

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

S TA

Controlling Corn and Hog Supplies and Prices ${ }^{1}$

By Geoffiey Shermerd, principal agricilhural economist, Burectu of Alpricallural Economics

CONTENTS

F!は!	Efrge
Coru und bors	Wethimg tumantions in the demathd for hogs
Cordsund bogs In the Jrifed Suntos 3	f'ant demitmi be controtled'?
Leentioth of huthes corn-jroducing areas .-... it	Effect of the hos-corn price ratho on hog pro-
Fradiationt of hogs	duction 67
Fituctablions in the proditetion of eorn othd hops	trouedme for meeting changes in the demand for thogs
	How enn the price or hogs be c
Problert of coutrolling prises of corn wat	Is a controlletl systern any bett
hogs is two probirnms . .-......... 11	ofen-market. systo
	Sutimury ant concl
	Literatitre cited
Storage bropramis ita ancietit times.	Apmendix
Wevelopmers of the AAA Ever-Nortial (iramats misigramit for corn.	Distribution of United Stites corn crops of
	M
	diuction.
	Ever-Normul Granaries for other feed grains.. \$:

INTRODUCTION

Commodity price-stabilization programs in the United States have grown to large proportions during the last decade. These orograms have profoundly affected prices, farming practices, trading practices and the volume of business in the various commodity trades, and the flow of commodities from producers to consumers. The programs are revolutionizing the character of the market for agricultural products, which market has traditionally provided one of the clearest examples of conditions of atomistic competition among the sellers. They are replacing that market by a governmentally controlled system in which prices are determined chicfly by the rates at which the Govcmment makes nonrecourse loms to farmers on the commodities

[^0]concerned, and in which Govermment stocks, purchases, and sales are often the controlling dement in the situation.

The price-stabilization programs can benefit both producers and consumers. Triking the fiuctuations out of the prices of furm products would take a large part of the grmbling eloment out of farming. The Ever-Normal Granary program for com may reduce the wide fluctuations in livestock production, thus reducing costs to producers and providing stable supplies of meat for consumers. The programs for whent and cotton may stabilize production, milling, and processing all the way through to tho consumer. Yet dangers as well as benefits are in prospect.

Price-stabilization programs in carlier times and in other countries have sometimes gotion mto diffeulties, and this country cen hardly expect to avoid having troubles of its own. It is nol so long since the stabilization operations of the Federal Farm Boatd ended in an unfortuate way. Price-stabiliation programs are complex things; perhaps not enough knowledge is available for their proper management. Th any case, the more that is known about the problems involved, the bettor they will he handed; in a demondey there is argent need for widesprad public discussion of these problems in order to pave the way for their solution. This bulledin is intended to promote discussion.

The agriculturat price-stabiliotation probiem is broader than the specific price-sbabilization programs that have been set up to deat with it. In a wider view, several questions arise. What are the objectives of price stabilization? Are slable priees an ond in themselves, or are they a means bo some further end; and, if so, what end? What are the benefits from price stabilization, from the socin point of viow? What are the social costs? If hooms and depressions continue, should the objective be stable prices or stable quantities, or something else entioly? ls stabibization of prices an adequate goal? Perhaps what is meeded is not merely price stabilization but price contol-some means of putting prices where they "should be," at a level that does not ronmin constant but varies from one year to another with variations in demand. If so, what is meant by "should be?"

The questions indieated eall not merely for an examination of the objectives, atamments, and problems of the priec-stabilizadion prow grams themselves, but rother for an andysis of the whole problem of prier control for from products. Accordingly, the discussion in this bulletin is not limited to the Ever-Nomal Crmany and programs of the AAA as such. Lustend it is conemmed more with the price problems with which the prograns wore sot up to deal and uses the programs only as conerete ithustrations of specific attacks on those price problems.

Nn one could hope to answer in one bultebin all of these guestions that have been raised. In attempting to answer as many of them as possible, and as ratistically as possible, attention is focused on one specific commodity or group of relalied commodities, rather than on several commodities. Some commodity analyses have alrendy apperared. One deals comprehensively with cotion (11). Other shorter studies have dealt with certain problems involved in the corn-loun program (18, 17). The problem of controlling prices of corn is particularly complicated, because of the repercussions of supplies and prices of corn ou supplies and prices of livestock. A comprehensive
treatment of corn and livestoek price control is needed and this bulletin is an attempt in that direction.

CORN AND HOGS IN THE UNITED STATES ${ }^{*}$

Corn is the great grain feed of the United States. Total production of corn averages about 2.5 billion bushels a year. Corn is grown all over the eastern hall of the country; the western border of the area where corn is produced closely parallels the 100 th meridian (fig. 1). Production is most hemvily conecntarated in the north central part of the United States, in the Corn Belt, which inchades all of Iowa, Hlinois, Indiane, and Ohio, and parts of Minnesota, Missouri, Nebraska, Wisconsin, Kansas, Michigan, nond South Dakota.

Aboui 90 pereent of the con crop is fed to livestock, most of it close to the point where it is grown. In two areas of heavy production, a considerable percentage of the crop is sold from the farm as grain. One of these areas lies in nlinois. From this grea nenaly half the crop is sold as grain. The other areal lies in lown. About 15 or 20 pereont of lown's com is sold as ensh gratin; the proportion in some counties has run as high as 69 percent ($1, p$. 22; $2, p .3 / 4$). These two areas are shomm in figure 2.

Location of Meayy Conn-Producing Areas

The Corn Beit States are ranked in the order of their average production of corn over the last 10 yoars in the following tablatation. The two top States, Iowa with its 400 million bushels and Illinois with its 330 million, are for ahead of the rest. Indiana, Minnesota, and Ohio, which come next, produce only about 150 million bushels each.

Nebreska and Missouri produce betweon 100 and 120 million busheds of corn ench. Production of corm in both of these States saffered a marked reduction during the last few yents (Nebraska's production was cut in hali) chiefly because of a sharp decrease in acreage after the severe droughts of 1934 and 1936 . The remaining Corn Belt Stutes, in order of their importance as corn producers, are Wisconsin, Kansas, Michigan, and South Dukota. Each produces on the average substantinlly less than 100 million bushels.

The important com-producing Stades, ranked in order of their averare corn production, from 1931 to 1940 were:

[^1]

Figune 1-Corn is grown all over the eastern half of the Enited States. The production of corn is most heavily concentrated, however, in the North Central States.

BAE 31509
Ftaure 2.-Most of the corn produced is fed to livestock on or close to the farm where the corn is grown. Within the Corn Belt, however, lite two areas of heavy corn production where a considerable percentage of the crop is sold from the farm in the form of grain.

Production of Hogs

Pork is the leading ment produced in the United States. The production of pork usually ranges between 8 and 9 billion pounds, plus about 2 billion pounds of lard. Production of beef usually ranges between 6 and 7 billion pounds. ${ }^{3}$

By and large, hogs are produced where corn is produced; the Hog Belt is much the snime as the Corn Belt. The most important States in hog production rank as they do in com production, with one exception: Ohio ranks over Missouri and Nebraska in production of corn, bat below them in production of hoys.

The utilization of com in the United States is shown over different periods of time in table 1. The periods represented by the different

Pable 1.- Percentage willeation of corn in the Unitcd States, averages 1910-14, 1924 20, and 19\%5-34

[^2]columns are not all matually exclusive, and the classification of the uses (distribution) of corn has not remnined constant. But in general the table shows that hogs consume about 40 pereent of the corn produced in the United States. This percentage has remained fairly constant over the last few decades. Consumption of corn by horses and mules is declining with the decline in their numbers. It is considerably lower today than in the period 1925-34, as numbers of horses and mules have continued to decline. Tnereasing consumption by cattle (probably mostly by milk cows) has laken up most of the slack.

Fluctuations in the Pronuction of Corn and hogs

Production of corn fluctuates greatly from year to year (fig. 3). The chief reason lies in the pronounced fluctuations in yied per nere. The short-time changes in acreage from year to year are usually not large. The instability of the price of corn from yen to year is shown in the lower part of figure 3. The data are given in table 2.

The fluctuations in production and prices of com are not only disturbing to farmers in themselves but they also give rise to severe fluctuations in supplies and prices of hogs. Hog production fluctuates
Fable 2. Corn: Harvested acreage, produchion, yield per acre, and price, United States, $1870-1040$

[^3]markedly from year to year, over a range cqual to about 50 percent of the average production. The thuctuation for hog production is about 2.5 times as great as the fluctuntion in beef-cattle production. Furthermore, changes in hog production closely follow the changes in com production, whereas changes in beef-cattle production follow a somewhat cyclic course of their own, largely independent of corn production. The difference was most strikingly shown by the results

FIGURE 3.--CORN: ACREAGE, YIELD PER ACRE, PqODUCTION. AND PRTCE. UNITED STATES, 1870-1940.
Corn production fluctuates greatly from year to year; the chief reason lies in the varition from year to year in the yield per acere. Corn nereage normally remaits fairly stable from year to year.

$$
4 \overline{2} 0345^{\circ}-42 \ldots-2
$$

of the two severe droughts of 1934 and 1936. Those droughts cut hog production abouti 40 percent, whereas they resulted in very little reduction in production of beef catthe.

The relation between fuettations in the supplies and priees of com and hogs is usually shown by plotting the ratio between the prices of corn and hogs along with hog marketings in a simple time chart. A chart of this sort, familiar to outlook workers, is shown in ligure 4. It shows how changes in the hog-com price ratio eause changes in the same direction in hog marketings about 2 yems later.

FIgufe 4.--Hog-CORN Ratios and hog Marketings, 1901-40.
The hotesotn price ration the prise of hogs in dollars per houdred pounds divided by the price of com in conts per bushed) Inctuales rapidy from month to month and year to year. Anmal fachations in the logecom price ratio are followed atront 2 years later by eormepondang fatuations in hog marketings.

Yeat-to-year changes in tha hog-com price ratio result from changes in prices of both loges and corn. Hog prices rise und fall not only with the changes in consumer demand that necompuny booms and depressions, but also with the changes in supply caused by the internad characteristics of the hos industry. The internal characteristies are such as to give a periodic gatity to the fluetuations in bog production much in the same manner as the structure of a buning fork gives a constant frequency to its vibratious. But the busic factor causing short-lime (year-to-yoar) fluctuations in production of hogs is a physical one; it is the irrecular yenr-to-year flatuations in production of corn. The close relation betweon the two basic physical series, production of corn and production of hogs, is shown in figure 5 . In this figure the com crop (total United States production) each year is plotud ugainst the total weight of hogs slatightered uncer Federal inspection in the log year beximning in October of the same war (Federal inspected slaghter covers only about two-thirds of the total hog slaughter, but it is the most accurate index of hog production on a hog-year basis).

The positive correhtion betwecn the two series is only moderately high when the data are plotied in their origimal form (fig. 5, A).

FIGURE S WNITED STATES CORN PRODUCTION AND TOTAL WEIGHT OF HOGS SLAUGHTERED, OCTOBER-SEPTEMEER 1922 40: A. ORIGINAL DATA: B, PRODUC. FION OF CORN EACH YEAR AVERAGED WITH PRODUCTION THE YEAR BEFORE: C. WAS MORE THANA TM YEARS WHEN THE CHANGE FROM THE PREVIOUS YEAR WAS MORE THAN THITD OF A BILLION BUSHELS AVERAGED WITH PRODUCTION

The three sections of this figure show correlation between corn production and the total live weight of hogs slaughtered; A shows the relation between com production and hog slaughter in the year immediately following; B shows the relation between the nverage of corn problaction in two succesive years, and hog slaughter immedintely foisowing; C shows the rehtion when adjustments are made for the slowness with which bog slaughter can be increased after a severe reduction in corn production.

Inspeetion shows that the chief reason for this is the location of the dots for the years when there was a marked change in the size of the corn crop from the year before. Hog slaughter in those years changed to some extent, in the same direction as the change in the size of the corn crop, but the full effect of the change did not show up until a year later.

Perhaps, therefore, the hog-slaughter data shonld be lagged a year. But when this is done, the resulting correlation is still lower than when no lag is used. If, however, the hog data are plotted against the average production of corn for the curreat year and the preceding year, the corredation is fairly high (fig. $5, B$).

The data are so handled because of purely statistical considera-tions--the scalter of the dots, the dates of certain dots, and so onwithout my attention to the conditions mader which hogs are produeed. But the mature of the response of hog prodaction to corn production is conditioned by the inherent characteristies of the hog industry. One is that hog slaughter camot be incerensed as rapidly as it ean be decreased. When a large crop follows a short crop, production of hogs cannot smap back to full capacity at once; it takes a year or more to build the herd up again. A small increase in production of corn can be taken enre of by feeding hogs to heavier weights, but a large increase must be taken care of by breeding more sows, and the pigs from sows bred in. December cannot reach the market matil about t2 months later, in the next marketing year. When there is a marked decrease in com production from the year before, however, slaughter of hogs deereases rapidly, because a herd can be reduced more quickly than it can be built up.
The situation deseribed is handled statistically as follows: In the years when the com crop was much larger (sny a third of a billion bushels or more) than the year before, the latge crop ean be averaged up with the preceding small crop, giving the smatl crop a weight of 2. In the yonrs when the corn crop was much smaller than the year before, the small corn crop can be averaged with the preceding crop, again giving the small erop a weight of 2 .
The results of these weighting and averaging procedures are shown in figure 5,0 . The eorrelation in this section is high, except for the years 1930 and 1931 ealy in the depression, and the year 1938 when production of hous had still not empletely recovered from the droughts of 1934 and 1930.

All three sections of figure 5 show that the relation between production of corn and production of hogs is about 1 to $1 ;$ a change of 10 percent in com supplies causes a change of about 10 percent in hog supplies. Because of the close relation between prices and production of com and hogs both of these commodities are econsidered in this bulletin. Whatever affects one affects the other, and a program for controlling the production and price of either must deal with the other as woll.

Eluctuations in Demand rof Conn and Hogs

Fhuctuations in supplies of com and hogs are not the only reasons for fluctuations in preces of corn and hogs. Changes in demand affect prices of com and hors permaps even more than changes in supply. The same total slaughter of hogs that sold for an average United

States farm price of $\$ 9$ per 100 pomens in 1928-29 sold for a price of $\$ 3.40$ in 1932-33. The difierence between thosa prices was entirely the result of differences in demind.

A study of the relation botween the demand, supply, and prices of hogs ($14 ; 19, p$. 269) shows that a change of 1 bilion pounds in federally inspected hog slaughter causes an opposite change of about $\$ 1.33$ in hog prices. The relation can also be expressed in percentages. A ehauge of 10 percent in slaughter of hogs causes an opposite change of about 16 percent in priees of hogs.

The same hog-price analysis also shows how changes in demand affioct prices of hogs. Demnud here is measured or represented by total nonagrieulturat income in the United States. A change of 10 billions in total nomagrieultural income causes a corresponding change of $\$ 1.20 \mathrm{in}$ hog prices. In percentage torms, the relation is 10 to 14 . The curve showing this relation is concreferom above, because changes in income have less effect on prices of hogs when incones are low than when they are high.

Problem of Controhling Prices of Cohn and Hogs is Two Problems

The foregoing matysis erystallizes into quantiative form the conclusion that the problem of controlling eorm and hog prices is not one problem, but two. And the wo problems are not (I) controiling prices of com, and (2) controlling prices of hogs. Corm and hog prices Guctuate together (with an intervening time lag) but for two different reasons: (1) because the production of corn and hogs fluctuates, and (2) because the demand for com and hogs fluctuates. The control of corn and hog prices therefore callis for two difterent programs, or at least a program with two different parts- not one for controling prices of cornand another for controling prices of hogs, but one for controlling supply and the other for controlling demand. And as fluctuations in supply arise at the producer end, and fluctuations in demant arise from the consumer end, the problem of controlling supply is largely a problem of controlling the supply of the raw material, com, wherens the problem of controlling demand is largely a problem of controlling the demund for the finished product, hogs.

The first part ol this bulletin, therefore, deals with the problem of controlling the supply of corn; the second deals with controiling the demand for hogs.
The first problem boils down to smoothing out fluctuations in the supply of com that resuth from fluctuations in yields, in turn resulting from irregular and umpredietable changes in the weather. Fluctuations in the supply of com can be met by storing the exess over average yield until yields fall below average again, and this will smooth out fluctuations in the production of hiogs above and below the level desired. This sort of program is independent of what (if anything) is done aboat controlling demand.

The second problem boils down to meeting fluetnations in the demand for hogs, which have nothing to do with fluctuations in supply. Controlling these changes in demand, or dealing with them in some other way if they camot be controlled, is a new and unexplored field; the theorelical and statistical analysis in the second part of this bulletin is chielly exploratory in nature.

Review of the Sttuation Today

Production of corn fluctuates greatly from year to year, chicfly because of variations in yields cansed by the weather. These fluchuntions in the supply of com cause great changes in production of hogs.

Prices of com and hogs fluctuate because of flactuations in demand as well as in supply. A pragram for controlling corn and hog priens, therefore, must consist of two parts-not one for controlling corn prices and another for controlling hog prices, but one for controlling the supply of corn and the other for controlling the demand for hogs.

CONTROLLING THE SUPPLY OF CORN

The problem of controlling the supply of corn and hogs seduees to the problem of controlling the supply of com. Basically, shorttime (yen-to-yenr) huetuations in the number of hors produced are cansed by short-time fluctuations in the quantity of com available to feed them. The esasal effere is exereised through the hog-eorn price ratio, as shown carlier, but the basie controlling element is the supply of comn; the total woight of hogs produced (measured by the total live weight of the federally inspected slaughter) follows the quantity of corn produced as closely as the internal characteristics of hog production permit.

The basie problem, then, is to control the supply of corn, which Huctuates chiefly bectuse of changes in piedd per acre (fig. 3). The fluetuations in yields result chiefly from changes in the weather. No way has yet been found to stabilize the wenther, so the next best course is to stabilize the quantities of com arailable for consumption by withholding the excess over average yied, in big-emp yors, and carrying this excess over to short-erop years. Storing the exeess over arerage yiold is a good woy to smooth out that kind of fluctuation, because a high yield is usully followed by a low yield within a fow yenrs. and the stomge stocks ordimarily would be used up before deterioration or storage costs would become excessive.

Storage Programs in Angient Times

Many people in the United States think of the Fver-Normal Gramary as a modern iden, original with us, except for Joseph's venture with the storage of grain from the 7 fat years to the 7 lean years in the time of the Plaroths. Storage programs on a large social scate were in operation, however, many centuries before Joseph was bow, and they have appeared in many different contries since.

Egypt was a ganary for starying people for humdeds of years. "As far back as the fifth dyuasty in Degyt, which historians place at 2830 B . C. at the latest, there was inseribed on the tomb of the Nomarch Henku 'I was Jord and overseer of southern grain in this nome.' [Nomareh was the titie for the chief magistrate of at nome, a Province of meient larypt.] In the book of Genesis 12 there are various reforences dating back to the time of Abmham, to the fact that Egypt was a gramary where all people were sure of finding a plenteots store of corn." About 1700 B. C. Joseph stored onc-

[^4]firth of the crop in years of abondance, thus carrying the people through years of famine. He used granaries similar to our elovators. "The ontstanding result of the Egyptian control of the grain crop was a system of land tenure by which the land became the property of the mouarch, and was rented from him by the agricultural chass." ${ }^{5}$

The Chincse were also well versed in the practice of storing grain from good years to bad, a thousand years before Christ. When Li K'o becamo the minister of Wei he pointed out how high grain prices in years of short crops hurt consumers, and how low grain prices in years of large crops hurt fiarmers. He then went on to say:
"Those who want to equalize the price of grain must be careful to look at the crop . . "' In years of good erops, he said, the Government should buy up most of the surpfus, and sell it back to the people in years of poor crops. ". . . the Govermment controls the excess of supply in a good year in order to meet the demand in a bad year." The same policy was followed by Mencius, who lived from 372 to 2S9 B. C.

The mme Ever-Normal Granary applied to the present-day storage programs was adnpted irom the records of that early Chinese era. "The principle of equalizing the price of grain advocated by Li K'o and Mencitus was adopled into the system of 'constantl- normal gramary.'" (5) The Chinese found that this system not only benefited the people but that more than once it was administered in such a way as to make money for the Govermment. The difficulties of administering the programs were admittedly great.

In Athens and Rome, for several hundred years before Christ, attempts wore made to control the ruantities and prices of yrain. In more recent times, the Government of Trdia ia 1770 and arain in 1886 tried to regulate and stabilize the marketing of grain in Bengal. In England, the famous com laws, from 1804 to the time of their repeal in 1846, constituted an atitompt to stabilize grain prices.

In more modern times, the Brazilian coffee-valorization scheme, the tobaceo monopoly in France, the Chadbourne sugar plan, and many obiers - to say nothing of the United States Federal Farm Bonrd and its stabilization operations in the early 1930 's-are examples perheps more of price-raising than of supply-stabilizing plans $(8, \ldots, 97)$? But they were all of similar nature.

Enough has been said it the preceding brief historical sketeh to bring out a significme, point: Modern stabilization programs are not newfingled scthemes of a sert that were never heard of before. They are the enrent version of man's long strugerle to control the supplies and prices of his food and liber a struggle that has continued from time inmemorial to the prosent and will no doubt extend well into the future.

