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Systemic Risk in Wheat Yields ∗

Ashley Hungerford

May 19, 2014

Abstract

In 2011 and 2012 severe droughts caused extensive damage in crops through-
out the Midwest. These conditions combined with concerns for climate change
have led to a growing focus on risk management in agriculture. The increasing
emphasis on risk management is reflected in the 2014 Farm Bill, which replaces
direct payments with shallow loss programs. For this paper we turn our atten-
tion to winter wheat production in Kansas and explore the ratings of the crop
insurance policies as well as predicted payouts from the new Agricultural Risk
Coverage program established under the 2014 Farm Bill. Using spatial models
we simulate yields of non-irrigated winter wheat and irrigated winter wheat to
estimate crop insurance premium rates as well as payouts from the Agricultural
Risk Coverage program.

Introduction

In 2011 and 2012 severe droughts caused extensive crop damage throughout the

Midwest. During 2011 stories flooded news networks of cattle ranchers being

unable to feed their herds due to the shortage of feed. The following year

proved to be disastrous as well. The loss cost ratio (LCR)1 for corn in 2012 was

2.82, which translates to $12.7 billion of indemnity payments paid to producers

(Summary of Business, 2014). These recent events combined with concerns for

climate change have led to a growing focus on risk management in agriculture.

∗Do not cite without author’s permission.
1This ratio is indemnity payments divided by premiums.
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The increasing emphasis on risk management is reflected in the 2014 Farm Bill,

which replaces direct payments with shallow loss programs.

For this paper we turn our attention to winter wheat production in Kansas.

Historically, the majority of winter wheat production in Kansas has been pro-

duced without irrigation, also known as dryland production. Although dryland

wheat production is typically more cost-effective than irrigated production, if

a drought strikes Kansas irrigation could not be used as a means of mitigating

damages. Currently, irrigated wheat and dryland wheat have different bench-

mark yields for crop insurance guarantees, but these benchmarks do not account

for differences in the variances or correlations of yields caused by the different

practices. If differences in variances and correlations are not properly accounted

for in insurance ratings, premiums will be inaccurate due to incorrect probabil-

ities and expected loss estimates.

Using spatial models for winter wheat yields in Kansas, we investigate the

ratings of the crop insurance policies as well as expected payouts from the Agri-

cultural Risk Program established under the 2014 Farm Bill. We model irrigated

winter wheat and dryland wheat separately since these practices have different

benchmarks. The data is censored because some counties during certain years

did not plant winter wheat. For this reason we use a Bayesian version of a tobit

model. This model allows us to estimate the probability of an observation be-

ing censored. Also we look for changes in the spatial relationship among county

yields since yields tend to be more spatially correlated during times of drought

or other natural disasters.
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Risk Management in Agriculture

The Federal Crop Insurance Corporation (FCIC) underwrites crop insurance

policies, which are then sold by private firms, called Approved Insurance Providers

(AIPs), to producers. These policies insure producers against any form of nat-

ural disaster that affect crop production. Policy guarantees are typically based

on revenue or yield. Common coverage levels are 65% and 75% although some

crops/areas may be insured at 85% coverage. The Standard Reinsurance Agree-

ment developed by the Risk Management Agency (RMA) of the United States

Department of Agency (USDA) determines the share of losses paid by the AIPs

and the share losses paid by the FCIC. For a list of policies underwritten by

the FCIC refer to Table 1. The most popular of these policies in Revenue

Protection, which makes up over 80% of all crop insurance policies.

The current methodology for rating COMBO2 policies is outline by Coble

et al. (2010). COMBO insurance ratings begin with the calculation of the

unloaded target rate, which is a function of loss cost ratios (LCRs) for the county

of interest and its neighboring counties. The loss cost ratio for a county is ratio

of the indemnity payments paid to producers over the premiums collected for

the given county. This rate is the anchor rate for insurance policies within the

county. The rate is referred to as “unloaded" because it is calculated without

the highest 10% of losses for the counties. These large losses are accounted for

in the catastrophic loading. The unloaded target rate is a weighted average of

the historical LCRs of the county and its neighbors, weights are calculated with

the Bühlmann method, which is defined as

R = ZX + (1− Z)µ (1)

where

Z =
P

P +K

2COMBO is an umbrella term for yield-based and revenue-based policies.
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and

1. R: county unloaded target rate

2. Z: Bühlmann credibility factor

3. X: sample mean of the county of interest

4. µ: the mean of the adjusted LCR of the county group

5. P: exposure units

6. K = ν/α

(a) ν is the sample variance of the adjusted LCR for the county of interest.

(b) α is the sample variance of the adjusted LCR for the county group.

Once the unloaded target rate has been established, COMBO policies are

rated with the Iman Conover (1982) procedure. The Iman Conover procedure

generates correlated random draws of yields for a given county and price devi-

ates. These correlated random draws of yield and price deviates are then used

to establish then premium rate for 65% coverage. The premium rate is the

expected loss divided by liability, which can be defined as E(Y |Ŷ )/(λŶ ) − 1,

where Y is the realized yield, Ŷ is the predicted yield, and λ is the coverage

level (Goodwin and Ker, 1998).

