

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

Contribution to the Morphology and Anatomy of Guayule (Parthenium argentatum) ${ }^{2}$

By Erngt Antselwaozr, yenior plant anatomist, Rubber Planf Invesfigations, Bureau of Plant Industry, Agricultural Research Administration**

CONTENTS

Antomy of maturestem-Contidued.
Pagel'hoenz-Continued.Itmetive phimem.24
Perithern
Athatomy of roch. 2
phem 25
Phiterm
26
Active secondary jhioem. ${ }^{27}$
Old phblem:
Stracturo of the $1 \times$ dume 27
Stracture of tha :eal

Cotyledon ${ }_{28}^{28}$True leat.| 28 |
| :--- |
| 28 |

Origin and storage of rubber. 31
Anstomical structure in relation to rubber cor-
tent and type32
33Litersture cited

INTRODUCTION

The researches of Ross ($\overline{5})^{3}$ and Lloyd (4) have shomn that rubber storage in guayule is a function of the living parenchyma cell of root Fand stem. In plants of harvest size these cells are limited largely to the vascular rays and the cells around the secondary resin canals, Thereas in young material the primary cortex and pith are of greater Tmportance.
Withough rubber secretion is a physiological function of the cell that may differ in intensity in different plants and under different dyvironmental conditions, performance is evidently bound up with Sthucture : that is, in phant with a greater storage capacity, one that has a broader secondary cortex and wider and more numerous vascimar mays, should outyield a plant in which the amatomical picture reveals a preponderance of mechamical tissue.
Three decades of breeding work at Salinas. Calif., have produced varieties that outperform indigenous plants both in total yield and in

[^0]percentage of rubber. Individuals of these high-yielding strains, if their anatomy were known, slould have a broad secondary cortex and a minimum amount of sclerenchymatous tissue; the vascalar rays of the xylem would be broad and numerous; they would grow rapidly in the spring, producing a favorable balance of phloem tissue and synthesize a maximum amonnt of rubber within the shortest time interval betwen seasons of growth. One might further project that such phants woud not be too choosy in regard to soil requirements and could be fitted proftably into existing systems of crop rotation.

Unfortunately, aside from conspicuons grosser morphological differences, little is known about the distinguishing anatomical characteristics of high- and low-yiedding varieties, still less about the effect of enviromment on structure, and nothing at all about the cause of reversion from high rubber content to low when put in a different environment.

Rapid crowth and intensity of rabber stomage are motually exclusive maless a suitible rest period is allowed for rubber synthesis to be effective. Rapid growth, although producing in larger total increment of both xykm and phom, farors sylem development unless growth is suspended be the withholdiag of irrigation witer after a maximum amount of phloem has been formed. Plants differ not omly in their ability to profuce a relative growth increment of xylem and phloem but also in regard to difterentiation priority between the two tissues. In many phants the cambium differentiates a certain amount of phloem first when growth is resumed in the spring, and guayule appears to be one of them, although our knowledge conceming this point is mostly empirical.

Ross (5) ind Llogd (f), through their studies, lave given us a generad msight into the anatomy of the plant, the ontogeny of the tissues. and the piace and time for rubber synthesis, but they tell us very little about the detaifed structure of the secondary xylem and phliem, so important in the development of the plant from the standpoint of performance.

This bulletin aims to consider critically and briefly the plant in its entirety, laying emphasis on structural features that have been previously neglected or omitted and that. in the author's opinion, have a direct bearing on breeding to serve the present need.

MATERIALS AND METHODS

Most of the material for study eame from the United States Cotion Field Station at State College N. Mex. havine been imported a decade ago from virious parts of the Big Bend area of Texats. with some from Salinas. Calit. The usual techmique of fring and staining was employed but often had to be abandoned in favor or hand sections of fresti material. Ohl stem and root material treated with hydrofluoric acid and embedded in celloidin proved useless for the stady of the secondary phomem, but untreated, divseeted secondary phloem embeddet in hard paraffin and stamed with iron aftan hatmatoxylin showed fume difterntiation even though. on acoomt of the large amomat of scleremehrmat, the sections were somewhat ragrged. Maceration of the sytem for a stuly of its components was carried out in a mixture of 10 perent chromic acid and 10 pereent nitric acid.

 all:athlagn.

 :

 W:a \quad ?

The young stem is silvery gray and densely clothed with hairs. As the epidermis is shed and cork and lenticels develop, the surface becomes gray, later brownish; it is generally fissured with shallow, sometimes deep corky cracks, mod parts may be covered with deposits of resin oozing out from the peripheral canals.

Figure 2.-Surfnce root srstem of young plant.
The leaves are inserted on the stem in a spiral with a divergence of $2 / 5$. However, opposite and even whorled arrangements may be found on the same stem. The leaves ave lanceolate, lisually crenately toothed, or cut-lobed below the middle and densely covered with asymmetrical T-shaped hairs; the lear form is very variable. During the winter months only the termimal leaf clusters are retained; these leaves are smaller than the summer leaves, lanceolate, and rarely lobed.

The inflorescence (pl. 1, A) is a compound, one-sided cyme with lateral axes exceeding the main axis in length.

MORPHOLOGY OF FLOWERS AND SEED

The morphology of the flowers of guayule and the related species, Partherium hysterophorus L., has been treated in great detail by Kokiera (3), and a smilar detailed treatise by Dianova and coworkers (2) furnishes a comparative cytoembryological analysis of P. argentatum Gray and P. incanum Gray.
The flowers of guayule are borne in close heads on a common reecptacle. The heads are rarely solitary; commonly a number of them are grouped close together ($p 1.1,4$) and, since they are not initiated smultaneously, flowering extends over a long period.
Each flower head consists of sinvoluctal leaves (fig. 3, B) that overlap slightly at the base. Above the involucral leaves and altetnating with them are 5 bracts containing in their axils the 5 ligulate or ray flowers (fig. 3, A, E). Adnate to each ligulate flower are 2 disk fowers enclosed in saclike bracts (fig. B, F. and fig. 4. 4). The remaining surface of the disk is filled with disk flowers and their bracts (fig. 3. A). The bracts of the ligulate flowers are almost round and their surfice is densely covered with hairs. Those of the disk flowers are membranaceous scales with infolded margins (fig. 3, D), also densely pubescent, and each with a solitary vascular

 brate without its disk llowers. F, lity lower with its as adnate disk thowers.

 pigmented isyor; m, mesocury; en, endocarp.