Develomment of time AaA Guer-Nomali Gmanaiy Program for Corn

The Ever-Normal Granary program of the Agriceltural Adjustment Admimistration for corn can best be understood in the light of its development.

[^5]The Supreme Court of the United States, on January 6, 1936, declared unconstitutional the AAA processing tax on hogs. That decision dried up the source of funds that had been used for making benefit payments to preducers of hogs for reducing production. The AAA then changed its attack. It endearored to adjust production of hogs indirectly, instead of directly, by edjusting production of corn and raising the price of corn. That would make the hog-corn price ratio unfavorable, and would thus cut down production of hogs.

The way to adjust com production was to adjust corn acreage. That would not do the job by itself; yields per nere fluctuate so much that total production, and thercfore prices, would still fluctuate from year to year. Accordingly, the AAA took over the Ever-Normai Granary iden of stabilizing prices of corn by offering nonrecourse loans on corn aboye the market price in big-crop yoars. The EverNormal Granary iden was that this loan would pat a floor undor prices in big-crop yours and eause suppies to accumulate in the EverNormal Granay, and that these supplies condi be thrown on the market in short-erop years and prevent prices rising to excessive heights in such years. The result would be more or less complete stabilization of supplics and prices.

Under the Ever-Normal Gramry plan, prices of com would be stabilized at about average levels (about equal to prices for an average crop.) The objective would be merely to smooth out the fluctuations about that average level. The AAA, however, proposed to ase the loan for an additional purpose-to raise the lovel of prices, as well as to stabilize them, in order to cut down production of hogs. "A good high corn loun would do the job."

There was some question as to the efficacy of this proposal, but it coineided with corn fammers' natural desire for high com prices, and appeared to be a workuble appronch to the problem. The lonn rates that were finally writion into the Agricultural Adjustment Act of 1938 were only moderately high, and it did not seem that there would be a great denl of difference in effect between the two approaches(1) reducing acrenge and then stabizing prices about the higher level attained by aereage reduction, and (2) stabilizing and raising prices by high lonns, and then reducing ncreage enough to keep supplies from accumulating.

In actual practice, the difference botween the two appronches turned out to be considerable; it has raised important questions of policy, which are considered later.

OBNEGTVES OF THE AAA

The objectives of the AAA with respect to marketing were put in very broad and general terms in the Agricultural Adjustment Act of 1938. As stated in the declaration of policy, they were:
to assist in the marketing of agricultural commodities for domestic consumption and for export; and to regulate interstate and foreign commerce in cotton, wheat, corn, tobacco, and rice, to the extent necessary to provide an orderly, adequate, and balanecd fow of such commodities in interstate and foreign commeree through storage of reserve supplies, loans, marketing quotas, ussisting carmers to obtain, insofar as practicable, parity prices for such commodities and parity of income, and assisinty consumers to oblaiu an adequate and steady supply of such commodities at fair prices. (25)

LOAN HATES FOR CORN

The basic rate for loans on corm laid down in this act was 75 percent of parity. That figure was, however, to be subject to reduction according to the size of the crop in that crop year. I\% was to be 70 pereent of parity, if production exceeded normal consumption and exports by not more than 10 percent; it was to be 65 percent of parity if production exeeded consumption between 10 and 15 percent, and so on down to the lowest figure, 52 pereat of parity, if production exceeded consumption by more than 25 percent.s

On May 26,1941 , Congress changed the basic rate of 75 percent by an amendment to the aci. It set the loun rates for the 1941 crops of cotton, corn, wheat, vice, and tobace at 85 percent of parity. ${ }^{9}$ The amendment boosled the tom rate for corn from 61 cents a bushel to a hypothetion 71 cents. ${ }^{10}$

The lom rates that were set cach yonr and the prices of com at Chicke by months, for comparison, bere shown in figure 6 .

QUANTHTES OF CORN STOHED

It is obvions that the loan metes offered litile inducement to farmers during the drought years, 1934 and 1936, when corn prices were far higher than the loas rates. In the other years, substantinl quantities of corn were pat into the Ever-Nomal Granary. Table 3 shows the number of bushels seated ench year under the program, also the number of bushels redeemed by farmers each year, and the quantities not redeemed- that is, the number of bushels delivered to the lonning arency, the Commodity ('redit Corporation.

The quantides of com under seat (owned by farmers) and the quantilies owned by the Commodity (redit Corporation on October 1 ench year are shown in uble 3 . The total Enited States stocks of com October 1 are shown in the last rolum of that table. The totals inclute the commercind stocks as wedl as the stocks on farms, and the corn under seat and owned by the Commonlity Credit Corporation. They are shown in graphie form in fighe 7 .

[^6]The figures in table 3 show that care mast be ased in dealing with such questions as：How much com is in the Ever－Normal Granary？ and What should be the outside limits of size of Ever－Normal－Granary stocks？It must be made clom whether the question refers to（i） the quantity of corn owned by the Commodity Credit Corporation， （2）this quantity plus the corn that is under som and still owned by farmers，or（3）the total number of busbels of com in the country， regatifess of who owns them．

FIGURE 6．－LOAN RATES FOR CORN． 1934 40．AND GORN PRICES AT CMICAGO BY MONTHS， 192940.
The price of emon（himgo were and higher than the loan mates during the mataketing samons for the 1034 and 1934 crops，when the crops were very smath． In reent zears，the market priees have rauged closer to the lom rates．

Tahle 3．－（＇orn lam duta，by miginal loan programs， 198% ． 40 ．Quatitics sealed， redecmed，whd deliered wnder ench program：

	suater	1206tertaral	bedicerditin （＇ithmitithty＇ （＇radil for therminati			
					－	
				［－3tioy sual	Owned ly Combanmity （＇redit C＇uF－ fromitor	＇Tomi C＇ulted sinters slorks
－－ローー－．．						－
1937	17，118．103	7．tirt．410．				（6）2032，（400
liss！．		18． 31.36	145，			36.3 ，w3．(x)
！ $3^{3} 95$	318， 531.46	tus．035， 30	113，563，（3ay	358.31 .18	7，数3， 375	542，513， 6×0
E9tid．	182，1－3，19\％	35．484， 3	1， F H	$35.16{ }^{3}$（6）	15）， 2 ，${ }^{\text {as }}$	99，MP，ve0
1012					131． 23×3 ，sth	（531， 755,400

[^7]The total storks of com have risel to harge figures in recent years． Stoeks on Oetober 1，1940，reached an alltime high．Stocks in 1936 were about ofal to the average of the previous 10 or 20 years．The
"free supply" in the years since 1937 hals been about cqual to normat total stocks for the sizes of the corn crops in loose years. The corn under seal and held by the Commodity Credit Corporation represents approximntely the exta cuantity of com corried over as a result of the com-lonn program. On October 1, 1940, this amounted to nearly 500 million bushets; on October 1, 1941, it wns about 400 million bustrels.

FIGURE 7. TOTAL STOCKS OF CORN OCTOEER 1. 1936 40. OWNED 日Y THE COMMOOIT Y CREDIT CORPORATION. UNDER SEAL. ANO "FREE."
da itergasing proportion of the storage of corn on October I each vena has been phaced mader loan or delivere to the 'ommodity Credit Corporation, since the shati crops of 193.4 and 1936 . The quantity of "free corn" in Oetober 1940 was slighty inger than the average carry-over before the droughts.

ENFBCI OE LOANS ON PMBCES

The a vernge price of con at (hicuge was lowe than the loan rate, from the middle of 1937 on. The question was frequenty mised: Would the priee of com have lrean still lower il the lom had not been arailable? In other womb, did the loans raise the prese of com after 1937?

The statisticat com-price ambesis based on the years 1021 ge to
 the average farm prie of ermowe the denifed states wotd have been about the same tas it was in the eorn year () ctober 1937 to september 1938, that it would have beon aboui 5 cents lower in 1938-39, and about 18 eonts lowar in 193940 and 194043 . In other words, the com loms mised the (bited Shates average fam price of corn each year by (hose amounts (table 4). ${ }^{11}$

[^8]
gAE 39497
FIGURE B.-RELATIONS EETWEEN THE UNITED STATES AVERAGE FARM PRICE OF CORN DECEMEER MAY ANO (A) TOTAL UNITED STATES CORN SUPPLY OCTOEER i (B), PRICES RECEIVED BY FARMERS DECEMBER-MAY, AND (C) NUMEER OF ANIMAL UNITS ON FARMS JANUARY $1,1921-22$ TO 1937-38. MULTIPLE R, 0.965.

The dots for 1939 and 1940 in C he about 18 eents above the line, showing the average relationship of eom priess to the thee factors mentioned. Presumably this shows the influence of the eorn loans in those years.

TAmse 4.-Factors determining the United States average farm price of corn.

 '921-10| | | A wrape United Situes farsa pricer of corn wer hushel, 1) ecemberMay | Tolal corm sumply octolor : ? | Index mimbers of jrions recefted by farmars DecendherMuy (Allatust 8079-5aly 1014 $=(100)$) | Feed grain unimal units Jutn. 1 of hext year ${ }^{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1931 | | remts | Mithon brshels | 101 | Willion |
| 1522 | | -1.4 | 2. ${ }^{\text {a }}$, 10 | 143 | 1,14. 7 |
| 1923 | . .. | 76.0 | $3+10$ | 1.13 | [4]: 2 |
| 19.1 | | 110.2 | 2,300 | 153 | 13 k .7 |
| 1025 | | \%8.0 | 2, 1000 | 1512 | 133.6 |
| 190 | . . . | 94. 5 | 2, \$25 | 13 | 135.5 |
| 198 | | \%is. 0 | 2, 833 | 148 | $1+0.8$ |
| W03 | | 8 Br 3 | | 1.45
 1.40 | 138.0 |
| 11030 | | 714. | 2, 215 | 140 | |
| 1 ESH | | 32. 1 | 2, 21.13 | 615 | 130.5 |
| 1032 | | 24.2 | 3.202 | (i) | 1.4. ${ }^{\text {a }}$ |
| 1985 | | 15. 7 | 4. SB_{6} | 81 | 143.1 |
| 10.44 | . . | S. 4.13 | 1, \%18 | 108 | 120.13 |
| 1835 | | 56. ${ }^{6}$ | 2. ditiv | 107 | [23) 1 |
| 1937 | | 107.6 0.515 | ${ }_{2}^{1.167}$ | 128 | 192.8 |
| 1935 | - - - | 14.6 | 3, 9125 | 12 | 127.3 |
| 1930 | | tifl 0) | 3.102 | 38 | 155 |
| $19 \% 0$ | | \%tit | 3. 14, | liks | 132. 4 |

[^9]A question ol interpretation arises. If the corn lons had not raised corn prices it the year 1938 39, nore corn wond have been consumed in 1938 39 and more livestock would have been produced and sold at lower priees that year and the next. However, less corn would lave been carried over to add to the supply and depress corn prices the next year, $1939+40$. Similarly, if the high lom rate in 1939 to hat not mised priees and reduced the eonsumption of corn, more livestock woukd have been prodaced to add to the execssive supplies and reduce livestock prices further below the extremely low prices which did prevail. At the same time, less com woud have been curvied over to add to supplies and depress comprices the next yent, $1!4041$. If there hat beon wo lonn raising prices in the carlier years, livestock farmers incomes would have been smaller, bat there woud have been less noed for a loan to support corn prices in the later years. Priees in the hater years were depressed party because the lonns made in the madier yours had rased pries, redacel consumption of corn, ame inerensed the cary-over of corn to those later yens.

Specelic figures may datify the point. The total enrry-over of corn On October 1, 1940, was netrly 700 million bushels. A normat earryover, in view of the size of the 1939 erop, would hase been a litite under 200 million bushels. The conn lom that raised priees 18 cents in $1939-40$ withhed from market nearly 500 million bushels in 193940. Otherwise, most of it would have been consumed in further expansion of livestock production and this would have depressed livestock prices further: Thus the lom nded about that quantity to the total supplies for the next crop-year. ligure S slows that the addition of 500 million bushels to the total supply of corn depresses prices about

17 cents. The loan in 1940-41 that raised prices of corn 18 cents raised corn prices only to the point where they would have been anyway if there had been no louns in previous years affording protection to corn producers from low com prices and to livestock farmers from low incomes which would have resulted trom turther overexpension of livestock production.

Spenking of corn supplies and com prices alone, the sithation may be eompared to that of a man who steps on the piat torm of a weighing scale, and then takes hold of a bar over his head and hith all his weight oft the seales, thus "supporting bhe pointer" until it registers zero again. The pointer would have registered zero it he had not stepped on the seate in the first phece. The explanation given does not detract

BAE 38ers
Fooue 9.-The commercial corn-producing aran atown within the slarled outline in the map includes all combties in which the average production of eom is 450 bushels of more per farm nad f Imshels or more for rach acer of farm land in the counts.
from the ratue and the necessity of withoulding supplies by loans or other means. That must be dome, or supplies cond not be stabiized, and storks could not be acemmatad to fill in when short crops come. The man aeeds to be standing on the senkes, and lifting his weight ofl it, in order to be on the spot ready to lef go and bear his weight on the seales whenever the poimer berins to registur mima quantities. Only if stoeks become larger than neressary for stabilization purposes does the exphamation raise my question concerning the program.

CHE LOAN-lRATE STRUCTURE

To simplify un admintistration of the AAA program, the administrators ontlined whot is called the "commercial corn area" (fig. 9). It includes those comities in which production of con per farm is
large enough to warmat inclading the county in the administrative machinery. ${ }^{\text {js }}$

The Agrieultural Adjustment Aet of 1938 specified lower corn-loun rates for farmers in the commereial corn area who did not cooperate in the a creage-control program, and lor farmers outside the commercial corn area. The rate to noncooperators in the area is only 60 pereent of the rate to cooperators, and the rate to cooperators outside the area is only 75 percent. Differentials in loan rates, "as the Secretary of Agriculture preseribes," are also provided for in the act, for difforences in grade, type, staple, and quality.

Nothing is suid in the net, however, about goographieal differentials in loan rutes for any commodity (aside from the differential against producers outside the commereind corn areat mentioned). The AAA administmtors were lafi liee to establish a flat rate, or to use diflerentials necording to location, as they chose. In the case of whent, the AAA administrators established geographical differentials in lonn rates, bused upon cosis of tmonsportation. In the ense of cotton, flat lonn rates were used at first; but, beginning with the 1939 erop, grographieally differentinted loan rates were introduced. In the case of corn, a Aht loas rate was adopted over all the commereial corn area.

Thure were some reasons for adopting this flat lonn rate for corn. About 90 pereent of the corn crop is fed to livestock, aikd the reographical corn price structure over the commercial corn area is not a simple one based only on transportation costs of corn. It is more nearly fat than that. la addibion, com moves in different quantities and in somewhat different directions liom vear to yenr, so that one fixed set of diffremtials might not do for difforent yenrs. Under these condifions, the simplicity of the fat loan mate has a strong appeal.

The flat loan rate, however, along with some other fentures of the AAA program, coused some disturbmaes in production of corn and hors and in the operntion of the Ever-Normal Gramary. The average corm-price surface over the Com Belt slopes genembly upward from west to east and from noth to south, and the flat loan rate proved more attractive to producers in the northwestern part of the Corn Belt than in the south and enst. Corn piled up in stompe most henvily in lown, and production of hogs in lown dedined for a time relative to production of hogs in Indiam and Ohio. Those eflects, and some others, are diseusied in detail later, in the pages dealing with differential lonn rates for corn.

REVIEF OF THE STTUATION TODAY

The stocks of corn impourded under the Ever-Normal Granary program rose to 500 million bushels by Oetoher 1,1940 . The "free corn" anded to this quantity made a total of practically 700 million bushels, the largest cary-over on record. The loans apparently raised the United States averige harm price ol corn about is cents a bushed in 1939-40 and in $1940+1$.

The flat loan rate caused some disturbances in marketing of corn and perthaps in production of hous. Corn piled up in stornge most heavily in lowa, and production of hogs may have deelined there for a time relative to production of hogs in Indiana and Ohio.

[^10]
Stee of Stablization Stuciks

Several over-all problems are involved in setting up and operating an Ever-Normal Granary progratu for corn. One of the most significant is the quantity of corn that should be carried in the granary. What are the outer limits for the size of the stabilization stocks?
Before the proper size of the stabilization stocks of corn can be ascertained, a prefiminary question must be answered: What is it that is being stabilized? Is it the price of corn, or is it merely the plysical supply of corn?

If demand remained stable, stabilization of the supply would effect stabilization of the price. There would be no difference between the two. But when demand dhanges, no matter how completely the supply might be stabilized, pries would still fuctuate. Changes in demand are usually so mpredictable, and cover such long periods of time, that it is doubtful whether they could be oflset by changes in supplies resulting from the aceumulation and subsequent liquidation of storage stoeks. Long-time changes in demand obviously emmot, be oflsei by storage; the stocks would deteriorate, or the costs of kepping them in good condition would the exessive, over a long period of yents. It would be difheult to offset short-time cyclic changes in demand, as from prosperity to deperssion, by a storage program; cyclic changes in demand are so violent, and so diflicult to prediet, that an Ever-Nomal Granary would probably do well to conline itself, at least for the first few yenss, to the clent-cut job of stnbilizing physical supplies. That would stabilize one side of the price equation (the supply side), without directly afferting the other side, demmal. That sort of an Ever-Nomal Chanary program wouk be essentially a physical grain-stonge program. Ti might be part of a wider program for stabilizing prices, but in itself it would be purely a program for stabilizing physical supplies. The diseussion in the next fow sections of this bulletin is based on the nssumption of this soct of a stahilization program; the brouder problem of denting with changes in demand is considered in the last few sections of the bulletin.

STARILRATION STOQRS RUQUURED FOH COMIPBTE STABILIZATION OF CORN surllides

The proper size of the stabilization stocks of com (the quantity carried over from yenr to year) depends on the degree of stabilization of supply that is desired. The more completely supplies nee to be stabilized, the larger ansi bo the stocks.

Before rovernmennin stabilization operations were ever thought of, farmers acting as individuls operated virbal Ever-Nomal Gramaies of their own, though only on a small seale. They carried over some surphas corn in good erop years, cither with the intention of using it as a backlog of feed supplies or in the hope of selling it at higher prices in later years when supplies were scarec. On the average, an merease in size of a corn erop of 500 million bushels was followed by an increase in the earry-over to the next crop year of 100 million busheds. Thus the stoeks of corn carried over in good crop years were large enough to offset about one-fifth of the fluctuation in total production. That is, the fhactuations in consmption were only fourfifths as great as the fluctuations in production; the other one-fifth of
the excess supplies went into storage, and supplies and prices were siabilized to that extent ($18, p, 308$).

More complete stabilization would require the carrying over of larger surphas stocks. Complete stabilization of supplies would require that in big-crop years all of the corn produced in excess of an nverage-size crop woud be held ofl the maket then and damped back on the market in small-crop years. if, for example, corn crops fluetunted regubarly from 3 billion to 2 billion bushels, averaging 2.5 billion busbels, complete stahilization of supply would be sthereed by withholding half a billion bushels from the big crop and adding it to the small crop.
Aetually, the situation is more complicated than indiented. Corn crops come in all kinds of sizes, and the order of their coming is highty irregular. Furthermore, the distribution of these diferent sized crops is not normal. There are twice as many large erops (erops above average size, 2.5 billion bushels) as there are small crops. The rensom is that large crops rum only as high as 3 billion bushels (20 percent over average size) while the small crops run as low as 1.5 billion bushels (40 percent below avernge size). Fluctuation in the size of the United States corm crop, and the abnomal nature of the distribution of the different sizes of crop, is slown in the appendix.

That is to sty: Larige corn crops are many, but they are only moderately linge; small corn crops are comparatively few, but when they do come they are very small. On the average then it is necessary to build up stabilization stoeks from more than 1 year's excess supplies, as the hage crops are more numerous than the small crops, and do not exceed the average as much as the smatl crops fall below average.

But averages are not safe guides for action in individual years or small series of yestrs. One short crop goos with two harge crops, on the average, but a wide dispersion of the tems about this aremge is found. Ocensionally, several lapge or small crops come in a bunch. Obriously, the order in which large, medium, and small erops come bas a significant bearing on the way a stabilization program would work out.

HYIDO'IINTICAL, STOLRAGE OPERATIONS, 1870-1540

The order in which crops of different sizes come is shown by the origimal l'nited States comn acreage, yield, mad production statistics, by yems, given carlier in table 2 and figurn 3 . The wity a complete slabilization program would have worked out over the years covered by these data is shown in figure 10 .

In 1870 , for instance, the yield was 29.3 bushels to the acre. The exeess over the average yided, 3.3 busherls, multiplied by the acreage of that your, is the gumatity that would have been put into storage that year. It is represented by the vertical bar for 1870 in the upper part of the chart. In the year following, the yich was 27.2 bushels, again above average. The exeess (1.2 bushels) multiplied by the acrenge in 1871, would have been added to the storage stocks from the previous y ear. In 1872 the yield was 29.4 , again above average, and stocks would have risen farther, as shown by the vertical bar for that year in the upper part of the chart. In 1873, however, the yield was 3.] Dushels below average; the storage stocks would have been

$$
1503 \cdot 1 s^{\circ}+2 \ldots-4
$$

FIGURE 10.-UNITED STATES CORN YIELDS ANO STORAGE STOCKS REOUIRED FOR COMPLETE STABILIZATION. 1870.1940.

