

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTION TEST CHART national bureau of standaros-1963•A

Timber-Connector Joints; Their Strength and Design

By John A. Schotmw. 1 engineer, Forest Prohucts Laboratory, ${ }^{3}$ Forest Service

CONTENTS

Imtroduction

Past
 ases
'fests of fumbinental factors aftecting won-necter-joint strmbth- Codiaued.

Factors arfecting spht-ring commetor foints-Contintryl.

Load reduction for redued theckness Width of member

Strear sitress
Tensile stress
Toobled and claw-pane comectors
Derication of safe working tonds for bon-ten-
tiousd londing
Dutation of load
Edgo margin (bearina perpendieular to grain) \qquad
and margin (berthementel tarani.
Spacine of multiple coumectors berr-
ing paralle to (yrain)
Relative contribution of cott and connector.

Phacement of stot aperiags.........-...
Fixe of bote frole
Seasorting checks
Moisture condition of the wod
Net section of member.
Fuctorsatecting too hed commertor joints.
Spueies of wood.
Thickness of member
Wdah of membor (bearing perperdicular to grain).
Ent margin (hearing paralledtograin)
Spmeing of multiple comectors (bur-
ing paraike to praims
size of holt hole. \qquad
Aroistare condition of othe wond........-
Net section of member -.................-
Factors afteting cinw-plate conimector doins.

Species of woad
Direction of urniu
Pase

Quanty of wood
bain onetors berrmg puraltel to
mads
lar to grain
Actual surety faetor
Trables of safe working hoads
odiccation of working lowds and fuctors to
be considerea in their use.
Wind or carthequke lonks.
Impact forces
factor ar sisety not reduced
Special desizh wossiderations.
Exposute nid moisture condition of wood.
Grade mad quality of luaber
Londs at an anglo with the grainol waod
Size of mumber
ber \qquad
Wtcth of member -...
and distanee and spacimg.
Pircement of matiple combectors
Cross bolts.

Tests of fondamental fartors affectiag cois-nector-foint streapth.

Factors affecting split-ring combetior
jnints
Snecies of woond
Thickness or member.
Loads for optimum thickioss.

解
Edge thargin
Edge thargin
\qquad

Spacing ofmatiple comectors (bearing paralle tin (erain)

Moisture condition of the wood.......
Net section of nember................... 104
Literaturs eitad

INTRODUCTION

One of the outstanding charachersties of wood as a structural material is the facility with which it can be fabricated, and particularly the ease with which pieces can be joined together. Joint, and fastenings, however, bave always been the weakest part of timbes construction, and for that reason the Forest Products Laboratoryr

[^0]$$
569849^{\circ}-44-1
$$
in the interest of improved utilization efficiency, has for some years theen carrying on research in this field. Included were studies of joints employing sucb fastening mediums as nails, screws, bolts, lag serews, and driftpins.
When timber connectors, which are efficient mechanical devicesusually in the form of rings, plates, or disks-used in conjunction with bolts to develop timber joints of superior strength, were introduced into the United States in 1930, their possibilities werc readily recognized; but information on relative efficiency, design data, and -factors affecting their strength was lacking. In the initial investigation then undertaken by the Laboratory, the eight types of connectors which appeared most promising were selected from those available and tested with Doughs-fir and southern yellow pine. That investigation furnished basic design information on the strength of connector joints when used under optimum conditions in these two species. It also assisted in establishing tentative design values for other structural woods and in determining which types excelled under different conditions. The results of this carly study are presented in \& United States Department of Commerce bulletin entitled "Modern Comectors for Timber Construction" (7)."

The impetus to wwel construction which followed publication of the results of this early connector study brought in its wake many additional problems. Structures which previously had been limited nainly to other materials could now be erected with wood. Connectors were redesigned for greater effectiveness by incorporating the most favorable fentures of those originally tested. Other new problems concerned additional sizes of timbers, more species of wood, the use of connectors in multiple, and the strength of joints for other than optimum design conditions, involving such variables as margins and spacing. Further investigation of the many variables introduced by these new problems and developments became imperative.

Accordingly, three widely used types of connectors, representing three distinct methods of application, were selected for more intensive study. They were the split-ring, toothed-ring, and claw-plate comiectors.

Some of the outstanding principles developed as the study progressed have aiready been used to meet the increasing demand for information on this subject. The principal purpose of this bulletin is to present current design data for the three types of connectors in various sizes twhen used with different species of wood and to provide an analysis of the various factors whick affect the strength of connector joints. The presentation of this information is particularly timely owing to the great increase in volume and rapidity with which structures employing connector joints must be crected to mect our wartime needs.

TIMBER-CONNECTOR TYPES, THEIR ADVANTAGES AND USES

The three general types of timber comectors discussed in this bulletin are described broadiy as follows:

1. Split rings, which fit into precut grooves in the timber (fig. 1, A and B).

[^1]2. Toothed rings, which are forced into the timbers as the cmembers are pressed or clamped together (fig. 2, A and B).
3. Claw plates, which fit into prebored. recesses and have short teeth that are forced further into the wood. They are used singly in making timber-to-metal connections or in matched pairs (male and female) for timber-to-timber connections (fig. 3, A, B, and C). (See fig. 31.)

In a timber joint, split rings and toothed rings function similarlypart of the ring extends into the adjacent joint members. and the load is thus transmitted by shear somewhat independentily of the bolt. The female claw plates are adapted to use when the connector must lie flush with the surface of the timber. In such a connection, a large bolt fits the connector and the attached metal plate snagly. Anothar type of flush connector that is somewhat similar to the female claw plate, but without tecth, is the shear plate. These flush types of connectors are dependent on the bolt for transmitting load by shear from member to member. Shear-phate tests are not inchuded among those reported in this bulletin.

Timber connectors have established new horizons for wood construction. By facilitating the economical fabrication of large structural units, they have proved effective not only in retaining and recovering markets but in establishing bew ones as well.

The principal rdvantages of connector joints include:

1. Relatively high joimt effelency.
2. Relatively simple and practical application.
3. A minimum number of units or pieces to handle.
4. Adaptability to prefabrication for subsequent field assembly.
5. Better performance when used under adverse conditious.
6. Improved appenrance of joint with less cxposed metal.
7. Greater fire resistance because embedment of comectors in wood reduces amount of metal exposed to fire temperatures.

The principal disadraintage, particularly on small jobs, is the need for special tools for their application-the split ring and claw plate require a special tool. preferably with power equipment, to fabricate the groove and recess; the toothed ring usually recuires a special bolt and wrench to force the ring satisfactorily into the timber.
While connector joints have a relatively high efficiency, their other advantages account fully as much for their popalarity and successful application. Actually, it is possible to achieve a high-strength-joint with nails by literally stitehing wood members logether $(8,10)$. Such joints, however, not only require too much time and eflort but are also much less reliable and dependable. Bolted joints cau also be used effectively (9,14); but, while their use removes the limitation with respect to size of member that use of nails involves, they still reguire more units and ordinarily a greater weight of metal than do connectors to develop a given strength.

Represented in figure 4 are three types of joints used to transmit loads acting parallel to the grain, each with approximately the same weigh is metal. Specimen B, a bolted joint, lakes the lowest design load; specimen A, a nailed joint with bolt, not a common type, is intermediate; and specimen C, a joint with two 4 -inch connectors and a $\frac{3 / 4}{4}$-inch bolt, takes the largest load. There is nearly 1,200 pounds difference between the loads for the bolted joint and the connector joint.

4 TEGHNXCAL BULLETLN 865 , U. S. DEPT. OF AGRICULTURE

Figune 1.-A, Split-ring connector, (a) straight sided, (b) boveled; B, splitring comector assembly-connector, precut groove, boit, washer, and nut (M32889F).

Figure 2.- A, Toothed connector joint; B, toothed comector assembly -(M32890F).

Figune 3.- A, Claw-plate connector; B, claw-plate comector assembly with wood side members; C, claw-plate connector assembly with metal side members (M39056-7E).

In the connector joint (fig. 4), the safe load for the bolt alone is 2,160 pounds, or about 23 percent of that for the complete connector joint.

Designs employing connectors permit an efficient structural arrangement of members so that smaller sizes may frequentiy be used to replace timbers of large cross section. This is of advantage both because better seasoned material may be used and because smaller sizes are more readily obtainable. It is also advantageous from the forestry standpoint, since in the future more of our structural material must come from smaller trees.

The advent of timber comectors has made possible the further

Ficure 4.-Three types of joints, each with the same weight of metal. The design load with Donglas-fir or southern yellow pinc for the nailed joint with bolt (A) is 9,000 pounds; for the bolked joint (B) it is 8,400 -pounds; and for the connector with bolt (C) it is 9,560 pounds.
development of prefabricated timber structures and structural units. Since wood is stable in its longitudinal dimension, individual members. can be shop-fabricated to size and bored for bolis and connectors with such precision that, with due care, they can be assembled rapidly and efficiently on the job. An increasing number of fabricators are gaining experience and becoming familiar with these precision requirements.

A further step supplementing shop fabrication is the possibility of treating timbers with creosote or other wood preservatives subsequent to fabrication. Such treatment given after rather than before the holes are bored or the fabrication completed, permits all surfaces to absorb av adequate amount of the preservative; assuring the full effec-
tiveness of the preservative and long life and service of the timbers. Large numbers of cooling towers, oil derricks, shipyard stiuctures, trestles, forest lookout towers, and other forms of timber construction have thus ben prefabricated and treated. After treatment, the timbers are shipped to the construction site and erection proceds without the need of any on-the-site liraming.

Timber connectors are adapted primarily for transmitting loads in tension, compression, and shear. Hence, they are particularly suited for the development of efficient joints in framed timber structures where several nembers med at a common panel point, or where members must be joined or spliced. Applientions of timber connectors inciude roof trusses, bridges and teestles, towers (radio, forest lookout; water tank, and floodighting), oil dervicks, greorlstands, ski jumps, warebouses, storage racks, mill buiklings, piers and wharres, portable buildings (camp buildings), aireraft hangars, mine head frames, pylons, timber arch centering and framing, overhead cranes, coal docks, and walking beams.

Connector-built roof trusses have inciuded many types and sizes. An interesting example of prefiblricated trussed arch is that of the Plant High School gymnasium, Tampa, Fla. (fig. ö, A), which demonstrates the possibilities of using timber connectors where large bending moments nusi be provided for in the knees of the frame. The total roof span of this gymnasium is 104 feet, with a clear span between columns of 80 feet. The over-all height at the center is 35 feet and the clear beight 28 feet 8 inches.

More spectacular in size are the bowstring trusses used in a new aircraft factory in liasas (fig. $5, B$). The connector-framed trusses in the main building have a span of 140 feet. The trusses, on ab-foot centers, are designed to carry a load of 180 tons each. They were prefabricated on the Pacific Coast and transported by rail.to the building site. At the Golden Gate Intemational Exposition in San Francisco, clear arch spans of 200 feet were used.

A mold lolt for a shipbuilding company is shown in figure $5, C$. The 14 trusses, which are spaced 24 feet apart, have a span of 116 feet 2 inches.

Figure $6, A$ illustates the 60 -foot pony truss lighway bridge over Johnson Creek, Oreg. The bridge is 22 feet wide and is designed for H-15 londing in accordance with specifientions of the American Association of State Fighway Oflicials. The timbers are creosote-treated to insure long life under adverse exposure conditions.

Longer spans are, of course, possible. The Buffalo Creek Bridge at Lewisburg, Pa. (fig. 6, B), is a good example of thodern highway structure consisting of two $91 / \frac{1}{2}$ foot spans and designed for $\mathrm{H}-20$ loading. Another modern all-timber bridge using connectors is the three-hinged arch designed by United States Forest Service enginecrs and erected over the Umpqua River in the Umpqua National Forest, about 45 miles enst of Roseburg, Oreg. (fig. 6, O). It is a threebinged areh type of 135 -foot span, designed for $\mathbf{H}-15$ loading. Creosoted prefinmed timbers were used.

Trestles present an excellent opportanity for timber-connector design. The two Port Angeles, Wash., highway bridges furnish a goorl illustration of this type of structure. Ench of the bridges is 755 fect long and is made up of 26 panels of 29 feet ench (fig. 7). The maximum height is 100 fed. The bridge has a 24 -foot roadway, with side-

M39346-39339-39340F
Fiolme 5.-A. Trussect arch of Plant High School wymasitm, Tampa, Fla, (total roof 8 pan, 104 feet; clear span, 80 fect; over-all height, 35 feet; clear height, $28 \% /$ feet); B, bowstring trusees for an aircraft corpotation in hamsas (span, 140 feet, on 53 -foot cenfers) ; C. mold loft of a shiphatiding company (span of 14. trisses spaced 24 feet is uver 116 feet).

N39425-37412-31316F
Faure 6.-A, Pony truss bridge over Johnson ('reek, Malinomah Connty, Oreg. (span, 60 feet); B, Buffalo Creek bridge at Lewishurg, Pa. (two low-truss, 913 -foot spans) ; C, threc-hinged areh bridge in Umpqua National Forest, Oreg. (span, 135 fect),
wolks, and is designed for $\mathrm{E}-20$ loading. It was preframed, treated, and delivered on the job ready to erect.

Timber connectors are also used in proriding form work for the erection of concrete arch bridges. In the timber-connector centering

M2915sF
Ftgune 7.-Composite trestle-type highway bridge at Port Angeles, Wash. (length, 755 feet; maximum height, 100 feet).
for the concrete arches over the Little Miami River at Foster, Ohio (fig. 8, A), the spans range from 155 feet to 175 feet, with a rise above the springing line of 72 feet. The timbers were cut to length before delivery, but the remainder of the fabrication was done ou the job.

Because of the temporary nature of arch-centering structures, treated timbers were not used.
Lattice arch trusses with connector fastenings were used for the

M $39344-49: 4$ F
Fraure 8.- A, Timber arch centering for concrete highway bridge over Littic Miami River, Foster, Ohio, consisting of six spans ranging from 15 j to 175 feet. B, Shi jump al Soldiors Feld. Clicago, with a height at top platform of 180 feet; designed to be taken down and stored after each season's use.
buikding erected for the Superior Curling and Skating Club, Superior; Wis. A clear span of 125 leet is provided in this construction.

The timber ski jump at Soldiers Fiedd, Chicago, is an interesting structure, using timber connectors (fig. $8, B$). Not only does this

Freure 9-A. United States Forest Service lookont tower in Ottama National Forest, Mich.; B, radio tower of a station in Wisconsin (heght of lower wood section, 120 feet; over-all height, 350 (eet).
structure employ prefabricated timber framing members, but it is also designed to be disassembled and stored away after each season's use. The top platform is 180 feet high. An 8 -foot jump-off at an elevation of 92 feet is provided.
Forest lookout towers of both guyed and self-supporting construction hare been used ly the United States Forest Service, and by State and private agencies. The 100 -foot self-supporting tower of standard type, shown in figure $9, A$, was completely prefabricated in the shop, treated, and then delivered to the site for erection.

More spectacular than most uses is the application of connectors to radio tower design. The self-supporting three-legged tower erected for a radjo station at Richmond, Va., is 326 feet high. When a radio station in Wisconsin decided to increase the height of its broadeasting tower, the station's old 230 -foot stecl structure was placed upon a new 120 -foot tower buitt of creosoted timbers (fig. 9, B).

These examples, illustrating but a few of the many thousands of timber-connector structures that have been built, wili at least serve to indicate the variety of uses for which such structures are adaptable.

DESIGN OF TIMBER-CONNECTOR JOINTS

The strength of a comactor joint is dependent on the type and size of connector, species of wood, thickness and widtli of member, end distance and spacing of connectors, direction of application of the load with respect to the dircetion of the grain of the wood, and other factors.

Obviously the most efficient design of any structure employing connector joints necessitates the attainment as far as possible of balanced design, in which the size and arrangement of members are such as to secure maximum efficiency of material.

Considerable progress has been made in the theoretical stress analysis of connector joints and in correlating the results with basic data on the mechanical properties of the wood and metal (2, 11, 12). The fact remains, however, that the stress distribution is so complicated, and the assumptions involved are so often invalid, that actual tests must be relied on to provide the necessary design data. In spite of its limitations, a bricf summary of such an annlysis as it relates to observations during test may be both of interest and of value in providing a better conception of the behavior of a connector joint.

The primary stresses in the wood of the tension joint shown in figure 10 may be classified as shear, compression, and tension. The shaded areas indicate the principal part of the wood (A) subjected to shear, (B and C) subjected to compression, and (D) subjected to tension. For a tension joint with two split-ring connectors in opposite faces and a concentric bolt, bearing parallel to the grain of the wood, these areas can be expressed by the following formulas:

Shoar area:

Within core: $2 \frac{\left(\pi d_{1}{ }^{2}\right)}{4}$
Below core: $2\left[d_{2} e-12\left(\frac{\pi d_{2}^{2}}{4}\right)+2\left(\frac{a e}{2}\right)\right]$

Compression area:

$$
2\left(\frac{a d_{2}}{2}\right)+b\left(t_{1}-a\right)
$$

Tension area:

$$
t_{1} w-\left[2\left(\frac{a d_{2}}{2}\right)+b\left(t_{1}-a\right)\right]
$$

in which-
d_{3} represents inside diameter of connector.
d_{2} represents ouside diameter of connector,
e represents end distance from center of connector to end of member, a represents the depth of connector,
b represents diameter of bolt, t_{1} represents thicheness of member, w represents width of member, t_{2} represents thickness of metal.

The streagth of the joint, apart from that of the bolt and connector, is obviously controlled by one or another, or some combination, of these tiree properties.

Figure 10-Detail of a connector juint, showing portions of center member subject to shear (A), compression (B, C), and tension (D). Corresponding stresses, not shown, exist in the side members. The cross section of the splitring connector is illustrated by the solid black rectangle. For explanstion of symbols, sec text.
In applying the theory of elasticity to the distribution of these stresses in a fimber joint, neariy all the basic assumptions are upset by the anisotropic structure of the wood, by the presence of irregularities and defects such as knots and cross grain, and by the interaction between the wood and metal. A practical analysis of the stresses in the joint, therefore, resolves itself primarily into a correlation between the test loads, the character of failure, and the mechanical properties of the wood and metal. Such an analysis, while not complete or accurate, does provide a check on the test results and an aid in the interpretation of the data.

A few of the factors which affect the compressive, shear, and bensile stresses in a connector joint and their relationship to the standard properties of the material will be discussed with respeet to diflerent types of connectors. The more detailed discussion, however, perwaits to the split-ring connectors when bearing paraliel to the grain of the wood.

Compressive Stress

The area in compression in a connector joint is the projected aren of the connector plus the projected area of the intervening boll $\left[a d_{2}+b\left(t_{1}-a\right\rceil\right.$ in fg. $10, B$. The maximum compressive strength of the materina, how-ver, is not usually developed on the full projected area. The actual stress developed is dependent on the species of wood, the size and type of connector, and such other factors as sizes of bolt, boll hole, and member. For split-ring comectors bearing parallel to the grain, the load obtained when the projected area umder the connectors only (ad in fig. 10) is multiplied by the maximum crushing strength of the material parallel to grain woud rary from 65 to about 100 percent of the maximum test load. The smallest connector, 2% inches in diameter, produced the lowest ratios, and the largest, S imehes, gave the highest ratios.

If the remaining portion of the load, apart from friction, is considered to be carricel by the bolt, the average stress developed underthe bolt, when used in an exact bolt-size hole, ranges from about 100 pereent of the maximum crushing strength of the material with the thimner members to less than 25 perent with the lhiefors members. The maximum capacity of the boli is seldom realized in mosi connector joints because the maximum compressive strenyth of the material is usualy developed umder a bolt only at a slip or movement in the joim which is considerably in exeess of the slip at which the connector joint reaches its maximum loarl.

