

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTON TEST CHART

Morphology and Composition of Some Soils of the Miami Family and the Miami Catena ${ }^{1}$

1sy Invin C. Brown, associate chemist, Division of Soil and Ferthiner Investigalions, ind James Thomp, soil scicutist, Ditision of Soll Surveh, Bureau of Plant rudustry

CONTENTS

status of soid classitication
What is a soil maily
What is a soin cotem
The telationthips bew-o.........
 ily and soil ctatena
 bescription of soils sallupheran Melbuls of examimation Antighern results \qquad

(Themical abayses of the soils-c..-
1nge

Page

Analytichl results-Continued.32
(Themerd analyses of the coligirds-_ 32
Greathis matter 31

fiemerall divenssion $+4$
The parelil rock- 45

Lay or die tand and natiral drain-
A\%
46

INTIZODUCTION

As several thousand soil types have been recognized in the United States, it is now possible to establish chein sysematic classification. Soils may be groboed in many diflerent ways acerding to the objectives sourdt in the classification, but for eonvenience two systems have been followed in the [raited States. In the taxonomie system of soil chassification the suils are classified according to their morpholory and othere characterjstics that inclicate their most probable denesis. Soils that me closely retated taxomomienly therefore, are not necessarity closely associated geographically. In the gengraphic system of soil chasilication, the soils are grouped lurgely on de basis of their geugraphic association. They may diller walically one from another in morphology and other features that would distribute them in widedy separated groups in the taxonomic system.

Georaphically associated soils, therefore. form the basis for soilassociation landscapes that may be of several different types.

The object of this bulletin is to bring out some of the morphological and chemical characteristics of representative soils of the Miami family and Miami catena. The Miani family was selected for study because it is one of the most important taxonomic groups of soils in the

[^0]North Central United States from the standpoint of agriculture. The Miami catena has one soil series in common with the Miami family. and it is one of the most important reographic associations of soils in the North Centeral United States. With the Miami series as a starting point for both family and catems, the relationships between the two kinds of classifications can be brought out clearly.
In order to clarify further the differences between the two systems. it is desimble to review certnin historical details and explanations regarding the development of the taxomomic sysem and of the soil catema in the geographic system and to show the relationship between them.

STATES OF SOIL CLASSIFICATION

Winat Is a Soh Fimin?

In the introductory paragraphe of his lat monoraph, the late Dr.
 cation. His first two calderies include soil types and woil series. respertively. so well hown and gemerally materent that there is mo
 (Family groups), he delined as follows:

Abstract

 meatow soils; momation earbonate suils; and others.

A carefnl reading of this stafement. and a study of Marbut's table of classification, indicutes that he intended each soil family to inchurle soils having similar profile characteristics. These similar profile characteristics have developed from simiar but not identical parent materials. The common characteristics of a given family were less inclusive than those of the great soil groups. For example, refereing to his fable of chassification, his "Groups of Mature bu Related Soil Sories" would undonbtedty include exeral subdivisions or families of a given Great Auil Gronp. In the Gray-Brown Podzolic soils. Chernozrms. Poizols. ete., each wond inchude sereral familis.
 family to inclucle only those soils having simitar mopholagy and necessarily having developed under similar envirommental conditions. An attempt was made io abberiate the deveription of soil family in the 1938 Cembok of Agriculture (3 ? 2). The definition follows: "A calegory in soil alasification between series and great seil group: a taxomomic groop of soits having simitar profiles, composed of one or more distinct soil series." This definition is perhaps somewhat vague, but it was not made more specific at the time of writing becanse no attempt had beell made to gromp all of the soil series of the United States into families. Some work along this line is now in progress,

[^1]but until it is complete it will not be feasible to formulate a definition that will be specific as to the points of similarity that must exist between soils before they can be placed in the same family.

Certain principles regarding characteristics of soils that should be considered in establishing a family might be mentioned: (1) The number, sequence, and general charactecistics of genetic soil horizons within each member of a soil family should be similar. (2) The texture and mineralogical composition of parent materials or parent rocks shoutd be similat, athough by no means necesearily the same. For example, ghacial till paries greatly in litholoqical composition, but if the same rocks and minerals are represented even in considerably varying proportions and if the texture of these materials does not have too wide a range it is reasomable that all soil serjes of a given sequence of horizons should be classified in one family. Furthermore, stratified outwash deposits, such as those of the glaciated region, may have essentially the same Jithological composition as the ghacial ditl with which they are associnted. In such a case, soils of equal drainage conditions and profile development can be placed in the same family as the soils developed from glacial till. On the other hand, it parent materials of glacial till or outwash deposits are exceedingly sandy and of a lithological compasition differing considembly fom the somewhat hemvertextured till and outwash deposits, this would be a basis for the establishment of new families. (3) The matmal dramare condition of a soil is another basis for the establishment of soil tamilies, because differences in natural drainage have a very important eflect on the number. seduence, and chatacteristics of soil horizons. (4) The factors of slope and climate also have an important bearing on soil morphology, and, to the extent that they do, they must be considered in the establishment of soil families. (5) Vegetation must be considered in establishing soil families to the extent that broad differences in regetation fumdamentally aflect profle characteristics. (6) The age of a soil, insofar is it affeets morphology and fundamental chemical chatacteristics, also has a bearing on how the soil will fit in a family grouping.
If natural drainge, character of parent matecial, and the number, sequence and claracteristics of soil horizons must be similar in order for soils to be placed together in one family, it is cvident that the members of a family may be scattered widely over a very lange area and separated by members of other families that are cither developed under different drainage conditions or are developed from tadieatly different kinds of parent material. From this it may be seen that members of a given soil family are not always as closely associated geographically as are members of different famities. In fact, a great many members of soil families ate rather widely separated geographically, and they are not very freauently assuciated closely enough to form distinct local lamlscapes. The only important exeeption to this is that two or more types of a soil series may be sulficiently closely associated geographically to form local landscapes.
In Marbu's classifir, wim. howerer, it is impossible to trace one of the so-called abormi. swils, such as those of swamps or satey areas from the soil (ype (Category I) throngh the sril series (Category 1I) and family (Caterory III) to Caterories IV. Y, and VT. All of these so-maled abmomat soils fail to fotinto any of the higher categories. but Marbut recognized that they sould be gromped into a number of families. In the Athas (izo) he did not describe intividual families
as such, partly because he did not feel fully prepared to decide on the grouping of all known soil series into families and partly becunse he was more concerned with geographic groupings now limown as catemas and noneatenary complexes.

In the Yearbook of Agriculture for 1088 (3) Baldwin and others modifed Marbut's table sulficiently to make it possible to trace any soil from the lowest to the highest caterory (see 3, table 2): This meant, of conss, a leamonging of the higher categories to inchode all soils. In this classification the highest category inctudes zonal, intrazonal, and azomat soils. In the same table mittempt was made to indicate one or more families ther each great soil group. It shou'd be possible to place every soil series of the United States, or of the work for that matter, into a suitable fimily group and to group these families into great soil groups and thence into the still higher categories. This is a problem that will take a great amount of time and study.

What Is a Soll Catena?

In a great many places soils of several diferent drainage conditions are developed from essentially the same kind of parent rock, and thesc diferent soils go to make up the foundation for complete local handscapes. The differences in profiles of closely associated soils are due almost entively to dminage differences that are bronght about by local relief.

To meet this condition the tem catena (Latin for chan) was introduced by Mine (23) to cover aregraphic moups of soils developer from one kind of parent woek but under diflerent deamage conditions induced by diterences in slope. Idealls, the soils comprising a catena occur as consemtive bands alonr siopes from one hiflop, across a level valley to thother hilltop-all on essentially the same kind of rock. For example, suils of the NLami catena are members of the Miami, Crosby, Bethel, Brookston, and Clyde series, and in a few places there are small areas of Hennepin soils (see table 1. p. 8). The parent ghacial tills of all of these soils are alike in all essental respects, although the proportion of differet rocks and minemals within the till may vary considerably; and in the brookston and Clyde soils a certain amome of sitty and clayey material may have accumblated through the action of local wash, gravity, and frost herve.

Goils of the Frmmepin sories are developed on very steep sloyes where the intensity of soil-fomation activity is at a mimimum and where rapid runoli prevents the accumalation of a decply leached strongly weathered deposit. Hemepin soils are shallow and usually neutral in reation, or hearly so, and calcaveous ghaciat till orents within a few inches of the surface in most places. Mimm soils are well-developed Gray-Brown Podzolic wils in which the lime carbonate has all been leached trom the glacial till to a depth of from

2 to about $31 / 2$ feet in most places. Miami soils are well drained internally and extermally, but as a rule they occur neither on very steep slopes nor on level land. Crosby soils are developed from the same kind of calcureous glacial till as the Miami soils but, since they occur on nearly level or gently undulating land, surface runoff is slow and much of the rain water sinks into the ground or evaporates from the surface. Some of the water flows to the level and depressed areas where other soils are developed. Under these conditions a profile somewhat like that of the Miami soil has developed, but a clay pan or, at least, a very heavy subsoil, heavier than the subsoil of the Miami, has developed, and slow intetnal drainage has caused the lower horizons to be mottled. Bethel soils are developed in association with Crosby soils on dead-level ateas, usually on divides. These soils are more slowly drained than the Crosby soils and usually the development of clay pan is more pronounced.

Surface water from the Miami, Crosby, and Bethel soils moves away toward the slight depressions in the till plain. Subsoil water moves slowly through the entire Miami profile, but in the Crosly and Bethel profiles much of it is hed ap by the henry subsoil and, where it moves at all, it works its way in a more or less borizontan direction abore the clay pan toward the lover-lying areas. From this it ean be secn that excess soil water in the Miami, Crosby, and Bethel soils mores away toward lower areas. Brookston and Clyde soils ocenr in level depressed areas where more water accumplates than falls on the surface. These areas receive water that drains away from the Miami, Crosly. and Bethel soils and sime matural ontlets are higher than most of the areas, the water stants on the surface until it craporates or moves very slowly through the undery yine glacial till to form springs along water courses. bothe the brookston and Clydo sois are very dark-colored and approximately nentral in react ion, at thengeth the other soifs of the catena are light-colored and acid in reaction. Details of the soil profices of each of the members of the Miani catem: except the Hennepin, are destribed later.
In the establishment of catemas a certain amount of leeway cars be allowed in the character of the parent rock. Milne ($2: 3$), who Erst gave a mane to the catena concept, used the catena as a mapping unit and pormitted some varintion in the character of the parent rooks of soil serjes inchuded in any one catent. He allowed greater wand tion in this respect thath is allowed in the catenas of the United States. This is probably bembe he was using the catema a a mappinge mit, wherms in the United States the concept is used as a means of making sute that now soil series be extablished swermatically tucording to profila characteristios corresponding to definite drathape difforenes where it is necessary to establish sevemal series on one kind of parent material within aik soil zone.

The Relationships Betyeen Soll Family and Sol Catena

The differences between the concept of family and that of catena may be illustrated by an andogy. A fanily of soils is a taxonomic unit of classification that is roughly analogons to a genus of plants, whereas the catena is amalogons to an ecolorical unit of plants. For example, the genus limes inctudes the varions species of pines and the genns Qutrous inchudes the varions species of oaks. These two genera may be considered to be analogons to two families of soils, whereas the oak-pine torest association may be considered to be an ecological analogue of a catema of soils.

Each member of the Miami family theoretically is the senior series of a diflerent catem, athongh it is woll known that some soil series do not have catenary associates. In some instances the same poorly dramed series overlaps several catenas. For example, Brookston soils belong to the Miami, Hillshale, and Galema catemas. There might be sume argument for having different names for the Brookstont soils that are associated with Hillsclale and Gabena suils, but the differences between them are not suthiciently great to justity the establishment of now series even thongh certaim minor differences no doubt conld be demonstrated.

Each member of the Miami catena conversely, is the senior series of a cliflerent fimily. Members of the Miami family include only Gray-Brown Podzolic soils; the Crosby and Bethel families both include only Planosols. but the soils of the Jethel family are nore sowly drainel than the first : Brookston and Clyde families, as mapped by the Division of Soil Survey, include Half-Zog soils, athought the Ciyde wills are dominantly and typicaly Wiesenbëden.

To ilnsatate further the relationships betwen soil families and soil catenas, table 1 gives graphically the varions mombers of the Miami tamily and the catenas of wils that wo with each. and fyume 1 illnsates a cross section through adjacent Miani and Fox catenas.

It is noted that tor each member of the Niami catena there is a family of soils of similar dramage condition. There is not much basis tor the establishment of families of organic soils, but it is felt that the mucks, beanse of their greater degree of decomposition, should be kept separate from the peats.

Table 2 gives a strictly taxonomic grouping of the soils shown in table 1.

Table 1.-Relationships between some soil catenas and soil families in Ohio, Indiana, and southern Michigan. Families and catenas shown are wot all complete

Family	Domenant slopes	Nathral draimge	Soils composint the catmas-								
			X lami	Miltm	Bellefontaine	Catema	Itilisdale	Fox	Mill Creek	Wooster	Alexandria
Mranepin...	Stierp to sieme	Yore rapid extermal		Miltom	1Rminn Bellefontain	Galena	Hillsalat 1.	Roimann.: Foxt	Rodiman Mill Creek	Wooster ${ }^{3}$.-	Alexandria.
	lominantly methum.	cuternal and intinal.		Mmon		Gakna -...	-			Worster --	
Crosby	Gmate.......-	Mumism to slow exinrnal: slew intermal; munstary	Crosby :	Raurbiph		Otis				Ravenna ${ }^{-}$	Bennington.
Bethel	Level	Stow cettrmal mid	Bethel ${ }^{1}$					nomer.	Homer	Trumbuli :	Condit.
Brooksion.	Level; depresed	Thitrmati wetry niramedexternal trmal; most-wet.	Brookston!	Mills late		13roukston.	Brookston.	Westhat	Westand.	Chippewa?	Marenso.
Clyde	do.	Cntritined extermb. 1y; vory slow intermatamass weth.	Clyde					Ahingtom.	Abington. -		
Carlislet	.do.	Permmantly saturatel.	$\begin{aligned} & \text { Carlisle } \\ & \text { muck. } \end{aligned}$		$\begin{gathered} \text { Carlisle } \\ \text { minck } \end{gathered}$	$\begin{gathered} \text { Chrisiele } \\ \text { muck. } \end{gathered}$	$\begin{gathered} \text { Carisie } \\ \text { muck. } \end{gathered}$	$\begin{aligned} & \text { Carlicie } \\ & \text { much } \end{aligned}$			

1 These solts were sumpled for hanalytion work for this stung.
 3 Includes several kinds of muck not listed hern.
Tande 2.-Taxonomic grouping of the soils shown in table 11

Caterory V1 order	Catsory ${ }^{\text {V }}$ suhnrider	Catrgory IV ereat soil group	Category Itr fanily	Cntegory II series	Category Itype
Zonal spils...........	Light-malered juotralizerl solls of timbered rimions.	Gray-Brewn C'orlzolic soits	Miami.	Miami.....------	Miamai silt loam,
				31ilion -	dillon silt toan.
				Ginkrna	Galuna गoan.
				litilstate . . .-......	Jinisuate fine sandy lonm. ${ }^{\text {d }}$
				Will Creek........	dili craek silt lonin.
				HonSter ${ }^{3}$.....	Honster silt loam. ${ }^{2}$
Intrazonal solls.......	Ilyd ramurghtie soils of morstipe, swanfs, and illtornately wot and iry flats.		Clyde 4 Brooksion \qquad	cigle	
				A bingion-........	Abinetnusity clay loam.
				(i)estant.	If esthad sily y flay lonm.
					Chippewn sidy ylay lam.
		$\left\{\begin{array}{l}\text { Mralf-1Bor soils } \\ \text { IMnosols }\end{array}\right.$		Crasby	Croshy silt lomm. ${ }^{\text {a }}$
			[Croshy		Otis sili Joam. favernm silt iorm.
				Brnalicton-.......	Dennimetion silt toam.
				Rethed.	Rethet silt loam. ${ }^{2}$
			(3mpthel....-......		Trumer sult silt losm.
				Coundit.-.-	Condit silt loan.

COLLECTION OF SAMPLES

Much of the area where soils of the Mami family and Minmi catena are common has been cleared and is now under caltivation, so that it is very difficult to obtain samples of truly virgin snils of the series that were studied in this work. Even most of the remaining wooded areas of these soils are pastured by cattle or hors or both. The areas sampled, however, showed relatively little disturbance, and it is felt that the samples well represent the series. It would have been very desimble to have collected the members of the Miami catema in cluse geogeaphic association, so as to be sume that the parent arlacial till was essentially identicul. This was not possible beenuse sat isfactory virgin areas of all the soils of the catema do not oceur anywhere in close association-at least, the athors were not able to find sueh a place. As a consequence, the Crowby amb Broukston wits are the only two members of the Mima eatent that were collected in elowe proximily to each other. They came trom the same wood lot in Grant County, Ind.