The vertical bars in the lower part represent the United States average yields of com per acre sine 1870. The horizontal line ranning through the tops of the bats represents the aworge yidd ower the 71 years- 20 bushels to the aere. The vertical burs in the upper part reprosent the stocks that would have acenmatated if the excess above average yields had been pat into storage in goodcrop years and taken out in poor-crop years.
reduced by 3.1 times the nerenge for that year. Further reductions would have taken place in 1874, when the yicld was below average again:

This shows the general procedure. If in a short-crop year stocks would not have been sufficient to fill out the short crop, the extent to which the short erop plus the entire carry-over would still be short of average is represented by a hollow bar extending below the zero line in the upper part of the chart. The year following one of these "hol-low-bar" years starts off from zero again and not from the bottom of the holliow bar, for a minus quantity of corn ennot be carried over.
Study of figure 10 diseloses that the storage program would have worked out beter during the first hatr of the period than during the second half. The average yield in this part of the period was 26 busbels, the same as for the period as a whole, but the fluetuations in yied were less severe and followed each other more rapidly and altermately than in the second half of the period. The siduation over the first 32 years, from 1870 to 1901, can be summarized in one statemont: Storage storks on one occasion (1900) would have risen to nearly a billion bushels, but in mose cases they did not rise above lall a billion bushels. Stocks would occasionally have had to be carried for as mueh as 5 yedrs, and on a few occusions they would not have been hrye enough to fill out the short-crop years completely. On the whole, however, the stabilization program would have worked out fairly wedl.

The siluation after 1901 was quite diflerent. A procram of complete stabilization started then, based on the records of the previous 32 yenes, would have ber"n unfortumate. Immediately after 1901 came 9 years in a row when yidds were above average. Figure 10 shows that by 1910 , stornge stocks would have risen fobove 2 billion bushels and that they would have remanimed at about that fevel for the bext 9 yeats. Then came another suceession of large crops, lasting from 1019 to 1923 . In this period more than half a billion bushels would have been added ta the existing storage stocks, bringing them over 2.5 billions - more than an average crop. Large granary stocks woud have had to have been carried along, furthermore, for to years before they would have been appreciably reduced.

Shom crops after 1923 would have begun to whitte the granary stocks down, but not until the severe droughts of 1934 and 1936 would they have been used up. And, as large as the stocks were, they would have fallen about one-third of a billion bushels short of filling out the short crop of 1936 . After that year, stocks would have began to atermulate ngain.

What it adds up to is this: A progrom of complete stabilization in the past would have involved carrying as much as 2.5 billion bushels of corn at a time, part of if for 10 or 20 years, and even that would not have been mough in fill out the shert erops empletely.

HOW WOULD A GOMIPAETE STMAHLIZATON JROGRAB WORE OU: IN 'HIE FUTUKE?

A program which would involve the carrying for 10 or 30 years of stocks equivalent to an entire corn crop, whicls still would not completcly fill out all the short crops, appears on the lace of it to be impractiable. Cam a less ambitious but more workable program be figured out for the future?

There are some reasons why this may be possible. Under the AAA program, acreage of com is being controlled to some extent. There is some question as to how much the fotal production of feeds has been controlled, but better techniques of control may be worked out in the future.

It storage stocks of corn in the 1940 's were to grow as farge as they did in the 3920 s (hig. 10), acronge of com would be reduced in an attenst to reduce the storage stocks of corn, and the athempt might well be suceessful. Hard production of corn been reduced it the 1920's, the stocks woukd not have grown so large; this would not have been all to the good, however, for the stocks would then bave been much too small to meret the short erops from 1983 to 1936. But this could have been oflset in considerable part by inereasing the acrenge of com in 1935 and 1936 . If production of corn can be controhed in the future, it will mon that smatler storage stocks of corn will be reduired than in the past.

Eren without production control, figure 10 shows that if the fow drought years 1933-36 are exchaded, complete stabilization of supplies condil have been accomplished in the past by stomge stocks of only about a billion bushels of eom. This is a substantial reduction-60 percent-from the 2.5 billion bushel stocks needed for complete stabilization the years 1933 - 36 are incladed. Stocks of a billion bushels would have been enough for all emergenetes except that of the yenes 1933.36 in 71 yours.

The odds against another group of short crops hike those of 1933-36 orcuring in the future ame less than 1 in 71 . One of the great technologienl idvances in agrieutum during the hast derade has bero the development of hybriel seed iom. Corn yields from hybrid soed have bean above those of the best open-polimated varieties planted in similat representative farm fiedds, by gunatities manging from 7 Lo 3 ! percont and averaging 14.5 peromt over the last 10 yours in Iown. ${ }^{12}$ Simine resuls are reported from oblher Com Beld Stntes. The inerense is (the greatest in pears ol severe alought; that is, the hybrids are mote droughtresistant than open-pothaned com. Hybrid 989 , mach used in Nebraska, is very droughteresistunt, as are Iown 13 and lowa 8 , which are popular in Missouri. In dry yenes the yiedels from those hybrids have run as muelt as 50 or 60 pereent higher than openpollinatod corn, according to a statement by Ft . D. Hughes of the Fown State College, With rontinued genetic resenreh greater increases may be atained in the future. It seems prohable that when droughts rome in the futare, com vieds with not be cut down so much as they were in the past. The size of the stocks neeried for stabilization would thereby be reduced below a billion bushels how numb betow cannot be said matil more is known about the drought resistame of the newer eorn hybrids. Perhnps storage stocks of 700 or 800 milion bushels would be enough.

\footnotetext{
"The promitanes fluetman from your to yonr. For the last in yefors tha yicids of the hytride, expressed

SIZE OF STOCKS SUMMARIZED

How much corn should be carried in the stabilization stocks? The answer deponds upon the degree of stabilization desired. If complete stabilization of supplies (the withholding of any excess over average production in good-crop years and its release in short-crop years) had been sought in the past, it would have repuired carrying as much as 2.5 billion bushals of corn, the equivateat of an average crop, for 10 or 20 years. Even that would not have given complete protection in 1936 . Probably a program of that size would have been unworkinble.

A less ambitious program for the future, designed to cover all cmergencies but those like the group of extremely short crops in 193336 (and this has occurred only once in the lasti 71 yenrs) could get along on storarge stocks of abouti billion bustrels. This is all the truer if production control is aflective. If hybrid seed com is as drought-resistant as it appeas to be, less than if billion bushels would be required--perhaps only 700 or 800 million.

Location of Stablazation Stogiks

The second major problem is that of the most economic location of the stabilization stocks. This depends upon several things: (1) The relative size of the iluctuations in production ol corn in diflerent parts of the Com Belt, (2) whe costs of storage, including deteriomtion, in diffornt arons, mal (3) the eosts of transportation to and from the pher ol'stomge.

It rould be only an aecident if these there lactors all led to identieal conelusions. For example, fuctuations in profuction of com might be much greater in the western part of the Corn Belt than in the eastern part; that woud point to the conelusion that the stomge stocks should be larger in the westem tham in the astem. Yet the danger of insect damme might be less in the northern parts of the Coen Bedt, and that would lead to the conchasion that the balk of the coun should be stored in the Nordh. Yet agatin, the costs of trmensportation might be lower if the stomge stocks were distributed eventy over the mbire area.

The first problem is to investirate each foctor separately, and in that investigation anch liador will be trented independently of the influener of the ofler factors.

EELTT

Inder the simplest conditions, il all the corn produced were consumed in the same county where grown and if production of corn fluctunted about as much in one part of the Com Belt as in another, tidese would be reasons for storing supplies evenly over the area. But if production of corn in one part of the Corn Belt fluctunted frequently from 30 percent nhove average to 30 percent below, for example, whereas in another part it fluctuated only from 10 percent above average to 10 pereant below, that would be a reason for carrying stocks as large as 30 pereent of a erop in the one place and only 10 percent in the other. In that case the major part of the storage
stocks for the Corn Belt as a whole would need to be carried in the area with the greatest fluctuations in production.

How do the actual fluctuations in froduction compare in the important Corn Belt States? This can be shown in two ways: (1) Graphically, by means of separate charts for cach State, all on logarithmic scales to permit direct visund comparison of the fluctuations, and (2) mathematically, by the computation of some numerical index or coefficient of fluctuation.

The graphic method is superior to the mathematical method in one respect; it shows what happened each year-whether there were large fluctuations in a few years and comparative stability in the others, or whether the fluctuations were about the same size in different periods-and whether there were trends up or down, and the nature of any curvature in the trends. In this case, however, 11 separate States are invoived, and the chart showing the fluctuations in production for cach State from 1900 to 1940 on separate logarithmic scales is too large to reproduce here. ${ }^{14}$ It can be described and appraised verbally as follows:

The fanctuntions in production of corn from year to year in the five principal corn-producing States-Iowa, Illinois, Indiana, Ohio, and Mimesota-apprar to be all of about the same order of magnitude. The size of the fluctations in the next group, consisting of the four States along the westerm border of the commercinl corn area (South Dakota, Nebraska. Knnsas, and Missouri), cannot be so easily summarized in one sentence, becanse of the pronounced trends apward or downward in production that took place over the period. The trend of corn production in South Dakota rose steeply from 1900 to 1923, but after 1927 it fell precipitately to below any previous levels during the early 1900's. In Missouri, the trend of acreage has declined irregularly since 1917, and yields were ent drastically by the severe droughts in 1901, 1934, and 1936. Much the same can be said of Nebraska and Kinsas, except that the reduction occurred almost all in one sharp drop after 1934. In these four States ranfall is the chicf limiting factor, and the fluctuntions in production are considerably greater than in the five principal Corn Belt States. At the other extreme, the fluctuations in Wisconsin and Michigan are the smallest of all.

Further inspection of the charts for the five most important Corn Belt States shows that they can all be broken into two periods, cach about 20 years long. One period runs from 1900 to 1920 , and the other from 1921 to 1940 . The fluctuntions during the second period are greater than those during the first. Yet the same gencral conclusion can be drawn concerning both periods: The fluctantions in the five principal corn-producing States are all about the same size; the droughts in 1901, 1934, and 1936 reduced yields most severely in the four States along the western border of the commercial corn area, and partly for that reason the fluctuations in those States are greater than in the five principal com-producing States.

The Huctuations in the different States are represented mathematically in table 5 . The measure of fluetuation is the standard devintion of the differenees between successive corn crops, divided by the mean of the corn crops for the period concerned, expressed

[^11]as a percentage ${ }^{15}$ With the exception of Kansas and Missouri, production of corn in the second 20 -year period, 1921-40, fluctuated about 50 percent more than in the first period. In all three of the periods shown, the fluctuations in the five principal States-Minnesota, lowa, llinois, Indiana, and Ohio-were of about the sme order of magnitude. The fluctuations in the four western States-South Dakota, Nebraska, Kansas, and Missouri-were about 50 percent greater than in the other States.

The data in table 5 indicate that, insofar as the factor of relative fluctuations in production is concemed, the storage stocks of corn should be spread evenly (in even percentages of average production) over the five prineipal Corn Belt States where the fluctuations in production are about equally large; but in the four western States of South Dakota, Nebraska, Kimsas, and Missouri, the stocks shonld be abrut, 50 percent larger (in percentage terms) than in the principal Corn Belt States. The preliminary conclusion relates only to the one factor, the relative fluctuations in production, under the simplest conditions where all of the com is consumed in the county where it is yrown. The influeners of other factors and other conditions, which may lead to different conclusions, must also be considered.

Tante 5.: Measwres of fluctuation in corn production, bu Skates, 1901-40

$0=$ Standmatidevation of the first difuremoes;
$\mathrm{M}=\mathrm{Mm}$ m of the arigimi strises.

MINIMTYING THANSTOLTATHON (COSTS

Here the discussion begins with the assumption that com moves in large quatities year after yenr from the surplus-producing arens in the western and ecntmi Corn Belt through to the East.

Tinder those conditions, the com-priee surface wouk slope fairly smoothly upward from west to enst. The prices at eastern points would be higher than the prices at western points by the amount of the transportation and handlang etharges between them. In that case the better place to locate the storage stocks of corn would be in the western part of the Com Belt. A given amount of loan money would necmplish more there, where prices would be lower, and the storage eosts that vary with the value of the corn would also be lower. When eastern livestock famers needed to get eom out of the storage stocks, it would cost them no more to get it out of these stocks than if the stocks had been located in the East,

Averach Preme Difrmberpals... The situation in actuality is not so simple as indicated. It lies somewhere between the two extremes. The prite surface over the Corn Belt does not slope smoothly upward

[^12]in any direction (fig. 11). Figure 11 shows the average farm prices of com over the last 16 years (the data go back only to 1924) by eropreporting districts over the commereial com area. "Iso-price" lines, connecting approximately equal prices, like contour lines on a topographical map, help to bring out the character of the "price surface" over the area.

Figure 11 shows that the corn-price surface is not flat like the ocean, nor is it unifomly sloped in any single direction. The rough general tendency is for the price surface to slope downwad from the cast to the west, and from the south to the nerth; but the slope is not miform. Talleys and ridges, plateaus, and even basins, oceu in the price surface. In central and castem Illinois and western and central Indiama there is a basin of 63 -eent prices surrounded by a ring of higher prices on all sides. Going west from that areat, priees at first do not decline; they rise. It is necessary to surmount a ridge of $64-$ and 6 berent prices in westem Illinois and southastern Cown before readhing the low-priee valley that runs northwest from central lowa, decpening as it groes.

UAE: 39475
Fbicue 11.-The price surface for com hats a general slope upward from west to cust, exeop for a depersion in matem Illinow and westem hadian, where harge fandities of eom in excess of heab merds are prodneed. The hewest prices are foknd an the northwest eomer of the (om Bolt. (Average farm price, by crop-reporting districts in the combereial corn areat.)

The actund differences in prices shown in figure 11 are in most cases less than the transportation costs between the difterent points. It is evident from these price relations, as well as from data regarding com shipments and destinations, that the corn produced in the surphusproducing areas does not move from the western thd eentral part of the Com Belt clear over to the Eastern States, untess it be in a few exceptional years, and in comparatively small quantities. Corn from western and central lowa ordinarily goes to enstern lowa and as far
east as Chicago (8, pp. 11-19, 48) , but very little of it seems to go enst of lllinois. Less is known about shipments from eastern ecistan Illinois, but it appears from the price charts that corn docs not move regularly, year after year, from Illinois to Indiana and Ohio, ior prices in Indinma average about the same as in Illinois, and in Ohio they average only 4 or \bar{j} cents higher.

What may happen is this: The price surface may change greatly from year to year, and in any one year the diflerentials from certain areas to certain others may be great enough to cover transportation costs between these areas. In mother year these price differentials change, perhaps eren reverse, and corn flows differently. The avernge figures show wery small average-price differentials, but in any one year the price differentials may be large. Investigation of the years separately is required.
It is diflimet to carry several price maps for individual years in the mind's eye at the samie time, for comparison; the variability of the price surfare from 1 yen to another can be shown more clearly by sacrificing some detail and showing only cross sections rather than entire price surfares. A cross-section comparison can be made by use of data from st row of crop-reporting districts ruming from east to west along the middle of the Corn Belt, with the distriel centers approximately equal distances (about 100 miles) apart. The prices in these distriets may be represented by yertical bars, the chart then looking something like a picture of a pieket fence with the stakes driven unevenly into the gromad.

The Corn Belt widens out toward the west, so that it is advisable not only to show a section along the Com Belt from east to west, but also a cross section cutting across the western end of the belt from north to south. The districts selected for this north-south section should lie sucessively aljacent to one another, their centers being closer together than those in the east-west line, because the gradation of prices is steeper and the distances involved are shorter. Each such chart, therefore, consists of two parts, one showing the east-west section and the other showing the north-south section.
Charts of the kind deseribed, one of which has been prepared for each year, are too complicated and momerous to be reproduced here, but they show a story that can be told in a few sentences. They show that the eharacter of the price surface changes greaty from year to vear. In most years, it differs widely from the 16 -year average surface shown in figure It. In 1927, 1928, 1929, and 1932, the surface sloped steeply upward from west to enst in 1936, it sloped almost as steeply downwarl from west to cast ; in 1925, 1926, 1931, 1934, 1935, and 1937, the general contour was horizontal, but the surface was uneven, in different places in the different yeurs. In the other 5 years, the surface had a general sloping character similar to that of the 16 -year average, but it had a different sort of mevenness each year. The price surface of the eross section from north to south is more nearly stable from year to year than that of the cross section from west to cast, but in 1931 the normal steep upward slope from north to south was reversed, and in 1932 it was almost flat; and no 2 years are alike.
Vabiations in Corn Price Differenthals Between Iowa, Indana, and ()ho.- The price surface varies greatly from month to

[^13]month, as well as from year to year. The data to show this for all the crop-reporting districts, or even for the eross section districts, are too numerous to provide any clear mental impression. But the data for a few representative States and districts tell the story more clearly than the mass of data for all of the districts together.
The top-heavy line in figure 12 shows tied difference between the price of corn in Yudinmand the price of corn in lowa, by years, from 1921 to 1940. The lowa price is used as the base; it is represented by the horizontal zero line across the chart. The Indiana price is plotted as so much above or below the Iowa price as represented by this horizontal zero line. The cluat shows that the Indiana price ranged from $\$$ cents above to 4 cents below the lowa price-a total range of 12 cents.

The second heavy line from the top shows the same sort of comparison of Ohio and lowa prices, by years. The price differentials in this case cover a range of 22 cents.
The third heary lime, representing the difference between Ohio and Lown prices, by months, shows thin the monthly differentials fluctuate rapidy over a wide range, within the season as well as between sensons. The range of the monthly difierentints is 42 cents.
Figure 13 shows the price differentials between crop-reporting districts No. 1 in the northwest comer of lowa and No. 6 in the easi central section of lowa, by years. The fluctuations are much smaller within the Stale tham between States, but they are still considerable. Most of the fluethation in the corn price cifferentims between States results from fluctuation in relative procluction (fig. 14).

An interesting byproduct of these charts in figures 12, 13, and 14 is the light they shed on the effect of the fint corn-loan rate on the comprie surface. Statements were mate in an marlier study that the fat corn-loan rate had a flattening effect on the corn-price surface. ${ }^{18}$ Bat the preceding charts show (1) thatiterat chnuw ocemed in ammal price differentials before com loans were ever thought of, extending over a range of 22 cents, (2) that the chief peasons for changes in refative prices are changes in rolutive production, and (3) the effects of the loan on price differentinls after these relative changes in production are taken into necount, are either nil or too small to detect.

Proliminary conclusions with respect to minimizing shipping cosis to mad from the place of storate may now ly draw. Most of the average corn priec differentials between districts are smatler than the costs of transportation between the districts, but the differentials in individual years, and they are what count, are comparatively wide and are varinble in monnt and even in sign. The corn-price surface changes so much from yeat to your that there is no telling where corn that is put into storage 1 your will be shipped thr next. The place to store the corn in order to keep shipping costs at a minimum is on the farm where it is grown; then it cmn move in any direction, or not move at all, without incurring umnecessary shipping charges.

[^14]

Figure 12.-ANNiJal and MONTHLy CORN Price Differentials between lowa AND INDIANA. AND IOWA AND OHIO. $1921-\mathcal{C}_{-}$

The difrerentials between the farm priees of corn in Jown and bwo eastern States (Indiata and Ohiol vary greatly from your to yetar. 'llac variations from month to month are considerably greater that the variations from year to year.

Fluctuations in production in different areas are not perfectly correlated; the procedure crech ycar would be to store any excess over average production in the State (or other unit of area) where it occurred. Thus corn might be going into storage in one State with a large crop at the same time that it might be coming out of storage in another State that had a short crop that year. But over a period of yeats, celatively short crops would average out with relatively large crops in the different Sintes, and stoeks wond grow to approxinately even (that is, uniform or identical) proportions over the area.

If no com moved from comty to county, the term "even proportions" would mean "even percentages of production in each area"

Figure is.-ANNUAL CORN Prtce DIFFERENTIALS BETWEEN CROPR-REPORTING DISTRICTS : AND 6 IN IOWA.
The disferentiass between the farm prices of corn in orop reporting district No. 1 in the morthwest earner of lowa mad crop-reporting districi No. 6 in the contral castern fart of Iowa flactuate freatly from yenr to year, but the prices in district No. 6 have remained higler than those in district to. 1 thronghout.
(corrected for the relative fluctuation in produrtion in each areat as indicated). But consideqbis quantitis of com are shipped out of some districts. In central lifinois, nenty half the corn produced is stipped out. Production wever the fallen 50 perent below average there. In that case, should any stocks of corn be held in that districe? If corn production there were cut in hath by drought or deluge, roukd not the corn growers maintuin their consumption of corn unchanged simply by shipping out no com at all?

Clearly, the answer is yes. But that answer is not sufficient. It is adequate for that paticular district, but not for the corn-growing and corn-consming area as a whole. Suppose that the Enited States coru crop was 20 percent larger than average in a certain year.

1
70
5
0
-あ

10
5
0
.5
-10
-15

YEAR GEGINHING OCTOAER

FIGURE : A. TRELATION BEIWEEN CORNPRICE DIFFERENTIALS AND RELATIVE CORN PRODUCTION FOR VARIOUS STATES: A. CORN PRICE DIFFERENTIALS BETWEEN INDIANA AND IOWA (PLOTTEOUPTHE SIDE) AND THE PERCENTAGETHATINDIANA PRODUCTION IS OF IOWA PRODUCTION (PLOTTED ALONG THEBOTTOM): B, SAME SORT OF RELATIONSHIP FOR QHIO AND IOWA: Z. FOR NEBRASKA AND IOWA.