Shear Stress

The variations in bhavior of diferent sizes of split-ting connectors can also be issociated with the relative amounts of wood in shear and in compression. The ratio of the aren in slear at the base of the core within the combertor to the area in compression under the connector varies considerably for the different sizes of comnectors. The core area is a fanction of the stume of the diameter of the connector, wherens the area in compression varies directly as the diameter and depth of connector vary. For the 6 -inch split-ring compector, the ratio of core area in shear to the area in compression is about 50 percent greater than for the 2 thene split-ring comectors. Hence, when bearing parallel to the gram, the core of the $2 \%-$ inch connector shears completely at a lond considerably below the maximum of the joint, while the core of the 6 -inch comector fails in progressive shest at the maximum, or very neaty the maximum, load of the joint.

The load suscamed in shear, however, is not solely a function of the shear area, since the average shear stress usually decereases as the area increases. It camol be assumed, therefor, that, because the area of the core for the 6 -inch connetor is approximately six limes that for the 2 taineh emmector, the relative loads to produce shear finlure of the core will be in the same proportion.

The same eflect is also evident in tests with various end margins and spacings when the comectors are bearing parallel to the grain. The load required to produce shear failure outside the connector decreases with a reduction in spacing or margin, but the rate of decrease in load is not so great as the reduction in the spacing or margin.

When the comector is bearing perpendicular to the grain of the wood, both the resistance of the core to rolling shear and the bearing resistance of the wood perpendicular to the grain resist the load on the connector. While the shear area for the latge connector is greater in proportion to its diameter than for the small connector, the load does not increase in the same proportion. As the load is ipplied to the joint, the upper portion of the core which shears is resisted by the lower portion, which remains intact. Nashing and splitting of the core is thus caused. The portion of the core which splits ofl or is above the compression failtare is usually smatler, in relation to the total come aren, for the larger comectors than it is for the smaller.

Tensile Stress

The strength of the wool member in tension at the joint is also limited by lactors which are not subject to the usual theoretical analysis.

Tests of joints with metal lastenings show that the concentration of stress in the member caused by abrupt changes in the continuity of the grain produces falume in tension at a stress approximately equal to the compressive stress of clear material. In order to minimize the possibility of tension failure at the joint, therefore, the total uninterrupted tension area (fig. 10, D) of the member at the eritien section of the joint shoutd not be stressed in excess of the sater stress in compression parallel to (he grain for chear material.

Toomed and Chat-Phate Connegrohs

The behavior of the toothed comector is allected by several addi(ionad factors not encomened with the split-ring connector. The distribution of the stresses for the toothed type is further complicated by the fact that the connector does not ofler the same degree of resistance to distortion in all sections of the perimeser. At two sections on the perimeter that are at right angles to the drection of load, the corrugations and teeth on opposite sides of the comector are aligned paralle with the load and ofler greater resistane to distortion than at the sections on the perimeter where they are elgewise to the direction of lond.

Furthermore, since the thickness and depth of the motal are the same for the different diameters of the toothed contector, the effect of variations in resistance to distortion in different seetions of the perimeter is more noticeable in the larger dianeters. The test results show that the load conforms more menly to the quality of the wood with the toothed connectors of smaller diameters than with those of large diameters. An annlysis of the stresses in the toothed connector joints, therefore, most include all these variations, and an analysis of one size of connecter is not diectly applicable to other sizes.

```
45!28504--44-4
```

A somewhat similar condition exists for the claw-plate connectors. When they are used with the softer woods, the joint strength is almost directly related to the strength of the wood; but in the denser woods, which sustain a higher load, failure in the connectors becomes more pronounced. This fact almost precludes the possibility of any reasonably accurate, detailed analysis of the stress distribution in the joint.

The best test, however, of any device is its capacity to perform effectively, and the timber connector is no exception. It is necessary, therefore, in the determination of the actual load capacity of a timber connector joint to rely upon the results of accurate and comprehensive tests from which, when correlated with the fundamental properties of the material, safe working loads for practical use may be developed.

DERIVATION OF SAFE wORKING LOADS FOR LONG-CONTINUED LOADING

The working loads for counectors are derived from tests of full-scalk joints and interpretation of the resulting data in relation to other basic information on the behavior of timber. In establishing the values, particular consideration bas been given to (1) the effect of longcontinued loading as against the bricf loading period involved in the tests of joints, and (2) allowance for variability in timber quality.

Duration of Load

It is well established that the magnitude of the loads required to cause failure of timber varies with the rate at which the loads are applied or with the length of time during which they act. When, for example, a wood beam is tested by a falling weight, as in impact tests, the fiber stress developed at proportional limit is fully twiec as great as that found in standard static beading tests that occupy several minutes and are carricd out at a uniform rate of deflection and with the load continuously increasing to the maximum. In fact, the fiber stress at the proportional limit of the beam under impact exceeds the modulus of rupture in the static test. On the other land, the lond at failure in a standard static test is mach higher than the load which will cause failure von allowed to remain on a timber for a loug time, and a beam will eventually fail under a constant load only about ninesixteenths as great as the breaking load found in the standard static test ($4,15,17$). It is, therefore, essential in establishing safe working loads for long-continued or permanent londing (the safe stresses customarily given for timber) that the test loads be adjusted for duration of stress.

No adequate data are available on the effect of duration of stress on comector joints insofar as the wood is concerned. The relations for bending, as stated above, are assumed to apply.

Quality of Woon

- Tests have demonstrated that the density or quality of the wood is often the controlling factor in determining the strength of the joint. Consequently, the load carried by a connector in the laboratory test employing an average quality of wood for a species must be adjusted to allow for the lower-than-average materinl likely to be used in service.

Loads for Connectors Bearing Parallil to Grain

The recommended working loads for connectors acting paralled to the grain were derived by applying to the ultimate load, as found in test, a reduction factor which averaged 4 for split-ring and clawplate connectors and $4 / / 2$ for toothed-ring cornectors, with the additional provision that the working load for the split-ring and clawplate comectors should not exceed five-eighths of the load at the proportional limit lest load. Applicalion of the reduction factor of 4 gives values for the split-ring that are consistently less than fiveeigiths the lond at proportional limit, as found by fest; and for the claw plate, approximately five-eighths of this load. Because loadslip curves for the toothed connector do not exhtibit a well-defined proportional limit, no factor on proportional limit loads is considered, and the larger factor of $4 / 2 / 2$ was applied to ultimate load.

loads for Connegtoras Beaming Perperdicular to Gran

Tests of connectors under loads beaming perpendicular to grain have been less extensive and less numerous than those for parailel bearing, but nevertheless sufficient to establish a generally applicable relation between the two directions. This selation has been used in deriving loads for perpendicular bearing.
The ultimate test loads lor perpendicular bearing were quite variable in magnitude and were affected by such lactors as the method of support and the length of transverse member used in the tests. Consequently, ultimate load has been given less consideration for perpendicthar than for parallel bearing, and greater dependence has been placed on other factors, such as the load at proportional limit and at given slips of the joint. The recommended working loads for split-ring comectors average about one-half and those for clawplate comectors slightly less then five-eighth of the respective proportional limit loacis.

For toothed comectors the working londs beating perpendicular to the gram have the same relation to the working loads for bearing parallel to the grain that existed in comparable tests for the two directions of grain at given slips of the joint. The resulting factor on ultimate load varies considecably with size of ting and different conditions, but averages about 4.

Actual Safety Eactor

It will be realized from the preceding cliscussion that the figures quoted as the ratios between working loads and the loads found in lest are in 30 instance true factors of safety. For example, the reduction factor of 4 includes allowances for duration of stress and for variability as well as a margin for safcty. Thus, after multiplying values from test by a factor of nine-sixteenths as an allowance for a long-continued load, and by threc-lourths to cover variability, the actud factor of safety for a connector joint is on the order of $13 / 4$ ($4 \times$ $9 / 6 \times \%=11 / 6$) if the working load acts over a long period. The tests from which working loads were derived were on specimens carefully made from seasoned material, under favorable conditions, and by experienced workmen. A lower standard of workmanship, or seasoning subsequent to the fabriention of a joint made in green or unseasoned timber, would finther reduce the indicated factor of safety.

TABLES OF SATE WORKING LOADS

Species of Wood

The mechanical tests upon which the recommended working values are based wete conducted on representative species covering a wide range in properties. By correlating these data with available dala from standard tests of sranll, claar specimens (3, 4), it has been possible to establish connector design loads for all the more important commercial species.
For convenience and simplicity in design, these species have been classified into four groups in accordance with their strength in commetor joints, all species ${ }^{4}$ in any one group taking the same working values. The groupings, from lowest to highest working values, are as follows:

Grour 1 Woons (Weakese)
(imone 2 Woods

Aspen, bigtooth.
Aspen, quaking.
Basswood, Americen.
Cottonwood, northern black.
Cottonwood, eastern.
Fir, balsam.
Fir, commercial white.
Hemlock, eastern.
Pine, ponderosa.
Pine, sugar.
Pine, eastern white.
Pine, westem white.
Redcedar, western.
Sprace, Engehaman.

Grour 3 Woods

Douglas-fir tconst rexiom. ${ }^{5}$
Elm, American.
Elm, slippers:
Larch, western,
Maple, red.
Maple, silver.
Pine, sonthern yellow.
Tupelo, black.
Tupelo, water.
Sweetgum.
Sycamore, American.

Baldeypress.
Chesturt, American.
Douglas-fir (Rocky Mountain refion). ${ }^{6}$
Hemlock, westem.
Pinc, red.
Redwood.
Simuce, red.
Spruce, Sitka.
Spruce, white.
White-cedar, Port Orford.
Yellow-cedar, Alaska.
Yellowpoplar.

Ghour a Woods (Sthongest)
Ash, commercinl white.
Beech, American.
Birch, sweet.
Birch, yellow:
Douglas-if flense).
Blm, rack.
Hickory, true.
Hickory, peean.
Maple, black.
Maple, sugrar.
Oak, commercial red.
Oak, commercial white. Pine, southern yellow (dense) ${ }^{6}$

The safe working loads for various sizes of split-ring, claw-plate, and toothed-ring comectors applicable to sansoned timbers used where they will remain dry are presented in tables 1 to 3 . These londs are considered appropriate for long-continued or permanent application. It may be noted that loads vary with type and size of connector, with species and size of timber, and with direction of load relative to the grain of the cimber.

[^2]In tabulating the safe working load for a connector joint of any number of members, the unit is one connector with bolt in shear. For any joint asscmbly in which more than one connector unit are used in the contact faces with the same bote axis, the total safe working load is the sum of the safe working loads of each connector unit. For example, in tables $1-3$, in the last columm, minimum actual thickness of member is given for a joint assembly of three members employing two commectors in opposite faces with a common bolt; this assembly is equivalent to two connector units, and therefore the safe working load will in each case be twice the corresponding value shown in the columns to the left.
The loads as given apply only when the end distance is equal to or exceeds a certain minimum, and apply to each of a number of connectors in one joint only when the spacing conforms to certain requirements. Such end distances and spacings are shown in tables 4, 5 , and 6 lor the three different types of comeetor. Load reductions for other end distances and spacings are also given in these tables.
J'absen 1.--Safe working loads t for 1 split-ring connector and boll (1 connector unil) LOADS FOR BPECIES L OROTP I WEAKEST SPECLESTO

See footnotes at end of table.

Tabiee $\mathrm{I}=$-Wafe working loads L for 1 split-ring connector and bolt (1 connector-unit)Continued
LOADS FOR SPEOIES IN GROUP 2 *

Sec footnotes at emi of table.

Table 1．－Safe working loads ${ }^{1}$ for 1 split－ring connector and boll（ 1 connector unit）－ Contimued

LOADS FOR SPQOEDS WN QROOP 3：－Contmed

Connector anit			Lund when augle of loar upplication to grain is－－							
			0°	15°	$3{ }^{\circ}$	45°	60°	75°	80°	
	Inches	Itaches	Pountle	Poutuds！	Patads	Pounts	Oombts	zothds	ounds	Inchet
	$\}^{\text {a }}$（thes		5，215	4，780	4，3\％5．	3，910	3， 481	3,443	${ }^{2}, 310$	
	（1381	$\left\{{ }^{11}\right.$	5，215	1，970	4，540	4，175	3，825	3.180	3，130	2
	（ ${ }^{1}$	（11號	5,215	4，955	5， 695	4， 133	4.175	3， 310	3， 650	
		）校	6，290	5，701）	5，185	1， 065	4， 115	3,030	3， 110	
	116	） 36	15，200	5， 80.5	5，3ith	1，975	4，663	4，115	3， 730	23／6
G－inchounnectorwith		（ 11 家	6， 2.23	3， 310	5，く27	5， 2 25	4， 075	4， 48.5	4.35	
1／4－lnch thalt		， 71,5	6， 520	6， 25.5	5，${ }^{515}$	5，113	4，50］	3，880	3，410	3
	1364	9 ${ }^{2}$	6，829	6， 306	5，910	$5+455$	5， 005	5，560	4， 045	3
		1） 17 L	6＋ 820	6， $\mathrm{F}_{60} 0$	6.340	3， 2×0	5， 515	5.115	4，735	）
		732	7,825	${ }_{5}^{5}+175$	6.510	5.810	5， 215	4.605	3，910	
	（ 2	$\left\{33^{3} 1\right.$	7， 325	6，305	6， 750	6,270	5， 740	5,295	$\stackrel{4}{4}+695$	$35 / 8$
		（ 31H1］	7.825	7，435	$\overline{7}, 0-50$	0,650	6， 2×0	5，370	5， 475	）

[^3]Table 2.-Safe working loads ${ }^{1}$ for 1 toothed connector and boll (1 connector unit) LOADS FOR SPYCJES IN GROIP J (HEAKEST SIPC(ES) ${ }^{2}$

LOADS FoL APECIES IN OROUPR2

Sea foothotes at end of table.

Tabla 2.-Safe working loads ${ }^{2}$ for 1 toothed connector and boilt (1 connector unit)Continued

1,OADS FOR SPFCIES IN GROUP 3^{2}

See footuotes at end of tuble.

Table.2.-Safe working loads ${ }^{1}$ for 1 toothed. connector and bolt (1 connector unit)-
Continued
LOADS FOR SPEOIRS IN GROUP 4 (GTRONGEST SPECLES),

[^4]Table 3.-Safe working loods for 1 clow-plate connector and boll ${ }^{2}$ (1 connector unil)

SOADS FOZ SMEOINS IN GROUP $2 \pm$

See footnotes at end of table.

Table 3.-Safe working loads for 1 claw-plate connector and bolt' (1 connector unit)-Continued

LOADS FOR SPECIES IN GROUP 22 -Continued

[^5]Table 3.-Safe working loads for 1 claw-plate connector and boll ' (1 connector unit)-Continued
LOADS FOR SPECIES IN GROUP 4 (STRONOEST SPEOES) ${ }^{2}$

: The safe worting londs mpply to sensoned hrabers used ha dry, inside lochtions for a long-continurs] load. $1 t$ is assumed also that the joints ara properly designed with respect to such fentures an genterlug of cormectors, adequate end margin, and suitable spacims.

- See p. 20.

3 i 3 -mumber sasumbly, with to 2 -eomector units would therefore take double the sufe working loads indicuted in columus 4-10.

Table 4:-Strength ratio for split-ring connectors for various end margins and vacings ${ }^{1}$
END MARGIN: TENSION MEMAER
[Distance from center of connector to entl of member]

Diamelet of conngetor(inches)	Stremth ratio (percents when eud distance is (inehes)-								
	23/4	315	432	5	5312	\oint	7	8	0
	02		$\begin{aligned} & 86 \\ & 73 \\ & 73 \end{aligned}$	$\begin{aligned} & 93 \\ & \frac{9}{79} \\ & 67 \end{aligned}$	1008571	$\begin{aligned} & 100 \\ & 89 \\ & 75 \end{aligned}$	$\begin{gathered} 100 \\ \mathrm{c}_{3} 0 \\ \mathbf{B}_{3} \end{gathered}$	$\begin{gathered} 100 \\ 100 \\ 82 \end{gathered}$	-
		62							

END MAIRGN: COMIPSESSION MEMBER
Dishnae from center of connettor to end of member] \qquad

Slacing
Dislanes, center to tenter, of connectors]

Table 5.-Strength ratio for toothed connectors for various end margins and spacings ${ }^{1}$
END MAARGIN: TENSION MEMBER:

spacing

[^6]Table 6.-Strength ratio jor clato-plate connectors for various end margins and spacings ${ }^{1}$

END MARGLN: TENSION MEMBER
(Distance foum center of convector to end of ineunteri

END MAROIN: COMDRESSION MEMGER
[Distanece frode cenier of eonbector to end of memberf

SPACING
[Distance, center to crinter, of commetors)

i suatiply tha sate working Iotu of table 3 by the appropriate strenth ratio to obtain the desigu loat for the claw-plate connector when used with varfous und margins or spacings.

MODIFICATION OF WORKING LOADS AND FACTORS TO BE CONSIDERED IN THETR USE

The factors which affect the safe working loads of comnectors have either been included in deriving the tabular values or require modifiean tion of the values listed in accordanee with the provisious outlined in subsequent paragraphs.

Wind Or Earthquake Loads

In designing for wind or earthquake focees acting alone, or acting in conjunction with dead and live loads, the safe working loads for the various connectors may be increased by the following percentages, provided the number and size of comectors is not less than that required for the combination of chad and live lond alone:

[^7]
Impact Fonces

Impact may be disregarded up to the following percentage of the static effect of the live lond producing the impact:

	finghef ablime andee (erreent)
Split-ring connector, any size, bearing in any direction	300
Claw-plate commetor, any sioe, bearing parallel to grain	${ }^{4} 668$
Claw-plate commector, my size, bearing perpendicular to	$100{ }^{\prime}$
Toothed-rimg comector, 2-inch, pearing in any directio	109
Toothed-ring comector, 4-inch, bearing in any direction	350
\$ Sue fortrote, p. 31.	

One-hals of any impact lond that remains after disregarding the pereent indicated above should be inchaded with the other dead and live loads in obtaining the total foree to be considered in designing the joint.

Fagtor of Safety Not Reuoced

The procedures described above for inerasing the athowable loads on connectors for forces suddenly applied and forces of short duration do not reduce the actual factor of safety of the joint but are recommended because of the favorable behavior of wood under such forces. The differentiation among types and sizes of connector and directions of bearing is due to variations in the extent to which distortion of the metai, as well as the strengeth of the woorl, affects the ultimate strength of the joint.

Spechal Design Considerations

It is recomized that conditions of design may be encountered, with respect to the kind of load on a structure and the period of its continuation, which are oefther "Iong continued" nor "suddenly applied" and bence require or justify special consideration and possible modifications, other than those that have been indicated, of the working loads listed in tables 1 to 3 . For such conditions, it may be assumed that 90 and 80 percent of the stress which causes fuilure in 5 minutes (time usually assumed for wind load) will (cause fathere in 50 minutes and 10 hours, respectively.

Exposube and Molsture Conmeton of Wood

The loads liste! in tables 1 to 3 apply to seasoued timbers used where they will remain dry. If the exposure is such that the timbers will be more or less continuously damp or wet, two-thirds of the tabulated values should be used ($14,15,19$). The amount by which the loads should be redued to adapt them to other conditions of use is dependent apon the extent to which the exposure favors decay, required life of the structure or part, frequency and thoroughness of inspection, original cost and cost of replacements, proportion of sapwood and durability of heartwood of the species if untreated, and character and efliciency of the treatment if treated. These factors should be evaluated for each individual design. As a guide, it is suggested that, for exposure conditious of use where the timber will be occasionally wet but quickly dried, three-fourths of the tabulaled wotking loads listerd be used.

Ordinarily, before fabrication of connector joints, timbers should be seasoned to a mosture content corresponding as nearly as practical to that which they will attain in service. This is particularly desirable for material for roof trusses and other structural imits used in. dry locations, and in which shankage is an important lactor. The exigencies of construction in wartime, however, have resulted in the erection of many timber connector structures and sirucbural units employing green or inaderuately seasoned lumber. Since such lumber in most buiding installations subseguently dries out, causing shrinkage and opening of the joints, it is essenial that adequate maintenance mensures be adopted. This mantenance should include inspection of the structural units, tightening of all bolts within 3 to 6 months after crection, and repetition of this procedure within about a yenr.