Descmarmon or Som.s Samimind

All of the soils studied, hat the Fox sitt lom, we developed on weathered Wiseonsin macid till. and all of the till, but that umder the Wooster sile lomm. is either medman or stronely cakeroons. The Wooter soll is tevelopel on weather till that will mot efferese with cold filute liyderbhore acid at a dopth of a feed: but held stadies elsewhere show that depere horizons of the till mader Wooster soils are slighty to medimm soleareous. The loos sill lom is developed on strongly calemmous outwash pavel deyonits of Wiseonsin age and of much the same libomgical tomposition as that of the till mader soils of the Mimmi catena.
(limatic conditions are similar over the entire area from which the soils were selected. Thornthatate (M) has clasibied the elimate as "homid microthermal with adequate precipitation at atl seasums"; but all of the samples are from the wamer part of the mictothemal region where the temperature ehbiency index is grater than 48. The Miami and Bethe samples were taken only is miles north of Thomathaites boundary between microthemmi and mesthemal
 and the ment anmal temperatme is alow 50 K.. athoman it is bower in northeastern ()hio and southern Miehigan than in Gemt, Wayne, and Randolph Comoties, Ind.

In assigning letters to soil horizons, two syetems were followed.
 and lamosoks, the relabiedy lient-textured unper hamons were listed

[^2]C_{1}, C_{2}, etc. A_{1} stands for the surface mineral soil that is usually thim but contains the highest percentage of organie matter of the profile. The A_{0} is the horizon that has the appearance of being the most highly leached. The A_{3} and B_{1} horizons in every instance are transitional horizons between the \mathbf{A} and \mathbf{B} and are called \mathbf{A}_{3} or \mathbf{B}_{1} according to whether they have more characteristics in common with A or with 13 horizons. i3, horizons usually comprise the main part. of the heary subsoil, but the percentage of clay in several instances is somewhat Jess than in the B_{3} horizon, which marks the transition between the soil proper and the parent material.

The lind and sequence of horizens in the Half-Bor soils and Wiesenboden are so different in several respecte from those of the lightcolored soils that a different system of designation has been folloved. The system used is that of the Indiana soil survey and was originated by T. M. Bushnell (9). The upper horizons to considerable depth are dark in color and high in humus and are designated as $\mathrm{H}_{1}, \mathrm{H}_{2}$, ete. The intermediate horizons are gray and motted and are listed as $\mathbf{M}_{1}, \mathbf{M}_{2}$, etc., or "modified parent inaterial." The unleached calcirenis materina beneath is indicated as $\mathrm{U}_{1}, \mathrm{U}_{2}$, etc., to signify "underlying material" that may or may not be "parent materint." In view of tho fact that une cannot always be sure that the underlying material of soils is like the materind fiom which the soils were formed, it might be as well to think of mose onderlying materials as U horizons rather than as "parent material" horzons.
Following ate brief descriptions of the soils that were sampled and of the landscapes where they occur.

MHADI SHT LONAL

Location.-This soil was fomed in virgin forest known as Lewis' Woods, Wiyne County, Indiana; Green Townshi, about 1 mile south of Williamburg in NE 1_{4} SE $1 / 4$ sec. $7, T$, 17 N., R. 14 E . Soil erroneonsly ineluded on mat? with Crosty silt Jom, probably becase the ateat is small.

Landscape.-Miami silt loan is here typically developed on a gentle convex slope near the edge of a small stream. It is covered by a thifty hardwood forest duminatly of sugar matle, beech, and ork, with many other species of trees of less importance. Cleared aris nearby support prosperous genemblaming enterprises.
Parent rock.-The soil is developed on Wisconsin ghacial till of "till billow" relief, and composed of mixed rock fomr and thaments of many different kinds of iqueons and sedimentary rocks with a preponderance of limestome and dolomitic Jinestome. The limestone fagments have all been leached away to a depth of 3 freet in the place sampherd. Lomaly, the depth of leathing varies from about $2+$ to ahmost 40 ind les.

Dramage-Dramage is good both extermaly mad internally, atthongh the moderately hatary B horizon and somewhat compact till prevent rapid downard movenent of water.

Descrtation of horkgons

C4060 A, 0 to 2 Inches, very dark brownishegray, sodt jue gramiar or ommblike silt lom contaming mach organie mater that bas been intimately mixed with the mincual soil by womms, insects, and mman mammals, It is it true geamalar mill. Nombrous rodent and mole burrows follow this horizon mmedialely beneath the thin Inat of decnying reat leaves. Pimons feeder roots of trees nad whambush are obmonat. The color is much lighter when the soil is dry.
 brownish gray when alry, sill loam contaning worm burrows filled with dark soil from the Λ_{1} howizon. This bovizon grapes into those above ama below with an inch or two of transtional moterial in each case. The soil is friahe abl of phylliform (thin platy) stachme amblaks into thin, casty crushed hakes.
 roots are less nomblant than in the A_{1}.
C4069 $A_{3} 5$ to In inches, pale welowish-brown or browish-rellow, fritible sitt
 above. 'this beaks into easily crumhert jaters abont $1 / 16$-inch thick. Feoder roots considerably less thmotimt fhan in N_{2} and A_{2}. This grades almost imperceptibly into the mast hobizom.
 into phates ahout $1 / 16$-inch bick in the ubrer bate and into
 gates $1 / 4$ to 36 inch in dimaeter in the lower part. A few lame
 for slight variegtion in folor owine to jenetrations of lightepebored material from above and to than brown collaidit aecomabations on the surfaces of the strmetame aforegates, especiatly in the lower part,

 of root holes and eracks are roted with hrosm and dark-brown

 fo difiuse and oecms at variable depths.

 precontage of wek hatr and somme chay. Some of the larger ter rents extend weil into has premt roek.

WOOSTER SILT LOAM

Location.-Wooster silt lowm was found in a small patel of unpastured woods in the SE $1 /{ }^{2}$ NE1/4 ser. 19. T. 13. R. 13. Woester Township, Wayne Comby, (hio, on Shate Ronte No. 226.
Landscape.-The torain is undulating to gently rolling till plain with prosperous farms and ocensional patches of woodland. General farming, including darying, is chatacteristic. Woodlands are of the
ank-hickory type with much sugnr maple, wild cherry, basswood, and various other trees.
Parent rock.-The soil is developed from glacial till composed largely of sundstone and shale fragments with minor quantities of various igneons and metamorphic rosks. Mach of the Eill beneath Wooster soils contains a very small proportion of limestone fragments. Lime carbonate is usually leached to a depth of 6 to 10 teet.

Drainage- - Interma and extemal drainge are good but not exeessive. The 13 horizon is sulbiciently heavy to check downward water movement but not heary enough to cause poor dranage.

Soil profile.-
Sumpe
No.

 ghage of foresters. Covered by id then of party deagred lear litter that was not samphef.
 Sample (crambstrectare-a transitionat horizon.

 has a wellderobont phylitom (leadike) stmentre and breaks into thin thats when fighliy emshed the hand.
 sample fina sheaks of rery light-gray silt.
 gates $1 / 2$ to

 Aggregates art firm enotgh to be hmatheal wihout breaking when in at molst comdition.
No Br. 30 to Bhe 2 inches, tunsition material. Rather comare.
sample
 breaking into rough 1-ineh-hbick plates. Dark-brown eolloidul films on the clons. Vors itandy mottien.
C4030 $C_{2} 38$ to 48 inehes + , hight brownish-y thi, with enhat mothings and strenks at rusty hown, This comprises the weathered nod leached ghatin! till composet of fragneats
 ties of many other kinds of rucks.

HILLSDALE FINE SANDY LOAM
Location.-Ttilstale fine sandy loam is located in cut-over oakhickory forest in the SE1, NED $1 / 4$ sec. 34, T. 1 N.. R. 2 W., in Ingham County, Mich. Nearest town is Onondaga.

Landscape.-This soil is developed on rolling morainic comtry, party devoted to general harming and party remaing in woots. Slopes vary from gentle to steep. The sample was taken from gendy sloping hilltop.

Parent rock.-Glacial till eontaining a high percentage of sandstone traments. considerable timestone, and varions igneous and metamorphie roeks is the parent rock of this soil.

Drainage.-The drainage is good, both intemnlly and externally, although the downwam movenent of water throngh the soil is checked by the $I 3$ horizon. Crops sonetimes suffer for lack of water during dry periods.

Soil profile.-Occasional bouders are scattered over the surface and through the solum. Although there are many small stone fragments throughout the profile, most of those in the upper horizons are more or less disintegrated and chemically weathered.

Horizon

Description of horizors
C4031 A_{5}. 0 to 3 inches, dark brownish-giay fine stmdy loam breaking to a weak compotand structure of nuciform and granular aggregates. Lighter colored in lower piart. The horizon is covered by a thin layer of mrily decayed leaves. wenkly developed phyliform strncture. This grades into the uext horizon withont a clear line of demareation.
$\mathrm{B}_{2} .13$ to 28 inches. firm, rich-lrown, heavy fine sandy loam with lipht. pray shemks, and some hbackish streaks and stains on surfaces of the moiform aggregates that vary in diameter from $1 / 2$ to $\%$ inch. Friable and mealy when cushed in the hand.
$B_{3} .28$ to 50 inches, brown and friable-somewhat sticky when wet-heavy fine sundy loam with some black spots and jellylike colloids on surfaces of nuelform aggregates.
50 to 54 inches. Thansition material,
C. 54 to $\mathfrak{i} 2$ inches + , light olive, moderately to strongly enleareons ylaclal till composed of a mixture of fine sandy lonin, many sindstone fragments, a little limestone, and a scatlering of many other kinds of rock fragments.

FOX SILT LOAM

Location.-This soil was found in second-growth wooded pasture (never cultivated) on a high terrace of West Fork of Whitewater River, Washington Township, Wayne County, Incl., NW $1 / 4 \mathrm{NE} 1 / \mathrm{sec}$. 19. T. 15 N., R. 13 E.- 3.6 miles southeast of Milton. The Sumple was taken from a freshly dug trench under trees where the surface was covered with leat litter and there was little grass.
Landscape.-Fox soils ave developed on flat, high, glacial-fluvial terraces in the area sampled. The flat surface is broken oceasionally by small drains and by low escamments between different terrace levels. Most of the land has been cleaved and is used for wheat, com, clover, timotliy, and pasture grasses.
Parent rock--Tox sitt hoam is developed on stratified and assorted gravels of approximately the same lithological composition as the Gil materials of the soils of the Miami catema; i. e., mived gravels with it predominance of limestone and dolomitic limestone. Limestones have been leached away and most of the other rocks have been strongly decomposed to a depth averaging approximately 3 feet.

Drainage.-The open, prons gravel substrata of Fox silt loam provide rapid to very rapid drainage in spite of the nearly level surface. Crops, especially corn, freqnently sulfer for lack of moisture during droughty periods of late summer.

Soil profile.-

Catis A. 0 to 2 inches, very datk bray, soft, frannlar or crmblike silt lonm mulf, containing much decomposed orgatic matter, Permeated by thae roots of sliruls nul trees. The transition to the uext borizon Is abont: $1 / 2$-inch thick.

Horizon

Deseriptian of herizons

C4049 A2. 2 to 10 inches, pale yellowish-brown silt loam, feding, wizen dry, to ilght yellowish gray. The material has a phythiform structare in the upper part and breaks into thin plates in the lower part where it is in gradund trfasition with the next horizon.
C4050 As. 10 to 18 inches, light yellowish-brown silt lonm breaking into rough prisms in which the vertical axis is shorter than the diameter, which averages a little less than $1 / 2$ inch. This grades into the next horizon.
C4051 B2. 18 to 32 inches, bright yellowish-brown somewhat compact heary loam or light clay loam contalning many yellowisth-gray gritty fragments and having at somewhat reddish tint. The soil breaks into sabangular nuciform aggregates, varying from $1 / 4$ to $: / 4$ ind in diameter. The transition to the next horizon is rather sharp. but the line of transtion is at quite variable depths from the surfiace.
C4052 $\mathrm{B}_{\mathbf{t}} .32$ to 38 incles, dark-brown, grity and sticky silty chay with a slight reddish tint find an madistinct blodky structure. Contains many pebbles, more or Jess disintegrated and, atthough the reaction is approximately neuftah, no limestone fragments remain. This rests abmuntly on the stmatified gravels beneath. The lower bommary of the hobizon is very irregular in shape and narrow tongues extent to 4 or 5 fect deep in many places.

C 4053

$0_{4}, 38$ to 60 inctess, gra;- and buff-colored, rounded, stratified, mixed gravels. includiug a high percentage of limestone and dolomitic limestune.

CROSBY SHLT LOAM

Location.-Sample taken from lightly pastured wond lot in the southwest corner of the NE1/4E1/4 sec. 19, T. 23 N., R. 8 E., Fairmount Township, Grant County, Ind. The wood lot is just northwest of the city of Faimonnt and is the same as that from which the Brookston silty clay loam sample was taken.
Landscape.-Crosby silt loan is developed from gently undulating till phain with Crosby soils on the slight elevations and flats and with Brookston soils in the depressions. Miami silt loam occupies the more strongly convex undulations nearky. Nost of the land is cleared and devoted to general farming with com, hay, and wheat the principal crops. Native vegetation is composed chiefly of beech, maple, black walnut, and basiwood trees.

Parent rock.- The soil is developed on moderately compact Wisconsin glacial till composed of mixed rock flour and fragments of many different kinds of selimentary metamorphic and igneous rocks, incliding a large propurtion of limestone and dolomitic limestone. It is leached of carbonates to depths varying from 24 to 40 incles.

Drainage.-The surface drainage is moderately slow, but effective, and intemal drainage is slow. Upper horizons become very dry during droughty periods.
Soil profile.-

Horizon Description of horizons

$04037 \mathrm{~A}_{1} .0$ to 2 inclee, very dark-grity silt fonm with some tendency to phyliform structure and with a high proportion of worm casts. The thin covering of decatying leares was not sampled.
C4038 A, 2 to 11 inches, ghit-gray, strongly phylliform silt loam with many worm holes filletl with dark-gray casts. Starply defiued boundary with next horizon.

Dcscription of horizans

$04039 \mathrm{~B}_{2}$. 11 to 18 inches, ancifom agyrenates of silty clay loam about :1 incf to 1 inch in dimeter. Surfaces of agregates are wray and siliy, and inteman paris are dan bown. The brown coter is more pominent in the lower mat. Boundery with next hovion well defined.
C40t0 B_{3}. IS to 36 inches, motted-brown, velowish-brawn, and datkeray prismatic clay with gray ond datk-mown coltoitis on surfaces of struthe ageregates. the prisms are 7 to 2 inches in diancter, with the vertieal axis longer than the dimmers. Tha mixns beak down

 the horizon is simitar to the Ba horizon of diami sht loan. Lerastlif wary hombary with nexi herizm.

 himextme.

BEYHEL SHTT LO.JM

Location.-Sample daken from lighty pastured wooted then in the
 Wayne combiy, Int.

Landscape-behtel sile lomm is here developed in beed woods with occasional shgar maphe ores on fat upland till plan; miorowiel.
 pastare. Sumbunking areas of Crosby and Brookston wils are devoted to reneral fatminar.

Parent rock-This swil is developed from Wiscomsin ardacial till, composed of mixed rock flome chay mat fugments of many different kinds of igneons. metmorphie, and sedimentary rocks with a preponderance of limestone and dobomitic limostone. The limestone framonts are leached away to an areate depth of aboud 30 inches.

Drainage-- Extomal and internal dratarge are both slow. 'the soil is temporaily waterlogged during wet periods and becomes exeessively dry in the unper part of the solum during protacted periods of dry weather.

Soil profile.-

Sampue
No. Harizor

Descriptidn of horizons

 (traties in A .
C40\% A. 2 to 8 inches, very monday, frable silt loam with sman rust spots

 jellybe gray embids. Phis gates into the mext horizom.
 stift silty clay lomm with very dark-graty stieky coliokls on stractomai agremates.

 bact. Shoma framents are of sroat lithological variety bui lime stome am folomitio limestome predominato. Temporary water hable at 32 itchey at lime sample was laken (earig July).

BROOKSTON SILTY CLAY LOAM

Location.-Brookston silty clay loam was found in lightly pastured wood lot in the sonthwest corner of the NE $1 / \mathrm{SE} / 4$ sec. $19, \mathrm{I} .23 \mathrm{~N}$, R. 8 E., Faimount Township, Guant County, Ind., just northwest of Fairmount. Sample taken about 150 leet west of the Crosby silt loam sample.

Landscape.-The soil occurs in a depression on a gently undulating till phain in association with Crosby and Mami sitt loams, the foumer greatly predominating. Most of the land is cleared and devoted to general larming. Native vegetation is composed chiclly of elm, basswood and ash-a hardwood swamp-forest association.

Parent rock.- This soil is developed trom moderately compact Wisconsin crlacial till composed of mixed rook four and framents of many different kinds of sedimentary, metamorphic, and igneous rocks including a latoe proportion of limestone and dolonitic limestone.