The inverse relationship betwen relative corn production aud relative corn priees in the different States is clearly revenfed.
and that all of the 20 percent excess were to be carried over. The corn from most surplus areas moves to different deficit areas in different years. If in the year when 20 pereent of the United States crop was being stored, no stornge stocks were accumulated in central Illinois, more than 20 percent of the local production would have to be stored in other areas, presumably the deficit areas. But most deffet areas vary in their "import" requirements from year to year; some even change to surphus areas, in years when the local corn crop is large. If onc of the deficil areas the year after the large Enited States chop had a large erop itself, and did not need to imporf, much if any corn, it would have to cary over the larexe stocks from the pevious yen, for 2 yours, thus acomahating 2 years' storage eharges. But if the staplus stocks in the large trited States cop year had been earyed orer in the sumphas area (as other areas) in propertion to production there, it would all move the next year to the deficit area that needed it most and onty l year's storage charges would be ineured.

In fact, the quantity of corn that should be stored in surplus areas is likely to be more, mather then less, than proportional to protuction, for the conclusion was tomed eather that in cases where com moves consistently from a surplas ara to a defieit area, the best place to eary the stomgs stocks is in the suphas aren, where lonn rates and some of the stomare costs would be the lowest.

Corn does not move consistenty, however, from one area to another, year after yor; in most ases the average price differntials are less than the transportation charges, and in those cases corn should be stored in even parentages of production in the different areas. The storage stocks stouk be atlowed to accumulate uneventy from year to year, to be sure, as redabive production of com flucturtes in the diferent arens, but this acemmation should be over a period of years, in ganatites proportional to the production in each area. This genemi conclusion is modified in two wavs: 'The stomge stocks should be large in the areas where production of corn fluctarates most and small where it fluctuates tenst. The stocks should be proportionat to corn production multiplied by some index of average fluctuntion in production in each areat. Finally, the stocks shoutd be large in those sumplus areas from which com moves consistently year after year to other deffeit areas, the price differentints consistently rumbig high enough to cover transportation; but it is difficuit to put this in precise numerical form.

cosits of stomace

Costs of stomge must ntso be comsitlered in the location of storage storks.

The cheapest way to store corn is to put it in a erib on the farm where it is grown, or to shell it after it has dried out sufficiently and pat it in a bin on the farmo or in a town narby. Estimates of the cost of farm stomge mage from 3 cents a bushel per year ($18, p p$. $309-315$) up to the 7 cents that the AAA paid farmers for storing com up to 1940 . The 7 cems was regarded by the AAA as more thm enough to cover the costs of stomger mough in fact to shimulate inereased buidnag of eribs, which it did. The storage pryment on corn reseated on farms in the fall of 1940 was 5 cents a bushel, which will be used here to represent the cost of storing corn in a crib or bin.

At country elevators and termimal markets, under the uniform grain-storage agreement (CCC Form H) used by the Commodity Credit Corporation, the charge is "one-thirtieth cent per day for the first 210 duys of the period for compating charges and no charge for the remainder of the period." That amounts to $\overline{7}$ cents a bushel for any period between 7 months and a year. No doubt most of the corn for stabilization purposes will continue to be stored in the country, as it has been so far wader the AAA proyram. The stomge costs for that part of the total stocks that is owned by the Commodity Credit Corporation will be either the cost of keeping it in steel bins in the country, or in country or terminal elevators. The costs in elevators, as given, are roughly f cent per bushel a month up to 7 months, with no charge for additional months up to 12 . The costs in stee bins are not given in any specific figure like the elevator costs but must be computed on the brasis of costs of materials, construction, maintenance, ete., for the sted bins.

INSECT DAMAQE IN DIFFIEIENT HEGIONS

The probable extent of insect damage to corn in storage has an infuential bearing on the jocation of the stonge stocks.

Brondly speaking, insect damage is a runction of latitude; it decreases with distance north, being greatest in the Southern States. It is also affected by humidity; the lower the humidity, the less the damage. Figure 15 shows that the United States may be divided into f regions arcording to bive severity of insect damage ($20, p, 7$; 21. p. 19). In region 1, stored grain is comparatively free from insect

FIGURE IS,-THE UNITED STATES DIVIDED INTO FOUR AREAS ACCORDING TO THE SEVERITY OF THE INSECT HAZARO TO STORED GRAIN
The severity of insed damage to stored grain in thirerent regions of the United States is indieated by the shathins. The most hemvily shaded areas are the ones where the insect damuge is the greatest. The regions rin in broad betts from cust to west.
demage; in region 2, farm storage of grain is hazardous in some years, and frequent inspection and oceasional fumigation is required; in region 3 , farm storage is hazardons every year, and fregtent fumigation is necessary; and in region 4, grain storage is not recommented at all,

Region 2 runs along the middle of the commercial corn area from east to west. The danger from insect damage to corm is greatest in Kansas, Missouri, and the southern halves of Llinois, Indiana, and Ohio, which lie in region 3 .

Very littie is known about insect damage, in quantitative terms. The extent of dmmage varies with changes in temperature from year to year; the higher the temperature, the greater the damage.

During the summer, the insects in stored grain--"bran bugs," flour beetles, saw-toothed beetles, foreign grain beetles, and in southern areas, weevils-nove about freely in the grain. In the cool weather of the fall, they move toward the center of the bin to get away from the cold. The living processes of the mass of insects probuce heat and moisture. The wam damp air arises, and condenses when it reaches the surface of the grain if the weather is cold. Nolds develop and a erust forms in the surface layer of corn.

Control measures include fumigntion with such heavier-than-air gases as ethylene dichtoride and carbon tetrachionde (a relatively ensy and inexpensive process) and clenning the grain to remove the insects and the broken bits of kerneis. In regions 1 and 2 insect damage can be kept to a small percentage by the use of these methods. Estimates stre that in region 2 the cost of control measures would aremge about 1 cent a bushel per year. In meas south of region 2 the cost would be considerably higher.

Probiem Ameas.- Most of the commerciat com amen lies in regions 1 and 2, but the southern part lies in region 3. Missouri and the smath part of Kansas that hes in this area constitute a special storage problem. The fluctuations of corn prodtetion in those States are considerable, and this calls for the carying of harge stocks there Yel they are located in region 3 where insect damage is high, and that means that stornge stocks should be kept as small as possible.

The way to a partiat solution to this difficulty is indieated by the fact that comprices are ordanaity from 5 to 10 cents higher in Kamsas and Missouri than in lowa and Nebraska. In most cases prices run 10 cents higher in parts of Missouri that are about 100 to 150 miles south of sumplus-rom sections in centrel, western, and southern lowa; prices in Kamsas are aboui 5 emts above those in Nebraska. Ten cents a bushel is enough to cover transportabion costs for a 200 to 300 -mite hath. Perbaps the thing to do is to store die supplies from Kansas and Missouri in Fown and Nebraska and atraw on them only ns needed. This wouk increase the quantily of com stored in lova about 20 percent. Missouri produces about 110 milhon busheds of com on the artage (one-fourth of the Towa protuction) and the sonthern part of Missomi lics ontside the commereial corn area. Much the same thing is true of Nebraska in relation to kiansas.

Comflawnsl: CONCIUS1ON

The compromise between the somewhat different conclusions renched in the discussions of transportation costs, storage cost, and insect damage can be put in the form of a major condusion modified
by two or three minor ones. The major condusion is that corn stoeks should be located in farly even (hat is, aniform or identienh perentages of prodaction over the commercin cern aren. Tha torage stocks shouk be allowed to acemulate unerenly from year to yoar, as melative production of com lhe bates in the difterent areas, bat orer a period of years. it quantitiss propertional to the probartion in omehater.

The generat ronclusion is motified in wo or threer resperts: The

 are aboul at perent greater that in the rest of the area, so the storage tochs in these states should be phom 60 perent harge than stocks in the rest of the ated. But his modifieation itsedf mephs a further
 Fansen, on stow should be keph smal there in quite of the fact that
 kerep mose of the stodks from Missemri in lowas, mat somek from

 sporhs. By stres

The compronise conctusion is only a mogh-ant-ready firs approximation. More resered will be regiver before the revmmemdations
 But rongh as the compromise conclusion is, it will sure as a sort of stantard be whelh the existing lomation of the artand storate stows can be appased in a perliminary way. This apponisal is made as of two reew dates Oetober 1, 19.0, and Oetober 1, 10: 11.

On Betober 1, 1940, the total torks of com on harms in the 11
 dismbuted moner the 11 States as show in the fire column of table it. These storks were in wat about 32 peremt of the 193140 ayemer production of rom in the 11 States. They were about the right size, in tolat, for stabilization purposes. (The lotal stocks in the Cnited states stood at about 700 million bustels, whout the size recommended at the end of the seetion on the size of stabilization stocks: If ther had been lexated in the Slates acroxding to the major recommendation reathed emplier in this section-in aren perecmages of production-- the number of bushots in cach state wond have been as shown in the second column of table 6 .

The bread conclusion was reached that stomge stocks of emm shouht be hodd in even percentages of production in the different States. The chac moditation of this conelusion was that the percentuges shouk be larger in the states with the farger fluetuations in probuction, and smather in the states with the smaller flactuations. The peremages shoutd rars proportionily with the fluctuations.

Fheduations in proxhetion in ench of the 11 Com Belt Statos were mepresented mamerally in table 5 . By the use of these measures of fluctuation, the storage stocks mual to 3 ? perent for the 11 States

[^15]as a total ean be apportioued among the different States in such a way that the stoeks in each State are proportional (in percentage of the nverage profuction in the State) to the messure of fluctuation in production of corn in that state.

Tabits 6. - Whtocks of eorn in th Com Rell States, Oct. 1, 19ho. ami Oct. 1, 1941

$$
\frac{\frac{1}{3 \Gamma}}{\sqrt[3]{7}}
$$

Wherr

The formber hese to make this apportionment is given at the foot of tati!e bi. The reants of the computations, expersesed in hushets,

The other more minor modiliewtions, with resperef to insect damage

 ditafice form. Thoy may be ignored for the lime being, or may be kept in mind in : fremen way.

The romparism caturn be nate betwen dar achal stocks of wom

 Where the actual stoms on hand are shown as perentages of the revemmonded stocks. It shows that the iwo castern Corn Bett States, Indinmand ohio, had less than bate as much com ans they beeded. Illinois had about the right qumatity. Towa had twice is much as it acoded, atthough if insere damare and surphes needs were takes into necount, the exess would he more nearly $\overline{0} 0$ pereent tham 100 percerit. Mimacola hat about an prement too mach com. The western-fringe States, where prodine tion huedutes greatly, did not have enough.

The percentage figures in column $\overline{0}$ give the same sort of information as the figures in columm 4, but for October 1, 1941. They show that the stocks of corn on Oetober 1, 1941, were smaller than on October 1, 1040, in the central and castern Corn Belt States, but that they were larger in the western States, Iowa, Nebraska, South Dakotit, kinnsas, Missouri, and Wisconsin. That is, the maklistribution of stocks in 1941 was greater than in 1940.

It shouh be emphasized hete that table 6 and the conclusions based upon it are preliminny nad suggestive rather than in any sense conclusive. They constitule explorations in an meherted fold mather than a eomplete survey.

Docatoo or swock summantaid

The bulk of the stomage stocks of eom should be hed on frims or in wemby toms all over the Com Bett, and should not be hemevit concentrated in any one arem. The number of hushels hede in each State should bo proportional to the average production of come multiplier by the nerpage fluctuation in production in that State. In addifion, some allowate should be made for the pereentage of production comsumed in an aren and for storgge dificulties like insed damage.

Appeaisal of the actual stocks of corn on farms by this standard shows that the stocks on Oetoher 1, 1040, were (1) about wiee as large as necessary in lowa, (2) क0 pereent too large in Ahmesota, (3) about right in thinois and Sonth Dakota, and (4) too small in Indiana
 Kanses on the westurn aige. On Oetober 1, 1941, the maldistribution of storks was grenter thitn on (actober f , 1940 . These findings are proliminary and not in meny sense final.

Pheles. Costs. and Ivcomes

The diserussion so far thas dealt with physirat problinms--the number of hashels of enm required to suoth out flumamen in produrtion, the focation of the physeal supplies, and so forth. It is now neressary to consider the permomic problems of prices, costs, and incomes.

 Lstestoce

Stabilizing supplies of eoru has a sabilizing effer on prices of corn: it also redures the cost of producine livestock. Daringe the last 20 yeas, the total liwe waght of hogs shaghtered under Federal inspecfion has raried from 12 billion pounds in 192:3 24 to 6.7 billiou pounds in 193.4 35. Such vmiations in production of hags increase the costs involved in producing, shipping, and slatghering hogs und in processinge and distributing the pork. Equipment adecuate to hatade 12 bibinon pounds of hogs is almost hatif idle when only 7 bitlion pounds are produced, and idle requipment inereases eosts per unil.

Noteover, the bigures for total slaughter in the United States tell only part of the story. The weather does not elmane eventy over the whole Com Belt; droughi nanas strikes harder in some parts than in others. In a year when the total corn crop in the United States is

10 percent smaher than average, in some areas it may be 20,30 , or 60 percent smalicr than average, whereas in other areas it may be large than average. These local fuctuations in supplies affect production costs of hogs. These costs are only partiy alleviated by the rutomatie flow of corn trom surplus to deficit areas as a result of the diferences in priees between the two, bechuse the costs of shipping corn are high compared with most area-price differeners. The how of corn from grood-crop areas to short-crop arens is far from adequate to even out supplies. This is shown by the differences in average hog weights (reffecting differences in corn supplies) it different markets in the same year. The average weight at Omaha has fuetmated from 30 pounds over the average weight at Chicago in Deember 1927 to 25 pounds under it in Desember 1936 (29, 1927, 1986).

Hog production eosts ate divided on a pereentage basis about as follows: Feed 75 to S5 weremt, other costs (sued as voterinury whet vary directly with the number of hogs produced) 5 bo 10 pereent, fixel eosks, such as iuterest on buildings
 to prothee 10 billion pounds bud is utilized to produce only 8 billion pounds, the cost per pound will be mised ly about 3 pereent, beanse the tolal overbead costs fun on as harge as ever, but are sprend over fewer hogs. Costs per pound go (1) proportionately mone as the hog elop deerases, watil the exeessive overheat costs on a erop half as hare as momal in any area result in 10 to 15 jorecot higher costs per pound bhan hog crous that filly utilized the fixed investment in the hog-produchig phant * * *.

Fluthations in fio tom-hog priee ratio have mother indirect efleet on hogprodinefiom exsts. A given gumatity of feed will make more pounds of pork if fed to hogs which are shathbered at from 200 to 230 pounds than if fed to hogs which nre marketed at either kighter or heavied weights. But when the eorn priecs are low relalive to hog prices becmuse of a larese eroy (or for any other reason), as in the fall and winfer of $1937-38$, hog producers find it profilable to feed ineir heses to beatice weighes. Although it lakes 10 to 15 pereent more feed to pat a prumi of gath wh hogs wedghing 250 lo 350 pounds that an pigs

 or 40 percent robhelion in corn price $(1 S, p p, s 80-95 t$, uppentizes A, B).

Wuch the same thing is true of enttle and other elasses of livestock. Whethations in supplies of com make for high costs ol livestock production, and stabilization of supplies of com wond reduce those costs.

STARILIZING JRODUCTION OF CORN INCREASES INCOMES
Stabilizing supplies of com not only decrenses the eosts of producing livestock; if also increases gross incomes to com and hog producers. The lower pat of hiphe 16 , 4 shows the demand curve or averngerevout curve for corn, wake from the proe malysis given earler in this bulletia. This is the averagerevemue eurve when the level of demand is averare. The upper part of figure 16, A shows the totalvalue eurve for com; this shows the bat value of diferent-sized crops. Nost of the eorn erop is sold not as cash com, but in the form of lirestock. The watue of the major livestock crop, hogs, follows elosely the value of the com crop, the demand for hogs having about the sme dasticity as the demand for com ($18, \mathrm{pp} .328-320$; appendixes A, B). The total-value eurve for com, therofor, approximates the totalrevente curve for the value of the products into whieh most of the com is converted. It will be refered to henceforth as the totalrevenue curve for com, in conformity with analytical economic terminology.

EAE 334BE
FIGURE 16.-AVERAGE. MARGINAL, AND TOTAL REVENJE FOR DIFFERENT SIZE CORN CROPS, I, AVERAGE AND TOTAL REVENUES: DATA EXPRESSED IN TERMS OF PERCENT OF AVERAGE. U. AVERAGE AND MARGINAL REVENUE AND GAIN FROM STAEILIZATION.
A shows that large crops ated smail crops are both worth less than crops between 80 and 85 percent of average size. Is shows that the gain from stabitization is greater when ductuations in crop production are large than when they are small.

Study of this total-revenuc curve for corn shows that two crops, one large and the other small, are worth less than two crops of average size. A crop that is 20 percent larger than average is worth 84 percent of average; a crop that is 20 pereent smaller than average is worth 104 percent of average; the sum of these two total values, divided by 2 , is 94 . But the sum of the total values of two average crops, divided by 2, is 100 ; that is 6 percent more than 94 . Stabilization of supplies would convert a seties of various-sized crops into a series of averagesized crops, and this would increase the value of the erops.

The iltustration used is mather an extreme case. Crops as much as 20 percent oversize represent abont the limit that has been reached in the past; few corn erops exceed 3 billion bushels. The situation for all sizes of crops up to 20 -percent oversize can be represented in one dingram, shown in figure $16 B .^{18}$ The lefthend pate of this fgure shows the demand curve for the corn crop as of one year, for example 1940. The right-hand part (which is similat to the left-hand part but reversed) shows the demand curve for the corn crop as of the next Fons, in this case 1941 (the scate along the right-hand that of the bottom of the ehart rurs from right to left, not from left to righti). For simplicity, the average price of com is represented as 50 cents, and the average com crop, as 2.5 billion bushels.

The dofted hacs in the lower part of 16 B are the marginal-menue (addition-to-total-revenue) curves. They cross (have equal values) at 2,5 billion bushels. That means that if the crop were latrge in 1940 and small in 1941 , so that the two erops totaled 5 billion bushels, the way to maximize returns would be to sell 2.5 bilion bushels each year. The anomet of the gain over selling crops of unegual sizes is shown by the black briangita area in the lower part of the chart. The area in this case shows the gross gain from converting a crop of 3 billion bushels, followed by a crop of 2 billion bushels, into two average-sized crops of 2.5 billion bushels each. The gross gain in this case amomets to 150 million dollars, which, divided by 2 , is 75 million dolhars a year.

EFFECT OF STABIIIZING SUPPLIES ON STABILITY OF INCOME

Before the Ever-Nomal Granary programs were pat into effect, a large crop of com depressed prices so mueh that it was worth less than a small crop. If all the crop were sold as gram, as pratically all of the whent crop is, this would menn that tolal revenues from corn would fuctuate inversely with the size of the crop (inversely, becnuse the demand for com is inelastic through most of its range). The fact that most of the com crop is fed to livestock appears on the face of it to add complications to this simple conclusion; but as the total value of the hog crop closely follows the total value of the pom erop on which it was raised, the simple conclusion holds that the total revenue from corn fluctuates inversely with the size of the crop.

[^16]Under a stabilization program that situntion is reversed, especially when stabilization is effected by means of loans. What happens is this:

Suppose the crop is 20 percent oversize. If the loan is set at the average-crop level, the excess 20 percent of the crop is sealed, lonns are taken out, and the money is spent about the same as though the 20 percent excess had been sold at the same price as the loan rate. The total revenue from the "sale" of the large crop therefore is 20 percent greater than average. If the crop the next year is 20 percent smaller than average, the total revenue is also smaller than average. Stabilization of supplies at the average-crop level, therefore, would cause total revenues from the "sale" of corn to fhetuate directly and proportionally with the size of the crop.

Ender the particular schedules of loan rates written into the Agricultural Adjustment Act of 1938, the situation is a little more complicated than has been indicated. The loan rates vary inversely, but not proportionally, with size of the corn crop. An arithmetically simple way to show the effect of the varying loan rates is to assume that the busic lonn rate of 75 percent specified in the act happens to work out to a price of 75 cents a bushel, and furthermore that a normal year's domestic consumption and exports of corm as defined in the ard is 2.5 billion bushels (the Secretary's latest determination was 2,585 million bushels). Based on that assumption table 7 and figure 17 show total revenues from corn crops of different sizes.
Table 7.-Total revenues from corn crops of different sizes under the schedule of loan rates specified in the Agricultural Aldjustment Act of 1988

Figure 17 also shows the total revennes from com crops of difterent sizes under B, a lom mo fixed at a single figure, in this case 75 cents, regardless of the size of the crop; and C, no program at all, with prices of com fluctunting as they used to do, inversely with the size. of the crop. Total incomes under the lom rates in the Agticultural Adjustment Act of 1938, represented by the series of steps, tigure 17, A, woukd lie between the two other lines.

Should Total Revenues be Stablazed, Rather tban Prices?A case could be made for seting loan rates in relation to the size of the erop in such a way that the total revenue would remain at a consiant level year in and year out no matler what the size of the crop. Perhaps that would be a more desirable action than stabilizing prices.