1, lit:anch of infloresence with flowers in various stages of develomatent; $B-D$, germinatine sed ; $B-F^{\prime}, ~ y$ outhg seddings; G, ofter sedliug.

A. Young seethings showing root, hyweoty, and owe pair of folizge leaves. B, Seteding asis at juncion of hypocotyl and root; just below bulge the first lateral root makes its apparance.
bundle．The bracts of the 10 disk flowers that are achate to the ray flowers（fig． $3, F$ ）are saclike and have 3 vascular bundles each．

The corolla of the ray flower is sharply cleft in front（fig， $3, F$ ）， entire，or slightly cleft in the rear．The corolla of the disk flower is five－lobed，and its fye vascular bundles terminate between the teeth of the corolla tabe．

The pistil of the ray flower is formed by two carpels grown to－ gether in the upper region to form a short style that terminates in two stigmatic lobes of equal height（fig． $3, E, F$ ）．The style is trav－ ersed by two bundles；its outside is covered by a thick，velvety pubescence．The orale is anatropous，ovate，and flattened tangentialify．

The oway wall（fig，4．B）has a single－layered outer epidermis that abuts on a row of tall patisade cells．A layer of small，thick－walled fibers composes the meswarp．Between the mesoary and palisude cells is a mall－cetled pigmented layer chatracterized by radial papiliae and yollow content that later turns brown．The endocurp is made up of loose，irregular parenchyma cells．There are fon vascular bundles faversing the owary wall，those passing through the keels and those ruming through the center of the anterior and posterior walls．

The nectary forms a short tube that clasps the style，almost ad－ hering to the outer wall．The pappus（fig． $3, E$ ）consists of a short ventral and two lateral awns，densely pubescent and with a solitary vascular bundle．

The disk flowers have five stamens prown together to form a short tubo that is admate to the corolla for about half the length．Each filament has one vascular bunde．The pistil of the disk fower lacks an ovary cavity．It is at first shorter than the stamens but elongates when the flowe matures．pushing up the pollen in the process．

When the truit is ripe the flower heads tisintegrate；the ray flowers that bear the seed remain attached to their atjacent disk flowers and their involucral bracts and fall away as a whole．The remain－ ing disk flowers also drop off，Jeaving behind the five involucral bracts attached to the receptacle．

The actual fruit is an achene with a dry，indehiscent pericarp， shrivelled corolla，and thre saron awns．The achene itself is obovate and tangentially fattened．dark gray or ahmost black，and covered with short hairs．

SEEDLING STRUCTURE

General Morpholocy

Guayule seed．miless specially treated，is slow and difficult to germi－ mate．The root pushes ont of the seed coat（pl．1，B．C，D）about 6 days after plantinge and the cotyledons appear above grome about 3 days later．

The young seedfing has a long taproot，a short hypocotyl，and oval or orbecular cotyledons（pl．2，A）．The base of the hypocotyl is indicated by an abrupi increase in diameter（pl．2，B）and the apparance of the first latemal rootlet below the bulge．

Anatomy

ROOT

The taproot of the young seeding has a central eore of vascultur tissue (fig. 5, A) limited on the outside by an endodermis and a cortex.

The peripheral celis of the cortex are covered by a root epidermis, a single layer of small, thin-walled cells, many of them elongated into root hairs (the latter are not shown in drawing). The cortex is five- to six-layered; its cells are large and possess prominent intercellular spaces. The stele consists of two protoxylem points extending centrifugaly to the pericyele, differing in that respect from lateral root lets that are commonly triarch (fig.5. B). Between the two protoxylem points two groups of primary phloem are located, and between xylem and phloom is a mass of undifferentiated parenchymatons tissue that eventually matures into metaxylem (fig. 6). The transformation of this tissue into metaxylem proceeds in afl directions except. for a single layer centrad to the phioem groups which functions as a cambium, with the derived cells maturing as secondary xylem or phlom. From these points of inital cambiam activity there is a progressive development with the zone of cambium extending laterally matil it raches the points where the protoxylem cells abut on the pericycle.

As the rootlet enlarges, the epidermis breaks domn and its cells become lignified. The cells of the cortex enlarge and radial divisions become increasingly noticeable among them. The endodermis also compensates for stehar enlargement, first throngh increase in size whereby the radial walls exiend from the Casparian strips outward and later by cell incrase through anticlinal divisions.

In the region opposite the two primary phlom gronps the endodermis becoues two-layered, but no (asparim strips develop in the upper cells. The development of this localized double endodermis is the first step in the formation of the resin camals.

The ontogemy of these canals follows a pattern common to the Compositac; the exlls of the double endodermis divide anticlinaly, griving rise to groups of four cells. The walls at the point where the four cells meet pall away; an intercellular space forms which gradmaly cularges to form the resin canal (pl. 3, 1). Sonetimes the anticlinat divisons in the double endodermis extend only through the onter layer of eells. in which ease the camal is bounded by only three colls. Subsequent pericimal divisions cut of two tiers of cells (pl. $3, B$, the inner one known the secreting layer or epithelium.

In somewhat ofder rootlets two small groups of fiber may be seen centrad to the endodermis and opposite the rasin camals ($\mathrm{pl} .3, B$). They ustally surround and cush the protophloem in their development. Although these gromps of fibers often adjoin the endodermis, they also may be located several layers inward (fig. 7). Their origin is pericyclic, although Lloyd does not belicve that the pericycle is involved in their formation.

 pre protoxylem; ph, primary phloum. h, Gross section of triareh rootet. $\times 200$.