Drainage- Natural dramare is very slow. Water formerty stood at or near the surface during much of each year. Water table has been lowered by die dains so that water now stands on the surface only atter protwated wet periods.

Soil profile.-

sample
So. Horizon Deserintion of horizons
CHO 3 H . 0 to 6 inches, very dark grasish-brown, mellow. medimm-ambuntar, light stily clay loam, the aggregtates of which are strong erought to be freely handeal Govering decayed leares not simpled. Abrupt smooth boumbery with the next horizon.
Otot4 Es. 6 to 20 Inches, very dark brownisiogray, pastic silty chay loam brenking fitu tim coarse gramular ngeregates. Dimused fregnate bomblary.
 blocisy argregates $1 / 4$ to $1 / 2$ foch in diameter. Boundary with next horizon is irregulat amil brokers.
 silty elay loam with coarse block struethre. Water iable at time of sampling was about fit inches below the surfact. This is aproximately the level of the nearly tile dritn.
 chay lonm bill composced of roek blour, diay, and frasmonts of mans kiads of rocks. Materiat is strongly cthburwas and the conrser fragments inchade a large propurtion of limestone and dobotuitie limestone.

CLYDE SHATY CLAY

Location.-This soil was fomet in the SWr $14 \mathrm{NW}^{4}$, sec. 5. T. 17 N , R. 15 E ., about 6 miles sontheast of Winchester and $13 / 4$ mides northwest of Bartonia, Randolph County, Ind.

Landscape.-Clyde silty clay occurs in very poorly drained depressions in an undulating upland till phan. Sample was taken from a swampy are: at the end of a permanent pond. Vegetation consists of sediges, rushes, grasses, and elm trees. Land is in pasture. Hardwoods probably covered all but the wettest parts under virgin conditions. Nemby. Crosby, Brookston, and Bethel soil are mostly cleared and used for general faming.

```
45758%-'2--3
```

Parent rock.-This soil is developed on Wisconsin glacial till, composed of mixed rock flous, clay, and tragments of many different finds of rock among which limestone and dolomitic limestones are most important. In the place sampled the parent materinl was saturated with water. It is leached of carbonates to depths varying from 48 to 72 inches.

Drainage.-Internal drainage is very poor and water stands on the surface during much of each year.

Soil profile.-

Sample

No. Horizon Deseriphion of horizons
$04017 \mathrm{Fr}_{2} .0$ to S inches, black coarse famalar silty elay with strong agaregates. Shatp transition. Water table at suctace.
C406S II2. 8 to 20 inches, back silty chay which falls apart reabily foto shampty inghatar blocky atesrerates and prisms that can be b:anhed roushly withont breakate. These aggregates vary from about $1 / 6$ to 12 inch to abont $1 / 2$ to $/ 6$ bach. They are not delinitely oriented. Inastic when mressed in the fingers. Grachan! tansition.
(4060 $\mathrm{H}_{2} 20$ to 20 inches, dark-tims, plasime silty clay with some must motthug. breaks into pelsms about la hy 1 inch in thickHess :and leagh, respectively. Gramati fransition.
 mottled with rusts brown. Breaks into prisms abont $8 / 4$ by 1 or 1 友 inches. Gradun tansition.
C40ti Ma. 38 to co mehes, grevy silly chay loum of blocky stractive, mothen with yellowish rust. Sharj wavy transition.
C4072 U. 60 to minches f, caleareous stacial till efmposed of rock flour, elay, aud stoue trayments of many kituds. The horion is more or lass motlied with rust nad yellow bechuse of pars dramage. It was not practicable to shmple the maveathered till. hecmase water ran into the excaration faster than it could be removed.

METHODS OF EXAMHATION

The methods used in the laboratory examination of the soil samples are essentially those in general use in this Bureatr. Detailed descriptions of each may be found in the publications cited later.
The soils were received in a lumpy, partially dried condition. When air-dried, each sample weighed 10 to 15 pounds.
In the preparation of the soil samples for analysis, the air-dried samples were crushed to 1 -inch or smatler, lumps, thoroughly rolled, mixed, cuattered, and separated into two parts. One-half was stored in glass jars. The other half was reduced to about 100 gm . by crushing and quartering until most of the particles did not cxtend 2 . millimeters in dianeter. The reject was saved for colloid separation. The sample was further rolled and quartered to about 20 gm . and passed through a $2-\mathrm{mm}$. sieve and ground to 100 mesh for chemical analysis. The unground residue was saved for pH determination and mechanical analyses.

The mechanical analyses were made by the pipette method described by Olmstead, Alexander, and Middleton (25). The pH values were determined by the hydroyen-electrode method as deseribed by Bailey (Z).

The chemical analyses of both soil and colloid were made according to the procedure outlined by Robinson (27). The organic matter was determined by the combustion method.

The colloids were extracted from the soils by means of a supercentrifuge essentiaily as deseribed by Brown and Byers (4). No clispersion agent was used. The colloid from sufficient soll was dispersed in about 3 gallons of distilled water by a mechumical stirrer described by Holmes and Edgington (17). The suspension was decanted into about 7 gallons of water and centrifuged at a rate of 17 seconds per liter at a speed of 17,000 revolutions per minute (bowl diameter, 4 inches). The colloid still in suspension was dewatered by means of Pasteur-Chamberland filters and the filtrate used again to effect dispersion of the sediment from the bowl. The process was repeated 3 to 6 times until an adequate amount of colloid was collected. Very few of the discreet particles exceed 0.3μ in diameter. The final product was dried on a steam bath.

The data are presented in tables with a brief discussion of each table. Certain derived data have been segregated. In these mag. nesiam, calcium, potassium, and sodium oxides only are segregated and referred to as bases, bectuse of cheir particular significance in soil development.

In the discussion, various constituents are conveniently referred to as clements or as oxides as they are recorded in the tables, although they may more often occur in the soils as silicates, humates, and other compounds. Soluble silica occurs as silicates, not as quartz; iron oxide is presumably hydrated, and its state of oxidation is uncertain and probably varies considerably from one soil to another; other combinations of these and of other consti+uents of the component parts of the soil admittedly are not known precisely. This is particularly true of the organic matter.

None of the averages recorded in the tables is weighted for thickness, as the variations in composition are usualy sman, and simpie calculations appear to disclose the relationships as well as those that are more complex.

ANALYTICAL RESULTS

Mechanigal Analyses of the Soles

Mechanical amalyses (table 3) of the members of the Miami family and of the Mami catem that were sampled bring out certain interesting facts regarding the mechanical composition of the soils. It will be noted that the textures of the parent materials of all of the soils except Fox silt loam fand the Eillsstate fine sandy loam are comparable in clay content even though they are not exactly the same. The content of clay in the Hillisdale parent material is not as low as that of the Fox soil. This is bectuse the Fillsdale parent material is a slightly clayey till whereas the parent material of the Fox soil is stratificd gravel and sand in which the content of limestone is quite high. In spite of the very gravelly underlying material of the Fox, the soil profile is strongly developed and is comparable to the other members of the family. The parent material of the Bethel silt loam contains more chay than the Hillsdale and Fox, but it contains considerably less than the parent material of the Miani silt loam, which was sampled only a few miles away. Local differences in textures of glacial till are the rule rather than the exception so that this fact is not surprising.

Sample No.	Horizon	Depth	Gravel	$\begin{gathered} \text { Fine } \\ \text { gravel } \\ 2-1 \mathrm{nim} . \end{gathered}$	$\left.\begin{gathered} \text { Conrse } \\ \text { sand } \\ 1-0.5 \mathrm{~mm} \end{gathered} \right\rvert\,$	$\begin{aligned} & \text { Medium } \\ & \text { sand } \\ & 0.50 .25 \\ & \mathrm{~mm} . \end{aligned}$	$\begin{gathered} \text { Fine sand } \\ 0.25-0.1 \\ \mathrm{~mm} . \end{gathered}$	$\begin{gathered} \text { Very fine } \\ \text { sand } \\ 0.1-0.05 \\ \mathrm{~mm} . \end{gathered}$	$\begin{gathered} \text { Silt. } \\ 0.05-0.002 \\ \mathrm{~mm} . \end{gathered}$	Clay 0.002-0 mm_{r}	$\begin{gathered} \text { Clny } \\ 0.0 n 5-0 \end{gathered}$ mun.	$\begin{aligned} & \text { Clay ratio } \\ & \frac{0.002}{0.006} \times 100 \end{aligned}$	Organic matter from $\mathrm{H}_{3} \mathrm{O}_{2}$	DH3	Iron oxide concretions
		Inches	Percent	Percent	Pcrcent	Percent	Percent	Percent	Percent	Percent.	Pcreent		Percent		Percent
C4060	A	0-2	Pater	Prem 1.1	: 3.7	- 5.2	P-11.7	0.2	50.1	15.9	23.6	67	5.7	6.3	2
C4061	A_{2}	2-5		1.2	3.8	5.7	12, 8	6.7	50.9	15.5	23.0	65	3.3	5.9	2
04062	${ }^{\text {A }}$	5-11		1.3	3.8	5.7	12.7	7.1	51.1	16.4	25.0	66	1.7	5. 5	2
C4063.	B_{1}	11-15		1.7	3.9	5.4	12.3	6.8	45.9	22.7	30.8	74	1.1	5.5	$\begin{aligned} & 2 \\ & 2 \end{aligned}$
C4064	B_{2}	15-30	10	1.9	5.1	6.5	12.5	7.4	25.9	36.9	42.8	86	$\cdot .6$	5.2	2
C4065	B_{3}	$30-36$	<10	3.2	5.9	6.5	13.6	7.4	25.7 37.1	37.4 21.3	12.6 27.6	88	$\stackrel{1}{.3}$	6.4	
C4066.	C_{1}	$30+$	10	4.3	6.7	6.5	13.6	0.9	37.1	21.3	27.6	77	. 3	7.6	

WOOSTER SILT LOAAIS

HILLSDALE FINE SANDY LOAM

C4031.	A_{1}	0-3		1.0	5.3	14.0	27.3	11.5	20.5	7.5	12.5	60	3.4	5.5	
C4032.	A_{2}	3-9	<10	1.4	5.4	13.2	25.9	12.2	30.5	7.5	12.5	60	.4	4. 0	
C4033.	A_{3}	0-13	< 5	2.0	5.4	13.2	29.1	13.1	9.7	7.0	12.5	56	. 3	6.1	
04034	H_{3}	13-25		1.0	4.4	10.8	28.2	10.5	2.19	13.9	15.4	75	.1	5. 0	
C4035.	B_{3}	23-50	<5	1.0	3.7	9, 4	20.7	16.9	23.0	19.0	22.8	\$3	0	5.4	
C4036.	C_{1}	54-72		1.3	4.4	10.8	26.4	18.2	27.9	10.5	143	76	. 1	8.0	

FOK SLLT LOAM

CROSBY SILT LOAM

[^3]- Horizon designations used by the Indiuna Soil Survey; see p. 11.

The B horizons of all of the soils of the Miami family examined are more clayey than the A or C horizons, although the difierences in clay content between the B and C horizons of the Wooster and Hillsdale soils are not as great as those of the Niami and Fox. The most marked textual B horizons are in the Crosby and Bethel soils, which belong to the Planosol group, and in the B_{3} of the Fox soil, which is a true Gray-Brown Podzolic soil. In spite of the fact that the B_{3} horizon of the Fox has an unasually high clay content, the physical properties of this horizon are such that the chay does not interfere seriously with the movement of water except when it is temporarily saturated. In fact, the crops grown on Fox soils are likely to sufter from drought in late summer:
The textural differences between the A and B horions in the Planosols (Crosby and Bethel silt loam) are much more maked and more abupt than in the notmal Gray-Brown Podzolic soils. It will be noted in tho Grosby soil that no tansitional horizon was sampled because of the very abrupt change from a to B ; and the B_{2} horizon has almost twice as much clay as the A. horizon just abowe it. The A_{3} horigon in the Bethel has about half again as much clay as the A_{2}, but the B_{2} horizon immediately bencuth it contains about twice as much chay.

The I_{3} horizon is ustally considered to be a transition between the true B hovizon and the C horizon, although the data of the mechanical analyses do not bear this out entirely. The pH figures for the B3 horizons of the Miami, Fox, Orosby, and Bethol soils are markedly higher than for the B_{2} horizons just above them and in most of these soils the reaction is only slightity acid or neutral. In this sense, certainly, the B_{s} horizon is transitional.

Another feature evident in the Marmi, Fox, Crosby, and Bethe? soils is the tendency for the sands and, in most of the profiles, for the proportion of the gravel to increase sharply in the B_{3} horizon as compared to horizons nbove it. In some instances the change takes phace between other horizons of the subsoil. The usual explanation is that the soil material of the l_{3} horizon is much less weathered than the material above. Whether this exphamation is completoly true to the facts cannot be proved at this time, but it is noticeable that the percentage of silt in upper horizons of the Miami, Wooster, Fox, Croshy, Bethel, and Brookston soils is high and that the percentage of sands, especially of the mediam and coarse sands, is fairly low.

There is some evidence to indicate that a part of the silty and sandy material in the upper parts of many soils in or near tho glachated area was oriminally deposited by the wind. The presence of even a small proportion of fine gravel in the a horizons may be cited as evidence that the material is not loess. This explamation is, however, unreliable. The coarse particles of the Crosby, Bethel, and Brookston soils and, to a lesser extent, of the Miami, Wooster, Fox, and Clyde soiss consist partly of dark-brown concretions of iron and manganese oxides. These undoubtedly formed in place at the same time the soils were developed. It is certain, however, that part of the coarse fraction is composed of quartz and other primary minerals that were undoubtedly a part of the origimal deposit. The
quantities of coarse primary minerals, however, are not more than coud have been carried to the A horizon by burrowing animals.

The last column in table 3 gives rough estimates of the percentage of brown concretions in the sind and fine gravel fractions of all of the soils. A large proportion of these concretions fall in the coarse sand and fine gravel fractions, especially in the light-colored soils.

Bryan (δ) has emphasized the importance of the mixing of upper horizons of soil material through freezing and thawing soon atter the ghacial till and outwash materials were deposited; and he supposes that many of the comser particles could be mixed, by this means, with a superficial coating or layer of loess. Mechanical analyses alone are not sulficient to solve this problem, but the soil scientist shonld bear in mind the possibility that part of the soil materinl might bo the resalt of wind action rather than of simple glacial or alluvial deposition.

The usual explamtion for the hierh perentage of silt in upper horizons of solls of the Griy-Brown Pudzolic rergion is that silt is the product of weathering in sian but where there is as sharp a break between the silt content of the B_{1} and B_{2} horizons as in the profle of Miami silt lom presented herewith, one may well recognize the possibility that some loess may have been deposited following the retreat of the Wisconsin ice. The possibility is even more plausible if one recalls that a fair share of the conser separates are concrelions that have tormed in the soil.

It will be noted that the B_{3} of the Wronster silt loam bas a pH of 4.7 and that the C_{1} has a reaction only 0.1 pII higher. 'The fow PE of the B_{3} and C_{4} horizons needs some explanation. This profile is in marked contrast to the other three members of the Miani family reported here and suggests that the Wooster silt loam may belong in a different family. Furthermore, the A_{2} horizon has the highest percentage of silt of any of the soils sampled. It is possible that the high silt content of the upper parts of the Wooster silt loam may be diue to an accumulation of loess, but it is not less probable that the silt in the Wooster soils is sumplied from disintegrating very fine-guthed sandstones and siltstones, which are so abmdant in tho glacial till.

In most places where the till is deep it contains enough limestone particles to dfervesce with cold dihate hydrochloric acid, but the pereontage of limestone is usually low. In other places it hats been noted that the lime carbonate of Wooster parent materials has often been leached to a depth of trom 6 to perhaps 10 feet; and in places where the till is less than 5 or 6 fect deep no limestone is likely to be found in the till. Under conditions such as these the C horizon of tho soil, according to the terminology of the Division of Soil Sirvey, is the weathered parent material beneath the B horizon, and if this parent material is leached of lime, the $B_{\text {a }}$ horizon will not have a notably higher pH than the hryizon above it, as do the B_{3} horizous of the Miami, Fox, Crosby, and Ieethel soils. It was not practicable to sample the soll to a depth greater than 4 feet, and so it is not known whether a calcareous parent material and a darker-colored B_{3}-like horizon just above it occurs there or not. It is certain, however, that the Wooster silt loam observed in other areas has a dark-colored
horizon beneath the so-called C_{1} horizon and above the slightly calcareous ghacial till, and this dark-colored horizon has a considerably higher pH tham the material above it. It is evident that the system of nomenclature of horizons followed in this text is not entirely satisfactory for soils of this kind. According to the Indiana system (9), the C_{1} horizon of Wooster silt loam would be called a Y borizon.