But com is primarily a raw material for producing livestock, and if prices of corn and quantities of corn consumed were permitted to Guctunte, livestock production and prices would fluctarte also. It would seem preferable to stabilize supplies of corn completely, in

RAE 39187
FIGURE 17-TOTAL REVENUES FROM THE SALE OF DIFFEFENT SIZEO CORN CROPS WITH A. THE SCMEDULE OF LOAN RATES IN THE AGRICULTURAL ADIUSTMENT ACT OF'1938: 3 , THE LOAN RATE FIXEO AT 75 CENTS: AND C. NO STAGILIZATION PROGRAM AT ALL.
The corn-loan rakes written in the Agricultural Adjustment Act of 1938 are such that the total reverbes from a harge corr crop are somewhat larger than the total revennes froun an average crop. Th there were no stabilization program, the total revenues from a large crop would be consiferably lower than the totai revenues from an average crop. If lonn rates were fixed at a constant figure, the total revenues from a large crop wonld greatly exceed the total reventes from an average crop; they would vary directly with the size of the erop.
order to stabilize supplies of livestock, thereby stabilizing prices of livestock and total revenues. The only penalty for doing so would be the fluctuation that would exist in the total revenues from corn. The fluctuation would be small, however, as so small a percentage of the crop is sold as cash grain. It could be controlled completely by making the loans on the corn in some form that could not be turned into cash until a short crop came along-a sort of warehouse certificate for the corn, rather than a cash loan on it. Perhaps that is an impracticable suggestion, at least until the stabilization programs have become thoroughly established on the cash-loan basis and until the change could be made with a minimum disturbing effect on the program as a whole.

A SELF-FINANCING STABILIZATION PHOGRAM

From a banker's point of view, any program of complete stabilization of supplies would be uneconomic; it could not finance itself. If demand remained constant, a progran that stabilized supplies completely would stabilize prices, so that the corn would be taken out of storage at the same price at which it was putin. The farmer who carried the corn, or the loming agency that took it over, would be "out" the costs of storage.

A stabilization program would finance itself directly, if the loan rate were set a few cents below the price that would move an average crop of corn into consumption. This would withhold, not all of the excess supplies above average, but only the major part of them. It would only partiy stabilize supplies, and therefore it would only partly stabilize prices. The rise in prices from large-crop years to short-crop years would be sufficient to cover the costs of storage. Such a program would come close to complete stabilization, and would pay for itself.
The basic problem is not how large should the stocks be, nor how much wouk they cost, but rather, How can that cost be covered? Complete stabilization of supplies would place all the costs on the loaning agency, and if complete stabilization is worth that much to society, that may be where the costs should be placed. On the other hand if there is any prospect that something approaching complete stabilization could be attained in such a way that the program would finance itself, that prospect is worth investigating.
Accordingly, the next section is devoted to whether a stabilization program could be set up in such a way as to cover its own costs, and if so, how that kind of program would work out. The discussion begins on a somewhat oversimplified plane, for purposes of clarity, and then moves closer to the complications of reality.

A "costliess" stabllization phogram

The controlling factor here is the net cost which is determined by the three items of gross cost: (1) The costs of storage per bushel per year, (2) the number of bushels to be carried in the storage stocks, and (3) the number of years the stocks would be carried. Against these items of cost one fitem of income is to be considered here-the amount of the rise in price from large-crop years to short-crop years,
which would enable the owners of the stored corn to more or less completely recover their gross costs. Other items of income are considored later.

The objective would be to carry over such quantities of corn as would reduce the net costs to zero. The principle will be illustrated under the simplest conditions. In the preceding chapter the figure 5 cents a year was used to represent the cost of carying corn in storage. If large and small crops alternated regularly, the net costs of storage would be reduced to zero by setting loan values in the largecrop years 5 cents lower than prices of corn would be in small-crop years. The rise in prices would just cover the gross storage costs, and net costs would be zero. This woutd come within 2.5 cents of complete stabilization of prices. It would require the storing of all but 70 million bushels of the excess over average production in the largecrop years, as the com prine amalysis given chrlier in this report shows that a change in price of 2.5 cents is associated with a change in quantity of 70 million busheis.

Actually, as shown earlier, large erops are twice as numerous as small crops. On the average, storage stocks would have to be carried over from two large-erop yenes to fill out one short-crop year. The costs of storage for the average storage operation (filling and emptying) would therefore be 10 cents (5 cents each year) for the half of the corn that would be carried 2 years, and 5 cents for the other half that would be carried only 1 yenr, equalling 7.5 cents a year for the total quantity of corn stored. ${ }^{19}$ Reduching the net costs to zero in this situation woud require seting loan vabue 7.5 cents lower in large-crop years than in small-crop years. This would come within about 4 cents (accurately, 3.75 cents) of complete price stabilization, and would require the storing of all but 100 million busbels of the excess over avernge production in the large-crop years.

The preceding diseussion is based upon the average order in which large and small crops come-two large erops and one small crop. In reality this average is not dosely followed. There have bean as many as seven or nime farge crops in a row, and as many as four short crops together. There is no way of telling, after one large crop has come, how many others are going to follow it.

The plan that would fit the facts best would seem to be something aloug the following lines. When a big erop comes, no matter how big it is, the lom value should be set 2.5 cents below the price at which an nverage crop would have sold. This would withhold ail but about 60 million busteds of the excess over avenge production. Then if the crop the next year felt as short of average size as the large crop had exceeded it, prices woudd rise 5 cents, and the stored corn coudd be sold at a price that would cover the costs of storuge. The maximum of stabilization at aero met cost woud have been aceomplished.
But if the crop the next year (atter the original big crop) were not short but large, making two big crops in arow, the com stored from the

[^17]original large crop would have to be carried for 2 years. The storage costs for that corn would be 10 cents a bushel. The corn stored from the second harge crop would have to be carried only 1 year, and the storage costs for that corn would be only 5 cents a bushel.

If the two large erops were equally large, the lon rate should be set at 3.75 cents below the price at which an average crop would sell. If the first large crop were harger than the second, the loan rate should be closer to 5 cents below the average-crop price; if it were smaller, the loan rate should be closer than 2.5 cents. That is, the loan rate should be below the average-crop price by one-half the weighted average storage costs that would be accumulated before the next crop came.

The question of how harge the storage stocks should be, therefore, reduces to a guestion of how nearly complete the stabilization of prices and supplies should be, and this boils down to the question of what the loan rate should be to enable a rise in the price of the corn stocks to cover the storage eosts. The answer apparently is this: The loan rate should be equal to the price at which an average crop would sell, minus one-half of the weighted average storage eosts that would be accumulated before the next year's crop comes into being. Thus, if a number of large crops come in succession, storage charges would gradunily mount, loan rates would be gradually reduced, and less and less of the exeess over average production cach year would be added to the existing quantities in store. Eventuady a short erop or suceession of short crops would come along, and the stored corn could be suld at a price that would cover the storage costs.

a "COSTLESS" STABHIZATION PBOGRAM. TAKING INCIREASES IN TOTAL INCOME INTO ACCOUNT

The question many now be rased: Is that a too narrow "banker" type of conclusion?

It was shown carly in this bulletin that a series of different sized crops sell for less that a series of arerage sized crops, and therefore that stabilization of supplies wond inerease the total value of a series of crops. The increase in total value is in most eases more than sufficient to pay storage costs estimated at 5 cents a bushel. This is true partly because the increase in total value applies to the total crop, wherens the costs of storage apply only to the part of the crop that is stored. In the case of a 20 -perent oversized erop followed by a 20 -pereent undersized erop, the cost of storage at 5 cents a bushel on 20 percent of the crop woukd be equivalent to 1 cent a bushel on the entire crop. Of 50 -cent corn this would be 2 pereent of the total value of the crop. But stabilization would increase the total value of both crops 6 pereent, which would much more than cover the storage costs.

In many cases the storage stocks would have to be carried for more than a year. In the present illustration, the stocks could be carried for 6 ycars before the cosis of stomge would be as great as the increase in cash income resulting from stabilization.

As a stabilization program increnses the total value of a series of corn crops, in at manner that can be definitely measured in dollars and eents, perhaps this rise in total value should be taken into account, in the same why that the rise in prices from harge- and small-erop years was taken into accomb, as covering the costs of storage.

The point to which this would permit stabilization to be carried can be shown by adding one more complication to figure 16. The costs of storage at 5 cents a bushel can be represented by a line running 5 cents below the margini-revenue curve for the 1941 crop. This line constitutes the upper boundary of the triangle that shows the net gains from stabilization above storage costs. Such net gains from stabilization would exceed the costs of storing corn for 1 year, for all crops larger than 42 million bushels above average. Further computations show that the gains would exceed the costs of storing cort for 2 years, for alt crops larger than 63 million bushels; for 3 years, 83 million, and so on up.

The minimum amounts indicated are only a littie more than half as great as the minimum amounts given earlier for a program designed to cover the costs of storage from the rise in com prices alone (not from the increas in total corn-crop values). That is, a program taking into account the rise in crop values as offsetting storage costs would approach nearly twice as close to complete stablization as a program taking into account only the rise in prices to cover costs of storage.

The more complete stabilization program would permit prices to rise only enough to eover about half the storage costs. Under those conditions, most of the corn put under seal would not be redeemed by the farmers who pat it there. They wotid turn it over to the loaning agency, and this agency would sell it later in short-crop yoars when the price would have risen only about half mough to cover the storage costs. The loaning agency would be "out" the other half. Where would it get the money to cover that part of its costs?

The question stated is a practical one, and in dealing with it an equally practien point should be reconnized: In alf probability, a program that would come within 42 million bushels of completely stabilizing corn supplies would be comried the rest of the way to complete stabilization, as being simpler to grasp and administer, for all the difference a few cents a bushel would make. If this were done, the lonning agency would be "out" all the starage costs. There are only two possible places where it could get the money to recoup its losses. One is from the produces of corm and tivestock. The other is from the consumers. Which should it be?

It was shown earlier that stabilization of corn supplies increases the value of a series of corn crops, whether the com is sold for cash or converted into livestock, and this clearly bencfits corn and livestock producers. Could the produeers not legitimately be enlled upon for a share of their bencfits, to cover the losses (equal to the storage costs) incarred by the loaning agency? Before that question can be answered, one more complication needs to be explored. That is, Do consumers gei any benefits from stabilization programs?

BOES STAHILIZATION BENEFIT CONSUMERS?

It could be argued that consumers are harmed by stabilization to the same extent that farmers are benefited by the increased total value of their crops, for the increased total value of crops to farmers emerges as an inerease in the cost of food to consumers. If stabilization increases the total value of a series of crops 6 pereent, as in the illustration just used, it must increase the cost of consumers' purchases by the same amount.

The harm or benefit to consumers cannot be measured, however, merely by the increase or decrease in the amount of moncy they pay for corn. If a monopolist restricted the production of his product, and the demand for that product were inelastic, consumers would pay more for the small quantity than they did before. They would clearly be hruned, but the harm would not be measured by the extra amount of moncy they had to pay. For if the demand were elastic instead of inelastic, consumers would pay less for the small quantity than before. No one could claim that, they would be benefited because their total ontlay for the product had been reduced; least of all could anyone claim that they would be benefited by the amount of the reduction in their totad outlay for the product.

The question can be appronched from a different direction. Any one consumer gets more satisfaction from a fairly even consumption of a particular food than he does from a scarcity at one time and a ghat at another. In technical terms, the total-utility curve is convex from above. A stable supply is therefore worth more to him than a fluctuating supply. The extro worth of the stable supply may be greater or less than the extramoney he has to pay for it-there is no way of telling which--so the consumer may benefit by more or less than the extra money be pays. The important point is merely that he does benefit to some extent; the extm money he pays is not all loss, and may even be less than the benefit he receives.

But flactuations in the production of different foods have a differential eflect on different elasses of consumers. When supplies and pries fheturte, consumers with low incomes can make those incomes go farther by buying most heavily of those foods that are cheapest at the time, and buying least heavily-or perhaps not at all-of those foods that are tempormily seareo and high priced. At first thought, therefore, it would appear that stabilizing supplies would work some hardship on the low-income groups; they would be obliged to pay more for their lood. But the effect on prices is likely to be more or less offsed by another effect, that of stabilizing supplies. In the long run, consumers as a group are likely to get most of the benefits that in the short rm go to prodweers, processors, and distributors. The lowering of costs of producing and handling farm products all along the line wond inerose producers' and distributors' profits. To the extent that competition exists, the increased profits lead before long to incrensed production, and this results in lower prices to consumers. If production is permitted to expand, consumers altimately get most of the benefits of stabilization programs, and they are the ones who should pay for them. If production is not permitted bo expand, the bencfits will be retained by the producers and processors, and the costs should then be charged to them.

If consumers ultimately get most of the benefits from stabilization prorrams, the method of collecting the costs of a program (the storage costs) is mechanically simple. Nuy impairment of the Commodity Credic Corporation's eapital is restored each year from the Federal - Treasury, which gets its funds from taxation of consumers. If farmers get most of the benefits, however, the collection problem is more difficult. Nost of the corn produced is fed to livestock on the farm where it is grown, and there is no convenient point at which the amounts per farmer could be accurately and impartinlly aseertained and taxes could be levied. A processing tax on hogs and
other livestock might be used because a large part of it would be borne by the farmers. Another way to colleet from the producers would be to deduct storage charges from the loms when made; thas a farmer would get only 56 cents a bushel, for exumple, instead of 61 cents. That, of course, would decrease the effectiveness of the stabilization operations.

DEOTECTION AGAEST INVENTORY LOSSES

A different kind of cost that should be taken into account is the inventory loss that would be incurred if loan rates were set so high that the corn atcumulated under the loan had to be disposed of by the lonning ageney at a lower cost than that at which it was acquited.

Puhaps the best way to guard againsti such loss would be to add a "bife-saver" chase to thi" AA A bill specifying that if stocks accumulate to a quantity in excess of, let us say, 500 or figo million bushels, the lonn rate should automatiouly be reduced. This shanse would rephace the present selbedule of lonn mbes in the AAA of a3s, which automatically reduces the lonn rate according to the size of the crop exelnsive of cary-over. The AAA schedule is a step in the right direction, but it embodies the wrong kind of flexibility in the loan rates because it makes dhem responsive to the size of the erop, regartless of the size of stomge stocks, whereas what is needed is to make them responsive to the size of the storage stocks, regardless of the size of the crop. Another apperasl) would be to make the rates responsive to total supplies (erops phes carry-over).

It would sem to he wise to make reduetions in the fonm raters only after the quantities of corn ouned by the loming agesey phas the quantities sealed (which are still owned by farmers but may become the property of the loming ageney) equal some such figure as 500 million bushels. The reductions in the low rate after that point shoukd be sharp, of the order. perhaps, of 5 peremt for erery 100 million bushols over 500 million.

The sestem out lined would hulp to keep the stomage program out of extreme difliculties, but it woukl still be far from satisfactory. If a loan were in effect at 70 cents a bushed, and low consumption and high production cansed barge stocks to accumulate so that the loan rate had to be reduced to 65 enuts, the peice of com woukd fall correspondingly. Corn arcuired by the loaning agrncy at 70 cents would have to be disposed of at 65 cents. The losses would be considerable. A self-financing program, on the other land, would call for buying corn at 65 cmis nud selling it at. 70.

PERCENTAGES OF PARITY AS TIID HASIS FOR LOAN HATES

The lona rates in the peesent Ever-Nomm Crmary programs are set al certain percentages of parity, in an attempt to raise the level of prices. This netempt would be ineflective if it were not backed up by production controls. The conclusion was reached oarlice that a stabilization program by itself cond only set rates at a level that would ceen out large and small crops over a period of years, and that is the level at which an average erop would sell. If that level is lower than parity prices, then parity prices can be attained over a period of years onty by prodaction control; parity cannot be atained over a period of years by a etabilization progran alone.

The concept of parity has some good points and some weak points as a gonl for agricultural price levels to be reached by production control. It is a distinet improvement over any price goal that leaves ont he effects of changes in the price level. But it is trot very accurate. It ignores changes in the relative costs of producing different crops that have faken place since 1910-14. It looks backward through two World Wars instead of forward at the carrent and prospective siturtions that must be met. In times when demand is expanding, parity prices may not be high enough to call forth enough increase in production to mert the demand. In times of depression, parity prices may requite a greaber cut in production than farmers would be willing to make. Figure 18 shows sone of the economie diffeulties involved. It shows that in the past, the actan redation betwen the prices farmers received and the priees they paid has been, not 1 to f, as called for by parify price, but 2 to 1.

Even if parity priess were completely valid as goals, as guides to what farm priee levels should be, it is chen that those gouls cannot be Feached by a stabilization program aione. The price-stabilizing program can only smooh out flacturtions about the gencral level of com prices. 'lhe way to do that job is to set the price at the level at which an average ropenterest, in view of the akerage in production and the strength of the demand. If the general tevel of com prices is to be rased, wat prich-raising job has to be effeeted by controlling protuction at the sourere

It is essential that the lons, a very effective means for stabilizing prices, should not be used, unsupported by production control, for raising pries. 'There is danger that the means desigued for stabilizing priess, used alone for mising prices as well, may get the whole Erev-Normal Gmary program into diffevtios. The warning that Hemey Wablace issued several years ago is still good:
One dificull point in working out a somd liver-Noman (irmary proyram has to do with the size of the loan. If the loan is too high and there is favorable weather in the following sear, or perhaps the 2 following years, the result may bring losses so targe as to therechid the progrtan. This program is so important that it must not be discredited. 1 am urging (om Bett farmers to cherish it as somethazg which is aot primarily the (Goverment's program, but their very own. If they do not eherish it in this syinit, but organze in the spirit of kothe the (fovernmeb, the fanal resalf will be a greater loss to the farmers than if there had ieven no progratio at all. ${ }^{20}$

A program for completely stabilizing corn supplies and prices could not fimanee itsedf directly, for com prices when supplies came out of stomge would be the same as when the supplies were pat in; the fammer who carried the corn, or the loning arency that took it over, wonld be "out" the costs of storage.

If the loan rate wereseta few cents below the price that would move an arerage crop into consumption, supplies and prices would be only partly stabihed and priees would rise from laree-crop years to shortcrop years. The rise would be enough to cover the storage costs if the lona mate were set half as far below the price tor an average corn crop as the acemmunted storage costs per bushel.

[^18]

FIGURE 18.-PrICES RECEIVED AND Prices PaID gy FARMERS, 1922-40.
Parity priess for farm produets would fluetunte in : 1 --to 1 relafionship with the prices paid by farmers. J'he actmin rehationship that has existed orer the past has been mum nearly 2 to 1 ; the prices farmers received have factumbed wice ns math as the prieces they have pmid.

Perbaps that concept of a self-financing program is too narrow. Stabilizalion both increases the total value of a series of corn crops of varying sizes and lowers the cost of producing and distributing tivestock. Complete stabilization, involving losses to the loaning agevey equal to the costs of storage, could be equitably financed by a levy on the increased total value of the corn crops stabilized, and the reduced cost of livestock production.

But it would be difficult to collect a levy of the sort suggested because most of the corn crop never leaves the farm where it is produced. If the benefits which go at first to farmers soon showed up in the form of increased production and lower prices to consumers, then consumers could well bo asked to finance a complete stabilization program. If not, it should be finaneed by farmers, who retain the bencfits of the program. The costs might be collected from producers by deducting the storage charges from the loans at the time they are mado.

It is clear that percentages of parity are not good bases for loan rates. They may be too high or too low tor stabilization purposes. The loan rates for a stabilization program should be equal to stabilization prices-prices at which all of an average crop of corn would move into consumption. If that level of prices is not high enough, it should be raised by acreage control; otherwise excessive accumulations of corn in storage are likely to wreck the program. If percentages of parity are retained as the basis for loan rates, perhaps the flexible provisions in the AAA of 1938 could be changed to apply to the total storage stoeks or total supplies, not to the crop exclusive of storage stocks as at prosent, so that as storage stocks increased over the quantities needed for stabilization purposes, the lown rate would be reduced. The Ever-Normal Granary program is a program for stabilizing supplies, not, a program for raising prices; the productioncontrol programs are the only programs that can mise prices over a period of years and make those prices stick.

The Ceoghaphical Corn Loan-Rate Structure

The fourth major problem is the geographical structure of the loan rates for corn.

Up to the present time, the loan rate for corn each year has been a flat rate over the commercial com arean. In 1940-41, for example, the lonn rate was 61 cents a bushel to any cooperator in the AAA program, no mader where be was located in the commercial corn area.

The flat loan rate each year has been accompanied by some changes in relative production of corts and hogs over the commercial corn area. Those changes have resulted from several things; the flat loan rate was only one of them. Other significant factors were the severe droughts in 1934 and 1936 in the western Corn Belt States, the continued shortage of moisture in Kansas and Nebraska from 1936 to 1940, occasional short crops in certain ureas, and the differences is the percentage sign-up in the AAA program in the different States. It is almost impossible to give each of these factors their proper weight, but the attempt will be made.

The acreage of com in tho different Corn Belt States was sharply reduced during the droughts of 1934 and 1936. But by 1937 , acreage had recovered to predroughtlevels (except in Nebraska and Missouri). The year 1937 makes a good bench mark from which to measure changes in acreage of com due to things other than drought.

