

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

The Ecology of the Principal Summer Weed Hosts of the Beet Leafhopper in the San Joaquin Valley, Califormia ${ }^{1}$

 physiohogist, Dicision of Sugur Plont Incestigntions, Bureen of Phat Industry,

CONTENTS

INTRODUCTION

The beet leathopper (Eutettia tenellus (Baker)) is the only known vector of the vizus of curly top, which in Calitomia causes losses each year to two major crops, sugar beets and tomatoes, as well as to other crops, such as garden beets, spinach, and cucubits, and to may ornamentals. In some wans the fossets are serions.
The symptoms aud effects of curly 10 p have been diseussed by a Ennmber of investigators. Carsmer and Stahl (2)* discussed the sdisease in beets and reviewed the early literature, McKay and

[^0]Dykerm ($\%$) duscribed the disense in tomatoes, Carsmer (1) described it in beans, and Severin (13) and Severin and Henderson (16) described it in minor crops and other phants.

The Burean of Entomolory and Plant Quarantine and the Burean of Plant Industry coperated in an effort to determine (1) the location and sige of the areas of weed hosts of the bent leafhopper, (2) to what extent these areas persist from year to year on the same ground, (3) how mach fluctuation there is in the acreages, and (4) the factors that influence the inereme or decrease of thesp host plants, with the view of determining what might be done to redue the acrages.

A part of the resalting infomation. particulaty that on the winter and spring hosts and on the hoblover hosts that bridge the grap betwen summer and winter anmals, was given in a previous builetin (11), together with some information on the summer hosts. such as their relation to winter ammals in the successions and also in relation to the original types of veretation.

The present bulletin deals with the summer hosts, indicating what they are and why they are importan in the beet leafhopper and curly top poblem. It also deals with the acreages of summer hosts, and with the forturions in acrages. and shows fow thest are influenced by the present use of the land and other factors. Finaly there is: thecussion of the relations of the summer hosts to winter ammade particulary the competition with winter annulls as inflaenced by ramfall. This information forms a basis for an anderstanding of the major factors when produce and maintain large acreages of host plants and is necessaty for an intelligent application of control measares. Such measures are discused only insofar as they are based on the preeding intornation and the principies set forth.

The first sutvers were begun in 1031 and contimed through 1937 , mad all statements conceminy distribution and aboudance of these plats apply to this perion. The guantitative data obtatined from the surveys have been suppemented by extensive observations by both athors ia Catifornia and by the jumior athor in Thato (10) amd other States. Thus, while the information presented on abundance and distribution is fmited to the San Joagum Valley, the principles and the broad conchaions may be stated to apply themeghat the semiatid region where the wed heste ocent.

Clamate . No tobography of the san joaguin valley

The San Jomain Yatley is a fat phan roghty momites wide am 250 miles long. extending appoximately nonthwest by sonthenst, in the centen) part of Colifomian (fig. B). The ralley is bounded on thee sides by mountains. It is cot off trom the humid coastal region by the Const Range exedpt at the northern end, where the Sacmamo Riser flows throngh a hoad gap to the Pacific Ocean. As a rewhe the climate of the valley is ard and warm, but the mederating inflome of the wean is fotf theough this watp. This influence is greatest in the nombem end and gradmaly deremses somthward, so there is a grationt of temperathe and rainfatl extending froms north to wath. Stokkon. in the morthern end, has a mean anmal temperature of $50 . \mathbf{h}^{\circ} \mathrm{F}^{\mathrm{F}}$, and a mean ammal rainfatl of 13.92 inches. The comarathe lignes. for bakersfind. in the sonthern end, are

IU...

The vegetation of the valley, as it is at present, was mupped and disenssed in detail and related to the origimal types in a previous publication (11).

LIFE HISTORY OF 'CFE BEET LEAFHOPPER

The weneral lite history of the beet leathopper in Califomia was worked out by Severin (14, 15), whose findings have heen confirmed and extended by investigators of the Barean of Entomology and Plant Quarmine.

In the San Joaguin Valley the beet leaflopper passes the winter in the adult stage, and one or two generations develop in the spring on the plains and foothills of the west side, on host plants which form a part of the winter-imunal cover. When these ammals dry in April or May, extensive movenents of leafhoppers to other weeds and cultivated crops oecm. It is at this time that the leafhoppers cause their greatest damage to crops by transmitting the cudy top disease. During the summer the insect breeds for several generations on ammal weets and on sugar beets, and the overwintering generation is produced on these phants in the fall. Large numbers of leafhoppers of this generation move back to the platins and foothills of the west side of the valley and suvive there on any arailable green phats until the fall rains come and germination of winter annats takes phate.
All the wild plants that are of importance as breeding hosts of the leafhopper in the San Jompin Valley are ammals and form at part of the plant cover on the lands that are not continuonsly weil cultivated. These ammals fall into two chasses that are distinct as to the time of year when they make their greatest growth. The "winter ammas" are the phats that begin growth from seed ins the fall. grow through the winter, make their gratest growth in spring, and mature and dry before the hot summer begins. The "summer annuals" begin growth in the spring from seed, make their greatest growth in the summer, and nature late in the summer or in the fall. It is only by seasonal shifts from winter-amual hosts to summer ammals in the spring. and back again in the fatl, that the leafhopper is able to survive in abundance in the San Joaquin Valley.

TERMS LSED

To aroid comfusion it semed desirable in this bulletin to restrict the use of certain terms.
The term "weed host" designates plants that are hosts of the beet leathopher and are commonly known at weeds in cultivated districts and on grazing lands.
"Weed-host area" is used to signify the tract of land on which weed hosts are growing. If a partienlar kimd of weed host is meant, the specific mame is substituted for the general term-for instance, "Russim-thistle arat." 13 y "arm" here is memt the particular or imfividual tract of land, and this term refers to the space occupied rather than to the phan cover. "Stam" reters only to the phant corer that is, the aggregation of plants on the partionar tract of land in a given wemon. Since the weed hosts dealt with are mmans,
there is a new stand each year but the weed-host area may persist. Thus, a Russim-thistle area which persists on the same ground tor 3 years may have varying stands of 90,50 , and 10 percent. "Site" desigmates the particular tract after the stand has been removed. Thus if Russim-thistle has distrpeared from a tract of land it is no longer referred to as a Russim-thistle "area" but instead as a Russian-thistle "site."
"Locality" is used to include all the areas in a given neighborhood. Thus a locality may consist of only a single large weed-host area, but it more often consists of many small areas with intervening tracts with crops or with other kinds of plant cover. The actual extent of all the areas in such a locality is expressed in acres and referred to as "acreage" of a particthar weed host. All the localities considered have been divided into two groups and designated as the "eastern group" and the "western group."

The tems "idele" and "abandoned," as applied to lands in this paper, are discussed later in the section deating with present use of the land (p. 14), and "fallow" is discussed in the section on what becomes of weed-host areas (p.20).

METHODS

The abundance and distribution of the summer host plants were detemined hy two types of surveys, one detailed and covering prac-tically all the particular geographical unit, and the other based on transects from 3106 miles apart.

Detaleed Surveys

listimates of the abundance of weeds in selected places considered to be of primary importance because of their proximity to winterbreeding grounds were made by traveling all roads and trails in an antonobile, measuring one side of each weed-host area with the speedometer and estimating the other dimensions. The nomal division of fam land into quarters and eighths of a squars mile greatly improved the acemacy of these estimates. On grazing land, which is not normaly divided into parts smaller than I square mile, the usual methods of making estimates were supplemented by cross-country cruising.

In making these surveys, weed-host areas covering less than 5 acres were ignored. Such areas ate usually found in barnyards, and along ditehbanks, fence rows and roads. To test the importance of small patches, i square miles were surveyed in detail by an observer on foot. Four handred and sixty five aceres of weed hosts occurred as large tracts. and hat acres. or appoximately 10 percent, as small patches. Scattered stands were igncred. since in localities badly infested by wed hosts a few individuals can be found anywhere. In estimating ahmonare it was mecessary to draw a more or less arbitray line as to what stands should be recorded, and in these surveys any stand covering less than Io percent of the soil area was omitici. Scattered stands and momerous small patches may give on exaggerated impression of the abondmee of weed hosts. For instance. a strip $41 / 8$ teet wide and 2 miles lomg by the side of the road, which actually contans only 1 acre, is ofter more conspicuons than a 10 -acre block.

Transect Surveys

In that portion of the San Joaquin Valley which was not surveyed in detail an estimate of weed-host acreages was obtained from transects spaced 3 to 6 miles apart. The total length along the road on both sides of all weed-host areas was determined by the automobile specioneter. No record was kept of the depth of weed-host ateas. as it was assmed that the length of all weed-host areas bore the same relation to the total length of transects as the actual acreage of weed hosts bore to the total acreage of the tract through which the transects were made.