In all the light-colored soils except the Bethel and Wooster silt loants the quantities of clay nud fine gravel are greaterand the glantities of silt are less in the B_{3} horizons than in horizons above. Morphological evidence indicates that this is caused by the greater weathering in horizons above the B_{3}, and the greater quantity of clay in the B_{3} horjzous is due quite largely to illuviation. Much of the clay in the B_{3} horizons of all the light-colored soils except the Wooster silt loam is in the form of films of colloid on the surfaces of soil aggregates and in root holes and insect and worm burrows. Most of this colloid is dark-colored. Apparently it contains more organic matter than other parts of the soil, although the two parts were not stadied separately or the organic matter in them determined separately. The accumalation of dark-colored colloid in B_{3} horizons is very characteristic of soils developed from calcareous glacial till and outwash.

The clay content of the \mathbf{B} horizons of the light-colored soits seems alnost certainly to be only partly the result of filluviation, although it is eviclent that this process has been a factor in the formation of the B horizons. The portion of the colloid that occurs on the surfaces of structural aggregates appears to be illuvial in origin, but the colloid in the interions of the argregates may be largely the result of hydrolytic weathering of chay-foming minerals in phace. Nikiforof ($\%$) stresses the importance of this process in desert soils. If it is active in the desert, the process probably is even more active in humid regions. No stadies have been made to determine the proportion of clay in the B horizons that can be assigned to each of the causes outlined.

Column 13 of table 3 shows the ratio of the clay less than 2μ size to that less than 5μ. This matio shows that the smather partieles or more colloidal portion of the chay is concentrated in the B horizons and especially so in the B_{3} horizons of most of the soils, where the colloidal films on the surfaces of ageregates are most noticeable. Even in the C_{t} borizons the soil morphology indicates that part of the coltoids are illuyjal and represent extensions of the B_{3} hotizon in the form of colloidal fims in root holes and along joint phanes.

One of the interesting featares of the mechanical analyses of tho Brookston silty chay Joam is tiat horizons 3 and 4 are very considerably higher in clay than lorizons 1,2 , and 5 . This difference is somewhat less evident if the less-than-3 fraction be considered clay, An examination of several other mehanieal analyses of Brookston soils in the Burean fies shows that it is not ancommon to find that the textures of subsoils of Brookston silty chay loam are heavier than
those of the surface soils and the underlying material. Why this is so has not been explained, but it is apparent in the clay ratios that the finer particles of clay have contributed largely to the accumulation in these two layers. It has been assumed by many soil scientists that the approximately neutral reaction and concentration of calcium ion in the Brookston soils would prevent eluviation and ilhuviation from taking place. Numerous analyses of profiles of alkaline, neutral, and acid reactions, both with and without appreciable quantities of calcium carbonate in the zone of illoviation, indicate that a part of the clay, particularly the finest portion, certainly is more abundant in the midportion of the profiles than in other parts. Such analyses may be found in Technical Bulletins 399 (7), 502 (5), $609(G)$, and elsewhere. The mechanical analysis does not settle the question. It is quite possible, however, that the greater part of the difference in clay content in different horizons may be dae to differences in the rate of hydrolytic weathering of clay-forming minerals in this part of the profile.

An apparent concentration of clay between 8 and 26 inches in the Clyde silty chay profile seems to correspond somewhat to the concentration of clay in the subsoil of Brookston silty clay loam, but it is not marked and disappears entirely if a correction is made for organic matter.

Chemigal Analyses of the Solls

Table 4 gives the chemical analyses of all the soil profiles. These analyses make it apparent that there is considerable variation in the character of the parent materials of the different soils.

The high silica content of the parent materials of Wooster silt loam and the fillsdale fine sundy lom is a reflection of the low proportion of calcium and magnesium carbonates in the ghacial tills of these two soils. If allowance is made for the difference in catbonate content, the silica content of all of the soils would be at least closely comparable even thongh it were not exactly the same. 'The high silica content of all A_{z} and A_{3} horizons in the light-colored soils is an indication of the podzolization that has taken place in them.
It is of some interest to note that there is some concentration of iron in the sulbsoils of all of the soils studied, inclading the imperfectly drained Planosols (Crosby and Bethel) and the poorly drained darkcolored Half-Bog (Brookston silty chay lomm) and Wiesenböden (Clyde silty clay). This concentration of iron in the subsoils of the light-colored soils is what is usually expected in podzolic profiles, but it has not been mentioned frequently in connection with Eati-Bog soils. Studies to sullicient depth in the profiles of Half-Bug and other
 rust stains and even of iron concretions are a common phenomenon in these soils, so that it is not surprising that concentrations of iron were found in the profiles of the Brookston and Clyde soils.

Table 4.-Chemical analyses of sone soils of the Miami family and of the Miami catena.
MIAMI SILT LOAMI

CROSBY SILT LOAM:

C4037	Λ_{1}	0-2	69.96	3.09	8.57	0.62	1.34	1.91°	0.94	0.65	0.11	0.13	0.15	12.39	100. 18	10.42	0.30	0.47
C4038.	A_{2}	2-11	77.93	3.21	9.64	. 63	, 68	2.11	1.06	. 78	. 11	. 07	. 05	3.98	100. 25	2. 33	. 04	.14
C4039.	Br_{2}	11-1S	72. 12	4.95	13.34	1.11	$\bigcirc 63$	2. 16	. 75	. 77	. 06	. 02	. 05.	4.18	100. 14	. 84	.17	. 08
O4040.	B_{3}	15-36	6S. 79	5. 38	14.35	1.36	1.10	2.48	. 99	. 64	. 10	.11	. 03	4.16	99.99	. 69	. 16	. 07
C401.	C_{1}	36-44	62.56	5. 44	12.97	2.90	4.23	2.58	. 91	. 62	. 10	. 12	. 03	7.64	100. 10	. 23	14.20	. 00
C4042	C_{2}	$44-60+$	46.9 .1	3. 95	9.36	5.02	14.06	2.06	.70	.46	. 08	. 09	. 04	17.07	90.83	. 80	114.95	. 04

BETHEL SILT LOAM

C 4054	A_{1}	0-2	75. 60	3.18	8.39	0.50	0.60	1.35	0.64	0.61	0.08	0.10	0.10	8.44	99.68	6.21	0.22	0.30
C4055.	A_{2}	2-8	80.50	2. 93	8. 61	48	. 59	1.24	$\bigcirc .54$. 65	. 10	. 08	. 05	3.88	99.68	2.14	. 04	. 12
C4056.	131	S-14	78.22	3.59	10.31	. 62	.53	1. 45	. 69	. 05	.12	. 06	. 04	3.11	100.09	. 89	. 04	. 05
$\mathrm{C}^{\text {C407 }}$	B_{2}	14-20	69 \% 50	6.00	14.17	1.27	. 82	1. 66	. 69	. 73	.17	. 05	. 03	4.58	99.97	. 81	.18	. 07
C4058.	B_{3}	$20-30$	60. 30	5. 79	14. 83	1. 49	1.20	1. 82	. 81	. 52	. 11	. 07	. 02	4.62	100. 58	. 67	. 21	. 06
C4059	C_{1}	30-48+	41.15	3.02	8.80	8.01	15.70	1. 53	. 41	. 36	. 07	. 09	. 06	21. 62	100.82	. 79	19. 53	. 03

BROOKSTON SLET LOAM

Analvses made by Glen Tigington, except No. C4060.
2 Combustion method (CO2×0.471)
Determined by A. E. Yelmgren.
Analyses made by G. J. Hough. Wooster soils only tentatirels listed in the Miami family.

- Horizon designation used by the Indiana Soil Survey; see p. II.

Because the iron content of the surface horizons of most of the soils is not much different from the iron content of the parent material, it appears still more probable that lateral migration of the iron from higher areas rather than vertical transfer in the profile has caused at least a part of its accumulation in the subsoils. Marbut * gives this explanation for the formation of Bog iron. Much of this iron probably came from adjacent areas of Crosby, Bethel, and Miami soils. Very noticeable narrow bands of very light-colored leached soils bordering areas of Brookston and Clyde soils are so narrow that they cannot be mapped separately, but it is quite possible that they have furnished some of the iron that is now in the subsoils of the Brookston silty clay loam and the Clyde silty clay.
In all of the profiles there is a noticeably higher percentage of alumina in the subsoil as compared to the soil above. It is more marked in the light-colored soils. especially in the Mami, Crosby, and Bethel profles. It is less marked in the dark-colored Brookston and Clyde soils. A comparison of this table with table 1 shows that there is a rather close correspondence between the alumina content and the percentage of clay in each horizon, but the relationship is far from uniform. Of course, this relationship is to be expected, as a good share of the alumina in well-developed soils is in the form of clay.

Special attention is directed to the percentages of carbon dioxide recorded in table 4. These percentages indicate that appreciable guantities of carbonates persist in the leached portion of all but the first four horizons of the Clyde profile. Although the quantities of carbon dioxide recorded offen approach the limitation of the method of determination, it is believed that they are nevertheless real. This is indicated by the effervescence resulting from the addition of dilute hydrochloric acid to the sample previously boiled in distilled water.

It is probable that the bases liberated by decaying organic matter permit the retention of a part, or possibly all, of the carbonates in the surface horizon in spite of their acidity. It is not probable in the deeper and more acid parts of the soils. Microscopic observation of the evolution of carbon dioxide from these horizons indicated that most, if not all, of the effervescence originated from a few particles and that the carbonates were not generally disseminated throughout the sample. In a few samples the microscopically determinable plysical properties clearly indicated that they were fragments of limestone or dolomite. In most of the samples the fragments were too deeply stained by iron oxide or other coloring matter to permit positive identification. In the preliminary test outlined in the previous paragraph it was also noted that the evolution of bubbles was apparently confined to a few particles and that the carbon dioxide was not generally fiberated from the suspension of the soil. In view of the quantities of dolomite in the Wisconsin drift and the positive identification of limestone or dolomitic limestone in the samples tested, it appears certain that the carbon dioxide of the more acid parts of the profiles is largely, if not altogether, derived from small fragments of limestone or dolomite.
A relatively high percentage of magnesium oxide and calcium oxide occurs in the C horizons of all of the soils except Wooster silt loam, and it is quite Jikely that deeper parts of the C horizon of TVooster silt

[^4]loam would also show a similar abundance of magnesium and calcium if samples were taken to sufficient depth to reach the layer of carbonates. There is also a concentration of calcium of less importance in the A_{1} horizons of all of the light-colored soils and of the H_{1} horizons of the dark-colored Broolston and Clyde soils. This is undoubtedly a reflection of the ability of forest trees to store calcium in their leaves, which is incorporated in these horizons after the leaves fall.

The large quantity of calcium in the A_{1} horizon of the Wooster soil indicates that the quantities supplied by the organic matter is about the same as in other soils and surgests that it may be obtained from a readily available supply. This suggests that its source, in part, is from limestone fragments in the glacial till below the sampled depth.

Attention is called to the slight concentration of manganese oxide in the B_{3} horizons of che Fox silt loam and in the fourth or M horizon of the Brookston silty chay loam. Qualitative tests on many samples of soils having dark-brown B_{3} horizons indicate the presence of manganese in farger amounts than in horizons immediately above and below. In many of these same soils the B_{i} horizons also contain more organic matter than horizons immediately above and below.

The concentration of phosphoras is greatest in the A horizons of most of the soils and in several of them there is also a concentration in the B_{3} horizon. The concentration of this element in the A horizon seems to be caused by the increase in organic matter undoubtedly resulting from residual effect of decaying leaves and other organic material that probably is relatively high in phosphoras. One of the striking things about the phosphorus colum in table 4 is that the A and B horizons of the Wooster silt loam contain more phosphorus than corresponding horizons of any of the other lightcolored soils. This is one of the many featares that tends to set off Wooster silt loam from the other members of the Miami family and that suggests that it belongs in another famity. The high phosphorus content of the Clyde silty clay soil is probably caused by additions from the dranage water from surrounding areas.

The organic matter is fairly high in the upper four horizons of the Miami profle and in the sixth horizon as well. Even the B_{2} and C horizons have close to 1 percent. Organic matter is far more concentrated in the A_{1} horizon of the Wooster silt loam and diminishes more rapdly in the lower horizons than in the Mami soils. However, only the upper 1 -inch thick part of the A_{2} horizon was sampled, and the lower part of this layer contains less organic matter and is lighter in color than the part sampled. The Hillsdale profile resembles the Wooster soil in distribution of organic matter, and the Fox soil is more like the Miani soil. The imperfectly dramed Crosby and Bethel silt loms of the Plamasol group show very manked differences in organic matter content between the A and B horizons. The relatively high organic matter content in the Brookston and Clyde soils extends to greater depth than in the other soils, and the total amount is greater than in any of the other soils. This is especially true of the Clyde silty chay in which the dark-colored layer is considerably thicker than in the Brookston silty clay lom.
The content of carbon dioxide apparently is largely proportional to the content of magnesium and calciun oxides with which it is com-
bined in the soils in the form of carbonates；but certain amounts of the calcium and magnesium oxides are in the form of silicates．

The surface horizons are higher in calcim，phosphorus，and sulfur than in other subdivisions of the solums．This is doubtless a reflec－ tion of the association of these elements with the organic matter． The association is more noticeable in the Wooster，Fox，and Crosby for calcium and in the Miami，Wooster，and Clyde for phosphorus and sulfur．
The data also indicate that the vegetation carries much less mag－ nesium than calcium to the surface of the soils．The canse is indiented by the low content of magnesium as compared to calcium in plant ash（28）．For this reason the circulation of magnesium in the soil profile is not as great as calcium．although abundant supplies of both elements occur in the deeper pats of all of the soils．

Although the relationships of rarious elements to the organic matter in the deeper parts of the profiles are somewhy obscure，the increase in manganese and phosphorus with organic matter in the $\mathrm{B}_{\text {a }}$ horizon of the Mitmi and Fox is notable．This is not so in the other soils． and it is probible that the accumulation of these two elements in the deeper parts is cansed as much by the proximity to carbonates as by any other fastor．

Because of the wide variations in organic matter and carbonates the variation of mineral components are wider with respect to each other than they would be if the data were recalculated in an organic matter and calcium－carbonate－free basis．Relationships are not lost in a comparison of the constituents that are evaluated to a few or fractional percentages，but they are obscured or lost if the percentagrs are great or if material quantities of organic matter and car－ bonates are present．Therefore in order to clarify the retationships of the silica．iron oxide，alumina，nud combined water，the tables have been recalculated and presemed in table is．An mavoidable error is introdured in these calentations as an merertain anount of mat－ nesitm oceurs with the eaterim in the dolonitic limestone in the soils． For the most part，however，the error is small．
 Miami ratera
Mhamishle boma

Samble ${ }^{\text {Sos }}$	Ilarizon	Dequit	SiO_{2}	$\mathrm{FC}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{ \pm}$	ambined water：
C4060．	S1	Inches	Pereent 0.85	Peremp 3． 60		$\begin{aligned} & \text { Ferecut } \\ & 2 \geq 1 \end{aligned}$
C4tal	At	－$-\frac{1}{1}$	A1 $\%$ ）	3． 9.4	0.53	1.61
C．4092	At	5－11	60． 15	3，39	4． T	1． 70
Cstaz	13	｜1－15		＋1．13	11 15	2.11
C． 1054	132	15－341	7n，fla	fi． 30	14.36	3.27
（．1015	13：		Tin 1 ，	6.32	14． 24	3．36
Cretis	Cl	$36+$		6.14	13．解	2.34
Pronle average			万6． 0 ，	1． 95	11．65	$\stackrel{3}{ } 32$
	ज゙	畐隹 51	1．6． S_{1}			
Cunci	$\Delta 1$	$\mathrm{B}+\mathrm{I}$	27	3.97	50，Cl	1． 53
Cateri．	A：	： $1-12$	7×1	3． 62	1． 30	1． 72
F4027．	331	1．1．60	\＃－1．${ }^{\text {St }}$	4.89	11． 65	2．43
（4）42s．	\because	20120	Tu． 4	tis ${ }^{\text {s }}$	13，${ }^{15}$	3.15
C－ 13	19：	3×2	71． 50	6． 0 ＋1	11． 43	－
C4430．	（＇）	4 N	73－65	0.14	1）． 81	$\underline{2}, 46$
I＇rofle ntorate		－－－－－－	73.4	6， 2 ！	11， 15	2.34

See fontmotes at end of tathe．

Tabser 5.-Inorganic composition' of some soils of the sfiam family and of the Hiami catena-Continuell
hillsdade fine sandy loam

Croshy silat toant

BETAEL SLIT LOAM

C4051	A_{1}	0-2	ED. $\overline{7}$	3.39	8. 15	2.27
C 4035	A,	- ${ }^{-1}$	82. 40	3.10	8.30	1. 24
C+665	A_{1}	8-14	70.41	3.43	Eth. 11	2.20
C-105:	BI_{2}	$14+30$	70.65	6.188	14.35	3. ${ }^{1}$
Cr415	13)	2x-30	7at, It	5.881	14.60	3.78
C.1059	('1	$30-485$	T1. 414	5. $\mathfrak{H}^{\text {d }}$	15.31	3.78 2.35
			70.20	4. $62!$	12. 12	2.61

MROOKSTON SILT TOAM

ChYDE SHATE Clay

[^5]It. will be observed from this restatement that the silica content of the zonal soils is higher in the A and C horizons than in the B_{2} and B_{3} horizons, which reflects the higher clay content of the latter. The iron and silica are apparently not as closely related to the clay as alumina. Both iron and aluminum have been eluviated with the clay, but the uncertainty as to how much iron is in the more or less maltered minerals of the soils makes it still more uncertain how much of each has accumulated in the C horizon without indicating a corresponding increase in the clay.