The changes in corn acroage after 1937 show the same pattern in all the Corn Belt States. Acreage decined steadily from 1937 to 1940. The original acreage datal and the percentage changes in acreage from 1937 to 1940 are shown in table 8 . The percentages range between 79.6 and $84 . S$, with the exception of Minnesotal where the percentage is 91.2 .

The perentage sign-rip in the AAA program in 1940 as shown in a release of May 15, 1040, from the North Central Division of the AAA was lowest in the eastern Com Belt States (lowest of all, 68 percent, in Ohio) and highest in the western Corn Belt States (highest of all, 88 pereent, in Nebraska).

The differences in pereentage sign-ups in the different Stales were even greater in the carlier years. There seoms to be no consistent relation between sign-up and acreage reduction. The greatest reduction in acreage was made in Nebraska, where the sign-up has been the highest of any State shown in table 8 in most of the years since 1936; but the smallest reduction in acreage was made in Mimmesota, where tho sign-up was next highest to, or exceeding that in, Nebraska in every year since 1936 . Acreage of corn was reduced between 15 and 20 percent in all seven States under the AAA progrsam, but neither the pereentage sign-up in the AAA program nor the flat lonen rate for com seems to have had much differential effect on com nereage.

Changes in production of corn

As acreage has changed so nearly to the same extent in the chic! Corn Bell States since 1937, changes in production of corn must have resulted chiefly from changes in yield. The changes in yied result chiefly from changes in the weather, and only to a small extent from changes in farming practices, loan rates, or other factors. They are given in percentage form in the next-to-the-last column of table 8 . The pereentage dain for production are given in the last column; they show that production of corn incrensed in some States and decreased in others mainly becouse of differences in yields.

CRANGES IN UTILIZATION OF CORN

Many differences are found among the States in the uses made of the corn after it is produced．The figures in the top row of table 9 show the average stocks of corn on farms October 1 （representing the carry－over from one crop year to another）in each one of the important Com Belt States over the 8－year period，1926－33，before the 1934 and 1936 droughts．They show the situation before corn louns were begun． The figures in the next three rows of table 9 show how stocks of corn accumulated in the different Siates after com loans became a signifi－ cant factor in the market．

The table shows that by October 1，1940，the stoeks of corn on farms in lowa had grown to more than six times their 1926－33 average size， and four times the si\％e reached in the previous record year， 1934. Stocks piled up in Minnesota，and to a lesser extent in Illinois．The corn erops in those States were latge in the years 1937－39，but that could not have been the reason for the large stocks，becuuse the corn crops in ladiana and Ohio were similarly large，but stocks there were only slightly higher than normal．The stocks of corn on October 1， 1941，were somewhat reduced from the peak reached in 1940，but the general relations remaned as in 1940.

The chicf renson why com piled up in Iowa，Mimesota，and Illinois is indicated by figures in the lower part of table 9 ．Most of the stocks of corn in 1940 and 1941 consisted of seated com under lom．If the loan com is subtracted from the total stocks in each State，the＂free＂ corn is reduced to about an average quantity or less．Apparently， then，the flat loun rate for corn appealed most to the farmers in the aren wiere priees of com are nomally the lowest．

TABus 9．－－－Stocks of corn on farms Oct． 1 ，average 19～6－38，annual 198s－41

Itemend yelur		Ithinotis	Imai－ H뎔	Stintere sothl	Ohio	$\begin{gathered} \text { NoL } \\ \text { braska } \end{gathered}$	M is－ souri
	1.000	1，000	1，000	1，000	1，000	1，000	1，000
Carn	bushets	brixhels	buyhef	buybets	bresticts	buxhels	butheis
Corn on tirtus Oel．I， 193 S （	105． 384	85， 34	12，358	S，s， 5	［0， 74.4	21， 318	10．404
（＇orth on farms Det．i，dem	215，336	121，725	－1，15	38， 146	10	13．481	10，369
Corn on farms Det． 1,160	231， $0 \overline{5} 5$	95，891	15， 43 S	（8， 624		37，${ }_{3}$	1ti， 231
Corn on furims Oet．l，10，	203， 742	53，539	11， 253	4，	6． 363	4．3， 625	10，3m
Communder sent oet．1，mus	2036．312	03， 517	2，372	H，935	743	23，082	5．543
Corn mater Seal Oet．1．19， 1^{2}	1．14．210）	21，138	1，213	323	357	24，950	4． 432
＂Free corn＂Oral，1，19－410	27， 760	级， 304	15，年秥	4， 635	13.010		10， 710
	58， ir^{2}	32， 312	110， 427	14， 693	14．1ts	16i，668	13.014

The nempere furm prices of com during the first 3 months when the 1940－41 corn loan was in effect（December 1940 to February 1941） were：lowa 48 emts， 1 llinois 53 cents，lndiana 57 cents，Minnesota． 45 cents，Ohio 61 cents，Nebraska 53 cents，and Hissouri i 4 cents． The flat loan rate for corn during $1940-41$ was 61 cents a bushel．The loan rate was 13 cents per bushel higher for the Iowa farmer than the open－marke price，and the induement for him to seal his corn was considerable．But in Ohio the inducement was nit；the loan rate was the same as the open－market price．

Chances in production of hogs

It might be expected that, if farmers in lown. Mimesota, and flimois have been puting a grent denl more com than asual into the EverNomal Granary, they mast have been puting in great dead less cora into hogs. That expectation may be radily checked against the facts. The production of boys in the different (oom Bent States bach year can be show be adding the spring ant fall pig crops for eath calendar yert. The series runs back to 1924. In figure 19, the data tell a story in two parts (1) what happened before the droaghts of 1934 and 1936 and (2) what hats happened sines:
(1) Before the droughts, the trend of hog production was homizontal in Menesota and Nebraska, horizomtal or shghey upward in Lown, Hinois, and Missouri, and defnitely upwat in Tudinat and ohio. The teends were ohviousty not affected by the lat loan rate, which did not berome an appreciable market factor untilafter 1036 .
(2) Sine the droughts the level of com production in Sebraskn has remained low ont about 50 peremt as high as before the droughts. The level of hog production has done the stme thing. This has hapened also in Dissourj, ahough to a lesser extent. The droughts were mow serere in thes two States than in the others. and their offects were more devastating.
In the other five state the trends that were erven bofore the droughts have reestablished themselves sine the dronghts. By$19+10$ production of hogs had recovered mail was shightly higher than the highest pak attained berore the dromghts, exerpt in fow and 入limesota where it was not quite so high.

Production of hors in down and Ahanesota may have falded to wern to perdrought levels beceuse in those twe state the trende of rom production before the droughts were horizontat. Produrtion of hogs in the other three states may have exceded their predrongh! leveds beranse the trends of comproduction there were upwat. That is, the beharior of hoy production in the different states could be merelya reflection of undertwing trend-determining forees persistine through the droughts. On the other hand, it is possible that production of hogs failed to return to predrought levels in fowa and Alimesota beause in those States com was being put into the Ever-Nomal Grmary instead of into hogs. That explanation is open to some questhan, howere, ns it is contradeted be the sitmion in flinois. That State rank next after howa and Alimesota in peremtage of the crop put into the Ever-Nomal (immery buthos proterion in Hinois did wot reman holow predrourth leveds: it cxecoded the highest peak attained before the drought.

What overall conclusion con be drawn as to the affect of the fat loan rate on production of hogss?

The flat loan rate may have been pesponsibie for a shich refluetion in production of hogs in towa wad Stimacsota. comparad what llimis. Gudina, and Ohio, although this reduction may represent simply an extension of tends established before the droughts. In either ease the effect is sonall. Perhaps this happened becouse famers made up for most of the corn they put into the Ever-Nomal (emanary by producing more soybeans, alfalfa, and other substitute crops. Perhaps the efferts have not yel had lime enough to show up very crearty, and the call for inereased production of hogs in 1941 and 194 2 may defer their appearance for a more years.

Figure 19..--Production of hogs in seven Corn eelt states. 1924-40.
The efferts of a lat loan rate for eorn on hog production in the difterent Corn bell states are difteutd to Irace hecause of the vioknt effects of the droughts in 1934 fand la36. The elferts of the measures designed to sipport hog prices, amommed in 5941 , fariher rompliate the problem. Fog production in the important (orn Belt siates (with the exeeption of λ lissourt and Nebraska) has now reiurned to figures whith approximate extension of the trends established before the dromghts.

CIITERAA FOR GEOGHAPHIGAL LOAN-IATE DIFFERENTIALS FOR CORN

Corn is important chiclly as a mw material for feding to livestock. Under the free intreregional competition thent exists in the production of corn and livestock, those two commodities are produced in sueh areas and proportions as to minimize costs of produckion. Any shifts from the nommal proportions would inerease costs of production in the long rum as woll as in the short pun (exeept for shifts that result from technological changes in production or marketing practices, such as hybid secd com, imponed tracks and roads, ete.).

The corn hom-rate structure, therefore, should be such as to enuse the least possible change in the existine distritution of eorn and livestock production (athongh it shoud facilitato any chamges that are in progress msulting from techologicn derolopments). It follows, then, that the corn lom-rate strtectare should be patterned after the geographicel differentials that have existed in prices of corn in the recent past, modified to take recent techmological developments into accotant.

An additional reason for miking the com loan-rate structure follow the price structum of corn is that this would treat com produerers in difterent parts of the Com Belt more faily than the fat lonn mie. Comp piess usmby rm higher in the eastern part of the Com Belt than in the westerin part ; the farm price of enen in ohe over the hast 20 yents has averared 7 erents a bushel higher than fhe farm prioo of com in Jowa. A hal lom rate for corn, tharefore, that happened to be equal to the arrage Jown price of corth, would be 7 eents lower than the nemge Ohio priee of corm; if the flat lonn rate were fair to fowa farmers, it woud be 7 eents less than fair to Obio farmers. A peographicnl com tomame stmetme based on geographieal eom-priee differmatinds wouhf treat abl produrers of come equitably, and woukd canse the least disturbanee in stomare and production practions.

Fimaly, it was shown in man enfier section that the storare stocks for stabilization purposes shand be located cuenty over the Come Brat (oxerpt for somewhit larger stocks along the western edge and in haver surplus areas) not concontmed heavily in any one part of it, A com kan mate shemeture that fifted the average eomprien strueture wond ofler more neary the same incentive to stornge in one pare of the ('om Bubt as mother, and would help to bering about even distribution of storage slocks.

It is cuident lrom the pharts in the preceding section, showing the comberice surfoces lor iodividal years, that no single com lome rate structure, ueither fat mer slopitg, smooth of wheven, we ild conform ne all elosely with the different com-price structures for diforent individund vears. SGill less would it conform by guarters or months. The question them arises: Should the lown-rate structure be made to eronform to the price strueture ench year, or should it be more stabic and conform only to a prite strueture based on long-time averages of eorn priens in melt district over a period of years?

RFFECTE OF A VARIAIBAE LOAN-RATE STRUCTULE

A litter considemation shows that making the lonarate structure conform to the pries sirue ure med year would lead to some undesirable resuis. One result would be to encourage the storing of roughly the same percentuges of the erop in cach State, regardiess
of the size of crop in cach State. If Missouri had a small crop in a year when total production of corn in the United States was 1.0 percent above average, a loan-rate structure that conformed to the price structure that year would encourage the storing of about 10 pereent of the short crop in Missouri, and the shortage would be accentuated chere. That would be contrary to the purposes of stabifization operations.

A second undesirable result that would come from making the tonn structure conform to the price structure each year would lie in the fact that in all probability the price structure itself would be affeeted before the yoar was out. The storing of com in the short-erop areas would drive prices higher than they woud have been if the high loon had not been in effeet, so that the lom and the price would not conform anyway, undess they chased ench other up to abnommal heights.

EFFBCTS OF A STABLE LOAN-MATE STRUCTURE

A lomstructure based on average prices of corn over a period of years would work out much better tham variable structure. In the Missouri situntion atrendy disenssed, the semedty of eom in Missouri would drive prices up to a point where the loan rate based on Missouri price averages wouk not be attractive and very little, if any, Missouri corn would be stored. Any State with a particularly large erop that year would have a low price; a lom rate based on price averages for that State would be attractive; and this would result in a large quantity of that large erop being stored. In effect, this would provide some geographical stabilization along with chronological stabilization.

If the loan-rate structure should be bised on average priees of corn over a period of yeurs, the question arises: What sort of average should be used, and how many years should it inchade?

Several different averages, eovering several different periods of years, were fied before the solection was finally made. The price data by erop-reporting districts go back only as far as 1924, althought by States they go back mach further. Among the periods selected as the bases for the diflerent asernges were: (1) The 16 -year period from 1924-25 to 1939-40; (2) the 16-year pertiod from 1924-25 to 1939-40, excluding the two drought yems 1934 and 1936; (3) the 10-yen period from 1930-31 to 1939 40; (4) the arithmedic mean of (a) the 10-vetr period from $1930-31$ to 1939-40 and (b) the 3-year period 1937-38 to 1939-40; and (5) the (6-year period from 1924-25 to 1939 40, adjusted to the Stak averares over the 20 -yen period from 1020-21 to 1939-40. After much discussion, the fater average was finmy selected th the basis for the district ariec averages.

In some cases, a difference of several cents ocented betwern the average corn priees in adjacent erop-reporting districts. The difference resulted from the fact that the crop-reporting districts were large, and the averases represented steps rather than the smooth slope in the priee surface that actually underaid them. The prices in the districts were finally broken down by comatios. In nearly all cases this could be done in such a way that the differenees in loan rates between adjacent romities wepe no more than 1 cent per bushel. ${ }^{3 ?}$

[^19]
AVERAGE FARM PIIGE OF HOGS AS A BASIS FOR CORN-IOAN HATES

The average farm price of corm by districts over a recent period of years is not the only possible basis for differential corn-loun rates. Other bases may be considered. One of these is the average farm priee of hogs by distriets. Nearly 90 pereest of the corn erop is fed to livestock, and hogs take more rom than mey other class of livestock. Perhaps the pries of the mose imporeme tinat product, hogs, should be used as the basis for com-loun rates rather them the prices of the raw materinl, corn.

The 16-yene (1024-39) nverate prices of hogs by districts are shown in figure 20 . Tha averageprice surface shown for hogs is more centy

BNE 39076
 more eventy but less atieply than does the average price surface for corn (fig. 11).
sloped than the price surface for corn. It is who more nenty Hat; that is, it is bess steeply sloped than the price surface for corm. Prices of hogs range from about $\$ 7.60$ in the low-price arem in North Dakota to about $\$ 8.40$ in the hish-priee area in Ohio, a difference of 10 perent of the average of the two enlues. The 14 -rate arerage corn prices range from 52 cents to (64 cents (fig. 11), a difference of 20 percent of the ayornge of the two figures. The average corn-priec sufface, therefore, is twice as stepply stoped as the average hog-price surface.

The slope of the bog-price suface is atso different in character from that of the com-priee surface. The corm-price surface is tike two shallow basins lying side by side, the one basin (east of 1minois) being a step higher than the other; but the heg-price surfare is like a ramp. a straight slope, leading up to a flat-topped aren in the wo eastern States, Indiana noll Ohio.

Finally, the hor-priee surface shows less varintion from year to year than the corn-price surface. In several different fears the
normal upward slope of the price of corn from west to cast was reversed; but the herg-price surfaces slope the same way every year (upward from west to enst). This is true even of the severe drought years 1934 and 1936 , so there is no need to omit them from the 16 -year average, as was done in the case of com.

The fact that the price surface for hogs is more nearly flat than the price surface for com means that the hog-corn price ratio is not uniferm over the corn Bett. Coma loan rates based on average hog priees, however, would make hog-corn price ratios uniform over the whole Corn Bett. That would change the previously existing relationships between the prices of corn and hogs, and change the previous pattern of corn and bog production, and that would increase production 'osts.

In any ense, using hor prices would ignore the prices of other finished produrts- beel, buther and eggs, lamb, ete. If finished material prices should be used, these other products should be included, which would involve problems of differential weighting, and introduce complesitios and controversies that would be difficult to handle. If the results were somewhat similar to the average hog prices previously compated, the same objeetions would apply to them as to the hog prices. No sort of linished-product prices would be as good as the original corn prices.

DIFFEREATMALS BASED ON FLELGITT RATES

A third choice would be to base seographical diflerentials in cornloma rates on freght rales out ward 'rom the ternimal markets. This athernative was chosen for when and cotton. It las the advantage of farilitaling the easy movement of storage stocks when shortages occur; it keeps the stocks goographically mobile.

This batis is well suifed to products like whent and cotton that are practiatily all sold and shipped off the farm in their origima! form. But it does not appear to be well suited to corn. About 80 to Sis perent of the corn erop is fed to livestock on the farm where it is grown, 2and only the remaining 15 to 20 pereent is sold as cash com. The sort of mobility that com needs is not mobility from place (a place, but mobility into livestock. The sort of prices that have kept eom moving into livestock in the past woth take care of 50 to 85 percent of the corn without involving any shipments.

As for the other is or 20 persent of the corm, a question arises as to whether differentials based on freight rates outward from the lermina markets would keep it geographically mobile: (i) Ondy half, or less than hatf, of the commercial com moves through a terminal market ${ }^{23}$ Hall, or more than haif, of the com does not move through a termimal market at all. (2) A fundomental assumption inherent in the freight-rate set-up is that eom prices in the different counties would become equal to the loan rates; thus corn moving from a county where the loan rate is 70 cents a bushel could be moved to another rounty where the rate is 75 cents and be sold at 75 cents there. That tasumption is all right insofar as the acguisition of the com is concerned,

[^20]the corn would be acquired at 70 eents. But there is no reason to believe that the price in the comty where the com is sold would be equal to the loan rate of 75 cents. The flat lom rate has not made prices conform to the lom rates over the area; tho differences between fown and Ohio farm prices have been greater since the flat lonn rates have been in affect than they were before. Setting com lom-pate differentials equal to freight-rate lifferentiais woud not insure that com cond move withont loss, because selting corn loan-rate differentiuls does not set corn price differentials.

Whatever basis is adopted for the lom rates historionl price averages, freight pates, de.- it provides only a first approximation to a fimal system of tom mates. The basic lom-rate differentiats set up umder any systom would need to be medified in order to effeet the proper botation of the storace stocks in the qumbtites desired. In areas where the storage stocks need to be large, that result com be brought aboul by a high loan rate; conversely where stoeks need to be smath. Thus the loan metes in the thres States atome the westem edge of the Com Bell Sonth Dakota, Nebraska, and Kansaswhere large stocks are requirel, probably should be higher than izfiented by historicat acerate prices, and he loan rates in Missomri, Where smath stoeks are desired becase of high insed damage, probably should be lower. Suct adjustments of the basie lom rales stooud be made in close cooperation with the beat AAA emmittees to make it possible for these committers to express their views, mat to make renerally known the rensons for making the adjustments.

The existing fat loms rate for cora one the commeriat com area is piling up harge gumbitins of eom in stomere in fow-prier arens such as low. It is haring the oppesite effer in high rom-prece atons such as Indiana and Ohio. The lagye storks of com in tows con move out
 in those States normally axed prices in lown by only a few cents a bushel not as much is the shipping charges between them. The only way that produces in the high com-phice areas ean get corn ont of storage in the how corn-price areas is to pay what sems to themexorbithat prices for it. This not only distupts nomat livestock prodacing phats and berenses the cost of prodnemg livestock, but makes if hat for cem to move out of stomere mee it gets in storage.

The com batherate stacture that wotd change corn storage and livestock prohuction practices the least, and would be most fair to producers is the different parts of the fommercial corn area, would be based apon average geggraphical differentals, by crop-reporting districts, over a refent poriod of years, duother possible basis for Loan rates would he freight rates, the object in that ease being to keep the stocks geographeatily monite. The rates established on either of of these busce wotd be obly first apmeximations, in any case. It would the necessary to taise or howe then in certan arens in which large or small stocks are desimed.

Up to this point, this sopor has death with the problem of keeping supplies of corn reasonably stable from year to year, so as to stabilize
supplies of livestock. If demand remained constant, this would stabilize corn and livestoek priees. Actmily, demand does not reman constant; it fluctuates widely from 1 year or period of yeats to another. In this situation, stabilization of supplies is onjy one step in a broader program.for controlling corn and livestock prices in the interests of producers and consumets, when supply und demand both change. It may even appear to confliet with a program for denling with changes in demund, for when demand deeromses, as during an industrinl depression, a question arises as to whether it is desimbte to keep supplies of born and livestock stable. If supplies are kept stable, then clenry prices musi fall; but if the objeet is to keep prices stable, then abarly supplies must be redued. When demand dhanges, supplies and prices eamot both be stabilized.

In this section, theretore, the disenssion will not deal with the probben of stabilizing supplies and the guestion of how existing stabilization prograns may be made nore efferive. lnstead, it will push ahend of existing programs into the broater field of eontroling the prices of com and livestock when supply and demmal both thectuate. This bromer fied may embl for unstabilization, pather than stabilizathon, ol' supplies. 'The work in this section is exploratery in character. It atternpts to open tup the fied and tor lowate and define the problems rather fima to offar solutions to them.
'Ihlis soumds ats though the present-day buer-Nomm Granary progran, designed to stabilize corn and livestock supplies, must he inherendy in condied with a broader progran for meoting changes in demand as well, which might call lor unstabibizing supplies or prices or both. Aetually, however, the two prorrams ame or should be separate promrams, dealing with separate prohlems. There is no reason for conliet between the wo. All that an Eyer-Normal Gramary
 ratic and :appredichable fluedmions in supplios (due chicelly to fluetuations in yields, in turn due to fhethations in the weather) about a loved sed by the level of acreare. Alt that a demamel-stabilization promram is designed to do is to smoolt oui fluctuntions in demand, or if that camot be dome, to med them with comesponding, conscionsly evoked ehanges in supplies or prices. There is no correhtion bedween fluetuations in supply dae to the wother and lluduntions in demand due to booms and iepressions, wars, and a handred other comses. Neither is there may similnrity betweon the crmatic flachations in supply due to the woather, which a supply-stahilization program is designed to smooth out, and the conseonsly aroked changes in supply which a demmal-stabilization program would brine about to meet changes it demand.

Can Demany Be Contiolated?

There are several diflorend kimets of ehanges in demand. The most spertaralar and viotont kind is that which eomes with booms and dopressions. As shown entlier, the same mumber of hogs may sall during a depression at hess than half (he priew at which they sold during a boom. Changes of this kind result from changes in the porehasing power of consumars.

Smoothing ouf such major changes in hemand, in any hasie sense, reguires shabizing infentire ecomonty, whelo is an execodingly dificut
problem, and is clearly outside the scope of this bulletin. Until the whole economy has been stabilized, however, the effert of the extreme flactuations can only be mitigated, on the demand side, by suels measures as Government purehases for distribution to low-income groups. In the past, at least, these measures have not been large enough to have mach effect on prices. In 1940, the quantity of pork bought with blue slamps under the Food Stamp Plan, $64,109,000$ pounds ${ }^{276}$ was less than I precent of the total produrtion of pork in $1939 .{ }^{.27}$ The quantigy of lard, $30,230,000$ pounds, was only 1.5 pereent of the total produedion of fard.

It woukd be neerssary to expand such purchases many times over before the totai demand for hors would be substantianly affected. The total parchases of all foods ander the Food Stamp Plan in 1940 amounted to $\$ 44$ million, and expanding that many times over woukd run into a lot of momy. Tt has been estimated that if the Food Stamp Plan were exteruid to all prople in the thitul Shates who reecived publice assistance in 1940 (nearly 20 million people) and 75 pereont of them participated, the cost of the progem to the Federal Trensury would be from $\$ 375$ to $\$ 450$ milion dollars a yonr $(6, p .80)$. That is considerable but it would fall far short of completely stabilizing tha demand for pork.

It seems probable that demand will contima to change inthe prectictable future because of continued changes in consumer purchasing power. These futhe changes in demand hay be less viotem than those of the past if efferts to stabilize the whole eromomy neet with some sucess, and if Federal food programs are incrensed in scope; but there appars to be smatl chance that they will be completely smoothed out.
If fluctuntions in demand rontimes. What can be done to meet them? Should the protuction of hogs and odner foods he hekd constant, prices therefore flachating with demand? Or should priees be held constant, supplies fluetuating with demme? Or should some flexibility be given to loth produetion and priees?

Some gronnds exist for maintaming that supplies should be kept stable through changes in demand, with prieces fluetuating. Physical goods are the fundmental things, not prices. If consumers need certain quantities of food and fiber in prosperity, they need them in depression too.

But the needs of produeces must be taken into areound as well as the needs of consumers. If the demand for hogs and other foods comot be sinbilized, yot consumers are to contimue to get a full ration of pork in depression as in prosperity, then the same quantity of pork must be produced in depression as in prosperity; and this means that priees are bound to fall then, as they did during the last depression. Thaless the prices of the groods mat serviees that famers buy also fan, a difficult situalion for produers will arise. Industrin manufacturers respond to such a sifuation by severely reducing their production. Farmers recognize as chaty as mybody else that cuther down production all romd can only harm socictiv as a whole and that everybody would be betier ofl if produefion of atl kinds of groods proceded at fum capacity; but so long as manafacturers cut production 50 or

[^21]75 percent in times of severe depression, farmers can hardy be blamed for wanting to do the same thing on a smaller seate.

Furthermore, when demand increases, the inducement to expand production is very great. Prices rise, and at those higher prices greater profits can be made if prodtection is expanded than if it is kept constant. Without any over-all program for control of production, farmers found it diflicuit to reduce production in the face of redueed demand; but they were always willing to inerease production when demand inereased, and they will want to do so ngain whenever demand inereases in the future. As inereased prodaction is always desired by consumers, the demand for increasing production in time of prosperity would be pretty well unanimous.

Apparently, then, clanges in the demand for hogs in the future will be met by corresponding changes in prices and protuction of hogs a year or two later. It would probably be impossible to keep prices stable through ups and downs in demand, even if it were desirable to do so. For in time of depression, famers would not reduee boge production if hog prices were maintained as high as before, nad perhaps bet anyway, unless com prices wore made higher. This woudd be unwise, as it would stimulate production of corn at the same time that it reduced production of hogs and would pile up trouble for the future. Moreoser, in times of prosperity priees of hogs could not be kept stable, as consumers would be offering to take more pork at the same prices as before, and the only way to satisfy them would be to produce more hogs. The only way to make that happen would be to let pries of hogs rise, or to make prices of corn fall ; but if the latter course were chosen, production of com would decrease and soon there would not be enough com to go around. It sems char that prices and production of hogs will have to change from time to time with changes in demand.

Bhfect of the Ifog-Con Phede Ratio on Hog Phonuction

How can production and priess of hogs be controlled?
It was shown earlier that the chief immediate deteminant of hog production is the thog-com priee ratio. Changes in this ratio are followed about 2 years later by corresponding changes in production of hogs. It was also shown that the basic conse of the changes in the horefomprice ratio is fltudations in corn production from year to vear.

The inmediate instrument of control over the proluction of hogs, therefore, is the hog-com price matio; but it must be backed up by control over corn supplies, not merely stabilization of supplies at a fixed figure, but control of supplies at whatever figure is tesired.

The effects upon hog produetion of these two things (the hog-corn price ratio and the supply of com arainable) were shown in a preliminary way in figures 4 and 5 carly in this bulletin. They are to be investigated more fully now, and fi possible brought together in one combined system of relations.

The relation between the hog-eom price ratio and the slaughter of hogs about 2 years later showed up fairly clearly in figure 4 . The rehation can be shown more analytically if the data are made up into annunt figures, on the hog-year basis (October to September) and plotted in seatier diagram furm. Consideration of the matare of the hog industry, and the empirionl evidence given in figure 4, indicates
that a 2 -year lag should be used between the two serics. That is, the hog shaghter for 1 hog year should be plotted against the hog-corn price ratio 2 years eartier. (Trials with the ratio 1 year before, and with the ratio 1 year before and 2 years before as separate variables, confim this belief.)

The relationship between hog slaughter and the hog-eorn price ratio 2 years before is shown in figure 21 A . From a statistical point of view, the corvelation shown appetrs practically nil. Closer inspection shows that the correhtion is rather high for the 10 -year period from $1923-24$ to $1932-33$, with the exception of the year 192i-2S when boy shanghter was ahout 1.5 billion poumds less than would have been expected. The areape relation for the dots for the 10-year period is represented by the line drawn in through them, free-hand. The line does not mon murh, as it is based upon so few yens, but it does indiente that what may be called the hog-eom price-ratio elusticity of the supply of hars in those years was mbont 0.36 . That is, a donare is the ratio of 10 perent eamsed a change in hog slaughter 2 yemrs hater of about 3.6 percent.

Figure 21, A shows that durng the yours since 1023-32, other things besides the hug-cora price matio have had a great eftect on production of hogrs. The dots for the years from $1933-34$ on are displaced downward by two or thre different thang- chiefly by the severe dronghts of 1934 and 1936, when cuused hervy ligneidation of breeding stock, and by the ADA corn loans above maket prices after 1937.

The effeets of the ing-cora price ratio and of thess other factors may be isolated with greater precision if the time unts for the bisie hog shaydter and bor-ern pries-ratio data are chosen more carefully, with referene to the imfen characteristies of the hog industry. The time whit for the hog-com pries ratio can be marowed down to the few months when farmers are deding whether to beed more sows, or less, the than as the year fofore. Similaty, the momber of sows farmoing can be used in phace of the total namber or weight of the boors shatherest. The form pothots of ment prodaced is the man thing so far as the consumer is roneremed, but the ehain of cemsation can fe meatod more dealy by using the shortst possithle lags and
 age size of the lither, (tue to good or had weather at farrowing time) as possible. The shortest chan of causation is that when rans dirert from the begrem price mation breediag lime to the number of sows farrowing 4 mond hs later.
The spring pig erop in the faited States is two or three times as harge as the fall pig crops. The peak month for farrowing in the enstern Com Belt is March; in the western Corn Bett the peak eomes in April. The gestation period of the hog is about 120 days, so most of the sows are hred in November fund December. One would expeet to find a cluse redationship, then, between the hog-cora price ratio in the last 3 months of the callodar year and the number of sows farrowing the next spring.

The mamber of sows to farrow in the spring is not entirely stitled by the emd of December. If the ratio bums adverse (falls) during Jamany and February, some of the piggy sows may be sent to market

FIGURE 2\%-FRELATION BETWEEN UNITED STATES HOG-CORN RATIO AND UNITED STATES HOG PRODUCTION: A, AVERAGE RATIO OCTOEER-SEPTEMEER AGAINST SLAUGHTER OCTOBER SEPTEMBER 2 YEARS LATER: B, RATIO OCTOEER.FE日RUARY AGAINST SOWS FARROWED THE NEXT SPRING.
The relation between the hot-corn price ratio and subsequent changes in the namber of sowa farrowed appents to be closer than the relation between the hog-corn price ratio and the subsequent hog slaughter.
during those months to be slaughtered as prot of the regular rum of hogs before spring arrives. Accordingly, the period during which the hog-eorn price ratio aflects the number of sows farrowing in the spring extends not merely from October to December but on through to Februnay. ${ }^{28}$

The average hog-corn price ratio from October to February, therefore, is plotied ngainst the number of sows farrowing the next spring, in figure 21, B. The data used are for the entire United States. (Similar data for we North Centrad States (roughly, the Corn Belt) yield similar results.) The number of sows farrowing in the spring is expressed as a percentage of the number in the preceding spring. The chart, therefore, shows the offect of the hog-com ratio upon the change in the spring farrowings from the year before. The data are so handled for several reasons. (1) Because the procedure used follows the precedent set by endier studies, ${ }^{29}$ (27). (2) Because of its logic; a high hog-corn price ratio, for cample, may cause farrowings to contmue rising, mather than simply to be high. There is some question about this, and this question is investigated a little later. (3) Because it roveals a fairly high correlation, directly, over the entire period from 1924 to 1940 .

The retation shown in figure $21, B$ shows an elasticity of about 0.6. A 10 -perecnt ohange in the hog-corn price ratio in the fall and winter eauses a change of 6 poreent in the same divection in the number of sows forrowing the tollowing spring.

The question concerning the logic of using changes in the number of sows farrowed, rather than the origimel mumbers, can now be raised. It cen be argued that a hog-corn rabio of 14 , for example, would cause farmers to kecp on expanding production of hogs year after year. Is this true? Obviously it could not continue for very many years, becanse a fammer would shortly be rasing so many hogs on his farm that his costs would rise to the point where a ratio of 14 would induce no further expmasion. Permps such a contingency does not actually arise beduse the imitial expansion in hog mumbers soon brings down prices of hogs and makes the ratio unfavorable.

The question can be submitted to empirical test by plotting the same data that are shown in figure $21, B$, notas changes from 1 year to another, but in their originat form as is done in figure $22, A$. From a strictly statistical point of view, practically no relation between the hog-corn price ratio at the time of breeding and the number of sows farrowing 4 months later is thus indicated, a fact worth emphasizing, for many people seem to believe that hog supplies are determined anmost completely by the hog-corn price ratio alone. Figure 22, A, shows that belide at least in its simplest form, to be incorrect. To go to the other extrome and condude, from the evidence of the chart, that the hog-com price ratio from December to February has rery fitte dfect on the number of sows farrowing the next spring would be equally erroneous. What the chat does show is that other factors besides the hog-com price ratio have much to do with the number of sows farrowed. The chart can be of some help in determining what those other factors may be.

[^22]

FIGURE 22.-RELATIONS BETWEEN THE UNITED STATES HOG-CORN RATIO. CORN PRODUCTION, AND SOWS FARROWED: A, AVERAGE HOG-CORN PRICE RATIO OCTOBER-FEGRUARY AGAINST UNITED STATES SOWS FARTROWED THE NEXT SPRING; B, RESIDUALS FROM A AGAINST CORN PRODUCTION THE YEAR BEFORE.
The effect of corn production in the current year is already reflected in the hog-corn price ratio.

Spring farrowings in $1935 \cdots 36$ and 1937 38, for example, were lower Whan in other yenes of higrli hog-corn ratios, for an obvious reason. The severe drought yeirs of 1934 and 1936 forced such a liquidation of breding stock as woll as buther stock that despite the comparaively lisge eom crops and low corn prices of 1935 and 1937 spring farrowings wore not yet buck to normal. Farrowings did not recover fully, in fact, until 1939 ; the dot for 1938 is still low.

Three years in which farrowings were high although the hog-com price ratio was low, were 1923-24, 1924-25, and 1927-28. The con'n supphes October 1 in the your preceding each of these 3 years were among the lirgest on weord, and apparently that induced an expansion in hog breeding that prosisted throurh the following year.

The smath spring tarmowises in 1935-36 and 1937-38, therefore, and the large spring famowings of 1923-24, 1924-25, fund 1927-28, can all be explained tyy the size of the corm supplies October 1 of the year before, (Com supplies in the current year are alrady taken into account in the current hog-com price atio. ${ }^{30}$) If the residands from the curved line drawn in freehand in figure $22, A$ are all plotted against com supplies the year ! wore in ach case, as in figure $21, B$, they show some positive telationship.

The previons discussion dons not by any means provide a complete explamation of the momber of sows farrowed in the spring. Anditional lactors need to be taken into aceount. 'lae dot for the year 1033-34, for mstance, is low, pardy as a result of the AAA hoerreduction campaign an that time, which called for at 25 -perecent reduction in hogs. The reduction achally effected was 25.2. Obviously, that decrease in hog farrowines was not the result of the reduetion campaign atone; the hog-com ratio was bow (8.5) and a marked redaetion was is the cards hnyway. But the AAA cmmpaign apparently caused the medmedon to be grenter than it otherwise would have beeti.

Oher factors explain the situation in other yerars. The number of sows iarrowed in the spring of 1922 was high, apparently becouse it followed several yems of large hog crops (irn tarn caused by several yuars of large eorn erops) ; the hog industry was stall in an overdistended rondition. The numbers of sows farrowed in the spring of 1938 and 1939 were low perthaps bochuse of the effects of the high loan rates for com.

Fumber resemeh is required to dotermine more accurately the canses of changes in spring farrowings. The chief value of the preliminary explorations is that they provide tentative mensures of the eftect of the hog-com ratio on spring farrowings. Even these measures are not matirely consistent. The response of farrowings to the hog-com price ratio shown in figure $2 t B$ can be represented by a straight line with an elastieity of abont 0.6 . Where is some indication that the line shonld be curved, but not much. The response in figure 22 A con be represented by a similar straight tine of about the sume overall elasticity, but it is much more anceurately represented by the markedly curved line shown in the chate, whose elasticity differs int different points along the line. The eurved line indicates that In, b-com price ratios canging betwees 8 and 12 have, on the avermge, about a 1 to 1 eflect on spring farrowings. That is, a change of

[^23]10 percent in the price ratio causes about a 10 -percent change in the same direction in the number of sows farrowing the next spang. The lower the price ratio, the greater the effect. The higher price ratios have less and less effect on farrowings as they get higher and higher. Changes in the price ratio from 14 to 17 have almost no effect on farrowings.

The same sort of annlysis, applied to the hog-corn ratio appropriate to the fall farrowings, yied is inconclusive results. The relation between the hog-comratio for March-August and the fall larrowings is poorly defined. Further work, using other factors, is needed. More detailed examination by States of both the spring and fall data is also required.

Procenure for Meeting Changes in the Demand for Hogs

Insofar as any broad simple conclusion an be drawn from the preceding annlysis, it is this: The way to deal with expansions and contractions in the demand for pork is to meet them with corresponding exparsions and contractions in the production of hogs. The way to do this, in turn, is to change the hog-com price matio to raise it when expansion is desired, and lower it when contation is desired. Changes in the hor-com ratio must be male at lenst a yeur in advance of the time when the change in pork production is aceded, because the gestation period of the hog is 120 days, and it takes 8 or 9 months to raise an average pig from farrowing time to at maket weight of 225 to 250 pounds. That action stould be backed up by providing the right quantity of corn to feed the number of hogs desired.

Abstractly, there are two ways of changing the hog-corn price ratio. One is to change the price of hors, and the other is to change the price of corn (or, both prices can be changed, in opposite directions).

But in e. fanal practece the most eflective way to change the hogcorn price ratio is to change the price of hogs, untess the ehange in production of hogs is to be followel guickly, within a year or two by another change in the opposite direction. A specifie illustration will clarify this. Suppose that an increase in the demand for pork is Foreseen, and the dexision is mate to raise the hor-corn price tatio in order to bring about the desired inerease in prodaction of hogs. If the rise in the hog-com price ratio is bronght about by an increase in hog prices (con prices remaining unchanged) that provides a direct stimulus to hog producers to expand their production of hogs. Along with this should go a relamation of restrictions on acreage of corn (anhess corn supplies are already exeessive) so that adeynate supplies of com will be on hand to feed the inerensed supplies of hogs. In addition, it may be wise to draw upon the existing stocks of com in the Ever-Normal Gramary, during the interval of time before the new supplies of corn are produced.

If, however, the hog-corn price ratio is raised by a reduction in the price of corn (hos prices remaining unchangel) increased production of hogs wifl be stimulated, but several undesirable effects will follow:
(1) Only a sort of back-handed stimulus to inereased hog production would be provided; hor protucers would be pushed into an expansion of production beenuse of low corn prices, instead of being
drawn into it because of bigh prices of hogs. (2) Even though restrictions on corn acrenge were relaxed, the fact that the price of com was lowered would act as a discouragement to corn producers, and production of corn might not increase; it might aven decrease. Then when the increased production of hoys materiglized, there would not be com enough to feed them. (3) Lowering the price of corn would be likely to conflict with the policy followed by the admiaistrators of the com supply-stabilization program.

It seems clear that the desired changes in the hor-com price ratio should be brought about by changes in the price of hogs, not by changes in the price of corn. And along with the changes in the price of hogs should go corresponding changes in the utilization of com in the Ever-Nomal Gramary and in the production of corn, to provide the right quartity of feed for the number of hogs produced.

Llow Can the Phice of Hoes Be Citangido:

The phrases "change the price of corn," "change the price of hogs," and "change the production of com" are used rather glibly in the preceding explamation, as though it were easy to do those things. In the case of com prices there is some excuse for this, as the price of com is pretty well controlled by the lon rate set for com; changing the loan tate (within limits) changes the price of corn. There is also some waymant for speaking of changing the production of corn, for com is controlled to some extent by the acreage-control programs of the Agricultural Adjustment Administration. The price of hogs is a different matter, as there is no loan program for hogs. How wouk the administrators go nbout changing the price of hoys?

The expertenee in 9941 provides a partial answer. The United States Department of Agriculture, foresceing an increased demand for pork and dairy and poultry products for export to Britain as well as for meeting the increasing donestic demand, announced early in April that it would
make purchases of hor prochacts in the open market to support a long-term level of priess of $\$ 9.00$ per 100 pounds, based on the average price of all hogs at Chicago. In making purchases to sumport this level. consideration will be given to seasonal price varialions and possibhe changes from existing price relationships. The program, therefore, does not povide for a fixed price of hogs.

The Govermont's puwhases of pork and lard nud other products in the open market will be used to acommate reserve supplies of food. These supplies can be used for transfer to Great Britain and other countrics under the provisions of the Lense- , mid Act; for relcase upon the market in case of unwarranted speculative price increases; to meet requests from the Red Cross for shipment to war refugee areas; and for direct distribution in the United States through sehool bach programs or through State welfare deparments to pablic aid familics. Arrangements also are being made for coordination of these purchases with those being matle for our armed forees. ${ }^{* 3}$

The Department know that farmers were more influenced by actuat pries than by prodictions of prices. The United States average farm price of hogs in Mareh 1941 was only $\$ 7.08$ per 100 pounds. The corresponding price of corn was 57 cents. Tho hog-com price ratio, therefore, was only 12.4. The average ratio for March, over tie 17year period 1924-40, was 12.4. The ratio in Marcli 1941, therefore, was only average, and production of hogs would not inerease in respense

[^24]to an average hog-corn price ratio unless some drastic incentive of some other kind were offered.
The incentive in this case was an outright guarantee of $\$ 9$ per 100 pounds for hogs for the next 2 years. The Department was able to make this guarantee because it could be implemented by purchases of pork and lard for any of the purposes specificd, if the market did not rise to $\$ 9$ unaided.

The main way the Government can raise the price of hogs is to make purchases of pork and pork products. What could the Govermment do with these purchased products if extensive outlets for disposing of them were not available? It conld sell them currently, but only at a loss. Perhaps the loss could be avoided by some form of storage, carrying the products over for a yent. Conceivably, purehase and earry-over of these products coutd serve two purposes-it could suppori the price during the current yar because of the removal of part of the supply, and could also add to the supply during the next year when large supplies might be desired.

Can pork products be stored as suggested? That is largely a techni(al, piysical, and chemical question. About 55 pereent of the hog earcass is sold as fresh pork, and the rest as eured products-ham, bacon, rife. It might be possible to extend the euring period for the cured products; or perhaps they, as well its the fresh products, could be kept better ly freczing. Perhaps they could be canned. Such problems lie outside the writer's fied ; they are mentioned as possibilities needing exploration by men who know something about pork curing and storage.

If storage of pork products were found to be impossible, either for physical or chemical reasons, or because of high costs, something still could he done. The Government conld estimate requirements a year nhead, and guarantee a price, not for the next, 2 years, but for the second year only, thus giving firmers a definite goal to shoot at, and enough time to breed their sows, raise the pigs, and send them to market at the desired weights. During the first year this would create no problem for the Government.

The risk assumed by the Govermment during the second yenr, with its guarmanted priec in effect, would be high. A lot can happen in 12 months, and more yet in 24 months. Unpredictabile events can incrense or decterse drastically the elemand for meat. The supply is subject to unpredietable forees also; the size of the average litter, nlone, may change as mued as 3 percent from one year to the next, as it has several times during the last 15 yeurs, largely because of unpredicenbie changes in the weather. Three peremt does not sound like very much, but the demand for hogs is inelastic, and a change of 3 pereent in supply would cause an opposite change of 5 percent in price. That would amount to 50 eents per 100 pounds on $\$ 10 \mathrm{hogs}$, which, in turn. would amount to 70 million dollars on 14 billion pounds of hogs (a erpresentative ammal shaghter). The relation between total mational income (or any of the major indexes used to measure demand) and hog prices is also indastic, and changes from that side are larger than those on the supply side (if fluctuations in the supply of corn are removed). Losses could easily rum up to several hundred million dollars.

Losses could be minimized by the Government setting its guarnleed price 50 cents or $\$ 1$ per hundred pounds under its estimate, so
as to be on the safe side. Most farmers would produce more hogs in response to a guarantee of $\$ 9$ than to a forecast of $\$ 10$. A gumantee of 90 percent of the estimated futare value of the hogs would be a substantinl step toward price assumace; yet stopping short of 100 perent woud greatly reduce the rish to the Govermment. In addition, the distribution of pork and lard to low-ineome families could be incrensed, pork and hard cond be put on the sumplus list, and so on Perhaps at major part of the risks could be eliminated.

Is a Conthollen System Any Better Than the Oeen-Markim Systen?

In conclusion, the broad guestion may well be asked: How would a system for controlling production and priets of com and hogs, with all its diflicultics and dangers, work out any better than the automatic, open compelitive-market system of the past?

The way in which controlled production and prices would incerense farmers' inemes and dectense heir cosis, and assure consumers a fow of livestock products mom nearly in line with changes on their demand, has been shown. What is beeded here is to survey the maketing mechanism in somewhat broder perspective.

One of the basie shorteomines of the compelitive-mankel system for com and hogs was that it did not look far enough ahomed. It satisfayd chasical comonists well mough. When supplies were scanty redative to demand, prices rose, and that meomagel proturtion to expand until it was great mough to satisfy the demand. But this appraisa! was too lordly in its sweep. It does not satisfy us today. Tt overlooked the lag of a year between a scomety of a product like com and ma expansion in production to overcome thal scarcity. The same thing was true of a surphas. It atso overooked the faci that flue mafions in yidds from year to year were redued only to a small sxent by storage of only one-filth of the sumpus in large-crop years to be added to supplies in shom-crop yoars. A hage erop of com resulting from high yields depressed priecs of rom and inceresed production of hogs even though it was deaty reyognaed that the weather woud change and the com crop would be smath again in the near future (in terns of a few years). The spernativemarke price forecasts were tonsed almost culirely on cevents that had atready happened or were in process of happang, not on longer range statistical probabilities. The marke was rasombly perfect, chronologicully, within periods of about a year, but it was very imperfect over lonem periods of time. It was ton short-sighted.

The same sort of slortcoming was even more marked in the marked for hogs. hogs and pork are pershable, and when supplies are harge they sell af bow priees even though shom supplies and high prices may be imminent a few months hater, a fact when was cleaty illustrated in 1940 and 1941. During the last 3 months of 1940 , the price of hogs at Chicugro ranged onfy a few cents above $\$ 6$ until the midtle of December, although the factors that were to carry hog prices abost twice that high within 6 months were pretty well kown ai the time. The monthly arenge price of hogs remamed befow $\$ 8$ matil April. 1941 when the Department of Ayriculture anoomesed that it would support hog priess at $\$ 0$. Fet by the end of June, 1941 hog prices had risen aboues \$1t.

Stabilizing com supplies by mons of (lovermment lonns enkes care
of fluctuations in the supply of com and hogs, but it still leaves the problem of fluctuations in the demme for hoys unsolved. The best way to bring abote the corresponding changes in hog production is to change the price of hogs, and the problem reduces to the problem of changing the price of hogs, or at least guarantecing that the elsange will take phace, a year in advane of the time when the change in production of hogs is needed. That problem redues to chemical and physical problems of processing and storing, to the cronomic problents of the costs of storing if it is phrsically feasible, to the problem of torecasting changes in demand in year and more in advanes, and to the problem of keeping the risk of finmeciat losses by the Gevemment as low as possible. If thase problems can be solved, the prent progran for stabilizing com and hog supplits will become onv a purt of a brouder program that will kep supplies of pork and lare more closely adjusted to demand than the uncontrolled-market systen bas been able to do in the past.

SUMMARY AND CONCJdSions

The job of controlling supplies and priees of corn and hogs consists cessentially in (1) taking oud the ematie fluectuations from year to your in supplies of comand hogs that result from unprodictable changes in the weather, and (2) putting in the changes in produetion of conn and hogs from your to year that are reguired to meet changes in demami.
(1) The first of those jobs boils down to stabilizing supplies of corn. It involves four problems:
(a) Howe large should the storage stochs (cary-orer) of corn be in order. to stabilize corn suphess? Praciacally complete stabilization for all emergencies over the last 70 years, exeept for the one period from 1933-30, could have been attined with storage stoeks not execeding a billion bushels at any time. A progrtom for the future could get atong rety well with stomge stocks of 700 or 800 million bushels, if hybrid com reduces the efferts of drought and if control of production is eflective.
(b) Where should the storuge stochs be located? It the storage stocks for the country as a whole equalled, for example, 25 percent of the average production of com, then the stocks in cach State should equal 2.5 perem of the average production of com in that State, multiphed in each case by a figure representing the severty of fuctuations in corn prektuetion in the state. In addition, the com should be stored as far aorth as pessible, in orter to keep down damage by insects. Appraisal by this standard shows that harm stocks in Oetober, 1941, ranged from twice as lavge as necessary in lown to one-eqghth as large as mecessary in Kansas.
(c) Should corn loans comtinur to be made at the same fat rate all oner the commercial corn arra? They should not. The com-stomage program woud disturb com-storage practices and relative livestock production in different parts of the Corn Belt less if the existing flat loan rate were repheed by a system of geographical differentiats corresponding to average com-priee differentials orer the last 15 or 20 yenrs. An altermave sustem could be based on average prices at terminal markets and freight motes to those markets.
(d) Should the corn sumply-stabilization program be made to finance itself? If so, how? If not, whe should pay for it? It would be
possible to make the stabilization program finance itself, from a banker point of view, by stopping short of complete stabilization and setting the loan rate each year a few eents below the price at which an average crop would sell. The price would then rise enough from large-crop years to short-crop years to cover the costs of storage. But as stabilizing supplies of corn increases gross incomes to farmers from the sain (or feeding) of corn, and also reduces the costs of producing, proccssing, and distributing livestock, perhaps it would be better to go all the way to complete stabilization. If farmers retained the benefits from this stabilization of supplies, it would scem that they should bear the eosts. If, however, production expanded and the benefits were passed on to consumers in the form of more goods ut lower prices, it would seem that the costs should be charged to them.

It would be well in any cuse to ituclude a "life-sare"" danse in the formula for determinisg the loan rate, so that the rate would be reduced automationly if the storage stocks execerded half a billion busheds or some similar figure.
(2) Controlling the demand for corn and hogs:

Demand cmmot be controlled (exeept to a very limited extent, perhaps I or 2 perent, by surplus-disposal programs) withont stabilizing the whole reomony. Intil that is accomplished, the only frasible way to dral with finetuations in demand for hogs is to meet them wifh corresponding fluctuations in production of hogs. That will refuive a more firsighted control of hoy production than the open markent has afforded in the past, for (a) pork is perishabic, and large supplies sell at low prices cern thourh short supplies and high prices maty be imminent a few months Inter, (b) producers respond much more to present prices than to prospective prices, and (e) the decision to increase or reduee the number of hors going to market must be made at lenst as year in advance of the time when the market supplies of finished hogrs are needed.

The hog market ean be made nore farsighted by Government forecnsts of the requirements lor pork fand lard a year or more in the future implemented by a guaranteed price for hogs that will call forth the prodaction needed. Risks of financial losses are involved, but they could be minimized if the Government guarnated only 90 percent of the estimated price, and disposed of any unforesen surpluses to low-ineme groups of consumers.

The system deseribed, with all its difficulties and dangers, would kerp corn and hog supplies more closely adjusted to demand than the memontrolled market system ever did.

DTTERATURE CITED

(1) Baker, O. hin and Gending, A. H.

193s. a graphte sumatie of falem crops. IT. S. Dept. Agr. Misc. Pui. 267, 129 ppa, illus. sice p. 22.
(2) Bentley, Ronabis ('.
1928. tien movemeny of tows rommerchat some and oats. Lowa
(3)
1034. The destination of fowa's commercial cohn. Jowa Agr, Expt.
(4) Bnownime, O. A., and Schutita' T'. W.
19.1. No phombetion conthol. luwa Farm Eeon. 7 (5): 12-13, 16, illus.
(5) Chen, Huan-Crino.
1913. Tife economic principies of confocius and mis school. 2 v . Columbia C'niv. Studies Hist., Econ., and Pub. Law, v. 44-45. New York.
(6) Gold, Norman leon, Hofrman, A. C., and Waugh, Fredehek V.

19:30. ECONOMEANADYSIS OFTHE FOOD STAMP PLAN; A SPECIAL BEPORT. 98 pp., illus. Washingtot, [D. C.].
(7) Gunderson, E., and Decker, G. C.
1941. Abe bugs in youla colin? Iowa Agr. Col. Farm Sci. Rptr. 2 (1): 3-5, 16, illus.
(8) Gompriz, Gifester L.
1941. a seventeenyh century "ever-nobmal chanaby": the al-

(9) Hogan, A. G., Weaven, T. A., Edingek, A. T., and Thow bibee, E. A.
1925. the bbiation of feed consumed to moten ind ensmgy retention. Mo. Agr. Expt. Sta. Res. Bul. 73, 42 pp., ilfus.
(10) Hopkins, Joun A., Jk.
1929. Wiry mog profts vary. Towa Agr. Expt. Sta. Bul. 255, 12 pp. (Abridged.)
(11) Howshe, I. D.
 C'S. Dept. Agr. Tech. Bul. 755 , 40 pp., illus.
(12) Malfanadu, Wiffied.
1941. indexts on a tripe-farm basts. Jour. Farm Econ. 23: 5S4-606, illas.
(13) Norron, I. .f.
1940. effects of mbe gnifonmity of corn lonns, regamblass of Loc'ition. III. Firm Feon., No. 67, pp. 437-439.
(14) Rimabbs, Preston.
1939. Livestock makeming memtons avi hivertock prees. Jour. Farm beon. 21:219-227, illus.
(15) Robinson, Joe L., and Zuber, Mameis S.
1940. 1080 10wa coti yelb resq. lowa Agr. Expt. Sta. Bul. P2, pp. $35-112$, illus.
(16) Romtson, W. L.
1919. efrect of age of pics on the hate and economy of gans. Ohio Agr. Bxpl. Sia. Bul. 335, pm. $543-575$, illus.
(17) Sehntrz, T. W., and Blzowntee. O. II.
1911. odi u. s. bowa conn granary and how tr has apmeted hogs in the conn rest. Iowa farm beon. 7 (1): 8-10, 16, illus.
(18) Sumpherd. Gmormey, mad Wheos, Wabten W.
1987. Stabiakne cons surphes by storage. Iowa Agr. Expt. Ste. 1311. 308, pp. [203]-344, illus.

1988. cobs stomage in mite myer-cormai. glavary. Commodity Inform. Ser. 38-Corn-2, 28 pp., illus.
193S. wheny stomale in the evmb-nommal gbanabr. Commodity Inform. Sor. 35 - Whent-1, 24 Plo, illus.

(23) Tnited States Depahtabat of Agheobitura.

1927-10. croes AND MABKETS. Y. $4-18$. Washington, (D. C.)
1040. abmobirdral statismes. 1940. Washington, [D. C.]

Unired Srates Laws, Spatures, cte.
1938. The agbechtuhal adiostmeny act of 1938. 75th Cong., 3 d sess.
U. S. Statutes at Large. 52: 31-77.
1941. soiny besotution hemating to conn and whear marketing QuOtas under phe agmedivural admbembent act of lozs as ambermb. 77th Cong., Ist sess., Pub. Law 74 [S. J. Res., 60], 3 pp .
Welits, Oris V.
1933. Fabmeris' besponse to price in hog prodochion and mabketing. U. S. Dept. Agr. Tech. Bul. 359, 56 pp., illus.

APPENDIX

Distrabution of United States Cors Chops of Vabioug Sizes

The distrithution of United States com crops of various sizes ean be shown by chassifying the crops aceording to size fand noting the number of crops in each size group. 13ut production of com from 1870 to about 1910 showed an upward trend, nad atier 1910 a horizontal or downward memd. What is needed is to show factuations aboul the trend; and this would involve litiong some complicated function or other to the elata, which in dum would mise guestions as to the mature of the funetion - -questions that diflerent investigators would be likely to answer diferenty. Bat the trend of yiedds has remained horizontal thromgout, A grood trend line fitted to production, therefore woukd look like the acteage line. The simplest and most logical thing to do. then, is to use the neretige lime as the trend; this cotnes down to asing the yided of eorn per ane as the basie data to represent flactuations its corn prodution ahout the trend.
 period, from 1870 to 1940 , is 20 bushels. The cemidal chass interval in the areompanying tabulation, therefore, is set to eover the range from 26 to 26.9 busheds. 'The other intervals extend in $2-b u$ bhel ranges nbowe and bolow that contral ehss intorval.

The tabalation shows that the distribution of the size of the corn crops is skewed to the left. The aratge yiold orer the Tl-year period is 26 bushols. The model yidus (the yiedus hat ourur most frequently) de not fill in the a verage ramge from 25 to 20.9 bushels. hat in the next
 the yided was betow wratage, bot it yeats when the yidd was above

Frequmary distrihntion of diffrem sized ("tited shates corn crops, tsio 1940'

${ }^{7}$ A vorake.
How rould this bre? 'The answer is that the large erops did not exeed the arerage size as mad as the small crops fell below it. The 44 high yields avernged 2.1 busbeds above the avemge yidel for the entite 7 i yests. but the 27 bow yeded maruged 3.3 bishols below the
 aremge) only thee times, but it fell below 22 bushels (4 bushels
below average) eight times. There were many !arge erops, but they were only moderately large; there were comparatively few small crops, but when they did come they were very small.

Mathematical Measures of Fluctuations in Phoduction
 .

Fluctuations in production em be computed mathemationlly and expressed in numerical form by the use of some arerage measure of the Huctantions. This gives mo objective mensure of fluctuation, exeept for the subjective element involved in choosing the mathemation measure to be used. But even belore the choiec of the average is made, the meaning of "fluctuation" must be defined. Profluction in a certain state might remain constant; there would be no flactantion in that case, and any arerage such as the standard deviation would be zero. But what if preduction rose by a constant amount ench year? Would that be a fluctuation? The standard deviation would be high; but the fuctuation, from the point of view of grain storage, would be zero. For grain storage is intended to smooth out fluctuations over thew years at a time, not over 20-or 30-year periods

One can ceme closer to the sort of fluctuation that coneerns a storage progran by measuring changes from one year to the next. This ent be done by subtacting each year's production from the next year's prodection, converting the data into a series that is usually called "lirst stiflerences." One woud come closer yet by using firse differences betwern some such items as 2 - or 3 -year averages; for while a storage operation would not cover 20 or 30 yeas, it would often cover 2 or 3 years, or sometimes a lew more. Howerer, this would get into more complications and subjertive judgments than the results would justify. It is probably best to use first differconces, a simple and standard mestisure.

If only first diferenees are considered, what average of these should be used- the standard deviation, or the smple arithenetic arerage, or some ofler average? The standard devintion gives a larger than proportional weight to the larger lluetuations. That may be desirable from the point of vew of a grain-storage program; yet it is guestionable whether even from that point of riew one bushel should be given more weight than another. Perhaps it is worth whife to compute both arerages and compare them. Accordingly, both the standard deviation and the simple aserage deriation of the first differences (in endy case, divided by the menth of the original series) are shown in table 10. They are shown separately for the period 1901-20), for the period 1921-40, and for ine entire period 1901-40, for cach of the nime ('orn Belt States.

Comparisons of the foo measures show that the standard deviations run from about 25 pereent to about 30 pereent higher thath ite arerage derintions. 'The differences of course are the greatest where a few large changes in prothetion occur, as when hese are squared they add more than proportionally to the total of which the square root is extracted. By and large, howerer, the relation betwen the wo measures is so nendy uniform that it makes rery little difference which one is usel. The sfandard deviation erlivided by the mean of the origimal series in cach (ase to convert it to a coediement of rariation) is chosen for use in the lexity of this reper berause it is the most aniversally acepted mensure of fluedution.

Table 10.-Measures of Juctuation in corn production, by States, 1901-40:
1001-20

1 Jet-

A) $=$ aleate of the oripiand series.
$\mathrm{Md}=\mathrm{Be}$ an of the frse eftheremes.
The datus refur to the ditrerence between prothetion in the yem sfecthed and prothetion the year betore.

Fiver-Noman, (fanales fon ()then Peed Grams

Corn is the chicf feed grain in the Conted States, but it is not the only one. Fven if corn supplies were completely stabilized, total fed gran supplies wond still Ductuate to some extent with flucLuntions in the production of other feed crops. A corn-stabilization program by itself may not be sufficient; perhaps the total supply of all feed grains needs to be stabilized.

On a tomage basis, corn constitutes about 75 percent of the total feed grains. Onis make up about 20 pereent, and barley and grain sorghums togeiher, the remaining is percent. Wheat is not ordimatily induded as a feed grain, but 2 or 3 million tons of wheat are usunly fed amonlly-about egnal to the quantity of grain sorghum. The corvelation beiween the fluctuation in the production of these feed erops is not perfert, and while stabilising supplies of com would take out most of the flucturtion in total feed supplies, it would not take out all of it.

Stady of the production data for the different feed crops shows that production of onts is more stable than production of corn. The other crops, however, fluctunte more than does corn.

The situation may pernaps be summazed in these words: Stabilizing supplies of con would take out most of the lluctuation in total production of feed graine: but before total supplies of feed can be completely stabilizel, it will be necessary to set up stabilization programs for the other feed crops too.

[^0]:
 criticisms of F, V. Whagh, M. Clough ant others of the Burean of Ayricultuma Eemomics, C. F. Sitle and

[^1]: posos, but those reader. who are fathiliar wath corn and hogs and the relations between them pay preter to read only the conclusions and summary on 9.77 to 78.

[^2]:

[^3]: 1 Thore jous prieds are is of Dec. 1 ,

 - Preliminary cstlinato.

 October 1 esilitato.

[^4]:

[^5]:

[^6]: SThe sebeleke in full temall follows:

 Th per centom of the garity pice, at the followimg mates:

 txperts by hol more than 10 per centun:

 cuscum of the rate spheited in at ntater

 us woult be subject to pematy it marketod," (26).

[^7]:

[^8]:

 and do not include allowate for uarederaed cora at che nppropriate boan rates.

[^9]: Grops und Afarkets ins5 (9s, w, 590).

 1. Ayrienturnt sitwation (se).

[^10]:

[^11]:

[^12]: tbeasime, ars givena th the apperadix.

[^13]:

[^14]:

 cents a bushit, ss shown here:

[^15]: somplete by stats.

[^16]: butween two heome gromps. \$. O. Hepn nded the bea of represeming the gafe by the use of the marginal eurves in the way shown.
 The wo demand chirve are shown as if they were indergendent. This is not strictiv true. An inerease to the demand for hogs io a glven yenr would inerence the demand for corn, not only that year owime to the rise in the price of hops (a vertital shift In the posicion of the demand cerve) but anso for the next year.
 tyear resultion in an Inerceace in hof grodution by the next your wouk therense the demand for corm hat
 tions do mot offect the main principles, and could not in ans case be hamded here sithout overlonding the exposition.

[^17]:

 sated regularly). Fus the shane teason, the cust of storing that fah of the corn that was girried only 1 yur

 secumacy.

[^18]:

[^19]:
 Corgoration, Washington, D. C.

[^20]:

[^21]:

[^22]:

 19 Sco Fotnate 28.

[^23]:

[^24]: thas. 1041. [Processed] Ste p. 9.

