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Abstract 

This study offers a unique contribution to the literature by investigating the convergence 

of province-level carbon dioxide emission intensity among a panel of 30 provinces in China over 

the period 1990-2010. We use a novel, spatial dynamic panel data model to evaluate an empirically 

testable hypothesis of convergence among provinces. Our results suggest that: (1) CO2 emission 

intensities are converging across provinces in China; (2) the rate of convergence is higher with the 

dynamic panel data model than the cross-sectional regression models; and, (3) province-level CO2 

emission intensities are spatially correlated and the rate of convergence, when controlling for 

spatial autocorrelation, is higher than with the non-spatial models.   

 

 

 

Keywords: CO2 emission intensity, Convergence, Spatial dynamic panel data, China 

JEL codes: C40, Q4, Q54, Q56, R11   

 

 

 

 

 



2 
 

1 INTRODUCTION 

 Understanding the distribution of carbon dioxide emissions (CO2) through time and space 

can help policy makers in designing policies to combat climate change. The geographic 

distribution of CO2 emissions does not affect the global climatic impact, but it does affect the 

political economy of negotiating multilateral agreements (Aldy, 2006). Global climate change is 

an international problem in scope, yet domestic or regional policies can be implemented to mitigate 

CO2 emissions. In the last two decades, carbon dioxide emission intensities (defined as carbon 

dioxide emission divided by gross domestic product) across the provinces in China have been 

decreasing year-by-year as illustrated in Figure 1. A large number of past studies have examined 

the factors which have led to the decline in CO2 emission intensity. For example, Liddle (2010) 

found that improvements in technology, changes in the country’s economic structure, and energy 

efficiency accounted for most of the decline. Zhao et al. (2014) findings suggest that technological 

improvements in energy consumption and transportation as well as an increase in population 

density have led to the reduction in CO2 emission intensity in China. Others have found that 

structural changes in China’s economy (including a decline in emissions in the country’s secondary 

sector) have led to the reduction in emission intensities (Gonzalez and Martinez, 2012; Ma et al., 

2012; Ma and Oxley, 2012). However, an examination as to whether the differences in China’s 

province-level CO2 emission intensities have diminished over time, resulting in convergence, has 

received little attention in the literature. 
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Figure 1. CO2 emission intensity of each province in China, 1990-2010 

In accordance with the Copenhagen Accord, China set the goal to reduce its carbon dioxide 

emissions per unit of GDP (or carbon intensity) by 40-45% of 2005 levels by 2020. Although CO2 

emission intensities have been declining year-by-year in China as shown in Figure 2, the country 

still has a long way to go to achieve its reduction goal. If China were to formulate a national climate 

change policy to ratify such an international agreement then it must begin to look inward to 

determine the sources and distribution of emission intensity. With this look inward, policy makers 

may be interested in determining how the distribution of province-level emission intensity is 

changing over time. Convergence in energy intensity could imply that technological differences 

across regions diminish over time (Herrerias, 2012). This study seeks to determine interregional 

differences in technology tend to disappear or increase over time. If differences diminish naturally 
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over time then policymakers may be less worried about a mitigation scheme. If the differences 

tend to perpetuate or grow over time (which implies a lack of diffusion of energy-related 

technologies) then it may be too difficult to reach the country’s mitigation targets.  

 

 

Figure 2. Overall CO2 emission intensity of China, 1990-2010 

The concept of convergence comes from the economic growth literature. In the most 

general sense, it refers to a decrease in the differences of the economic growth across countries or 

regions over time. However, convergence is not restricted to the economic growth literature alone, 

and has been applied recently to other fields, including energy economics (Ezcurra, 2007; Duro et 

al., 2010; Ma and Oxley, 2012; Herrerias, 2012; Herrerias and Liu, 2013). According to Islam 

(2003), there are different definitions of convergence based on the econometric approach used to 
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measure convergence. Among them, we can distinguish between absolute convergence and 

conditional convergence, which are often estimated by cross-sectional or panel data techniques. 