Finure o.-Cross section of tapmoot of seething somewhat older than represented in fighre 5 , a. The fambmentat parenchymathas differentiated into metaxylens; sume secomary xylem alca has bean atded. $\times 000$.

The base of the hypocotyl is rootlike, with a primary diarch protoxylem plate and laterally placed phoem groups. The cortex is broader than in the root, but there is no increase in diameter of the stele (pl 2, 2, B).
Vascular transition takes place in the hypocotyl, but the stelar tissue is not completely collateral and endareh until approximately the lower third of the cotyledonary midrib is reached. The transition agrees in general plan with Arctium minus Bernh, as described by Siler (o). The change from the exarch condition in the root to the endarch condition in the stem begins in the middie or lower part of the lypocotyl, and the complete endareh condition for the midrib bundles is attained some distance up the cotyledons, as previously stated.
Near the middle of the hypecotyl new xylem differentiates lateraly to form two tangentially exarch bundes ($\mathrm{pl}^{1}, 4,4$). The protoxylem

- 1 , Cross section of gomg wot showing emdodermal origin of resin camils.
 and groun of pericyelic fibers above group of ernshed ptimary phatum. $\times 60$.

 phbetn; c; cambiam; a, xylem.
points shift progressively centrad and become several cell layers removed from the endodemis where they eventanly form flat, V-shaped double bundlus. The lateral orientation of vewly formed sylem elements coincides with the tangential stretching of the two primary phloem groups and their splitting to form four phiom regions, which come to lie opposite the xylem of the V -shaped bundles. These bundles of the middle and-upper hypocotyl anastomose aceording to a definite pattern to form the vascular supply of the cotyledons and the true foliage leaves.

In very young seedlings with embryonic entyledons, the origin and course of the vascalar supply is easily followed. The V-shapeif double bundles become the midrib bundles ot the iwo cotyledons, white the lateral traces arise some distance downard. These hateral traces run separately for a considerable distance betore they split to supply two lateral bundes to each colyledon. The laterals, unike the V-shaped double bundiles of the midrib, are always endathend, sine the strands lignify basipetally in very young material, an independent development from that of the root pole is suggested by Siler (6) for Aretium. However, it appears that in guayule the two literal traces split off from the mediatn trace (the V-shaped double bumiles) near the base of the hypocutyl, a condition which, according to Dangeard (1), holds true for the Compositae in generat.

The four bundles of the luwer hypocotyl (pl. $4, B$, and fig. 10) will be designated, for convenience, as A. B, C, and D. About halfway up the hypocotyl these four bundles widen and then split to form eight bundles: A and Aa, B and Ba; C and Ca; D and Da. (See fig. 11, A, B.) From here on. the couse of the cotyledonary traces and of the traces of the epicotyl that supply the first two foliage leaves may follow one of several patterns.

Patrear I (fis. 10. 1)-Following the differentiation of the eight strands, bundles Aa and Ca widen and grive off bundles Ab and Cb and then move out into the cortex where they divide to form the lateral traces of the cotyledons (p. 5. A). Bundles Ab and Cb fork again, splitting of bundles Ae and Ce ; at the same time bundles Ba and Da widen and split off bundles Bb and Db . Bundles Bb and Cb fuse to form the mudrib of the first foliage leaf, white bundles Ac and Db mite to form the midrib of the scond leat. The two laterals of the first foliage leaf are formed by bandles Da and $A b$, whereas the laterals

Patran II (fig. I0.B).-This pattern differs from the previous one in that bundles Ac and Ab as well as Cb and Ce are given off from A and C directly instend of from the two laterals da and Co.
Patrans 1 II (fig. 10. C^{\prime}).-Aceording to this scheme bmades A, B, C, and D split oft 2 burdles each, wo that a cross section taken a little bekow the cotyedonary note shows 12 budles with the motivided 2 laterals Da mal Ba arrady out in the cortex. The mitribs of the first 2 leaves are fusion bumbles, as in the other 2 paturns.
Lloyds iterount of the course and dersation of the leaf traces (4) is fundumentally at varance with any of thee patterns. Since his conception of the origrin of the laterals diters from that of Dangeard (1), with whom this author concurs, a certain disagevement is to be expected.

[^1]

Figute s-C'ross settion through lower itypocoty showing resin eanals opposite
 from the perterele. $\times 470$.

The primary resin canals and fibers in the hypocotyl arise in the smemenner as in the root. There are commonly four resin cmats in the lower tramition region, one opposite each pliferm group (fig. S). The groups of primary fibers ako four in number, usually adjoin the
endodermis (pl. 3, B). Lloyd's own ilhustration (4) shows the fibers next to the endodemis, so that it is difficult to maderstand why he argues against their pericyelic origin.

Periderm is initiated in the seophd layer of the cortex or even more centrad (pl. 5, A).

 the pith.

EPICOTYL

Tissue differmiation in the upper epionty is illustrated in figure 9. The cortex is trom four to five layers thick and is mot separated trom the stele by a definte endodermis. There are present eight resin

FigCre 11.-L. Cross suction through stele of bwer hypucotyl showing the widenfing of bumpe A and the splitting off of A:1 (sper fig. 10, A, pattern I). B. Cross seetion neat uprer hapoocaty showing the splititig of of additional bundles. $\times 400$.

 tion from maplly growitg plant ricil in rabler. $\times \mathbf{6 0}$.
canals in varions stages of development belonging to the median and lateral traces of the first two folage leaves. The mode of origin of these traces is shown in figures 10 and 11 and phate 4 . Sone of the traces are arready split of in the hypocotyi. simultaneons with or immediately following the differentiation of the lateral cotyledonary supply.

 bumble mumbers mathed duwh for compenience and without morghotogicat significames. Note that nor ant 15 bustes ran separately thomghout their entire course.