Gbade and Quabety of labmen

The timber for which the working toads for comectors are applicable shouid conform to the general requirements in reqard to the quality of timber speeifed by Americon Lamber Standards ${ }^{9}$ (10). These requirements inchade provisions that all material shall be well manufactured, that no piece of exeptionally light weight shall be permitted. and that only pleces of sound wood free from any form of decay shall be acceptable.

With these recommended safe loads, it is assumed that the material at the joints is clear and relatively free from cheeks and shakes or splits. The material should be cither free from knots, of if knots are assumed to be present in the longitudimal projection of the net section within a length from the critical section of half the diameter of the comector, the area of the lenots should be subtracted from the area of the eritical section. It is also assumed that cross grain at the joint does not exeed a slope of 1 in 10 .

Loads at an Angle With the Gran of Wuod

The sale working loods for the split-ring and daw-phate comectors for intervening angles between direction of had and grain from 0° to 90° were obtaned by using a lineal relationship between the paralieland perpendicular-to-grain values. With the toothed comectors, the sale working load at an inclination to grain varics lineally, in conformity with lest results, from 0° to 45° to the grain, between the working loads paraltel with and perpendicular to the gran; but from 45° to 90° it is equal to the wommen load perpendicular to the gram.

Szze of Member

The relationship between the loads for the different thickenesses and widths of lumber is based on the test results. The loads for wood members of thicknesses and widths intermediate to those listed can be obtained by direct interpolation.

Widty of Member

The smallest width of member listed for each type and size of connector is the minimum that should be used. When the comectors

[^8]are bearing parallel to the grain, no increase in load occurs with an increase in width over the minimum. When they are bearing at any other angle to the grain, the largest widti listed is, with few exceptions, the maximum that permits an incrense in load with an inerease in width. The conditions under which a slighitly greater width can

Fioura 11.-Types of matipie-commetor joints: f . boint strength dependent upon end (e) and spacimg (s) distances; B. joint strength dependent upon end (e). clear (c), and edge (a) distances; C, joint strength dependent upon end ($($) and clear (c) distances; D, jomb strength dependent upon end (e), clear (c), and edge (a) ristances.
be assumed to withstand an increase in load are discussed with the test results (pp. 56,84 , and 100). When the connector is placed offcenter and the load is applicd continuously in one direction only, the proper working load can be decermined by considering the width of member equal to twice the edge distance (the distance between the
center of the connector and the edge of the member) toward which the load is acling, but the distance between the center of the connector and the opposite edge should not be less than half of the permissible minimum width of the member.

Thickness of Member

The least thickness of member given in tables $1-3$ for the various sizes of connectors is the minimum which should be used. except that for toothed connectors, when placed in opposite faces of a member, minimum thickness may be 1% inches, and 1 inch when in one face only. The load for members $1 / 2$ inches thick is only a few percent lower than for a thickness of 1% inches. The loads listed for the greatest thickness of member in each type and size of connector unit are the maximum londs to be used for all thicker material.

END DISTANCE AND SPACING

The values in the tables apply when the distance of the connector from the end of the member (end distance) and the spacing between connectors m multiple joints are not factors in the strength of the joint (fig. 11, A, e and s). When the end distance or spacing for connectors bearing paralle! to the grain is less than that required to develop the full load, the proper eedured working load for design may be obinined by multiplying the tabuhted working loads by the appropriate strength ratio, given in tables 4,5 , and 6 . For example the load for a 4 -inch split-ring comector bearing parallel to the grain, when placed 7 or more inches from the end of a Douglas-fir tension member which is $15 / 8$ inches in thickness, is 4,780 pomads. When the end distance (distance between the end of the timber and the center of the comector) is only $4 t^{2}$ inches, the strength ratio (table 4) is 0.73 and the lond equals $0.73 \times 4,780=3,490$ pounds. The method for determining the end distance when the end of the member is not at right angles to the length is given in the discussion of end margin (p.63)

PLACEMENT OF MULTIPLE CONNECTORS

The placement of connectors in a multiple joint involves the consideration of several factors which have not been adequately determined. Preliminary investigations, however, logether with the observed behavior of single connector joints lested with variables which simulate those in a multiple joint, fumish a basis for some suggested design practices.

When two or more comectors in the same face of a member are in a line at right angles to the grain of a member and are bearing parallel to the grain (fig. 11, C), the clear distance (c) betiween the comnectors should not be less than one-half inch.

When two or more connectors are acting perpendicular to the grain and are spaced on a line at right angles to the length of the member (fig. 11, B), the rules for the widti of member and edge distances (p. 33) used with one connector are applicable to the edge distances. The clear distance between the connectors (c) should be equal to the clear distance from the edge of the limber toward which the load is acting to the connector nearest this edge (c).

Investigation of multipic-connector joints bearing perpendicularto the grain have not been suficiently compreinensive to include all of the variables of placement and loading conditions which may be encountered in service, and design procedure will depend ou intercomecting elements and location of the joirt in the structure. In a joint with two or more connectors spaced on a line parallel to the grain and with the load aeting perpendicalar to the grain (fig. 11, D), the avaibable data indicate that the clear spacing between adjacent connectors (c) should not be less than 1 inch and that the total lomd used should ber equal to the full load of one connector, plus one-thired this amount for each additional connector.

In a joint of this type somewhat more favomble results are obtained in tests if the comectors are stagyered so that they do not ath along the same line with respect to the grain of the transverse member.

The placement of connectors in joints with members at right angles to each other is subject to the minimm limitation of either member. It is virtually impossible to set up general rules regarding the alignment, spacing, and margin of connectors to cover all possible directions of the applied loast. The designer must rely upon a sense of proportion and fitness in applying the rules set forth to a condition of loading that is within the limits diseussed.

CROSS BOLTS

The use of cross bolts at or nemr the end of timbers joined with comectors, or at intermediate panel points, may frecuently be desirable to provide additional salfety or to assist in reinforcing members that have, through change in moisture entent in service, developed checks to an undesimble degree.

NET SECTION

The stress in the net area (whether in tension or eompression), which is the areal remaining at the critical section after subtracting the projected area of the comectors and bolt from the full erosssectional area of the member. should not exeed the safe stress of clear materinh in compression parallel to the grain. Additional information on the methorl of determining the net sertions for the diflerent types of commetors is given on page 73. for the split-ring connectors; page 89. For the toothed connectors; and page 104 , for the chaw-plate connectors.

EXAMPLES OF COMAECTOR-JOINT DESLGN

(1) Calculate the safe working strength of a tension joint of seasoned coast-type Douglas-fir in which two pieves 3 sis inches thick and $5 \frac{1}{2}$ inches wide are joined end to end by means of side plates 15\% inches thick, 5 ? inches wide, and 28 inches long, when four 4 -inch split-ring comertors and two $\frac{3}{4}$ inech both are used. In this arrangement, two eonnectors and a concentric bolt are placed symmetrically on either side of the butt joint at a distance of 7 inches from the ends of the members and side plates. This end distance, as shown in table 4 , is adequate to develop the full design load.
The working load given in table 1 for one 4 -inch split-ring connector, when used in one face of a Douglas-fir member 1_{88}^{56} inches thick or
as one of two connectors used in opposite faces of a member 3 inches thick，is 4,780 pounds．The safe load of the joint for two connectors equals $2 \times 4,780=9,560$ pounds．
（2）Calculate the safe working strength of the joint in example（1） when the side plates are 16 inches instead of 28 inches in length， By placing the comectors holfway between the ends of the side plates and the butt joint，the end distance is 4 inches．The strength ratio as interpolated from values given in table 4 for a 4 －inch end distance is 0.68 ，and the safe foad accordingly watals $0.68 \times 0,560=6,500$ pomads．
（3）Caleulate the safe working strength of a joint of seasoned south－ ern yellow pine in which two tension side members 1 事 inches thick nud 5 ！＇s inches wide are joined at right angles to opposite faces of a center timber $3{ }_{6}^{5}$ inches thick and $\overline{5}$ ！inches wide by means of two 4 －ineh split－ring connectors and a ${ }_{3}$－inch bolt．

The load for one of two 4 －inch split－ring eomectors used in op－ posite faces of a menter 3 inches thick amf 5 is inches wide and bear－ ing perpendicular to the grain is 2,775 pounds（tal）le 1）．The load for one comector bearing paralled to the grain in one face of a side member 1 多 inches thick and with an end distance of 7 inches is 4,780 pounds（table 1）．The salle lond of the joine，which is governed by the load in the center member．eytuals $2 \times 2,77$ an，or 5,500 pounds．
（4）Calculate the salfe working strength of the joint in example （3）when the end distance from the end of the side plates overlapping the center member to the center of the bolt hole is 3 instead of 7 inches．
The strength ratio for an ond distance of 3 最 inches is 0.62 （table 4）． The load for one 4 －inch split－ring connector ill the side member， hence，equals $0.62 \times 4,780=2,964$ pounds．This is latger than the working load for one connector in the center member．The strength of the joint，therefore，is still governed by the load in the center member and，as before，is $\overline{0}$, ajo pounds．

TESTS OF FENDAMENTAL FACTORS AFPECTING CONNECTOR－JOINT STRENGTH

The detaiter information that follows，obtained primarily from tests of split－ring，toothed，and claw－plate connectors，involves such varinbles，aside from the comector itself，as species of wood，thick－ ness and width of member，end margin，spacing，and moisture content． Some of these factors affect the strength of the joint regartless of the direction of the applied load with respect to the grain of the wood， while others are involved only when the load is applied either paralled or perpendicular to the grain．In addition to the investigation of these factors，others which are peculiar to each type of comector， such as the groove diameter for the split－ring connectors，were also studied．Supplementary tests，made to determine the effect of some experimental vaciables involved in the test methods，as，for example， length of span between the blocks supporting the transverse member when the load is applied perpendicular to the grain of the wood，are not discussed in detail here．
The tests were of two general types．In one，the load was applied parallel to the grain of the wood；in the other，perpendicular to the grain．

Each test assembly consisted of three members-one center and two side members. All members were of wood except for the metal side plates tested with claw-plate connectors. Figure 12 illustrates :typical parallel and perpendicular arrangements of test assemblies. For tests at other angles to the grain, the center member was supported at different angles to the side members.

In the parallel-to-grain tests, the load was applied in either compression or tension, depending on the variable studied. For the perpendicular-to-grain tests, the center timber rested upon supports near its ends, and the load was applied to the side members.
Two connector units, one between each of the side membets and the center timber, were used in all tests except when four connectors were used to determine the effect of spacing.
The specimens were of seasoned material, with the exception of those used to determine the effect of variations in moisture content of the wood on the strength of the joinks. All timbers were practically

Fiaure 12.- A, Connector-test specimen to which load was appied paralfel to the grain; \mathcal{B}, connector-test specimen to which had was applied perpendicular to the grain.
clear and free from checks. When possible, the specimens were carefully matched in quality for all tests made on a given variable. Control specimens eut from each member were tested in accordance with standard laboratory procedure to determine the strength characteristics of the material. These control tests consisted of a determination of the specific gravity, moisture content, and the compression strength of the wood paraliel to grain. For some members, shear tests and tests of compression perpendicular to the grain were also inciuded.

The amount of slip in the joint between each of the side timbers and the center timber was determined with dial gages gradtated to 0.001 inch. In most of the tests, the slip was measured from the beginning of the application of load, but in some the dials were set at zero at an initinl loarl of 250 to 500 pounds, depending upon the ultimate capacily of the joint. Load was applied continnously, and readings of the slip were taken at increments of such magnitude as
to give a suitable load-slip curve. The rate of descent of the movable head of the testing machine was within the range of 0.283 to 0.382 inch per minute, the exact speed used depending upon the type of test. The general behavior of the joint under load, the first drop of the beam of the testing machine, the kind of failure, and similar details were noted and recorded. The loads recorded at the first drop of the beam mark the first interruption of the increase in load and appear to be associated with shear of the core within the connector. The loads listed as maximum are the highest loads obtained within or at a slip in the joint of 0.60 inch, beyond which lests were not continued.

The bolts used with the comectors were of the common type, with square heads, obtained from hardware suppliers.
With few exceptions, the split-ring, toothed, and claw-plate connectors are considered separately in the following presentation. Various types and sizes of connectors developed in Europe, and tested with Douglas-fir and southern yellow pine under standard conditions at the Forest Products Laboratory, are discussed in an earlier publication (\%). Some of these connectors were similar in design to American types, and the results of these carlier tests are, when applicable, incluted in this publication.

Factors Afrecting Sphit-Ring Connegtor Joints

The split-ring connectors used in this investigation are plain, lowcarbon steel ${ }^{20}$ rings of rectangular cross section, with a tongue-andslot junction in the perimeter. They are fitted to half their depth into precut grooves in the contacting faces of overlapping wood members.

The dimensions of the comectors used in the tests, and the dimensions of all grooves except those in which the effect of differences in groove diameter was studied, are set forth in table 7.

Table 7.-Dimensions of connectors and grooves used in tes/s of split-ring connectors

Dimensions of conoretors			Dimensions of grooves		
Lnside dismeter, closerl (inches)	Deptb	$\begin{gathered} \text { Thickuess } \\ \text { of } \\ \text { mets? } \end{gathered}$	inside diamater ${ }^{1}$	Depts	Width
25	Inches 0.75	Incres 0.150 0.0	Inches 2.56	Inches 0.376	inches
4.0	1.00	. 187	4.08	. 800	. 21
6.0	1. 25	. 250	6. 12	. 825	27
8.0..	1. 50	. 312	8.16	. 760	. 34

- For southern yellow plae in specios tests bearing paraflel to the yrain, the inside diameters of the ring yrooves were varied from the dimensions giverthere, as folbws: $25 / 5$-inch connector, 2.52 to 2.60 indebs by 0.02 -inch increments; 4 -inch connector, from 4.00 to 4.22 inches by 0.0 -inch inerements; 6 -inch onncetor, from 6.02 to 0.18 inches by 0.04 -inch inerements, separate tests being made for each. Grooves for the 8 -inch connector were the same size for all species.

The factors affecting the strength of the joint, studied with different sizes of split-ring connectors, were (1) species of wood; (2) the direction of the applied force with reference to the grain of the wood; (3) the thickness and (4) width of timber; (5) edge and (6) end

[^9]margins; (7) spacing between connectors; (8) size of ring groove; (9) position: of the tongue-nad-slot junction of the connector with respect to direction of the grain of the vood (position in the groove); (10) size of bolt hole; (11) moisture condition of the timber, and (12) the effect of checks.

M26775F
Figume 13..... Method of emndering compressive test of conncetor joint with load applied parallel to the grain of the wood. In preparing test specimens for some of the larger comector sizes, the required wood thickness was obtained by laminating the members as shown.

SPECIES OF YOOD

BEARING PAFALSELA TO GRAIN

To determine the strength of the joint using various sizes of splitring connectors with different species of wood when bearing parallel to the grain. Lests were made using redwood, baldeypress, Douglas-fir, southern yellow pine, white onk, and yellow birch. The baldcypress
and southern yellow pine used came from two different shipments which had a particularly wide range in density.
The widtins of the specimens were $3 \%, 5 \%, 7 \%$, and 9% inches for the $2 \frac{1}{2}-4-, 6$-, and 8 -inch connectors, respectively: The thickness of the center member for the $2 \frac{12}{2}$-inch connector varied from 4 to 5 inches and the thicknesses of the sidc members from 2 to $21 / 2$ inches. The thicknesses of the center and side members for all other connector sizes were 5 and $21 / 2$ inches.

The length of the members for the $2 \frac{1}{2}$-inch connector was 13 inches, with the side members ovelnpping the center member by 8 inches. The bolt and commectors were placed in the center of the overlapped lengtin as shown in figure 13. For the 4-, 6 -, and 8 -inch connectors, the side and ceater members were 17, 21, and 24 inches long, respectively, and wore overlapped by 11, 15, and 20 inches, respectively.
As indicated in table 7 , the inside diameters of the grooves were the same for all species except sonthern yellow pine. The same number of tests was made for each different inside groove diameter for that species as for each comector size of the other species. These tests provided information on the effect of variations in the diameter of the ring groove, which will be discussed elsewhere in that connection.

With these exceptions, five tests were made for each species of wood and size of comnector. The materinl for each species was of approximately the same quality for all counectors. After completion of the main test of the comector joint, moisture and specific-gravity determinations were made on the material. Also, compression-paralle-to-grain tests were made on standard specimens cut from pieces which adioined the major test specimens in the member. Tests of control specimens, which are not included in the tables, were also made for some of the species in shear parallel to the grain.
Although a number of the different strength properties of wood determine the resistance to lateral displacement of connectors, the tests show that the specific gravity of wood is a better criterion of the strength of the joint than any other single property (6). Fior example, when a connector joint is bearing parallel to the grain, the maximum crushing strength of the wood is an important properly affecting the strength of the joint, but the specific gravity of the wood affords a more satisfactory criterion of the actual test load. Both the proportional limit loads and the maximum loads inerense directly with specific gravity, as shown by figures 14,15 , and 16 . The relationships are expressed by the general equation:

$$
P=K G
$$

in which-
$P=$ the load, in pounds, for two comectors and one bolt, obtained in a test of short duration.
$K \doteq a$ constant derived by test.
$G=$ specific gravity of the wood, oven dry, based on volume at test.
By this equation, working loads for the different sizes of split-zing comnectors can be estabiished for any one species from the specific gravity. Inherent characteristics may, however, cause some species to give values somewhat above or below the equation values.

- Differences in specific gravity within a species are, in general, reflected by about the same relationslip in load that is obtained among species.

The proportional limit load is approximately one-half to two-thirds of the maximum load for various species of wood and sizes of connectors (fig. 17). This proportional limit load was obtrined at an average slip of approximately 0.06 inch for the species tested. The average slip at the maximum loads was $0.55,0.42,0.20$, and 0.13 for the 2%, 4 -, 6 -, and 8 -inch connectors, respectively.

Figune 14.-Relation between load bearing parallel to the grain and specific -gravity of air-dry wood for a split-ring connector joint consisting of two 4 -inch connectors and $a 3$-inch bolt. The solid and open symbols for the same species indicate marked differences in specific gravity.

The loads at first drop for the $2 \frac{1}{2}$-inch connectors were about 25 percent higher than the proportional limit loads and averaged about 75 percent of the maximum loads. As the size of connector increased, however, the loads at first drop approached the maximum, until the two were almost equal for the 8 -inch connector.

After the cores had sheared, the split-ring connectors continued to
function as metal bands around solid wood cores, the final joint failure at maximum load for the smaller connectors consisting of bending of the bolt and crushing of the wood on the frees of the members under the connectors and the bolt.

Figure 15.-Relation between proportional limit load bearing paraliel to the grain and specific gravity of air-dry wood for split-ring connector joints consigting of two connectors and a singie bolt, in each of four sizes. The solid and open symbols for the same speeies indicate marked differences in specifier gavity

When the slip at maximum load exceeded 0.60 inch, the load at this slip was taken as the maximum. The actual maximum load was only slightly greater, since the load at this point was increased very littile with relatively large increases in slip.

In thö tests in which the maximum load was reached at a slip greater thañ 0.20 inch, the load as a rule did not increase appreciably with additional increases in slip.

The initial slip, or that part of the slip which, when the ring is coming into full bearing, is not associated with clastic distortion, aver-

Figore 16.-- Relation between maximum load bearing parallel to the grain and specific gravity of air-dry wood for split-ring joints consisting of two connectors and a bolf, in each of four sizes. The solid and open symbols for the same species indicate narked differencea in specific gravily.
aged about 0.019 inch. Starting at the origin, the load-slip curve fillets into the elastic portion of the curve at about 0.03 -inch slip and about one-shird of the proportional limit load. With initial slip, load at 0.03 -inch slip, and the load and slip at proportional limit given, it is possible to obtain the approximate slip in the joint for given toads
below the proportional limit. The amount of initial slip and the slip at proportional limit, however, vary somewhat with species, being slightly greater in the softer than in the denser woods, especially for the larger size rings. The size of the ring groove diameter and that of

Figdre 17.- Relation between load and slip in split-ring comector joint, for an individual test specimen; bearing parallel to the grain of air-dry wood.
the bolt hole, disenssed elsewhere, also have an eflect on the amount of slippage in the joint.

The average results of the tests on different species are presented in table 8.

Table 8.-Effect of wood species on strength of S-membei, split-ring connector joints, bearing either parallel or perpendicular to grain 1
LOADS AOTING PARALLEL TO THE GRAIN

LOADS ACTLAC PERPENDUCUAB TO TUE GRAN

24-inch connectors; $/ 2$ incli bote Redwood. Douglas-fir
Southern yellow pine?
A-Inch conmectors; 8/-inch bolt? Redwood.
sonthern yellow plae

[^10]Whased on the wefght of gven-dry wod and the volume at time of test.
a The intinl part of the slip not assochated with elastie distortion.

- A verage of 15 tests
a verage of 4 tests.
Average of 3 tests.
- Avernge of fi tests.

BFARING PERPENDICUEAR TO GRAIN

The test set up for a joint with the load applied perpendicular to the grain of the prineipal chord member is shown in figure 18. The widths of the specimens were $3 \%, 5 \%$ and 7% inches for the $2 \%-4-$, and 6 -inch connectors, respectively. As will be pointed out in grater detail later, the loads perpendicular to the grain vary considerably with the widths of the members and the distance the connector is placed from the edge of the transverse chord timber toward which the

Figure 18.- Method of conducting compressive test of comector joint with load applied perpendienlar to gram of transverse member.
load is acting. The widths of nembers are the same as those used in the tests, with the lond acting parallel to the grain of all members, and are considered the minimum widths in which comectors of the various diameters should be used.

The distances between the blocks supporting the center member in test were 13, 16, and 20 inches for the $212,4-$ and 6 -inch connectors, respectively. Tests of comector joints with different span lengths
have shown that the distance between the blocks supporting the center member has no material effect on the load, providing it is greater than twice the width of the members. The side members bearing at right angles to the transverse chord member were of sufficient length to eliminate all effects of end margin. The inside diameters of the grooves used with the 2 ! 2,4 -, and 6 -inch comectors averaged $2.56,4.08$, and 6.12 inches, respectively.
The loads for comector joints bearing perpendicular to the grain reffect, in gencral, the same eclation to specific gravity as when the bearing is parallel with the grain. Other lactors, such as the direction of the growth rings with respect to the applied load, tend to muke the values more erntic; but an malysis of all the tests made perpendicular to the grain, including those of lable S, shows that, when other factors are comparable, the loads vary almost, directly as the specific gravity of the wood.
The values for joints in which the load was perpendicular to the grain were appreciably lower than those in which the load was parallet to the grain. The slope of the load-slip curve is also less. This was reflected in the lower intial slip and the larger slip at the proportional limit, as well as in the decrease in the ratio of perpendieular to parallel ralues with am increase in slip.

The maximum load and the lond at first drop of the beam of the testing machine were usually the same, but occasionally a drop accompanied a minor failure before the maximum load was reached. Increases in load beyond the proportional limit produced a series of small splits in the side faces of the transverse chord member that extended longitudinally from the comector. Some bulging and splitting below the comectors in the lower face of the tansverse chord member also occured. In continuing the test beyond the maximum load, the transverse chord member usually sheaved from the center to one end along a split near the center of the height at a load corresponding to about threc-fourths the maximum, and at a.slip about twice that at maximum boad. The cores, as a rule, did not shear of completely in the transverse chord member. Rather, the upper half sheared ofl as far as the horizontal split, while the lower hatf remained intact. No perecptible failures occurred in the core or other parts of the side members.

While several factors were given consideration in determining the relationship between the loads when bearing perpendicular to the grain and when bearing paraliel to the grain, most significance was attached to the values at proportional limit. When the bearing is paralle to grain, the load at the first drop is comparatively low for the smailer connectors and, consequently, the ratios between the perpendicular and parallel values are very high. The ratios between the perpendicular and parallel values at given slips and at maximum serve as an indication of the relative working loads but are often affected by other factors, such as metiod of test and fit of the comectors in the grooves.

An analysis of the results of the tests recorded in table 8 and of tests made in connection with other studies shows that, for the width of member used, the perpendicular-to-grain values are 58 percent of the parallel-to-grain values for the 2 li- and 4 -inch comectors, and 50 percent for the 6 -inch comnectors.

[^11]While no tests of the 8 -inch connector were included in this series, previous tests on a similar comector, and the general relationship between the perpendicular and parallel values for lings of other diameters, give a ratio of 42 percent between the two directions of grain when used in timbers which are $9 \frac{1 / 2}{2}$ inches in width.

bearing at various angles to grain

Previous tests made on the Locher integral split-ring connectors with the lond applied at angles of $0^{\circ}, 2211^{\circ}, 45^{\circ}, 671_{2}^{\circ}$, and 90° with the grain of the center chord member show that, while the dala are rather erratic, the assumption of a uniform reduction in lond from 0° to 90° with the grain is not appreciably in error (7). While similar tests were not made on the split-ring connector used in this study, the two types function in much the stime manuer. It appears reasonible, therefore, that, lor the spliwring comectors used, a uniform reduetion in load is applicable from 0° to 90° with the direction of the grain of the eenter member. 'The values for various grain directions presented in tables i to 3 were prepared on this jasis.

THICKNESS OF MEMBER

The tests to determine the effect of thickness of member were made in tension with $21 / 2$ and 4 -inch split-ring connectors bearing parallel to the grain of southern yellow pine specimens. The test specimens consisted of two short side members attached to opposite sides of a long center member near one end.

The thickness of the center, or main member, was varied from 3 inch to 3 inches, by $1 / 4-$ or $1,2 n^{2}$ inch increments, for the $21 / 2$ inch comertors; and from 1 inch to 6 inches, by 1 - or 1 -inch inerements, for the 4 -inch conmertors. In the center members of minimum thiekness the grooves severed the comection between the core and the remaining timber. When the center member was 3 inches or more in thickness, the side pieces were hitf as thick. When it was less than 3 inches they were $11 / 2$ inches. The width of the members was kept constent at 3% and 5% inches for the 2 and 4 -inch connectors, respectively.

In the test. one end of the center member was suspended from the upper head of the testing machine and loud was applied through the ends of the overlapping side members. The influence of variation in material was minimized by using the same center member for several tests, the used portion being removed after each test. Ample end margin was provided in all members to eliminate the effect of this variable.

It may be seen from table 9 and figure 19 that the maximum load increases with an incrense in thicinness of member to approximately 2 inches for the 2 2-inch conmectors, and to 3 inches for the 4 -ineln conneetors. For greater thicknesses the maximum load remains fairly constant. The proportional limit load also increases with an increase in thickness of the nember but renches a constant value at a relatively smaller thickness.

In a similar series of tests in which the center piece as well as the side pieces was silbjected to compression, the loads at proportional limit and maximum were comparable to the values given in table 9 for all thicknesses greater than 1 inch for the 2 h-inch connectors and $11 / 2$ inches for the 4 -inch connectors.

Table 9-Effect of thichness of members on the sirenglh. of S-member split-ring connector joints, bearing parallel to grain, southern yellow pine ${ }^{1}$
24 -NCH CONNEOTORS; MNOH BOLT; MEMBERS 3 IS INCHES WIDE

Figune 19.-Relation belween load and thickness of timber for three-member split-ring counctor joints bearing parallel to the grain of air-dry southern yellow pine: A, With $21 / 2$-inch connectors; B_{1} with 4 -inch conmectors.

The failure consisted, in general, of shearing of the cores when there was one-fourth inch or more of material between the grooves in opposite faces, bending of the bolt, and emshing of the wood under the bolt and comectors. With the $2 / 2$ inch connectors, the crushing was accompanied by spitting in members 2 to $1 / 2$ inches and less in thickness; and, with the 4 -inch comaectors, in members approximately $2 \frac{1}{2}$ inches or less in thickness. In some anxiliary tests made with insufficient end margins, shearing of the members below the connectors, accompanjed by some splitting, occurred for nearly all thicknessses at lower loads.

LOADS FOR OPGHMUM THICKNESS

The load on the comnector joint consists of the foad on the comnectors supplemented by that on the bolt. Since the slip of the joint at the proportional limit and that at maximum loads are usually different for the bolf from those for the connectors, the full load of both is not always developed when the two are used torether. 'Tests made with bolts show that the lond and slip at the proportional limit for a givensize bolt are approximately the same for all thicknesses of member greater than four or five times the chameter of the bolt (14). The maximum load on the bolt increases almost in proportion to the increase in thickness of member but occurs at an incrensingly greater slip. When the boit is used in conjunction with connectors, the slip of the joint determines the extent to which the bolt supplements the load on the comectors. The portion of the maximum load of the joint carried by a $\frac{2}{2}$-inch bolt when used with a pair of $2 / 2 / 2$-inch connectors apparently increases very !ittle with additional increases in thickness of member over 2 inehes. The amount contributed to the maximum lond by a 3 -inch bolt when used with a pair of 4 -inch comectors appears to have reached a constant value with a member 3 inches in thickness. With decrenses in thickness below these values, the maximum load of the joint decreases at an increasing rate, since the bearing area under the bolt is less and splitting occurs in the members under the comectors.

From am amlysis of these tests of threc-member assemblies, showing that a 2 -inch thickness of member is required to develop the optimum load with the $2 \frac{1}{2}$-inch comectors and $\frac{1}{2}$-inch bolt and a 3 -inch thickness with the 4 -inch connectors and $\frac{3}{4}$-inch bolt, it may be reekoned that the thickness recquired to attain the optimum load with two 6 -inch connectors and a 3 -inch bolt is 3% inches. When connectors are placed in only one face of a member, the thickness required to develop the optimum load for oue connector is one-half of these values, plus one-eighth inch.

LOAD REDUCTION FOR REDUCED THICKNESS

For loads less than the optimum the member should not be reduced in thickness below a certain absolute minimum. When $2^{\frac{1}{2}-\text { or } 4 \text {-inch }}$ connectors are used in pairs, this minimum thickness should be onehalf inch greater than the sum of the depths of the two oppositely placed ring grooves. With the 6 -inch connectors, the net distance between the bottom of the ring grooves should be three-fourths inch. When comnectors are placed in only one face of a timber, the ring grooves for the $2 \frac{12}{2}$ and 4 -inch connectors at the minimum thickness should lack one-half inch, and for the 6 -inch connector, three-fourths inch, of penetrating the piece.

The safe load at these minimum thicknesses should be about twothirds of the optimum load. For intermediate thicknesses, the load ifor the $21 / 2-$ and 6 -inch connectors can be obtained by straight-line interpolation. For the 4 -inch connector used in opposite faces of a member, the load for thicknesses between 2% inches and the minimum of $1 / 2 / 2$ inches can be obtained by straight-line interpolation, the load at $2 \frac{5}{3}$ inches being taken as 98.2 percent of the optimum load.

WID'H OF MEDBER
 benimng parallel to grain

The minimum width of member recommended for use with the 232 , 4 -, and 6 -inch split-ring comectors is nominal 4 -, 6 -, and 8 -inch material. Tests on joints with comectors bearing parallel to the grain were made to determine the effect of variations in width above and below these requirements. The study included both $2 \%-$ and 4 -inch connectors, which were placed in the center of the width of southern yellow pine specimens. The widths used in the tests with the $2 \frac{1}{2}$-inch comectors were $27 / 33 / 8$, and 438 inches; and with the 4 -inch connectors, $4 \frac{3}{6}, 5 \frac{2}{2}$, and $6 \frac{1}{2}$ inches. The smallest width of specimen tested for ench size of connector was equal to the outside diameter of the connectors.

The results (table 10) show that an increase in width over the minimum widths recommended is accompanied by a small increase in maximum load. The increase in the proportional limit load is not significant, and the londs at given slips are about the same. The slight bulging or spreading of the specimen at the connectors, which frequently occurs at maximum load when the 21% and 4 -inch connectors are tested with the recommended nominal 4 - and 6 -inch material, respectively, is not present when the specimens are wider.
TABLe 10.-Effect of widlh of nembers on strength of S-member, split-ring connector joints, bearing parallel to grain, southorn yellow pine : 23% INOE CONNECTORS WITH $3\{-\mathrm{HNOH}$ BOLT,
[Thickness or members (incties): Center 2sf; sides 3 \$6]

	Properties of specimens		Inflialsip:	Load a! 0,0,3meh slip	Propertional limit		First drop		Masfmuma or load al 0.60inch slip	
	Molsturc content				Lorad	8lip	Load	Slip	Losal	Sitp
	${ }_{12.2}$		${ }^{17}$.	${ }_{5} \mathrm{Lb}$.	Lb.					
	12.2	$\begin{array}{ll}0.532 \\ .574 & 8.029 \\ .858\end{array}$	0.013	5, 510	11.330	0.051	15,620	0.11	18,230	0.31
348.	12.4	. $562,8.400$		8, 8.600	11, 230	. 048	15, 350	. 09	22, 250	60
-		\cdots	. 000	8,600	12, 0 P0		26,280	. 07	$33_{6} 60$. 60

[^12]When the specimens were 2% and $4 \frac{3}{8}$ inches in width for the $21 / 2-$ and 4 -inch connectors, respectively, the maximum loads were from 80 to 85 percent of those obtained with widths of $35 / 8$ and $5 \frac{1}{2}$ inches. The proportional limit loads were also somewhat reduced, the values ranging from 90 to 95 percent of those obtained in nominal 4 - and 6 -inch material, respectively. The use of narrow members, where the comector protrudes through the edges of the timber, is not, however, recommended, even when allowance is made in design for a reduction in load. This type of joint is too readily accessible to moisture and its attendant evils. The tests indicate that when the commetor is not precisely centered on the timber, the strength of the joint, apart from the effect of eccentricity, is not greatly impaired.

When two or more comectors are placed side by side in the same parallel joint, the edge margin (distance from the center of the connector nearest the edge to the edge of the timber) should be $11 / 36,23 / 4$ and $33 / 4$ inches, respectively, for the $21 / 2-, 4$-, and 6 -inch connectors. The clear, lateral spacing between comectors in adjacent rows should be at least onc-half inch. When the width of the member exceeds these minimum requirements for edge margin and spacing, the connectors should preferably be placed so that the excess width is distributed proportionately.

BDARING PEIPENDICULAR TO GRAIN
The heterogeneous character of wood causes a considerably different behavior of connectors when bearing porpendicular to the grain than when bearing parallel to the grain. This is, in general, reflected in the difference in load on comectors between the two directions of grain and is also evident in such variables as width of member.

The tests with split-ring comectors bearing parallel to the grain have demonstrated that the loads for the various sizes increase very little with increases in width of member over the minimum nominal lumber widths required. When bearing is perpendicular to the grain, however, increases in width of member are accompanied by a definite increase in load.

Tests to determine the effect of width of member on the strength of joints bearing perpendicular to the grain were made with $21 / 2$ and $4-$ inch connectors in matched specimens of southern yellow pine. The comectors were placed in the center of the width of the transverse member, which ranged in width from 2% to $55 \% 2$ inches for the 2%-inch connector and from $4 \frac{3 / 8}{8}$ to 7 inches for the 4 -inch connector. The thicknesses of the transverse chord member and side members were constant for ail tests with each size of connector, and the widths of the side members were always sufficient to develop the full strength of the transverse member. The span length, or distance between the inside edges of the blocks supporting the center member, was 13 and 16 inches for the 2% and 4 -inch connectors, respectively (fig. 18).

In the smallest width of transverse chord member used which was equal to the outside diameter of the connector, the center piece split out below the connectors at maximum load, and compression and tension failures in the specimens were frequent. For greater widths at loads beyond the proportional limit, a series of surface splits occurred which extended longitudinally along the sides of the center piece each way from the connector. As the test progressed, splitting continued up to and beyond the maximum load, finally culminating in shear to
one end of the specimen well after the maximum load had been passed. The upper half of the core usually sheared free in the fransverse chord member, while the portion below the center of the connector continued to adhere to the timber.

The results of the tests of split-ring connectors employed with different widths of specimens appear in table 11 and are shown graphically in figure 20 . The values are somewhat eratie, but, when differences in quality of materina are taken into consideration, a comparison of the loads for different widths at slips of 0.04 and 0.08 inch, and at the proportional limit and maximum foad, show an average increase of about 10 percent for each 1 -inch increase in width of member over the minimum widths required for each size of connector. The increase in lond at proportional limit was somewhat less than 10 percent but at maximum was correspondingly greater. Tests made on members wider than those included in this series indicate that this relationship applies at least up to a width of 6 inches for the 2% inch comector and up to 8 inches for the 4 -inch comnector. Tests which are not included in the table have also shown that it is applicable up to a width of 10 inches with the 6 -inch comector.

The values at given ships less than 0.03 inch were approximately the same for all except the smallest widths tested, which were lower. The first drop in load occured at the maximum load for nearly all tests except those for the smallest widths, where the load at first drop of beam was slightly below the maximum.

Table 11.-Effect of width of members on strength of 8 -member, sptit-ring connector joints, bearing perpendicular to grain, southern yellow pine '

2\%-NCH CONNECTURS WHOH
[Thicknoss of members (inches): Center, 258; stales, 15/a]

436-47	11.7	0.642	11.2	0. 5 2t 2	8,800	0.019	2, 275	10,019	6.087	17.540	0.21
$3-51 / 4$	12.1	. 612	11.3	. .554	8, 608	. 010	2,430	13, 107	. 0.001	13,850	. 20
5 512	12.2	. 678	11.1	- 548	8, 432	. 012	3,700	13,833	. 081	10, 330	15
8515	123	. E.a	11.1	. 548	9, 107	. 017	\#, 150	14, fith	.030	21,7519	18
$7-51 / 2$	11. 1	. 435	11. 4	. 531	3,627	. 016	3, 770	15, 610	. 083	20, 1\%	. 18

[^13]

Fioure 20.-Relation between load and width of tiniber for 3 -member, split-ring connector joints bearing perpendicular to the grain of air-dry southern yellow pine.

The loads for specimens with transverse chord members equal in width to the outside diameter of the comnectors average about threcfourths of the loads for the $21 / 2$ - and 4 -inch connectors in widths of $35 / 8$ and $51 / 2$ inches, respectively. Widths of members less than the nominal lumber widths of 4,6 , and 8 inches are not recommended, however, for use with the various sizes of connectors. The type of failure does not warrant the use of smaller widths, even with reduced design loads.

edge maigin (beaming peripendicular to grain)

The edge margin, or the distance the comnector is placed from the edge of the timber when bearing perpendicular to the grain of the wood has a significant influence on the strength of the joint.

For $2 \%, 4$ - and 6 -inch connectors centered in members with minimum nominal widths of 4,6 , and 8 inches, respectively, the proper edge margin is half the wicth of the limber, or $13 / 2,23$, and $33 / 4$ inches, respectively. This is the minimum edge margin recommended, either at the edge of the member toward which the load is acting or at the opposite edge.