Absolute convergence is defined such that if two or more economies are identical in terms of 

preferences and technology, then over time they tend to reach the same steady-state growth level 

(Solow, 1956). Conditional convergence is defined as a type of convergence such that differences 

in steady-state levels across countries have been controlled for (Islam, 1995).  The traditional 

cross-sectional regression modeling approach implicitly assumes that all regions or economies 

under consideration have the same steady-state income growth path. Islam (1995) proposed a panel 

data approach to study growth convergence. The motivation for the panel data approach is to 

capture the differences across regions or countries. The unobserved differences such as preferences 

and technology are not easily measurable, so they can be treated as unobserved individual effects 

in a panel data regression framework (Hsiao, 2002).  

There has been tremendous growth in the exploration of spatial issues in the regional 

economic literatures over the past two or three decades (Anselin, 1998; Gezici and Hewings, 2007). 

Spatial econometrics is an applied field of econometrics that deals with sample data that is 

collected with reference to locations measured as points in space. What distinguishes spatial 

econometrics from traditional econometrics is that the locational data may be characterized by 

spatial dependence (autocorrelation) or spatial heterogeneity (LeSage and Pace, 2009). In 

neoclassical growth theory, economies are assumed to be independent; however, technological 

advances, labor and capital, and environmental policies in one economy might be transmitted to 

other economies. Ignoring spatial autocorrelation may lead to unreliable statistical inference if 

spatial dependence is present but omitted in the regression analysis of convergence. Recent 

advances in spatial econometrics have led to models that control for spatial autocorrelation both 
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in cross-sectional and panel data settings. Spatial autocorrelation can be an important factor in 

determining regional convergence. To wit, regional scientists often posit that the rates of economic 

growth are interdependent across regions due to (economic) spillover effects (Conley and Ligon, 

2002); therefore, a spatial, dynamic panel data framework seems appropriate because it controls 

for both time-invariant heterogeneity across regions and spatial autocorrelation between regions. 

The preponderance of empirical evidence on regional β-convergence is based almost exclusively 

on cross-sectional or panel data models without spatial effects. Arguably, regional data cannot be 

regarded as spatially independent because of the presence of similarities among neighboring 

regions, and as a result models without spatial effects may lead to biased estimates of the rate of 

convergence (Anselin, 1998). Even though the neoclassical economic model assumes perfect 

mobility of factors of production between economies, there may be significant adjustment costs or 

barriers to mobility for labor and capital. In cases where regions pursue their own growth 

promoting policies, there may be spillover effects from those regions to the adjacent regions. Thus, 

incorporating spatial effects into a dynamic panel data model may lead to more efficient estimates 

of the rate of convergence across provinces. 

Hence, the specific aim of this paper is to investigate the convergence of emission 

intensities among a panel of provinces in China over the period 1990-2010. We follow the work 

of Yu and Lee (2012) by adopting a spatial, dynamic panel data (SDPD) approach to analyze 

convergence. After controlling for spatial effects, we investigate how the estimated rate of 

convergence changes. Compared to previous studies, this study offers two unique contributions to 

the literature. First, we offer an analysis of the convergence of energy-related emission intensities 

at the province-level in China. It is difficult to compare total carbon dioxide emissions across 

provinces because of the variation in their size and economic activity, so we instead analyze 
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province-level emission intensities. Emission intensity normalizes emissions across provinces to 

offer a more compatible apples-to-apples comparison. From a policy sense, an analysis of emission 

intensity offers a more equitable measure for negotiating multilateral agreements. Second, we use 

a novel spatial, dynamic panel data model which includes both the individual effects and the spatial 

effects. By including the individual effects, we potentially avoid the omitted variable bias in the 

cross-sectional regression, and by including the spatial effects, we potentially avoid the omitted 

variable bias in the non-spatial, dynamic panel data regression. 

Based on the estimation results, we find evidence that CO2 emission intensities are 

converging across provinces in China. We also find that the rate of convergence is higher with the 

dynamic panel data model (conditional convergence) than with a cross-sectional regression model 

(absolute convergence). This result is consistent with the study of Islam (1995). The individual 

effects that are ignored in cross-sectional regressions potentially create omitted variable bias. The 

panel data framework arguably offers a more precise (efficient) rate of convergence. Finally, we 

find that province-level CO2 emission intensities are spatially correlated, and the rate of 

convergence, when controlling for spatial autocorrelation, is higher than with the non-spatial 

models. This result is consistent with the study of Yu and Lee (2012). According to past literature 

a significant factor in understanding economic growth convergence is through the persistent 

difference in levels of technology across regions (Krugman, 1987; Islam, 1995; Jones, 1997).  