DEFLNITE STEM

The stem tip of a seedling examined torard the end of the vergetative season differs from the epicotyl in having resin camals in the pith (pl. 6) and fibrous caps around the protoxylem in the vegion of the permednlary zone. The number of bindies also is later and the peripheral roiss of cortical cells are distinctly collenchymatons. There is no definite endodermis, but the starch sheath shows up prominently

A, lartial cross section of old stem of field plant. Note massive periderm, broad cortex, and annual ring structure in xylem. Vascular rays are very narrow but flare out funnelike in cortex. $\times 25$. $\quad \mathrm{B}$, Enlarged view of cortex. All old phoem has become sclerenchymatous. The resin canals are greatly compressed tangentially. The vascular ray cells of the old phloem are also stretched tangentially after radial divisions had ceased. $\times 72$.

when fresh sten sections are staned with iodine (fig. 12, A). The epidermis is densely pubescent. Periderm development may set in at different levels, often the fifth internode. Its origin is hypodermal ($\mathrm{pl} . \mathrm{T}, \mathrm{A}$). There are present 11 resin canals flanking the older bundles (fig. 13), but medulary or pith canals are wanting as yet; they are absent from showts of less than 10 internodes, a fact alleady mentioned by Lloyd (4). When they are present (pl. 6) their numbere varies between 2 and 6 , with 5 as the most common number. This is in agreement with the type of phyllotaxis that shows a prevalent divergence of $2 / 5$.

The comrse and derivation of the leaf traces is not at all uniform. The median trace of a given leaf may be a fusion bundle, as in the epicotyl, or a batach of a larger bunde running independently for as many as four internodes.
A' cross section through the fifth internode of a shoot shows the relative position of the median and lateral traces of the first five leaves (fir. 13). Fifteen bundles are present. Eight of these, represeming the median and lateral traces of the older leaves, have caps of primary pericyclic fibers above the phoem and three have, in addition, perimedullary caps (bundles $1.6,11$ in fig. 13). To be sure, not all the 15 bundes shown in figure 13 run separately and independently thronghout their entire course. Some anastomose and fuse, and others split to form the traces of later departing leaves. Of interest is the structure of the xylem of the older leaf traces. In these the xylem is composed altogether of small spiral elements contrasted with the large xylem cells in the adjacent yomger bundles (pl. $7: B$).

anatomy of mature stem

General Structure

A cross section of a stem of harvest size ($p \mathrm{l}, 8, A$) shows a dense woody core and a broad cortex limited externally by an irregular massive periderm.
The wood is made up of a series of concentric or excentric rings, each of which represents, in normally developed plants, the annual increment of wood. Stems frequently show a banded appearance in cross section. The bands follow the general contour of the annual rings, but they are not identical with them. In general, the ammal rings are poorly defined and very narrow. Frequently they vary in width in differen parts of the circumference of the stem, at a given level. Also, in response to abommal distribution of rainfall. additional annual rings may be formerl. This makes the practical value of rings as indicators of age of plants very uncertain.
The pith is very small and, although it enlarges considerably in older plants. it is usually less than 0.4 mm . in diameter. In ohd stems the pith may become in part sclerotic.

The cortex comprises all tissues outside the cambium. It consists principally of secondiry phom, both functional and old, together with restigese of the primary cortex. Under low magnification it ap-

Figure 14,-1. Diagrammatic drawing throbeh secondary cortex of latge stem. \times fo, p. Periderm; st, secondary resin camal; s. gronp of sherenchymat a ph. active phloent ; x, xyem. B. Drawitg of sectudary cortex of large secombury root. $X+40$. Note that the cortex is met teaty ats wide as in the stem, that the eromps of seleremehyma are fewer, and the phloem eroups are stretched tangonialty rather that radially.

Farions types of ressels obtained ly maceration of woul with nitric and chromic acid (10 jereut). \times 200.

pears to he made up of inregular concentric layers of fibers and resin canals alternating with one another and embedded in purenchymatous ray tisste ($p 1.8 .8$, and fig. 1t, A). In the region of the cambium the phiew consists of thin-walled tissue containing usuatly one ring of resin canals.

The protective corky layer or periderm is massive and irregular. often showing deep notches in transverse stem sections and irregulat fissures in sumface view. In varieties high in rubber the periderm is usunlly thin. Lenticels are fairly abmonant. Deep cracks and places of injury are often marked by escaping resin that collects in drops on the wound.

Xylem

The xylem is indistinctly diftuse porous with the pores oftem Grouped in a manme to simathe a rine porons condition (pl. 9, A). The pores are larely visible to the maked eye and the vaseular rays are invisible on both cross and longitubimal sections.
The pores or vessels are faitly matrons, romd. elliptical or someWhat atugutar, solitary or in multiples of two or more (pl. 9, B), yarying in size from 11μ to 54 . Vessel members are colindrical or fusiform to irregular in shape (pl. 10). with or without ligular projections beyond the perforation plates, from very short (75μ) to medium long ($18: 5 \mu$). berforation phates are horizontal or oblique, the perforation simple. Lateral wals have numerous slighty alteratately armaged pits, borders broadly elliptical, horizontal, or slightly obligue. The laterad watls in atl vessels have tertary thickening. Older ressels sonmetimes develop tyloses, and the lumen of others mat contain "gum phass."

Woon parenchyma is spasse, indistinctly terminal and paratracheal but never forming complete steath around vessels; cells are elongated and ustally pointed. Pits small, simple, numerous on verticat walls in contact with vessels but wanting on wall bordering fibers.
Fibers are of hbriform type forming grond mass of wond, fairly uniform in transverse section, tipering gradually with smooth, toothed or forked ends. They are relatively short (less than 250μ), walls very thick, lumina round, deffod, elliptical or slitlike in transverse section. Pits not numerons, bordered with oblique, slitlike apertures.

Vascolar rays are closely set and monerous. usually very tall. slightly heterogeneoss. In transverse section the my cells are radially elongate bat variable in tangential section two to four cells wide at midde; marginal cells as well as body cells angular elliptical; all rells medim thick, pits simple ami very manerous. In very old sfems the most centrad part of the rays niay be lignified wholly or in part.