Table 12- Effect of edpe margin on strength of 3-3:ember, split-ring connector joints, bearing perpendicular to grain, southern yellow pine ${ }^{1}$ $23 / 2 N C H$ CONNECTORS: $1 / 2-1 N C H$ BOLT,
[Member dimensions (inches): Width, 396; thickness, center 41/2, sides 21/

4-INCH CONNEOTORS; 3 -INCH BOLT ${ }^{2}$
[Momber dimensions (huches): Width, 51 ; thickness, center 5, sldes 21/2]

2.25	123	0. 569	11.2	0.552	8,5046	0.003	5,540	12,830			
2.45	12.	+560	120	. 5.58	8, 773	. 007	4,510	${ }_{15}{ }^{12,830}$	0.07	21,050 22.020	0.18
2.85	12.4	- 569	12.1	. 570	8, 738	. 0000	5, 200	15, 500	. 08	23, 730	. 24
2.85-1.	12.0	. 567	12.0	. 602	8.551	. 022	6.770	18, 330	. 07	24, 230	. 16
3.25.....-	13.0	. 577	12.4	- 573	8,548 $\mathbf{8 , 4 8 7}$. 0006	5, 5 5	17, 0×0	. 8	20,350	. 20
						. 0008	5,830	13, 500	. 08	30,330	24

1 Values are averages of 3 tests.
${ }^{2}$ The diameter of the boit hole was the sumo as the nominal clameter of bolt.
3 Distance from edge of timber toward which load is acting to center of boit bols.
B Based on the weight of oven-dry wood and the volume at thre of test.
s The initial patt of the slip not associated with clastic distortion.

- The load end slip at erst drop were approximately the same as that at che maxitaum.

The tests to determine the effect of variation in edge margin beyond these limits were made with soutbern yellow pine specimens in which the margin was varied by small increments from 1.46 inches to 2.14 inches for the $2 \frac{1}{2}$-inch connector in a member 35% inches wide, and from 2.25 to 3.25 inches for the 4 -inch connector in a member $5 \frac{1}{2}$ inches wide.

Minimum margins brought the outside edge of the connector flush with the edge of the timber.
The results (table 12) show that the inerease in load on the connectors for edge margins greater than the recommended minimum is dependent primarily on the amount of edge margin in the direction toward which the load is acting and is not lowered by the lack of an equivalent margin on the opposite edge. When the connector is placed off-center, the lond corresponds approximately to that obtained in a member which is twice the width of the elge margin on the side of the members toward which the load is acting, provided the margin on the opposite edge is at least equivalent to the recommended minimum.
At intermediate angles to the grain, the load may be obtained by using a straight-fine relationship between the load at 0° and 90°, as given in table 1 , where the effect of differences in width and edge margins have been included.

EN1) MAHGIN (BEARING PARALEEL TO GRAIN)

The end margin, or distance between the center of the bolt hole and the end of the timber, has considerable influence on the behavior of the joint when the connectors are beating parallel to the grain of the wood. To evaluate the magnitude of this influence, three series of tests were made on the 2 and 4 -inch split-ring connectors in southem yollow pine specimens with variable end margins.
ln one series, both the side and center members were in tension (fig. 21); in the other two, the center member was in tension and the side members were in compression. In the first series, equivalent end margins were used for both the side and center members, the side members overlapping the eenter by twice the end margin. In the second and third series, the long center member was held in tension while the load was applied in compression to the ends of the shorter, overlapping side pieces. The comnectors were placed in the center of the length of the side pieces, the end margin being effective only in the center piece. The end margins tested ranger from $1 / \frac{1}{2}$ to $7 / 2$ inches for the $21 / 2$-inch connectors and from $21 / 4$ to $8 \frac{1}{4}$ inches for the 4 -inch connectors. The smallest end margin brought the outside edge of the connector flush with the end of the timber.

The material for each series was matched throughout the entire range of end margins tested, but the end margins used with the different methods of testing did not always correspond. 'In table 13, the three series are grouped. The thicknesses and widths of the members used in these tests were ample to eliminate any deleterious effect of these variables.
Figure 22 shows the proportional limit and maximum loads for 2% - and 4 -inch connectors with different end margins. The maximum load increases approximately as the end margin increases, from the smallest margin which incorporates the entire connector in the timber to about 6 inches for the 2%-inch connectors and $71 / 4$ inches for the 4 -inch connectors. For end margins greater than 6 and $7 \frac{1}{4}$ inches for the $2 y_{2}$ - and 4 -inch connectors, the maximum load remains fairly constant. The proportional limit lond remains constant for end margins greater than 4 and $53 /$ inches for the $21 / 2$ - and 4 -inch connectors but decreases with a decrease in end margin below these limits.

The failures which accompanied the maximum load when the end margin was small consisted of shear along the projection of the connectors and bolt. Shear along the projection of the comnectors was frequently accompanied by splitting through the bolt hole. When the end margin was sufficient to overcome shear failure and splitting through the bolt hole, failure oceured as crushing below the connectors and bolt.

Figure 21.- Method of conducting tension tests of connector joint with toad applied parallel to the grain of the wood.

An analysis of the individual lests shows that a normal load-slip curve was produced and that for the $2 y$-inch combetor failure consisted primarily of ceushing at an average end margin of about $5 / 2$ inches, though slightly higher loads were obtained with larger encl margins. For the 4 -inch connector, nomal lond-slip curves and crushing of the wood were produced at and average end margin of about 7 inches.

Tests were also made with the $234-$ and 4 -inch connectors in different thicknesses of timber at end margits of 1% and 2% times the connector diameter. With an end margin of $1 / 2 \mathrm{~h}^{2}$ times the diameter of the connector, the failure at maximum load consisted of shear along the projection ol the comectors lor all thicknesses of timber and frequently was accompanied by splitting through the boll hole. When the end

Table 13.-Effec of end margin on strogh of 3-member, splitring connector joints bearing parallel to grain, southern yellow pine

Figure 22.--Relation between load and end margin for a split-rimg connector joint bearing in tension parallel to the grain of air-dry southern yellow pine. A, two $2 \frac{1}{2}$-inch connectors and a $\frac{1}{2}$-inch bolt; B, two t-inch connectors and a 3/4-inch boll.
margin was 24 times the diameter of the connector, shear and splitting occurred at maximum load in the thinner members; but the failure in the members 3 inches or more in thickness with the 2%-inch connector consisted primarily of crushing. The ratios between the loads at end margins of $1 / 2$ and $22 / 4$ times the diameter of the connector with the thicker members correspond to those given in table 13.

The results of the tests, and an analysis of compression and shear stresses in the joints made of seasoned anchecked matecial, show that the end margin reguired to produce a maximum load beyond which an increase in end margin is no longer an important factor is equal to the nominal diameter of the connector, plus 3 inches.

When the end margin is less than this optimum, the safe working load is obviously lower. The tests show that the load is reduced very uniformly from unity to 62.5 percent at half the optimum end margins; hence the load for intervening end margins may be obtained by direct interpolation between these values. It is not advisable to use end margins having less than balf the optimum walues.

When the end surface of a timber is not at right angles to the length, the end margin, measured parallel to the center line of the piece from any point in the center half of the connector diameter that is perpendicular to the center line of the piece, shall not be less than the end margin required for a square-cut member. The clear distance between the connector and any point on the sloping end of the timber should at no time be less than the permitted edge margin.

spacing of multeple connectors (bearing parallel to grain)

The longitudinal spacing between split-ring connectors when beating parallel to the grain of the member was investigated with the $2 y-$ and 4 -inch sizes in southern yellow pine specimens. Four connectors were used in each joint, two being placed symmetrically between each side member and the center member. The longitudinal center-to-center spacing between the $2 z^{\prime}$-inch connectors was varied from 3 to 7 inches by 1 -inch increments and between the 4 -inch connectors from $4 / 2$ to $10 / 2$ inches by $1 / 2$ inch increments. In the control tests made in conjunction with this serres, only two connectors were used in each joint. The specimens were of sulficient size to eliminate the effect of thickness of member and end margin.
The failures of the joints varied with the different spacings. With the 23_{2}-inch connectors, the wood sheared between the connectors nt 3 -, 4-, and δ-inch center-to-center spacings. At a 6 -inch spacing the shear failure was less pronounced, and at 7 inches it was almost entirely eliminated. With the 4 -inch connectors, the wood sheared at spacings of $4 \frac{1}{2}, 6$, and $7 / 2 / 2$ inches in all tests. At a spacing of 9 inches only a few specimens sheared, and at 10% inches the shear failure was eliminated.

The results of the tests, with supplementary information, are given in table 14. The relation between the maximum loads and the different spacings is shown graplically in figure 23. Since it was impossible to avoid slight variations in the quality of the material used for the yarious spacings, the maximum loads shown on the curves were adjusted from the test values by a direct ratio of the specific gravity of the material used with each spacing to the average specific gravity of the group. With an increase of spacing, the maximum load in-
ereases from the smallest spacing to a constant value at a spacing of approximately 6 㐌 inches with the 2 dinch connectors and of slightly more than 9 inches with the a-inch connectors. 'Jhe proportional limit lond also inereases with an incense in spacing but renches a constant valae at a smaller spacing than does the maximum.

Table 14. Eifect on strengh of joints of lougitudinal spacing of 2 pairs of symmetrically placed sphil-ring comectors bearimi marallet to grain, southern yellow pine:

A-LNOH CONNECDORS WITH Bi-INOH HOLS
[Afenter dimensiuns [inches): Widh, what thickny , center f, sides 295]

Control:	12.4	0. 5 \%	$\overline{7}+786$:	(1. 0200	8, 670	26, 670	0.0515	37,606	0.12	40, 050	0.54
-1/2	12.2	. 5.53	S, $034{ }^{\text {i }}$	+ U1t1	15,100	L6, 6 ()	- $00^{4} 3$	03, 1370	. 10	63, 070	, 10
6	12.4	. 559	7, 931	. 016	18.400	53.000	. $0^{3} 1$	60, 70	. 09	69, $7^{\prime \prime} 0$. 09
7%	12,4	, 500	7, 884	+018	18.800	31, 330	+ 059	72, 230	. 09	74, ${ }^{5} 40$. 20
9	12.4	. 530	7.823	.013	24, 333	5ti, 500	. 0.54	80.470	. 09	S3. ${ }^{100}$. 32
10312, --..	$1 \stackrel{4}{4} 4$. 5321	7,106	.014	15,6	31, 010	, 03.	i-1, 320	. 10	78.770	. 43

1 Volues are ayerages of 3 tests for each spacing amil controi.
2 Dishane from tenter to center of bolt hodes. Condrol tests were mate with only 2 symmetriculy placed

3 Based on the welaht if urpheiry wood and the volume at time of lest.
T The inithat part of the silp not nsseceated with plastie Jistortion.
The results of the tests and non analysis of the stresses in the member at the joint show that the center-to-enter spacing required for the full load on the comectors is npproximately 3 inches plus $1,1 / 2$ times the nominal diameter of the corinectors. For spacings less than this the safe working load for the second pair of comnectors shond be reduces uniformly from unity at the optimum spacing to 50 percent at a spacing equal to the nominal diameter of the connectors phas seven-cighthe inch lor the 2 w-and 4 -inch connectors and 1 inch for the 6 -inch eommetors. For example, when wwo 2 -inch connectors are spaced $33 i$ inches longitadinally (with the gram) and adeguate end margin is provided, the sate lond is 100 percent of the design lond for one comector plis 50 pereent of the design load for the second comector; i. e., the total load on the joint is 75 percent of the design load lor two connectors.

Figure 23.- Refation between maximum load am longitudinal spacing for a split-ring joint consisting of four connectors and bwo bolts, bearing paraltel to the grain of air-dry southern yellow pine. (Cesresponding ma;imum load for two $2^{\text {thench }}$ connectors with bolt is 20,930 pounds, and for two 4 -inch comector with bolt is 40,680 pounds.)

RELATIVE CONTRIBUTION OF BOLT AND CONNECTOR

To detemine how much of the joint strength of 23^{-}and 4 -inch split-ring connectors is dependent on the bolt and how much on the connector, matched specimens of southern yellow pine were tested with the bolt alone, the connector alone, and the bolt and connector together. A $1 / 2$-inch bolt was used with the 2 ? 2 -inch split-ring connectors and a $3 / 4$-inch bolt with the 4 -inch connectors. For the 2 !e-inch connectors, the width of the specimens was 3% inches; the thickness of the center picee was 2% inethes and that of the sides 13 inches. For the 4 -inch commectors, the width of specimens was $5 \frac{1}{2}$ inches, the thickness of the center piece was 3% inches, and that of each side piece 1% inches.

In the tests with the connectors alone, the pieces wore held in place with bolts passing on the outside of the specimens through metal plates projecting beyond the outer edges of the side pieces.

For the joints with the 2 , 2 -inch comectors and $\frac{1}{2}$-inch bolt (table 15), the sum of the load on the boll and connectors, tested separately,

```
059840
```

was about 10 percent greater in the larger slips than the load for the two when tested together. At small slips of 0.01 to 0.03 inch, it was 25 to 50 percent greater.

Tiable 15.-Test results of split-ring connectors showing respective contributions to joint strength by bolt and connectors

Test		$\begin{gathered} \text { 3/finch } \\ \text { bolt } \end{gathered}$	2handi connector	Bolt and emnuector
Load at 0.04-inel slif	punts	2, 750	7, 140	8.803
Load at prothertional limit		${ }^{2}$	0, 0.063	cile
Load at maximam		S. 170		
Stipal maximum	inctres	0. 6161	0.202	0. Com
			$\begin{aligned} & \text { 4-finch } \\ & \text { sonmector } \end{aligned}$	Bolt athl chnnector
Load at 0.0.inch sip	pounds	3.900	11,3x	11,300
Load st protortional limit		5, $2 \times 1 \times 5$		22,000
Load at maximum	minmes	15.270	${ }_{33,000}^{0.005}$:	40.659
Slip at maxtmum	inctles	0.6)	0.108	0.60

The load on the boit and comector joint at a stip of 0.04 inch is about three times that obtained on the bolt alone; at the proportional limit it is 4 , and at the maximum it is somewhat less than 3 . Compared with the load on the connectors alone, the complete joint assembly enrried about 24 percent greater load at 0.34 -inch slip, 15 percent at proportional limit, and 38 percent at maximam.

For the 4 -inch comectors, the satio between the load on the bolt and comector joine and that on the bolt alone is about 5 at the proportional limit and somewhat less than 3 at the maximum.

In these lests. the sum of the londs on the boll and on the connectors used separately was lager than the load for a joint containing both comectors and bolt. An apparem reason for this is that the bearing area under the bolt in a connecter joint is redered when the cores fail by shear. The friction chement may also be involved to some extent. sine it was not completely isolated.

The slip in the joint associated with the maximum loads is much smaller for the comectors thone than for the bolt alone. After the connectors have reached their maximm load, they continue to carry about the same load with an increase in slip. The load on the bolt, however, contimues to imerase with an increase in slip until it reaches its maximum at a mach hager distortion. As a result, the bolt earries a somewhat greater proportion of the total load at the larger slips than it does at the smaller slips.

The ratio belween the safe working loads for a split-ring connector joint and for a bolted joint is not a constant, primarily because the safe working loads for the comnectors are gemerally based on the maximum test loads, while the safe loads for bolts are determined by the proportional limit load. Other factors which affeed the artio are the size of comector and bolt, thickness of member, and direction of application of the load with respect to the grain of the wood. While the tests show that the lond at proportional limit for a bolt and comector joint is from four to fire times that for a bolt alone, and at
maximum is about theec times that for a bolt alone, the ratio between the nssigned safe loads is not necessarily comparable. The safe load on a : !e-inch boit bearing parallel to the grain in southern yeliow pine specimens of 258 inch thickness and connected with wood splice plates is 1,050 pounds (14). The safe load for a pair of $21 / 2$-inch split -ing connectors and a \% Binch bolt, as given in table 1 , is 4,960 pounds, or 4.7 times that of a boll alone. The safe load on a $\frac{1}{4}-\mathrm{inch}$ bolt in a 3 3/x-inch piece connected with wood splice plates is 2,325 pounds. The safe load for an pair of 4 -ineh split-ring comectors and a 3 -inch bolt bearing paralle to the grain is 9,560 pounds, or 4.1 limes that of the bolt illone.

DAAMETER OF THE GROOVE

The circular grooves for the split-ring combectors ate usually cut slightly larger in diameter than the connector and are 0.02 to 0.03 inch wider than the thickness of the metal. When inserted into the grooves, the comectors must therefore be spread. The opening at the tongue-and-slol joint in the perimeter permits changes in the diameter of the comector, with subsequent changes in the dimension of the wood.

The effect of different groove diameters was determined by tests on the $2!z$. $4-$, and 6 -ineh eonnectors bearing parallel and perpendicular to the grain of southern yeliow pine specimens (table 16). In these tests the width of the groore was constant for cach size of connector, while the inside diamters of the grooves were varied by five increments from approximntely 100 to 104 percent of the inside dianeters of the connestors.

The tests show that the diameter of the groove has no appreciable effect on either the proporional limit or maximum loads of the connectors, providing some spreal exists and the diancter of the groove is not so large as to disengrage the tongue-and-shot joint in the perimeter of the connector. When the load is acting parallel to the gram, the slips associated with the proportional limit loads and with given loads of less than the proportional limit are somewhat greater for the larger groove diameters. When the load is acting perpendicular to the grain, this difference is not exident.

Any variation in the moisture content of the wood subsequent to fabrication should be anticipated when the groove is cut. With seasoned materinl, and for most practicable purposes, an inside groove diameter of approximately 102 pereent of the inside ring diameter can be used.

MLACEMENT OF SLOT OPENUNGS

Tests to determine the effect of the orientation of the congue-andslot opening with respect to the direction of application of load were made with the 4 -inch split-ring connectors bearing parallel to the grain of southern yellow pine specimens.

The specimens were prepared in the usual manner from matched materinl. The tongue-and-slot joints in the comectors were placed at angles of $0^{\circ} .45^{\circ}$, and 90° to a line through the center of the face of the member and parallel to the direction of the applied load.

Table 16:-Effect of diameter of groove on strength of $\$^{-m e m b e r, ~ s p l i t-r i n g ~ c o n n e c t o r ~ j o i n t s, ~ b e a r i n g ~ e i t h e r ~ p a r a l l e l ~ o r ~ p e r p e n d i c u l a r ~ t o ~ g r a i n, ~}$ soulhern yellow pine ${ }^{1}$
LOADS ACITNG PARALLEL TO GRAIN

LOADS ACPLNO PERPEADIOULAR JO GRAIN

1 Values are a verages of 3 tests.
2 Inside diameter of connector closed; diameter of bolt hole same as nominal diameter of bolt.
3 For
${ }^{3}$ For loads acting perpendicular to grain the properties are for the center timber only;
those for the side timbers were approximately the same.
Based on the weight of oven-dry wood and the volume at time of test. 3. The initial part of the slip not associated with elastic distortion.

The results of the tests show that the proportional limit and maximum values are not greatly affected by the position of the tongue-and-slot joint. At the proportional limit load of 24,000 pounds, the lip of the joint was slighlly less when the tonguc-and-slot was placed at 90°, or nearest the edge of the timber; but, for given loads of less thas 18,000 pounds, the slip was somewhat less at 0° than at the other positions.

Small variations caused by the position of the tongue and slot were eliminated in all other bests by placing it nearest the edges of the members which-were stressed parallel to the grain.

SIZE OF BOLAT HOLE

In the majority of tests made with the split-ring connector, the bolt hoie was equal in diameter to the nominal diameter of the bolt. This permitted a small clearance between the bolt and the bolt hole, since the actual diameter of the bolt is usually somewhat smaller than its nominal diameter. In practice, however, the bolt holes are often bored slightly larger then the nominal diameter of the bolt to facilitate assembly.

Finuri 24.--Elfeer of size of boll hoke on the toad at various slips, as shown by ratio of lowd A to lond B, for joints consisting of two 4 -inch split-ring comnectors and a $3 / 4$-inch bolt, bearing parallel to the grain of air-dry southern yellow pine. Λ, bolt hole one-sixteenth inch larger than bolt; B, bolt hole exact size of bolt.

Tests to determine the efficet of an oversize bolt hole were made with the 4 -inch split-ring connectors and a nominal $\frac{3}{3}$-inch bolt bearing parallel to the grain of matched southern yellow pine specimens. The bolt hole in half of the six specimens tested was three-fourths inch in diameter and, in the other half, thirteen-sixteenths inch in diameter.