Lesser differences in technology levels suggest that convergence would proceed at a faster rate. 

Our results imply that technological spillovers, embodied in both the unobserved individual effects 

and the spatial autocorrelation coefficient, have a direct effect on the rate of convergence of carbon 

intensity among provinces. 
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The rest of this paper is structured as follows. Section two introduces the data and 

methodology. Section three discusses the estimation results. Finally, section four offers 

conclusions and suggestions for future research. 

 

2 DATA AND METHODOLOGY 

2.1 Data 

This paper uses a panel data of China’s 30 provinces and municipalities for the period 1990-

2010 (Hong Kong, Macao, Taiwan and Tibet are not included due to lack of data). The Chinese 

Statistical Yearbook (CSY) and Chinese Energy Statistical Yearbook (CESY) have annual data on 

energy consumption and gross domestic products for all the provinces and municipalities (CESY, 

1991-2011; CSY, 1991-2011). However, the data set lacks any information on the province-level 

CO2 emissions.  

In this paper, we estimate the CO2 emissions for each province by following the revised 1996 

Intergovernmental Panel on Climate Change’s “Guidelines for National Greenhouse Gas 

Inventories” (IPCC, 1996). The Carbon Dioxide Information Analysis Center, within the U.S. 

Department of Energy (DOE), defines carbon dioxide emissions as a linear function of fossil fuel 

combustion and cement manufacturing (Boden, Marland, and Andres, 2013). More specifically, 

emissions are estimated by multiplying the amount of fuel usage by a thermal conversion factor as 

determined by the chemical properties of the fuel. Itkonen (2012) offers a simple explanation of 

how the energy emissions are estimated 

(1)             
2, ,oil coal gas flare

t oil t coal t gas t flare t tCO E E E E S             

where , , , 0oil coal gas flare     are the related thermal conversion factors. Different organizations, 

such as the DOE, the institute of Energy Economics of Japan, and the Energy Research Institute 
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of National Development and Reform Commission of China, calculate emissions differently, but 

the differences are often negligible. In this study, we choose coefficients reported by the Energy 

Research Institute of National Development and Reform Commission (NDRC) of China in 2003.  

Following the equation offered by Itkonen (2012), we calculate CO2 emissions based on the 

final energy consumption of three primary types of energy sources in China: coal, petroleum and 

natural gas. We assume that all carbon in the fuel is completely combusted and transformed into 

carbon dioxide.  

 

2.2 Regression Model 

2.2.1 Cross-Sectional Regressions Model 

 The traditional neoclassical cross-sectional regression model assumes that all regions or 

economies under consideration have the same steady state income path. In our particular case, this 

would imply that if provinces have similar technology and environmental policy, then higher 

emission intensity provinces’ emission should decrease faster than lower emission intensity 

provinces. The general cross-sectional regression model is given as follows 

(2)                                            
, , ,ln( ) ln( )i t i t i ty y      

,
 

where 
,i ty is the emission intensity for province i at initial time point t, 

,i ty 
is the emission 

intensity for province i at the end of time point, t  , and  is the time interval. That is, the 

regression estimates the rate of convergence of emission intensities over the time period [ ,  ]t t  . 

We assume that the rate of convergence, β, is defined by an exponential decay function as follows 

(3)                                                           e   . 
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If the regression yields an estimated coefficient, ̂ , that is within the interval 0 <  < 1 , then 

convergence to the steady state is direct and involves no oscillations. The parameter  is the 

implied rate of convergence, which can be calculated from the regression results as follows 

(4)                                                           ˆln( ) /    . 

 The term “cross-sectional regression” is often confused because there is a province-level 

index, i, and a time interval index,  , that are specified in (2). Such a specification makes it appear 

as if this is a panel data approach. However, the subscripts are for notational purposes only. A time 

interval is specified because the model uses the natural log of province-level emission intensity in 

the last year of the interval against the natural log of province-level emission intensity in the initial 

year of the interval. As the interval increases, the effect of the initial condition on the average 

growth rate declines (Barro and Sala-i-Martin, 2004). Within a large longitudinal or panel data set, 

one could in principal look at several different intervals across the full sample. Such procedures 

are often used to omit any trending or cyclical behavior within the data that may affect the 

convergence estimates. An example is provided by Barro and Sala-i-Martin (2004), in which the 

authors examine the convergence of personal income across U.S. states for the period 1980-2000. 