Taken as a whole, it is apparent that the parent drift exerts a profound effect on the composition of this group of soils. The parent drift has not been greatly thtered during soil formation except in the solution of the carbonates. Mast of the differences in composition are caused by the distribution of the clay in their varions parts. Apparently, the combined water is more elosely associated with the clay minerats than with the primary or other secondary minerals containing ahuminum and iron.

Chemical Analyses of the Colloids

The complete chemical analyses of the colloids extancted from the soils are presented in table 6 . Extraction of the colloids excludes variations in composition cansed by the presence of quatz and other primary minerals, and greater uniformity of composition may be expected than in the analyses of whole soils. Most of the diferences shown in the colloids are likely to be caused by variations in parent material, natural drainage, and vegetation of the soils.

It is apparent in table 6 that the process of colloid extraction gives a product essentially free from carbonates in soils that do not contain much, and comparatively small amounts if the quantities in the soil are high. All of the colloids extracted from the parent material contain carbonates ranging from that equivalent to traces of carbon diox-ide- 0.06 percent in the Wooster and Hillsdate profites to 1.93 percent in the Crosby profiles.

Orgamic matter shows wide variations both between and within the profiles. In the surface horizon the organic content of the colloids ranges from 8.54 percent in the Clyde silty clay to 28.61 percent in the Wooster sitt loam. but it should be borme in mind that the $\mathrm{A}_{\text {, }}$ horizon of the Wonster soil was sampled to a depth of only 1 inch where the organic matter was most concentrated and the Ciyle surhace soil was sampled to a depth of 8 inches. The quantities of organic matter in the surface layer of a soil depend so much on the density and kind of vegetation as well as on the conditions favoring orgranic matter accumatlation and its decomposition, that the percentares in the coiloid may range witely from place to place and often within very short distances on the same soil. From the surface horizon downward the quantities of organic matter in the colloids become rapidly less in the solum.

Table 6.-Chemical analyses of the colloids of the Miami family and of the Miami catena MLAMI SILT LOAM COLLOID

See foutnotes at end of table.

Table 6.-Chemical analyses of the colloids of the Miami famity and of the Miami catena-Continued
CROSBY SILT TOAM COLLOID

Sample No.	Mori$20 n$	Depth	SiO_{2}	$\mathrm{Fc}_{2} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{3}$	Mg O	CaO	$\mathrm{K}_{2} \mathrm{O}$	Na O	TiO_{2}	MnO	$\mathrm{P}_{2} \mathrm{O}_{3}$	SO_{3}	Ignition loss	Total	Organie matter	$\mathrm{CO}_{2}{ }^{2}$	N 3
		Inches	Percent	Parcent	Pcrecut	Percent	Percent	Percent	Pericmt	Percent	Per cond	Percent	Percemt	Percent	Percent	Percent	Percent	Porcent
C4037	As	0-2	41.95	7.30	20.83	1.07	-1.02	- 212	0.21	0.48	0.29	0. 5.4	0.11	23.04	100.73	14.02	0	1. 13
C4038	A_{2}	$9-11$	46.55	S. 15	23.07	2.31	1.33	1.75	. 20	. 68	. 23.	- 32	. 10	15. 57	100.55 100.06	5.07 2.08 1	0	. 54
C4038	3:	11-18	47.80	11.15	${ }^{23} 3.76$	2,31 2.60	1, 11	1. 259	. 16	. 5.52	${ }^{-09}$.14	. 08	11.6. $\frac{1}{3}$	100.06 100.10	2.08 1.10	0	. 15
${ }_{\mathrm{C}}^{\mathrm{C}} 40 \mathrm{HO}$	${ }^{3}$	15-30.	47.81	11.95 12.00	33.91 23.55	2.60	1.28	3. 39	. 19	. 58	.12	. 15	-12	9.09	100.55	. 0.04	. 23	.14
C 4042	Cl_{2}	$4+60+$	45.20	11.09	23. 27	3.00	2.84	3. SS	.33	. 53	. 10	. 14	. 26	9.42	100.00	. 62	1.95	. 14
HEMMEL SILT LOAM COLLOID																		
C4034	A)	$0-2$	43. 65	6.23	20.35	1.37	1.00	1.31		0.61	0.12	0.36	0.31	24.43	99.87	16. 40	0	1.32
C4055	A_{7}	2-5	47.15	9. 11	21.20	1.73	1.00	1.24	.05	. 69	. 11	. 26	. 12	17.35	100. 01	8.75	0	. 60
C4050	A	S-14	48, 55	9.41	24.14	1.09	1.02	1.02	. 04	, 63	. 09	. 10	. 11	12.40	99. 82	3.31	0	. 27
C405\%	B_{2}	14-20	48. 60	10.45	24.97	2.45	1.11	1.10	. 00	+ $\mathrm{i3}$. 07	. 116	. 04	10.35	99.60	1.49	0	. 16
C4058	B_{3}	2030	48.41	11.34	23.41	2,79	1.31	1.48	.00	. 83	. 06	. 12	. 06	10,30	99.80	1. 21	0	.15
C4059	C_{1}	$30-15+$	40.11	11.01	23.02	3.24	2.42	3.30	. 11	. 52	. 06	. 10	. 04	0.76	90.69	. 90	1.45	. 16
BROOKSTON SILTY CLAY LOAM COLLOLD																		
C 4043	${ }^{5} \mathrm{Ht}$	0-6	42. 89	9. 06	21.33	2.35	1.70	2.62	0.24	0.47	0.09	0.45	0.30	19.10	100. 66	9.49	0	0.78
C4044	${ }^{1} \mathrm{H}_{2}$	6-20	46,50	10.42	22. 29	2.15	1. 50	2.37	. 15	. 51	.07	.25	. 15	13.31	1018	4.75	0	. 32
C4045	${ }^{3} \mathrm{H}{ }_{3}$	20-3.4	48,35	12.90	21. 00	2.60	1. 99	2.49	. 11	. 51	. 07	. 18	. 15	10.56	100.36	2.15	0	. 20
C 4040	${ }^{5} \mathrm{M}$	3:-14	46.60	12.68	23.52	2.84	. 93	4.17	. 18	$\cdot 49$.10	, 19	. 12		1018	1.15	0	.14
C4047.	${ }^{5} \mathrm{U}$	44-85	40.21	11.95	23.02	2.96	1.09	4.56	24	.45	. 10	.21	.13	S. 33	100.48	1.12	. 21	. 13
CLYDE SHLTX CLAX COLLOID																		
C4067.	S_{1}	0-8	45. 20	6. 33	23.32	2. 3.4	1. 58	2.47	0.06	0.58	0.04	0.37	0, 26	17.18	99.33	8.54	0	0.66
C4068.	${ }^{111} 2$	8-20	47.70	7.46	23.60	2. 51	1. 55	9.52	. 05	. 57	. 04	. 24	.13	13.34	10n. 07	4.47	0	. 35
C 1060	$\stackrel{41}{4}$	20-26	48.20	9.40	6.4. 11	2.66	1. 25	80	. 03	. 60	.01	- 16	. 13	10.56	99, 77	1.93	0	. 23
C4070	${ }^{5} \mathrm{M}$	26-3s	18. 12	9.80	24. 61	3.62	1.29	961	. 06	. 64	- 04	+15	. 09	1016	104. 10	1.58		. 15
C407.	5 M	35-660	44.53	14.84	23. 20	2.85	. 33	4.19	. 07	. 63	. 06	.33	. 13	8.91	109.47	1. 25	. 02	. 15
C4072.	${ }^{5} \mathrm{U}$	66-75	45.45	12.37	22.71	2.80	1.48	4.24	. 14	. 57	. 08	. 26	. 09	0.33	90. 66	1. 65	. 54	. 16

[^6]-Wooster soils only tentatively listed in the Minmi famity.
Horizon designation used by the ladiana Soll survey; see p. 11.

The quantities of sulfur and phosphorus, like those of the organic matter, are highest in the colloids of the surface horizon in each soil. Althongh these three constituents are not strictly proportional there or in other parts of the profile, the relationship appears sufficiently close to indicate that a large part of the phosphorus and sulfur is a constituent part of the organic matter, as shown by Dickman and De Turk (19). They found that 15 to 67 pereent of the phosphorus of the soil is combined in the organic matter: The ampysis in table 6 indicates that a large part of both suffur and phosphous is identified with the organic matter of the colloids. These data also show that a fairly large part ot the calcimm is associated with the organic matter. This is more evideat in the surface horizons than in other pares of the profiles. The acrmmation of calcitm is not proportional to the organic matier in this horizon, but it appeats to be related somewhat to the state of decomposition. and the kind of vegetation that furnishes the supply. The increate of this element in the colloid of the first horizons is not related to the ramatities in the soil but rather to the moisture conditions. It may be noted that the proportion of calcium in the colloids not identidied as a carbonate is rewter in the first horizon of the well-dimined Gray-Brown Podzolic profiles thath in those not so perlectly dramed.

In the lowest horizons of the Hillstale, Fox, and Clyde soils the organic matter preent in the colloids is sreater than in the layers just above. This may be more fortuitous than real. but it shond be noted (see table 3) that the Jowest horjzon of each of these three soils has a pH of S .0 or more. It is possible that some of this organie matter: has fallen through cuacks from the B. horizon, bat it does not sem likely that this is important because subsoils in this region seldom dry sut sufficiently to permit much downward movement by mechanical action.

The profile relationships of the chief constituents of the colloids as well as relationships between profiles are so distorted by organic matter and carbomates, shown in table 6 , that vecalentations for thes were made. The resilts are presonted in table 7 . To these the eorrected combined water of the colloids is added, but minor constituents have not been caladated. As corrected. the sums of the means of the four constituents in the difterent profiles range trom 91.54 pereent for the Brookston silty clay loam to 93.5 perent for the Bethel silt loam. As these constituents represent so large a furtion of the total colloids. a detailed study shonld furnish much information concerning the chemichl chamater of the mineral colloid complex.
Table T.-Inorgenio composilion ${ }^{1}$ of the colloits of some soils of the Mami ftumily and of the lifthatalena
manar s(luT LOAMI COLthoil)

Sample No.	Ilorizon	Dejets	SIO_{2}	$\mathrm{FeS}_{4} \mathrm{O}_{3}$	$\mathrm{Al}_{2} \mathrm{O}_{2}$	Combined Water
O4060	A_{1}	Inshes	irercemt $4 \overline{4} .11$	Percent 10. 03	Percent 2.1. 80	Jercemt
C.4061.	A_{1}	2-a	47.10	0.97	25.32	9.07 0.80
C40, 42	A3	6-11	46.25	10.80	25. 20	10. 10
C.4053.	131	11-1.5	48.12	11.30	25.41	(1-82
Catist	H_{2}	16.30	40. 10	12.36	34.616	59. 141
C4015.	Br_{1}	$30-30$	15. 73	12.10	24.80	0.38
Catise.	C.1	36	15.90	12.45	24.29	8.05
['rofle avarigar.	. . .		-14, 31	$1 \mathrm{i} .31^{\circ}$	20, 4	0.50

See footrotes at ent of table.

Table 7.-Inorganie somposition ${ }^{2}$ of the colloids of some soild of the Miami family and of the Miamiatcua-Continued

WOOSTER SHIT LOAM OOELOID =

Sample No.	Morizon	Depth	SIO_{2}	$\mathrm{Fe}_{2} \mathrm{O} 3$	$\mathrm{Al}_{2} \mathrm{O}$	Comblned water
O4025.		Inches	Perecat	Percent 10.46	Pryent 23.42	I'ercent 10.68
Cfu2m	A_{1}	3-12	${ }_{4}^{4.20}$	12.61	20.25	${ }_{9}^{10.66}$
C4027.	B:	14.20	+1.03	13. 39	26.40	9. 58
C-4029	3_{2}	20-30	4.4.	13.70	25.73	0.23
C.tom	${ }^{13}$	3 $32-39$	4.80	13.38	25.79	8.41
C4030	C_{1}	33-48	43. 14.1	14.1519	25. 90	8.98
Profle averane			H4, 15	13.11	26.6	9.43
C4033.	A_{1}	0-3	H13. 12	16.23	27. 10	0.85
$\begin{gathered} \mathrm{C} 032 \\ \mathrm{C} 033 \end{gathered}$	A	8-9	44.4	11. ${ }^{\text {a }}$	27.39	10. 3.9
C 4034	B_{2}	$13-28$	H. 14	13. 31	4i. fi 1	O. 16
C4035	13_{1}	[15 5	H. 19	12.61	24. 26	8.95
04036	C	51.2	4.1. 3.2	13. $1 \mathrm{mi}^{\text {a }}$	3, 10	9.2
Profle nverug			14.12	12. $\mathrm{s}_{\text {c }}$.	25.63	0.42

POX SHT toAM COHEOL

Ofis.	A_{1}	6-2	dic. 051	9.4.3.	2. 69	9.15
$\mathrm{Ct019}$	A_{2}	2-10	17.201	16.11 ;	32.00	9. 59
Cf030	A_{1}	10.15	46, 193	11.20	41, 71	10.01
C40.51	H_{2}	12.32	46. 95	11.91	\%r.05	9. $\ddagger 3$
Ctos?	B_{1}	32.28	46.65	11. 15 :		0.12
Of03]	C_{1}	3580	46.10	1200 !	23.63	8.8
Proble averuse			46. 31	11.93	9 g .72	0.33

C4098	A_{2}	2.11	49.5	8.1	21. 21.	10.11
C4033	B_{2}	1118	15.30	11.3s	21. 30	9. 78
C4tro	13_{3}	1534;	4 A 3	120.4	21. 111	8. 7
C4041	Cl_{1}		47.10	12.17	2415	8.01
Cidut	Cl_{3}	H63:	47, (t)	1.67	2150	7, 22

- Cl 枵	A_{1}	$0 \cdot 2$	52. 23	7.45	21.36	0.60
C40 ${ }^{\text {a }}$	N_{2}	9.4	51. 70	0.15	23, 29	9.12
Csusis	Al_{1}	S. H -	543.30	9.75	25. 35	0.40
(40153.	H_{2}	1-1 21	40.32	3if, fis	21. 72	0.51
C405s.	$3{ }^{3}$	21) 314	49.62	11.18	9370;	9. ${ }^{\text {2 }}$
CW059.	C:	313-45+:	45.10	il. is	21.18)	T. 73
Pronle nverate		---	040.05	10.12	9.20 :	9. 1.4

C40, 3	311:	$0-13$	97. 40	10.01	23, 57	10.81
C064	${ }^{3} \mathrm{Hf}$		45.31	10.9.5	23.39	S.th
C. 19.5	${ }^{3} 19$	263-34	4t. 16	13. 25	21. 45	8.45
Cf0ns	${ }^{3} 11$	34 i4	47.15	12 Sa	23 sin	7. $\%$
Ctom	5 d	4485	4085	12.15	21,3!	T. 11
Prohle averam			47.92	11.3s	23. 21	S. 60

C40¢7	: 11	0-S	49. to	603	25.51	9.4
cuns	${ }^{3} \mathrm{H}_{2}$	$8: 9$	49.92	7.80	25.18	9.24
Ctatis	${ }^{1} \mathrm{Hf}$	29.26	13. 15	0.51	24. (i)	8. 51
C:4070	${ }^{2} \mathrm{Mr}_{4}$	2338	45. 50	9. 0_{6}	2500	8.72
C407	$\cdot \mathrm{SH}_{1}$		1.5. 1.4	35.03	23. K^{2}	7. 70
01073	${ }^{3} \mathrm{U}$		46.80)	12. $\mathbf{a l}^{4}$	3. 40	7.10
			-15. 29	10.3a	24.51	8.56

[^7]Examination of the detailed data of table 7 reveals that there is considerable variation of the four constituents, especiatly of the iron oxide. The horizon averages for silica range trom 44.18 percent for the Wooster to 50.09 percent for the Bethel. The iron oxide averages range from 10.12 for Bethel to 13.11 for the Wooster. In every profile, except those of Bethel, the iron content is less in the two uppermost horizons than in any horizons below. The almmina averages range from 23.20 for the Brookston to 25.96 for the Hillsdale. The combined water averages range from 8.56 in the Clyde to 9.50 in the Mani. These tuenges are not weighted for thickness of horizon as the percentages of each constituent in the varions profiles do not vary widely.

It is further noted that on the aserage the colloids of the Miami, Wooster, Hillisfale, and Fox soils, shown in table 7 , are slighty lower in silica and higher in iron oxide, alumina, and combined water than those of the Crowly. Bethel. Brookston, and Clyde soils. The former are well-draned Gray-Brown Podzolice soils and the latter are the imperfectly dmined Planosols and the poorly deaned Half-Bog soits and Wiesenböden. The relative proportion of these four constituents in the colloids in the two groups is slight. This suggests that the skeletal framework of the colloids of which the. form so latge a part has not appreciably altered by their various local enviromments.

