pesticide use to an alternative 
pest-control technology, an ambient subsidy is better than a tax. 

Furthermore, if the policy-maker has environmental goals in mind, implications are 
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different. If we assume that alternative pest-control technologies to pesticide application are more 
environmentally friendly, the internalizing policy could be considered as not being necessary. 
Indeed, we show that a subsidy postpones the switching time to alternative pest-control 
technologies. This is true if a huge quick application of pesticides does not harm environment 
more than a low long application. One interesting extension of our work would be to add an 
environmental damage linked with the application of pesticide in order to control these effects. 
Such an extension is beyond the scope of our work that concentrate on production externalities. It 
is why it is left for a future work on environmental externalities of pesticide use. 

 
Appendix 
 
A.1 Proof of remark 1 
 
In order to solve the modified game, we first observe from the first order condition (4) 

that: 1 2
, ,= = ( 1)i t i t i t i t tAe Ae e          where iA  is a new constant. We then have: 

1 2
, = ( 1)i t i t iAe bn     . 

We also know from equation (5) and from the assumption on symmetry of solutions that: 
2

, , ,= ( 2)i t i t i t ib n     . We replace ,i t  by 1
i tAe   in this equation and we obtain: 

 1 2
, = ( 2)i t i t iAe b n      . 

We now look for iA  that solves: 

 1 2 1 2( 1) = ( 2)i t i i t iAe bn Ae b n            
 

1 1 2= ( 2)i t i t iAe Ae b n         
2= ( 2)ib n      (17) 

 
Before going further, we express i  with respect to iA . To do so, we depart from the first 

order condition (4) in which we put 1
, =i t i tAe   : 

1 2
, ,2 = 0i t i t i tc Ae bc     

2 2
, = 2i t i tc Ae b    

1
2

, = (2 )i t t ic e bA   

We assume that , =i t i tc e . The implication is that 
1

2= (2 )i ibA   . We now put this 
expression in equation (17) and we obtain: 
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It directly results from this that: 
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We can now look for the equilibrium paths of the modified game. We begin with equation 

(6) that can now be written as: =
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The solution of this differential equation is: 
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A.2 Proof of proposition 1 
 

We depart from first order condition (4): 
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Our assumption on symmetrical farmers insures that there is no possible deviation from 
this switching time. 

Some basic computations then lead to: 

max
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A.3 Proof of proposition 2 
 
We use a similar method as the one used for the proof of Remark 1 and Proposition 2. 
(i) We first observe from the first order condition (8) that: 

1 2= = ( 1)t t t t tAe Ae e          where A  is a new constant. We then have: 
1 2= ( 1)t tAe bn     . 

We also know from equation (9) that: 2=t t tbn    . We replace t  by 1
tAe   in this 

equation and we obtain:  1 2=t tAe bn     . 
We now look for A  that solves: 

 1 2 1 2( 1) =t tAe bn Ae bn           
 

1 1 2= ( 2)t tAe Ae b n         
2= ( 2)nb      (18) 

 
Before going further, we express   with respect to A . To do so, we depart from first 

order condition (8) in which we put 1=t tAe   : 

 1 22 = 0t t tn c Ae bc     
2 2= 2t tc Ae b    

1
2= (2 )t tc e bA   

We assume that =t tc e . The implication is that 
1

2= (2 )bA   . We now put this 
expression in equation (18) and we obtain: 
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We can now look for the equilibrium paths of the modified game. We begin with equation 

(10) that can now be written as: =
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Some basic computations then lead to: 
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A.4 Results of the simulations comparing the solutions in the 

socially optimal case and in the MPNE case 
 
We have run some simulations in order to see how the differences between the socially 

optimal solutions and the MPNE solutions vary according to parameter values. We obtain the 
results in Table 1, 2, 3, 4 and 5. 

 
   = 5n    = 50n    = 500n    = 1999n   

NT T  + + + + 
*

N
N

T T
a a    - - - - 

*
N

N

T T
e e   + + + + 

*
N N

N

T T
a a  + + + + 

Table 1: Differences for the set of parameters: = 1b , max = 1000e , = 0.001  
and = 0,04 . 