Disaster assistance for farmers was first established in 1938. For many years

crop insurance was offered for only a few crops and remained rather experi-

mental. However, modern day crop insurance was established by the Federal

Crop Insurance Act of 1980. The legislation created the Federal Crop Insurance

Corporation under the jurisdiction of the Risk Management Agency. Also the

Federal Crop Insurance Act of 1980 permitted 30% of premiums to be subsi-

dized for 65% coverage policies (History of Crop Insurance Program, 2014). The

federal crop insurance program floundered through the 1980s and was on the

brink of extinction in the early 1990s, the program was revitalized by the Fed-

eral Crop Insurance Reform Act of 1994 (Glauber, 2004) . This new legislation

permitted premium subsidies for higher coverage levels, created catastrophic

(CAT) coverage, and made program participation mandatory. However, the
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mandatory participation requirement was repealed in 1996. The 2000 Farm Bill

has allowed for private entities to carry out research and create new insurance

products through a partnership with RMA (History of Crop Insurance Program,

2014). The most recent agriculture legislation, 2014 Farm Bill, made notably

changes involving RMA.

One characteristic that sets crop insurance apart from other non-life in-

surance is the potential for systemic risk. Systemic risk is the risk of losses

occurring simultaneously and dependently, such as in the event of a natural dis-

aster. Natural disasters require insurance firms to possess very large reserves of

capital or reinsurance. Jaffe and Russell (1976) conjectured that large reserves

of capital would cause a firm to be susceptible to hostile takeovers. Miranda and

Glauber (1997) as well as Goodwin (2001) present arguments for the importance

of incorporating the potential of systemic risk into crop insurance portfolios. In

2012 crop insurance indemnity payments over all crops totaled $17.4 billion,

which amounted to a loss cost ratio of 1.57 (Summary of Business, 2013). With

nearly $116 billion in liabilities for 281 million acres, not including livestock,

the Federal Crop Insurance Corporation claims that private firms would not be

able to fully bear the risk of a catastrophe such as the 2012 drought. Therefore,

according to the FCIC, the Standard Reinsurance Agreement (SRA), which

allows private insurers to share risk with the FCIC ,is necessary.

In the last decade there has been reoccurring concern about crop insurance

policies being inconsistently rated for different regions and crops. Babcock et.

al (2004) criticized the assumption of constant relative risk, in other words

when the loss cost ratio remains constant over time. Woodard et. al (2011)

demonstrated that the using the loss cost ratio to determine crop insurance

premiums is only unbiased when the assumption of constant relative risk is

not violated. They found there was an upward bias in estimates when this
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assumption was violate.

Title I and Title XI of the 2014 Farm Bill focuses on risk management strate-

gies and has eliminated direct payments, counter-cyclical payments, and the Av-

erage Crop Revenue Election (ACRE) program. These programs are replaced

by the Price Loss Coverage (PLC) program and the Agriculture Risk Coverage

(ARC) program. Farmers can choose to enroll into one of these two programs.

The PLC program pays out the difference between the market price and the

reference price3 multiplied by 85% of the base acres. The ARC program guar-

antees can either be based on individual producer revenues or county revenues.

Pay outs occur if the producers’ revenue drops below 86% of the benchmark

revenue. Then producers are paid the different between the actual revenue per

an acre and the guarantee multiplied by 85% of the base acres. The benchmark

revenue is generated from the 5-year Olympic average of yields and the 5-year

Olympic average4 of the national price. Benchmark revenues for irrigated and

dryland crops are calculated separately. The 2014 Farm Bill’s shift towards

these new programs in place of direct payments and countercyclical payments

is a cause to further examine the risk associated with yields (Agricultural Act,

2014).

Data

Yields for winter wheat measured in bushels per an acre were collected from

the National Agricultural Statistical Services over the sample period 1970 -

2013. These yields are aggregated at the county level and grouped by irrigation

practices: dryland (non-irrigated) and irrigated. All 105 counties of Kansas

produced dryland winter wheat during the sample period, and 67 counties of

3The reference price for wheat is $5.50 per bushel.
4Olympic average eliminates the highest and lowest values then averages the remaining values.
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Kansas produced irrigated wheat. There are years during the sample period

without production for both dryland wheat and irrigated wheat; therefore, our

modeling needs to account for this censoring. Figure 1 shows the number of acres

planted for both dryland winter wheat and irrigated winter wheat in Kansas.

Here we see the majority of winter wheat is produced without irrigation, which

is true for winter wheat production throughout the United States. Figure 3

shows a slightly increase in mean yield of winter wheat for the entire state over

the sample period; however, when the yields are dis-aggregated into counties,

the trend is not significant in parametric or non-parametric regression.

Since 80% of the crop insurance policies are revenue based, we need prices

to simulate premiums. Wheat futures contract prices were collected from the

CBOT and cash prices for Kansas wheat were collected from the National Agri-

cultural Statistical Service. The futures contract were priced in September and

expired in July of the following year. The cash prices were the averages for

transactions in July. We use the September quotes because the projected price

for winter wheat is announced on September 30. Related to the price announce-

ment, September is the month when winter wheat is planted in Kansas. Also

we use the July expiration date and cash prices from July because most of the

winter wheat in Kansas is harvested from late June to mid July.

Methodology

Model for Censored County Yields

Because the dryland and irrigated yield data have years without production,

we utilize a Tobit-like Bayesian model. Tobit models (Tobin, 1958) assume the
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data have a latent variable y∗ driving the observation y, such that

yit =















Bit(β0 +
∑P

j=1
βjxj,it + ǫit) if y∗it > c

Bit if y∗it ≤ c

, (2)

for County i = 1, . . . , N during Year t = 1, . . . , T . c is a constant threshold,

and ǫit
i.i.d
∼ N(0, σ2). Bit = I(c > 0), where I(·) is the indicator function. If a

response variable has the form described in Equation 2, it is called a censored

variable. Censoring may be a result from sampling methods or the nature of

the data. For example if an individual is below the age of 65, single, and makes

less than $10,000, he does not have to file a tax return; therefore, his income

could appear to be $0 to somebody investigating tax return data. Equation

2 and the example above show right-handed censoring because values below a

particular threshold are censored. When values of above a certain threshold are

censored, this is called left-handed censoring. An example of left-handed cen-

soring could be caused by instrument that cannot exceed a particular threshold,

such as physician’s scale, which typically has a weight limit of approximately

400 pounds.

The likelihood function for the tobit model is

N
∏

i=1

T
∏

t=1

(

1

σ
φ

(

yit − xitβ

σ

)

)M(

1− Φ

(

xitβ

σ

)

)M−1

, (3)

where M = 1 if yit = y∗it and 0 otherwise, φ(·) is standard normal probability

density function, and Φ(·) is standard normal cumulative density function.

The difference between a typical tobit model and our model is the estimation

of a logit link as well as the estimation of the normal regression truncated at

zero. The logit link is used to predict whether or not the observation yit will

be censored, while the truncated normal regression predicts the values of the
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yields when the observation yit is not censored.

The variable Bit ∼ Ber(Pit ; therefore, Bit can be modeled using a logit

link function. For the logit link function, we surmise that the year, location,

and the September futures contract price may affect whether the observation is

censored or not. The form of the logit link is

logit(Pit) = αi,0 +

B
∑

j

αjxjt (4)

for County i = 1, . . . , N and Year t = 1, ..., T . (α1,0, . . . , αN,0) ∼ CAR(µ, τ)

for its prior distribution. CAR(µ, τ) is the abbreviation for the Conditional

Autoregressive model, which is a spatial distribution. The mean (or intercept in

our model) of one county is dependent or conditional on the means (intercepts)

of other counties and is conditioned on “surrounding" counties. ‘Surrounding"

can be defined by distance or contiguity. In this model, we choose contiguity

over distance since the counties greatly vary in size and shape.

The prior distribution of the coefficients on the September futures con-

tract prices and the years are both normal distributed. Using the notation

of N(µ, σ2), the prior distributions of the covariates can be written as αj ∼

N(0, 100).

The normal regression truncated at zero has the form

yit = βi,0 + βi,1zit (5)

for County i = 1, . . . , N and Year t = 1, ..., T . (β1,0, . . . , βN,0) ∼ CAR(µ, τ) for

its prior distribution. The same prior distribution is used for (β1,1, . . . , βN,1).
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The covariate zit is a binary covariate defined as

zit =















0 if yit > θmi

1 if yit ≤ θmi

, (6)

where mi is the median yield for County i = 1, . . . , N . The purpose of the

covariate zit is to capture changes in spatial dependencies that occur at lower

yields. As Goodwin (2001) demonstrated, yields across space during droughts or

other natural disasters have stronger dependencies compared to yields during

normal years. The prior distribution of θ is a truncated normal distribution

N(1, 1
9
, 0, 2). Note the notation of the truncated normal is N(µ, σ2, a, b), where

µ is the mean, σ2, a is the lower limit, and b is the upper limit.

This model for censored county yields is used to simulated yields for the risk

management application of this paper. Note that we do not employ the same

simulation technique used in classical statistical statistics instead we use poste-

rior predictive sampling. In classical statistics one typically uses the maximum

likelihood estimates in the sampling distribution to make random draws from

the sampling distribution. Posterior predictive sampling differs from the sam-

pling in classical statistics. Posterior predictive sampling is a two part process.

Since Bayesian methods treat parameters as random variables, the first part of

posterior predictive sampling is drawing parameters from the posterior distribu-

tion. The sample of parameters drawn from the posterior distribution are then

used in the sampling distribution to draw random samples of observations.

Prices

For the simulated revenues used in the premium ratings, we need to generate

prices that are correlated with the yields. After obtaining a posterior predic-

tive sample of county yields from the model described above, these yields are
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averaged to compute the state yield average. This state yield average is then

regressed against log difference of the September futures contract prices and the

July cash price. Prices are then generated from pt = wt−1exp(rt), where pt is the

cash price for Year t, wt−1 is futures contract price, and rt ∼ N(ω0 + ω1yt, σ
2
r ).

Note yt is the state yield for Year t. The use of log-normal distributions for

price differentials is common in crop insurance ratings.

Computations are performed using the software R, and the Bayesian models

are implemented using the software package R2OpenBUGS.

Risk Management Application

In non-life insurance applications, there are several measures of interest: 1.) the

probability of a loss, 2.) the expected loss, i.e. the actuarially-fair premium,

and 3.) the premium rate. These values can be found through the Monte Carlo

integration. As shown by Goodwin and Ker (1998), the probability of a loss is

defined as P (y < C · Y ∗) = 1

M

∑M
i=1

I(ỹi < C · Y ∗), where C is the coverage

level, Y is the expected yield or revenue, ỹi is the ith simulated yield or revenue,

M is the number of replications, and I is an indicator function. The expected

loss is defined as the E(L) = P (y < C · Y ∗) × E(C · Y ∗ − y|(C · Y ∗ − y) > 0),

where L is the difference between the guarantee and the actual yield or revenue.

Finally, the premium rate can be determined by dividing the expected loss by

the liability, which is C · Y ∗.

We simulate prices and yields to rate Group Risk Income Protection policies

with the Harvest Price Option (GRIP-HPO) as well as estimate payouts for the

new Agricultural Risk Coverage program based on county yields. The rate for

the GRIP policy with the Harvest Price Option is referred to as the “HP Rate".

We estimate the “HP" rate because the majority of revenue plans purchased

include the Harvest-Price Option. The summary of Harvest Price Option and
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the GRIP policy are included in Table 1. The Group Risk Income Protection

policy is rated similarly to the methods discussed by Coble el al. (2010), which

described in detail the rating of COMBO insurance plans5. The rate for the

Group Risk Income Protection with the Harvest Price Option is defined as

HP Rate =
∑

10000

i=1
max(0, C · Y ·min(2 · P,max(P, p̃))−max(0, (yi · σ̃y + µ̃y) ·min(2 · P, p̃)))

10000 · Y · C · P
,

(7)

where Y is the actual production history (APH) yield, P is the September fu-

tures contract price of wheat in 2013, C is the coverage level, ỹi is the simulated

yield and p̃ is the simulated price. Note that for the Harvest Price Option if the

harvest price exceeds twice the September price, 2 · (September price) is used in

place of the harvest price. We estimate the 65%, 75%, and 85% coverage levels.

For the simulations of the Agricultural Risk Coverage program, we simulate

county yields and prices for 2009 to 2013. Then the Olympic averages for each

county and the prices are calculated. This process is repeated 10000 times to

create distributions for the Olympic averages of county yields and the price.

Unlike with the GRIP plan, there is only one coverage level, which is 86%.

Using the simulated Olympic averages of yields and prices, we determine the

probability of a payout from the program and the expected payout for each

county in 2014.

Results

To help determine the best fitting models for dryland and irrigated wheat yields,

the Deviance Information Criterion (DIC) is calculated for each model version.

5COMBO insurance is the umbrella term used to describe yield and revenue based crop insurance

policies.
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DIC is a Bayesian measure similar to AIC. Like AIC lower measures of DIC

indicate a better fit, and the measure penalizes additional parameters. Table 2

shows the DIC for the dryland and irrigated wheat models, where the covariates

of the logit link differ. For the logit links of both dryland wheat and irrigated

wheat, the covariates Year and September price affect censoring. The location

of the county does not seem to affect the censoring of dryland yields, but the

location of the county does affect the censoring of irrigated yields. Figure 6

shows the prior and posterior distributions for the parameter θ of dryland wheat

and irrigated wheat. The median of the parameter θ is 1.167 for dryland wheat

and 1.039 for irrigated wheat. For dryland wheat the DIC for the model is

28070 when the covariate zit is included and 32280 when the covariate zit is not

present. For irrigated wheat the DIC for the model is 16090 when the covariate

zit is included and 17820 when the covariate zit is not present. Therefore we

find that within our framework county yields are best described using not only

spatial intercepts, but also including a secondary spatial covariate for yields for

under θmi. Due to the short length of the time series of yields, identification of

more spatial covariates is not feasible.

The posterior distributions of the parameters in the logit links of dryland

and irrigated wheat differ substantially. Figure 4 shows the prior and posterior

distributions for the parameters in the logit link functions of dryland wheat and

irrigated wheat. For dryland wheat the intercept α0 is constant across counties

and has a median of 1.808. The medians of the posterior distributions for the

coefficients of Year and September price are -0.003 and -0.001. These coeffi-

cients indicate a decrease in the probability of censoring as years go by or if the

September price increases. For irrigated wheat, the medians of the posterior

distributions of the coefficients for Year and September price are approximates

0.019 and 0.039, respectively. Therefore, the odd of irrigated yields being cen-
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sored increases by 0.04 for every year that goes by, and the odds of censoring

increases by 0.019 for every dollar the September price increases. Also according

to the spatial intercepts of the logit link for irrigated wheat found in Figure 5,

counties in northeastern Kansas are the most likely to be censored.

The truncated normal regression for both dryland and irrigated wheat con-

tain spatial intercepts with a CAR prior distribution, the secondary spatial

covariate with a CAR prior distribution. For the spatial intercepts and the sec-

ondary spatial covariates, we show maps of the 2.5%, 50%, and 97.5% percentiles

of the posterior distributions. The maps for spatial intercepts for dryland wheat

and irrigated wheat, shown in Figure 7 and Figure 9, do not indicate distinct

patterns across the state of Kansas. This is also true for the secondary spatial

covariate as seen in Figure 8 and Figure 10.

To evaluate the fit of our models, we use the Chi-Squared discrepancies,

which are a method posterior predictive checking described by Gelman et al.

(2004). The Chi-Squared discrepancy is defined as

N
∑

i=1

T
∑

t=1

(yi,t − E(Yi,t|θi,t))
2

V ar(Yi,t|θi,t)
, (8)

where yi,t is the observed yield for County i during Year t. E(Ci,t|θi,t) and

V ar(Ci,t|θi,t) are calculated from the simulated yields. The Chi-Squared dis-

crepancy with the lowest value gives the best fitting model. For comparison

we not only simulate yields from the best fitting models for dryland wheat

and irrigated wheat, but we also simulate yields from the models where the

truncated normal regressions has spatial intercepts with independent normally

distributed prior distributions and no secondary spatial covariate. Figure 11

and Figure 12 show the simulated yields for the best fitting models. For the

simulated dryland yields, central Kansas has relatively high yields and eastern

Kansas has lower yields compared to the rest of the state. However, there are
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no distinct patterns for irrigated wheat. Also visible inspection indicates the

simulated yields are reasonable when compared to observed yields seen in Fig-

ure 3. Table 3 shows the Chi-Squared discrepancies. The best fitting model

for dryland wheat has a Chi-Squared discrepancy of 3886.0, where the model

with independent intercepts has a Chi-Squared discrepancy of 4054.4. Also we

see the best-fitting model for irrigated wheat has a Chi-Squared discrepancy of

2795.1, where the model with independent intercepts has a Chi-Squared dis-

crepancy of 3983.4. These Chi-Squared discrepancies show the improvement in

fit caused by including the CAR prior distribution for the spatial intercepts and

the secondary spatial covariates.

Next we generate revenues for the year 2014 to determine premium rates

of the GRIP-HPO policies. Again we simulate from the best fitting models for

dryland and irrigated wheat as well as the models with independent intercepts.

The policies have revenue guarantees of 65%, 75%, and 85%. Before estimating

the premium ratings, we look at the probability of a loss occurring for these

guarantees. Figure 13 and Figure 14 show the probabilites for the different

guarantees for dryland wheat and irrigated wheat. The probabilities of the best

fitting model of dryland wheat have very distinct patterns. This model indicates

higher probabilities of loss in northwestern Kansas and south central Kansas

compared to the rest of the state. The probability of a loss is lower in eastern

Kansas. The median probabilities of a loss across all counties are 0.207, 0.328,

and 0.449 for the 65%, 75%, and 85% guarantees, respectively. Similar patterns

emerge for the dryland wheat model with independent intercepts although this

model has consistently higher probabilities. For the model with independent

spatial intercepts, the median probabilities of a loss across all counties are 0.241,

0.357, and 0.480 for the 65%, 75%, and 85% guarantees, respectively. Figure

17 and Figure 18 show the premium rates for the dryland wheat for the best
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fitting model and the model with independent intercepts. The premium rates

are higher for the model with independent intercepts compared to the best

fitting model. The median premium rates across all counties for the best fitting

model are 0.038, 0.069, and 0.107 for the 65%, 75%, and 85% guarantees, while

the median premium rates across all counties for the model with independent

intercepts are 0.051, 0.084, and 0.123.

The probabilities of a loss and the premium rates for irrigated wheat differ

from the probabilities and premium rates of dryland wheat. Figure 15 and

Figure 16 show the probabilities of a loss for the 65%, 75%, and 85% guarantees

for the best fitting model and the model with independent intercepts. Again

we see the probabilities of a loss generated from the model with independent

intercepts are higher than the probabilities of loss generated by the best fitting

model. The median probabilities of a loss for the best fitting model across all

counties are 0.158, 0.292, and 0.439 for the 65%, 75%, and 85% guarantees,

while the median probabilities of the model with independent intercepts are

0.2109, 0.3483, and 0.4959. Also the premiums rates for irrigated wheat, seen

in Figure 19 and Figure 20, show the model with independent intercepts has

slightly lower premium rates than the best-fitting model. The median premium

rates across all counties for the best fitting model are 0.023, 0.05, and 0.088 for

the 65%, 75%, and 85% guarantees, while the median premium rates across all

counties for the model with independent intercepts are 0.022, 0.048, and 0.084.

The final component of our analysis is the application of our models to the

new Agricultural Risk Coverage program. We simulated yields and prices from

2009 to 2013 and then take the Olympic average of the simulated prices and the

Olympic average for the simulated yields of each county. All of this analysis is

conducted using the best fitting model and simulate 10,000 replications of prices

and yields. The 2.5%, 50%, and 97.5% percentiles for the simulated Olympic
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averages of the yields are shown in Figure 23 and Figure 24 for dryland and

irrigated wheat, respectively. The distribution of Olympic averages for prices

is shown in Figure 21. The mean Olympic average price is $6.48 with a 95%

confidence interval from $5.25 to $8.11. The expected median payout across all

counties for the ARC program is $17.65 per an acre for dryland wheat, and the

expected median payout across all counties is $21.32 per an acre for irrigated

wheat as seen in Figure 25. It is worth noting the the probability of a pay out

from the ARC program is silently lower than the probability of a payout from

a crop insurance policy with an 85% guarantee. The probability of a payout

across all counties is 0.412 for dryland wheat and 0.314 for irrigated wheat.

Discussion

Our analysis shows that the best fit for county yields allows the spatial de-

pendencies among the counties to change with the value of the yields. When

compared to a model that assumes no correlation between yields, we see the

dryland wheat premium ratings for different coverage levels are more consis-

tent. Therefore, by including spatial dependencies in crop insurance ratings,

the premium rates better reflect intuition. Although the target rate used by

RMA is a weighted average of a county’s yields and the yields of its neighboring

counties, this average is only a point estimate and does not does fully describe

the dependencies among the distributions of the county yields. Therefore, RMA

may want to consider a model that better accounts for spatial dependencies.

According to a study conducted by Ifft et al. (2012), the total for direct

payments from 2004 to 2008 was equal to 6.8% of crop revenues. One of the

major concerns of the 2014 Farm Bill is how the Agricultural Risk Coverage

program and Price Loss Coverage program will compare to direct payments
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and the other programs being eliminated. The best fitting models predict the

average revenue for an acre of Kansas winter wheat in 2014 will be $ 213.78 and

$276.56 for dryland and irrigated winter wheat. The expected median payout

per an acre of winter wheat from the ARC program is $17.65 and $21.32 for

dryland and irrigated winter wheat. If we multiply these values by 0.85 (because

ARC payouts are applied to 85% of base acres), the ratios of the payouts of the

ARC program to the expected revenue are 7.02% for irrigated winter wheat and

6.55% for dryland wheat. Therefore, our analysis concludes the payouts from

the ARC program will be very similar to direct payments.

Concluding Remarks

This paper found that not only do spatial dependencies exists among county

yields, but the spatial relationships are dependent on the value of the yields.

Including these spatial dependencies, the forecasting ability of the models for

both dryland and irrigated are improved. This improved forecast translates into

more accurate premiums ratings for crop insurance policies. We also determine

that based on the best fitting models presented in this paper, the ARC program

expected payouts will be very similar to amounts paid out for direct payments.

Title I and Title XI of the 2014 Farm Bill have prioritized risk management

in United States agriculture for the next several years. Since the majority of

crop insurance policies have guarantees based on the production of individual

producers instead of county level production, we plan to apply the models used

in this paper to yields of individual producers. Also we plan to further compare

expected payouts of these new programs to direct payments, county-cyclical

payments, and the ACRE program.
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Tables and Figures

Actual Production His-
tory (APH)

insures on a percentage of the predicted yield, typ-
ically 50% to 75%. The policy holder also selects
a percentage of the predicted price set by RMA,
which is typically between 55% and 100%

Actual Revenue History
(APH)

similar to APH but it insures historical revenue
instead of historical yields. Each crop has unique
provisions

Adjusted Gross Revenue
(AGR)

insure the a percentage of the revenue entire farm
instead of each individual crop.

Area Risk Protection In-
surance (ARPI)

provides coverage based on the production of an
entire county.
ARPI replaces GRP and GRIP described below.

Group Risk Plan (GRP) insures using an index based on county yields.
Coverage levels up to 90% are offered.

Group Risk Income Pro-
tection (GRIP)

similar to GRP but insures based on index of
county revenue not yield.

Group Risk Income
Protection-Harvest Price
Option (GRIP-HPO)

allows for the producer to choose between the rev-
enue calculated with expected price at the time
of harvest and producer chosen coverage level per-
centage.

Revenue Protection (RP) insures individual produce against both yield
losses from natural causes as well as revenue losses
from changes the projected harvest price. Produc-
ers choose a percentage of their yield to insure typ-
ically 50% to 75%. Indemnity payments are then
based on the greater of the yield multiplied by the
harvest price or the projected price.

Revenue Protection
With Harvest Price
Exclusion

insures the revenue of the producer using the pre-
dicted price.

Yield Protection is similar to APH policies; however, the projected
price is determined by futures contracts not RMA.

Catastrophic Risk Pro-
tection Endorsement
(CAT Coverage)

pays 55 percent of the projected price on yield
losses exceeding 50 percent. There is $300 fee for
each crop insured with CAT Coverage; however,
the Federal Government pays the premium.

Table 1: Descriptions of policies offered by RMA
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Model Logit Dryland Irrigated

One 27930 18070
Year
September price

Two
Constant Intercept 27850 17570
Year
September price

Three
Constant Intercept 28080 17680
September price

Four
Constant Intercept 28270 17680
Year

Five
Spatial Intercept (CAR) 27850 16440
Year
September price

Table 2: DIC for the entire model. Here the logit link is varied, while the truncated
normal distribution has the spatial intercept, the spatial covariate with the optimal
threshold, and the September price.

Dryland Irrigated

Best- Fitting 3886.0 2795.1
Independent 4054.4 3983.4

Table 3: Chi-Squared Discrepancies. “Best-fitting" show the Chi-Square discrepancy
of the model that has spatial intercepts with the CAR distribution prior,the opti-
mal threshold covariate in the truncated normal regression, and the September price
covariate. “Independent" has different intercepts for each county with independent
priors and the September price covariate. These two models have the same logit link.

20



30

40

50

60

1970 1980 1990 2000 2010
Year

B
us

he
ls

 p
er

 A
cr

e
Dryland
Irrigated

State Yields

0

5

10

1970 1980 1990 2000 2010
Year

A
cr

es
 (

M
ill

io
ns

)

Dryland
Irrigated

Acres of Winter Wheat Planted

Figure 1: Figures for the entire state of Kansas including the average yield and number of acres planted.
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Figure 2: Wheat price for a per bushel (adjusted to 2013 price)
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Mean of Irrigated Wheat

NA
40.38 − 44.22
44.22 − 45.94
45.94 − 47.27
47.27 − 51.19

Mean of Dryland Wheat

32.56 − 33.12
33.12 − 33.16
33.16 − 33.37
33.37 − 33.67

Figure 3: Average yield (bushels per acre). Sample period: 1970-2013
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Figure 4: Prior and posterior distributions of the dryland and irrigated wheat logit link functions. Note there is no α0

posterior distribution for irrigated wheat because the intercepts for the best-fit irrigated wheat logit link function are
spatially-varying.
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Spatial Intercepts: 2.5%

NA
−4.82 − −1.42
−1.42 − 0.19
0.19 − 1.28
1.28 − 2.36

Spatial Intercepts: 50%

NA
−3.41 − −0.66
−0.66 − 1.12
1.12 − 2.69
2.69 − 4.97

Spatial Intercepts: 97.5%

NA
−2.28 − 0.13
0.13 − 2.2
2.2 − 4.66
4.66 − 9.67

Figure 5: Posterior percentiles for the spatial intercepts of the irrigated wheat logit link.
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Figure 6: Prior and posterior distributions for the parameter θ of the dryland wheat
and irrigated wheat
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Spatial Intercepts: 2.5%

41.3903 − 41.5645
41.5645 − 41.6116
41.6116 − 41.6422
41.6422 − 41.6827

Spatial Intercepts: 50%

41.968 − 42.0035
42.0035 − 42.0256
42.0256 − 42.0427
42.0427 − 42.0739

Spatial Intercepts: 97.5%

42.3902 − 42.4321
42.4321 − 42.4548
42.4548 − 42.4798
42.4798 − 42.6627

Figure 7: Posterior percentiles for the spatial intercepts of the dryland wheat trun-
cated normal regression
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Spatial Intercepts: 2.5%

−15.8668 − −15.6827
−15.6827 − −15.637
−15.637 − −15.6137
−15.6137 − −15.5809

Spatial Intercepts: 50%

−15.1678 − −15.151
−15.151 − −15.1346
−15.1346 − −15.1256
−15.1256 − −15.1106

Spatial Intercepts: 97.5%

−14.6865 − −14.6659
−14.6659 − −14.6422
−14.6422 − −14.6122
−14.6122 − −14.4383

Figure 8: Posterior percentiles for the secondary spatial covariate of the dryland
wheat truncated normal regression
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Spatial Intercepts: 2.5%

NA
43.81 − 48.46
48.46 − 50.79
50.79 − 52.24
52.24 − 53.78

Spatial Intercepts: 50%

NA
45.64 − 51.01
51.01 − 52.56
52.56 − 54.18
54.18 − 56.25

Spatial Intercepts: 97.5%

NA
47.45 − 52.94
52.94 − 54.86
54.86 − 56.23
56.23 − 58.97

Figure 9: Posterior percentiles for the spatial intercepts of the irrigated wheat trun-
cated normal regression
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Spatial Intercepts: 2.5%

NA
−16.54 − −16.05
−16.05 − −15.9
−15.9 − −15.79
−15.79 − −15.41

Spatial Intercepts: 50%

NA
−15.03 − −14.93
−14.93 − −14.86
−14.86 − −14.8
−14.8 − −14.7

Spatial Intercepts: 97.5%

NA
−14.2 − −14
−14 − −13.79
−13.79 − −13.62
−13.62 − −13.11

Figure 10: Posterior percentiles for the secondary spatial covariate of the irrigated
wheat truncated normal regression
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Simulated Yields: 2.5%

15.936 − 16.951
16.951 − 17.257
17.257 − 17.689
17.689 − 18.302

Simulated Yields: 50%

30.905 − 31.853
31.853 − 32.207
32.207 − 32.594
32.594 − 34.137

Simulated Yields: 50%

49.039 − 50.324
50.324 − 50.661
50.661 − 51.052
51.052 − 51.984

Figure 11: Percentiles for the simulated dryland yields
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Simulated Yields: 2.5%

NA
19.96 − 26.885
26.885 − 28.559
28.559 − 31.605
31.605 − 42.523

Simulated Yields: 50%

NA
31.768 − 40.241
40.241 − 43.718
43.718 − 48.864
48.864 − 54.02

Simulated Yields: 50%

NA
43.582 − 57.592
57.592 − 60.946
60.946 − 63.654
63.654 − 66.52

Figure 12: Percentiles for the simulated irrigated yields
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Probability for 65% Coverage

0.186 − 0.2
0.2 − 0.204
0.204 − 0.208
0.208 − 0.217

Probability for 75% Coverage

0.307 − 0.323
0.323 − 0.327
0.327 − 0.331
0.331 − 0.344

Probability for 85% Coverage

0.426 − 0.446
0.446 − 0.449
0.449 − 0.455
0.455 − 0.466

Figure 13: Probability for the three coverage levels of dryland wheat of the best fitting
model.
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Probability for 65% Coverage

0.221 − 0.237
0.237 − 0.241
0.241 − 0.246
0.246 − 0.256

Probability for 75% Coverage

0.334 − 0.354
0.354 − 0.357
0.357 − 0.362
0.362 − 0.375

Probability for 85% Coverage

0.456 − 0.476
0.476 − 0.48
0.48 − 0.485
0.485 − 0.501

Figure 14: Probability for the three coverage levels of dryland wheat of the model
with independent counties.
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Probability for 65% Coverage

NA
0.013 − 0.08
0.08 − 0.158
0.158 − 0.235
0.235 − 0.446

Probability for 75% Coverage

NA
0.048 − 0.182
0.182 − 0.292
0.292 − 0.405
0.405 − 0.643

Probability for 85% Coverage

NA
0.118 − 0.324
0.324 − 0.438
0.438 − 0.579
0.579 − 0.79

Figure 15: Probability for the three coverage levels of irrigated wheat of the best
fitting model.
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Probability for 65% Coverage

NA
0.162 − 0.19
0.19 − 0.2109
0.2109 − 0.2348
0.2348 − 0.6006

Probability for 75% Coverage

NA
0.2891 − 0.3219
0.3219 − 0.3483
0.3483 − 0.3716
0.3716 − 0.7308

Probability for 85% Coverage

NA
0.4331 − 0.4763
0.4763 − 0.4959
0.4959 − 0.5182
0.5182 − 0.8236

Figure 16: Probability for the three coverage levels of irrigated wheat of the model
with independent counties.
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Premium Rate for 65% Coverage

0.03 − 0.036
0.036 − 0.038
0.038 − 0.041
0.041 − 0.047

Premium Rate for 75% Coverage

0.058 − 0.067
0.067 − 0.069
0.069 − 0.072
0.072 − 0.08

Premium Rate for 85% Coverage

0.093 − 0.104
0.104 − 0.107
0.107 − 0.11
0.11 − 0.12

Figure 17: Premium rates for the three coverage levels of dryland wheat of the best
fitting model.
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Premium Rate for 65% Coverage

0.045 − 0.049
0.049 − 0.051
0.051 − 0.053
0.053 − 0.058

Premium Rate for 75% Coverage

0.075 − 0.081
0.081 − 0.084
0.084 − 0.087
0.087 − 0.094

Premium Rate for 85% Coverage

0.111 − 0.12
0.12 − 0.123
0.123 − 0.126
0.126 − 0.131

Figure 18: Premium Rates for the three coverage levels of dryland wheat of the model
with independent counties.
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Premium Rate for 65% Coverage

NA
0.001 − 0.01
0.01 − 0.023
0.023 − 0.035
0.035 − 0.087

Premium Rate for 75% Coverage

NA
0.005 − 0.026
0.026 − 0.05
0.05 − 0.073
0.073 − 0.149

Premium Rate for 85% Coverage

NA
0.013 − 0.052
0.052 − 0.088
0.088 − 0.123
0.123 − 0.216

Figure 19: Premium rates for the three coverage levels of irrigated wheat of the best
fitting model.
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Premium Rate for 65% Coverage

NA
0.003 − 0.017
0.017 − 0.022
0.022 − 0.025
0.025 − 0.037

Premium Rate for 75% Coverage

NA
0.01 − 0.039
0.039 − 0.048
0.048 − 0.054
0.054 − 0.073

Premium Rate for 85% Coverage

NA
0.027 − 0.071
0.071 − 0.084
0.084 − 0.093
0.093 − 0.12

Figure 20: Premium rates for the three coverage levels of irrigated wheat of the model
with independent counties.
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Figure 21: Distribution of Olympic average of prices
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Dryland Wheat

0.392 − 0.412
0.412 − 0.417
0.417 − 0.427
0.427 − 0.448

Irrigated Wheat

NA
0.302 − 0.31
0.31 − 0.314
0.314 − 0.319
0.319 − 0.33

Figure 22: County probability from the ARC program
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ARC Average Yield: 2.5%

24.07 − 24.2
24.2 − 24.26
24.26 − 24.37
24.37 − 24.62

ARC Average Yield: 50%

32.41 − 32.51
32.51 − 32.6
32.6 − 33
33 − 33.17

ARC Average Yield: 97.5%

42.14 − 42.43
42.43 − 42.57
42.57 − 42.75
42.75 − 43.13

Figure 23: Percentiles of the Olympic averages for dryland wheat.
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ARC Average Yield: 2.5%

NA
23.83 − 31.11
31.11 − 33.05
33.05 − 37.24
37.24 − 46.39

ARC Average Yield: 50%

NA
29.93 − 37.87
37.87 − 41.04
41.04 − 46.44
46.44 − 52.26

ARC Average Yield: 97.5%

NA
35.95 − 45.94
45.94 − 51.24
51.24 − 54.39
54.39 − 58.54

Figure 24: Percentiles of the Olympic averages for irrigated wheat.
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Dryland Wheat

17.314 − 17.57
17.57 − 17.652
17.652 − 17.797
17.797 − 18.199

Irrigated Wheat

NA
15.291 − 19.33
19.33 − 21.322
21.322 − 23.096
23.096 − 25.604

Figure 25: Median of the expected payout for the ARC program.
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