This method will theore ically give accurate estimates of weed-liost acrenges provided enough transects are made to give an adegnate sample of the locality. In theory, transects should be equidistant from one another and should run in a straight line across the general pattern of zonation, since irrigated districts are usually composed of a centeal, well-famed area, and an outlying, poorly farmed portion. In practice, howerer, roads were not always arailable at the desired spacing in spite of the fact that any usable trail was followed. Except in a few cases the same transects were followed every year so that if any bias wats present the estimates would at least be comparable from year to year.

Both methods of surveying therfore yielded only approximate acreages, and only large difterences had any siginificance when comparisons were being made.

THE SLMMER HOS'T PLANTS AND THEIR RELATIVE IMPORTANCE

Severin (12) published a list of 45 species of weals in which the beet leaflopper deposited eqges winder tatural conditions in the cultivated district of Californita. His list includes 11 species of Atriplex, 4 of Chenopodium, 3 of Amaranthus, 2 of hatra, and 1 each of 20 other gencra belonging to several diverse families. Sevecin states that on many of these piants leathoppers camot develop to the winged stage and that the most faromble host plants in the cultivated districts are members of the family Chenopothaceate.

Inrestigations by the Buteme of Entomology and Plant Quame time bave substant iated screrins: findings but have further restricted the number of important breeding hosts. Of the numerons species of Chemopodiaceae in Califormia, han are such poor hosts that very little breeding aeriss on them. For instane, nymphs can be found
 diaceae, such ins Atriplec fulurensic Coville and A. parishii S. Wits. ate groxi hosts but are either so restricted in distribution or abmulance, or both. in the San Joaquin Valley that they are not considered to be of any importance in building up popabtions that are of economic siguifieance. Arrowscale (il. phollowtegia (Torr.) S. Wats.), redscale (A. roxef. L.), smotherweed (Biswitu hyssopifolia (${ }^{2}$ all) Kuntze), and three species of Chenopodim, nandely. ('. album L.,

[^1]

 'furlock, ('alif., Jume totion
 tions in the stmmer, but ihese seeres mature and dry so early in the season that an owewintering gemeration ot leathoppers is not prothed. The leathoppers that are bred on these piants must move to later-mataring hosts it they are to survive.
 ot mastard, mamely. Brassica Fithber val: pinnutifidum (Stokes) Wheelex, B. cum pertris L.. and B. nify (L.) Koch, produce such small mamers of leathoppers that they manot be considered important breeding hosts.

There are only thee species of trool heeding hosts that are aboudant and that mature sufficiently late in the season to produce the overwintering queration of leafhomers. These are Russian-thistle

 bhesle is the most important of these. 'lhe two peecies of shiplex often dry too early in the satson to produce a fall population, and, in addition. the mumbers of leathoppers produed on them are usually lower than on Russiam-thistle. Compared with the other two, fogwed is a poorer host. Rassian-thistle. howere does not dry early,
 1!91-3i was the must abmedant. In mathion, this speciesoceurs abundantly in lucalities near the spring breeding groumds of the leathopper. and losses in the tramser from sumber to winter hosts are reatively low.

There is one other imporiant source of summer and fall populations of the leathopper, and that is sugar beets. Under some condifions the insect breeds abundantly on this crop, but under present practices. in the San . Dompuin ami Sacramento Valleys, beets that

 Caltit. Apbil 1ti. 1941.

might contribute populations to the spring. bredingerround are mostly harvested tooearly in the season to andble leathoppers on them so survive antil the winter atmutals begin their growth.

GEOGRAPHICAL LOCATION OF SEMMER WERD-HOS'T

 AREAS IN RELNPION TO SPRING BREEDINC CROLNDS AND CROPSPigure a shows the prindipal spring and stammery bereding grounds of the beet beathopper in their metation to bue amother. Sumber breeding prounds. ats shown in figure a, ate a composite formed as forlows: All the arems of enth of the three Wead hasts were plotted on the same mat for all yenats From 103I to 103 . inclusive. and then a gemeral bermdaty to indede all these areas was drawn in. The location at atoras of each lost at some time during the freven is shown in more setail in ligrure th, where they are mapmet separately.
 mer bronling tromsels of the Hect lealhepare in the Nom Itasquin Valls, 'she' summer bretring gromods (limed) ame a ctompasile of he aratis orctipient by the brea impertant wered hasts at some time durims thas
 Sbating lines theneald tho fan-
 fug grouncts, borizomat lines that less important fextorn wrom. The sibing hrembling grommes fhatom) the shown as (t) theip yontral latalion with.

The spring breeding grounds extend as far north as Tracy, occupying relatively smath acreares in that locality. Going southeastward along the edge of the foothills of the Coast Runge, the spring breeding grounds become more extensive in the areas of lesser raminall. The conters of high leafhopper populations in the valley, however, shift

from year to year. For example, in some seasons prolonged drought may practically eliminate the more southern portions as breeding grounds.

In Califormia, most of the sugar beets are grown in the Sacramento Valley, north of Stockiton. Prior to 1925 attempts were made to grow

beets in the central part of the Sam Joaquin Valley, but Chese attempts were abondoned because of execssive lamage trom curly top. Begiming in 1935. a considerable acreage of curly top resistant beets has been grown atong the west side of the Sin Joatuin? Valley from 1, Manos to Buttonwillow. Even these have been damaged to some extent, pationlary the late plantings.

Tomatoes are grown commercially from Mercell north in both the Ban Jomeqn mad the Sacramento lanleys. hat in some years heary damake occurs as tar north as Stockton. South of Merced County very few tomatnes are erown commercially, probably as a dived result of the curly top hazard.

The localities in whictr summer weed hosts are ahumdant fall into two importint groups depending upon their relationship to the spring breeting grounds. The wastern gromp (fig. 5, horizontal fines) lies mostly within the cuttivated district, conatans seattered areas of the three important summarr hosts in mixed or pure stands, and ineludes nearly all the acreage of bractstale, most of the fogweed, and at large part of the Russianthisth. 'line western gronp contains relatively heary infextations uf summer lasits, mosity hussianthistle. This group is considered to be mukh more impertant than the eastern gromp becanse of its proximity to the spring treeting gromads so that the losses during migration are moch lower."

[^2]The extreme southem portion of the ralley is included in the e group because it is fat from the principal sugar beet and tomat tricts. However, this locality may protuce popuations of Jeathoppurs that infest nearby smalt acreages of sugar beets and tomatoes and in some years may tontribute to the infestation of more distant sections.

SUMMER WEED-HOST AREAS IN RELATION TO TOPOGRAPHY AND SOIL

The summer hosts of the heet leaflopper are pactically limited to the flat lands of the valley, that is, the valley floor and gently sloping piains. The only exceptions worth mentioning are relatively smati areas of Russian-thistle in the hills southwest of Los Banos and near Coalinga.
All three weed hosts occur on widely different soil types, including practically all those found in the valley ($\%, S$). In 1931, the year in which there was the grentest acreage of weed hosts, thout half the Rus-sian-thistie found on the tonsect survey was on sandy lomm, approximately a third on sam, and a sixth on lom. A small remainder was on fine sandy loan and clay loam. If the large areas of Russianthistle on Panoche loam in the vicinity of Continga and Mendota were includer in these figures, the proportion on loam would have been greutly increased. Most of the bractscule was found on loam, fine sandy loam, and sandy loam, in approximately equal proportions, but small acreages were foumd on chiy loam and sand. Shightly over a third of the fogweed was on sandy loam, with somewhat less than a third on fine samely lom, and a liftle over a fitth on loam. Small portions were found on clay lom, sand, and clay.
The smmer host weeds show rarying degrees of tolerance to suils with a high salt ementen. Fogweei often grows with alkali heath (Frankonia grandifolia Cham. \& Schlecht.), saltgrats (Distichlis spicatu (L.) (iseeme), and seepwed (Sunedu fruticosu Forsk.), all of which art extellent indicators of a high salt content. Bractscale has not been observed to grow on land with a high salt content but does grow in moderalely saline soils and is apparently tolerant of certain chemicals that ordinarily prevent plant growth. Ditchbomks in Stanishans ('ounty that had been poisonsd with sodima arsenite to prevent the growth of weeds prodnced a heary stamd of bratseale when no other plants were present. Russian-thistle has been observed growing in soils known to be somewhat saline, hat is never aburdant on such land.
The wile variation of yoil types on which these plants ean flourish indicates that except for extreme types, the character of soil is a relatively mino factor in their distribution. Othe factors, such as the use to wheh the lami is put. have a more important eflect.