Pheom

ACTINE PIEAEM

The functional secondary phem of guayule, like that of many other woody plants, is a complex tissue made ap of a mumber of eell types all of which have a common origin in the cambium. The cells of the latter are brick-shaped in transverse section and fusiform
in tangential section (pl. 11, A); they are arranged in definite horizontal rows. In radial section ($\mathrm{pl} .11, B$) the cells are very marrow, and the end walls are square. The radial walls are much thicker than the tangential walls and appear prominently beaded (pl. 11, A), that is, showing abundant pitlike thin spots.

The elements that comprise the secondary phloem are sieve tubes, companion cells, and phoem parenchyma. They form more or less uniform radial sectors (pl. 12), radiating centrifugally from the cambium and separated from one another by rays that are continuous with the vascular rays of the sylem. The tiered arrangement of the cambiam cells noted above is mantained to a certain extent by the sievo tubes and phesem parenchyma cells (pl. 11, B).

Figere 15.-Tangential section thrmigh whom of rom showing siere tubes, compation celts, and phlowert pirenchyma. $\times 700$.

The sieve tubes with their companion cells make up the greater part of the active phloem. They occur in groups of two or more and are bordered radially by larger parenchymal cells (pl. 13, A). The sieve tubes of the stem are rather small compared with those of the root and are not always readily sepanated from the companion cells in transverse section. The end walls of the sieve tubes are somewhat obligute, or the sieve plates are strictly transverse (fig. 15). There is commonly one sieve field with mumerons small pores but occasionally two sieve fields are observed. and in such case the end wall is steeply sloping. The lateral walls of the sieve tubes are without lattices.

Plate 12

 rlin? - -

 -

「! !
\approx
110.
110

1. Itatal - -

Whongh sereral sieve tubes may abut on each other there is normally one companion cell to a siex tulne. extenting the entire length of the siove iube element to which it is atiacent (fig. 65). Dccomedine 16 Vnillemin (7) the sivve tubus of the Compensitae are of a much barger transwerse dianeter tham the companion cells. but Loyd (f) holds that this is not true of P'arthroium. Aceording to Loyd "there is hum little differethe in transterse diameder of these. the combunion wh bethy narrowly fusiform and therefore thickest at the midde, while the reverse, of "ourse, is true of the sieve eldoments." Howerer. in the investigations reported in this bulletin, there is a diffrence in size bet wern these two elements and althought this difter-
 blls in the phisen of the root, as will be shown latere.

The phatem parenchyma cells are of the cambiform type and in (angential section look rey much tike the cambinu cells from which they are derived. They are pofusely pitted sadially, with the pits aranged in sievelike groups. The cells entare as they Eraw okder. but the walls for not thicken umit toward the end of the
 and the ererenchyas initials, sinew nost of the cells are pointed athel rembally thicken and lignify: The parenchyat cells surromeling the "pithelial laye of the resin canals combin lange sate grains. like the cmombermis. Ocasiomally stapeh is fomet in the parenrhama cells inside the cmotermis. sumetimes forming single radias raise along the flanges of the outermost aremp of filners commecting the endenfermis with the jacket cells of the first secondary resin camals.

The ray tissure of the phinem is continuons with the vascular rays of the sthem (pl. s.A). The rase are in the hergming as wide as the sylem rave bar the sharply increase in widh outwardy ($p \mathrm{l}$. 12) . This wideniag of the ray is the result of increase in cell size toward the butere enf of the gat as well as some imerease in the number of rells. In a erose section of a stem the ray cells apperar chomated radlailly. hut distatly there is much tagentiad stretching to compenathe fio the increasi in diremberence cansed by the entarged dianoter of the axis. lat tangental sedion the ray cells appear round
 nure romgated. The tangential wall: are luavily pited, the pite arranged in sievelike groups.

\$ECONOARE REKIN CANALS

The ontageny of the seromdary resin watals has bern given in eletait hy Rom (-i) and 1 loyd (4). The eanals are sehizogrenous in urigin. amd in that resped resombla the primary antical amat pith canals. Thes are derived divecty fom the cambinm (iol. Ls, B). The twacell
 comes pherical. The cells bordering the canal form the epithedino or
 rectangalar longitulinally and are easily regonized by the in dense

 ducine an aditional have of cells. This laye lacks the probilatmic
content of the secreary haver but differs from the atjacent phlaem parenchyma cells. The fuily develoged resin canal is usuatly spherioal; it may retain this shape or become compressed tangentially ats the phomem beromes inactive and scherenchyma develops. According to Lloyd (4). the canals becone frequently closed by an ingrowth of insine that resembles a bunch of grapes. Such extensive "psedidotyloses" development has not been observed in the materinl arailabla tor study, but trichomelike structures proliferating from the cells of the secretory layer have frequently been noticed (pl. 11, B). The jacket of paremehya cells surnombling the sectetory layer of the calatl is from one to several celts wide. These cells are filled with starch but contain Iittle rubber, as will he shown Jater.

INACTIVE PIMLOEM

Cessation of activity in the secondiary phorm is gradatal. In the Sumar stems bine siave inbes mily function for a single season only, but the phatem of the latige brathes may retain a normal structure for two complete sasons (pl. 15, A1), except for the formation of callus deposits arer the side pates. Sometimes toward the end of the growing seasons some of the phoem parenchyma cells or selerenchyma initials beome thick-walled and lignify (pl. 12). Lignification of the phomem parememon is minally centrat from the outer margin of the season's growth, But, in material where the phoem remains st ructurally mehamed for two seasons, solitary lignified celis or small islands of thick-walled filuers may oceur sporadically in the midst of otherwise normal-appenting phloem. The phlow fibers vary greaty in size and shape ; some atre typical pointed tibers. of hers are broad, spindeshaped. and some have more or less square end walls. The phloem fibers vary in thickness between $1 \overline{5}^{2}$ and 70μ and in length between 160 pand $6+0 \%$. The peripheral cells of the first ring of fibers are mishally very large and more like stone cells in character, having been derived from cells of the ray tissue.