The authors then estimate beta convergence across eleven ten-year-intervals over the entire sample. 

There is no concrete method for choosing the length of each interval – the selection, although 

arbitrary, depends on the full sample size and the frequency of observations (i.e., daily, monthly, 

quarterly, or annually).  

As we mentioned above, it is important to investigate the spatial patterns that may indicate 

the spillover effects among regions. If we include the spatial lag of the dependent variable in the 

equation, then we derive the cross-sectional spatial autoregressive (SAR) model (Rey and 

Montouri, 1999) as follows 



11 
 

(5)                                 , , , ,

1

ln( ) ln( ) ln( )
N

i t ij i t i t i t

j

y W y y       



   
,

 

where  denotes the scalar, spatial autoregressive parameter on the dependent variable,  
ijW is the 

i, j-th element of a pre-specified nonnegative (N×N) spatial weighting matrix W. In this study, we 

choose a binary contiguity matrix, which is determined by observing whether regions share a 

common border. The elements of the spatial weight matrix are defined as: if two regions i and j 

are neighbors, then the matrix elements are 1ijW  , and 0ijW  otherwise. Consistent with the 

literature, we normalize the spatial weight matrix by performing row-standardization (LeSage and 

Pace, 2009). That is, the sum of elements
ijW  in each row equals one. This transformation of the 

spatial weight matrix provides for an intuitive explanation so that any variable pre-multiplied by 

the spatial weight matrix will represent a weighted average of the surrounding observations. 

 Furthermore, if we include both the contemporary spatial effects and the lagged spatial 

effects in the equation (Yu and Lee, 2012), then we would derive the spatial cross-sectional 

regression model 

(6)                 , , , , ,

1 1

ln( ) ln( ) ln( ) ln( )
N N

i t ij i t i t ij i t i t

j j

y W y y W y        

 

     
,

 

where  is spatial autocorrelation coefficient on the initial emission intensity levels.  

Overall, since there are no controls on province-level heterogeneous fixed effects in the 

above cross-sectional regression and spatial regression models, the estimates are interpreted as 

absolute convergence. 
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2.2.2 Dynamic Panel Data Model 

 As Quah (1993) points out, the traditional cross-sectional approach does not reveal the 

dynamics of the growth processes. In response, Islam (1995) proposed a panel data approach to 

study growth convergence. The motivation for the panel data approach is to capture the differences 

across regions or countries. The unobserved differences such as preferences and technology are 

not easily measurable, so they can be treated as unobserved individual effects in a panel data 

regression context (Hsiao, 2002). The general econometric specification of a dynamic panel data 

model is given as follows 

(7)                                            
, , 1 ,ln( ) ln( )i t i t i i ty y    

,
 

where i denotes the individual effect for each province. To avoid confusion between the cross-

sectional models in the previous subsection, we use the subscript  i to denote each region and t to 

denote each time period. Note the contrast between  in the previous subsection and t in the 

current subsection. With the approach in this subsection, we examine beta convergence within a 

longitudinal or pooled data set. It should be noted that in principle one could examine the panel 

data within intervals as well. 

 Even though the dynamic panel data model could reveal the dynamic growth process, there 

are may be spillover effects from one region to the adjacent regions. For example, technological 

diffusion and environmental policies may follow a spatial pattern as regions may have different 

capacities to create or absorb new technologies and policies. Therefore, our modeling approach 

seeks to control for spatial autocorrelation within a dynamic panel data framework. 

 Similar to the cross-sectional model, if we include the spatial lag of the dependent variable 

in the equation, then we derive the dynamic panel SAR model as follows 
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(8)                                 , , , 1

1

ln( ) ln( ) ln( )
N

i t ij i t i t i it

j

y W y y   



   
.

 

 Further, if we include both the contemporary spatial effects and the lagged spatial effects 

in the equation, then we derive the spatial dynamic panel data model as follows 

(9)                  , , , 1 , 1

1 1

ln( ) ln( ) ln( ) ln( )
N N

i t ij i t i t ij i t i it

j j

y W y y W y     

 

     
.

 

While the cross-sectional estimates might be better interpreted as rates of absolute 

convergence, those of the panel models can be interpreted as the rates of conditional convergence. 

Conditional convergence is interpreted as convergence after differences in the steady states across 

different regions have been controlled for; i.e., by controlling for the heterogeneous fixed effects,

i . 

 

3 ESTIMATION RESULTS 

In this study, we divide the entire sample into several shorter time intervals. As Islam (1995) 

argued, one can use a time span for just one year, which is technically feasible given that the 

underlying data set is offered annually. However, yearly time spans are generally too short to be 

appropriate for studying growth convergence. In other words, short-term disturbances may loom 

large in such brief time spans. Additionally, by considering the spatial effects, a shorter time span, 

such as one or two year span may be inappropriate because the spillover effects (such as 

technological spillovers) might take several years to propagate across regions. Hence, we choose 

five-year time intervals as is done in Islam’s (1995) use of the dynamic panel data approach and 

in accordance with China’s “Five-Year Plans”; i.e., 5  . Therefore, we use the corresponding 

years for our analysis: 1990, 1995, 2000, 2005, and 2010. Following Yu and Lee (2012), we also 
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estimate the model with four-year intervals to check whether the results are robust to different time 

interval specifications. 

 

3.1 Empirical Results Using Cross Sections 

In this section, we estimate the single cross-sectional regression model for the entire sample 

period, and estimate pooled cross-sectional regression models with five-year and four-year 

intervals. For the single cross-sectional regression model, we regress 2010ln( )y on 1990ln( )y . For the 

five-year spans, we regress 2010ln( )y on 2005ln( )y , 2005ln( )y on 2000ln( )y , 2000ln( )y on 1995ln( )y , and 

1995ln( )y on 1990ln( )y . Consistent with Yu and Lee (2012), we then construct the mean value of 

convergence based on all of the regressions. We also present the parameter estimates for the four-

year interval specification. The results of the cross-sectional regression without spatial effects is 

presented in Table 1. 
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Table 1. Cross-Sectional Regression without Spatial Effects 

 

From the table, we find that the coefficients of the initial emission intensity are positive 

and significant for both the single cross-sectional regression and the pooled regressions, and the 

values are all between zero and one. These results imply that CO2 emission intensities are 

converging across provinces in China. For the entire sample period specification, the implied rate 

of convergence is 0.0292 for the single cross-sectional regression. The five-year and four-year 

interval specifications yield estimated rates of convergence of 0.0236 and 0.0229, respectively. 

Therefore, the pooled cross-sectional regression yield similar results to the single cross-sectional 

results. 

(              )

-0.6556 0.5574*** 0.0292

(-1.6762) (3.4738) (τ=20)

-0.2594 0.8350***

(-1.4281) (11.2043)

-0.0663 0.7837***

(-0.4208) (8.9314)

-0.0911 0.9617***

(-0.6071) (8.7389)

-0.4482 0.9753***

(-4.2141) (11.4824)

-0.2162 0.8889*** 0.0236

(-1.6675) (10.0893) (τ=5)

-0.3773* 0.9659***

(-1.8758) (11.7057)

0.1381 0.6886***

(0.9151) (9.1389)

-0.0475 0.8615***

(-0.3883) (10.7684)

-0.3486** 1.1367***

(-2.7464) (11.5074)

-0.2644*** 0.9096***

(-2.8595) (11.4108)

-0.1800 0.9125*** 0.0229

(-1.3910) (10.9063) (τ=4)

Single Cross 

Sectional Regression
1990-2010 0.3012

1990-1995 0.8176

1995-2000 0.7402

Period Constant β R
2

1994-1998 0.7400

1998-2002 0.7986

0.7998

0.7786

2000-2005 0.7317

2005-2010 0.8248

1990-1994 0.8243

2002-2006 0.8192

2006-2010 0.8167

Pooled Regression 

with 4 Year Intervals

Joint 

subperiods

Pooled Regression 

with 5 Year Intervals

Joint 

subperiods

e  Implied 

Implied 

e  
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 Table 2 reports the estimation of the cross-sectional SAR model. As revealed in the table, 

the single cross-sectional regression yields a rate of convergence of 0.0345 for the entire sample 

period. And by using five-year and four-year intervals, the estimated rates of convergence are 

0.0167 and 0.0217, respectively. Therefore, these regressions yield similar rates of convergence 

as the non-spatial models.  

Table 2. Cross-Sectional Regression with Contemporary Spatial Effects 

 

Table 3 presents the results which include both contemporary spatial effects and lagged 

spatial effects. The estimated rates of convergence in this single cross-sectional regression is 

0.0380, and the estimated rates of convergence are 0.0185 and 0.0239 for the pooled cross-

(              )

-0.6237* 0.5001*** 0.1470 0.0345

(-1.6595) (2.8826) (0.6299) (τ=20)

-0.2596 0.8386*** -0.0047

(-1.4658) (6.9081) (-0.0322)

-0.0222 0.8469*** -0.1179

(-0.1392) (7.0515) (-0.7597)

-0.0212 1.0279*** -0.1339

(-0.1241) (8.3092) (-0.8666)

-0.4598*** 0.9656*** 0.0320

(-4.0914) (10.5532) (0.8111)

-0.1907 0.9198*** -0.0561 0.0167

(-1.4551) (8.2055) (0.2119) (τ=5)

-0.3787* 0.9048*** 0.0759

(-1.9481) (6.6889) (0.5227)

0.1002 0.6229*** 0.1119

(0.6269) (5.9696) (0.7647)

0.0733 1.0024*** -0.2659**

(0.5988) (9.8712) (-2.0530)

-0.3557** 1.1304*** 0.0140

(-2.5253) (10.1898) (0.1074)

-0.2467** 0.9234*** -0.0450

(-2.2923) (10.6697) (-0.3154)

-0.1615 0.9168*** -0.0204 0.0217

(-1.1080) (8.6778) (-0.1947) (τ=4)

Single Cross 

Sectional Regression
1990-2010 0.2915

1990-1995 0.8111

1995-2000 0.7476

Period Constant β ρ R
2

0.7745

2000-2005 0.7205

2005-2010 0.8188

1990-1994 0.8229

2002-2006 0.8197

2006-2010 0.8163

1994-1998 0.7432

1998-2002 0.8265

0.8057

Pooled Regression 

with 5 Year Intervals

Pooled Regression 

with 4 Year Intervals

Joint 

subperiods

Joint 

subperiods

e  Implied 

Implied 

e  
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sectional regressions with five and four year intervals. These regressions also yield similar rates 

of convergence with the non-spatial model and cross-sectional SAR model. 

Table 3. Cross-Sectional Regression with Contemporary Spatial Effects and Lagged Spatial 

Effects 

 

However, the spatial effects in Table 2 and Table 3 are not significant. This might be due 

to omitted individual or heterogeneous effects. In a cross-sectional regression framework, it is 

difficulty to account for unobservable or unmeasurable factors such as preferences and technology. 

Omission of such factors may lead to biased estimated rates of convergence. In the following 

section we extend the analysis to include the individual effects within a spatial, dynamic panel data 

(              )

-0.6219* 0.4673** 0.1380 0.0350 0.0380

(-1.6581) (2.4667) (0.5910) (0.5187) (τ=20)

-0.2569 0.8159*** -0.0139 0.0286

(-1.4737) (6.5032) (-0.0954) (0.9117)

-0.0226 0.8471*** -0.1149 -0.0018

(-0.1411) (6.7522) (-0.7356) (-0.0384)

-0.0213 1.0299*** -0.1319 -0.0042

(-0.1242) (8.0261) (-0.8272) (-0.0583)

-0.4755*** 0.9531*** -0.0129 0.0553

(-4.1993) (10.2716) (-0.0940) (0.8599)

-0.1941 0.9115*** -0.0684 0.0195 0.0185

(-1.4846) (7.8883) (-0.4447) (0.4381) (τ=5)

-0.3789* 0.9111*** 0.0719 -0.0030

(-1.9480) (6.6279) (0.4929) (-0.0841)

0.0968 0.6092*** 0.1019 0.0233

(0.6118) (5.6640) (0.6916) (0.5844)

0.0757 0.9854*** -0.2849** 0.0318

(0.6279) (9.4548) (-2.2059) (0.7511)

-0.3572** 1.1245*** 0.0049 0.0152

(-2.5345) (9.7909) (0.0371) (0.2256)

-0.2532** 0.9145*** -0.0710 0.0336

(-2.3333) (10.1748) (-0.4804) (0.4632)

-0.1634 0.9089*** -0.0354 0.0202 0.0239

(-1.1152) (8.3424) (-0.2929) (0.3880) (τ=4)

Period Constant β ρ λ R
2

Pooled Regression 

with 4 Year Intervals

1990-1994 0.8165

2002-2006 0.8131

Single Cross 

Sectional Regression
1990-2010 0.2985

Pooled Regression 

with 5 Year Intervals

1990-1995 0.8093

1995-2000 0.7379

Joint 

subperiods

Joint 

subperiods

2006-2010 0.8100

1994-1998 0.7365

1998-2002 0.8247

0.8000

0.7685

2000-2005 0.7103

2005-2010 0.8166

Implied 

Implied 

e   e  
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model and compare the previous results with the estimated rates of convergence from the spatial 

dynamic panel data model. 

 

3.2 Empirical Results Using Dynamic Panel Data 

According to Barro and Sala-i-Martin (2004), one advantage of panel data over cross 

sections is that one does not need to hold constant the steady state growth level because it is 

implicitly estimated using fixed effects. One potential problem with panel data models is that one 

needs a sufficiently large amount of time series observations in order to overcome dynamic panel 

data bias (Nickell, 1981; Judson and Owen, 1999). Dynamic panel data bias occurs when a lagged 

dependent variable is specified on the right hand side of the regression and the panel does not 

contain enough time series observations. To help ensure that we are getting efficient estimates of 

the speed of convergence, we use the bias-corrected least squares dummy variable (LSDVC) 

model. Judson and Owen (1999) showed that the LSDVC model provided the least biased 

estimates of the coefficient on the lagged dependent variable. The results presented in this section 

are the bias-corrected results. 

The results of the dynamic panel data model without spatial effects are presented in Table 

4. Here, we see that the estimated rate of convergence is 0.1787 for the five year spans, and is 

0.1403 for the four year spans. They are larger than the cross-sectional estimates of 0.0236 and 

0.0229 in Table 1. Hence, after controlling for the unobserved individual effects, we have a higher 

rate of convergence. 
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Table 4. Dynamic Panel without Spatial Effects 

  

 

Table 5. Dynamic Panel with Contemporary Spatial Effects 

 

The results for the dynamic panel SAR model and the SDPD model are summarized in 

Table 5 and Table 6, respectively. We find that the spatial effects are positive and statistically 

significant in Table 5 and Table 6. This implies that province-level CO2 emission intensities are 

spatially correlated in China and suggest that we should consider the spatial correlation in the 

growth regressions; otherwise there might be omitted variable bias due to excluding the spatial 

effects.  

Table 6. Dynamic Panel with Contemporary Spatial Effects and Lagged Spatial Effects 

 

(              )

5 Year Intervals 0.4092** 0.1787

(17.1500) (τ=5)

4 Year Intervals 0.5706** 0.1403

(16.4400) (τ=4)

β R
2

0.8552

0.8971

Implied 

e  

(              )

5 Year Intervals 0.3959*** 0.4570*** 0.1853

(5.9401) (5.3752) (τ=5)

4 Year Intervals 0.5081*** 0.3799*** 0.1693

(8.1268) (5.0551) (τ=4)
0.9155

ρβ R
2

0.9037

Implied 

e  

(              )

5 Year Intervals 0.3847*** 0.4450*** 0.0217 0.1911

(3.6918) (4.4751) (0.1688) (τ=5)

4 Year Intervals 0.4416*** 0.3010*** 0.1423 0.2043

(5.1105) (3.0026) (1.2042) (τ=4)