There is no appreciable difference in loads for the two types of joint at given slips greater than 0.12 inch, or after the first drop in load (table 17 and fig. 24). For smaller slips, the loads for the joint with the oversized bolt hole are lower. Conversely, the slips at a given load are greater. At 11,000 pounds, the slip in the joint with the oversized bolt hole was 6.048 inch, or about 17 percent more than the slip of 0.041 inch with the exact-size bolt hole.
The lond at the proportional limit and the maximum load for the joint with he oversized bolt hole were each about 95 percent of the corresponding load with the exact-size bolt hole and came at a slightly greater slip.

Table 17.-Effect of $1 / \mathrm{e}$-inch oversized boll hole on strength of S-member, split-ring connector bearing parallel to grain, southern yellow pine ${ }^{\perp}$

Item	34-inch liolt hole (0.736inch bolt)	13 forinch bolt brole (0.733meh bolt)
Properties of eprecimeas:		
Moisture content--..---.-....... percent	11.6	11.6
	0.604	0.518
Results of ects:		
Tritial slip 3 \qquad inelres	0. 029	0.030
	6. 830	4, 220
Proportional limit:		
	28,330 0	26,670
	+3, 600	
Maximam on lomi magheriveh stly:		
		$53,900$

 tucmbers (inches): Widh 5 省; thickness, center 5 , sides 2%.
t Based on the weight of oven-der wood and the volume at lithe of test.
3 The inilin! part of the slipy adi associated with elastie distortion.

SEASONING CHECKS

For the stady of the eflect of checks on the strength of sphit-ring connector joints, it was difficult to obtain material with uatural checks that in other respects closely matched unchecked material. In order to secure satisfactory matching, saw keris were cut lengthwise through the center of the adjoining laces of the center and side members of some of the specimens to simulate natural checking. These saw kerfs were approximately one-sixteenth inch wide and $/ / 2$, $3 / 4,1$, and $1 / 2 / 2$ inches deep for the different tests. The tests were made in compression with the 4 -inch split-ring connectors bearing parallel with and perpendicular to the grain of southern yellow pine specimens. The width of the specimens was $5 / 1 / 2$ inches, and the thicknesses of the center and side pieces were 5 and $2 / 3$ inches, respectively.

The tests showed that the saw kerls had practically no effect on the immediate strength of the joints. The effect of duration of stress was not determined; neither was the behnvior of specimens witil saw kerfs studied to determine whether it resembled that of checked specimens.

HOISTURE CONDITION OF TEE WOOD

The properties of wood change cousiderably with changes in moisture content. For a property such as maximum compressive strength parallel to the grain, the streagth when green (or above the fiber-saturation point) is about one-half that at a moisture content of 12 percent. With other properties, the difference in strength between green and dry wood is usually not so great.
In a conmector joint, several properties of the wood function simultaneously and the property that controls with relation to the variation in moisture content cannot be readily isolated.

Table 18.-Effect of moisture condition of members on strength of Q-member, split-ring connector joints bearing either parallel or perpendicular to grain!
LOADS AOTING PABALLEL TO ORAIN

The majority of the tests on split-ring connectors were made in specimens that had an average moisture content of approximately 12 percent. To determine the effect of differences in moisture content, tests were made with natched specimens of green and dry redwood and southern yellow pine. Tests were also made of specimens in which all or part of the members in the joint were assembled when green and seasoned to an air-dy condition before lests. The tests on southern yellow pine were made with the 4 -inch split-ring connectors bearing paralle with the grain, and on redwood with the $2 \frac{1 / 2-2}{}$ and 4 -inch comectors bearing parallel with the perpendicular to the grain of the wood.
The results given in table 18 show that the relation between the loads on the joint for green and dry material is erralic but approximately proportional to the square root of the ratio of the crushing strength of the wood parallel to the yrain. In other words, properties of the wood other than the crushing strength parallel to the grain, and, to a minor extent, the properties of the metal, determine the variation in the joint load with differences in moisture content of the material (18). The slip in the joint al the smulier loads was somewhat less for the green than for the dry material.

The loads at proportional limit and maximum of southern yellow pine specimens assembled while green, seasoned, and tested in an air-dry condition, were somewhat higher than for the joints assembled of greeni material and tested immediately, bui not so high as for those assembled dry. When green and dry material were combined in a joint which was tested aiter drying, the results were about the same as for the joints made entirely of green material and tested after seasoning.

For redwood, which differs from most species in its moisturestrength relations, ${ }^{11}$ the loads at the proportional limit of joints made of green material and tested after seasoning were lower than those of joints made of unseasoned material. Tho maximum load for the joints bearing parallel to the grain, however, was somewhat higher. Considerable splitting occurred in all tests of joints assembled of green material and tested after drying., Because of the unusual moisturestrength charracteristics of redwood, which are apparently due to high extractive content, the results with this species should not be regarded as necessarily applicable to other woods.

NET SECTION OF MEMBER

In the design of members employing connectors, consideration must be given to the strength of the member itself between joints, to the strength of the joint, and, when the bearing is parallel to the grain, to the area of the net section at the joint. The net section may be defined as that section of the member, taken at right angles to the direction of the load, which is subjected to maximum stress-in other words, the net area remaining aiter the reduction for bolt holes and the insertion of comectors at that section. Tests have shown that the concentration of stresses in the Det section causes failure in tension at stresses approximately equal to the maximum compressive stress of the material paraliel to the grain (14). Translated into safe stresses,

[^14]this corresponds to a value which is equal to the safe stress in compression parallel to the grain for clear material. In using this stress, it is assumed that knots do noto occur in the longitadimal projection of the net section within a length of half the dianeter of the connector from it.

The net area at the critical section may be determined by subtracting the projected area of the connector grooves and the intervening bolt kole in the member from the full eross-sectional area of the member. For example, to calculate the safe strength at the critical section of a seasoned, coast-type Douglas-fir member 25% inches thick and $5 \not 2 / 2$ inches wide, in which two 4 -inch split-ring comnectors arc phaced in opposite faces with a $3 / 4$-inch bolt extending through the member concentric to the connectors: The outside diameter of the comnector grooves is 4.50 inches and the combined depth of the connector grooves in the member is 1 inch, giving a projected area of 4.50 square inches. The length of the bolt hole between the connectors is $25 / 8$ inclues minus 1 inch, or $15 / 8$ inches. If the diameter of the bolt hole is egual to the bolt diameter of three-fourths inch, the projected area for the boit hole is 1.22 square inches. The total projected aren of 5.72 square inches for the connector grooves and bolt hole is then subtracted from the cross-sectional area of 14.44 square inches for the member, leaving an area of 8.72 square inches at the net section. This area is multiplied by the basic stress in compression parallel to the grain for coast-type Douglas-fir of 1,466 pounds per square inch and increased by 25 percent (because a seasoned member iess than 4 inches in thickness is used) to 1,832 pounds per square inch. A load of 15,975 pounds that can be sustained by the net section is thus obtained. Since the safe load for one pair of 4 -inch split-ring connectors in a member 2\% inches thick is 9,390 pounds (table 1), the strength of the connection would be limited by strength of the connectors. If two pairs of comectors were spaced at an optimum distance longitudinally along the same member, however, the load that could be sustained by the net section would be the same as that given above, but the load for the connectors would be twice as great, or 18,780 pounds. The strength of the member, therefore, would be limited by the safe load at the net section.

As the width of member used with a given size of connector is increased, the thickness required to provide ample area atector net section is, of course, reduced. The maximum width used in determining the net section area should, however, be not greater than twice the diameter of the connector, and the minimum thickness of member irrespective of width should be not less than that recommended in the discussion on the thickness of member.

Factors Affeciing Toothed-Connector Joints

The toothed connector consists of a corrugated circular band of $16-g a g e$, low carbon steel ${ }^{12}$ with sharp teeth. The toothed comnector is placed between the contact faces of the members to be joined and embedked into the wood with pressure.

[^15]This connector, which was originally known as the "alligator" and made in Europe in $21 / 8,2 \frac{23}{4}, 3 \frac{3}{4}-4112,51 / 2$, and $61 / 4$-inch dianieters, is now made in the United Slates in 2-, 2%-, 3%, and 4 -inch diameters and in a ${ }^{15} /{ }^{1 / 5}$-inch height. All sizes 4 inches or less in diameter have been used in this investigation, but the results obtaned for the $21 / 8,23 / 4$, and 33 -inch European sizes are applicable, with modifications, to those sizes now available in the United States.

The study of toothed connectors involved the factors of (1) size of connector; (2) species of wood; (3) diesetion of the applied force with relerence to the grain of the wood; (4) thickness and (5) width of timber; (0) end margin; (7) size of bolt hole; and (8) moisture condition of the wood.

SPECIES OF YOOD

bearing paldatel to ghain

In the tests to determine the influence of species, $21 / 3-27 / 4$, and 3% inch connectors were used with matehed specimens of redwood, baldeypress, and two grades of southern yellow pine, and $2-2$, 2 \% $3^{3} \%$, and 4 -inch connectors with Douglas-fix, tedwood, and southern yellow pine. The average moisture content of the material was about 11 percent.

The joints, made up of two side pieces and a center piece, all of the same length, were tested in compression parallel to the grain (lig. 13). The side pieces overfapped the center piece by about two-thirds of their length, which varied from 12 to 17 inches, depending upon the size of the connector to be tested. The width of the specimens varied from 25 inches for the 2 -inch connectors to 5% inches for the 4 -inch connectors. The thickness of the center member was $1 \frac{5}{8}$ inches and that of the side members $1 / 1 / 16$ inches for all sizes.

Two connectors were symmetrically placed in opposite sides of the center piece, coneentric to the bolt hole and in the center of the overlapped length. The dinmeter of the bolt hole was the nominal diameter of the bolt to be used.

These connectors were embedded in the wood by applying pressure to the sides of the specimen with a lesting machine until the pieces were in contact. After the pressure was removed, heavy plate washers were inserted and the bolt drawn up tightly.

The pressures in pounds required to embed the connectors in average and dense southeru yellow pine specimens were approximately as recorded in table 19.

Table 19.-Pressures required to embed toothed connectors in southern yellow pine

Materisl	Diameter of conneetor (finches)-		
	$23 / 5$	234	334
Average.	Potuada 5,700	Pournds 6,500	Pounds 9,000
Densc.	8,000		

The results of the tests for each species and connector size lested are given in table 20.

Since no definite proportional timit load is evident on the load-slip curves (fig. 25), the load for slips of $0.02,0.04$, and 0.08 inci are listed. Some distortion of the connectors, under load, was discemible almost from the beginning of the test, and this distortion is accompanied by erushing of the wood under the teeth and under the bolt.

Froure 25.-Relation between load and slip in the joint for an individual test specimen of toothed connectors bearing parallel to the grain of air-dry wood.

The material used in the lests lumished a wide variation in specific gravity, but does not necessarily represent the average for a species. In figure 26 the individual test results for the 2% - and 2%-inch connectors are plotied with relation to the specific gravity of the wood. The valtues for the 2% and $23 / 4$-inch connectors were so nearly alike that they were combined in the same curves. The curves show that, for the species and sizes of specimens tested, the maximum load and the load at a given slip vary amost directly as the specific gravity of the wood. Similar curves plotted for the other ring sizes show approximately the same relationship, although the maximum load of the joint tends to increase somewhat less rapidly with the specific gravity of the wood as the diamejer ol the connector increases.

Table 20.-Effect of wood species on strenglh of S-member, toothed-connector joint bearing parallel to grain ${ }^{1}$
nector undt; and saccies of wood (in order of spedific gravity of specimens)

[^16]
${ }^{3}$ A verage of 4 tests.
 7 Average of 6 tests.

Freque 20.-. Relation between fuad bematig parallel to the grain and specific gravity of airctiry wood for a joint consisting of two toothed connectors $(2 \%$ or $23 / 4$ inches in dianeter) and a $\%$ inch bolt. The solid and open symbols for the same species indieate marked differenecs in specific gravity.

The tests for comectors bearing perpendicular to the grain were made in sonthern yellow pine, Donglas-itr, and ceetwood. The specimens were approximately the same size as those used in the tests made parallel to the grain, differing only in thickness and in the length of the center member. The center member varied in length from 20 to 26 inches, depending on the size of connector, and was supported horizontally in the testing machine by wood blocks spaced from to to 16 inches apart. The lond wats applied in compression to the vertical side members (fig. 18).

Each joint assembly contained two connectors, one between each side member and the center member. The bott diameters used are those recommended by the manufarturers for the various sizes of connectors. The diancter of the bolt hole was equal to the nominal bolt diameter.

In the resuits of the lessis (table 21), the individual values for bearing perpendicular to the grain way direetly with the specific gravity of the wood, just as in the paratiel arraterment. The eflect of the thickness of members is also ceflected in the loads in approximotely the same mamer as when the bearing is parrallel to the grain.
A comparison of the loads for the perpendiecular and paralle arrangements at slips of $0.02,0.04$, and 0.08 inch shows that the average ratio is abont for percent for equal thicknesses of members and for

Table 21-Effect of wood species on strenglt of toothed-connector joints bearing perpendicular to grain ${ }^{1}$

the widths used in the tests. The ratio of the maximum loads and of loads at slips less tinan 0.02 inch is somewhat less. When bearing perpendicular to the prain, the center member often failed in bending or shear daring the testat slips of 0.1 to 0.2 inch. The maximum londs, therefore, do not furnish a suilable criterion for comparison, except when considered in conjuction with the type of failure. The slip associated with the maximum loads is much less for the perpendicular than for the parallel arrangement.

When the several factors which influence the lond on a counector joint are considered, it appears that the values for the toothed connectors bearing perpendicular to the grain, in the minimum permissible width of timber, can be taken as approximately two-thirds of the corresponding paralled values. However, the design values for connectors bearing parallel to the grain, unlike those bearing perpendicular, do not increase with an increase in width of member over the required minimum. Consequently the ratio between the perpendicular and paralied vilues is not coistant at two-thirds but increases over this ratio with an increase in width of member.

BEARING AT VARIOUS ANGLES TO GHAIN

Toothed comectors cary the greatest load when bearing parallel to the grain of the wood; for any other direction of bearing, the load is less. Tests made with 4%-inch alligator connectors in previous investigations (7) bearing at various angles to the grain of Douglas-fir specimens have demonsirated that the load decreases uniformly from the highest value at a bearing of 0° with the grain to a minimum value at 45° with the grain and remains constant from 45° to 90°. This relation between the load and the angle of bearing should apply withont appreciable error to the various sizes of toothed connectors now manufactured.

'THICKNESS OF MEMBER

Tests to determine the affeel of thickness of member were made with four sizes of toothed connectors. The 2 - and 4 -inch comaectors were tested with southern yellow pine specimens in tension parallel to the grain and the 2% and 3%-inch comectors with Douglas-fir specimens in compression parallel to the grain. The end margin, or the distance between the center of the comnector and the ends of both the side and center members in the tests, was ample to eliminate the eflect of this varinble.

The thickness of the center or main member of the joint was varied from $1 / 4$ to 3 inches for the 2 - and 4 -inch connectors. With the 25%-inch connectors, the thickness of the center member was 15% and 2% inches, and with the $3 \% / 8$-inch connectors it was $1 \% / 8$ and 3 inches. The thickness of the side members was approximately two-thircis that of the center member. The widths of the specimens used for each size of connector were approximately $1 / 3$ times the diameter of the connector.

The results of the tests are given in table 22, and the values for the maximum loads are shown graphically in figure 27 . With a pair of 2 -inch connectors and a. tined bolt, the maximum load inerenses
with an increase in thickness of center member up to about 2 inches. Beyond this thickness, the decrasse in load on the comneator itself appears to balance the increase in maximum load on the bolt. Witi a pair of 4 -inch comectors and a 3 -inch bolt, a thickness of at least 3 inches is required to develop such a constant maximum load. Tests with the 2% and 3%-inch comectors were made with only two thicknesses of material but indicate that a constant maximum load is reached at thicknesses of $2 \frac{1}{2}$ and 3 inches, respeetively. The loads al given slips of the joint, while quite erratic for the different sizes of connectors, correspond in general to the relationship obtained for the maximum load.
Tanss 22.-Effect of thickness of mat mbrs on strenght of 3-member, toothed-connector joints, bearing paralll to grain'

 5 y_{2} NCHES WMDE

- Values are averages of 2 tosts, except as noled.

The thamer of the bot bole was the same as the nominal thoneter of bolt.
Braed on the weight of oven-dry woad and the volume at time of test.
The loat and slipat first trop were approxinately the same as that at he maximum.
13 lests.
The failures generally consisted of a twisting or bending over of the comnectors, accompanied by crushing of the wood under the bolt and connectors, and some spliting in the center member. With a thickness of $1 / 4$ inches, some shear and teusion frilures also oceurred in the center member.

```
65084!8. -4tm--4
```


Figure 27.-Relation between maximum load and thichness of member for toothed-connector joints bearing parallel to the grain of air-dry wood; two connectors and bolt to ench joint.

The maximum loads for a timber thickness of 2 inches for the 2 -inch connectors and $2 / \frac{1}{2}$ inches for the $2 \frac{5}{8}$-inch connectors fare ahout 110 and 125 percent of the load, with a timber thickness of 15 inches, and the loads for a timber thickness of 3 inches for the $33 /$ - and 4 -ind connectors are about 135 and 130 percent. The lond for intermediate thicknesses may be obtained without appreciable error by direct interpolation. A member should not be less than $1^{1 / 2}$ inches thick when connectors are used in opposite faces; at this thickness, the load is about 4 percent lower than at 158 inches.

When the connectors are in one face only, the thickness of the timber should not be less than 1 inch. For a thickness of $1 / \%$ inches and a 2 -inch connector, the load can be 10 pereent higher than for I inch: for a 2%-inch comnector and a thickness of $13 / 8$ inches, the load can be 25 percent greater; and for the $33 / 8$-and 4 -inch connectors and a thickness of $1 \% /$ inches, the load can be inerensed 35 and 30 percent.

WHDTA OF MEMBER (BEARING PERPENDICULAR TO GRAIN)

Tests with the minimum width of specimens-nbout 1\% times the diameter of the connectors-have shoyn that the values when bearing perpendicular to the grain are approximately two-thirds of the values when bearing paralle to the grain. The londs of connectors bearing
perpendicular to the grain, however, vary with the width of the member.

Tests to determine the effect of this variation were made with the four United States sizes of toothed connectors in southern yellow pine specimens, in which all the dimensions of the specimens except the width of the center member were constant for each size of connector. The width of the center member was varied from a minimum equal to the diameter of the comnector to a width 3 inches greater than the diameter of the connector. The connector was always centered on the width of the nember.
The failures generally cousisted of bending of the bolt and twisting or bending over of the comectors, accompanied by crushing of the wood. As the test progressed, splitting occurred in the center member at the bolt and comectors, and finally, after the maximum load, the failure culminated in shear to the end of the member. With the narrower widths, compression and tension failures occurred in the center member at maximum lond.

The restlits of the tests are given in table 23 and shown graphically in figure 28. The relative increase in load with an increase in width of member was about the same at given slips and at maximum. Furthermore, the percentage increase in load was approximately the same for the difterent sizes of connectors.

Tabus 23.-Effect of widh of timber on strenglh of 8 -member, toothed-connector joints, bearing perpendicular to grain, southern yellow pine:

2-INOC CONZFCTORS; $1 / 2$ NOE BOW
(Thickness of mombers (haches): Center, 3 ; sides, 132

25/SNOH CONNECTORS; 5/FINCE BOLT 1
[Thickness of members (iuches): Center, 3; sfdes, 12/2]

25, 5 -38	11.8	0.554	10.7	0.546	8,177	3,200	5,500	5,350	10, 160	0. 15
$3-35$	11.8	. 354	10.7	. 546	8, 173	3,880	6.490	9, 620	11, 630	. 17
312-35	11.8	. 354	10.7	. $5+6$	8,173	4,190	6,890	10,240	13, 040	. 36
11/5-35\%	11.8	. 584	10.7	. 516	8, 177	4,510	7, 520	10, 540	14,880	. 21
$45-35$ is	11.8	. 554	10.7	. 56	8, 177	4,650	7,530	10,930	15, 130	. 34
5% - 3 \%	11.8	. 554	10.7	. 546	8,177	5,60	8,750	12,240	17, 120	.42

See contnotes at end of table.

Table 23.-Effect of width of timber on strength of 9-member, toothed-connector joints, bearing perpendicular to grain, southern yellow pine L. Continued

33/LNCE CONNEGTORS; $3 / 2$-INOE BOLT 2
[Thiekness of members (inehes): Conter, 3 ; skics, 13/2]

Width of mem. bers, center and slde (inches)	Properties of specimens					Loads at slip of-			Maximima	
	Conter		Sikes			inch	O.0n	$\begin{aligned} & \text { O.f8 } \\ & \text { ineh } \end{aligned}$	5 ¢0ad	Slip
	Molsture conterat	Spectfe grav. ity ${ }^{3}$	Mois. ture d content	$\left\{\left.\begin{array}{c} \text { Specife } \\ \text { grav- } \\ \text { ity } \end{array} \right\rvert\,\right.$	Maxi-mamcom-pressivestrengehparailelto grain					
-					Ponnds					
	Percent		Percent		inch	Poundy				
	12.5	0. 559	11.1	0. 530	-7,808	3. 5170	6,740	10,110	Pontuts	Inch
	12.5	. 558	11. 1	. 530	7,805	3, 892		10,909	14, 550	6. 16
$\begin{array}{r} 4 / 8-45 / 8.8 \\ 458-45 \end{array}$	12.5	. 558	11.1	. 530	7.806	4,617	8, 070	12,325	14,550 16,450	. 16
	12.5	. 558	11.1	. 530	7,806	5,700	0,180	13,500	17, 730	. 15
$03 / 8$ - 48	12.5 12.5	. 558	11.1	. 5330	7,806	5,200	8,750	13, 220	18, 820	. 17
		. 528	11. 1	- 530	7,803	5,975	9,710	13, 920	29,750	+47

4-INOA CONNECTORS; $3 /$ INCF BOLT ${ }^{2}$
[Tbickness of mombers (inches): Canter, 3; sides, 1321

4 - $53 / 2$	13.8									
41/4-51/2	13.8	0.567 .567	11.0 11.0	0.525 .525	7,599 7,599	5,117	8, 420	12,880	17,210	0.18
$51451 / 2$	13.8	. 507	11.0 1.0	. 525	7,593	6,017 6,325	9,830	14, 409	20, 020	. 21
5315-512	13.8	. 567	1.0	. 5225	7,599 7,598	6, 325	10,150	14, 80	20,730	21
$6-612$	13.8	. 567	11.0	. 525	7,508 7,509	6, 542	10, 550	15, 120	21, 200	22
7 -51/2	13.8	. 567	11.9	- 525	7,509	6.833	11, 020	15, 875	22, 430	21
		+ +5	11.9	. 525	7,589	7, 550	12,110	18,950	24,700	33

1 Falues are averages of 3 tests.
${ }^{2}$ The diameter of the bolt hole was the same as the thominn? diamoter of bolt.
${ }^{2}$ Thased on the weight of oven-firy wood and the volume at lime of test.
In general, the loads increase 10 percent with each 1-inch increase over the minimum width of member for each connector size. When the connectors are placed off center, the width of member may be taken as twice the distance between the center of the connector and the load-bearing edge of the member if the margin or width on the non-load-bearing edge is at least one-third greater than haif the diameter of the comector. The tests show that the load continues to increase with an increase in width of member to at least twice the diameter of the connectors.

end margin (bearing parallel to grain)

Tests to determine the effect of end margin (the distance between the end of the member and the center of the nearest connector when bearing is parallel to the grain) were made with the 2 -inch and 33_{4}^{3}-inch toothed connecturs in southern yellow pine specimens. The specimens, which consisted of two side members overlapping the opposite faces of a center member, were tested in tension (fig. 21). The thickness of each side member was $1 / 1 /$ inches; and that of the center member, $1: \%$ inches. The width of members for the 2 -inch ccnnectors was 2% inches; and for the $3 \frac{3 / 4}{}$-inch connectors, $5 \frac{1}{2}$ inches. The end margins, whici were the same for both side and center members, varied by

Figune 28.-Relation between load and width of timber for 3-member toothed connector joints, bearing perpendicular to the grain of air-dry southern yellow pine.

1 -inch increments from half the cliameter of the connector to 6 inches for the 2 -inch connectors and $7 \% /$ inches for the $3 \frac{3}{4}-$ inch connectors. The smallest end margin placed the connector flush with the end of the member.

The failures were about the same in the side pieces as in the center piece. They consisted of bending of the boit and bending and breaking of the connectors with crushing and splitting of the wood, and shear to the end of the member with the smaller end margins. Less splitting and no shear occurred with the larger end margins, but the crushing of the wood was more pronounced.

The results of the tests are given in table 24, and the vaiues for the maximum loads for various end margins are shown in figure 29. The maximum loads increase with an increase in margin to approximately a constant value at an ond margin of about 3% inches for the 2 -inch connectors and $61 / 2$ inches for the 3%-inch connectors. The loads at given slips reach approximately a constant value at a somewhat smaller end margin than the maximum loads.

FigJue 29.--Relation between maximum Joad and end margin for a 3-member toothed connector joint bearing in tension parallet to the grain of air-dry southern yellow pine.

An analysis of the test results shows that the end margin required to develop the full load of the toothed connectors in tension is $1 / 4$ times the diameter of the connector, and that reduction in load varios quite uniformly from unity at that point to about two-thirds at an end margin equal to the diameter of the connector. The load for intervening end margins can therefore be obtained by direct interpolation. The end margin required to develop the full load of the toothed connectors in compression is equal to the diameter of the connector. End margins less than the diameter of the connector are not recommended in either tension or compression.

Table 24. -Effect of end margin on strength of 8-member, toolhed connector joints, bearing parallel to grain, southern yellow pine ${ }^{1}$

3期-LNOII CONNEQTORS; 3-[NCH BOKT
[Mernber dimensions (ineles): Width, 51白; thiekness, center $16 / 8$, sides 1360]

13	13.4	0. 559	8 Ca	O, \%SO	10, 620	13,730	14,1489	0.12
	11.4	. 559	8, 006	7, 850	11, 720	15,360	$16_{4} 200$. 11
	11.4	550 .588	${ }_{8,390}^{8,006}$	${ }_{8}^{7,160}$	12, 12.40	15, 960	17, 620	. 25
	11.3	. 550	8,506	$\bigcirc 700$	12, 110	16.800	20,770	35
	1 it .4	. 550	8, EOPF	0,250	13, $2 \cdot 10$	17, 570	21,780	. 32
	11.4	. 559	8,6041	9,540	13, 2410	17, 500	21,700	32

1 Values are ayerages of 3 tests, exeepit as moted.
The diameter of the boll hole was the sarme as the nominat diatneter of bolt.
${ }^{5}$ Distance frome end of timber to center of bolf hole.
© Based on the weight of oventdry woot and the volume at time of test.
3 The load and slipat first drop were the same the that at the tidiximum.
-4 teses.
A theoretical amalysis of the stresses in a toothed connector joint, when the rigidity of the connector is given proper consideration, affords values that conform closely to those obtained in the tests. The toothed connectors under stress are more rigid at the ends of the diameter at right angles to the direction of load than at the ends of the diameter parallel to the direction of load; the larger the diameter of the ring, the more pronounced this difference becomes.

SPACING OF MULTIPLE CONNECTORS (BEARING PARALLEL TO GRAIN)

The spacing required between connectors along the length of the timber when the bearing is parallel to the grain was not determined by specific tests on this variable. An analysis of the stresses in the member based on auxiliary tests, however, indicates that the center-to-center spacing required to develop the fall lour shouid be at least two times the diameter of the connectors. For spacings less than this the load should be reduced uniformly to 50 percent at a spacing equal to the diameter of the connectors, page 63 and table 5 .

SIZE OF BOLT HOLE

The effect of an oversized bolt hole was determined for joints containing two $3 \% / 8$-inch toothed connectors and a $3 / 4$-inch bolt bearing parallel to the grain of southern yellow pine specimens. The bolt hole in half of the specimens was three-fourths and in the other half thirteen-sirteenths inch in diameter.

The results of the tests (table 25 and fig. 30) show that for given slips of less than 0.1 inch the loads for the joints with an oversized bolt hole were about 80 percent of those for joints with a bolt hole equal in diameter to the bolt. The loads at given slips greater than 0.15 inch were about the same for the two types of joints; but the slip associated with the maximum loads was slightly greater when the bolt was in an oversized hole.

Table 25.-Effect of he-inch oversized boll hole on S-member, loothed-connector joints, bearing parallel to grain, southern yellow pine ${ }^{1}$

Item	3 -inch bolt hole (0.739 inch boit)	Iff-inch holt bole (0.735 ingh boll)
Properties of specimens:		
Moisture content. percent.	11.4	
	+537	. 5.580
	8,164	8,390
Loari at sif of-		
0.02 inch-- -.... . -....---....-pounds.		
0.04 inch.- di....	12, 250	C.49)
	16,000	13, 750
Lodu.		
	39, 100	20.450
Maximima	0.18	0.19
	$\begin{array}{r} 20,977 \\ 0.37 \end{array}$	21,437

Frover 30.-Effect of size of bolt hole on the load at various slips; bolt hole for load A being one-sixteenth inch larger than bolt, and that for load ' B being exact size of bolt (3 -member, toothed comector joints, using $3 / 8$-inch connectors and $3 / 4$-inch bolts, bearing paraliel to the grain of air-dry southern yellow pine).

The matching of the material, as indicated by the control specimens, was not sufficiently close to provide specimens of the same quality for the two types of joints. The specimens with the oversized bolt hole were of slightly better intrinsic quality. This may account for the fact that at the larger slips for the joints the loads with the oversized bolt hole exceeded those with the actual-size bolt hole, rather than being the same or slightly lower.

MOISTURE CONDITION OF THE WOOD

Tests to determine the eflect of varintions in moisture content of the wood were made with 25 政- and 4 -inch toothed connectors and redwood specimens ${ }^{13}$ of standard dimensions, in typical 3-member joints.

Some of the assemblies were of green material and some of dry. The latter were tested immedintely alter assembly. Those made of green material were divided into two groups, one of which was tested immerliately after assembly and the other after the material had been seasoned to an air-dry condition. With each size of connector, the specimens were matched for the threc conditions tested and for bearing parallel and perpendicular to the grain.

The results of the tests (table 26) show that the maximum loads for the connectors when bearing parallel to the grain of green material are from 70 to 75 percent of those obtained for the dry material tested. This is somewhat higher than the ratio of the naximum parallel compressive strength of the green and dry material. When the bearing is perpendicular to the grain, the loads obtained with green material more nearly approach those obtained with dry material.

The results for the joints that were made up green and allowed to season before test are not analogous with those tested green. The loads bearing parallel to the grain were approximately equal to those obtained with dry material, allowing for differences in moisture content at the time of test. Loads bearing perpendicular to the grain were somewhat lower than those obtained with green material.

NET SECTION OF MEMBER

The net section reguirements for toothed connectors conform, in general, to those established for split-ring connectors (p. 73). The projected area used for the toothed connectors is equivalent to that for a cylinder extending to the points of the teeth. In the calculations for the net section, the connector is assumed to penetrate equally into the two adjacent members.

[^17]Table 26.-Effect of moisture condition of members on strength of β-member, toothed connector joints, bearing either parallel or perpendicular to grain, redwood !
LOADS AOTINO PARALLEL TO GRAIN

Factors Affecting Claw-Plate Connegton Joints

The claw-plate connectors are malleable iron ${ }^{\text {is }}$ circular plates $2 \%, 3 \%$, and 4 inchos in diameter, having a hole in the center and a row of triangular lecth forming a toothed flange on one side. The other side is flat and has either an enlarged hole or a projecting hub at the center, so that, when used in pairs, this male and female unit affords a metal-to-metal bearing. The depth of the plate from the flat surface to the tip of the tecth is three-fourths inch for all diameters. In the type with the projecting hub, the hub is three-eighths inch deep. When used singly, the plate with a hub acts as a stress distributor between a wood member and a metal plate or strap. The plate portion of the connector and its toothed flange fit into a circular groove or dap cut into the timber, and the teeth are forced into the wood by pressure (using a mand, and follower or a press) so that the face opposite the teeth is flush with the surface of the timber.

The factors which affect the strength of joints using claw-plate connectors, as investigated, include (1) size of comnector; (2) species of wood; (3) metal and wood side members; (4) direction of applied load with reference to the grain of the wood; (5) thickness of timber; (6) edge and (7) end margins; (8) size of boit hole; and (9) moisture condition of timber. A summary of the results of this study is presented in the following discussion.

sPECIES OF WOOD

Tests of joints using claw-plate connectors were made with eastern white pine, redwood, basswood, southern yellow pine, and white oak, which are representative species of hardwoods and softwoods having a wide range in density. Each test assembly consisted of a center wood member, wo metal side plates, a bolt, and a male clawplate connector at each plane of contact (fig. 31). The widths of center members used with the $2 \%-31 \%$, and 4 -inch connectors were $4 \%, 5$, and 5% inches, respectively, and the thickness for all sizes was 4 inches.

For each species except redwood, the wood in the center member was matched for the three sizes of connectors. Redwood was used only with the $3 / 8$-inch connector. The tests were made in compression parallel to the grain, with ample end margins provided on the specimens to eliminate the effect of this variable.

The proportional limit load in most of the tests, particularly with the denser species, was not clearly defined (fig. 32).

In the lighter species, usually only one portion of the load-slip curve was a straight line, but in the denser woods the load-slip curves frequently contained two straight portions. When the curves exhibited more than one straight-line portion, the point of departure from the second straight line was recorded as the proportional limit.

The type of failure at maximum load varied considerably with the different species. In the lighter species the failure consisted primarily. of crushing of the wood under the connector and bolt, accompanied by

[^18]

M3040:F
Figure 31.-Method of conducting compression test of claw-plate connector joint with metal side plates; lond applied parallel to the grain of the wood.
some splitting, crushing, and shear of the core. Small fractures in the metal at the hub were also evident in some of the connectors at a relatively large slip. In the denser species, crushing of the wood under the bolt and comectors was less severe, but the failure of the metal

Frgure 32.--Relation between loud and slip in a claw-plate connector joint bearing parallel to the grain of air-dry wood; individual test specimen.
connector itself was more pronounced (fig. 33). Rupture or shear of the hubs was common, and in some tests bucking and fracture of the webs also took place. The slip of the joint at maximum load was usually less than in the lighter species.

The results of the tests, with supplementary information, are given in table 27 . In general, the load at proportional limit and the maximum load both increase directly with the specific gravity of the material until a density of wood is teached at which the strength of

Figure 33.-Fuilure of 4 -inch claw-phate connedor joint when bearing parallel to the grain of dense southern vetlow pine.
the joint is affected by failure of the metal connectors. When failure occurs in the connectors, the load for the joint obviously increnses very little with a further increase in the specific gravity of the material (fig. 34). The ratios of maximum load to proportional limit load average about $2 \frac{1}{2}$ for the different sizes of connectors and species of wood.

Figure 34--A, Relation between load and specific gravity for a 3 -member, claw-plate comnector joint ($3 / 3$-inch comnector and $1 / 2$-inch bolt); B, relation between maximum load and specific gravity for various connectors. Metal side plates and bearing parallel to grain of air-dry wood in both cases.

TABLE 27.-Effec of wood species on strength of 3 -member, claw-plate connector joints bearing either parallel or perpendicular to grain

The tests in which the claw-plate connectors were used in pairs with wood side plates were made with southern yellow pine specimons, using $25 / 8$ - and 4 -inch connectors (table 27). For the 2%-inch comectors the load at the proportional limit and the maximum load are about the same as those obtained in comparable tests with metal side plates, but for the 4 -inch connectors with wood side plates they are about 10 percont lower. The type of failure, however, indicates that this difflerence is evident only in the denser species, where the strength of the comnectors is the controlling factor. In the lighter species, where wood strength controls, the load at proportional limit and the maximum load would correspond more closely to those obtained with metal side plates. The slip of the joint is somewhat greater att a given load with wood than with metal side plates.
In developing safe working loads for wood side members, the same values were used as for metal side plates, with one exception: When the benring is parallel to the grain of the wood, the loads for the $3 \% / 8-$ and 4 -inch chaw-plate conncctors used with group 2 woods are taken as 5 percent less than those for a joint with metal side members; with group 3 woods, 10 percent less; and with group 4 woods, 10 and 15 percent less, respectively.

DIRECTLON OF GRAEN OF WOOD

BFARING PRIREENDLGUEAR TO GHASN

The tests of claw-plate connectors bearing perpendicular to the grain of the wood were made with 2% and 4 -inch connectors for southern yellow pine, using both metal and wood side plates, and with $31 / 8$-inch connectors, with metal side plates, for southorn yellow pine and redwood specimens (table 27). The material was comparable in quality and of the same dimensions as that used with corresponding tests made parallel to the grain.

For comparable tests, the proportional limit and the maximum load are approximately the same for both metal and wood side plates. The slip of the joint for a given load, however, is greater with the wood than with the metal side plates. The failure at the maximum load usually consisted of splitting of the center member, accompanied in some joints by a slight fracture of the connector at the hub.

For metal side piates, the ratio of the load for comnectors bearing perpendicular to the grain to that for comectors bearing parallel to the grain varied with the size of comector and ayeraged 78, 64; and 57 percent, respectively, for the $2 \%-3 \%$, and 4 -inch connètors at the proportional limit and at given slips of the joint. These percentages are applicable for size of members tested and will be greater for wider members, as is subsequently shown (p .100). In determining the safe loads for bearing perpendicular to the grain, consideration is given to the effect of width of member and to the failure of the wood, which is more pronounced than in the parallel-to-grain arrangement (table 3).

BEARING AT YARIOUS ANGLES TO GHAIN

The loads for claw-plate connectors bearing at an inclination to the grain are dependent on the londs parallel and perpendicular to the grain as well as on the degree of the angle (5). Tests made with the

Siemens-Bauunion connectors (7), which are similar in design and which function approximately as do the claw-plate connectors used in this investigation, have demonstrated that the loads at various angles to the grain may be obtained by the formula

$$
n=\frac{p q}{p \sin ^{2} \theta+q \cos ^{2} \theta}
$$

in which
$n=$ the load in a direction at inclination θ with the direction of the grain.
$p=$ the load parallel to the grain.
$q=$ the load perpendicular to the grain.
The ratio between the load perpendicular to the grain and that parallel to the grain is, however, not of sufficient magnitude to cause appreciable difference in the results when using a lineal relationship in lieu of the formula. For convenience, therefore, it is suggested that the loads for intervening angles be obtained by direct interpolation between the values at 0° and 90° with the grain.

THICKNESS OF MEMBER

The tests to determinc the strength of claw-plate connector joints with different thicknesses of member were made with the $3 \%-\mathrm{inch}$ connector in southern yellow pine specimens. The joints, which consisted of a center wood member, two metal side plates, two male connectors, and a bolt, were tested in tension parallel to the grain. The center wood members were 5 inches in width and ranged from 1% to 5% inches in thickness. The specimens for each of the two series tested were taken from the same plank.

The results of the tension tests given in table 28 and figure 35 are erratic. In general, the averages for the various thicknesses tested showed no consistent difference. Previous tests have shown that the istrength of a claw-plate comector joint with a relatively strong, dense species such as southern yellow pine is limited by the strength of the connector.

Table 28.-Effect of thickness of members on strength of S-member, claw-plate connector joints bearing in tension parallel to grain, southern ycllow pine:
[Connector, $31 / 8 \mathrm{inch} ;$ bolt, $1 / 2 \mathrm{inch}^{2}$; center member, 5 inches wide ${ }^{3}$]

Thick ness of center member ${ }^{3}$	Proportional fimit		Load at 0.08 -inch slip	First drop		Maximum	
	Losd	Slip		Load	Slip	Load	silp
	Pounds	Inch	Pounds	Pounds	Inch	Pounds	Inch
13/4	11, 000	0.020	23,709	${ }_{29,}^{29,880}$	0.15	30, 178	0.19
	11, 11.750	. 624	23, 850	29, 190	.18	30, 260	. 42
3	11.500	. 637	19,150	28,080	. 24	29, 325	49
	12,000	. 029	21, 050	31,850	. 44	31,850	44
4	11, 750	. 030	20, 150	31, 885	. 54	31, 885	5
	12,000	+028	21, 230	28,310	. 33	29, 835	. 54
	12, 250	. 026	22,850	29, 7 76	. 23	30, 725	. 47

[^19]

Figura 35.-Welation between land and thickness of timber for a claw-plate connector joint with metal side plates, bearing parallel to the grain of air-dry southern yellow pine in tension joints ($31 / 8-\mathrm{inch}$ connectors and a $1 / 2$-inch bolt).

EDGE MARGIN
beaking iemiendicolar to grain
Tests of the influence of edge margin on the strength of claw-plate connector joints were made with the $2 \% / 8$ - and 4 -inch connectors in southero yellow pine specimens. The joints consisted of a center wood member attached to metal side members with two male connectors and a bolt. The wood member was 4 inches in thickness for all tests, 4% inches wide for the $25 / 8$-inch connector, and $57 / 8$ inches wide for the 4 -inch conmector. The specimens were matched end to end for the different edge margins tested with each size of connector.

The edge margin, measured from the center of the connector to the edge of the timber toward which the load was acting, was varied by small increments from $15 / 16$ inches (rim of connector flush with outside edge of timber) to $33 / 16$ inches (connector flush with the opposite edge of timber) with the 2%-inch connector, and similarly from 2 to 37/ iuches with the 4-inch connector.

The results (table 29 and figure 36) show that, within the limits of the tests, the load increases uniformly with an increase in edge margin. The average increase in load for the two sizes of connectors at the proporticnal limit, at maximum, and at given slips of the joint is approximately 20 percent for each 1-inch increase in edge margin.

Table 29.-Effect of edge margin on strength of 3-member, clan-plate connector joints, bearing perpendicular to grain, southern yellow pine ${ }^{1}$

2\}6-INCH CONNECTORS: $\}$-INCA BOLT 1
(Membleer dimensions (incless): Width, 4/2; thickness, 4])

Edge 'margin (tnebes)	Properties of spectmens		Proportinme limit		Load at 0.08 -inch slip	Maximum *	
	Moisture content	Specifte gravity,	Lond	\$11p		Load	Stip
	Percent		Porzidy	Inch	Poynds	Pounds	Inch 0.18
$1{ }^{14} 18$	13.2	0. 5094	6, 270	0.044	9, 18.180	11,280	
2316	13.0	. 516	7,740	. 038	12,350	(5, 1961	. 21
2146	12.8	. 507	8,130	. 038	13,070	17,370	. 32
3Fic.	13.1	. 488	$8+130$. 038	12,620	15,886	. 40

4-INCH CONNECTORS; 3 3 -INCR BOLT ${ }^{2}$

2	- 13.5	0.570	9,000	0.042	14,300	20, 330	0.15
238	13.7	. 554	9, 060	. 039	16,475	21, 430	+15
27	13.6	. 532	11,170	. 045	17, 830	24. 570	. 17
338	14.0	. 328	11,000	. 034	19,830	25, 080	. 19
374.	13.4	. 532	12,330	. 037	21, 500	31, 230	. 23

1 Values are averages of 3 tests.
T Tie diameter of the bolt hole was bo hoth hargar that the nominal diameter of bolt.

- Dimensions of renter timber. Side mernbers were tivinch metal plates.
-Distame from edee of timber toward which load is acting to ceriter of bolt holo.
3 Bused on the weiphi of orern-iry wood and the volame al time of test.
6 The load and slip at first drof were approximusely the same as that at the maximum.
The minimum widths of members recommended for use with the 2% - $3 / 8^{-}$, and 4 -ineh claw-plate connectors bearing perpendicuinr to grain are $3 \%, 45 \%$, and $5 \% / 2$ incles, respectively. The comectors should be centered in such members, the minimum edge margins in either direction then being balf these widths. Incrensing this edge margin in the direction toward which the load is acting increases the load at the rate of 20 percent per inch up to an edge margin equal to the diameter of the connector; or, if the connector is centered in the member, at the rate of 10 percent per inch increase in width of the member over the minimum, up to a width equal to twice the diameter of the connector.

gearing IARALLEL TO GRAIN

When bearing parallel to the grain, the minimum widths of member which should be used with the above claw-plate connectors are the same as for perpendicular bearing, but, as with the split-ring connectors, no increase in load accompanies an increase in width over these minimums (p. 54). For intermediate angles the load for various edge margins or widths of member is a function of the load for comparable edge margins or widths of member parallel and perpendicular to the grain (table 3).

Figune 36.-Relation beween load and edge margin for 3 -member, claw-plate connector joints with metal side plates bearing perpendicular to the grain of air-dry southern yellow pine.

END MARGIN

bearting baratlel to grain

The behavior of $31 / 8$-inch claw-plate comectors bearing parallel to the grain and placed at distances from the end of the member varying by 1 -inch increments frem 1% to 7% 年 southern yellow pine specimens. The joints, consisting of a center wood member, two metal side phates, two connectors, and a bolt, were tested in tension. The wood members were 5 inches wide and 4 mehes thick and were matched end to end for the seven different end margins tested.

The proportional limit load was found to increase with an increase in end margin from the smallest tested to a constant value at margins of more than $41 / 2$ inches (table 30 and fig. 37). The maximum load also increased but was somewhat erratic with the larger end margins and did not reach a definite constant value within the limits of the test. With the smaller end margins, the failure consisted primarily of shear and splitting of the member; but, as the end margin increased, the failure in the wood members was less apparent and that or tie metal connectors more pronounced.

Analyses of the stresses in the joint, and comparison of the failures and load with those obtained with other tests on connectors indicate that the end margins required to sustain the full load in tension are approximately equal to the diameter of the comnector plus 3 inches. The minimum end margins should not be less than one-half of the

Frgere 37.-Relation between load and end margin for a threc-member, clawplate connector joint, with metal side phates, bearing in tension parallel to the grain of air-dry southern yellow pine ($31 /$-inch connectors and 72 -inch bolt).
optimum margins, and the lond at these minimum end margins is five-cights of that at the optimum. For intervening margins the load may be obtained by direct interpolation.

In compression the end margins can be somewhat less than in tension, as shown in table 6 , but at no time should the end margin be less than half the diameter of the conncctor plus $1 / 2$ inches.

Table 30.-Effert of end margin on strength of S-member, clau-plate connector joints, bearing parallel to grain, southern yellow pine '

$\underset{\text { (inchasin) }}{ }$	Properties of specimens			Promortionat limit			Maximum 4	
	: Moisture content	Specific ${ }^{3}$ bravity		Lead	Slip	$\begin{aligned} & \text { Toad at } \\ & 0.08-\text { neda } \\ & \text { slip } \end{aligned}$	Lâd	Slip
	Percent		Pountsptot isquarc ${ }^{\text {nch }}$	Poundi	fnch	Patnits	Pounds	Inch
198	11.9	0. 535	1, $\overline{3} 84$	${ }^{7}, 756$	0.020	15. ${ }^{237}$	16.780	0. 10
$3{ }^{29} 0$	11.51	. 5.55	\%, 784		.025	-29,075	24.906	. 13
49	11.9	-	${ }_{6}^{4,} 7884$	13,680 13,750	. 033	-3,4,	33, 30	. 10
	11.0	- 0.55		13,750	. 028	23,959	33, 930	. 3
59% \%	11.9	. 354	1 i, 784	14,000	. 030	24,950	34, 500	33
	11.9 :	. 65	7. 784	14.000	. 025	26,050	36, 285	4

[^20]
SPACING OF MUYTIPIE CONNECTORS (BEARING PARALLEL TO GRAIN)

The determination of the effect of the spacing of claw-plate connectors along the length of a member when bearing parallel to the grain was not included in this investigation. It may be observed, however, that the stresses induced in the member by the claw-plate connectors conform closely to those for the split-ring connectors, and the spacing requirements would therefore be expected to be somewhat similar,

These requirements are that the optimum center-to-center spacing between connectors should be at least 3 inches, plus $1 \frac{1}{2}$ times the diameter of the connectors. When the spacing is less than this, the load is also less, dropping off unifomly to 50 pereent at a spacing equal to the diameter plus thee-eighths inch for the $25 / 8$ and $31 / 8$-inch connectors, or one-half inch for the 4 -inch connector (p. 63 and table 6).

For other details pertaining to the placement of claw-plate connectors in multiple joints, it is suggested that for cquivalent loads and sizes of connectors the recommendations established for split-ring comnectors be used.

SIZE OF BOLT HOLE

The diameter of the bolt hole in all tests made with the claw-plate comectors was one-sixteenth inch larger than that of the accompanying bolt. T'ests to determine the effect of an oversized bolt hole on the strength of the joint were made with the $3 / 8$-inch claw-plate and a $1 / 2$-inch bolt bearing parallel to the grain of southern yellow pine specimens. The bolthole diameter in half of the six specimens tested was one-half inch; and in the other half, nine-sixteenths inch.

The results of the tests are given in talie 31, and the ratio between
 are shown graphically in figure 38. It may be observed from the results that the difference in load between the two typer of joints is not grea.t. The greatest difference ocems nt 0.02 -inch slip, where the

Figure 38.--Effect of size of bolt hole on the load at various slips for 3-member, claw-plate conncetor joints consisting of $31 / 2$-inch comectors and a $1 / 2$-inch bolt, metal side plates, bearing paralle to the grain of air-dry southern yellow pine. Joint A, bolt hole $/ 10$-inch larger than bolt; joint B, bolt hole exact size of bolt.
load for the joint with an oversized bolt hole is 92 percent of the load for a joint with a bolt hole equal in size to the bolt. The maximum loads for the two types of joints are very nearly equal, although the slip at maximum load is somewhat greater when the oversized bolt hole is used.

Table 31.—Effect of ho-inch oversized boli hole on strength of 3 -member, claw-plate connector joints, bearing parallel to grain, southern yellow pine "

Item	y/atnch balt hole (0.492 inch holt.)	Sin-inct boIt hole (0.489 inch boll)
Properties of specimens:		
Moisture content....... precent.-	12. 1	11.9
	${ }_{7} .5111$	
	7,511	8, 131
Results of texts: .		
Load......-...........................-..................... pounds .-	12.670	12,070
	0.026	0.028
	24, 340	24, 620
Maximum:		
Slp	0.40	- 0.51

 ones, 4 . Side members were th-inch metal plates.

2 Mased on the weight of oven-iry woed and the volume at time af test.
The ratio between the slip of the joints with and without an oversized bolt hole is about 110 percent at loads from 4,000 to 0,000 pounds, but the magnitude of the difference in slip is small.

MoISTURE CONDITION OF THE wOOD

Tests to provide information on the strength of claw-plate connector joints as affected by the moisture condition of the material were made with the 3 \%-inch comectors in redwood specimens. ${ }^{10}$ Each joint consisted of a center wood member and two steel side plates. The tests were made parallel and perpendicular to the grain of matched green and dry specimens.

The joints made of dry material were tested immediately after assembly. Those made of green material were divided into two groups, one of which was tested immediately after assembly and the other after the material had been seasoned to an air-dry condition.

The results of the tests given in table 32 show that for redwood there is no appreciable difference in loads for the different conditions tested. The shainkage and the ratio between the strength properties of green and dry redwood are less, however, than for most other structural species, and the results may, therefore, be somewhat different for other woods.

NET SECTION OF MEMBER

The net section requirements for the claw-plate connectors conform, in general, to those established for split-ring connectors (\mathbf{p}. 73). The projected area used for the claw-plate connectors is equivalent to that for a cylinder extending to the points of the teeth.

[^21]TABLe 32.-Effct of moistare contition of members on strenglh of 3-member, claw-plate connector joints, bearing ailher parallel or perpendicular to grain, redwood:
LOADS ACTINO PARALLEL TO GRALN

1 Values are averages of 3 tests.
When the spoiman endition the tests were ine con er timbers were 5 inches wide and 4 inches thick; side members were 2 -ineh metal plates.

LITERATURE CITED

(1) Aberican Society for Testing Matbrials.
1933. standamd methons of testing smali, clear spegibiens of timeer. A. S.T. M. Designation D143-27. Amer. Soc. Testing Mater. A. S. T. M. Standards, pt. 2, Nonmetallic Materials, Pp. 408-444,
(2) Grafio.
1938. daumpestiokzit von holzerbindungen. Mitfeilhngen des fachausschusses für Holzfragen beim Vercin Deutscher Ingenieure und Dentschen Forstverein. 22: $1-58$, illus.
(3) Markwardy, L. J,
1930. comparative strenotm properfies of woods grows in the uniten states. U. S. Dept. Agr. Tech. Bul. 158, 30 pph. ilus.
(4) ———and Wilson, T. R. C.
1935. strengith and related propheries of woons ghown in the unted states. U. S. Dept. Agr. Tech. Bul. 479, 99 pl., ilhes.
(5) Nfwinn, J. A.
1939. bearing strength of woon at angle to the grain. Ergin. News-Rec. 122: 661, illus.
(6) \qquad
1919. The rebation or the diminkage and sytubnemp mbobermes of wood to ink specific gravity. U. S. Dept. Agr. Bui. 676, 35 pp., ims.
(7) Perkins, N. S., Thandsem, P., and Trayeh, G. W.
1933. modern connectors for thamen construction. U. S. Dejnt. Commerce, Nat!. Com. Wond Wilization, and U. S. Dept. Agr., Forest Serv., 147 pan, illus.
(8) Scholtten, J. A.
1938. modern connectors in woon construction. Agr. Eugin. 19: 201-203, illus.
(9)
)
1939. strength of rolited mimber joints. Jigin. News-Rec. 122: 6f0-
(10) 661.
1940. connbegor roints in woon consmbuction. Railway Purchases and Siores 33: 431-435, illus.
(11) Staudacher, fis.
1936. neuere verbindungen ies inghnieutholzbalies. In Der - Baustoff Holz, pp. 79-109, jllus. Zurich.
(12) Stern, E. G.
1940. a Study of humber and plywood boints with metal split-ding Connectors. Pa. Engin. Expt. Sta. Bul. 53, 90 pp., illus.
(13) Sudwortif, G. B.
1927. chide hist of the forest trees of que uniped stitys: thaih names and ranges. ti. S. Dept. Agr. Mise. Cir. 92, 29 n pp.
(14).Trayer, G. W.
1932. the bearing sprengith of wood under rolfs. U. S. Dept. Agr. Teeh. Bul. 332, 40 pp., illus.
(15) Unitgd States Forest Service, Forest Products Laboratory.
1935. wood handbook. U. S. Dept. Agr. Unnum. Pub., 325 pp., illus.
(16) [United Staptisl Naplonal. Bureac of Standards.
1940. Lumbert. U. S. Nafl. Bur. Standards Simplified Prat. Recom. R.16-29, 99 pp., illus.
(17) WILSON, T. R. C.
1922. impact cests of woon. Amer, Soc. Testing Mater. Proc. 22 (pt. 12): 55-73, illus.
1932. strengythoistive mblations for woon. U. S. Dept. Agr. Tech. But. 282, 88 pp., illus.
(19)
1934. ginde qo the grabing of strictural timbers and the meterminapion of womme stressee. U. S. Dept. Agr. Mist. Pub. $185,27 \mathrm{pp}$.

[^0]:
 of the latial tesis. The counedtars ascd in this investignton were furbished by the Fimber Engineering Co.
 ${ }^{2}$ Mrintained by the U.S. Depmament of Agricultate at Madison, Wis., im equpration with tho Oniversity of Wiseonsin.

[^1]:

[^2]: revised in Approved Chatges in Sutworth's Clace bish, fi8]ph 1040 . Processed.
 and these of the Doughtsfr from the Preife Nothwest. For this renson, separme vahes are given for

 © In order to qualify as "clense," Doughas-fir or sonthern yellow pine mastavernge, on one end of the phece or the other, not less thats six mamal hrow th rims yer inch mat, in mokition, must nyerage not less than one-
 through the center of tha end of the piese.

[^3]:
 nectors，adequate end marpin，and suitable spanciag．
 ${ }^{4}$ Ste 10.20.
 cated in wolumins 4－10．

[^4]: ${ }^{1}$ The safe working loads apply to schisoned timbers used in diry, inside locations for a long-continued iond. It is assumed also that the foints ure properly designed with respect to such features as centerint of connectors, adequate end margin, nod suitable spmenng.
 ${ }^{2}$ See p. 20.
 3 A 3 -member assembly, with to 2 connector units would therefore tako double the sate working loats indicated in columns 4-9.

[^5]: See footnates it emi of tible.

[^6]: for the toothed conpe woring lond of table 2 hy the appropinte strength ratio 20 oblain the design loar
 For a connthennoctor when wed with rarious ente tiargint or spacings
 of the connector.

[^7]: : Proper percentages for chaw-plete connectors bearing at intermediate anges and for toothedribg connecturs of other sizes may be obtained by fiterpolation.

[^8]:

[^9]: to The specifientions for the commetors tasted reguire that the steel conform to A. S. T. M. Standard Spocifeations for Carizon Steel A17-2t, Type A. Grade 1.

[^10]: I Values are averages of 5 fests or londs acting parable ond 3 tests perpondientar, execpe as noted.
 : Connector diameter is that of inside of ring when elosed; bolf, hole equals nominal dimmeter of bolt.
 3 Where 2 thick nusses are given, one-half of the tests were made with each thickness

[^11]: 509849—44——4

[^12]: Valucs are averages of $\$$ tests.
 1 The diameter on the bolt hole was the same as the nominal diameter of bott.
 Brased on the weight of oven-dry wood and the volume at trane of test.
 Trbe intidy part of the silg not assoclated with olastion distortion.

[^13]: 2 Values are averages of 3 lests.
 The diameter of the boit hole was the snme as the nombat dameter of bolt.
 3 Based on the weight of oven-try wotal ant the volume at time of test.

 - The initial gart of the stip mot assophted with olastle distortion.
 s ithe loud aed sifp at frot droj) were fignoximately tho same as that at the maximum.

[^14]: " Redwood differs Jrom toost other spoeles in its moisture-strength relations in that its strength when green is somewhat higher than would be expected for tho density and its incresse in strength with seasoning is less than normal.

[^15]: 12 The specifications for the comnetors tested requiferd that the steel conform to A. S. T. M. Standard
 Specticalions for carbon stuel $A 17-20$, Type A, Grade 1.

[^16]: 1 Values are averages of 5 tests, excopt as noted.
 3 The diameter of the bolt hole was the same as the nominal diameter of bolt. Thickness of all conter members, 158 inches; sides, $11 / 10$.
 6 Based on the weight of oven-dry wood and the volume at time of test.

[^17]: 13 See foomole, i. 73.

[^18]: "The speciftcations for the connectors tested renuired that the castings conform to A. B. T. M. Btandard Spechications A47-33, Grade 35018.

[^19]: I Values are averages of 2 tests. All specimens had moisture content of 12.3 percent; 0.56 specife gravity, based on the wefght of oven-dry wood and the volume at thme of test; and 7,804 pounds per square inch maximum compressfye strength parallel to grain.
 ${ }^{2}$ The diameter of the bott hole wes yo inch larger than the nominal dinmeter of boit.
 3 stac members were $1 / 2$-lnch metai plates.

[^20]: : Values are averages of 2 tests.
 2 Distance from endit of tinher to center of holt hole.
 TBased on the weight of ovelt-ly wood and whe voinme at time of test.
 TThe lond and slip at Grsi droz were apmoximately the same ns that at the raximum.

[^21]: AS Se footnote, 1s. 73.