With the progressive enlargement and lignification of the fibrous flemonts. the sieve tubes amb companion cells are crushed. The collapse of these chements is usimily so complete that the crushed cells are repesented only by an irregular band of wall substance (pl. 16. B). but the fibers come to cocopy the emire area of formerly active phloeni recogrizable in tangential section by deeply stainmir amastomosing hands agrainst a background of small-celled vascular ray tisste (pl. 16. -1).

Periderm

The periderm or ent consists of two layers of tissue, phellogen and cork. No phelloxem is fomed tomard the inside The phellowen or cork cambium arises in the hypotermis (pl. 7. A, and pl. 17. it). Somet imes this layer divides only one forming a superficial previderm. White a sublupudermal layer takes owe the function of the phellogen. The cork whll are of the commen type made up of three layers, but the walls remain guite thin. Since cork tissue is relatively inelastic. the periderm develops shallow or deep cataks as the stem increases in Hamber (pl. 17. B). Thuse fissures in the cork may extend as derp as the peripheral resin canals. calling the revin to orize out and collect in small droplets on the cutcor surface.

[^2]

 diammer.

The original superfial periderm may persist for the life of the plant when grown in a commercial plantation. In its natural habitat. where plants commonly become older. cork cambiams maty be tormed progressively inward, gbadually cuttur off all restiges of primary cortex. Qatite often new phellogen layers develop internally in lucalized regions. cutting out shell-shaped layers of primiry and peripheral secondary cortex. Such regional seep-sated cork development is quite emmonty the result of wonding, and is, theretere, met with even in young stems.

ANATOMY OF ROOT

The root system consists chiefy of long, medinm thick, and thin laterals diverging at right angles from the taproot (fig. 2). The roots are yellow in color, and the surface is motled or roughened by shathow longitudinal fissures.

Cross suctions through such roots exhbibit a hard. pithless, woody - ore and a brand comes protected by a masive periderm that is madally sermented by teep cracks (fig. 16, A. B). The rehative thickness of this cork later is mot correlated with the diameder of the root, heing prominent in thek laterals as woll as thin tertiaries. Only fibrous roots less than 1.5 mm . in diameter lade a periderm but possess a dense covering of root hats, turgid and functional up to the insertion point of the rootet on a largey lateral or eren the man root. These apparently lonepersisting root hatirs should facilitate the rapid absorption of water, even from superficially wetted soils.

The wood is very hard; the centarl core corresponding in size to the pith of the stem, is especially dense (pl. 18. A). and from its periphery the vacular rays me sen matating toward the cortex.
'The cortex is masive but not merite w broad as in the stem (fig. 1+. B). It is mate up of conentric layers of resin canals and fibers embedded in parenchymatous my tissone.

Xทbem

Sine the elemons making up this tissue are quite simidat to those of the stem, a detaled descripion will not be given.

The xybu is indistinctly dithuseparouts with the notes less mawerous than in the stem except in the rexion of the central core (pl. 1s. 13). The ressels are frequebly arvared in short radial rows that olten border an the vascabar fars (ph. 1!) . I). endosing bands of fithers. The hater form the ground mass of the wood even more so that in the erm. The cells are ahwars thick-walled and sparsely pitied. Wond parenchyaa is paratmoheal and sparse.

The vabeular rays are farther apart and broaker than the rags in the stan. DEst of them ate rery tall. so that many of the primary rays fom unmeropted radia from the central core to the cambinm.

Phions

L- in the stem. the certex emmbrises the hamd of tiswe betwen combinm and cork. It consist of a marow ming of primary cortex und a boad zone of secondary phemen wish veriges of primary

A, Entarged soction of xymon of ohot. The large vessels are armaged in radial rows on either side of the vascular rays enclosing a hare group of dense libriform fibers. $\times 420 . \quad B$, Cross section through active and old phoem of medium-sized lateral root. The phom grouns delimited by vascubar rays are broader than those in the stem phoem (compare pl. 13) ; the resin canals are also tangentially wider and there is little fiber development. $\times 110$.
phom occasionatly recognizable in younger roots. Since the cambium in the routs of guayule is hypodermal in origin and remains active for a very long time, the primary cortex persists, although in altered form, even in fairly old roots (fig. 16, B); its inner contour is easily delimited by following the deeply staining Casparian strips of the endodermis. In young roots, the primary cortex is fairly prominent (fig. 16. A), bit as the root enlarges and secondary phom becomes more massive the cortical cells are stretched tangentially, anticlinal divisions become fewer, and the cell lumen is obliterated, makiag it inereasingly difficult to separate this layer from ardjatent tissues.

active secondary pllofat

The grouns of active secombary phocem are not madially elongated ats in the stem (fig. 1t, A), but appear broader tangentialiy (fig. It, B) ; also the erroups are less (bistinctly detimited from the vastular mys.
The phbern is mate up of sieve tubes. companion cells, and phloem parendyma. The siove tubes are laryer than those of the phloem in the stem. and there is a conspienosi difference between the size of the sieve tubes and companion cells in cross section (pi. 20, A and B). Phloem parembyma cells are clongated rectangular in radial seetion, amd the walls are heavily pitted (ph. 13. B).
The rascular fays ate continusus with those of the xylem. They are broder than the rays in the stem and become even more conspieuous by spreading out fambike soon after they enter the phfoem (β) 19. b). Some of the smather secondary rays end blindy, because bath newly differentiated ring of resin camal. has a Jarger number of camal: than the older rings. In such places two resin canals appear in juxtaposition with a single older ome, and the vascular my betwen these eanals and the phomemprops centrad to them terminates just below the obler camal (pl. 19. B).