0.9035

0.9153

λβ ρ R
2

Implied 

e  
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Strangely, the results for the dynamic spatial panel data model provided statistically 

insignificant estimates on the parameter of the temporally and spatially lagged autocorrelation 

coefficient,  , in Tables 3 and 6. Since we used four- and five-year interval specifications (which 

may cause this lack of significance because we are filtering out economic cycles), we tested the 

model by using the full data set (i.e., we used one year time intervals), but we found similar results 

that  is still insignificant (results not provided), which implies the insignificance is not due to 

the interval specification. A possible explanation for the lack of statistical significance of  is that 

each province implements short-run strategies to reduce emission intensity to comply with 

pressures from the national government. This is further reinforced by the significance of  , which 

is the parameter on the contemporaneous spatially lagged dependent variable. These parameters 

suggest perhaps that provinces are adopting short-run measures to ease emission intensity, which 

explains the evidence of spatial dependence found with the significance of contemporaneous 

spatially lagged variable. The lack of significance of  may suggest that individual provinces are 

adopting different medium-run strategies or policies to reduce emission intensity. If the medium 

run strategies are not uniform across provinces then we would not expect to see evidence of spatial 

spillovers in the temporally and spatially lagged dependent variable. This may also imply that 

provinces are endogenously enforcing rules to improve the environmental quality, which is found 

by Wang and Wheeler (1999). In our case, this suggests that medium-run, province-level policies 

to reduce carbon emission intensities are not uniform.  

For the dynamic panel SAR model, the rate of convergence of the five-year and four-year 

spans are 0.1853 and 0.1693, respectively, which are larger than the cross-sectional estimates of 

0.0167 and 0.0217 in Table 2. For the SDPD model, the rate of convergence of the five year and 

four year spans are 0.1911 and 0.2043, respectively, which are also larger than the cross-sectional 
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estimates of 0.0185 and 0.0239 in Table 3. Therefore, estimated rate of convergence is higher with 

the dynamic panel data than the cross-sectional regression. We can also interpret this as the rate of 

conditional convergence is higher than the absolute convergence. 

After considering the spatial effects, the rate of convergence of the dynamic panel SAR 

model and the SDPD model with five-year intervals are 0.1853 and 0.1911, which are larger than 

the rate of convergence of the non-spatial panel data model. We similar results with the four-year 

intervals as well. Therefore, it appears that technological spillovers are reducing the persistent 

technological differences among the provinces, and thus leading to a faster rate of convergence. 

 

4 CONCLUSIONS 

In this paper, we analyzed the provincial convergence of CO2 emission intensity in China. 

We proposed a spatial dynamic panel data approach that controls for both time and space – this 

differs from the conventional panel date convergence literature which does not control for spatial 

autocorrelation. By using a spatial dynamic panel data model we potentially avoid omitted variable 

bias if the underlying data are characterized by spatial dependence. 

The findings of the province-level convergence of CO2 emission intensity imply that the 

provinces with high emission intensity and provinces with low emission intensity are tending to 

convergence to the same steady state equilibrium over time. In other words, the province-level 

disparity of CO2 emission intensity is gradually shrinking over time, which implies that the 

differences in technology are becoming less persistent across provinces. 

By controlling for the heterogeneous effects and spatial effects, we are potentially 

controlling for tangible and intangible factors such as energy consumption, technology, and the 

province’s energy infrastructure. Improvements in these factors may have direct positive effects 
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on the provinces’ short-run emission intensity level. After controlling for individual and spatial 

effects, the higher estimated rate of convergence suggests that technological spillovers have an 

effect on the rate of convergence of carbon intensities in China.  

The statistically significant spatial autocorrelation suggests that, while provinces may be 

converging to a unique steady state equilibrium, they do not do so independently but rather tend 

to display movements similar to their regional neighbors. The results from the spatial, dynamic 

panel data model suggest that own-province policies may have an effect on neighboring provinces 

and vice versa in the short run, but not necessarily in the medium/long run. The lack of statistical 

significance of spatial effects in the long run suggests that provinces are not adopting uniform 

policies to mitigate carbon dioxide emissions intensities.  

A potential limitation within this study is due to the relative short nature along the time 

dimension of our data set. The natural process of convergence can take several decades if not 

longer to play out. Unfortunately, our data is limited to that which is provided by the Chinese 

government. Given China’s rapid economic advancements, our results are perhaps telling of an 

initial sign of convergence, which suggests that provinces may have an easier task of negotiating 

coordinated emission reduction targets in the future. As additional data comes available it will be 

important for future studies to examine this relationship further in China. 
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