Within the profiles silica and alumina, for the most part, decrease with depth, to eompensate approximately for a corresponding increase in iron oxide. In the Wooster, Hilledale, and Fox soils the rabge of silica is not as great, and no very definite profile trend is noted. Alumina in these three soils and in the Clyde silty clay shows wider variations than in other profiles, but it is obvions that proportionate quantities of silica and alumina have not been ehtwated with the clay (table 1). A yreater response to fractionation and elaviation is shown by iron. but it is apparently as independent of the clay as silica and alumina. For the most part, greater quantilies of iron oceur in the B horizons of the well-drained soils and in some part of the subsoils of the prorly dmined soils, but in the Miami. Wouster, and Fox soil colloids latger quantities are fomed in the C than in any other part of the profies. The combined water content of the eolloids of the Miami, Wonster. Hillsclale and Fux soils (table 7) shows a tendeney to dectense downward but less definitely so than does that of the colloids of the other soils shown. The averages of the combined water of the imperfectly and poorly thained soils are somewhat higher than those of the well-drained soils. The changes in the profiles apparenty caused by differences in local drainage will be teated in the gencral discussion (see p. 4.5).

Organic Mitter

As the organie mater has played a very important part in the development of the soils of the Miani family and of the Miami catena, it is desirable to bring together in a separate section the discussion of certain profile relationships concerning $i t$. The perentages of oupanic matter recorded in tables 3,4 , and 6 indicate the usual vertical decrease in each profile. The ghamtities recorded as 0.0 by the hydrogen peroxide method, in table 3, indicate the limitations of the method for determining certain kinds of soil organic matter. A comparison of the quantities recorded in table 4 indicates that the organic matter in the lower
horizons is not amenable to determination by the hydrogen-peroxide method. It also suggests that a certain amount of carbonzation of the organic matter occurs in the deeper, wetter, and less aerated parts of the soils. This is indicated by the greatly enhanced percentages obtained by the combustion method for those samples. On the contrary, the hydrogen-peroxide method (table 3) indicates greater quantities of organic matter in the surface horizons of the Bethel. Brookston, and Clyde soils than the combustion method (table 4). This suggests that the carbon content of the organic matter is low in these samples, as the percentages found by the lyydrogen-peroxide method are obtained by the weight lost and percentages found by the combustion method by multiplying the percentage of carbon dioxide obtained by a tactor. It is obvious that close concordance of data obtained by the two methods camnot be expected.

If appreciable carlonization occurs or if the carbon content of the organic matter is low, it is obvious that the determination of organic matter by the combustion method is in error by the variation in its earbon content from 58 percent. In the calculation of organic matter in the samples determined by the combustion method it is assumed that the organic matter contains 58 percent carbon, although it is recognized that it may vary from this percentage.

Other variations in the organic matter that do not involve two methods of determination may be noted in tables 4 and 6 . In most of the samples the organic matter of the soils is lower than in the colloids. In a few it is not. The A_{1}, horizon of the Wooster, the C_{2} horizon of the Crosby, the U horizon of the Brookston, and the first three horizons of the Clyde apparently have more organic matter in the soil than in the colloid. It is not known if organic matter of the colloids of these samples has a lower carbon content than the organic matter of the soil, but it is reasonable to suspect that it has. This is more probable of the three black samples of the swampy Clyde soil. It appears certain that the carbon content of the organic matter of the soils and of the colloids is not identical. This may be eansed by the mamer of decomposition under various dainage conditions. Evidence of other differences in the composition of the organic matter may be noted in the carbon-nitrogen ratios.

The percentages of organic matter and nitrogen in the soils are given in table 4 and those of the colloids in table 6. From these data the carbon-nitrogen ratios of both soil and colloid have been calculated and placed in parallel columns in table 8.

[^8]| Sample No. | Horizon | Depti | CNA retio Of- | | Part of orgunic matter apperinis la colloda! fraction? |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | | | Soll | Collold | |
| | | Inchet | | | Percent |
| C4060.... | λ_{1} Λ_{1} | 0-2 | 12.18 16.0 | 0.9 | 30 37 |
| Q40 $0^{2} 2$ | As | 6-11 | 10.3 | 6.5 | 48 |
| C4003 | JH_{3} | 31-15 | 9.6 | 6.7 | 61 |
| C4064 | B_{2} | 15-389 | 11.5 | 7.0 | 81 |
| C4185 | Hz_{3} | 30-315 | 0.2 | 6. 4 | 74 |
| C4006... | C1 | $36+$ | 10.1 | 7.3 | 29 |

[^9]Tambe 8．－Garbon＇－nitrogen retios of some solls and colloids of the Jiami family and of the Miami catena and port of the noganic matler appearing in the colloid fraction－－Continued

Sumple バっ．	Morizon	Deputh	C／N ratio of－		Part of or－ ganid thater at levirng in fratilon ${ }^{2}$
			Soi］	Colloid	
C．4925		Inchert	，		Pertent
CH030	A1	0－t	15.9	S． 2	5
（－112\％	H_{4}	1.4	12．4	4.0	81
Culdex	H：	21］	¢ 6	\％． 4	81
Cuty	5	3： 35	－ir	4.1	71
C．1030．．	C．1	勆44	7.4	3.15	35

HILSHADE FINE SANDY LOADM

chosuy sifit mond

${ }^{2} 1037$	A	17－2	12.9	7.7	23
（413S	A_{2}	2.11	9.7	6.6	40
CNa39	H_{2}	If－14	6．1	3.9	87
C．40．16	H_{1}	14．3if	5.7	1.3	57
C41311	$\stackrel{4}{4}$	$33_{5} \cdot 11$	2.7	3.9	－112
CJuiz	C	11． $12+1$	11，$\frac{1}{1}$	51.15	$\begin{array}{r}10 \\ \\ \hline\end{array}$

（1れ）	A_{1}	（1－2	22，0		
	A1	2－	15，${ }^{2}$	7.2 8.51	14 3.5
（＇ad，in ．	A1	\％ 1.1	lta 3 ！	\％i．	74
（41057	H_{2}	1401	f． ¢ $_{\text {\％}}$ ！	i． 1 ¢	3
（ 210 T	H_{3}		（f． 5	47	is
（．10：5		3it 46.7	15.3 ，	3．31	18

C．4073	： IH_{1}	（0－1；	H6．S		
C．4019	－11：	$\cos _{\text {tin }}$		8	512
C． 6 H 5	\＄119	a 3	H1．0 ${ }^{\text {\％}}$	1，2	3
C ${ }^{\text {a }}$＋15	311	$31-4.4$	A．0．	4	52
C．447．		14－85	15．8．	6,1	17

Cumi	${ }^{3} 10$	0－S	10．t	7.5	30
	＋112	5 S	10．${ }^{\text {a }}$	8.8	＋10
	${ }_{5} \mathrm{HH}_{3}$	23－24	1.11	4． 9	41
（4070 ．ave．．．．．．．．．．．．．．．	${ }^{\text {S }} \mathrm{Hf}_{1}$	26－3s	0.1	5.	10
（4071．．．．．．．．．．．．．．．．．．．．．．．．．．．	1.15	3\％${ }^{\text {ajo }}$	0.5	4.9	11
Cst72．．．．	4 ${ }^{\text {U }}$	6 F	23.5	6． 0	11

[^10]The carbon-nitrogen ratios of the soils range from 2.7 to 23.8 and in the colloids from 2.6 to 9.2 . They range more widely and for the most part are higher in the soil than in the colloids. Tllis trend has been shown by Brown and Byers (6). It is apparently cansed by the greater quantities of incompletely decomposed cellulosic materials in the soils as compared to the quantities reduced to colloidal dimensions by more complete microbial decay.

The carbon-nitrogen ratios of the first few horizons of the soils are necessarily increased by the sensomal leaf fall and other additions of highly cellnosic materials of the vegetation. The effects of these additions diminish in the deeper parts of the profiles. This ratio in the parent material is surprisingly hiph. In some it is higher than in the surface horizon. Latge quantities of carbonates in the parent material of certain soils cause the alkalinify to be higher than in other parts of their profies. This change in emviroment may dectense the microbial destruction of cellulose, hut it is even more probable that the high carbon-nitrogen matios are caused by the quantities of relatively mondecomposed organic mater furnished to this horizon by the dead roots of trees and plants. The feeder ronts of trees in all but the poorly drained soils are most abundant in the A and in the lower part of the B and the upper part of the C horizons.
Reliance should not be placed on the carbon-nitrogen ratios where the quantitios of organic matter and nitrogen are low and especially is this so of horizons very high in carbontes. Tu the amalyses the carbonates in the samples from the C horizons of all but the Wooster liberate more catbon dioxide than is liberated be the combustion of the organic matter. If the enrbonates are high in the sample used in the determination of total carbon dioxide by combustion, the result obtained for organic matter is not so reliable, since the sample must be small. Nevertheless, checked determinations indicate that iny errors of method introduced in the organic matter are much smaller than the percentages recorded in iables 4 and 6 . The determination of nitrogen, however, is more precise bechuse larger samples for its determination were used where the quantity of nitrogen in the sample was very small.

The errors introduced in the carbon-nitrogen ratio of the soil by larye cruantities of carbonates ate negligible in the carbon-nitrogen ratios of the colloids, becmuse only a few of the colloids contain appreciable quantities of carbonates. Becanse of this and becanse of the larger proportions of nitrogen to organic matter in the colloids, the ratios appear more certain. Futhermore, the colloids are comparatively free from the undecomposed cellulosic plant remains of the soil because of their very small particle size. Since it seens that greater reliance can bo placed on the carbon-nitrogen ratio of the colloid than that of the soil, it is apparent that an increase of this ratio in the colloids of the beitom horizons indicates that the jucrease in the carbon-nitrogen ratios of the soil in the bottom borizons is not altogether illusory. The ratio appronches close to 20 in the bottom horizons of half of the soils. The carbon-nitrogen ratio of the colloids of these same soils js greater than in the horizon above. In the Miami silt loum it is greater than in other parts of the profile.

It is apparent that the organic matter has undergone as great, if not greater, change in the profile development of the soils as the inorganic portion of them.

The percentages of organic matter in table S indicate that the percentage of the organic matter of the whole soil that appears in the colloid traction reaches a maximm in subsoil horizons above the parent material. These percentares were obtained by multiplying the percentage of colloid by the percentage of orgunic mater appering in the colloid, and dividing by the percentage of total orgate matter in the soil. Although these calculations involve eroms citused by differences in quantity of chay and colloid in the soil as well as probabic dillemences in organic content of cach, it is not believed that the emor is great in those not exeeding 100 percent. From the resules obtened it is evident that mote of the orgmic matter is of collodat dimensions on the bower A. 33 and M horizons than in the upper a and C horizons. The dah strongly suggese elaviation and illutiation either in soludion of as discrele colloidal partiches of organic matter. The mure part ot the parent material contan move or less orymie matter in the torm of partially decayed roots as well as in the form of more thoroughly aldered organie monter which has filiered down from the B_{3} horizon in the small cracks and root holes into the parent materal. The fact that the greater part of the organic matter of the parent material consists of particles of noncolloidna dimensions surgests that it is largely the produck of disintegration of tree roots in place. They are ustally fairly abmotant in the nper parts of the Chorizon.

The determination of soil organic matter, whether by the hydrogenperoxide method, the combustion methor, or other methods, presents a problem that recpires further study. The thata presented in tables $3,4,6$, and 8 indicate clearly that the composition of the wamic matter of the soil and colloid varies in carbon amd nitrogen content in various profiles and their parts. It is apparent that fractionation of the soil organic matter occurs charing profle development. Such tractionation appears to be dependent largely on the enviromment of the microbial population ot the soil. In various profile environments the organic compounds resulting from microbial decay of the soil organic matter apparently vary in carbon and nitrogen content. The compounds with low cabon-mitrogen ratios are more dispersable in distilled water. Consequently the carbonnitrowen ratios of the soils are higher than the colloids extateted trom them. All of the data coneming orgame mater are contused by the inadequacy of the methods of determination as well as the possible presence of charcoal resulting trom ancient or later fires.

Dentved Darta

More intimate relationships of the varions inorgamic constituents of the colloids than those shown in tables 6 and 7 mary be shown by comparing their formulat ratios. 'lhese together with the combined water of the soil acid have been calculated and presentred in table 9 . These derived data indicate that most of the chie constituents and bases of the colloids have not been freatly fractionated during the development of the soil profles examined.

Table 9．－Derived aata of the colloids of the Hiami family and of the Diami catena

MIIAMI SILT LOAM COELOID

Sample No．	岩	$\xrightarrow{\sim}$	$\frac{\mathrm{SiO}_{2}}{\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{Al}_{2} \mathrm{O}_{3}}$	$\begin{aligned} & \mathrm{SiO}_{2} \\ & \mathrm{Fe}_{2} \mathrm{O}_{3} \end{aligned}$	$\begin{aligned} & \mathrm{SiO}_{2} \\ & \mathrm{~A}_{2} \mathrm{O}_{3} \end{aligned}$	$\frac{\mathrm{SiO}_{2}}{\mid \mathrm{Total} \text { beses! }}$	$\frac{\mathrm{SiO}_{2}}{\mathrm{H}_{2} \mathrm{O}_{2}}$	$\frac{\mathrm{I}_{2} \mathrm{O}^{2}}{\mathrm{Fe}_{2} \mathrm{O}_{3}-\mathrm{Al}_{2} \mathrm{O}_{3}}$	$\begin{aligned} & \mathrm{H}_{2} \mathrm{O}^{2} \\ & \mathrm{~F}_{2} \mathrm{O}_{3}^{\prime} \end{aligned}$	$\frac{\mathrm{H}_{2} \mathrm{O}^{2}}{\mathrm{~A}_{2} \mathrm{O}_{3}}$	
C． 9006	λ_{1}		2． 57	12．53	3.23	隹． 68	1．198	2．1f	13． 15	2． 6.5	Per－ cent 11.80
C1E1i	A	2－5	2． 52	12．5．5	2． 15	7.17	1．192	$\underline{2} 11$	10． $5 \cdot 2$	2.81	11.85
C400\％	A_{1}	s－11	2.48	11． 26	3.11	7． 2.1	1．1138	2.13	9． 89	2.33	12.35
C．tatis	β_{1}	11－15	2.34	10． in	3.05	7， 313	1．170	2． 43	6． 15	2.61	11.71
Ctent	B_{3}	1－5－30	2.40	13， 90	3.15	7.61	1．187	2.02	8． 33	2.617	11． 62
C．4065	${ }^{13} 3_{1}$	30－35	2.37	5）． 8 ¢	3． 13	6.48	1． 144	1.09	8． 21	2.62	11． 50
C－606	C_{1}	319＋	2.12	4． 83	3.21	6.15	1.315	1.84	7． 55	2.44	10.46

พOOSTER SHATHOAME（OLJOLD＇

$\mathrm{C}^{1} 4025$	A_{1}	0－1	2.41	10．70	3.11	6． 23	1． 18.4	2． 40	10．6．5	3.10	13．04
C4020	A_{2}	3－12	2． 20	（1． 515	2.86	8． 3	1． 1615	1.89	8． 15	$2 \cdot 15$	11.40
C 4027	I_{1}	14－20	2． 15	S． 510	2.85	S． i^{4}	1．188	1.01	7． 16	2.41	11． 10
C 41225	332	20－30	2． 11	8 8．fi0	2．91	8.64	1． 231	1．78	6． 96	2.331	10． 83
C4020	B_{3}	32－38	2.9	S．iss	2.81	7.52	1． 305	1．6．54	6． 60	2． 24	10． 30
C4130	Cl	3S－48	2.12	8． 25	2.85	7.20	1． 206	1． 18	6． 50	2.21	10． 38

HILLSDALE FLNE SANDY 1．OAM GOLLOID

C4031	A_{1}	0－3	2.41	12.60	3.02	7． 3.4	1．15i	2.03	10． 12	2． 51	11．65
C4032	A？	23－9	2.16	11.35	2． 71	9.45	1． 27.2	1．79	8.92	2.15	11.50
C（10\％	A ${ }^{\text {a }}$	5－13	248	61． 5.5	2.89	\＄． 23	1． 379	1.8	7.87	2.26	10．59
C 4034	B_{2}	13－28	2.18	8.43	2 y	7．fit	1．220	1．79	6.95	2.41	161．90
C． 1035	SH_{3}	28－50	2.35	$\overline{7} .94$	3．14	6． 35	1． 24	1．52	（1． 63	2.51	10.88
C4i3s	C_{5}	54－72	2， 27	8.6	3． 07	5.98	1． 175	I． 93	7． 3^{5}	2.61	11.46

FOX SUTS bOAN COLIOLO

C4048	A_{1}	（）－2	2． 4.9	12． 80	3.97	6． 685	1237	2． 6 ［13	10．3茭	2.45	11.27
C 4019	A_{1}	2－16	2.17	12， 00	3.08	5． 4.1	1． 237	2.41	10．54）	2.51	11.53
（46tin	A	130－16	2.31	10．93	2．5管	O． 518	I． 20.5	J． 91	9.67	2． 12	11， 46
（ 10 an！	B_{2}	18－32	2.37	14． 25	3．16	8． 3	1． 24.7	1．87	8.26	2.43	11.14
Cathes	Bl_{3}	32－38．	2．31；	16．（t）	3.02	7.33	1． 26.4	J． 87	8． 54	238	11.018
6465	Ci	$38-60$	2.49	9． 96	3.33	7.22	1．314	1.89	7． 53	2． 33	10．64

CHOST3＇Glif 5OAM COLLOH

C． 4037	Λ_{i}	i）－2	2．83	15．30	3． 42	7． 10	1． 156	2.42	13． 23	2.86	12.80
C，403s	A12	2－11	2.51	［ 10.21	3.15	7.8	1． 3 3 7	2.27	12．33	2.79	12.10
C4030	B_{2}	111－18	2．${ }^{3}$	11.40	\＄1．12	8.14	1． 271	3.17	8.97	2．69	11.51
C40t0	13_{3}	15－314	2． 52	19．43	3.32	1．（j）	1． 345	1．93	7.95	2． 5.5	16． 88
C4tal	Cl_{3}	319－14	2． 66	16．30	3．34）	5.36	1．343	1． 815	\％．${ }^{\text {\％}}$	$\stackrel{2}{2} 4$	10． 30
Culd	C_{2}	－ 4 －-6	2．02	30．85	3.45	5．9！	1．432	1．76	7， 32	2.38	9.4

BE＇MIBL SIl’ 5 LOAM COLLOLD

C40154	A_{1}	6－2	3.0 .4	18． 7 f．	3． 63	16．3）	1．34！	2.20	13．919	2.71	11.64
C． 4055	λ_{2}	2－8	2.66	13．75	3.77	10．${ }^{\text {a }}$	1． 4113	1．8＇）	8． 38	2． 23	10.01
C48516	A	B－1．4	2.71	13．72	3.37	10．23	1．385	1． 96	4.91	2． 46	16．485
C405 ${ }^{4}$	B_{2}	14－20）	2.42	12，18	3． 40	8.48	1． 320	2.133	9.23	2.57	11． 21
C 4658	B3	2tt－30	2． 48	11.35	3.51	8.35	1．341	2.00	\％． 46	2．${ }^{62}$	10.08
C4050	C	$36-48+$	2.81	11． 14	3.40	6．50）	1． 4.47	1．80	7． 69	2.35	0.98

See footnotes at end of table．

Table 9.-Derived data of the collotds of the Miami family and of the Miami catena-Continued
BROOKSTON SILTY CLAY LOAM GOLLOID

OLY'DE SILTY OLAY COLLOTD

C4067	${ }^{1} \mathrm{~F}_{1}$	O-8	2 s 0	18.95	3. 28	0.62	1. 265	2.21			
C4068	${ }^{1} \mathrm{H}_{2}$	8-20	2.82	17.00	3. 38	6.77	1.303	2.14	13.05	2. 59	11.69
C4069	${ }^{6} \mathrm{H}$	20-26	2.72	3'ct	3. 39	0.90	1. 350	1. 86	0.81	2. 41	10. 33
C4070	${ }^{3} \mathrm{M}$	26-38	2.65	13.06	3. 32	6.83	1.337	1.91	9.77	2,48	10. 95
C407	${ }^{3} \mathrm{NH}$	38-6i9	2.31	7.98	3. 26	5. 67	1.360	1. 70	5.87	2.40	${ }_{1 i \mathrm{Ci}}^{1} 12$
C4072	-U	66-75	2.48	9.77	3. 32	5. 67	1.420	1.75	6.88	2.34	0.81

: Oxitles of magnesium, caicium, potassium, and sodium.
${ }^{2}$ Water or cumbination plus water equivalent of the bescs.
${ }^{1}$ Water of combination phes water efuivalent of the bases, corrected for organic matter and carbonate conient.
${ }^{1}$ Wooster soils only tentatively fisted in the Migmi tamily.

- Horizon designation used by the Indiana Soil Survey; seo in.

The silica-sesquioxide ratios of the whole group of colloids range from 2.12 in the C_{1} horizon of the Wooster to 3.04 in the \mathbf{A}_{1} horizon of the Bethel silt loam. A comparison of the silira-iron oxide ratio and the silica-alumina ratio shows that iron rather than aluminum is the cause of most of the variation of the silicasesquioxide ratios. It appears certain that iron oxide has been fractionated in reference to silica but that alumina has not. This is not quite as clearly demonstrated in the Wooster as in the other profiles.

The silica-base ratios indicate a moderate amount of leaching, greatest in the first three horizons of the Bethel and least in the U horizon of the Brookston. These ratios also iudicate the accumulation of bases in the surface layer by organic matter and the less complete removal of them from the colloids in the deeper parts of the profiles. The low numerical value of the silica-base ratios in most parts of the profies suggests that the colloids are fairly well saturated with bases. This is expected as the soil profiles still contain large quantities of incompletely attered residual feldspar, mica, hornblende, and other primary minerals. Special attention is called to the depietion of bases in the \mathbf{A} horizons of the leethel (Planosol) that are in marked contrast to the high base content in the Brookston and Clyde (Half-Bog and Wiesenbëden, respectively).
The water in the remaining ratios in tabie 9 is obtained by adding the water equivalent of the bases to the equivalents of combined water, the water loss between $110^{\circ} \mathrm{C}$. and the ignition temperature. As the combined water is obtained by subtracting the organic matter and
carbon dioxide (table 7) from the ignition loss, these values are affected by uncertainties involved in the calcolation of the organic matter. Nevertheless, these ratios indicate in part the relative hydrolysis the colloids hatre undergone. The silica-water matio is sated inversely to the other ratios involving water largely beatse of the acide behavior of the silien and the genemally basie chatacter of iron amd ahminum in the cias minerale of the colloids.

Although it camot be sated precisely. the batios involving water show edtan trends with depth. For the mox part. the sifea-water ratios increase in the deeper parts of the various probibes. die wateralamina tatios are more hearly constam, and the decerase with tepth
 dance of iron oxide in the lower patys of the profile. The deatere with depth is. therefore, more manded in the shatimon-oxitle mato.

Of this whole group of atios, it is apparent (hat the sitictabumban and water-atmman matios are more eonstant han the of hers. Within
 small variation in the peremtage of the combines water of the mil
 of the colloid is clowe than with the ofters. It atso sumgers that the coilod complex is largely compused ot a complex silato or mixture of sificates whose components do wot vary widely liom profile to profile and even less from horizon to horizon.

The Cons Mivemals

Of the four major constitente-silia, almmina, water, and iron oxide-the firet three form the framework of the eothoids. A part of the irom is combined an a silicate, and a part apparently embists of tree ferme oxides as the oderous color of parts of the prodiles surgests. In most of the colloids the amome of free inon oxide is abparenty smatl. The averare formata ratio of the 48 colloid samples
 $3.22 \mathrm{SiO}_{2} \mathrm{Al}_{2}\left(\mathrm{O}_{3} .2 .23 \mathrm{IA}_{2} \mathrm{O}\right.$, if it is not. It irm osite is igmorol. it is apparent that the simple average fommatadio approaches closely to the simplified formula of 3 SiO$)_{2}, \mathrm{Nl}_{2}()_{2} \times \mathrm{FL}(\mathrm{O}$. In the formula ratios. the eombined water is that retained at $10.5^{\circ} \mathrm{C}$. A part of this may not be water of constitution.

Wany clay mimerals. such as hydrons mica, illice ($/$, yis), boidellite (19), and montmorillonite (zt). have been identified in colloids, In these simple formala tatios the structual imporance of potassium in hydrous mica (75) and certain relationships of of her constitumen in the raufous elay minerals are not considered. Possible strmetures have been diseused by Marehall (2/), Itendricks amd Alexamen (/f), and other invertigators. to atempt will be made to diseuse the possible substitutions and armangements, but it is presumed that one of these chay minerals makes up a latere part of the colloids of this gromp of soils.

A Miami colloid from Grant Connty, Ind., not far from where the samples of Crossy and Brookston were obtained, is reported by Alexander, Hendricks, and Kelson (1) to contain about so pereent hydrons mica. 10 percent kaohm, and 7 percent here iron oxide. In the analysis of this colloid montmomilonite was not differentiated trom hydrous mica.

In order to oltain an estimate concerning the fuantities of clay minerals in the soil colloids, a representative group of colloids from the subsoils of the Miami, Hillsdale. Bethel, and Brookston soils were submitted to S. B. Hendricks and L. T. Alexander for approximate quantitative determination of the chay minerals in them. The determinations were made by the improved methods completely described by Fendricks and Alexinder (10). Hendricks hats reported that the colloids are closely similar in mineralogieal conposition. They contain about 10 percent kablinite. They differ in themal decomprosition and in base exchange behation. Montmorillomite rabies from 10 to 25 percent, and the remainder consists of hydruns mica. The probable aceuracy is not closer than seremal percent.
In riew of the fact that these representative colloids from four of the profiles are so simitar in mineralogital and chemical composition. it is quite possible that the fandmentel differenes in morphotogy leetwen the plancouls and the Half-Bog soiks on the one land, and between the Planesols and the Gray-Brown Potzolic soils on the other may he caued by the entative base saturation of their colloids as well as other comditions not disclosed ly the data. It is recognized that organic matere phass a role of the first order in the morphology of the soil. The state of oxidation of the irem may also be of equal mportance. Differences in phe reation of different liovizons although cansed g a sariety of factars, within inlividual soil profies and in corvesponding horzons in different profiles suresest that more detailed infomation coneerning the derree of base situmation of the coiloids would explain more complefely some of the differences in the morphotogy of the soils.

gENERAL DISCESSION

The datia disersed in the previous sedior show that in certain reppects the varous soil are simblar in chembeal properties in spite of the fare that some of the phasemp propertion ate strikiagly ditter-

 one from another in seramal reperts.
('hemial simibury of the mineral part of the soil material is expected in a gropp of mils like the Minmi fanily that laye developer from comentially the same kimd of parent rek meler similar
 perted to the same extent in waiks that are developed memer difterent mosistare conslitions. Many of the differences betwern the soik are
 the local refief of the materials on which the soils have develofed. The following factors cach hate aldaring on the morpleskog of the soils: (1) The panemf rock. (2) dimate ansi regention. (3) the lay
 bas been in frmation. The liat fartor is probably mearly the same for all of the soilh examined in this staty:

Tin: Pabeny Roges

The parent works of the of the suils ofischust have mued in common with each other, but there are alsio certain jmportant differences.

Although all of the soils developed are over: unconsolidated glacial till or glacial outwash materials of Wisconsin age, there is some basis for supposing that part of the mineral portions of the soils consists of wind-blown silty loess, but it is not possible to say with certainty whether, or how much, loess is present, or how important it is. It appears certain, however, that both the glacial till and outwash deposits have been modified somewhat by frost heave and mixing effects of freering and thawing, as well as by the activities of butrowing anmals. Burrowing animats have catused more thomorg mixing of the first few feet of the earth's crust than vinal evidence cliscloses a few years after their operations. 'This factor is recognized as a contimous process. It was estimated by Darwin (/I) that moder favorable cireumstances earthwoms anmaily bring to the surface one-fith inch of the earth. The fuantities moved by larger amimats too ofter escape detection or are ignored.

The ghacial till of the Vonster soils is mate op hargely of rock four and small fragments of fine-gmined sambsone silftone, and shate. Although the soil was smppled to a tepth of only 4 feet and, unlike the other soils mo appreciable frantities of embonates were diseovered to that depth, it is quite likels that there is an appreciable quantiry of limostone in the mbenched potion of the till at a depth somewhere between fond to leet. Nil of the other deposits are medium to stronaty caldareons and have been learhed o depths ranging from less than 3 foet to abond $\overline{5}$ ted: The Nillstide fine sandy loam is developed from a till that is high in sandstone and condans a moterate amome of fingmontary limestone. All of the rest of the soils are develoned on stmonsty calcareous deposits, and the proportion of magneximm in the limestone fragments is often high enough to surgest that it is dolomitic.

Chmate ano Vemetathon

As has ahendy ben mentioned. chmatic comblions over the area covered by the soils sampled do not vary gratly. A recetation of hardwoods orimmaty coved patatally ath of the soils. but the type of hardwood erver varied considerably. On the well-damed sots the dominant cover consisted of onk, hickory and maple. On the Planosols bech and dm were very ahmokat and the proportion of oak was somewhat less. On the Halt-boger seils the native swampforest issociation consisted of elm, baswwod. and several other water-bving syecies. The original forest cover on the ("lote soils was sparse, and there were many spots where mansh regetation was dominant.

Lay of the Lavd and Natural Dranage

For the most part the bay of the land. as this deseriptive term suggests, bargely controls the mataral damate eonditions of soils, althomgh them are many exeptions. Comex surfaces tend to shed water, and depreswons and concare slopes tead to accumahte water it the woils and maderfing material: are not execsively pervions. The well-dramed Minmi. Wooster, and Itillselale mils ow a comsiderable shate of their good natumal hamage to the fact that they ocene on convex slopes of
sufficient gradient to encourage runoff following rains. Underlying materials are sufficiently pervions to permit at least a moderate rate of downward movement of water through them, although parent rocks of the Hillsdale fine sandy loam are the most permeable of the three. On the other hand, the Bethel silt loam occurs on level land and the Croshy silt loam on hearly level hand. The surface runoff of both soils is very slow and the water stands on them for short periods following rams. The water runs off of the very gently sloping Crosby soil mose rapidly than from the more level Bethel. The underlying glacial till is only moderately pervious in both soils so that downward movement of water through them is fairly slow. Furthemore, chay pons have developed in both of these soils, which still further retard the downard movement of water. Brookston and Clyde soils occur in depressions where the nutural surface oudlets are higher than the level of the soils, and the only time water drains from the surface is when a sufficient amount accumulates to overfow the high outlets. Movement of water through the underying till of each soil is rather slow, so that they remain wet during a greater part of each year. This is in matked contrast to the Crosby and Bethel soils, which become very dry during the late summer when ranfall is low and the temperatures are high. Although the Brookston and Clyde soils have heary subsuils, the structure of each is such that damage is faimy mapid through the subsols if outlets in the from of tile deans or ditches ars provided.

The Fox soils are developed on ghacial teraces whose surfaces may range from level to gently wolling. The soil amalyzed in this study was taken from a levelareat. In spite of the lack of ielief. Fox soils ave ahays very thoroughty drimed. On level areas the water pemetrates the soil and is damed awey throngh the underying gravel. so that level areas of Fox soils are evon more thomoghly deaned than gently to noxleately stoping areas of Xiami soils. It may be mentioned, howerer, that all grawelly materials are not necessafly well dained. The very lighteoloted Homer soik, that have abont the same drainage conditions ats Bethel soik, as well as the dack-colored Wettand and Abington soils that comespond in drainage to the Brookston and Clyde soils. me sometimes fomm on the same torraces with Fox soils. Such soils are pootly dramed and almost permancutly wet in spite of their gravel!y sulsoils, becanse there is no outlet for datauge waters where they ocent.

The structure (e,) is an important feature moditying the permeability of many soils. Th some of the soils intermat dainage conditions are better that the texture of the soil matemial wond suggest. The importance of the strecture of a soil mas not be undetestimated. Structural agreregates function somewhat in the same way as sand. gravel, and larger rock traments in the soil in that they permit water to pass throngh the crevices betwen them. Dramage through some mother chyey soik may be ts mpid as thromern more sandy and ravelly. deposits as long as the arererater retain their fom and the pore spaces between them.
The develepment of cumbs and grames in the A horizome of the well-dimined soils of the Miami hamily permic casy prenetation of percolating water. The remoral of elay from the A horions, pither as a sol of in sohation. haves bedind a liphteolored wal beneath the dark A_{2} horvon that is stomked by acemmated organic matter. This
layar takes on a phylliform or very thin platy structure if the material is very silty, but the plates do not interfere materially with the downward movement of water. The 3 horizons gencrally have assumed a state of agreregation in which the individual argereares are slaped somewhat ine small hickory nuts and hilbets. The aggregates of the B_{2} horizons are more or less subungur in shape and each ageregate has a thin coat of colloid on the surface. The agrixrates become move sharply angular with depth and have the form of small- and mediumsized blocks in the B_{3} horizons. The vortical hreakage in the 13 horizons is more pronowned than horizonith breakage, so that the individnal argregates appear to be heaped one upon the other in the form of irrertalar brisms or columns.
'The averaes of clay content in due A and D horizons of the Mitam silt lom are 15.6 and 32.3 percent. repectively of the Wroster silt loam, 13 and te2. percent of the Fillemale fine sandy loam, 7.3 amd 10.4 percent : of the Fox silt lown 4.5 and $37 . \bar{i}$ percent; of the Croshy silt loan, 17.1 and 35.3 pereent; and of the Bethel silt lowm, 13.8 and 32.3 percent respectively. The quantities of elay in the bhorizons of (ach soid are 2.1. 1.7. $2.2 .2 .6,2.1$ and 2.3 times an mod as in the A borizons. respectively, The near mathomity of these nombers sugerests that the transion of clay in these five soit profiles is mot dependent on texture. The stucture of the way empencate for textmal differences. The present permenhility of the ('roshy and Bethel is not as groed as in the Miami. Womser. Hilludake and Fox profles, The clay pan developed in the (rosby and bethel redard the mement of watere. 'Ihis is indicated by then wateroged condition following mans.