 
  = 0.004  = 0.04    = 0.4    = 0.9   

NT T  + + + + 
*

N

N

T T
a a   - - - - 

*
N

N

T T
e e    + + + + 

*
N N

N

T T
a a   + + + + 

Table 2: Differences for the set of parameters: = 1b , max = 1000e , = 0.001  
and = 50n . 
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  6= 10     = 0.0001   = 0.001    = 0.0039   

NT T  + + + + 
*

N
N

T T
a a   - - - - 

*
N

N

T T
e e    + + + + 

*
N N

N

T T
a a   + + + + 

Table 3: Differences for the set of parameters: = 1b , max = 1000e , = 50n  
and = 0.04 . 
 

 max = 10000e  max = 1000e   max = 100e   max = 50e  
NT T  + + + + 

*
N

N

T T
a a   - - - - 

*
N

N

T T
e e    + + + + 

*
N N

N

T T
a a   + + + + 

Table 4: Differences for the set of parameters: = 1b , = 0.001 , = 50n  and 
= 0.04 . 

 
  = 1000b   = 100b    = 1b    = 0.001b   

NT T  + + + + 
*

N

N

T T
a a   - - - - 

*
N
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T T
e e    + + + + 

*
N N

N

T T
a a   + + + + 

Table 5: Differences for the set of parameters: = 0.001 , max = 1000e , 
= 50n  and = 0.04 . 

 
A.5 Proof of proposition 3 
 
Firstly, we know from the assumptions that: 

>n   
(2 ) < (2 )b n b     

>
(2 ) (2 )b n b

 
 


 

 

2 2
>N    

(i) We look for a crossing point: 
=N

t ta a  

max maxexp = exp
( 2 ) 2 ( 2 ) 2

n t t
e e

b n n nb

   
   

                  
 



24 
 

( 2 ) = exp
( 2 ) 2 2
n t n t

n n

  
  

           
 

  
( 2 ) 2 ( 2 )= exp

( 2 ) 2 2
n n n

t
n n

  
  

        
            

 

  
( 2 ) 2( 1)= exp

( 2 ) 2 2
n n

t
n n

 
  

    
            

 

   2 2 ( 2 )= ln :=
2( 1) ( 2 )

an n
t t

n n

  
 

      
     

 

We then look for the sign of this crossing point. Firstly, we know from the assumptions 

that:   2 2
> 0

2( 1)
n

n

 


   


. Furthermore, we know that: 

2 < 2n   
2 < 2n n n       
( 2 ) < ( 2 )n n       
( 2 ) > 1

( 2 )
n

n




 


 
 

( 2 )ln > 0
( 2 )
n

n




  
    

 

We can then conclude that: > 0at . 
We now have to compare =N

t ta a  before and after this crossing point. = 0t  occurs 

before at . Firstly, we know that 0 max=
( 2 )

Na e
b n





 

 and 0 max=
( 2 )

a e
nb




 
 

. We also 

know that : 
( 2 ) < ( 2 )n n      

>
( 2 ) ( 2 )n n

 
 


   

 

max max<
( 2 ) ( 2 )

e e
nb b n

 
 

  
   

 

0 0< Na a  
We can thus conclude that: > <N a N

t t ia a t t T  .  
It is more complicated to conclude analytically for > at t . That is why we use simulations 

presented in Tables 1, 2, 3, 4 and 5 of Appendix A.4. We observe from these simulations that 
>N N

N

T T
a a . We can thus conclude that: N N a

t t ia a T t t    . 
(ii) We know from (i) that: 

>
(2 ) (2 )b n b
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>
(2 ) (2 )b n b

 
 


 

 

>N    
<Nnb t nb t      

max maxexp( ) < exp( )Ne nb t e nb t      
<Ne e  

 
A.6 Proof of remark 2 
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A.7 Proof of proposition 4 
 
The beginning of this proof is similar to the one of Remark 1 except that the first order 

condition is now given by equation (12). This implies modifications of the proof when this 
equation is used to express i  with respect to iA : 

1 2
, ,(1 ) 2 = 0i t i t i tc Ae bc       with 1

, =i t i tAe    
2 2

,(1 ) = 2i t i tc Ae b      
1

2

,
2=
1

i
i t t

bA
c e




    

 

We assumed that , =i t i tc e . The implication is that 
1

22=
1

i
i

bA 



 

  
. We now put this 

expression in equation (17) and we obtain: 

 

1 1
2 22=

2 1
ibA

b n


 

   
       

 

 

2
2 2=

2 1
ibA

b n




 



 
     

 

 

2
2

(1 )
2

=
2i

b n
A

b
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Remark 7 Let us observe that 
1

2( 2)= = 1
( 2)i

n
A A

n







   
   

. We know that 

( 2 ) > 1
( 2 )
n

n




 
 

 and that 1 < 0
2

 . We can then conclude that 

1
2( 2)1 > 0

( 2)
n

n







 

   
.  

 

When    , 
 

2
2

2
=

2i

bn
A

b










 
     and 

 
=

2bn
 


. 

 
We can now look for the equilibrium paths of the modified game. We begin with equation 

(10) that can now be written as: =
2

t
t

e
e


 

  with 0 max=e e  

The solution of this differential equation is: 

 max= exp =
2t t

t
e e e 


 

  
 

that gives: 

 
  max= exp =
2 2t t

t
c e c

bn
  

 
 

   
 

and  

 max= exp =
( 2 ) 2t t

t
a e a

nb
  

 
       
 

 
 
A.8 Proof of remark 3 
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2 ( 2)
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2
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2 2( 2) ( 2) ln 2(1 )
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= > 0
( 2)n
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A.9 Proof of proposition 5 
 
The beginning of the proof is the same as in the proof of Remark 1. We then know from 

equation (13) and from the assumption on the symmetry of solutions that: 
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2
, , ,= ( 2)i t i t t i t ib n       . We replace ,i t  by 1

i tAe   in this equation and we obtain: 

 1 2
, = ( 2)i t i t i tAe b n        . 

The next step is to look for iA  that solves: 

  1 2 1 2( 1) = ( 2)i t i i t i tAe bn Ae b n              (19) 
 
Remark 8 Let us observe that:  (13) (9)   1 2= ( 1)2t i t in Ae b     
 
Let us set *

t t   and go further: 
1 2 1 2(19) ( 1) = ( )i t i i t iAe bn Ae b n              

2= ( 2)i t i t iAe Ae bn         
2= ( 2)ib n      (20) 

 

We know from the proof of Remark 1 that 
1

2= (2 )i ibA   . We now put this expression in 
equation (20) and we obtain: 

 

1
12

2= (2 )
2 ibA

bn





 
   

 

 

2
2

= 2
2 ibA

bn








 
    

 

 

2
2

2
= :=

2i i

bn
A A

b










 
     

It directly results from this that: 

 
 

=
2i bn

 


 

 
We can now look for the equilibrium paths of the modified game. We begin with equation 

(10) that can now be written as: =
2

t
t

e
e


 

  with 0 max=e e  

The solution of this differential equation is: 

 *
max= exp

2t t

t
e e e 


    

 

 
Remark 9 Since 

1

= ( 1)t t in e
    


 , we then directly have 
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1 2

max( 1) exp > 0
2 2t

t
n e

bn




  
 


                

 

 
We finally have: 

 
 

*
max= exp

2 2t t

t
c e c

bn
  

 
     

 

and  

 *
max= exp

( 2 ) 2t t

t
a e a

nb
  

 
       

 

 
 
A.10 Proof of remark 4 
 

 

1 2
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2
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( 1) exp exp ( 2 2 2 )
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 since 2 2 2 2 < 0t t        

 
2
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exp exp ( 2 )
2 2 2

= > 0
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2
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( 1) exp exp
2 2 2

= < 0
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1 2
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( 1)( 1) exp exp
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n e
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A.11 Proof of proposition 6 
 
(i) We depart from first order condition (12): 
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2
, ,1

, , ,

(1 )
(1 ) 2 = 0 =

2
i t i t t

i t i t i t
t

c c e
c b

e b


  

   


 
    that we put into the transversality condition 

(14):  
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c n
c e e




 


 


      

 
   

1
2

,

2 22 = | 2
2 i ii T t t t T Ti

n
n c e e

n






 





 
       

 

 
   

2

,

2 22 = | 2
2 i ii T t t t T Ti

n
n c e e

n






  

 
       

 

 
        

2
2 2

*2
* * *

max max

2
2 exp = 1 2 exp

2
i

i i i i i

n nb
n e nb T e nb T

n


    

 
  

            
 

 
      

 

2

2

1 *
2 1 max*

*

22
exp =

2 2
i

i i

i

e nbn
nb T

n n





  


   


  

     
 

    
 

 
 

2

2

1 *
21 max*

*

2 2
exp =

22
i

i i

i

e nb n
nb T

nn





   


  


   

      
 

   
 

 
 

2

2

1
11 *

2max*
*

2 2
exp =

22
i

i i

i

e nb n
nb T

nn


    


  

             

 

 
 

 
 

2

2

1 *
2max*

*

2 21= ln
1 22

i

i i

i

e nb n
nb T

nn



   


   

              

 

 
 

 
 

 
 

2

2

*

* **
max

2 21 1= 1 ln ln ln :=
2 2 21

i

i i
i ii

nb n
T T

e n nnb


  
     

                           

 

Some basic computations then lead to: 

max
max

2= > 0e iT
e

 


 
   

(ii) We depart from first order condition (4): 
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Some basic computations then lead to: 
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We know that  1 >n     

 2 1 > 2n       
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2 ( 2)ln > 0
2

n


     
 

> 0iT T    since 1 < 0   
 
A.12 Proof of proposition 7 
 
(i) We directly see that when we add *=t t tLS e  in the transversality condition used in 

the (ii) of the proof of proposition 6, we obtain the same expression as in the socially optimal 
case (see the (ii) of the proof of proposition 2). 

 
(ii) As in the proof of (i) of proposition 6, we depart from first order condition (12) that is 

unchanged. We put the expression of i   into the new transversality condition: 
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Which is different from *T .10 
 
A.13 Proof of remark 6 
 
Some basic computations lead to: 
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A.14 Results of the simulations comparing the switching times 

in the different cases 
 
We have run some simulations in order to see how the differences between the switching 

times vary according to parameter values. We obtain the results in Table 6, 7, 8, 9 and 10. 
 

                                                       
10 We assume that the set of parameters is such that  0LS

iT   . 
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   = 5n    = 50n    = 500n    = 1999n   

NT T  284 356 365 365.5 
T T   80.5 195.5 310 345 

lsT T  0.5 64 -255.5 -344 
T T   0.1 1 11 20 
T T  80.5 194.5 299.5 325 

NT T  203.5 160 54 20.5 
ls NT T  285 419.5 109.5 21.5 

NT T  284 354.5 353.5 345.5 
lsT T  0.5 65 -244.5 -324 
lsT T  81 259.5 55.5 1 

Table 6: Differences for the set of parameters: = 1b , max = 1000e , = 0.001  
and = 0,04 . 

 
  = 0.004  = 0.04    = 0.4    = 0.9   

NT T  3558 356 35.5 16 
T T   1956 195.5 19.5 8.5 

lsT T  638.5 64 6.5 3 
T T   12 1 0.1 0.05 
T T  1944 194.5 19.5 8.5 

NT T  1602 160 16 7 
ls NT T   4197 419.5 42 18.5 

NT T  3546 354.5 35.5 16 
lsT T  650.5 65 6.5 3 
lsT T  2594.5 259.5 25.9 11.5 

Table 7: Differences for the set of parameters: = 1b , max = 1000e , = 0.001  
and = 50n . 

 
  6= 10     = 0.0001   = 0.001    = 0.0039   

NT T  355.5 355.5 356 358 
T T   195.5 195.5 195.5 195.5 

lsT T  0.06 6.5 64 -137 
T T   0.001 0.1 1 11 
T T  195.5 195.5 194.5 184.5 

NT T  160 160 160 163 
ls NT T  355.5 362 419.5 221 

NT T  355.5 355.5 354.5 347 
lsT T  0.06 7 65 -126 
lsT T  195.5 203 259.5 58.5 

Table 8: Differences for the set of parameters: = 1b , max = 1000e , = 50n  
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and = 0.04 . 
 

  max = 500e  max = 100e   max = 75e   max = 50e  
NT T  322 243 229 211 

T T   195.5 195.5 195.5 216 
lsT T  64 64 64 -32.5 

T T   1 1 1 2 
T T  194.5 194.5 194.5 214 

NT T  126 47.5 33 -5 
ls NT T  385.5 307 292.5 178.5 

NT T  320.5 242 227.5 209.5 
lsT T  65 65 65 -30.5 
lsT T  259.5 259.5 259.5 183.5 

Table 9: Differences for the set of parameters: = 1b , = 0.001 , = 50n  and 
= 0.04 . 

 
  = 0.9b    = 0.5b    = 0.1b    = 0.001b   

NT T  356 356 356 356 
T T   195.5 195.5 195.5 195.5 

lsT T  64 64 64 64 
T T   1 1 1 1 
T T  194.5 194.5 194.5 194.5 

NT T  160 160 160 160 
ls NT T  419.5 419.5 419.5 419.5 

NT T  354.5 354.5 354.5 354.5 
lsT T  65 65 65 65 
lsT T  259.5 259.5 259.5 259.5 

Table 10: Differences for the set of parameters: = 0.001 , max = 1000e , 
= 50n  and = 0.04 . 
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