The rewin canals in the weondary phomen the root are rarely spherical but orat often reduced to mere sits in the older part of the contex. The canals are common!y surunded by several rows of paremehym colls derived from the cambium. thangh wensionally parielinal dicisions in the epithelimm may contribute locatly to this jneket.

OLD PILEOEM

Cessation of activity in the secondary phom of the ront appears to he more gradual than in the stem. since fiber differentiation, so prominat a feature of the placm of the stem. is mach less profanmed here and in places allogether wanting (fig. 14. B).

In the stem, ringe of resin camals altemate with bands of fibers. but in the root (wo fings of resin camals often intervene between rings of fiber, though fromem! small groups of selerempana are interpalated localy betwem rows of resin camals (pl. 19, B). Retrogressive changen in the older phom tisste, whether accompanied by differentiation of sclerembyma or not. go an as in the stem. Sieve tules and compamion cells collapse ard cheir former location is indicated moly by certam theckened regions in the cell wall (pl. 19, B).

Phloem parenchyma cells may enharge without apparent thickening of their walls, or they become sclerenchymatons wholly or in part. These gromps of scherenchyma or fibers have a creater tangential than matial extent. Sometimes adjacent eromps will coalesce, in which case neighboring ray cells also become selenotic.

Althongh retrogressive changes in the phloem of the root are not so pronounced as in the stem and are hater to appear, the active life of the secondary phiom probably is the same as in the stem. Callus plugs over the sieve plates become evident at the end of the growing season, mak, with the adrent of new growth, the old sieve tubes become oblitemated and collapse white the stmommbing parenchyma cells enlarge and often lignify.

STRUCTLRE OF THE PEDUNCLE

The pedmacle or man shomet the infloresence is exeedingly sionder athd may atham a bengith of 20 cm . Anatomionly it is chatacterized by an excessive tevelopment of mechanibal tissue which jackets the mather wakly developed vascular bundles. often completely. In transese sextion the peduncle appeats flated, with narrow colenchymatons rideres alternatimer with broad strips of chlorenchma. The epidermis covering the collenchym ridges is conposed of elonated pointed cells, but the epidermal celts in the depression betwem the ribges are short, irregular. athl contain stomates. T-shabed hairs typical of the pubescence of leat and stem, clothe the entire outer surface.

Corter and pish are simisur in sinucture the those of young stems except that in mature pertancles solitary cortical cells may become thick-waled and lignify white the pith may become lignifeel in part. A peritermas mported tay Loyd (f) has not hern observed.

The pedanela heds resin ciamats in the pith but has a regular comwement of these in the cortex.

STRUCTURE OF THF LEAF

Comylebon

The estydons are very small ($3.5 \mathrm{~mm} . \times 4.5 \mathrm{~mm}$.), entire-margined athd round the wat in ontline (pl. 2,4). The petiole has a midnb and two haterak which, upon entering the lamina, branch profusely to fom a compliated retionlum.

The mesophyll is conposed of six latees of cells of which the upere two form the palisade region. The spongy cells adjacent to the patisate laye are frequenty enomeated to fom a transition. Stomates are found on both surfices their frepueney being slightly prater in the "ppres. There are mo resin camals in the blade, and both the upper and the lower epudemis are tree from hair.

Tree Leaf

The trioss morphology of the true leares and the difference that exists between summer and winter leaves already have been pointed ont. Thes are very variable in form: a few types are illustrated in figure 17.4.

Semirfingrammatic drawing of eross section of base of actively growing 4-monthold shoot. $\times 175$. Orange color indicates rubtaer; blue color, starch.

Exeept in the region of the midrib. the lamima is thin (fig. 18, A). The epidermal cells in surface view are very simous (fig. 18, C); stomates are fairly abundian and weur with ibout equal frequency on both surfaces. The stomates are of the common type, somewhat depressed below the level or the epidermis, the walls of the guard cells slighty thickenel in the region of the stonatal cavity. The

 'Types of hatirs. $>$ - 20.
mesophyll consists: inmast entirely of palisaste cells equal in stape and distribution on berh sulfacts (fig. Is, B). Resith canals atre found on both sides. There are 10 to 12 canals on the ventral or upper sithe and to 5 on the dasal. or lower. The dorsal camals acempany the leaforace buader. hat the venam camals origitate de nove in the petiole: here they folluw the principal veins and give off side brameles as they onter the basal region of the lamina.

There are two types of hairs found on either leaf surface. The more common type is the latge, asymmetrical T-shaped hair (fig. 18, D) with a unicellular or bicellular staik, which is so short that the hair appears sessile. Llogd (4) describes and illastrates only T-shaped hairs with two- and even three-celled stalks; yet the onecelled stalk is very common. Much less frequently found is a small multicelluhar hair, the utimate cell of which is long and slender.

ORIGIN AND STORAGE OF RUBBER

The nccurene of rubber and its centers of distribution in the various plant organs have been described in detail by Ross (5) and Lloyd (4). Rubber is found in all plant orgras, but only the stem and the root have sufficient quantities to be of economic interest.

Generally speaking, in phants of harvest size the vasenlar rays of the phomen and, to a lesser extent, these of the xylem contain by far tho largest ammot of rubber ($\mathrm{pl} .21, A, B$). Smaller quantities are found in jaketing cells of the resin camals, and rather insignificant quantities in pith, primnry cortex, and xylem parenchyma. The active sieve-tube tissue contains practically no rubber. The latter, hongh perhaps of some debatable signilicance in the economy of the plant, would have no value as stored rubber since the active phloem beromes in part obliterated and in part dispheed by sclerenchymatous tissule.

In young plants in which the prinary tissues are still a conspicuous part of the amomical pieture, most rubber is found in the prinary cortex, pith, and ractular mas, as well as in the parenchymatous jacket of the primary resin canals.