Gulike the Crosby and hethel soils the Brookstom and Civide have
 is ceased by the ir bow dramage mationts. Water stands the them

 oremed sinco The popmotion of chay the It horizons as com-

 chay combent of the tirat there homans is comerded for ormane matter,
 in the guatifes of elay is rapid de fow them.

The elfer of dramage is whered mbere distine ily in the greater acidity in ertain parts of all the soils, Tha lowes jof manes fomat

 respectively.
 Where the deathage thoogh the profle is nowe theromgh. The alkaTinity is greater in how profiles that pereva the wreater amombt of (hainate water from the sumpombling stopes. It is apparent that the alkalinty is at least partably mathaterd in the lower members of the catema by has diswhed from the woils of the surmonding higher land. It is noted that the lewest pII of the Brookston and Clyde
profiles is approximately the same as the pH of the A_{1} horizons of the Miami and Crosby that often occur on their borders.

It is apparent in table 4 that degree of removal of carbonates does not depend on the excellence of dratioge in the soils. All but small quantities or traces are leached from the solums of all but the Clyde profile. The first four horizons of this swampy, poorly drained soil contain no carbonates and the quatity in the M_{s} horizon is very small. The depth to abundant quantities of carbonates is 66 inches in the Clyde soit, 44 in the Brookston, 30 in the Bethel, and 36 in the Crosby and Miami. Traces remain in parts of the Wooster, although the patent material at the depth sampled is very low in carbonates atis compared with the other soils. The sturface horizons of the soils often contain more carbon dioxide than other parts of the solum.

Probably the decaying vegetation in the swampy Clyde soil supplies greater quantities of carbon dioxide for solution of the carbonates than in the better-acrated, better-dxamed soils. The subsurface drainage of water is slower and more continoous than at the surface of the soils. Very little surface water is drained from the Clyde soil. This assures a more contimons supply of water moving through the Clyde than in the soils thrther up the slope. To this steaty supply is added the surface wash from the adjacent slopes, so that the Clyde may receive several times as moch water as falls on it in the form of rain. These conditions apparently have cansed the complete cemoval of the carbonates from the first four horizons of the Clyde and an incomplete loss of them in the better drained soils.

It is meressary to tum to the colloids of the sails to note the effect of dramage on the mowe insoluble constituents ((able 6 and 7). No general teend with improvement in dramage is noted exerpt in their content of silica. The colloids of the Mami family contan less silicia than thoe of the imperfectly and porily draned members of the Miami catma. This is more noticende if the data are corrected for organic matter as in table \widehat{r}. The profle areages of the Miani,

 perent. respectively. The same general decrense of the guantities of silica in the wils with better draturge is alse noted in the Norfolk calma from the sontbeasturn part of the Conited states (x).

It is jamosesible with the data at hand to comente these data with the probable permeabilities of the profiles. hat it may be moted that somewhal more siliea is lost from the colloids of bembers of the Miami family than is lost by the impertecty and poome drained members of the Niami eatem. It may be forther noted (fable :3 and 7) that an increase in the cametites of iron oxide and allamim in members of carh gron renghly corvepomb to an incerese in the clay in the homizons of grentest aternmulation. This is acembanied by in correxpmatiog los of withate sifian and acompanying bases. It appeats probable that beta drainge in the Miami fanily is a ditect calle of the greater hoss of wifate sition in the collonts of its memberse ase compared with the impertecty and powly draned members of the eatena.
These changes as catmed be diffrences in deathite are also noted in table 9. The silica-buse mion of the collowe of (he Minmi fanily for the most part, are higher and the siliem-water matis are lower than
those of the imperfectly and poorly drained members of the catena. This also indicates areater hydrolysis of the colloids, greater removal of silicate silica, sreater permeation of the profiles by water, and more thorough, as well as more frequent, leaching of the colloids of members of the Miami family by percolating minwater than has oecured in the imperfectly and poorly-rimined members of the catema.

Living plants resist the jeaching action of wator and cause a circulafion of essential plant constituents upward. Robinson et al. (28) have shown that the ash of trees, legumes, and ratasses-some found growing on the Miami and associated soils-are high in caleium, potassimm, phosphorus, and sulfur: the pereandares of the oxides in these elements may be as hiar as 2.T2. 4.22, 0.71, and 1.01 , respectively. In table 4 it appeas certain that a pate at least has been retained by the incompletely decayed-plant rematins in the upper horizons of the soil. This is even more erident in the anatyse of the colloids recorded in table 6 . as the colloids extracted from the soil are essentially uncontaminated by primary minerals and for the most part contatin more organie matter than the soils.

The general tendeney of mananese to be high where organic mater js high suggests the aseviation in both soit and colloid. Neverthelese, this may be due largely to better ariotion in the upper pate of the profile and in the deçore pats to eateram embonate decording to Rohinson (.20) mananese, apparently is precipitated throurh the
 are decreases. carbonater move downward during profile derelopment, and other conditions modily the eflerideness of both to precipitate manemese-the first, in for first few horizons; the serond. in the hast few horizons of the profile.

Wost of the sults show at siking increase in iron and phosphorns

 berome mose involahbe neate meatrality (/).

 alkatine in reaction in spite of tho diact that all but the Me harizon is completely free fom eabomates. This. lesedher with the strong state of ageregation of the suil in the varion- horizons, is a clear indication that the eolloistal complexes are dominated and eomelitioned by the combiner or the adsorbed calleintm.
 evidence of pulzotization is the framionation of iron and the leaching of divalent beses. 'This is shown by the amatys of there soits as well as by the large romp of amalye of the Mami and the ('hester profiles presented hy Hohmesam Edghurlon (1%) and of the (hesere and Manor profiles by brown and Byers (f). If the amalyses ate cor-
rected for organic matter it is still mote evident that only iron has been fractionated and transferred to the reeper purts of the profiles during the formation of a Gray-Brown Podzolic profile.

In the Porlzols and Brown Podzolic soils, however, the amalyses of the Brassuat, Hermon, and Gloucester presented by brown and Byers (6), as well as those of the Caribon and An Train prenented by Byers, Alexander, and Holmes (\because, indicate that aluminum as well as the iron is fractionated and eluviated. Marbut (zef) notes that-

Abstract

these soils ocenny a region in which the rainfall is high and the temperathe low, an compareil with that on the rest of the Cniteal states, or arests where the stini material consisis maimly of sath which is realily attacked hy the forces of leatching.

He also notes that these snils-
have dereloned maler forest cower, but for the mast part under a eover containing it somewhat larger precembe of woifers ant of phants which flomish on an acid solt than is the case with other members of the leotilferic gramp.
It is, therefore apparent that the high raimfall, good datinage, and thomogh leaching in the permeable acid wady soils cause the fractionation of alminum as weil as irom in the Porkols. As a further conseguence of mpid drannage in them, the bases are more thoroughly leacherd less circulation of basey ley the arid-loving phats bakes phace, and the almanam and inon silieates apporach more complete dissolution in the mare acial parts of the Podzol profle.

In the few elingey loolzol profiles stadied. the structure of the sail permits free thainage in the altered parts. In the last analysis the
 factors define it.
In a climate where the temperatare and minfati are higher hat in
 soik. still greater teat ruction of the minemband grater learhing of the profiles ocere This is exident in the Norfolk and aserciated soil

 owing largely to vamitions in topergruphice pesition and resultant
 therefore members of a will catemat. Soil: of the Norfolk catera ate

 and assuriated mils poobaty have been exposed to weathering mueh longer tham the soils of the Miani catema.
In beoth the Miami and Norfolk eatenas the lose of silica in the colfaids with reypere to the empuosides and the ahmina is ereater in
 is cerainly mome marked in the members of the Norfolk matena whem

The remarkable wata jin of the silicat-base rat io of the colloids with the depeth of the profile of members of the Norfolk catema is caused by the ir whative prestion on an old watiseseted tableband. The drainage of the seits near the st reans bervering the tablelath is goocl: it becomes oorer in thowe along the gentie slope fo the swanpy entrat depresed
part of the area. As the high rainfall in the hot summer months maintains the swampy condition, hydrolysis of the soil minerals is great. During seasonal abindance the water overflows the slightly elevated margins of the basin, taking with it the liberated bases and other solnble products somewhat in proportion to the daration of hydrolysis and continuous wetuess of the profiles.

These conditions canse the acidity of the soils of the Norfolk catena, doveloped on welt-weathered Constal Platins materiat, to incrense as the dianage becomes poores. The howes pff of the swampy soil of the Norfolk catem is 3.8 . The soils of the Diami catema unlike those of the Norfolk catena, are developed on comparatively mowathered Wisconsin glacial dritt and the deamage water. therefore, rarries a rieh supply of bases to the swampy Clyde soil. Its lowest pIf is G.4. Betier drained members of the Miami catem may have a pH as low as 5.2. but the pH is usumlly higher tham in the Norfoll.

As a whole. it is obvious that the loend dramage eonditions of a soil, and the length of time they and the rimate have operated. greaty infleme the chameter of the soil profile. It is equally abvions that the chameter of the parenf material is an important factor in grovenang the peofile develomment of at soil. espectatly where the period of development is rehativaly shomt. Tarent wek is loo often ighored or minimizer.

Thas stuty shows thent the soits listed as betomging to he Miami
 silt lom differs from the otheremembers of the family in so many minor
 final derision will rembe further stude.
 do not explation romplety the canse of man of the important mor-
 desimber to extend the sade to othe proparties. The data presented

 features of the soils mat their ramons relationships.

SCMALIRY

The norphological. chemieal, and physeat charateristics of representative soils of the Miami family and of the Mifmi catena lawe been studied. The parent materal of the soils is Wisonsin onatial drift. The climato and vegetaton are satintially the same. 'The members of the Miami damily have developed under similar local datange con-

 a figum of the edationships of the members of the Miami lamily and
 is preceded by a deserjption of the bandsenpe. the parent rock, and the datinage. The labomatory defeminadinas inelade pFt ralues, the mechaniend and chemimb andyses of the mils, and the chemieal andyes of the extacted collaids. as well as the determination of the pereentares of chay minemh of extation larizans of representative profiles af ench gronp.

The analytical results and certain other data are arranged in tables and discussed in connection with the morphology of the soils and the inflaence of local conditions on their formation. This is followed by a general discassion of the consequence of local drainage on soil development.

It thas been shown that the only inorganic constituent of the soils and their colloids that has been appreciably fractionated doung profile development is iron. 'The illuriation of jron in the lower horizons does not vary greatly in the various profiles. Lateral subsurface drainage apparently las increased the iron content of the dark-coloced swampy soils. It has been shown that the smath cirantilies of carlon dioxide found in the feached acid portions of the sails are litrgely confined to discrete particles of dolomitic limestone.

It is apparent that the orgatic mitter of the soils and colloids has been frationated as much or more than the inorganic portion of the soils. This is indicated by the rariation of the cerbon-nittogen ratios of the soils and colloids. The disambement between the quantities of orfanic matter detemined by hydrogen peroxide and by combustion either indicates clearly the inadequacy of boch methods or remarkiable fractionation of the organic mater.

It bas been shown by the varims derived data that the colloids of thes group of soils are essentially alike. These data are supplemented by mineralogica! analyses of representative samples which indicate that lyydrons mica is the predominant clay mineral in the colloids. Associated with it are smaller anomits of montmorithonite and kaolinite.

It has been shom that the simidarity of climate, vegetation, and parent materiad of the soils of the Miami family and of the Miami catena is the primary calse of their similaty of composition. The canses of certain morphological features of the soils are clearly indicated by the amatyical datat the genema chasifimation of coils is not. It is suggested that the deternination of the minerals of the soils and certan base cxelange data may assist materialy in determining the canmers of the matked diflerences in the morphology of the soils of the Miami catena.

Literature cited

(1) Aiexander. L. Th, Henmecks, S. y. and Neison, R. A.

(2) Bambe, Eanest H.

 Teen. Bul. 201, 4.t pio, ithes.

 102\%: 1761101001.
(4) Buown Ikres C., and ixves, Hobace 6.

(5) - nul Byws. Itomace (1.

(6) Brown, Imyin C., tind Ifyers, Hobace C.

(7) —— lete. T. D., iml Byeas, Horace G.

(8) ERYsN, Khas.

IfP0. Sohis ant merighachal paimomena in phe catorinag. Science 91: $523-624$.
(9) Itrsifnoma '1. M.
 Lxpu. Sta., [1 pu., Hhts.

 Tre ghent gmotis of sonss. L. S. Dert. Agt. 'Celh. Bul. 4ht, 39 pp.
(11) D.mand, Gumates.
 Biva pe, jlhes Now loms.

 sorts. Suil Scit. 45: 2timen, ilhes.

 Sci. 6t: 67-1t9, Hhes.

 Fone mentarcaiton. Soll Sci. 4S: 20̃-271, illus.

 The manti. chestah, aNb cecth sheres. U. S. Dept. Agy. Tech, Pat. 2m, $=4$ man. ithus.

 illas.

 $46.5-40 \mathrm{C}$
(20) Mammert (. F.
1935. Sons or the Exith stares. It. S. Dept. Arr, Athas of Amer. Agr. of. 3. MS plo. illus.
(21) Mamshatle ('. TH.

(22) Mince, f.
 Dist African Agr. Jome. B: 350-302.
(23)

- 2056 कut othars.

 Sta., Anami, Dem, 3.t pep, ilhus.
(24) NikImonomp (oxsraxtin ('.
 7n5-131, ilus.

 PRoven msimersion moctuone. U. S. Dupt. Agr. Fech. Bul. 170, 23 тр., inhas.
(26) Robinson. W. 0 .

1029. verection and gignificance of manganese dioxide in the soll.
(27) Soil Sci. 27: 335-350.
1030. method and frocencre of soll anmiygis used in the division of soit chemidery and phisices. U. S. Dept. Agr. Cir, 130, 23 pp. (Reviseli.)
(28) - Treinkoenti, L. A., and Mieder, C. T.
1031. the redetion of bong of the bater elements in sod.s and plants. U. S. Dept. Agr. Dept. Bul. $600,27 \mathrm{pp}$, iltus.
(29) Ross, C. S., mal Suncion, Dabl Y.

1!f20. tite minerats of bevtonthend retated clats and thear phybical

(80) Thonnthwatie, O. Wabien.

(31) Thorp, James.

(32) United Stata Depintment of Aomictartuhe

198S. a oinssany of smechic thans used in the soms teabmook. U. S. Dept. Agr. Yearbook (Soils and Men) 1938: 1162-1180).

[^0]: - Submitted for publication Murch, 1942.

[^1]: : Inalic mumbers in marentheris refer in Litorature Cited. D. 63.

[^2]:

 ment Station.

[^3]: Amalyses by E F, Miles and F. $\underset{\text { F , Ward. }}{ }$
 2 Not inclated in total percentage of mechanical analysis; small percentages not recorded.
 Deternined bs F 7 B Billey.
 1 Estimated percentage of iron oxide concret ions in the sand and fine gravel fractions.
 Wooster soils only tentatively listed in the Miami family.

[^4]: graphed leetures (unguhlisited\}, オ. S. Dept. Agr. Eecture Vi, p. 8.

[^5]: I Recoleulntrd on an orkanic matier atrd colefum-carbonate-free basis; 4 major constituents recorded.
 ${ }^{4}$ Jenilhan loss less organie nater jum carbon dixodie; eorrieted for orgatie trat ter and calcium carbounte.
 a Weuser sibis unly kentatively listed in the atiami family.

 - Herizon desiguadon used by the dadiana Soill Survey; see p. If.

[^6]: 1 BJ combustion method.

 - CO_{2} of the carbonates.
 ${ }^{2}$ Determined by A. E. Yelmgren.

[^7]:

[^8]: Thames 8.-Girbon ${ }^{\text {ninfogen ratios of some soils and colloids of the Miami family }}$ athl of the Miami calona and purt of the ortanie matter appearing in the colloid fraction

 MIAMI SILT LOAMT

[^9]: Ste footnotes at end of table.

[^10]: 1 Orpanie mather X0．rs．

 －Worster solls only tentalively jisherd in the ajami furnity．
 －Error presumably cansed by the variation of the quantifins of organic mater in the clay and collotd．
 －Dlorizon desjemation used by the Indiann Soll Surver＇；sete N ，1t．