RELATION OF WIGEDHOST AREAS TO THE PRESENT PLANT COVER ADD TO THETYPE OF ORIGNAL VEGETATION

Ta my ara the mative wegetation previous to intensive disturbunce by the white man was the resule of the interaction of a complex series of phasieal and hological factors. The distribution of any given original typ is a meanme of the range of extent over which appoxi-
mately the same set of factors operate. If the cistribution of a weed can be determined in terms of the bype or types of native vegetation; its possible future distribution is indicated. This is tue if the disturbance by man has merely removed the original vegetation without seriously changing the factors determining its distribution. Some of the distirbances, however, are so profound as to result in physien or chemical changes in the soil, such as changing the level of the water table and the salinity of the soil. Such changes must be taken into consideration in determining the distribution of weed hosts.

Most of the land at present infested with Russian-thistie was originatly covered by bunchgrass of the Pacific grassland type (11) which has heen destroyed by cultivation or excessive grazing. Russimthistle also ocetrs to some extent on land formerly occupied by other types where the original vegetation was destroyed by coltivation or excessive graziag or where drainage and irigation have lowered the salt conteat.

Bractecale occurs almost entirely on land that has been plowed, and usutily recently plowed. The portion of the valley infested by this weed covers what was originally lowhat types, bat also Pacific grassFand and, to a much less extpht, tree savamnh. Braclscule is almost entirely absent from hand formerly covered with desert saltbush (Atriplea polycerpa (Torr.) S. Wats.).
Fogweed is fomed mostly on lands formerly occupied by the spiny saltbush (Atriplex spiniforid Mache:) and lowland types. It occurs to some extent on lands formerly oceupied by bunch grass, at present farmed and so altered by secpage as to have a high water table and a tairly high salt content. No large actenges of fogweed are found on lam formerly covered with desert salthush.

SUMMER WEED-HOST AREAS IN RELATION TO THE PRESENT USE OF LAND

The land on which Russian-thistle bractseale, and fogweed occur on be divided into three major types on the basis of the present useof the land; mamely, idle, abandoned, and cropped land. All land on which the three weed hosts were found on the transect surveys have been grouped into these categories, and the proportions are given in table 1.

[^3]

The classification "idle" includes those lands on which no crop was growing at the time of the survey but which had been plowed or cropped 1 or 2 years previously. "Abandoned lands" include those that were considered not to have been plowed or cropyed for 3 yeurs or more. Such lands usually had a cover of winter ammals and were sometimes disturbed by grazing to such an extent that the winteramual cover had been almost destroyed. In such cases the classifications "idle" and "abandoned" were not always distinct.

Lands that were covered with it mised stand of weed hosts in 1931 are not included in the table, since in that year the relative proportions of the weeds in the mixture were not recorded. Mixed stands found in other years are included and are listed under cach of the constitnents.

Table 1 shows that, with the exception of fogweed, weed hosts were more abudant on idle land tham on either of the other types. Fogweed and Rassian-thistle occurred more often on abandoned land than on land with crops, but bractscale was found slightly more often with grain than on abandoned land. Grain is the only crop of any importance in which summer weed hosts were abundant. All three weed hosts, and Russian-thistle in particular, are pests to some extent in other crops but are usually thimed by tillage to stands too sparse to have been recorded.
As compared with the other two weed hosts a higher percentage of the bractscale occurred on idle land. It also occurs on abandoned land where the winter-annual cover has been destroyed. Wherever a cover of other plants is present, bractscale is fomm only as patches of dwarfed plants. Under certain conditions Russian-thistle may grow abundantly on abandoned land now used for grazing, where there is a fairly complete cover of other plants, but it usually grows where the cover has been damaged by excessive grazing, by feeding of rodents, or by some similar cause. On such land in certain years, Russianthistle covered large tracts in the Los Baños-Mendota, Coalinga, Westhaven, Devil's Den, and Irvin localities (fig. 6, A, and table 3). Although in these localities Russian-thistle grows mostly on abandoned land, it sometimes spreads to range land that has never been plowed but where the plant cover is very similar, because of heavy grazing.

Fogweed occurs abundiutly oin abandoned land, now excessively: grazed, near Tulave and Buena Vista Lakes and in the Kern River iowiands. Usually on these tracts there is a sparse cover of winter ammals and, in some cases, a seattered stand of pereminals, chiefly s:altgrass, seepweed, and alkali heath.

Further evidence of the close comnection between the abundance of summer weed hosts and intermittent farming is brought out by the record of the succeeding a years in what were weed-host areas in 1931 (table 2).
A high percentage of 1931 weed-host areals was cropped at some time duxing the 6 years of record. Since a majority of weed-host aveas were on idle or abandoned land (table 1) much of which was cultivated at least once during the 6 -year period under observation, it is quite clear that reed hosts tend to ocen on land that is intermittently farmed.

In the well-farmed distriets land is cultivatel every year and seldom permitted to lie unused, consequently weed hosts camot form stands worthy of consideration over any sizeable area. Even along fence
rows and ditchbanks they are usually kept down. But in those districts where economic conditions, inadequaie irrigation water, or excessive alkali cause farmers to permit land to lie unused, weed hosts become abundant.

Nable 2.-l'crecutages of the wead-host areas of 1931 on land cropped at least 1 pent during the period ags-se, inchusiee, and on land not eropped during this period

thotal mexth of medhost arons as measured along the rond bs the atomobile spectiometer,

abundance of summer weed hosts

The acreages of the three important summer hosts in the San Jonquin Valley for the years 1031 to 1937 , inclusive, are given by localities in table 3 . The western group includes chose focalities mear the spring breeding grounds, which, as explained in the previous section, are considered of primary importance.
The acreares given in table 3 are subject to the sources of error which were discussed under Methods and, therefore, only large variations shonld be considered. Variations of one-half or twice atre consiclered significant except that figures of less than 1,000 acres, when obtained by the transeet metlood, are unreliable.
Table 3 shows that there was a pronounced downward trend in the total acreage of Russian-thistle in the eastern group from 1931 to 1035 with 1036 remaining about the same as 1935 . This general trend Mas characteristic of all localities except Arvin and the small one at Tulare Lake. In contrast to the fairly regular trends of the enstern group, the acreages of Russian-thistle in the western group fluctuated martedy from year to year. The greatest total acreage for this wroup was renched in 198a, when there was a very heary increase in the Westhaven Jocality.

Bractscale acreage, which is practically restricted to the eastern group, followed the same general trend as Russian-thistle; i. e., it lecreased from 1981 to 1935 and remained about the sime in 1936.
Fogwerd acreage showed greater lluctuation. The Buena VistaButtonwillow locality, which was next to Tulare Lake in the acreage of forweed, had high points in alternate years, in 1931, 1933, and 1985 , but the tendency toward cyclic recurrence indicated by these figures is considered of no significance in as short a period as 6 years.
On the whole, bractscale and Russian-thistle acrenges in the eastem group, where they were largely in cultivated districts, underwent sharp reductions to a point where the acreages in 1936 were small and relatively unimportant. Russian-thistle in the western group maintained a large but unstable acreage, largely on grazing land. Except for the
small Los Baños-Mendota locality, foyweed acreage was rentued, although that which still remained in the Tulare Lake locality in 1936 was considerable.

Tamre 3.-Acreages of the 3 most important summer teed hoxts of the beet leufhopper in the San doaguin Valteys
ressenN-Thistee (FIG. ©, A)

BRACTMCNLE(FIC. 6. If)

FOHW゙FED (FIG. 6, ()

[^4]The reason for these fuctuations will be discussed later when the data bearing on the causes have been presented.

The total acreage of summer hosts in the San Joaquin Valley may appear to be hopelessly large insofar as any possible control measures are concerned, but it should be borne in mind that the extent of the land affected by leafhoppers bred on these summer hosts is aiso very large. The San Joaguin Valley alone covers somewhat more than 7 million acres. In 1931, when summer weed hosts reached their maximum abundance. Russian-thistle occupied approximately 1.8 percont of this tereage bractscale 1.5 , and fogweed 2.3 percent. A better idea of the relative magnitude of weed-host acreages can be obtained by a comparison with the acreages of the crops affected. Table 4 gives the acreages of sugar beets and tomatoes in the Satimas, Sacramento, and San Joaruin Valleys, the districts most afiected by leafhoppers produced in the San Joaquin Valley. In 1931 the combined acreage of bects and tomatoes was less than that of Russian-thistle afone, but ly $19: 35$ these crops occupied a greater acreage than the weed hosts.

Thame t.-Acrages of sugar beets and tomatoss in districfs affectet by leafhopfers from the Sum Jorquin luhey'

: Figurs obtainerl frome the Califorma Coomerative Crop Reporting Eervice.

WHAT BECOMES OF WEED-HOST AREAS?

The question "What becomes of weed-host areas?" can be dealt with more readily if the varions areas of the three summer weed hosts are considered in two classes, one comprising those areas within the cultivated district on land that is intermittently farmed, and the other those on grazing lands either permanenty abandoned or never plowed.

O. Lntermittently Farmed Lands

The purpose in studying the history of weed-host areas on lands intermittently farmed was to determine what proportion of these areas reappears, what proportion is replaced by other plants, and what proportion is replaced by crops. The answer to the first question, the proportion that reappeare, is given in table 5 .

The weed-host areas tased as a basis in table 5 include all areas occupied by weed hosts in any year for the fist time since 1931. Previons
to 1931 these areas may or may not have been occupied by weed hosts, as no records for earlier years were kept. The first recorded appearance of weed hosts on these areas may have been in 1931 or any following year except 1930. The proportions that did and that did not again appear in weeds in subsequent years ate given regardless of what happened to individual areas in the interim.
 miles of tered-hosk areus recorded on the transett surveys $1981-96_{1}$ inclusite

For instanee, ath area maty have been ocmpied by Russinn-thistle in 1932 for the first time in the records and was meladed in the first percent colmma and in the first var of record. It the same area was again ocupaed by Russian-thitele in 193t. it was again listed in the same column in the third year of record. 'The intervening year, 1933 , was included in the next colum, second year of record. The cause of the lack of the appeatance of Ruswan-thiste on this area in 1933 is not considered heme but in a later section. The table is conermed with showing that weed-host areas tend to disappear regardless of apparent canses, and that they do not reappear consistently year after year in any large proportion.

Only about one-third of the Ruswath-thistle areas rempeared the second year, about onefith the thind vear, and less that one-tenth after the thind year. There is a similat but ereater drop in the number of bractsenfe and togweed areas that reappened the second year. In genead. the sharp drop, in the second year followed by a continued decfine at a dee lerating rate is chatacteristic of all there weed hosts. The summer wed-hot areas that did not reappat were replaced by other phants or by erops. The relative proportions of these are shown in table 6 .

To show the rate of replacement of weed hosts by other plants it is necessary to select areas not destroyed by plowing, so that the process cun be followed through a number of years. The observed rephacements on areas so chosen are given in table 7 .

Thars 7.-Rute of rephament of teced hosts of the bect leafhopper by other phents on sites not dish abed after the first yetr

The weed-host areas in table 7 are limited to those on sites where the natural cousse of succession was not interrupted by plowing or cultivation after the first year. No attempt has bean made to eliminate sites that were disturbed gy grazing or burning, since steh disturbance was mot always evident in the ammal surveys. (reneral observation indicafed that nearly alt abandoned or ide lands are grazed or bumed or both. consequently lands that were not plowed were not entirely undisturbed.

The upper balf of table 7 lists only areas contaning a mixtare of weed hosts and ammal crops the first year, that is, those whose history began with a definite record of disturbance. The table shows that a large proportion of such areas was repleted by other plats in the second year. Although by the fifth year no weed-host stands rematined, by this time the quantity of data, as requesented by the mileage survered, had decreased to the point where it was not very extensive.

The lower section of table $\overline{7}$ shows the rate of replacement beginning with weed-host areas on idle or abandoned land. Here it is known that the replacement did not hegin previous to the first year of record, since sites were chosen that had not been occupied by weed hosts the previous year. The sites listed were not plowed but may have been bumed or grazed, an were those in the first section of the table.

The rate of replacement of weed-host areas on these ichle or abandoned lands by other plants shows the same trend as that begiming with a mixture of weed hosts and ammal crops.

The data show that in the years when the studies were made. summer weed-host areas did not reappear but were aspidy replaced by other
phants if they were not destroyed by cultivation. The conclusions are supported by general observation.
Of the plants that replace summer weed hosts, winter ammals are the most abundant. This was discussed at some length in a previous publication (11). The most important of the winter anmalals are grasses (species of Bromus and Fcstuca) and alfilaria (Erodium spp.).

Summer anulals in some cases tre important constituents of the phant covers that replace the thee summer weed hosts, particularly in the early stages of sucerssion. The most common of these summer annuals are spikeweed (Hcmizonia pungens (H. and A.) T. and G.), tarweeds (Hemizonia spp.), blucurls (Trichostema lanceolatum Benth.), turker mullein (Ercmocarpus setigerus (Hook.) Benth.), and, in the worthem part of the valley, telegraph plat (Heterotheca grandiflora Nutt.). Other summer ammals that have been recorded on weed-hrst sites are jimsonweed (Datura stramonium L.), horseweed (Erigeron canatensis L.), sunflower (Helianthus ammous L.), and burweed (Franseria acanthicarpa (Hook.) Cov.). On the more saline soits alkati heath, saltyates, seypweed, goldenweed (Aplopappus venctus var. ucrnomiodes (I. B. K.) Munz), licorice (Glycyrrhiza lepidota (Nutt.) Pursh), jackass clover (Wistizcnia refracta Engelm.) and Australian saltbosh were fomd.
All these phants orear in rarious mixtures and rary in abutance from year to vear. Only those are listed that were found frequently in sufficient density to be important constitnents of the cover. In other words, no attempt has been made to list rare or infrequently occurring species. Spikeweed in some years is the most important of the sumner momals that replace weed hosts. In years of abondance. tract after tract is covered with a dense stind of this plant. In other years it is common but not abundant.

Further information as to what becomes of weed-host areas is presented in table 8, which shows the kirds of crops grown on weed-host sites; i. e.. tracts formerly occupied by weed hosts.

IThate S.-(toms grown on sifes formenty occupied by weed hosts of the beet lethobiter

 miscolhatous crops.

The heating "Plowacl. fallew" inchudes the lands that had heen plowed but m which no crop was growing at the time of the survey. Some of these were grain fields where the crop hal been harvested and the ground plowed. some were probably ide land that had been prepared for fall phanting, and others were summer fallow. The miscellaneons column includes crops that oevorred tarely on land formerly oceupied by weed hosts and also inchudes a few fields that
had crops of donbtful identity because of inadequate records. Grain, cotton, and sorghum are the principal crops that follow stands of weed losts. Since these crops do tairly well on somewhat saline soils, and since grain, which is the most important, can be grown with a minimum of irrigation water and tillage, these are the crops that are raised most extensively on the outlying farms at the fringes of the well-cultivated ilistricts. In the better farming districts, where the soil is free from alkali and plenty of irrigation water is available, alfalfa, vines, and orchards occupy most of the land. These crops represent in more or less permanent investment. The land is valuable and usually tended by resident farmers cultivating small acreages. On the other hand, the grians and cotton are often grown in large acrenges by nonresident farmers who abandon the land if prices are low and the outlook unfarorable.

On Grazing Land

The Russinn-thistle areas found on grazing land have a different history from those on land intermittently farmed. The history of a typical Russian-thistle area on grazing land is shown in the maps in figure 7 . In these maps the entire portion marked "plains" is old abandoned land which at oue time or another had beea plowed, with the exception of small parts near the hills that hase not actually been plowed but through heavy grazing have been reduced to practically the sume kind of plant cover. ${ }^{0}$ The broken line dividing the calfrated distred from the plains is drawn appoximately to represent the conditions in 193t, but in later years there were some changes in this bommeny. Any Ruesian-thistle areas affected by the extension of cultivation have been eliminated from consideration in these maps.
In the years 1031. 1932, and 1933 no formal surveys were made. since extensive cruising, mostly during leafhopper survejs, had reveated only small. seattered patches of Russian-thistle. In 1934 there appeated the larere area shown on the map in figure $7, A$. - Actually: the extent of the Russian-thistle growth was much linger than shown since only stands with a density of 10 percent or more are incluted.
In 1935 the acreage of Russian-thistle was much smaller than in $193+$. The wame general tract was infested. with a few extensions at the northwestern end and in the middle. Those parts which were covered with Russian-thistle in 1934 but fre of it in 1930 had only the usual cover of wintor innuals. In 1936 (fig. $7, B$) there was a lange increase in Russian-thistle acreage. In this year, howerer, the buik of the acreage was in bew teritory not previously infested (ither in 1934 or 1935 and hay mostly to the sonth of the old infestation. Only about half of the 193 a Russian-thistle area persisted in 1930. In 1937 (fig. T. C) there was a lage decrease. Very little of the 1935 and 1936 Russian-thistle areas persisted in 1935, and the only new area of any consequence lay 5 miles to the southeast.

[^5]Russim-thistle areas on these plains are characterized by marked and sudden shifts in location and size from year to year, although there is a tendeney for each year's infestation to lie partly within the boundiries of or to the sonth of the precious years. This holds true for other Russian-thistle areas as well as the one mapped. The caluse will be discussed in more detail in later sections on seed distribution and the effects of ruinfall.
Fogweed, like Russian-thistle, grows extensively on grazing land. Whereas Rusian-thistle is largely restricted to hand that was formerly occupied by bunchgrass or, to a less extent, by desert saltbush and is now covered by winter annaals. fogweed grows on land that was formerty occupied by lowland types and at present has a mixed cover of winter ammaty and peremials. Fogweed areas on grazing land have not been studied in detail. but thete are iarge fluctuations in acreage and lowation. Bractscab, as previously moted, does not occur to ally extent on grazing land.

COMPETTTIVE EQU'IPMENT OF THE THREE PRINCIPAL SUMMER WEED HOSTS

Those characteristics of the weed hosts that ate of importance in their distribution and compertition with other species will next be considered. The chamacteristice of Russian-thistle (70) are much better known than those of bractseale and forweed. Russian-thistle is distributed over much of the Western States. Its early history in this conntry is given by Dewey (f) and Goff (5). Roblins (12)

 Valley infested by the lhassian-thishle. The entire purtion matrked "Pains," between the foothils and the strpped broken lime, cunsists of old abamboned land now grazed. A, The parts in the smelosed areas marked by dots were

 in 7135 heing shown superimposed is lined areas; B, in tike mannes the 7530
 map carrios the same illat through the rembtions in 1037.
gives its history in California. The Range Plant Handbook (3) describes the plant in some detail. Fogweed and bractscale are native species, but being much more limited in distribution are not so well known. Hall and Clements (6) give something of the general ecology and occurrence of these two plants. ${ }^{*}$ In the present studies Russian-thistle has received the most attention boguse of its greater importance as a leathopper host.

Time of Germanation and Growth

Russim-thistle, bractscale, and forwed are all summer ammals. In the Sin Jomain Valley they perminate in early spring but grow very slowly before the coming of warm weather. Rapid growth begins in May, somewhat earlici for fogweed and bractscale than for Russian-thistle. and is most mpid in June. Seed is produced in the Jatter half of the summer. Rusim-thistle has not been observed to produce seed before the first of July. The end of the growing season varies greatly from yor to your and from place to place in the same year, depending on plant density and soil moisture.

In queral. Rusian-thistle will mature and dry later tham bractseate and toyweed. During the period 1931-37 the fast two for the most part matured and dreed late in August or in September, aithough vigorous stands sometimes remained green and succulent until killed by frost in October or November. Most Russim-thistle stands remain green matil October, and over large acreages often do not die until filled by frost, bat may dry any time affer germination if competition is severe.

To bring out the effects of competition on summer annuals more clearly it is necessary to discuss the competitive equipment of the winter ammals, the chief competitors. These germinate in the fatl or early winter as soon as enough rain falls. The amount of rain necessary for germination sario with the temperature and the period orer which the rainfall extends, but is uswally one-half to threefourths inch. The winter amusis then grow throughout the winter: and mature and die in the spring. The amount of growth and the length of the growing season are conditioned by the available moisture and the density of the stond. In some years, when minfinl is light, drying oceurs as early as March. In other years the winter annats may live until the middle of May. Nomally, drying occurs in the hatter half of April or the first hate of Max. It this time Rusimathistle, bractscale, and fogweed are just beginning to make rapid growth.

Other summer amuals which may compete with the three summer weed hosts have little or no priority in germination, although they also germinte in the spring and make their growth in hate spring and summer.

Seed Distribction

Mthough the general mamer in which Rusim-thistle sed is distributed is fairly well known, some of the details are bronght out and

[^6]emphasized here since they enter into the discussion later. The plant is a tumbleweed, and the asual agent of seed distribution is the wind. The bushy, well-rounded individuals, such as are usuatly found in :parse stands. are best alapted to being carried in this way. Plants in dense stands are spindly, are not easily colled. and are usually entangled with others and so held in place.

After their death the well-romided plants break loose at the soit leyel. although some noisture is apparently necessary hefore the stem will break, ind extensive rolliner does not ocene until sometime after the first rains have fallen. This is an important consideration in control measmes, for if phants can be destroyed before the rains come, atensive sed dissemination is preventerd. In the cultivated districts phants becone lodged in ditenes or against other obstructions and will somefimes pile up agsainst a fence in stely great numbers as to freak it down. On the grazing hands. whete the only obstructions ate occanimal gullies and der washes. plante moving fefore the wind somebimes cover considerable distances before coming to rest. The betk of the sed is dropped howerer, within a comparatively short distance.
As pointed out in the previous section, on the platisis lussian-thistle tonds to orem wear and to the south of the previons years stand. apparent! beduse strong winds in this region gemeralis eome from the nerth or northwest and move okd plants te" the sonth or santheast, seding heavily the lands inmediately adjacent in these directions. The distance the sed is carried with the plant by wind is limited. but it may be carried any distance with hay or grain. For instance, the original intreduction into the Thifed States was in Hasseed from Russat. Sed may also be carried to some extent by water.

Fogwond, like iansim-thist le, is a tumblewerd. When the plants are rounded in shape they are blown by the wind in great numbers. Other than this, little is known by the writers about the seed distribution of this.species.

Bractecole is not at tumbleweet, since plants of this spectes usually remain in paice after maturity and do not have the typical rounded shap of tumbleweeds. They have not been observed rolling betore the wind bike Russian-thistle and fogweed. and the conspienous piles of deal phants along fences do not occur. Although the fruits are winged, the wing is small in proportion to the weight and size of the fruit. and olsetrations indicate that very little bractecale seed is carpied by wind.

This species often grows along ditchbinks. and some seed is probably carried by water. The phant also grows aboudantly around burnyards, and manure from subh areas is another posible source of inferitations. Seed is ilso carried by livestock. Viable seed was recovered from sheep manure gathered in a grain fied infested with a heaw rrowth of bractacale. Other animals probably carry the seed, althomigh sheep ame more likely to eat this plant than are other animals. Seed has been found in grain, but it may not have been viable, since bractseale is usinally green at the time grain is cut.

The amailable information indicates that bractscale is widely distributed aud that the sudden appearance of new stinds is a result of fiaromble conditions that permit it to make at groot growth from seed produced in the preceding seam by small scattered plants.

THE MAJOR FACTORS THAT INFLUENCE THE ABUNDANCE OF SUMMER WEED HOSTS

Three factors exercise a major influence over the abundance of summer weed hosts. These are seed supply, rainfall, and competition with other species. The first of these, seed supply, is determined by the abmalance and distribution of the seed produced the previous year. This has already been discussed at some length.

The effect of rainfall on the abundance of the three summer weed hosts is shown in table 9 by partial correlations.

Tames 9.-Prartial carrelation coefficients of seasonal rainfall and acreage of the 3 summer weed hosts of the beet leufhopper

Intependent facior, ruidall fim-	Factors held constant, rainfall in-	Conficients of marthal eorrelation for-			
		Russian-thistle		Bractseale 5	Fog. weed 1
		Western groupt !	Enstern Grotap 3		
Jamuary amd Fobruary		0.008	-0.102	0.023	0.005
Marth mid April......	Jamuars und February, Mayandjume.	-.033	-128.	. 032	. 008.
Mny mad dune.	Jambary and Futbrury, Marelo and	. 080	- $214 *$. $531{ }^{\circ}$
May..................	June...	-. $3+0$. 203	432*	008
	day	-. 245	-283**	+706"	. $034 \cdot 0$

-Shnificant at the 5 proeent level.
**Signidgant at the 1 pereent leved.
I Includes only Jos Baños-xleudota, Westhavea, and Coalinga localities, 1934-37, inclusive.
${ }^{2}$ 'Taluris Lake omited. all ather localties are focluded and are for the years 1931 -3f, inclusive.
TOnly castern group igutes $1931-36$ were used.
The results summarized in table 9 were obtained by reducing the acreages of weeds in the several localities given in table 3 to a comparable basis and by reducing the acreage of each weed host found in any one locality in any given year to a percentage of the total acreage of the same weed host that was found in all years in the particular locality under consideration. Rainfall records at Weather Burean stations within or near each locality were averaged by 2 -month intervals for the period from January to June and separately by monthly intervals for May and Junc. Partial correlations were calculated from these data. The figures for wach year in each locality were treated as separate variates. For instance, in tabulating the acreage of bractscale, the figure for Madera in 1931 was treated as a single variate, Madera in 1932 as another variate, and Hanford in 1932 as another, and so on. Since the several localities have been reduced to a comparable basis, variation between any two in the same year can be given equal weight with rariation in the same one from year to year.