In young, actively growing stoms rubber appars first in the epithehal cells of the primiry corical and pilh canals, but it is much more conspichous in the secreting layer of the newly formed secondary resin camals. Small gramules are also observed in the cells of the primary corter, pilh, mad the inner edls of the ras (p) 22). Of interest is the disitibution of starch, wheh is fimited to the endodemis and the layer of parmolyma rells sheathing the seresthe haye of the resin camals (p, Qu!). Sometimes stateh is also ohserved in some of the parenchyma cells immediately inside the endodermis, between the groups of selerenthma fibers.

In old roots and stems that are composed mostly of secondary disures, rubler secretion is related on the nge of the cells as formed by the cambim. Sinee rubber normally appears first in okder cells, except for the epithelium of the resin camals. the direction of mbber apparance will be for the phome combal and for the vascular rays of the wood, centrifugal. For the same reason, cells closer to the growing point of the phat axis will contam less raber than will more hasal ceth.

The time factor for rubber synthesis and the duration of the rest period for maximam rubber storage will not be taken up in this bulletin. Acrording to Lloyd (-1) -
the the at whed the maximan amoun of rubher moy be expected difers with
 fomposity of the dromgh following the masimum qumbity is cothamy bot reached in fore mombis after growh tomaneres, and it is highy probable that six or more months must eliges.

ANATOMICAL STRUCTURE IN RELATION TO RUBBER CONTENT AND TYPE

The rate of growth determines the total increment of xylem and phloem. According to Lloyd (4), more phloem is produced by drylund plunts than by plants under irrigation, but the sum total of rubber-sturing tissue produced under irrigation is nevertheless greater, since the total yrowth increment is larger.

The effect of irrigation on structure also may find expression in the detailed anatomical picture of the wood itself. "The aylem of invigater plants, according to Lloyd, is harder, the vessels are smaller, and the mechanical elements are more compact. The vascular rays also are smaller, their cells thick-walled and lignified. Lloyd undoubtedly observed these difterences, but unless observations are made with comparative material one may not peneralize too treely. Varieties differ. These difterences may be qualitative as woll as quantitative (pl. 23 . A to F). The relative size of cortex and wood appeates to be a rarietal chamacterishic that may not be affected by enviroment, although the total growth increment would be in direct relation to the amount of available water. Vessel siz, as sem in conss section, also is apt to be a varietal characteristic and not an expression of available water. In one instance ($p l, 23, E^{\prime}, F$) the larger-size vessels were relited to high xubber content, permaps an accilental cormation, but in this case not a response of rate of reowth to differences in water supply.

Yey old phants may show lignification in the older part of the rays, but in plants of economic interest (4 to yeats old) none of the material studied showed either inerense in thickness of the ray cells or their Jignification. Solitary or groups of pithe cells do occasionally become thick-walled and lignified, in fact of yather minor importance.

As already stated in the introchaction, it is necessany to know the varieties anatomically before attempting to interpret the effect of environment on structure. Since rubber stonare appears to be related to structure, varieties with a greater storage space for rubber would furnish better raw material for selective breeding work than would varieties in which the seondary cortex is thin, even thongh both ratieties might test high in percentage of rubber: The relative growth increments of xytem and phem may also differ with different varieties. Only selections in which phloem development is favored over xylem should be afforded a future in a breedheg program. Nothing is known about the "grand periox" of cambium activity in the spring, although such a kinowleclge would have a definite influence on the date for the witholding of irrigation water to stimulate the synthesis of rubber. Again, in localities with a long growing season, definite data on the length of the rest period for maximum rubler synthesis would permit a second period of active growth before cell division is suspended with the advent of winter.

The anatomical approach in an improvement program for guayule has much to recommend itself: it affords a scientific basis for purposeful selection and points to short cuts in the attainment of this goal.

LITERATURE CITED

(1) Dangeabd, P. A.
 Les idcontlymenes. Botaniste 1: 75-125.
(2) Dinnova, V. I., Sosnoverz, A. A., and Stesmika, N. A.
1934. comparative cytoembivorogicai, analysis of the varieties of pabthenicm abientatun obay and parthemide incancis gray. Jont. Bnt. de 1URSS.19(5): $447-466$.
(3) Konieva. E.
1931. yorphology and dexfiopment of the melorbscences of partheniom abientatua g. (Guayuie) and of pabthenida hystehophorle i. Moskor, Ohshech. Isp. Primody, Otd. Biol. Biat. (Soe. Nat. de Muscou, Sect. Bioh. Bui. [1931j), pp. 207-236, 375-383.
(4) Lioyd, F. E.
 chmunht'sis degrkt. Camegie Inst. Wash., Pab. 139, 213 pp., illus.
(5) Ross, HL .
 "ouayue", pabthastem abgentatus ghay. Dent. Bot. Gesell. Ber. 26a: 248-243, illas.
(i) Sitell. M. B.

(7) Vimemin, P.

are somewhat farther apart. C. Salimas strain No. fon high in rubher. $\times 25$. Sot out in 1035 ank newe irrigited. A and C ate very similar in apmearace (beng the same stran) and irrigation does not seem to have had any effect on the structure. D, Salinas strain No. 49 , low in rubber. Set ont in 1930 mm nerer irrigatel. $\times 28$. The cortex is narrow, athl the amilable stomge spmed for mbler is not as great as in at and C but just is great as in B. The differesce bewem B and l semps to be the relatively marrow band of active phloem in D as compared with the brod band in B. E. Eniarged view of sylen and vascmar rays of stain No. 406 (bot frrigoted . $\times 180 . F$. Enharged view of xylem of stam $49 . \times 180$. Note the larger vessels and wider rays in strain An. 406 compared with those of strain No. 40.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE

 WHEN THIS PUBLICATION WAS EITHER FIRST PRINTED OR LAST REVISED

This butetin is a contribution from

[^0]: ISuhnitted for publication September 2, 1042.
 -Credir is due to Mrs. Engemta Artschwner for preparation of the drawings, and to
 and preparing slates of some of it.
 ${ }^{2}$ Itatic aumbers in parenthesev refer to Literature Cited, p. 33.

[^1]:

[^2]:

