

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

Inbreeding and Heterosis and Their Relation to the Development of New Varieties of Onions'

By H. A. Jones, principal olericnlurist, Division of Fruit and Teqetable Crops and Disetases, Bureau of Plant Industry, Soils, and Agriculharal Enginecring, Agricultural Rescarch Administration, and Gles N. Davis, collaborator, Dimision of Fruit and Fegetable Crops and Diseases, and assistant olevicatlurist, Calfornin Agricultural Experiment Station

United States Department of Agriculture, Agricultural Research Administration, Bureau of Plant Industry, Soils, and Agricultural Engineering, in cooperation with the California Agricultural Experiment Station.

CONTENTS

CROSSING INBRED AND MAEE-STERILE IINES TO DEVELOP BETTER ONIONS

Onion (Alhium cepa J .) is one of the oflest cultivated crops, bit little has been known :ubout its brecting behavior. In 1022, breeding studios were begun by the Californis Agricultural Dxperiment station, and in 1936 the work was established on a couperative basis between that station and the Cnited States Department of Agriculture as a part of its cooperative onion-breeding program with ratious itates. The objective of this program is the development of resistant hight-yielding varietiess adapted to certain regions and for eertain purposes. New breeding mothots have been developed to farilitate pollination, and inbreeding has been eonducted to determine its inflemen on vigre and to istate frow homoyygols imes for use in brecting. Three lines have been used to introdue valuable genes into commerial raricties and to determine their value in (le produation of hyibrid seed.
Shortly after the brecting program was begun in (his country kob towski ($\hat{i})^{2}$ published the results of his study of the effeets of one generation of imbreeding on onisms. Lee found that bulbs from open-pollinated seed averaged 1.37 gm . in weight, wherests those from selfed seed of the same plant averaged only 120 gm . Subserguent analysis of these data by the authos, or this paper rescaled (hat the difference was highly significant.

In 1937 Jonew and Emsweller (5) presented preliminary data remparing bulb yiedts of hybrids and parents when al male-sterike elenal litue of Italian Red 1;3-03 and rarions male-fertile varieties were used. In most crosses the nem weight of the hybrid bulbs was much greater than that of either parent. The pereentage of hybrit plants bolting was much less than that of those of the pollen parent. These studies on hybrid vigor have been continued, and the results obtained are presented as part of this bulictin.

In further stuties with this male-sterile line of Itadian Real 13-53, Jones and (Narke (.2) observel that when it was crossed with male-fertile plants three types of brealing behavior were present in the F_{1}, some progentes being entirely make-fertile, others being entirely male-sterile, and othens producing beth mate-lertile and male-sterile in a ratio of 1 to 1 . This type of behation was explaned be assuming that the male-sterile comblition rexults from an interartion between a tecessive nuclear gene and a nonnuclear, or eytophasmic, factor.

The results of the studies reported in this bulletin may be sumbarized as follows:

From 1922 to 198 t six varietion of onions were inber une to six generattions. Some years certain inbred lines yielded as much as the commercial parent, but in general wright became less with inbreeding. Esually the loss in weight was greatest in the fitst generation of intreeding. Aany inbred lines of onions that were superion to the commerema parent in many characters exept vigor were ish)ated. These eharacters ineluded bolting habit, keeping suality, and mifomity of size, shape, and eolor. These results indicate that the probability of developing gool high-yielding commercial lines hy inbreeding is remote, but that superior lines can be isolated for hybrekization purposes.

Jigor of onions can often be greatly incteased by crossing malc-feriile inbreds, but quantity production is not feasibie berause of the neressity of entisevtation.

A makerterite clonab line of latian lied 13-53 has been used experi-

[^0]mentally as the female parent in crosses with various male-fortile inbred varieties. Its use in the prodtuction of hybrid seed, however, is rather limited. Some of the hybrids were more vigorous and bolted less than the pollen parent. The hybrid Italitn Red $13-53 \times$ I.ord Howe Island has been introduced as California Hybrid Red No. 1 by the California Agricultural Experiment Station and the United States Department of Agriculture.

By backerossing, the male-sterile character of Itatian Red 13-53 has been incorporated into a number of commercial varieties so that this character ean be perpetuated in the sed. Backeross populations of crosses between male-sterile and certain male-fertile lines are always 100 percent male-sterile. The latter can be used in combination with desirable pollen parents lior the produrtion of hybrid seed.

WHAT GROWERS SHOLIDD KNOW ABOUT ONION INBREDS AND HYBRIDS

The results of inbreeding show that in general a gradual loss of vigor is to be expected with inbreeding and that the ehances of obtaining improved varieties from inbrecting alone are rather remote. Methods of improvement that inrease rather than decrease vigor mast be adopted.

In the production of hybrid seed inbreeding becomes ar integral part of the program. As a rule most lines are sufficiently thiform affer two generations of imbreeding, but if inbreeding is continued, must of the lines become rather weak and are difficult to propagate. This is especially true of white varieties. After abont two generations of inbreeding the plants can be massed to prevent further lows of vigor.

Crosses between malc-fertile inbred onion varieties usually showed greatly increased vigor when compared with the parents and great uniformity in size, shape, and color of the bubse and in many other characters. These crosses between malo-fertile plants showed great inherent possibilities in the production of hybrid seed. However, as emascuation is necessary, quatity production of hybrid seed from crossing malcfertile varieties is not practicable.

The distadvantage of emasculation is not present when a male-sterile line. such as Italian Red 13-53, is available as a female parent. This malesterile clonal line, which is increased by bulbils produced in the seed hearl, is now being used to a limited extent in the production of hybrid seed. Its use, however, is limited to the production of mild red types. Being a poor storage onion, it camnot be used in the production of hybrid seed of the storage types.
The male-sterile character found in Italian Red 13-53 has now been incorporated in practically all important commercial varieties and is perpetuated through the seed rather than in clones. This not only makes possible the combining of those lines that are resistant to the attack of various insects and diseases but also provides a method of obtaining the expression of the maximum amount of vigor. The production of hybrid seed opens up an almost unlimited field for the production of improved onion varieties.

materials and methods

The varieties of onions used most in the early studies on inbreeding and hybridization were those important in Califormia, although some attention was given to most of the commercial varieties. Most of the varieties have been characterized recently by Magruder and others (B). The intermediate
varieties, such as Red 21 (California Farly Red), Stockton Yellow Clobe, and Italian Red, were used extensively. These are called intermediate because they mature after the early varietios and before the late ones. Because of its importance in California, Australian Brown was the chief storage variety used. At the time these studies were begun Yellow Danvers Flat was being used as a dry set variety, but in recent years it has been replaced almost entircly by Pbene\%er. The yellow globe types, as well as Sweet Spanish, were also used to some extent. The early varieties used were Early Grano, Lord Howe Island, Yellow Bermuda, and Crystal Was. The male-sterile clonal line Italian Red 13- 53 has been used very extensively in the development of male-sterile lines for the protuction of hybrid seed. It has also been used in breeding for resistance to downy mildew, caused by Paronospora destructor (Berk.) Casp. (6), and to purple bloteh, caused by Allemaria pomi (EII.) Cií.

The methods for selfing described by Jones and Emsweller (8,4) were modifed from time to time as better techniques were developed. In the earlier years self-pollination was accomplished chiefly by enclosing the Hower head in a manila paper bag and tapping it onec or twice each day to distribute pollen. This method, however, did not always provide sufficient quantities of seed for testing; so in recent years all selfing has been done by the use of flies. In the greenhouse at Beltsville, Md., single heads to be self-pollinated were enclosed in 2-pound permeable cellophane bags. When two or more heads of a plint were used they were enclosed in small cloth cages. Fhes were added to do the pollinating in both the cellophane bags and the cloth cages. The latter, however, have proved to be more satisfactory in the greenhouses at Beltsville and are now being used almost exclusively.

Most first-generation inbred lines were discarded because of various defects. The data on inbreding included herein were obtained from lines that had been rather rigidiy selected as breeding parents or as potential varicties.

In the earlice studies on hybrid vigor the male-sterile character was not available, and crosses were made between self-fertile varieties. Emasculation was not practiced, but the plants to be crossed were grown under cloth cages with flies introduced to do the crossing. When this method was used considerable selfing occurred, but the hybrids could be recognized when the bulbs matured. In later crosses between self-fertile varieties, however, the flowers were emasculated, and consequently the hybrid and selfed seed could be planted separalely. A limited supply of hybrid seed was also obtained by enelosing the male-sterile clonal line Italian Red 13-53 under cloth cages with male-fertile phants and later by alternating rows of male-sterike and male-fertile plants in the open.

The intermediate varicties were sceled in a field nursery at Davis, Calil., in late August or early September, and the seedlings were transplanted in the late fall or carly winter. Farly varieties were usually seeded at the same fime or somowhat later than the intormediate ones. Late or storage varieties were usually seeded in coldframes in November or December and transplanted in early spring. In 1920 the late types were seeded directly in the field, but that was the only year when this procedure was followed becuse it prevented the economical use of small quantities of seed and made impossible a uniform sparing of planss in the row.

On sedirnentary soils requiring surface irrigation the phats were usually set on maised beds. These were 3 feet from center to renter, and the two rows on the bed were 12 inches apart. On subirrigated muck soils where level cultivation was practied the rows were spaced 15 irches apart. The large-bulb types, such as hed 21, Italian Red, Stockton Yellow (llobe,
and Sweet Spanish, were spaced 4 inches apart in the row. The smaller varieties, sucl as Yellow Danvers Irat and Australian Brown, were spaced 3 inches apart. Irrigation was usually neressary during the late spring and summer.

The system of pedigree numbering is one commonly used. The first number of a perigree indicates the variety; for extmple, the number 13 was assigned to Ittian Red. The pedigree $13-52-0-6-S_{2}$ denotes five generations of inbreeding. The second number indicates that it was the fifty-second plant of the original lot selerted for inbreeding; the third number indicates that it was the ninth plant of the 13-52 inbred population selected for further inbreeding; the lourth number indeates that it was the sixth plant of the $13-52-0$ inbred population selected for further inbeeding. To avoid long pedigrees the number of selfings alter three generations is indicated by S and at subnumeral. When selected bulls of an inbred line were massed for seed increase the letter on was inserted after the pedigree.

The bulb, weights of inbred lines and hybrids were asually compared by intermingling, planting in adjacent rows, or planting in replicated plows and weighing the bulbs individually, [n order to obdain suificient seed for four or five replicates for yield tests the best individuals of an inbred popnlation were usualy massed under cloth eages. This massed seed is consequently not a true inbred line but is simply the result of interpollinations within an inber popnotation. A tinst the plots for the yield tests were replicated systematicaly, but in later yeas they were randomized. Besides trimsplants, dry sets of the Yellow Danvers Flat variety were also used for planting the pluts to eompare the vigor of inbred lines and the commercial parent. Dry sets were arown at invis, Calif. They were harvested, stored, and graded to a uniform size, and at planting they were set in shallow furrows. Spacing was the same as for green seerllings.

Onion bulbs were always stored in shatlow shat-botom fays in a warehonse where the stomare ronditions Huctusted with the weather.

The standad errors of the coefficients of variability were calculated from the tables publisised by Brown (l).

EFFECTS OF INBREEDING: ON VARIOUS CHARACTERS

Bu,b Wercirc ano Viled

YELAOW DANVELS FLAT

Plants of the Follow Danvers Fat variety of onion were selfed in 1923, and the progenies were prown in 1024. Line $1-10$ was one of the best; the 337 bubs had a mean weight of 32.9 gm. Another line, $1-22$, had a population of 383 bulb: with a meun weight of 29.7 mon. A number of the best bulbs of these two lines were selected and selfed in 1925, and the progenies were grown in 11926 . Jine $1-10-25$ produced the heariost bulbs (table 1). Most of the lines derived from $1 .-10$ had heavier bulbs than those from 1-22, and the diference in the mean weight per bulb between the two groups was highly significant. Inbreeding was continued for sis generations, and comparisons were made among the inbreds and with the commereial strain from which the origima selections were made.

In 1930 and 1031 commerrial Yellow Danvers fiat was prown from trunsplants for comparison with five lines of $1-10$ and with three others from this same variety (table 2). As intlicated, all these lines had been

Table 1,-Mean weight per halb and percentage sprouted during storage of inhred lines of Fellow Danrers Flat, Davis, Calif., 1026

Line	Bulbs stored	$\begin{gathered} \text { Metant } \\ \text { weight per } \\ \text { bubb } \end{gathered}$	Buliss sprouted (Dec. 12)	Line	Bulhs storest	$\begin{gathered} \text { Mean } \\ \text { weight per } \\ \text { buth } \end{gathered}$	Bulls sprouled (Dec. 12)
	Number	Grams	Perrent		Nrimber	Grams	Perrecat
1-10-3...	101	49.5	15.S	1-29-1..	113	50.8	S1.4
1-10-4...	2.17	(1. 0	20.7	1-23-3. .	75	39.1	93.3
1-10-5...	5 S	72.2	11.0	$1-20-16$.	220	24.4	8 93,
1-10-7...	943	76.4	319.3	1-23-7. . ${ }^{1-20}$	15	33.3 32.1	9-1.8
1-10-8...	2.11 199	70.5	51.0	1-20-8. ${ }^{1-20}$	109	32.1	73.3
1-10-10.	2310	66.2	26.2	1-22-12.	50	31.2	86.0
1-10-11..	210	43.2	33.8	\|1-22-19. .	911	28.5	93.3
1-10-13. .	113	$\mathbf{5 0 . 4}$	3.4 .2	1-29-20.	211	31.3	100.0
1-10-15.	$!3$	70.3	17,	1-22-23..	18	2.4	100.0
1-10-17..	119	59.3	3.4	$1-29.20$.	46	40.5	100.0
1-10-23	54.	54.6	10.7	1-22-30.	52	35.3	82.7
1-10-24..	2 ss	$6{ }^{6} .6$	84.4	1-212-32..	134	40.2	¢15.5
1-10-25..	420	91.3	21.8	1-22-33.	104	50.2	69.2
1-10-26. .	182	01.0	3.8				
Mesa		64.1 ± 12.6	33.1 ± 20.3	Mean.	\cdots	35.3 ± 8.9	80.4 ± 12.5

Table 2.-Mean weight per bulb of commercial and inbred lines of Yellow Danecrs Flat grown from transplants, Damis, C'allf., 1950 and 1931

Line	Cencerations	1:30		1931	
		$\underset{\substack{\text { Bull } \\ \text { plot } \\ \text { plor }}}{ }$	Mean weiphi per buall	$\begin{aligned} & \text { Buylhs ser } \\ & \text { ploc } \end{aligned}$	Mean weight per bultis
	Number	Sumber	Grams	Number	Gram*
Commercial	0	10	${ }_{17}^{158}$	104 10.3	${ }_{\square}^{6}$
	$\frac{2}{2}$	${ }_{103}$	1.4	10.	Oi
1-10-2i, 17 m	${ }_{2}^{3}$	103	124	105	令
1-10-4m,	2	104	${ }_{\text {12s }}$	${ }_{106}^{10,3}$	6
	3	10i	101	S7	36
1-16-i-1.in.	3	104	93	102	+19
1-1/-10-1m..	3	102	52	103	4
Dimerence required for sisnifitunce onpercent level. -persent lerd	:	(3)	${ }_{27}^{20}$	8.75	7.5 10.1

- No significant differenec.
inbred two or three generations and then massed. In both years $1-10-26 \mathrm{~m}$ was heavier than the commercial parent. In 1930 the difference was not significant, but in 1931 it was highly siguificant. Plant $1-10-26$ evidently had a combination of very favorable growth factors, so that when it was selfed and the best bulbs of the inbred population were mass-pollinated the vigor surpassed that of the parent variety. The mean bulb weight of $1-10-25 \mathrm{~m}$ was below that of the commercial in both 1930 and 1931 , but in neither year was the difference signifigant. When $1-10-25$ and $1-10-4$ were inbred another generation a considerable raduction in vigor oceurred. All bulb weights were considerably smailer in 1931 than in 1930 , owing primarily to a very severe thrips attack.

In 1931, when the sume lines of Yellow Danvers Flat were grown from cry sets (table 3), the bulb sizes were considerably larger than when they were grown from transplants. Tine $1-10-26 \mathrm{~m}$ again had much henvier bulbs than the commercial parent. There was no significant difference in weight of bulb between lines $1-10-25 \mathrm{~m}$ and $1-10-25-17 \mathrm{~m}$, which had been inbred two and three generations, respectively, but there was a

Table 3．－Comparison of commercial and indred lines of 1 ellow Danvers Flat groum from dry sets，Davis，Calif．， 1081

${ }^{5}$ No significant diderence．
significant difference in mean weight of bulb between 1－10－4m and $1-10-4-2 \mathrm{~m}$ ．In 1931， $1-24-15-2 \mathrm{~m}$ produced the smallest bulbs－grown from transplants or from dry sets．

In 1.932 a number of comparisons of bulb weights were made between lines inbred two to five generations and between certain of these inbred lines and the commercial variety（table 4）．As in preieding years， $1-10-4 \mathrm{~m}$ showed considerible loss in weight from two generations of inbreeding． When 1－10－4 was inbred three more gencrations one of the lines showed a highly significant loss in weight of bulb while the other did not．Bulbs of $1-10-25-17 \mathrm{~m}$ weighed considerably less than those of $1-10-25 \mathrm{~m}$ ．When they were still further inbred，loss of weight continued；it was significant between the third and fourth generations and highly significant between the fourth and fifth．Bulbs of $1-10-11-2-S_{2}$ weighed only about one－half as much as those of commercial．Bulbs of $1-10-26-7-S$ weighed approxi－ mately one－half as much as those of $1-10-26 \mathrm{~m}$ ．

Table＋．－Wean weight per buld of commercial and inbret lines of Vellow Dunvers Flot， Davis，Calif．，193：

Linne	Gemeratims	Bulbs welyned	Acan weight per lutb	Coefficient of variation
	Numòr	Siamber	Gram．x	
${ }_{\text {Commervial }}^{\text {Com }}$	$\stackrel{0}{2}$	－ 105		$33 . S \pm 1.9$
1－10－6．19．	2			
1－10－ $1-20-5$	5	207	＊＊ 1110	$33^{37} 4{ }^{\text {a }}$ 生 9.1
1－10－4－4－5	5	201	106 ± 2.8	35.1
1－10－25．n．	$\stackrel{2}{2}$	103		
1－10－25－17m	3	102	－103 ${ }^{\text {a }}$	
${ }_{1}^{1-10-2 i n-1 i m . ~}$	3	102		
1－10－25－1：－sim．	${ }_{1}$	9	＊ 0 成 $=3.8$	
1．10－${ }^{2} 5-17-\mathrm{S}_{2} \mathrm{~m}$.	4	！	处 1.2	
1－10－25－1－3	$\frac{5}{15}$	8	＊＊－	20．0 $=3.8$
1－10－25－1；－S2．	\bar{j}	33	＊＊＊3	$33.0=3.1$
Commercial．	0	S3		
1－10－11－2－St	5	s：	＊＊ 04 ± 3.2	$13.1=1,0$
1－10－26m．	2			
1－10－20－-S	\％	10.5	＊k68	$\begin{aligned} & 40.7=3.3 \\ & 4.3 .2=3.5 \end{aligned}$

[^1]In 1934, comparisons were made between commercial Yellow Danvers Flat and lines inbred two, three, five, and six generations (table 5). The data seem to show loss of vigor with each additional one or two generations of inbreeding, but as there was only one plot of each of the inbred lines it was impossible to determine whether or not the differenes were signifcant.

Table Dateis, Colif. 1934

Line	Cencmations inimes	Replichas	Buils per plot	Mean wight per bulb
	Aumber	Sumber	Niumber	Grums
Combeercisi	0	10	! 1 S	65.5
1-10-2.5m	'2	$!$	S	65.
1-10-25-17m.	3	1	101	39.5
1-10-25-17-Sm.	5	$!$	\$880	35.6
1-10-25i-17-S.	6	1	100	37.4

EBENEZER

In 1930 three lines of Ebenezer which had been selfed one generation and another which had been selfed two generations were compared with two commercial strans of this variety (table 6). The inbred lines were lower yielding than the commerial, but the difference between $11-6-3 \mathrm{~m}$ and the lower yickling commercial was not significant.

Tabue 6.-Mean weight per bulb, wich per ucre, and perentuge of lwhlls sprouted during storage of commercinh and indred lines of Ebenezer, Dais, C'atif., 1930

Linc	Fickl alata			Stomge trentis	
	$\begin{aligned} & \text { Bulilss } \\ & \text { arer pilot } \end{aligned}$	$\begin{aligned} & \text { Nean } \\ & \text { veight } \end{aligned}$	Tiekt	$\begin{aligned} & \text { linlls } \\ & \text { storet! } \end{aligned}$	Bulis syroutid
	S"rmber	Grams	$\underset{\substack{\text { MO-pound } \\ \text { stleks }}}{ }$	Sumber	Percent
Conmbercial.	1015	136	31.3	3330	18.9
Do...	1015	12-2	3361	330	11.3
${ }_{1}^{11-2 i-3 m}$	168	12	304	St	$\underset{\sim}{2}$
11-4tatm.	191	98	$\cdots 11$	\%15	3.2
11-21tint.	1017	9	29	440	3.0
Difereme requined for siknilicaner:					
- 5-prerent drued	(1)		-29.0	\ldots	\ldots

${ }^{1}$ No signifeame difterente.

Yellow Globe banvers

In 1929 and 1930 three commereial straine of Yellow Globe Danvers were compared with various lines inbred one and two generations (table 7). In 1929 the three commercial strins were abou, alike in weight of bub and yield per acre, but in 1030 strain a was signifie:ntly higher yielding than the other commercial strans. Both years han $15-8 \mathrm{~m}$ had the heaviest bulbs of the inbreds. In 1930 a significant difference in weight per bulb and yiek per acre ormured between $15-8 \mathrm{~m}$ and $15-8-2 \mathrm{~m}$. All inbred lines proluced lower yields that the commercial strains. In some cases the differences were barely significant; in others, highly significant.

Table 7.-Mean weight per bulb and jiell per acre of commercial and inbred lines of Yellow Globe Danters, Davis, Calif., 1929 and 1090

Line	Generstions inlurea	1929			1980		
		$\begin{aligned} & \text { Builve } \\ & \text { Bur } \\ & \text { plor } \\ & \text { plot } \end{aligned}$	Mernt	Y'ipht	Bullos prer plot	Meran weight	Y'ield
	Nambr	Number	Graths		Number	firams	
Commerenal ${ }_{\text {a }}$	0		1.11 118	3311	102	${ }_{16}^{167}$	409 38
Commercial $\mathrm{C}_{\text {c }}$	0	S	100	316	10.2	1-13	36
in-s-2m.	9	S	1.31	27.1	101	130	311
15-65m..	$\overline{1}$	\ddot{s}	11.5	291	101	111	26
15-2.1-16.	$\stackrel{8}{2}$	92	103	221	Q	103	213
$\frac{15}{15-53-35-3 \mathrm{~m}}$	$\stackrel{2}{2}$		St	183	10.1	ios	26it
Difference rectuired for simbifictare:							
copercent level...	-	(1)	15	37	\%	13	
-percent ievel				50	7	17	41

The various lines alined themselves somewhat differently for mean weight per bulb and yiefd per acre. This is to be expected, sinece the order of arrangement for bulb weight depends upon one variable, while that for yied per acre depends upon two variables-stand and mean weight per bulb. Since reduced stand probably resulted from inherent weaknesses it may be assumed that yield per acre represents the better index of performance.

In 1931 the same three commercial strains were planted with four fines inbred one generation, four lines inbred two generations, and one fine inbred three generations (table 8). The commercials did not vary significantly among themselves in mean woight per bulb or yield per arre. The mean bulb weight of line $15-24 \mathrm{~m}$ was signifirantly lower than that of commercial c but not than that of a or b. The bulb weight of line $15-27 \mathrm{~m}$ was significantly lower than that of commercial a and c but not than that of b. When 15-24 was inbred another genemation a significant reduction in bubl weight orcurred; 15-27 also lost vigor with two udditional generations of inhreeding.

Tabse S.-Meon weight per bulb and yichl per acre of commercial and inbred lines of Vellow Cilobe Danters, Dutis, (rabi, (1)3)

Line	(iencration inlare:t	[uthat ber mid	Menn weizht	Eiest
	Namber	Number	Grutns	100-pounet sucks
	0	100	5 S	137
	0	103	51	137
1in-8tn.....................	I	104	4	153
15-68m.................	1.	93	19	119
1ij-2tin...................	1	103	52	129
	$\stackrel{2}{2}$	107	34	99
15-2tm..................	$\frac{1}{1}$	1010	4	107
15-27-5-2m.	3	17	\pm	± 18
$\underset{15-108-1 \mathrm{~m}}{15}$	2	S	4	196
15-108-1m.	2	100	16	115
Difference required for significtace: j-percent level 1-percent level.				
		$\stackrel{6}{8}$	$\overline{7}$	
		S	10	26

AUSTRALIAN BROWN

In 1929 and 1930 three commeretal strains of Australian Brown were compared with lines that had been inbred one and two gencrations (table 0). In 1929 the seed was sown dired 1 y in the fied in early winter. The poor stands of most of the inbred lines show that they gave poor gemination or were not able to withstand the rigors of winter. All the inbred lines except $5-34 m$ were preatly reduced in weight of bulb. This line, however, was not signifieantly different hrom any of the commerein strains. In 1930, $5-34 \mathrm{~m}$ agam had the henviest buibs of the inbred lines, but they were signifeantly lighter than those of commercial b. Better stands and
 Australtun Brotht, Dteis, ('alij., 1929 ant 1930

Tame 10.-Mam weight per belb and yield fer acre of commerciol and indred lines of Anstraliun Brown, Dawis, C'alif., 1931

Yine	Gencralions nabred	Bulbs per piol	Mean weight	Yicid
	Number	Nrmber	Grams	100-mmund sacks
Commereial a.	0	10.4	17.8	117
Commereisl b.	0	108	46.0	115
Conmbereial c..............	0	102	-64.0	108
	$\stackrel{1}{3}$	102	-	108
5-2 2 m,]	10.1	50.2	13%
i-2t-1m.	$\stackrel{1}{2}$	10.1	$4 \overline{3}$	113
- -107 ma	1	10.	13.8	10 S
5-23. ${ }^{\text {anm. }}$	$\stackrel{9}{9}$	103	41.8	102
7-32-2121	$\underline{1}$	10	10.7	103
5-31m.	$!$	10.	418.2	98
$0^{5-93 m}$!	101	318	$\stackrel{3}{80}$
5-87m.	1	107	31.	S1
	$!$	昭	27.2	© 3
$5-111-13 \mathrm{~m}$.	2	9.	24i.0	Ss
5-111-10m.....	2	00	23.0	19
Differemez rectured for sizniticanes: 5 -peremi level				
	:	8.8	5.	10.6 22.1

hearier bubs made two of the commertial strains significantly higher yiclding than $5-34 \mathrm{~m}$. Iine $5-87 \mathrm{~m}$ inbred one gencration was lower yielding than other lines inbred two generatiens.

In 1931 the same three commerdial statans of Alatralian Brown were compared with eight lines inbred one generation and six lines inbred two generations (table 10). Jime $5-3+\mathrm{m}$ produced the heaviest bulbs and highest yield per aepe, and when it was compared with the highest yedeling commeredal strain the differenoes in bulb weight and yield per are were highly signifeant. The bull weight and yield per arere of $5-24 \mathrm{~m}$ were ako significantly ligher than any of the commerrial strams.]lants 5-34 and $5-24$ no doubt carried a very liverable rombination of quowth factors. The rigor of both of these lines was greatly reduced, however, when ithbred another generation, as is shown by the performance of $5-34-2 \mathrm{~m}$ and $5-2 t-1 \mathrm{~m}$. In each case the diffrence in mean woight of bulb between the one- and two-generation inbreds was highly significant.

['TALAAN RED)

In 1930 four lines of Italian leed that had been inbred three generations and another line that had been inbred two generations were compared with the commereial parent (table 11). Three of these lines were not significantly different from the parent variety in weight of bulb, but the weights of two were lighter. In all five romparisons the commercial parent was the same, but the data could not be averaged because a separate plot was used for each comparison.
 ('tulf., , is, \%

** Sisnificunts- cifinercat from commercial at the i-percent level.
In 1931 rommercial Italian Red was compared with $13-5-4 \mathrm{~m}$ and with 10 sib lines of $13-5-4-1-S_{1}$ (table 12). All inbred lines had lighter bulbs than the rommeread, and all but 1 of the dilfereneses were signifieant. 'lhe differences in vigor between the commereial strain and inbred lines growing in the field are shown in figure 1 .

In 1932 a number of inlored lines oll Italian Red were again compared with the commerdial parent (table 13). For the third consecutive year the bulb weights of 13-5-4m were signifieantly lighter than those of the commercial varicty. In 1930 (table 11) the line 13-52-9-6 produced bulbs of the same weight as the commereial; in 1932 two of the selections from this line which was inbred five generations produced bulbs that did not differ

signititanty in weight from the commeretit parent．The line $13-20-3 \mathrm{~m}$

 Bm and not significanly diferent from the commereal parent．
 Ithlint hed，Dutis，（＇atif．，Ith3I

1 itr＊		\｛inforthimer dislund						Y＇ictil
		－						．．．－2．．．．－n－－
		Anstr ${ }^{2} \mathrm{C}$		firmides		Giftmes		
		11		7：1		－3，71		$1: 36$
$13 i=114$		： 1		71		1930	－	$3 ; 1!$
1：$\% 11$－		1		7.		－3－1		115
1.15113		I		7：		こけ1		： 17
13 $\therefore 1 \times$		！		71		19319		1．al
$1: 3 \mathrm{j} 1 \mathrm{c}$		1		$\mathrm{E}_{6} 1$		IV（		2 219
$1: 311 \leq$		1		fiv		17		－3110
13， 13	．	1		5il		1701		$2!1$
$1: 313$	\cdot	1		151		171		－ntl
13－ 111 \％	\cdots	1		711		16t		27\％
13515	．	1	：	li		115		－112
髙 $\leqslant 11$＊		1		（i．）	－	1：20		1．12
	ins						．	
 				．	－	： 1		MS
				．		Ii）		

In 1034 commorial latian hed was compared with $13-30-3$ m（table 14．and the lather was compared with five grogens lines that had been
 5．3 pereent of that of the commervial，wherets in 10.32 it was 80 pereent．

 an additional four genemations．vigor wats mantatiod on a level with
 The same sered stoek of 13－20－3m was used for all the comparisons whon in table 14.

Table 13.--Mean weight per bulb anul zied per ace of commercial and inbred lines of Italian Red, Damis, Caluf., 1032

T.ine	Cceperntimas inbred	Butizs per mot	Mean weight	Ytekd
	Number	Nimber	Cirums	100-pound sucks
Commersind. ${ }_{\text {a }}^{\text {a }}$	$\stackrel{8}{3}$	6	378	571
13-20-311. ${ }^{\text {a }}$	2	99	- ${ }^{268}$	388
13-90-3-43-52.	\square	7	3:7	\% 5198
13-20-3-10-52,	$\sqrt{7}$	$\frac{7}{6}$	221	412
13-52-6-6 6 - ${ }^{1}$	5	71	337	6S:
13-52-9-6-5-3	5	73	33.7	618
	5	-19	309	50,
13-52-0-6-S21.)	7	240	
Differrnce rectuiterd fur simnincrabe: б-pertent level. \qquad				
1-pervent levei........	.	(-)	73	119

1 Sib limas.
${ }^{2}$ No zignilitant difterence.
Tames 14.-Mean weight per bulh of commervial awd inbred lines of Clotian Red, Dam's, Calif., 1033

Tine	Gemerations inlyed	zanlus neigherl	Menm weight	Coofferient of variation
	Number	Sumber	Girams	P^{2} ercent
Comamersini	$\stackrel{2}{0}$			
$\begin{aligned} & 13-20-3 n \\ & 13-20-3 \rightarrow 15-35 \end{aligned}$	$\frac{2}{6}$	78	204 ± 6.68 212 ± 0.37	$27.6 \pm \begin{aligned} & 29 \\ & 29\end{aligned}$
$\begin{aligned} & 13-29-3 n \\ & 13-20-33-15-8 \end{aligned}$	$\frac{9}{6}$	79		
$\begin{aligned} & 13-20-30.3 . . \\ & 13-26-3-13-53 . \end{aligned}$	$\frac{9}{6}$	$\frac{76}{76}$	299 212 12	
$\begin{aligned} & 13-20-3 m_{+3} . \\ & 13-20-3-13-54 . \end{aligned}$	$\stackrel{2}{6}$	23		23.6 ± 1.7
$\frac{13-20-3220}{13-20-3-10-5}$	${ }_{6}^{2}$	74		$\begin{array}{r} 33.5 \neq 3 . \\ 36.6 \\ \hline \end{array}$

* Signifienntly different from $13-20-3 \mathrm{~m}$ at the 5 -fercent bevel.
** Significantly different fronn 13-20-3m at. the f-jersent level.

RED 21 (CALIFORNIA EARLY RED)

The variety Red 21 (9) is an inbred line of California Early Red released by the California Agricultural Experiment Station in 1935. The pedigree number $21-22-1 \mathrm{~m}$ is used in table 15 mather than Red 21, in order to show relationships of two and six inbred generations. It has not been possible to compare these inbred lines with the commercial strain of California Early lied formerly grown in California because seed has not been available for some time, this variety having been replaced by the improved variety Red 21. In 1934, 21-22-1m was compared with 14 of its progenies inbred 6 generations (table 15). In 12 of the 14 comparisons there was cither a significant or a highly significant difference in mean weight of bulb belween $21-22-1 \mathrm{~m}$ and the 6 -generation inbreds. The fluctuation in bulb weight of $21-22-1 \mathrm{~m}$ in the different plots is rather striking. No doubt soil variation was partly responsible, but whatever the cause the effect on the 6-generation inbreds was not so pronounced as on 21-22-1m.

Table 15．－Mean weigh per bulb of inbrad lines of Californiat Early Red，Daris，Calif， 1934

Sine	Generations inlued	Bullas welyhtret	Menm weipht	Couficieat of variation
	Autaber	Number	Gramis	Pcrecnl
$21-22-146$.	$\stackrel{2}{6}$	70	169 ± 5.93	$30.6=\frac{2}{3} \cdot 8$
－1－22－1－8－S	6	70		36.4 ± 8.4
	2	$\frac{76}{77}$	169 163 103	
21－22－1－5－53．	4	7	16．3 ± 0.9	36.5 \＃ 3.3
2－22－1m．	9	78	186 ± 9.86	$39.6 \pm \underline{2}$
21－22－1－8－53．	0	78		36.4 ± 3.3
21－23－1m．	$\stackrel{2}{6}$	76	181 $=7.78$	$37.2 \pm$
21－22－1－8－S3．	0	（3）	＊15s ± 6.04	$33.1=3.2$
21－22－1m．	9	89	1133	$2 \mathrm{sc}=\underline{2}$
21－22－1－8－5	6	7		33.0 ± 3.5
21－22－1m．	$\underline{9}$	7	185 4 ： 7.17	$3 \cdot 6.6 \pm 3.1$
21－22－i－8－33．	4	－s	＊＊149 $\pm 0.1 .1$	35.2 ± 3.5
21－29－1．m，	$\stackrel{9}{6}$	9 O	292 ± 3.12	32.5
21－29－1－S－43	\％	150	＊＊ 13.10 .46	27.1 ± 1.7
	2	7！	168×0.90	30.0 ± 2.8
21－22－1－S－S	${ }^{4}$	\square		31.1 ± 25
2t－29－1m．	$\underline{2}$	7	185.5×17	$3.5 .4=3.2$
21－29－1－3－83．	1	7	＊＊1．43 $=$ i， 14	37． $\mathrm{S}^{\text {－}}$－ 3.5
21－2？．1m．	2	74		21.4 ± 2.2
	1	S1	＊ 16174	$22.8=1.5$
21－192－1m．	$\stackrel{2}{2}$	\％2	$240=5.30$	＋9， 3
21－22－1－S－31	0	6.		$333.7=3.8$
2t－22－1m．	2	153		
121－22－1－3－	f	123	＊＊1．47 $=3.80$	2 Sc .1 i （ 2,0
21－22－16．	2	7	237 ± 6.5	$24.3=2.1$
21－22－1－S－S．．	6	7	＊${ }^{+145} 5 \pm 5.52$	$24.2=2.4$
21－29－3m．	$\stackrel{9}{9}$	102	23．${ }^{\text {a }} 5.35$	28.9 ± 1.7
21－22－1～ドーム゙．	6	143	＊ 1 訋 $=3.89$	＋9．0 ± 1.9

＊＊Signilicantly chiferent from 21－22－1 in at the 1－perement level．

MEAN LOSS IN WEICHT OF BULB FOR ALL VARIETIES TESTED

The pertinent data in tables 2 to 14 have been summarized and pre－ sented in table 16 to show the rate of loss in mean weight per bulb with continuous inbreeding．Loss of weight was most pronounced in the first inbred generation，although the lots seem to show the greatest percentage of loss between the fifth and sisth inbred generations．Only a few lines that had been inbred four，five，and six generations were available for comparison．No doubt the rate of loss would be shown to be more regular if there had been a larger number of lines availabie for comparison．

Table 10．－Summary leble shominy loss of nigor with contintonts inbrcaling

Gieneration inbrer （mumber）	Comprrisons	Weight in percentate of commertital stritin
	Numbier	Percat
0．．．．．．．．．．．．．．．．．．．	ij	100000
2.	10	58.6 ± 3.85
3.	22	$720=3.60$
1	11	70.1 ± 3.04
5.	1.1	$72.9 \pm \pm .56$
8.	6	-10.0 ± 2.55

Keming: Qualty

YELAOW DANVERS FIAT

In 1924 a number of Yellow binvers Flat lines inbred 1 genemation were stored until Nowmber 11. Line 1-70. with a population of 337, had 5.6 percent of the bulbs sprouted: line 1-22. with a population of 383, had 23.5 percent of the bubs sprouted. Tine $1-22$ started io sprout before 1-10, and at the time of removal from storage the sprouted bubbs had much longer tops. Inbreeding within these lines centinued for a number of years, unsprouted bulbs alwass being selected for planting. Mother bulbs from these 2 lines were selecterl and wet in the fied and the plants were selfed in 1920., tund progenies were grown in 1926 . Fifteen sib lines of $1-10$ and 14 sil) lines of $1-22$ were stored until December 12. A considerable variation in the perecntage of eprouting vecurred (table 1) among the 1-10 sibl lines. Line 1-10-17 hated matr 3.t yerent of the bulbs sprouted, whereds line 1-10-24 had 84.t pereent sprouted. The mean number of bullss sprouted for fice $1-10$ sibl lines was 33.1 pereent and that for the $1-22$ bines. 56.4 perment. Prom the stomge behation of the progenies the mother bulb, $1-10$ appens ta have been hef erozyous for lengeth of the rest period. The $1-22$ siblines sprented cerlier and mere unifomly. The difierenee between the 2 groups wats highty significent.
By 1032 some of the proweny lines of t - 10 hath been inbred for five gemerations. These atong with lines inbred two, three, and fond genera-
 of these lines were exeeptinally goon keepers. inne 1-10-13-3 the was especially untstanding owe a periond of yatrs.

[^2]
AUSTRAJIAN BROW

In selecting inbred fines of the Australian Brown yaricty, long-keeping quality is a very important consideration. becane this variety is gencraty used th a hate-storage lype. Storaze data for lines inbred one, two and three generations for 1925, 1927, and 1420 are preented in table IS. In 1925 the inbred lines 5-21 and 5-22 did not have any of the bulbs sprouted at time of remoral from storage on December 12. Selections from these lines inbred two and thre generations kept as well as the parent lines in
 had only a smadl pereentare of bulbs sprouting. These data seem to indicate that there is moslecrease in kecping quality as a result of inbreding, because lines inbred two and three generations have kept as well as the first-generation inbreds. An the other hath certain lines, suft as 5-16 am $\overline{\mathrm{F}}-19$, and selectina from them were consistently poor keepers.

137:5		$5 \mathrm{Cl} \mathrm{S}^{7}$				193\%1			
. .-.			...- .	Widis-:-intratild las retant Now 2	Fertal -latiah:se in we-1	$\begin{aligned} & \text { Eitae } \\ & \mathrm{A}_{6} \end{aligned}$			-
$\begin{aligned} & \text { Ine } \\ & \text { ※ner } \end{aligned}$		$\begin{aligned} & \text { Lirn } \\ & \text { Sr: } \end{aligned}$	Numberof himes					th:4tM Totnd s] ly castal in wripins 	
	; brosheri.								
	the comas 								
	Jeratil			fititat	$J^{2}+5+1 / i t$			3 ent	Perceit
5-16	jfis	S-119-3	9	$11:$	n-\% ${ }^{\text {\% }}$, 5 16.**	11	\%.	21.2
- 719	5.3	2-15-6,	3	$\underline{21.11}$	\%	3-19+-4:	11	- 2	16.7
$\bar{i}-20$	1.1	-0,	:	2.1	128		!	7.2	42.9
- ${ }^{\text {a }}$ - 1	. 0	- $-31-8$.	3	. 0	10 i!	- $-2.21-\%$	1	, 0	11.4
$\overline{5}-22$	0	5-29-5	\square	6	$\therefore 0$	$\bar{\square}+{ }^{\text {a }}$	$!$	-	1.1 .0
5-23.	4.3	5-3-3	2	2. 3	131	,-man	8	${ }_{6}^{61}$	$16 . \frac{2}{4}$
-	11	- $\mathrm{n}_{4}-5$	5	23.1	33.6	S9-9-5512,	$\therefore \quad \frac{\square}{3}$	6	-20.j
5-24	20	- - 2 伐-	7	1.7	1:3	:-39-7ith.	.	28	2.5.]
To-30.	3	\therefore-30-s	4	!	(1.1)	- $-30-5$	3	.1)	12.3
5-3		531m.	1	3 :					
-739	3.4	$\cdots-3{ }^{-3}$	1	4.3	16.6	$5-3{ }^{3}$	$1)$	40	19.8
($\mathrm{a}-38$.	8. $\frac{2}{1}$	-3-33-\%	\dagger	7.1	111	5-313-	$\underline{5}$	3:3	19.3)
5-31	- 1	¢-34-S!	$\underline{3}$.	! ${ }^{1}$	- $-31-5$	$\frac{2}{1}$	1.8	11.3
5-3\%	4.9	- ${ }^{\text {a }}$:	3.1	2t.f	す-3-3	1.5	3.6	2\% 0
$5-17$.	1.1	3-17-5.	7	6	Sis	$\therefore-14$	5	6.19	-3.6
¢0\%	. 5	5-65-3it	t	6	8.6	3-6-	2	1	15,

In detemming total shrinkuge oun of atomge, only thore buthe that were acither sponted nor rothed were weiphed. This weight was compared with that of the bulbs when first placed in storage. As a rule, the least shrinkare was in those lines that had the fowest spouted bubs (table 18). Ensprouted bulls lose weight from respination, luss of moisture, and loss of the outer dry seales. The $5-24-3$ m lines were especially susceptible to fusarium rot, and the large storage losses shown by these lines in 1929 were due chiefly to this organism. (ireat uniformity in time of sprouting raists in the lines that have been inbred a number of generations.

From 1930 to 1032 the sprouting behavior of a mumber of inbred lines of Australian Brown was compared with that of the commercial strains (table 19). In 1930 the percenfage of bulbs sprouting with the exception of fines $5-24-\mathrm{im}$ and $5-31 \mathrm{~m}$ was rather low. The bulbs were removed from storage somewhat sooner in 1930 than in 1931 and 1932 ; this may account partly for the lower percentage of sprouting. In 1931 the percentage of bulls sprouting in all the stored kots, with the exception of $\tilde{0}-22 \mathrm{~m}$, was very high. This poor keping guality was dive chiefly to the
severe thrips attack which prevented the bulbs from maturing properiy． Even under these adverse conditions．however．line $5-22 \mathrm{~m}$ had only 2.4 percent ol the bulbs sprouted．In 1932 four of the inbred lines had a smaller percentage of bulbs sprouting than the best of the commercial strains．It will be noted that certain lines were consistently good keepers．
＇Гable 19．－I＇ercentage of bulbs spmouted during storage of commercial and inbred lines of Itustrolian Broum，Doris，（＇alif．，1030－32

1．ine	19：30		1931		1932	
	Rulls sincel		Bullhe siored	$\begin{aligned} & \text { Bulbs } \\ & \text { surouted } \\ & \text { Spee. 1t: } \end{aligned}$	Sulbs storest	
	Nitumber	Pocreat	Suraber	Pcremt	Number	Percent
Conmmercinizal $10 .$.	$\frac{331}{814}$	1.	${ }_{3}^{301} 110$	11.5	233	17.6
Commercial c．．．	94	3			$7{ }^{19 \%}$	
，	4	\％	\cdots	\cdots	174	Is
， 5 －24nt	\％	，	¢i．i	4.0	等年	1．6．6
¢－107m．．．．．．．．	：09\％	6.6			19	8
\％	20	i．is	112	21%	10.	1.9
	可	ii：9	Hio		238	10.3
cose	513	1．9	301	30.1	400	䢒
¢	150	－	${ }^{355}$	22.2	259	11．1）
	\cdots		1，029	H1\％	2so	1.3
5－111－1019．．．．	2，${ }^{3}$	1．：	，	13.1	¢54	15.3
5－111－133n．．．．．．	cus	2.10	157	43.1	161	3：

SWEET SPANISH

Sprouting in storage was especially variable among different inbred lines of Sweet Spanish．Records are not presented，but a typical example of the difference in amount of spronting between first－generation inbreds is shown in figure 2.

bolting Habit

The variety Sweet Spinish tends to bolt rather readily，and inbred lines behaved about the same as the parent variety，showing that the va－ riety is fairly homozygous for this character．Conversely，the rariety Italian lied has a delayed bolting habit，and the inbred lines were uni－ formly nonbolting．In the variety Yellow Danvers Flat，however，the inbred lines varied considerably in their bolting behavior．Comparisons of percentages of bolting can best be made from plants grown from dry sets，as these can easily be graded to a uniform size，thus eliminating the size factor as one of the variables．The data in table 3，column 5，indicate that all the lines except one were significantly lower in percentage of bolters than the commercial parent．Line $1-16-7-4 \mathrm{~m}$ was significantly higher than the commercial．Year after year these lines were consistently low or high in percentage of botters when compared with the parent va－ riety．

Uniformity of Size and Silape

Occasionaliy one or two genertions of inbreeding produced lines of re－ markable uniformity，but usually four or five generations were required． Line 21－22－1m of California Early Red，introduced as Red 21，showed

 lime.
remarkible umifomity for mamy important rommorial chameters after two generatons of impreding. The copherent of vantion figures in table 15 show very bete differente in unformity of size when lines inbred sin and two genctations are eomparet. 'The sane foode fre for fimes of datian Red inhred two and six qenemations (table $1+4$). The greal thitomity of size and shape brought abot in a line of Collow Danvers Fat $1-10-11-$ 2-S by inbrecting for five gemmotions is illastrated in figure 3 .

HETDRGSHS

Crosses Between Mate-FERTHE INRRED Lines

('roswes have been made between a nmber of lines to study hybrid
 were mate between make-fatile phants: the remble of some of these fatter (rowses are preented bolow.
Norkion Sollow 21-10 and Thalian Red 13-20-3-45-K, were rowed by integollinating from plant (o plam so that reciproeal rosing oe-
 Thus, the bybride beween the varieses were distributed at ratom in the
 were hybride, wherets of the proserny from the Itadian Red plants, 28
percent were hybrids. Stockton Yellow buibs weighed 242 gm . and the hybrids 775 gm , a difference of 533 gm . in favor of the hybrid (table 20). The Italian Red buibs weighed 202 gm . and the hybrids 641 gm ., a difference of 439 gm . in favor of the hybrids. The hybrid bulbs could be distinguished from the Stockton Yellow parent by their red color and globe shape and from the Italian Red pasent by their globe shape (fig. 4).

Table 20.-C.omparison of selfed lines of Slockton Yellow arul lalam Rest onioms and their hybrits, Dalis, Calif., 10S2

Variety or hybris	bertigree	Populalion	Mean weight ber fuab	Coeffisiest of vuriation	$\begin{gathered} \text { Mohar } \\ \text { equatoris! } \\ \text { ratio } \end{gathered}$
		Sumber	Grams	Percent	
	23-10 $\times 13-20-3-46-58$	76	7, 1×27	81.2 ${ }^{\text {a }}$ 2.8	0.775
Stockton Mellow \times,	21	2.4	*22 $2+2=8.0$	$51.8=2.9$	14.4873
ftalian ked \times show stamton	12-20-3-10-	29		35.4 -3.2	
fralian Red.	13-20-3-1.5-3.	203	**202 =	40.5 ± 3.0	**1. ${ }^{\text {itiof }}$

The hybrids growing among the Stockton Sellow 21-10 plants averated 134 grams beavier than those growing among the Italian Red 13-20-3-$45-\mathrm{S}_{2}$ plants. The difference in the mean weight of hybrid bulbs between the two adjoining blocks may bave been due in part to soil heterogencity but was probably due chiefly to a difference in competition between the selfs and the hybrids. The 21-10 plants were in the proper stage for harvest on July 2 and the hybrid plants on July 12 , a difference of 10

Rigure 3.- Yellow Danvers lat $1-10-11-2-S_{3}$ (inbred five generations). Note miformity of size and shape resulting fron inbreeding.

days in time of matuity. The $13-20-3-45-\mathrm{S}_{2}$ bulbs matured later than the hybrid bulbs, and for this reason competition lor the fatter was much more severe.

The butbs of both parents and the hylbids were metsured in two di-ameters-polar and equatorial-by the use of at sliding micrometer; the results are presented as the pular-equatorial ratio (table 20). The bulbs of the Stockton Iehow are oblate in shape, whereas those of Itahan hed are torpedo- or botte-shapet. The F_{1} is a shightly flattened globe, intermediate between the two parents (fig. 4).

Giant White Italman Tripoli $27-5$ and Red $21(21-22-1-8-83)$ were also crossed by interpollinating. The seed from etth variety was harvested and seeded separately, and the seedings were transplanted separately. Of the plants from the $21-22-1-8-5$, lot, 68 pereent were hybrids, and of those from the $27-5$ parents, 28 perent were hybrich: As there was no signifieant difference in the mean weight per butb of the hybrids of the reciprocal crosses, the data for the two lots of hybrids were combined (table 21). In this cross the white bulb color was incompletely dominant; the hybrids had a pinkish tint, especially in the neck region, which made it possible to identify them.

In two other erosses. Italian Ted 13-20-3-45-5.s \times Stockton Yollow Globe 36-34-45 (table 2I) and Italian Red 13-52-9-6-5 $2 \times$ italian lied 33-20-3-45-3 $=$ (table 21), the differenes between the hybrid and the parents were highly significant. In both of these erosses the lemale parent was emasculated, and the hybrid and selfed seed were harvested and planted separately.

In ecrtain other crosses the hybrid was not significantly heavier than both parents. In the cross Stockton (i36 \times Yellow (ilobe Danvers 15-108-t the hybrid was heavier than the Yellow (alobe Danvers parent but lighter than the Stockton (i36 parent (table 22). Tn the cross Stockion Yellow $21-10 \times$ Red 21 , the bulbs of the hybrid were sinnificantly heavier

Table 21.-Comparison of kurious selfel lines of onions and their hybids, Dawis, Culif., 193/4

Yaricty or hybrid

** Signifieathy different from hylorid at the i-ptreans fevel.
than those of Storkton Vellow but; mot much heavier than those of the Refl 21 parent (table 22).

Table 22.-Comburison of zorions selfed lines amd their hybrids, Dotris, Calif.

Saricte or hybrid	Pedigren	$\begin{aligned} & \text { Pop, ia: } \\ & \text { ion } \end{aligned}$	$\begin{gathered} \text { Man weiphat } \\ \text { ler bulli } \end{gathered}$	Coeftrime of variation
		Sumber	Gretiss	Procrnt
	${ }_{36-10}^{36-16} \times 15-168-1$	然	201 ± 5.25	30.8 ± 3.1
Yriow Globe Danvers.	- 19	36		25.4 ± 5.4
Storkton lollew \times lived 21	$21-10 \times 21-29-1$.	(is	20\% $=0.33$	
Storkion yellow.	23-16. ${ }^{2} \times$	$7{ }^{7}$	*17S	10.8 ± 3.7
Lterl 21.	$21-23$	76	109 ± 0.00	$27.1=0.4$

[^3]
Crosses Between a Male-Sterlie Clonal Line and MaleFertule Varieties

Data presented in the preceding section show that hybrid bulbs of harge size can be obtained by making the proper erosses. but when emaseulation is necessary to obtain crossed seed, quantity production is impractical because of the labor requirements. This disatlvantage, however, is overcome when mate-sterile varieties or clones are available for use as female parents. A male-sterilc clonal hae, italion Red $13-53$, has been available for some time and is being used experimentally for the production of hybrid seed. As described by Jones and Emsweller ($\overline{0}$), this cional line is also being used in breeding for resistance to clowny mildew. It is the most highly resistant selection found to date; the seed stems are immune, and the folitge is highly resistant. This male-sterile sclection is propagated by top sets, or bulbils. Because of its male-sterile character, mother bulbs may be interplanted in the field with made-fertile varieties. Cross-pollinating is done entirely by incects, and good yields of seed are obtained. Varieties or inbred lines, planted in alternate rows with the male-sterile plants to provide pollen, remain uncontaminated.

In 1940, Italian Red 13-53 \times Red 21 and Italian Red $13-53 \times$ Lord Howe Island were compared with their polien parents and with four other varieties at five locations in California. Yiclds per acre were determined
by the weight of the nonbolters per plot. The hybrid Italian Red 13-53 \times Red 21 produced exeeptionally harge yields at Shatter and Milpitas (table 23). Bisewhere there was no signilicant difference in yedds betiween the two hybrids. At all locations the bighest yielding hybrid outyielded by a considerable margin the best produring fommercial variety. At Shafter the Italian Red 13-53 \times Red 21 hybrid yiodded 915 100-pound sacks per arre, while Sian Joaytin, the highnet yielding commercial variety, produred 750 . At Milpitas Italian leal 13-53 \times Red 21 produced 080 100-pound sacks, white Stockton (136, the hishest yielding commerciat varicty, produced 50t. At every location the two hybrids showed a highty significant increase in yied over their respective made parents.

Thanes 23.-Yicld per acre of onion hybrids and woridies in Calfomia, 1040

That the nombolting character of Italian Red $13-53$ behaves as an incomplete dominant can be seen by comparing the hylrid Italian Red $13-53 \times$ Lord Howe Island with the highly bolting pollen parent (table 24). At atl loeations in 1940 the hybrid bolted a great deal less than Lord Howe Island, and in all comparisons the difference was highly significant. The Italian Red $13-53 \times$ Red 21 plants boited less than the Red 21

Tause 24.-Bolting of mion higheds and varictics in C'alifornia, 1040

Variety on hybrid	Phands bolting at indicateal location				
	Mippitas	Davis	3.iberty Isl:md	Trace	Sinafler
	Frecent	Percent	lectonl	Firche	Percent
L.ord IIowe Istand. Ltahan Rex 13-53 \times Lort Itowe Islatid.	4 A				
	4.2	12. 8	110.3	8.9	. 8
	4	13.1	93.0	13.5	1.8
Italian Red 13-53 $\times 14$ end 21	4,	$10 \cdot \frac{1}{1}$	34.7	3.4	i.a
Smasumguin...	S8	315	(1)	8.8	3.2
Storltion (i)w	. 0	. 0	13\%	,	. 0
Crystal Wax. .	11.0		13.8	10.5	. 0
Difference required for sinmificanes; i-persent level....					
	13.1	10.1	$\underbrace{10}_{-1.0}$	1.9	5.1 11.0
1-perembl hevin...........	1s. 1	1-1.			

[^4]parent at Nilpitas, Davis, and Tracy, but not on Liberty Island. Stockiton G36 produced practically no bolters at any of the locations. Because of mild climatic conditions very little bolting occurred at Shafter, exeept on Lord Howe Istand.

In 1941 the hylorids Italian Red 13-5̃3 \times Red 21 and Italian Red 13-53 \times Lord Howe Island and several varieties adapted to that district were grown at Shafter, Calif., (table 25). Because of the phanting arrangement it was not possible to use the data from Crystal Wixa and the inybrids in the analysis. Despite this, the differences in yield between the hybrids and the other varictios were so large that there does not seem to be any question as to their significance.

Tanle 25-Comparison of onion hubrids and wrictics in pertentage of bollers, mean

${ }^{2}$ Not included in the amalxis.
In 1242 a sufficient number of plants of Italian Red 13-53 were available to compare with the hybrids and pollen parcents (table 26). Bulbs of Italian Red 13-53 \times Lord Howe Ishand and Italian Red 13-53 \times Red 21 weighed about the same as Italian Red 13-53. The bulbs of the hybrids and Italian Red 13-53 were much heavier than those of the pollen parents.

Talbe 26.-Comjorison of onzon varicties and their hybrids in perceniage of bolters, mean weight per buth, and yielrl per acre', Davis, ('flif., A 9 /2

Variety or havirid		Boliers	Mean weight	Yield
Ied 21.	Number	Percent	Crams	$\begin{aligned} & 100 \text { - jornd } \\ & \text { sucts } \end{aligned}$
Lord Howe jsi:am.	-4,	0	167	255
Italian lead 13-53.	$\frac{98}{28}$	0	${ }^{74}$	17
	7\%	0	$2+1$ 9.10	111 412
Ltainan Red 13-53 \times Red 21:	01	0	260	
Difference required for signifigatre: i-percent level. 1-percent level...................................				
	13 18	\because	30	
		.	51	108.7

The hybrid Italian Red $13-53 \times$ Lord Howe Island bas been introduced cooperatively by the Californit Agricultural Experiment Station and the United States Department of Agriculture as California Hybrid Red No. 1 (fig. 5).

The male-sterite clonal lino Italian Red $13-53$ has made possible the study of hybrid vigor, but its use does have certain limitations in a gen-
cral program lior the production of hybrid seed, because Italian Red, the variety from which it is derived, is not widely adapted for commercial growing in the Tonited States on acrount of its late maturity and extremely poor keeping guality. A recent publicirtion by Jones ark Churke (3) disulusess the mote of inheritanee of this malesterile elmaracter and outlines a brecting provedure which makes possible the perpetuation of the malcsterije character through the seed.

> Chosses Between male-sterme and male-ferthe Inibed Lines

GENETIC INTERPRETASION OF MALESTERIHETY

According to Jones and Clatke (2), when malesterile plants of the clonal line Italian Red 13-53 were crossed with various male-Fertile phants three types of breecling behavior were observed in the F_{1} : Some progenies were entirely mak-fertile, others were entirely malc-sterile; and still others produced both male-sterile and make-icrite plants in a 1 to 1 ratio.
When a self-fertile F_{1} plant is selfeel the F_{2}

Finume $\overline{5}-A$, Lorl Finve lsiand; $B, \mathrm{~F}_{1}$ (California Hybrid hed No. 1); (', mads-sterite faliam Red. approximates the ratio 3 normal to 1 male-sterile. When a male-sterile F_{l} is backerossed to the male-fertile parent three types of searegation are obtained as in the F_{1}. When the Italian Red 33-03 malersterile parent is backerossed with an F1 male-fertile plant a 1 to 1 segregation is obtamed. In crosses between rertain F_{1} male-fertile piants as the lemale parent and the male-fertile parent line a ratio of 1 male-fertite to 1 male-sterile is oftained, but in the reciprocal buekeross when the F_{1} made-fertile plant is used as the pollen parent all the progeny are male-fertile.

These results may be accounted Cor by assuming that the male-sterile conclition rusults from an interaction between a recesive nuclear gene and a nonnuctear, or cytoptasmie, factor. On this hypothesis it is assumed that there are two types of cytoplasm. Al phants with nommal cytophasm (A) produce viable pollen. All malg-sterile plants possess the sterile type of cytoplasm (S). The experimental results throw no light on the mature of the nommelear, or cytophasmis, factor which differs in the two types. A gene for male-sterility (ms) also influenees pollen development when carried by phants with S cytophasm but has no effect when ramied by plants with N cytophasm. Consequently; the Italian Red 13-53 malesterile plants belong to the genotype $S m s m s$. Plants with N cytophasm are male-fertile always and may belong to the menolypes N Ms Ms , N Ws $m s$, or $N^{*} m s m s$, since the $m s$ gene has no effect in the N cytoplasm. Plants with the genctir ronstitution is Ms M/s and S Ms ms will also be male-fertile in spite of the S cytoplam, because they cary the dominant gene M s.

The nomuclear, or cytophasmir, factor is inherited only through the ego (maternal inheritance) and not through the male parent, presumably owing to the very small amome of eytoplasm present in the mate gamete.

 is selfed. the experted Parato is 3 nomm to 1 male-sterile.

All male-sterile F_{y} phate belong to the genotype $s{ }^{2} \mathrm{~ms}$ ms and behave the same as the original male-sterile parent. When the Italian led I3-53 male-sterile parent is backerossed with an F_{1} malc-fertile plant, S ms ms $\times S_{1} / / s m s, a 1$ to 1 sepregation is expected.

When an F_{1} mate-fertile plant, S I/s ms , is used as the female parent and backerossed to $N \mathrm{~ms}$ ms a ratio of 1 mate-fertile to 1 mole-sterike is obtained. But in the reciprocal backeross. $1 . m s m s \times N .1 / s m s$ all the progeny are male-ferlile, sime all cary 5 eytophasm. The unlike behavior of these reciprocal backeroses is critien evidene in support ol the rahelity of this hypothesis.
 gation. Second backuosses of the typest $m s$ ms \times I $m \mathrm{~m}$ ms gave all malesteriles. This ronfims the expertation that 100 -perent malesterile progenies com be obtained in repeated backeroses to at stock with the genetic constitution $I M s$ ms. As shown in the nevt seetion, this is of great practimal importanes in developing a breeding program.

Mate-stembe lines have now been developed from Italian Red 13-53 for practically all the important commerial varieties. Fortumately, make fertile phants with the genotype λ ms ms have been found in most varieties so far tested, namely, Brighm Yellow Gbobe, Early Iellow Globe, Swect Spanish, Southport White Chobe, Crystal Wax, I cllow Bemuda, Red Creole, and Storkton (136 . Phe last variely appears to be homozygous for $\lambda^{\prime} m s, m s$, as all the phants tested hare produced 100 -percent malesterile progenies when crossed with mulesterile plants. The only means of determining whether a fertite line is pure for $N m s m s$ is by a breeding test. This method of incorporating the male-sterile character of Italian Red $13-53$ into different varieties js illustrated graphically in figure 6 , the varicty Crystal Wax being used as an example. The rate at which the Crystal Wax genes are incorporated into the male-sterile line is somewhat

Female parent
(male-stería line)

Figure (5.-AIethod of reveloping male-sterile lines of Crystal Wax from thalian Red 13-53, showing the rate at which Crystal liax genes are incorporated ints the malesterile line by backernssing.
faster than inclicated in figure 6 , becuuse in all the backeross progenies selection is for the Crystal Wax type. The numbers given in the figure show the rate expected for random sampling. After being backerossed two or three times to the male-fertile parent, the male-sterile and male-fertile lines appear almost identical.
The production of hybrid onion seed of all types and in quantity is now possible. To perpetuate the pure male-sterile line two lines (a male-sterile line of the genotype $S \mathrm{~ms} m \mathrm{~s}$ and a fertile line of the genotype $N \mathrm{~ms} m \mathrm{~m}$) must be carried along. All the progeny of this cross will be male-sterile. Figure 7 illustrates the method of perpetuating the male-sterile line through the seed.
As the male-sterile plants cannot be seffed, seed is obtained by continually backcrossing to the normal, or male-fertile, line. Backerossing continues as long as the particular male-sterile line is to be perpetuated. After a few backerossings the male-sterile line should be practically identical with the male-fertile except for the sterility factor of the cytoplasm. This backeross seed makes it possible to perpetuate the malesterite line, as well as to produce the male-sterile female parents used in the production of hybrid seed.
The next step is to make crosses between the male-sterile line and other selected lines to determine which combination produces the best commercial hybrid (fig. S). The constitution of the male parent that enters

Female porent (male-sterile jine $\mathbf{S - 1}$)

Male porent (male-fertile line $\mathrm{N}-1$)

Freure 7.-Method of perpefuating a male-sterile line of the variety Crystal Wax.
into the cross for the production of rommerciul hybrid seed may be N $m s \mathrm{~ms}, N \mathrm{Ms} m \mathrm{~m}$, or $N \mathrm{~N}, \mathrm{Ms}$, the partirular one selected being based on progeny tests. The behavior of the rommercial hybrids as to fertility

Figore 8.-Method of producing hybrid seed for the commercial crop.
is not important, because the commercial crop must be grown from hybrid seed each year. It is important, however, to get a favorabie combination of growth factors.

LITERATURE CITED

(I) Brown, F. M.
1984. TABLES FOR GALCJLATING THE STANDARD ERTOR AND THE PROBABEE ERROR of the cobfficient of variabihipy. Amer. Soc. Agron. Jour. 26:65-69.
(2) Jones, H. A., and Clarke, A. T.
1943. inheripance of male steridty in the onion anj the production of hybrid seed. Amer. Soc. Hort. Sci. Proc. 43: 189-194, illus.
(3) -_ and Emsweller, S. L.
1933. methods of breeding onions. Hilgardia 7: 625-(642, illus.
(4) \ldots and Emswelleki, S. L.
1934. the use of flies as onion pollinatons. Amer. Soe. Hort. Sci. Proc. 31: 160-164, illus.
(5) -mand Emswelder, S. L.
1937. a male-sterile onion. Amer. Soc. Hort. Sci. Proc. 34: 5\$2-585.
(6) Ponten, D. R., and Leace, L. D.
1939. bleeding for resistance to onion downt mildew caused hy peronospora destructor. Higurdia 12: 531-5.50, illus.
(7) Kotowskr, F.
1926. the efficiency of self- and chose-fertility in time onton. Soc. Bot. Poloniue Acta 4 (sup.): 11-16.
(8) Magruder, R., Webster [Wester], R. E., Jones, H. A., and others.
1941. descriphions of types of phecepal american varieties of onions. U. S. Dept. Agr. Misc. Pub. 435, \$7 pp., illus.
(9) Poiter, D. R., Jones, H. A., ind Davis, G. N.
1941. newly deyeloped vegetable yabieties for des in cadifornta, Calif. Agr. Expt. Stat. Bul. 646, 26 pp., illus.

END

[^0]:

[^1]: ＊Significandly different from parent lime or variety at ōperent level．
 ＊＊Signifiantily different from parent linte or vatioty＊at 1 －deremt beval．
 ${ }^{1} \mathrm{Sj} \mathrm{j}_{2}$ lines．

[^2]:

 ${ }^{1}$ sib lines.

[^3]: * Sixuifinathy different from helrid at the 5 -therent level.

[^4]: Wot incluted in the andysis.