The correlation coefficients for Russian-thistle have been computed separately for the castern and western groups, since the former consists chieity of cuitivated land, the latter of grazing lands. In calculating means of ratinfall. the same Weather Bureal station was used in some cases for two different but adjacent localities. For instance, the data from the Coalinga station were nsed for correlations with Russian-thistle acreage in the Coalinga locality. and the same weather
data were avemged with those from the Helm station for correlation with the acreages of the same weed host in the Westhaven locality.

In table 9 the correlation coefficients by 2 -month intervals indicate that rainfall in the first two periods in the year (Jamary-Pebruary und March-Aprii) has no significant effect on acreages of any of the three weed hosts. Rain in the thixd period (May-June) significantly aftects acreages of bractscale, fogweed, and Russian-thistle. When the eflects of May and June rainfall are separated, it is found that May rain has a siguificant effect on bractscale acreage only. June rain significantly affiects acreages of bractscale and fogweed, and of Rus-sian-thistle of the castern but not of the western group.
The size of the correlation coofficients indicates that in those localities significantly affeeted, June rainfall was one of the important factors that controlled ammal fluctuations in acreages. Table 9 indicates differences in the raction of the three weed hosts to rainfall, and for Chis reason they will be discussed separately.

Russian-thistle

To moderstmad why rainfall in June, and only in June, affects Rus-sian-thistle acreage in the eastern group, but from the correlations appears to have no effect in the western group, it is necessury to consider the third factor, that is, effects of competition with other plants. It has been shown (pp. 14, 19) that, in the eastern group a large portion of the acreage of Russian-thistie is found on idle land where the stands are quickly replaced by competing species, chiefly winter annats, ir the land is not plowed. In the western group the bulk of the Russian-thistle grows on qrazing land where a yariable cover of winter ammals is present. These plants exercise their most important influence on Russim-thistle through their effect on the soil moisture, and soil moisture in an arid region such as the San Joaquin Valley is a critical factor, usually determining whether plants can grow and produce seed.
In this region the summers are practically ramess, so these weed hosts, which make their greatest growth in summer, must depend on the moisture that has been stored in the soil from the preceding wet season. The winter annuals, however, which are the principal competiors of the summer amuals, start growth with the first rains in the fill. In consequence, winter mamats have first chance at the available soil moisture, and where they are sufficiently abundant they so exhaust the supply that none is left for the later growing summer annuals. Thus the latter can thrive only where the winter-annual cover has been destroyed umless some supplementary source of soil moisture is available. This is the reason why so large a portion of the Russian-thistle in the cultivated area is found on idele land and why it tends to disappear when the winter-ammal cover has established itselt.
Howerer, in the interval between the first year of abandonment, when winter amuals are very scarce, and the time when a complete cover of these plants becomes established, there is a critical period of 1 or 2 years when small amounts of rainfall may be very important to the growth of Russian-thistle. If rain falls early in the spring, it serves to increase greatly the growth of the winter amuals, since they
are at the height of their growth period and in a position to use the additional moisture very gaickly and effectively. Russian-thistle is growing slowly at this time of year and can make less eflective use of the additional moisture. Thms, in the end the rainfall early in the spring further increases the severity of the competition which the winter mmouls aford Russian-thistle. But if the rain falls later, after the winter anmais are dead or vearly so, this moisture is available for the further growth of summer ammuls.

In the cultivated district a considerable acreage of Russian-thistie is always found on idle land where competitive plants are few and where the soil moisture avalable from the winter rains has not been depleted and so is available for the growth of Russian-thistle. In addition there are hads where varying amounts of Russian-thistle and winter annuals are nixed and where the former ean grow if sufficient rain falls after the winter annals are dry. 'The anound of rain necessary will depend directly upon the cover of winter ammals and the severity of comperition. It is in such situations that oven a light mantall late in the season may mean the survival of Russian-thistie and a great increase in its acreage. Winter ammals may mature and dry in some years as early as the first of May or as late as the first of June. Sune mins always come after matririty of these plants and always tend to increase the acreare of Russian-thistle. When the winter anmals dry eady, May raintan tends to increase the acreage of Russim-thistle, but when the winter amuals do not dry tutil late in May, rain in this month decreases the nereage of the Russian-thistle. These effects tend to cancel one another over a period of years, and this is why the correlation coeflicients in table 9 show no significant relation between Russian-thistle acreage and May raintall.

In the western group, Russian-thistle grows on grazing land where a cover of winter ammats of some kind is present. Although this cover may be sparse, nevertheless it affords severe competition as compared with that in the lands in the cultivated district which have been recently plowed. In consequence, rainfall which is sufficient to produce a large increase in Russian-thistle under the relatively mild competitive conditions in the eastem group is not sufficient to have ary effect in the western group.

It is only when June rainfall is unusually heavy, as it was in 1981, or when intense iocal stoms in the hills cause flash floods, that there is sufficient moisture for the Russian-thistle to continue growth and mature seed. In some cases the silt and debris of floods cover a square mile or more, burying the cover of winter annuals and leaving bare soil. Part of the acreage covered by Reassian-thistle in the Panoche section in 1934 was of this type, and many of the sudden changes in the location and acreage shown in figure 7 are due in part to such erratic local storms.

The abundance of Russian-thistle in the San Joaquin Valley, then, is determined by several factors acting in conjunction. The dagram in figure 8 illustrates the interaction of these factors. The large outer circle (A) represents any locality in the San Jonquin Villey, all of which is covered by the general ratins of winter and an of which has a good cover of winter ammals except the small portion within circle C^{\prime}, where this cover is absent or sirarse. The part where Russianthistle seed is present is shown by cirele B, and the part covered
by additional rains in late spring by circle D. In the triangular portion F, formed by the intersection of the three small circles-that is, where seed is present, where winter annuals are sparse or absent, and where late spring rains fall-it is almost certain that Russianthistle will grow and mature. In E, where seed is present, where competition is lacking or at least not severe, and where spring rains do not fill, Russiani-thistle will grow, but if its stand is dense it will die prematurely. In G, where seed is present and late spring rains oceur, bat competition is very severe from winter anauals, Russianthistle will not survive except when spring rainfall is unusually heary, and even then will form only an open stand of small or medium-sized plants.

Frocte S-Diagram of the etrects of ratinfill, seed supply, conpetition, and the interaction of these finctors on the growth of Russtan-thistle: A. Covered by winter rains and with a uniformy dense cover of winter ambils, exeept within eircle (': B, Russian-thistle seed present ; O, winter annuals sparse or absint; D. covered by tate spring rains; l, where Chssinn-thistle will grow lut will die prematurely if its stand is dense; F. where lussian-thistle will altucst certaimy ytow and mature; G, where Russinta-thisthe wilt not survive excent in yerrs when late spritg ratus are unusualy beave.

Where the cover of compotitors is heavy, Russim-thistle dies when young, and large numbers of small, dead plants can be found in such situations. Figure 9 illustrates the dwarfing effect of a dense

Figura 0.--'the relative size of Russian-thistle piants krowiog in at sjarse stand of winter anmatis (A) and in at denset stand (B). The plituts were growing 14 feet apart in a cover in which dense and sparse patches :ilfernaterl.

 lowerer. in the differeme in the form of growh ame in ifs total volnmes sime it is oherous that in heights the phants wom vary
 in a dente trowth of wintor ammall mitht hate the same height an an individut sowing in atpare cover. and ret the diftereme in total

Lew is kman akat the afferto of empertion hetwern Russian-

 and rompate fors milmature.

 wher the grain in thek athe whe it i- him.

Bractscale and Fogweed

The effects of cainfall and competition on bractscale and fogveed appenr to be in most respects very similar to the effects on Passianthistle. Both these tend to occur on denuded land where they are rapidly replaced by other plants, chiefly winter unnuals. Acreages of bractscale and fogweed are affected by June rainfall and acreages of the former are also affected by May rainfall.
Bractscale is much more closely confined to newly plowed or idle lands than is Rassian-thistle. Dense stamds of bractscale do not occur on lands in the cultivated district where a cover of winter annuals has developed; that is, this phant cannot grow where the cover of winter anmals is suticient to exhaust the soil moisture that comes from the winter rains and is less able to withstand competition than Russianthistle. The dwarfing due to competition is shown in figure 11 in drawings made from photographs taken near Lemoore, Calif., April 16. 1941 .

Figute 13.-E安et of competition on bractscale: A, in a dense stand of grass; A. in a tense stamb yf bractscate; C, young plasits growing in a nearly bare spor. 'The phints were growing wilhin it tew feet of etch othet.

Fogweed grows abundantiy on old abandoned land where the cover of winter annuals is sparse, either because of grazing, or usually because of tho soil being somewhat saline. In some cases perennials such as secpweed and saltgrass are also present and competing with the fogweed, but if there is a good stand of the peremials fogweed cannot grow and mature.

THE EFFECTS OF OTHER FACTORS ON THE ABUNDANCE OF SUMMER WEED HOSTS

Besides the factors already mentioned, there are other influences that affect the abundatce of summer weed hosts. In intermittentlyfarmed districts the relative amount of land abandoned or idle in any particular year obviously would affect the acreage of weed hosts. The prices of cotton and grain, and the supply of irrigation water in those districts where water is sometimes deficient, would in turn affect the amount of land abandoned. In some localities mineral salts in the irrigation water from wells force the abandonment of land at frequent intervals. An abundance of fall rains increases the amount of old abandoned land plowed in the hope of producing a crop of grain for which irrigation water is not avalable.

Taking the ralley as a whole, abandotment in any one portion may be offset by increased plowing in another. In years of an economic crisis, when a very maried and sudden drop in farm prices occurs, the acreage of abandoned land jncreases abruptly. With a return to better prices the abandoned land is retumed to entivation gradalaly.

THE RELATIONS OF ECOL̇OGICAL FACTORS TO METHODS OF REDUCING SUMMER WEED.HOST ACREAGES

In the present bulletin the ecological factors underlying the methods of reducing host-phant acreages will be discussed, but no attempt will be made to discuss particular methods in detail, except to cite a few as illustrations. latactical metisures are discussed in more detail in another publication. ${ }^{s}$

Resshanthistle in Culthated Disthets

The method most commonly used for reducing the acreage of weeds in general is to destroy the growing plants. This not only eliminates the crop of the current year but also reduces the future supply of seed if the planis are killed before the seed begins to mature. Considering the large acreages of Russian-thistle in the San Joaquin Valley, the method of destroying growing plants is an expensive process if complete emdicat ion is attempterl. If materd of climmation a reduction in acreaze is attempted. then it is not so important to destroy growing plants as it is to prevent dissemination of seed, since the acreage in any succeeding year is dependent on dissemination to nearby uninfested tracts. It has alrealy been shown that old stands tend to disappear, being either destroyed by plowing or replaced by winter anmals.
The possible soures of seed in the newly bared lands are (1) seed held over in the soil for several years fron previous infestations, (2) seed from scattered and more or less continuous infestations in crops, or (3) sed from narbe stands which hat been carried by wind, water. livestock, or in intested hay, gram, manure, pte.

Attempts to reduce the acrenge of Russian-thistle in Stanislaus County indicate that seed from the previous year's growth is the principal source of each rears minestation and not seed held over in the soil. In the farld of 1 1:3:3 atl ind Russian-thistle that conld be found in
 infested tract of $\overline{3} 3$ spuare miles was used as a check on the effectiveness of the program. Where Russian-thistle was buned there was a redtuction of 68 percent. from 1.736 acres in 1933 to 506 acres in 1934. In the che k there was an increase of o3 percent, from 2,222 acres in 1933 to 3.410 actes in 1034. These figures are based upon results of the detailed survey and inelale only stands of 10 percent or greater density. Taking the iacrease in the check into consideration, there was a colculated reduction of 79 perent in the cleared portion. This work was repeated in the fill of $103-5$ with the inclusion of some addi-

[^7]tional tand. In the bumed truct there was a reduction of $\$ 4.9$ percent, from 931 acres in 193 t to 234 acres in 1935. In the check there was a reduction of 62.8 percent, from 3.035 acres to 1.129 acres. Again considering the check, there was a caleutated reduction of 32.4 percent.

These data indicate that a considerable reduction in Russian-thistle acreage resulted from the destruction of the seed supply. As a fact, the reduction was due to destruction of that portion of the seed supply that normally would have been carred to adjacent fields not previously infested. and was not due to the dastruction of that portion of the seed supply which would have reseeded the fields cleared by buming. The work was done so hate in the season that in handling dry plants with ripened seed enough seed was dropped locally to reseed the bumed fields.

In addition to preventing Russian-thist le seed from being corried to adjacent tracts there is the possibility of reduciar the mamber of tracts of newly hared soit that are saitable for establishment of new stands. This coudd be done either by confinuous cultiration or permanent abmatonment of lands that lie ida part of the time. Thus, any factor, such as improved water supply, deainage, ete. which would stabilize faming in these districts amb prevent intermittent abandonment would derease the acreare of Russian-thistle.

Russam-thistle on Gbazing Land

The neual methods of Russian-thistle control that can be used in the cultivated districts are not applicable to grazing lands. As previously stated. the existence of Russim-thistle on these lands is at best a precarions one and is dependent on a por condition of the winterammal cover. Any measures designed to reduce Russian-thistle acreaye should be of such mature that the degree of competition is incerased by improwement of the rima plant cover rather than decreased by its bestruction.

On the grazing lands, at the present time, there are many agencies that emas destruetion of vegetation. but in ceneral the most severe and extomine of these is owergrazings athough localty others, such as the work of rolems, may be very destructive.

Rusian-thiste couk not mantain itself on the phains if the original perwinal fover had not been destroved, since peremials offer sen more competition tham good cover of winter annuals. The na(ive peremial grasess and shubs not only begin growth early in the samon but ans cominue to lise moisture after the winter amman cover is mature. In an established stand of peremials the soil space is fully occupied by the roots of the peremiats, and an anmat such as Russiamthistle. which grows new from seed cach year, camot successfaly compefe. No large infestations have ever been observed on lands where a reasombly good stand of peremiats octurred.

Although the restablishment of a peremnial cover is desirable, it is not essential for the reduction of Rusian-thistle acreage, since this roukd be accomptished br improwement of the present winter-ammat corer long before peremials could be well established. The first effect of an incerese in the present cover wonk ! a dectense of Russimthisthe in those yets when hate spring rabatil is barely sufficient under present conditions. A further effect of improvement would be the
elimination of spots where the winter-annual cover is sparse. It is in such spots that Russian-thistle maintains itselft in years when the rainfall is not sufficient for it to grow in the prevailing cover of winter annuals. If it were not for stich spots, the winter rains which sprout Russian-thistle seed every yent would deplete the seed supply in one or two unfavomble years, such as occurred in the Panoche locality (fig. 7) from 1931 to 1933 and again in 1937 . With such a depletion of the Russian-thistle seed supply. heavy infestations would be impossible, even in years of exceptionally heavy spring rainfall.

The most effective method of improving the winter-ammal cover would be through a reduction in the present rate of its destruction. Near Tracy on two 10 -acre plots, which were protected against grazing, there was a marked change in the vegetation of winter anmals both in kind and in greatly increased density. Exenssive grazing however, is only one of the ingencies destructive to vegetation, and if other sources of destruction are important locally they also must be controlled.
In addition to the improrement of the winter-amual cover as a means of reducing Russian-thistle acreage, supplementary measures can be used for artificial destruction of the seed supply or the prevention of dissemination by wind. Small isotated pathes in otherwise uninfested localities can be removed by hoeing. Temporary fences placed in strategic locations on the leeward side of heavily infested tracts would prevent jarge quantities of seed from being carried to adjacent tacts.

Complete cradication of a weed as widespread as Russian-thistle is highly improbable. As lonus as there are latrge tracts of deteriorated grazing land suitable for its growth, contimous reinfestation will occur, and a smath quantity of seed will result in more serious reintestation than would a larger quantity if suitable situations were eliminated. If improvement of the existing winter-ammal cover is not undertaken, at least no mensures shond be put into effect which wonid canse further deterionation, and attempts to destroy Russian-thistle stands by such meanares as wholesale burning and plowing will in the end cause more harm than grod. The present cover of winter annuals is already in poor condition as compared with what it might be as demonstrated in the two fencel plots at Tracy. but even at that, it is all that prevents a great inerese in Russin-thisteremeng.

Bractscale and Fogweed

The available information on methods of reducing bractscale and fogweed acrenge is scanty. What is known suggests that, with the exception of seed distribution of bractscale. these two phans are very similar to Rusian-thistle in their ecological characteristies and somewhat similar measutes are applicable for reduction of their areages.

Since bractscale is found abundantly on idle land and not on old abandoned land, cessation of the practice of intermittent farming would automatically eliminate a large portion of the bractscale acreage. In the northem part of the valley at feast, the bulk of the acreage of bractseale occus on land where grain and beans are grown without impation. Such bractscate areas are ustally beated in the midst of
the more intensively cultivated districts on nonirrigated lands that have never been leveled. These centers of infestation will no doubt be aradually eliminated, but the process might be accelerated by economic measures that would help the owners to level and irrigate such linds.

Measures designed to reduce the seed supply of bractseale offer little pronise of success considering its wide distribution and the evidence that new stands come largely from seed already in the ground ot produced by small, inconspienous, scaitered plants. Some improvement might be expected from control of bractseale stands along ditehbanks. Further resparch on the seed supply might suggest other mensures, but the present kinowledge indientes that the tand-inprovement measures mentioned above are the most practical method of reducing the areage of this plant.

Fogwed is a tumbleweed like Russian-thistle and, as such, probably would respond in a comparable waty to measures designed to control the seed supply. Likewise, the control of intermittent farming and wergrazing would probably have the same effect on fogweed as on Rossian-thotle acrage. On grazing land a permanent reduction of the acreage of fogweed might be effected more quickly than a similan reduction of Rossian-thistle. Most of the fogiveed on grazing land ocums within the boundaries of what were formedy towland types of vegetation on more or less saline soils. Althengh such soils do not support so heary a cover of winter ammans as do the less saline types, the succession to peremial takes a much shoter (ime. Alkali heath. seepweed, and some saltgrass are usually present already, and if grazing is reduced, the sulecession to a complete cover of perennials is relationy mapid.

GENERAL DISCUSSION

In 1931 weed hosts covered latre tracts of lathe that were bying ide its a masult of the severe economic depression. Is agricultural conditions improved in subsequent years such lands were arain plowed, but if another eronomic erisis occuss land will again be left ide and the same cycle will be repeated, with harge acreages of weed hosts as a rewult. On grazing lands aseries of wet years or a temporary reduction in nomber of stock wouk effect an imporement in the winteranmual cover with a consecpent reduction in weed-host acreages.

As stated in a previons pablication (11) if cither the winter or summer hosts of the beet leafhopper were greatly reduced, popudations ol this insect and erop loses from curly top would also be reduced since both sets of hosts are esential in the annual cycle of the leafhopper. It is also troe, however, that it the number of stock on the western ranges is again increased, or if a series of dry years sets in, axessive damage to the winter-annual cover will take place, and this will result in harge acreages of weed hosts. If the rate of cleterionation of the winter-annual cover on the plains and foothills of the Gan Joaquin Villey is not permanently cherked, Russian-thistle, which is the most important summer host plant of the leafhopper, will in the future increase to such vast acreages that the destactive abundance of this insect will be greatly ineremed.

SUMMARY

The ecology of three summer hosts of the beet leathopper was studied as these plants occurred in the San Joaquin Valley; Calif., by means of detailed surveys and by transects.

Of the many summer host phants of the beet leafhopper, the most important are Russian-thistle, bractscale, and fogweed, weeds that are found on many different types of soil, but practically limited to the valley floor and adjacent sloping plains.
Russian-thistle is the most important of the three, both because of its occurvence near the spring beeding grounds of the leathopper and its suitability as a host. All three are abundant on land that is intermittently farmed or has been recently abandonef. Russianthistle, and to a less extent fogweed, also occur aboudantly on old abandoned land now used tor grazing. Gratin is the only crop in which the summer wed hosis were abumdant.

The summer weed hosts were rapidly replaced by other plants on individual areas, winter amoals usually taking their place.

In the grazing lamds the areas occupied by Russian-thistle are marked by sudden shitts in location and size from year to year, with the boundaries overlapping bat with the spread more often on the leeward side.

Russian-thistle, bractscale, and fogweed germinate carly in the spring but grow very slowly before the coming of warm weather. They canot compete successfully with the winter annuals that germinate in the fall and are well established by carly spring. Russianthistle and fogweet are tumbleweeds and scater their seed as they are blown along by the wind, the bulk of the seed being dropped before the plants have gone very far.
Rainfail early in the season farors the growth of the winter annuals and is a disadrantage to the Russim-thistle. But rains coming late, after the winter ammals have matured, will favor the Russian-thistle.

These weed hosts compete with both the winter annuals and other stamer amanats for the arablable soil moistare. The effects of rainfall and competition on bractscate and fogweed are about the sane as on Russim-thistle.

The summer wed lonsts can be reduced in abundance by direct measures. such as the destruction of the growing plants or the seed supply. and in the cultivated sections these may be the most practical methods of control. Bat on grazing land the most pactical methed of rediucing the abmatance of these weds would be the control of orergrazing. Exessive grazing. by greatly thaning the winterannual cover, makes suitable phaces for the weed hosts to grow: Any measure that will impore the cover of winter anmals will diminate these suitable places and make conditions unfaromble for the growth of these weeds.

LITERATURE CITED

(1) ('answeze E .
 Iome Agr, Hes. 33 : $34 \vec{i}-348$, iltns.
(2) - and STAlla, C. F.
 -
(3) Dayton, W. A., Lommasson, Th, Pabk, B. C., and others.
1037. Range plant handigok. U. S. Forest Serv, varigus phgieg [oble pu-j, thus.
(:1) Dewer, L. It.
180\%. the bussian thigte and other troublesome weris in the wheat medion of minnegota and noky and bouth bakota. U. S. Dppt. Agr. Farmers' But 10, 10 np., Illus.
(5) Gors, E. S.
 Wis. Agr. Expt. Sta. Bul. 37, 13 plo., illus.
(if) Ildar, II. M., int ('uements, f. E.
 spebes of atemisia, cubysomimaus, and athrlfa, Carnegie Inst. Wash, 35̄5 plo, illus. Wrashington, [D. C.].

 Chbforsid. U. S. Bur. Suils Field Oper. (1916) Rpt. 1S: 9t214.7.29, illus.
(B) Lapriam, M. II., ithit bensen, ('. A.
 Fiteld (ryer. (1904) Rypt. $6: 108: 1-1114$, illus.
(9) MeK.n. M. B., nnd Dyestri, T. 1'.

(10) Prempabel, R. L.

 illus.
(12) and latwson k. R.

 Bul. \quad mat, 2 S pl.. illus.
(12) Romins, w. W.

1月ho. hliea plants growing witholt cuthenton in cabifotena. Calif. Agr. Exp. Stal Bul. ti3a, 12s pp.
(13) Semphe H. I. P.
1920. huftional most phaves of cullis ros. Hilgitdial 3: [505]-[637], illus.
(14)
 charmanta. Cilif. Guiv. Pulis. Ent. 5: Bi-SS, illus.
(15)

(16) -..-- and Heximereon, C. F.
1928. some nowt mavte of cunc. tor. Hilgardial 3: [339]-[393], illus.

ORGANiLation OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS EITIIER FIRST PRINTED OR IAST REVISED

Secretary of Agriculture.
\qquad
Cladde R. Wickabd.
Under Secretary
Pade H. Arplery.
Assistant Secretary
Ghover B. Hill.
Director of Agricultural W'ar Relations
Sampel 13. Bleusoe.
Director of Finance
W. A. Jump.
Director of Personnel
1. Roy Reid.
Director of Information
Monse Salisbury.
Director of Eutension Wom
M. I. Wimson.
Director of Forcign Alfricullural Reletions
L. A. Wimelar.
Solicitor
Romert H. Simelds.
Librarian
Raliri R. Simaw.
Ohief, Burcal of A qricullural Economics.
Howam R. Tolley.
Chief, Office of C'ivilian Conservation Corps Activities
\qquad
Fied Mohirfil.
('hief, Office of Mant and Operations
\qquad Amthura B. Thatcifer.
Admenistrator of 1 griculturnl Rescarch E. (. Aechiter.
Director of Food Production Administration.
M. Clifford 'Townsfad.
Director of Food Distibution Adminisbretion Rox F. Hexdmehron.
President, Commodity Ciedit Corportion.
Chief, Forent Nurver J. B. Hutson.
Administrator. Rumal Electrification Ad-
ministration.
Lyle F. Watts.
Mami Shetiens.

Burcar of Enhomologn and Plant Qutwnhine' \qquad P. ふ. ANかsNm, Chicf.

:14!
Burcon of Phant Intustry. Noils. athd Aificnltural Bngincor-
I:. M. Salikth Chicf. Dirision of Sugur Mant furestiguions...- E. W. Brandes. Merth pothologist, in charge.

[^0]:

 Amfton, each of whom heppet with obe seasson's surver.

[^1]:

[^2]:

 tab fullicto

[^3]: Tame 1.-Percenages of the s inpomtent aced hosts of the beet teufhopper as found on idte. abtaloned, and cropped tands in the transect sureys, 1931 to 1036, inclusite

[^4]:

 \& The numbers correspond to those givill ill the anams it figure 6 .
 Roush estames.

 - Based on tmmeet sarvess.

[^5]:

[^6]:

[^7]:

