

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTION TEST CHART national bureau of standaros-1963-A

Climate and Accelerated Erosion in the

 Arid and Semi-Arid Southwest With Special Reference to the Polacca Wash Drainage Basin, Arizona ${ }^{1}$
 Ihysiographir Division, offer of hasroreh. Soth ('onstration Serrice

CONTENTS

Page !			Paga
fotrotuction	1	Erosion in the Polacea Wrash . Fontimted	
Climates of the Enutharst		Basiec condilions gaverniny erosion ('on	
Mremorological orizin of climatic fuxt		soil.	60
tions	$=$	Vepetation	61
Air-muss types in the sonthwest	2	Lrand wiet Past and gresent	68
dir-masses and varintions in tempera-		Present erosion eonditions	I!
ture		Black Meso section	
Air-masses and variations in preeipita-		Tusayan Wirktes section.	
tion .		Printed Joesert spetion	
Meteorologicat analyses á selected starms	$11!$	trocesses and effects of hormal and ace erated erosion	85
Gariation in monthly and annoal mecipitation	1.4	Development of the folarea frainage prior to the recent acceleration	
Expessive precipitation in the Sonthwest	$\underline{2}$	ferosion	8.5 91
Kaimstorm fretumetes in the somzli-		trelerated erosion in thp smahwest	102
west	?	bate of whelerasion of emsion	102
I rought tequencies in the Somburest	31	The Southwest	102
The cimatic fratern in the sonthwest	3.15	The Polucta trainuec onsin	104
I definition of timate	35	Fatases of nepuleration of erosion	191
The nommal climatie patlern	3 l	Disstrojbisin	107
Firlations in the chiriatie patiern	3 h	Arricuiture	107
C'limatic Buctutions in the phast	43	Climate	1739
rosion in the Pohnece Whash	$40^{\text {- }}$	firazing	119
Shasic eanditions wovernintr erosion		summary and conclasions	123
CJomate of the Polact Whan	40_{1} :	Literiture cited. .	123
(icologs - . .- . ----.	解 1		

INTRODCCTION

Accelerated stream trenching or arroyo cutting in the Southwest has been noticed for more than 50 years. In that time the gullying of chamels in flat-floored valleys with the consequent dissection of bettom land, lowering of the water table, and loss of palatable grases have become increasingly apparent. Wind action has removel soil from thled fiehts and other aneas where the vegetal cover lus been depleted and has deposited the debris in the form

[^0]of dunes. Ranges that once carried 10,100 head of cattle can now scarcely support one-quarter as many. Valleys that the first whife settlers converted into prosperous tarms are now deeply cat badlands unstitable even for grazing.
The canse or causes of the acceleration of emsion in the Southwest is a vital question on which there is still a lack of general agreement. If, as some workers believe, a progressive destecation of climate has brought about the dissection of the western lands there is little hope that man can stem the quickened erosion. If, as others are convinced, misuse of the land by overgrazing and impradent methods of agriculture has been the canse there is a good possibility of improving the land by improving the lame use.

Tinderstanding of the problem depends primarily on a knowledge of the climate of the Southwest, of the nature and extent of a ${ }^{-}$celerated erosion in that region, and of the correlation of accelerated erosion and land use.
This bulletin contributes an andysis of the climate in the Southwest and of its relation to erosion and overgrazing. It is written in three main sections. any of which may be read separately. The first deals with climate, the second with normal and accelemted erosion in a selected dranage basin. and the thind with the history of erosion.

The wide range in precipitation and temperature at a single station, the great pariance in seasinal and ammal precipitation, and the ocenrence of large storms after dry periods or a sucession of several abnomally dry years are the most crifical fealures of the climate from the standpoint of erosion and land use.

The fied stadies of normal and accelerated erosion. reported in the second section, were made in the dmanare basin of the Polacca Wash, one of several drainagewass by which the run-off from Black Mesa. a broal. youthtuly dissected phatan in the Navajc cothtry, flows toward the Little Colorado Rive. (fig. 1). In size. in climate. in vegetation, in soil and bedrock. anc: in pasi land use the Polacca Wash is representative of conditions in much of northeastern Arizona. Most of the Navajo country i: open range. Only a smat percentage of the total aren is under cuitivation.
In the last section. (he records of gully cutting and range depletion for the Southwest in general and for the Polace Ward in particular are considered. The evidence for and arainst tectonic disturbances, agriculture, overgrazing. and climatic change as canses of accelemted erosion is weighed.

THE CLIMATES OF THE SOITHWVEST

Meteorological Origin of Cimate Flectrations:

aif-mass types in the socthwest

The climatic pattern on the earth (106), ${ }^{4}$ as well ats the changes in its position from year to yenr, is explained in terms of at-

[^1]

Ftouse 1,-'lhe Soutlwest aud the physiouraphie settimg of the Palacea Wash Arabatge arent, Ariz.
mospheric circulation. Over North America the circulation consists of flows of great bodies of air which have remained in their various source regions long enongh to have acquired special individual properties. Outward movement of the air from these centers and interaction of the different types of air masses are chiefly responsible for the weather of the continent.

These air masses are of several types. Air which flows southward from the vast Arctic tundra of northem Canada is cold, dry, and heary. The North Pacific Ocean is the source region for cool to cold, moist, and moderately heavy air. Air nver the north atlantic Ocean also develops similar properties. Over the Gulf of Mexico and the Caribbean region, and also over the tropical waters of the Pacific, air bodies become warm to hot, very moist, and light. The southwestern part of the United States, Logether with the Mexican phatean, is itself a source region, where air from upper levels sinks to the surface and becomes hot, light, and very dry (4iv. 112). The source regions for these varions air masses are shown in their approximate positions in figure 2. The entire system of air masses is displaced poleward in summer and equatorward in winter.

Air flows outward from all these souree regions. All three polite air masses generally muve in a southensterly direction. The tropical air masses generally move in a northensterly direction. The thajectory of the tropical air from the Athatic chamacteristically curres across the Gulf of Mexico, up the Mississippi Valley, and thence eastward back to the Atlantic. However. despite the fact that these air bodies have preferred rontes, all except those which originate in the north Atlantic sometimes enter the Sonthwest. It is the invasion and interaction of air masses that accounts for the day-today variations in the weather of that region.

Cool, moist Polar Pacific air may move down the coast and swing in over the mountains to invade the Southwest aloft. Such invasionis are especially well marked during the winter, when the Aleutian low-pressure area is well-dere? ,ed and is at its southernmost position. Cold, dry Polar Continental air may push equatorward from the Canadian trudra and enter the area. This is also predominantly a winter phemomenon. Also during the winter. warm and somewhat moist air may move in at high levels from it: place of origin over the tropical waters of the Pacific. Particularly during late spring, summer, and early fall, invasions of wam, moist Tropical Gulf air from the southeast may ocrur. At any time of year, hot dry Tropical Continental air may descend to the surtate from :aloft.

Air masses do not follow one another in any definito sequence, nor are any two invasions of one air-mass type exactly the same. Air masses remain over a source region for different lengths of time and follow different trajectories. Each invasion, therefore, has a history different from that of any preceding or subsequent one so that when an air mass arrives in the Southwest its properties are never exactly the same as those of any other invading air mass. Polar Pacific air entering the Southwest is occasionatly colder than Polar Continental air or more moist than Tropical Gulf air. Becatse of such rariations in their properties, air masses can be characterized only in a relative sense.

AIR MASSES AND VARBATIONS IN TEMEMEMATLRE

In the interaction of air masses of clifferent clensity the hearier air will move along the land surface and will displace the lighter air uprard. Since there is generally a direct relation between density of air and temperature the replarement of one air-mass ype by another in the Southwest results in large rariations in the

Ftgure 2.-Sunree regions of North Athericaln air mases.
surface temperature of the region. Superimposed on the diurnal and sasonal temperature rhythms, arising from the rotation of the earth on its axis and its revolution about the san, wre day-to-day variations caused by nonperiodic inundations of air bodies in unpredictable sequence. These three types of temperature variation are well illustrated by the daily temperature data for Santa Fe for 1879 and 1880 , the wamest and coldest years, respectively, in the period 1850-1939 (fig. 3).

The temperature charts for these years illustate the components of the temperature regime and show what lies behind temperature variations from yoar to year. The length of the bars indicates the span between maximun and minimumi daily temperatures. The curve fitted to the mean daily tomperatures for a 46 -year period is shown on the chart for both 1879 and 1880 . The mateh of the taily means in both these years follows the trend of this curve, but the deviations of the daily means from the nomal is often large, a few being more than half the ranre of the carve. These deviations reflect the variability introduced by the invasion of air masses.

The variation in the ramge of diamal temperature from season to seasom is shown by the differences in the lengths of the bars. During early summer the range is greatest. insolation being at a maximum and cloudiness low. The bean June range for the $46-y$ ye period is $25.8^{\circ} \mathrm{F}$, the December ranare, 20.3°. Changes in temperature from day to day can readily be seen by comparing the position of adjacent bas's on the temperature scale.

The mean ammal temperature of 52.5° F. in 1879 is umusually high. principally because it indudes maseasonably high winter temperatares for that year. The summor temperatares also are slightly above aremare. In 1880, when the average annal temperature was only 45.1°. Winter and antumn temperatures were far below nommal and summer temperatures were slightly so. The high incidence of warm temperatures rowner the winter of 1879 was associated with frequent invasions of watm air: whereas. in the winter of 1880. cold air masses from the north ocenpied the area much of the time.

Variation in the mean ammal temporature from year to year for the period $1874-1939$ is shown in figure 4 . Each of the homan values shouk be thought of as representing a sequence of weather conditions such as that illustrated in figure 3 for the years 1879 and t880. Occasionally wam yeats follow warm, and cold years may follow cold: freguenty, as in 1879 and 1880 , extreme shilts are displayed from one pear to the mat. Since air-mass invasions inpart preat irregularity to the alaily temperature values it is not surprising that the annual figures made up of these highly variathe components should themselves vary considerably from vear to year.

The dimmal. seasomal, and annmal variations displayed by the temperatare of Simat Fe are representative of temperature variations elsewhere in the sonthwest. There is, for instance, at Flagstaff. Ariz. (table 1), as at sama Fe_{e} a mach greater ratge in the mean monthly temperatures in winter than in smmer ($\%^{\circ}$). Furbernore, the wide range in temperature at Santa Fe (fig. 3) is characteristic of the range at other stations (fige 1:3). In Arizona. where the absohute rame is greater than in many other parts of the comentry, the greatest difference between the maximum and minimum at any

Figure 3.-Daily maximum and minimum temperatures and daly precinitation at Santa Fe, N. Mex., 1879 and 1880,
station is 134°. This is the record for Keams Canyon, where the maximum was 104° and the minimum -30°.

Though the pattern of change is similar at stations throughout the Southwest, there is considerable difference in the range of temperature at different stations and in the frequency of occurrence of various temperatures. The areal contrasts are brought about mainly by variations in elevation, cloudiness, and the incidence of different air masses; perhaps to a small extent they reflect differences in insolation caused by variation in altitule. The highest temperatures are experienced at Yuma, which is at the Inwest elevation above sea level, and which also has the lenst clondiness. Lowest temperatures occur at stations in the nothem part of the region. which are at the highest elevations.

A!R MASSES ANB VARIATHONS IN lPREC:PPTMTHO

Precipitation camost take place unless the air is cooled sufficiently to release the atmospheric mosture. The nevessary cooling is acomplished by adiabatic expansion wherever air fows ap a fand slope. Air is similarly conded when it encounters a heavier air mass and is forced up the air-matss skope. Air aseends and is cooled by consection when an air colums is make unstable through heating at the ground or through eosing aloft by mation from the tops of a louds.

The principal cause of precipitation in the Sonthwest, as else-
where in the United States. is the lifting of air along zones of discontimity, or fronts between adjacent air masses of different properties. Two general types of froms are recognized. In one, the colder air pushes actively into the area ocempied by the warmer air, forcing the warmer air aloft. In the other, the warm air mass is the active one. moving at a more or less miform rate up the slope of a relatively stationary or showly moving cold air mass. Whicherer air mass may be the active one precipitation will usaally occur if the atsending air is moist. When the eold air is adranciner mpidy its front is relatively stecp. The warm air therefore ascends rapidly over a relatively narrow belt. and thonderstoms usually result. They cover relatively small areas, ate extremely spotty. disphay high intensities, hat continue for only a short time at any one place. When the pressure gradients are such that warm air actively pushes over cold air, the for is asually steady and uniform over wide areas. If rains result, they are widespreded. (end to be henogenesus, are of low to moderate intensity, and may sometimes continue for several days. During summer. heating of the ground canses thermal convection, which ordinarily does not prolluce mach rainfall. However, whei air masses chancterized by such atmosporic instability flow over denser air bodies or up a slopge of the lamd. considerable precipitation may result.

Winter precipitation in the Ronthwest is due ahmost entirely to movement of relatively warm air over temporarily stationary or slowly moving cold aif masies. Most commonly, fresh. moist air from the north Pacific region overrides air from the same source which is already in the suothwest and which has been cooled by radiation. or it may move op over colder and douser air from Canada, which has moved in direety or has swing in from the eass and sonth. Moist air from tropical Pacific waters may yofld precipitation in the Houthwest by overriding cold air from either the north Pacific or Canada.

Also moisture is precipitated from fresh Polar Pacific air masses directly in the form of light. scattered showers or snow fluries. The fresh polat: air is cod and becomes tophowy after the lower buyers are hested during the day. The resulfing convective currents manifest themselyes theough the development of cumulus clouds. which by late atternom or erening may release small amonts of precipitation. These small storms orecur only in the wake of the passage of a cold tront of Pelar Pacific air and contribure little to the total winter precipitation.

Nithongh the moistine coment of the air masses in winter is relatively bow becanse of how air temperames. winter is semerally a rainy season becman of the viron of ab-mass interactons.

Iri smmer. there is mach less contrast in the propertion of the
 firm the Pacific are lew pronomead. Furthermore inmods of cold. dry aid from ('anada berome less and less frequent son that they are of slight importmer in refensing mosisture as precipitation. However. the moisture content of air masses from the orean is himher in the stome than at any other time and the ab may bowectively unstable so that mosistare is more easily relasol. During the summer, insolation is at a maximm and instabihity of the air is indaced

Wagra n.-Diagrammatic requesentation of four metenological situations which produce precipitation in the honthwest. Arrows imbiote diection of air-
 upper front ; disharlat. line, occluded tront. 1 and B ate typical of winter, O and D of summer.
by heating of the ground during the day and radiational cooling of moist layers aloft at night. As a resalt, brief, intense, local thiunderstorms take place. Tstally they occur along coid fronts, which exist between successively invading masses of cool, moist air from the Pacific or where warm, inoist air from the Gulf of Mexico is forced up by cool air entering the region trom the north Pacific. Although these fronts are often ill-defined. they frequently provide the means of obtaining precipitation from air already made unstable by insolation and radiational cooling. For these reasons summer is also a rainy season. Four meteorological situations which result in precipitation in the Southwest are represented diagrammatically in much simplified form in figure 5 .
Spring and autumn are periods of transition in which neither convective storms nor extensive warm-front storms are well-developed. Both are therefore seasons of low rainfall.

In late summer and early autumn occasional tropical cyclones over the Pacific off the coast of lower California may induce an inflow of moist Tropical Pacific air. which is forced up over Polar Pacific air already uccupying the Southwest. Widespread, heary rainfall generally results. September rantall may, therefore, occasionally equal or surpass in amomen and intensity that recorded during the period of summer thunderstorms. C'sumlly, however, September is characterized by rains of less intensity and smaller total amounts than are July and dugust.

METEUROLOGICAI ANADYSES OF SEIECTED STORMS*

To illustrate the effects of wrtain meterological conditions. four rallsorms in which barge amoants of precipitation fell in Arizonat were selected for study and are presented in figne 6. The storm of December $15-16.1908$, is a typical general winter storm in which the moisture was precipitated from warm, moist air forced upward by an invasion of cold Polar Pacife air. On the morning of the 15th, the front of a mass of Polar Pacific air extemded aceros Arizona in a southwest-mortheast direction. The cold front hat become quasi stationary, and one of the minor waves on the front began to intensify and develop into a well-defined extra-tropical cydone. This caused widespread rain by forcing warm, moist air from the south to ascend over the colder and denser air to the north. The cyclone moved lintle during the next 44 hours and by the moming of the 16 th it began to occlude. By evening, colder ar had pushed into Arizona, and the rain ended.

The stom of July 2124 . 1915, broght considerable anoments of ramball to morthern Arizona. The meteorology of this stom is more characteristic of winter conditions, but since this particular combination of air masses owetreed in stmmer and involved air which was convectively unstable. the resulting pattern illustrates both the features of warm front widespend man and convective spotty rain. At the begiming of the storn prion a widespread uass of Polar Canadian air coverref moss of the United States and extended across the Gouthwest into northern Mexion, the from being roughly

[^2]

Figrere fi. Selected rainstorms in the Suuthwest.
paralle] to the international boundary. Above the Polar Canadian air in the Southwest was moist 'ropical Maritime air. During the evening of the 2lst, an extensive mass of Polar Pacific air slowly pushed easward across Washington. Oregon, Nevada, and the Southwest. This air, being less dense than the surface Polar Camadian air and more dense than the Tropical Maritime, tended to wedge them apart. The advance of the Polar Pacific front above the Polar Camadian mass from the west caused an accelerated movement of Tropical Maritime air aloft from the south and resulted in widespread rain. These conditions persisted through the $22 d$, and on the 23al the front of the Polar Pacific air mass had moved only slightly eastward. Not until the $2+t h$ did the storm end. This storm illustrates the generalized conditions illustrated in figure $5, B$.

The stom of Augusi $28,193+$, is typical of summer and illustrates the spottiness of manfall when a cold front fores alott air abready convectively unstable. It was associated with an invasion of a simple cold front. On the morning of the 2 thth, a mass of Polar Pacific air entered the west const States. This cansed an accoleration in the Alow of watm, moist air, probably Tropical Atantie, from the south. By evening the surface winds at Flagstati amd Fhoenix had shifted from east to northwest, indicar ing that the front of the Polar Pacific air had passed these stations. IDuring the morning of the 28 th, the front became quasi stationary in easiern Arizona. Later, it continued eastward and by evening hat passed out of the rearion. Many scattered thunderstorms were occasioned by the passige of this front.

The storm of September $4-\bar{t}$. 1939, over its very large amount of manfall to a tropical eychone which moved up the Calitomia const from the tropical waters of the west const of Nexico. The areage September precipitation for northem Arizona, based on a th-year recorl, is 1.34 unches. The rainfall of September 1989 surpassed all existing records. with 4.87 inches. For the State as a whole, 38 stations received the greatest total September precipitation on record, and new records, exceeding amounts for any previons month of the year. were established at 17 stations. A large proportion of this precipitation oecurred in the storm of Septenber $+\frac{1}{4}$.

On September 3d, there had been an upper-air invasion of Polar Pacifir air overrding the moxified Polar Pacific air already ocenpying the region. On the tht. the upper-air mass migrated across Arizona in the early moming. Gencral mans accompanied by considerable thundersorm activity oremed throughout the central and northern sections of the State. Rainfall amonnts generally averaged over 0.50 inch. Six stations in mothern Arizona received over 1 inch; the largest amome, 3.32 inches. was reported at Truxtom.

Gonemal rams continued on the bth. when moistare was being precipitated from a Joppon! Pacific air mass that had invaded Calitomia and Arizona from the south. The vigor of this incasion whe due to a tropical eyelone off the Pacific const. which originated to the sonthwat of Acapuleo on the sth and was dissipated over the apper part of Lower ('alifornia on the 12 th. In northern Arizona, 14 stations received more than 1 ind of rain; 7 stations. more than 2 biches; and 2 stations, more than 3 inches.

On the 6th. the moist tropisal air contimud to flow over the Southwest and general rains combined with thunderstoras per-
sisted. In northern Arizona, zo stations reported over 1 inch of rain and 6, over 2 inches. On this day a new mass of Polar Pacific air moved into the Pacific Northwest and by the Tth had reached the Southwest. The moist tropical air flowed up the slope of this dense air mass. Rain continued for sereral days but never in such large amounts as had been recorded in the 3 -day period from the 4 th through the 6th.

The tropical cyclone of September $5-12$ was only one of three which moved up the coast of Lower California during the month. The second was particularly violent over and in the vicinity of the mouth of the Gulf of California, and the third did much damage in southern California. It was the most severe tropical storm that has ever been observed in that region ($68, p, 358$).

The severity of the storm allong the coast is indicated by a losk of 45 lises at sea, and : property damaga apmoximating $\$ 2,000,000$, mostly to shipping, Shore structures, power, and communication lises, and ta crops. Unprecedented September rains acoompanied the stoman along the southern ('alifornia coast.

VARIATION IN MONTHLY AND ANNUAL PRECIPITATION

Rainfall totals for a month or a year are aggregates of individual rains. Hence the amount of variation from one year to another in monthly and amnual rainfall is due entirely to variations in the number of occurrences and the size and position of individual storms. Similariy, variations in rainfall from one region to another are to be accounted for in terms of rainstorm size, position, and frequency.

Fort Defiance, in 18:33, furnished a complete year's record of precipitation in northern Arizona. Records have been continuous since 1890 at Natural Bridge, since 1897 at Flngstaff, and, with an interruption of only 4 months, since 1876 at Prescott. Within the period for which rainfall observations have been made at these stations, the range in annual precipitation amounts has been large (fig. 7).

The largest amount of precipitation recorded in a year at any Weather Bureau station in morthern Arizona was 50.17 inches in 1905 at Natural Bridge. This station has been in operation for 50 years, and during that time the annual precipitation in over half of the years was less than 20 inches. The minimum, 12.28 inches, fell in 1900 .
At the other extreme is Leupp, whose greatest precipitation. 9.09 inches in 1915, is less than the maximum recorded at any other station in northern Arizona. At Leupp, the least rainfall received in any year for which there is a record was 2.52 inches in 1938. The average for the 13 years of record is 6.27 inches.
The maximum and minimum anmual rainfali for stations in northern Arizona having a record of at least 10 years is shown in figure 8 .

Throughout Arizona and in western New Mexico there are "rainy" seasons in winter and summer and "dry" seasons in late spring and autumn. This double peak in the distribution of rainfall disappears both to the west and to the east. In Calitornia, the only rainy saason is in winter, summer being drier than either spring or autum. In eastern New Mexico there is no winter rainy period, the precipitation being at a minimum in January and at maximum in July. The transition from California to New Mexico is shown in figure 9.

Despite large variations in annuri precipitation, there is a striking similarity in the pattern of monthly distribution within each of these three rainfall regions.

Figote 8.-Maximum amd minimum ammat rometitation for statons in nothern Arizona having at least 10 pemes of record hrouth 1939 .

Precipitation varies widely from month to month, and even at the rainiest of stations as many as 10 of the 12 months have in one year or another experienced a complete absence of min. For Natural Bridge, the only station in northern Arizona with a continuous
record for 50 years, figure 10 shows the frequency of occurrence of various monthly precipitation amounts. At this station, the likelihood of complete absence of rain is greatest in May and June and least in July and August. The latter two are the only months which have not been rainless during the 50 -year period. On the other hand, frequencies of largest monthly amounts are greatest in December, January, and February. Monthly totals above 3 inches were never experienced during May and June.

Froves an- Propentage of the arevage anmual preciptation (shown in inches)
 Mexico.

The monthly distribution of rainfall at Natural Bridge is representative of that of most of the Southwest, although the climate at Natural Bridge is moist subhumid, whereas in most of the Southwest it is semiarid or arid. At most stations rain may be totally absent in July or August as well as in the other months of the year. The likelihood of rain during May and June is generally less in other parts of Arizona than at Natural Bridge. Large monthly anounts may be experienced even in the arid areas.

Within muk of the somthwe then wat the miniest rear experienced sume whervations have bern made many comiderable seate. At only 4 of the 14 station- in operation in mothern deizona that
 most of these stations in who waseremal inche higher that that of the nest miniest gene ame at bere sation it was even times the ramfall of the driest year (table 2).
 stations in matherth Atrizamat

For sereral yeato pror tw 1906 , the manfall throughot drizoma was far bolow the momal. ame for mos of the sations for whid records exist the minimam minfall oremere or was chome approxi-
 ability froms rear to year is wed iblustrated by the maps showing
 not more than 3 perexh of the ara of the State reveived as math as 20 inches. in ions filly fo perent resered 20 inches or more. Daring these rears, there ware relative? few stabions. bat in 1905 two of them reorded mone than in indie of ranititl. . It wo other
 where in Ari\%oma.

The extreme variations in the rainfall of Arizona for 1903, 1904, and 1905 are presented graphically in figure 12 . In figture $12, A$ the days with rain are shown for all Weather Burean stations in operation in those years. Each dot indicates a report of rain of at least 0.01 inch on a certuin day at a particular station. The number of stations increased considerabiy during the period: 23 , in 1903: 33, in 1904; and 41, in 1905. The stations are arranged alphabetically, just as they appent in the published reports of the Division of Climate and Crop Weather of the Weather Bureau. Station names have been omitted because the parpose of the chart is merely to permit an over-all comparison of the rainfall patterns in the different years.

FIgume 11.-Amuatl precipitation in Arizona, 1904 and 1905.
Dots in vertical alimment indicate the occurence of precipitation on the same day at varions stations. Dots in horizontal aligmment show successive days of rain al the same station. Thotal rainfall at each station is shown by the solid horizontal bars at the right.

The great contrast between the total rainfali in 1905 and in the two earlier years can be seen clearly. Whereas in both 1908 and 1904 only I station received more than 20 inches of precipitation, in 1005 only 9 of the 41 stations received less than that amount. The chararteristic rainy seasons in winter and summer separated by dry periods in spring and antumn are apparent only in 1905. In the other years there was great deficioncy of winter rain. From October 4 to December 5, 1903, no rain was recorded anywhere in Arizonat. At Natural Bridge, only 4.35 inches of rain fell between Octoher 1, 1903, and July 1, 1904, whereas the average raintall for this period is 15.90 inches. In Parker. only 0.04 inch fell between October 1 , 1903, and May 1, 1904. During July and August 1904, rainfali
was above normal throughout Arizona despite the fact that the summer rainy season was late, not commencing until July 19. The autumn months of 1904 were considerably below normal in most of the State; in northem and western Arizona, rain was recorded at only 1 station betweon October 9 and Decmber 2.
Although 1905 was the wettest year on recoed, 5 months of the year-May. June. July. Aurust. and October-were below normal in precipitation at most stations. July and August were not lacking in storm periods. but storm amounts of rainfall were low. The rainfall surplus for the yeur is accounted for by the unusually great number of large storms in Janary, February, March, and November.

Between 190 and the two carlier years there is a much greater contrast in total rainfall and in the number of rainy days than in the nmber of distinct storm periods. There were 45 storm periods in 1905. 31 in 1903. and 36 in 1904. However, the amount of rain falling in individual stoms was much greater in 1905 than in either of the other years. This is brought ont in table 3. where the number of accurrences of 1 inch or more of precipitation in 24 hours is given for the there years. Because the number of stations reporting was different in cach of these years the data have been adjusted to a common base of 100 stations to facilitate comparison.

Table : :--Number of ocremrencers of 1 inch or more of precipitation in 24 houss
 stations

Year		Fiderstars	Narch	A	\ņ̣	, 11110	Jıly	A11qusi	Nog. tern. her	veto. ber	$\begin{aligned} & \text { No. } \\ & \text { wom- } \\ & \text { her } \end{aligned}$	Je- cembr :	
	.		. \cdot.			.		- .			-...	-. .	-
1003	0	26	in	4	4	14	14	74	7 F	0	1	0	311
1304.	1	4	6	n	If	!	10.15	12.1	6	14	11	6	28
1005.	1.42	152	1.56	$: 7$	13	1.4	t-t	34	36	2		6	M1

Despite the tremendons difference in the amome of precipitation in 190.5 and in the two preceding vears. the mare of temperature through the three years was nem homal (fig. 12. P). Whe mean menthly temperatures at Phonix for 190 . 190t, and 1905 and the average monthly tuperatures for the period 1876-1930 are presenter in table 4 . The nean ammal temperature of 100 a is exactly the same as the nomal for the whole period. The mean ammal temperatures of 1903 and $190+$ are respectivery only 0.2^{\wedge} and $0.5^{\circ} \mathrm{F}$. above the momal. The monthly man temperatures of the there years are all elose to the normals.

Period		$\begin{aligned} & \text { Polruve } \\ & \text { ary } \end{aligned}$	Starch	. $1,1 \mathrm{Fl}$ i	3lay	Jutur	diels	$\begin{aligned} & -111- \\ & \text { gusi } \end{aligned}$	$\begin{aligned} & \text { Rell } \\ & \text { torn- } \\ & h_{1}+r \end{aligned}$	$\mathbf{I H P}^{1}$	$\begin{aligned} & \text { Nor } \\ & \text { Yemp } \\ & \text { hor } \end{aligned}$	$\begin{aligned} & \text { Ire- } \\ & \text { erlit- } \\ & \text { hers } \end{aligned}$	Year
1836 tom		${ }^{\text {c }}$ 施,		Citi	\cdots	F. 8.	H2)	\cdots		0	50.	5	$=F$
1903	51.8		:54. 6	iffici 3	74.8	א. 5.1	90. 11	9tr, h	hi, $\overline{5}$	11.1	62 4	Si4	Fic)
1004	48.4	Stis ${ }^{\text {a }}$	fit. $0^{\text {a }}$	(s) 0	7\%.	512. 3	88.1	\%itit	96. 5	7\%.A	62. 2	83	703
1905	6t. 2	F6. 4	fil. ${ }^{\text {a }}$	bis. 1	70. 5	Sils ${ }^{\text {if }}$	89. 1	M1, 0	S. 2	71.6	is.*	\%ito	6.3. 5

Figune 12.- - , Dally precipitation in Arizona, 1903, 1904, and $1905 ; B$, daily maximum, minimum, and mean temperatures at Phoenix, Ariz., 1903. 1904, and 1905. In A the stations are arranged alphabetically by divisions of the State-northern, southern, and western -as they appear in the Climatological Summaries of the Weather Bureau.

In figure 12, B, the daily temperatures for 1903. 1904. and 1905 at Phoenix are ploted for comparison with the daily precipitation in Arizona for these years. It is seen that the sequence of air masses as revealed by the daly march of temperature is in no year particufarly unusual. Howerer, on analyzing the daily weather maps for the three years it was found that there was a greater tenclency for the cold fronts to stall over Arizoma in 1906 than in either of the earlier years. Polar Canadian air-mass invasions were also more frequent in 1905.
In 1903, there were approximately 60 invaurns of Pobar Pacific air masses, of which 6 became quasi stationary over Arizona. and \ddagger invasions of Polar Canadian air. 1 of which became quasi stationary. In 1904, approximately 79 Polar Pacific air masses moved over. with 2 stalling for a time. Of 4 Polar Camalian air masses crossing Arizona. only 1 stalled. In 1005. approximately 83 imasions of Polar Pacific air massey occured, witl 23 quasi stationary, and there were 14 invasions of Polar Canadian arr. With 4 quasi stationame. Conditions taworing wam-front stoms were more manerons in 190., than in either of the earlier years. (therwise there was little difference. Certainly. no one studying only the meterological conditions of the three years coukd have determined that one of these years: was the wettest on record and the others practically the driest."
The influence of indivilual large storms on monthly and anmal rainfant totah. was well illnstrated in tp39. Despite several large storms in September, one of which was dicussed on pp. 13-14. most of Arizona was deficient in precipitation for the year. In tigure 13. A. the days with rain are shown for all stations in operation in Arizona in 1939 . Is in higure 10 . each lot indirates a report of ram of at leat 0.01 iuch on a certain day at a partiondar station. Widespread rainfall is most matked in the winter. early spring and late fall months.

In figure 1:\%. P. are shown the daily maximm, minioum. and mean temperature at Flagetalf and Satural Brobqe. Ariz. in 1939 and the normal of the means. The fluctations of the line representing the daily mean result from the temperature changes bronght about by the influx of cond and warm air mases. The relation of large changes of temperature to incilence of precipitation is clearly shown. which demonstrates the control exercised by air-mase interarfions on precipitation.

Daty precipitation amounts at Flagsaff and at Natual Bridge
 ing the eatly month of the year.
Flagstat experiencel below-nomal rainfall in every month except Septenber, ame depite large nomonts in that month. the deficiency for the year was gat inches. In the month prior to September. only 6.66 inches had fallen, whereas the nomal tor the perion wan 15.t. inches. At Xatural Brilge where the notmal is than inches. prior to Angrat 1 there had bern only anti indhe of precipitation.

[^3]
EXCESSINE PRECIPITATION IN THE SOUTHWEST

Both general and iocal storms have characteristic patterns of structure and migration, both have definite limits of areal distribution, and both have centers of maximmontensity. If stations are evenly spaced throughout a storm area, it is obvious that low intensities and small amounts of precipitation will be recorded more frequently than high intensities and large amomens since the periphery of a stom is larger than its center.

Similarly. a single station having a reasonably long record of rainfall will report many occurrences of precipitation of small :umount and low intensity, and few of harge amount and high intensity. Records of rery intense falls and large amomts will be few. The location of individual rainstorms in a region is more or less random. Thus. since a storm center is comparatively small it is more probable that the station will be in some part of the periphery of the storm rather than in its center. Storms vary in size, also and this variation helps to explain the frequency distribution of recorded amounts of precipitation at an individual station (10ri, pp. 480-4,41).

Santa Fe is the only station in the Southwest haring a continuous rainfall record extending back to 1850 . The frequency of various 24 -hour amounts of precipitation at this station for the 90 -year period 1850-1939 is given in table 5 . The overwhelming preponderance of precipitation amounts under 0.20 inch does not mean that rainstorms are usually limited to those amounts in the Southerest, but rather that the more or less random distribution of storms results in the station at Nanta Fe being much more often marginal than central with respect to the storm area.

The 90 largest 24 -hour amounts of precipitation which have been recorled in Santa Fe during the 90 years from 1849 to 1938 are plotted in figure 14. The distribution of these storms in time is ex-

Fraure 13.-A, Daily precipitation in Arizona in 1939; B, daily maximum, minimum, and mean temperatures at Flagstaff and Natural Bridge; C, daily precipitation at Fiagstaff and Natural Bridge. In A the stations are arrauged alphabetically by divisions of the Stafe as they appear in Climatological Data, from which the station names can be obtained. Each dot in A indicates a report of at least 0.01 inch of rein.

tremely irregular. Only 3 storms occurred in the 9 years 1930-1938; on the other hand. 17 occurred in the 4 years 18.3-1856. During the 7 -year perioci. 1890-1902. 1 storm occurred each year. Of the 90 maximum 24 -hour storms, 60 occurred during July, August, and September. Of the 90 maximum 48 -hour rainfall amounts. 53 were recorded during these months. The comparative data are shown in table 6. It mist be remembered that Santa Fe is in the part of the Southwest which has a winter minimum of precipitation. In western New Mexico and Arizonal, where there are 2 rainy seasons, large stoms are to be expected in winter as well as in sammer.

There is no reason to expoct that vears of mumerous excessive storms will necessarily be followed by other years of heavy rains. The Santa Fe record indicates that large storms may be concentrated in one perioxd. as during 1 Ni53-56. and that a single large storm may be isolated. as was the largest storm of record, which took place in Febraary 1801. Indeed. as the storm secquence in figure 14 shows, the - pacing of large rainfall amounts has been highly irregular.

The ammal minfall at Santa Fe for the so-year period 1850-1939 is presented in figure 15 to permit at comparison with the distribution of the 90 greatest storms shown in figare 14 .

Figure 15-Aumual precipitation, Santa Fe, N. Mex., 18:0-1989.
The coincidence of the various conditions necessary for the formation of rain does not occur with any regularity. Not only is moisture in the air neressary but there must also be present some mechanism. frontal activity, convection, orographic lifting, or a conbinution of the three, for releasing the moisture. It is not umusual for heavy thunderstorms to occur in summer at beights of 2.000 to 5.000 feet aloft withont wetting the ground. Sometimes the only result of a heavy thunderstom will be the falling of a few halstones ($19, p$. 111). Tropical air, unless moist, will yield no precipitation when
uplifted by cold fronts passing across the Southwest. On the occasions when all the conditions which make for rains are present, however, excessive amounts are possible even in the arid parts of the region, as the storm of September 4-7. 1939. demonstrates (fig. 6).
Fort Mohave ${ }^{5}$ is a desert station on the Colorado River in western Arizona with an average annual rainfall of 5.09 inches. In 1889. the total rainfall of the year was 21.38 ituches. 11.17 inches of which came during the month of December. In this month there were 8 days on which rain was recorded; the smatlest daily amount being 0.62 inch. On 5 days the precipitation exceeded 1 inch, and rainfall umounts recorded in 4 storm periods were 2.90 inches, $2.70,2.30$, and 1.90 inches. In the 521 scattered montlis of the record at Fort Mohare, monthly precipitation totals exceeded 1.00 inch only 99 times.

Monthly ratinfall amounts exceeding 11.00 inches are extremely few in the Southwest, yet the fact that such an anome was recorded in a desert station indicates that the oerarrence of that much rainfall in a month is not impossible anywhere. An unofficial excessive fall of precipitation was reported at Fort Mollare for Augnst 1898 ing Henry Schlegel (9z, p.3), the cooperatise Wather Bureat obsever. as follows:

On the 281 h , we hat the biggest rain in 10 or $1, \mathrm{i}$ years, and to my regret.

 wash tub set ont on the mesa, clear of everything, and the water after the rain. mensured $\$$ inches.

Records of excessive precipitation in the Southwest are extremely few. There are only thre Weather Burean statione with long records from automatic rain gages, and only with the past 6 years have other agencies installed self-recording gages in any number in the region. The records from cooperative Weather Burean stations: do not oxdinarily give the time of begiming and ending of storms. Frequently, too, the records of lares stoms have been lost. sither through damage to the gage, as at Fort Mohave on Angust 2 S . 189 s . or through failure to make an observation over a period of several days.
Maddock and Leopold ${ }^{8}$ have tabulated 40 storms of 2 inches or more in Arizona and New Mexico for which the times of begimining and ending have been recorded, and the stom duration ean consequently be determined. In figure 16, these 40 stoms have been plotted and the envelope curve drawn. Thirty-five of the stoms did not exceed 4 hours in duration, and, as wouk be expected, nearly all of them occaured in July, August, or September. More than I wothirds of the storms were reported from the astem margin of the Southwest, where summer rainfall is proportionately greater than in the Southwest proper. Conseduently, the enveloping curve reprosents precipitation intensities somewhat harger than those typically experienced in the Southwest.
Figure 17 reproduces the mass diagrams of precipitation of six large storms recorded during the simmer months. Except for Lats

[^4]

Fioure 18.-Total precipitation and duration of 40 large storms in Arizona, Tex:ls, and New Mexico.

Fagure 17,-Precipitation in six hage storms in Arizonia and New Mexico.

Cruces, the stations are all in Arizont, and the curves may be taken as representative of extremes of precipitation intensity for short periods in the Southwest.

bainstomm frequencies in the sorthwest ${ }^{9}$

Reliable estimates of the probable frequency of large stoms of sperified precipitation amounts are ditficutt to bake umder the most favorable conditions (34. 3\%, 7\%r), but in the Southwest, where rainfall records ate fragmentary amd the country is lacking in topographic whifomity: the task is dombly dificult. However despite diversity of surface features and consmaen rathion in average rainfall from place to phare and despite lack of meterological homogeneity, considerable useful information on average trequencies of precipitation amounts in the sonthwest can be ditaned by use of the familiar station-year method of analysis ((\%) .

In northern Arizona. Here are approximately \%s Weather Bureau stations with precipitation records raming in length from only a few years to nearly 70 years. In all, 1.26 station-years of record are available for study. In these records there were 1.269 reports of 24 -how rains exceeding 1.42 inches. This amount then represents the precipitation whid might be expected at each station once every yem. There were 634 reports of 2 -home wains of 1.73 inches or over. which amome cond be expected at cach station once in 2 years. Other frequencios for northern Arizona are given in the following tabulation:

The lagest recorded ethour precipiation in northem Arizona in the perion studied is 6.46 inches.

Fowever, the frequmy of lage stoms aries groaty from phace to place. In morthern Arizom, the waions range from 350 feet to more than 8,00 feed above sta level, and the average mman precipitation ranges from less than os inches to more than 30 inches. Large storm amonts of manfall incrense in frequency with increase in average annal manfall in aras meteorologically similar.

The frequency of large storms also varies with variation in meteorological conditions. Both Tuba (ity and larker are arid, their avetage annuat precipitation being 6.78 and 0.32 inches. respectively. Yet of all 3 thour stoms of 0.50 inch or over, at Parker,

[^5]33.1 percent were 1 inch or over, and at Tuba City, only 12.4 percent. At Parker, two storms have exceeded 3 inches. but at Tuba City no recorded storm has exceded 2 inches. Parker is only 350 feet above sea level and, like Fort Mohave, is in the region where convective stomas reach their maximam intensity. Tuba City, on the other hand, is on the platean. t.5te teet above sea level, and although severe thunderstoms are experienced (40) they do not equal those at lower elevations. These two stations are not meteorologically homogeneous.

Since the most intense mans are unaly assoriated with thanderstorm activity a negative correlation hetween storm intensity and reciomal elevation is to be expected. The total depth of moisture in the atmosphere ores a station at a low eleration is much preater than that over a station at a high elevation. Consequently equally intense convective activity will result in grater stom intensithes at the station at low elevation than at the other. No similar eonton is exeraised by elevation over the manfall intensities mom anomats resulting from warm-front storms.

Cedar (xlake amd st. Wichachs have avemare amonal precipitation of 14.10 inches and 13.15 inches, repectively. Jooth stations are semiarid. ('edar diate is in a ralley in the monatainous central part of the State. f. (6) teet above sea level. St. Michaels is nearly 7.000 feet above sea leve! in the platean country in the mortheastern part of the state. ()f all 2 -hour stomas of 0,50 inch or over, at Cedar (dade, 33.3 percent wete 1 ind or over, and at St. Michacls. only 19.7 percent. Cediat (hade and St. Minhats are not meteorological homogeneots.

Local surface variations tend to catse differences in storm intensity. Even within it small watershet, ratations in the proportion of the total rainfall which comes at high rates may be comsiderable. fistremes of meteorolegrial comblions at the stafions in worthem Arizona are illustrated by fhagstati and fort Dohave. Althotigh the average ammal prectitamion at Flagstaf is 20.0 inches, only 24.0 percent of the 24 -hour ratins of 0.30 inch or orer exeded 1 inch. On the other hambat Fort Mohave, with an average annat precipitation of only 5.09 indhes. 4.1 pereent were in exeess of 1 ineh. The average annabl number of miny days at For Mohate is on! 15, in contrust to 44 at Flagstaff, bai when precipiation occurs, barge whomats ate more likely to fad at Fort Mohame than at Flagstatt.

It is probable that most of tho stations in monthern Arizonar he somewhore botwern the moteorological extremes of Fort Mohave and Fiatstatif, amd mondot the transition in meteomorical comditions from phate to place is more or less gradual. To illust ate the genematiation that rainstom intensity-frequencies increase as the
 face ronfiguration. two aromps of stations have been selected. the average $y+h o u r$ storm freguencies for which are given in table i. The reonds are wot long. even the rombined records for simitar stations, and the relinbility of the frequeney deterninations is bow (//f $)$. In group A, comprising Crown King-limal Ranch. (edar Glacle. Winslow-Holbrook, and Tubn (ity, the average anmulat precipitation ranges from 25.59 inches to $6 . \overline{5}$ inches. In group B .
consisting of Natural Bridge. Jerome, and Keams Canyon-Jeddito, ${ }^{10}$ the average ammal precipitation ramges from 24.24 inches to 11.87 inches. In each group of stations the variation in storm frequencies is related directly to variation in average ammal precipitation. The fact that storm frequencies in one group of stations are not comparable to those of the other indicates yariations in meteorological conditions corresponding to varintions in situation of the stations, such as was illustrated by Tuba City and Parker and by Cerlar Glade and St. Michacls in the preceding paagraphs.
 in Arizemt

Grevap and station	A veara					
	$\begin{gathered} \text { Ammun } \\ \text { brecipita } \\ \text { tion } \end{gathered}$	1 gent	2 yenes	5 Srars	10 y (4ts	20) genrs
-	$\cdots \cdot$	-.	---.--...
Grohti A:						
Crown King-Plans	Snches	Inches	Inches	frechers	fuches	huches
Ranch	25.3818	2.07	2.51	3.34	4. 15	5. 18
Cerine finde	14.10	1.23	1. 38	2.11	2.61	3. 22
Winslow- Ealbruok	8.52 !	.88	1. 10	1.15	1.79	2.39
'fioba Cily.	6.78:	. 72	. 80	i. IS	1.15	1. 79
Group B:						
Naturn! Bridqe	24.21	2. 05	2.38	2. 21	3.44	3. 46
Jeronk $\quad-$	19.20	1. 79	1.67	2.12	2.88	3. 30
Keams Canyon-jecklito	11.87	1.12	1.31	1. (x)	1.8'	2.18

In figure 18 stom frequencies for these two groups of stations are ploted on a logarithmic scale, with the arerage frefuencies in northern Arizona for comparison. In each group of siations, straight limes fit the data and all lines have the same slope. The paralletism of the lines is interpreted to indicate meteomogical similitule. That the lines which fit the data of one eroug of stations are not parallel to those which fit the data of the other group shows a hack of similarity between groups.

Because of the propertionalify existing betwen averace amanal ramfall and storm frequency in these stations it was possible to prepare simple nomograms giving 24 -hour storm amonats in terms of anmal precipitation totals. Those nomograms are reproluced in figure $19, \alpha$ for moteorological contitions prevailing at the stations headed by Crown King-Pinal Rand, and in 19.B for moteorological conditions at the other group of stations.

Frequencies of the hrger stom amonts vary tremendonsly from phace to place with variation in meteorologieal emondions and with ammal precipitation. Theler one set of meteorological eonditions the 2 -hour precipitation to be experted at a station only once in 100 years ranges from 3.85 inches to 9.47 inches as ammal precipitation fincreases from 10 inches to 30 inches. Ender mother set of meteorological conditions for the same range of annal precipitation the range for the 100 -year storm is from 2.70 inches to 6.85 inches.

Meterological conditions other than those represented in the nomograms in figure 19 are to be found in northern Arizona. Fre-

[^6]quencies at Parker and Fort Mohave are higher than would be determined from figure 19, A, and frequencies at Williams and Flagstaff are lower than would be indicated in figure 19, B. Meteorological conditions and conseruently the rainstorm amounts to be

Figure 18.- Frequency of 24 -hour precipitalion amounts at splected stations in Arizomat A. gronp A; B, кroup B.
expected with given frequencr will vary from one side of a valley to another and at diffurent levels on a slope.

Thus, it is obvious that the nomegrans in figure 19 camot be used as the basis for design of erosion-control or flood-control structures. Before entirely reliable frequency data can be obtained for a single watershed, a detailed survey of its meteorolorgical conditions must be made. The nonegrams indirate that light storms are relatively
numerous and heavy storms few, but that occasional storms of very high intensity may be experienced.
The probability of exceptionally large stoms in Arizona, as would be expected, is greatest in why or August and least in May. Frequencies of 24 -hour precipitation amounts for the 12 months at Keams Canyon (table 8), although based on a short record, appear to be representative of the month-to-month changes in the probability of heavy rainfall in the Southwest.

Figure 19.-Nomograms expressing the relationship between arerage ammat rainfill and 24 -hone rainfall for two metomological conditions in northera Arizona: A, Data from (rown King--Winal hath h, Cedmr Gitule, WinslowHolbrook, and Tuba Gity; 13 , dita from Satum bridge, Jorome, and Keams Canyon-Jedato.

DROLGHT FREQLENCIES IN THE SOLTHWEST

In most of the Southwest, less than 1 diy in 6 is rainy and in the arid parts of the region the many days may not average more than 1 in 30. At Fort Mohave the average ammal number of days with rain is 15 . There is considerable monthly as well as anmul variation in the number of days on which precipitation occurs. In figure 20 , the average number of days of rain in each month is shown for Natural Bridge. Keams Canyon, and Leupp; and also the actual number of days with rain at Natual Bridge in eath month daring 1903, 1004, and 1905. By comparing the graphs of Natural Bridge
in this figure with figures 9,10 , and 13 , it can be seen that a rough parallelism exists between the number of storms and the monthly and annual amounts of precipitation.

Tabre 8.-Frequcucl of 24-hour mectipitation amountx, heams C'anpon- Jedefito, Ariz.

Month	2-hthur amounts of raiufall aecurrint once in-								
	${ }_{\text {y }}^{30}$	$\stackrel{25}{25}$	y ${ }^{20}$	$\underset{\substack{15 \\ \text { ypars }}}{\text { nef }}$	$\underset{\text { years }}{100}$	$\underset{\text { years }}{6}$	$\underset{\text { years }}{3}$	$\underset{\underset{y}{2}}{\text { ycars }}$	${ }_{\text {y }} \mathrm{l}$ ars
Januar	$\xrightarrow{\text { Inches }}$ 1. 30	methes I. 20	${ }_{\text {fuches }}^{\text {I. }}$	trehes	${ }_{\text {fnches }} 0.8$	Inches	Inches	Fuches	Prchex
Februar	1.12	1.03	1.86	${ }^{1} .80$	0.8			0.40	
March.	1.292	1.14	1.108	. 05	8	64	${ }_{5}^{53}$	-46	36
May.			. 81	\%	${ }_{5}$. 3		${ }_{25}^{46}$	1
June	1. 29	1.07	. ${ }^{4}$	- 9	.62	-42	\% 31	24	Ifi
Haly.ist	1.95	1.9610	1.88	1.7)	1.65	1.33	1. 18	1.08	明
Soptemixer	1.45	1.35	$1 \cdot 2$	- 1.05	. 86	.9n		:38	${ }_{4}^{44}$
October.	1.301	1. 2 ?	1.14	1.04	\%	\% 3	[i2	. 54	1.
December.	I. 17.8	1.719	1.96\%	1.32	${ }^{-6.108}$	- 7	${ }_{6} 39$. 38	, 3

 Natural Britige, Kums Canyon, and Lampl are respectively 38, 12, and 9.

Since there is no regularity in the occurence of rainfall there can be none in the intervening periods of drought. Periods lacking in rainfall are brought about by specific meteorological conditions just as are storm periods and are equally important elements of the climate of the Srothwest. Absence of sharp frontal passages and of vigorous invasions of moist unstable air resulis in drought. Hence. droughts, like large stoms, do not occur with any regularity but
are associated with nomhythmic octurences of air-mass invasions. Despite the great irregularity in the occurrence and length of drouglat periods, much useful information can be secured through analysis of mean drought frequencies.
There is a minimum amount of precipitation which may be said to break a drought periok. This varies from one region to another and from season to season. Thus, any miform definition of drought is necessarily more or less arbitrary. (on the hasis of experimentab work. Shere (24. p, 134) determined that moder desert conditions rains of less than 0.1 inch are without influence on soil moisture at a deptl of 15 cm . except under special conditions. Other workers have observed that small amounts of precipitation are of slight value to crops unless they follow larger amomits.

On the other hand, as little as 0.10 inch in 46 hours may represent meteorologic conditions which would terminate a drought on the westera grazing ranges. Cloudiness and high atmospheric hutmidity may cut daytime patporation fosses and bring about comrensation and direct absorption at night so that the effectiveness of the actual ramfall is greater than it would be otherwise. No quantitive measurements of condensation or absorpion are arailable. and it is therefore impossible to say what is the minmum anomb of rainfall wheh cond be ntilized by the range grasses. In the analysis which follows. dronght perionis are considered to be terminated by rains totaling 0.10 inel in th hours.

Drought freguencies for the fom senvens and the year at four Arizona stations are given in ligue 21. At Ymad drought periods of 120 deys duration may be cxpected every yent, and once in a $10-$ year period a drought miny exceed we days. Every one of the seatsons may be entirely mailes. Octasiomally a drought perion may extend through two conseruive semsons and sometimes through three. Spring drought may extend through the entire 00 days 2 years ouk of 4 ; autumn drought, \geq vears out of 5 ; summer dronght, 2 years out of $\overline{7}$; and winter dronght. 2 vears out of 9 . At the other stations dronghts are shorter. At Ferome, as at Yuma, drought periods are longer in spring and autum than in summer or winter. In Phoomix and Tuba City. however, the autum droughts octuring once in 10 years are shorter than those of summor or wimer.
In figure 22, the fength of the dronght period to be expected once in 5 years in each of the forr satsons is shown for the Southwest. The period saries in the different parts of the region and with the season. The minimm drought perion shown, less than 30 days. appears in the montainous parts of Now Mexico and Colomaso in all but the watumn sexson. In seme part of the region droughts of 90 days duration are experjenced in erery samon once in 5 years on the areage. The shifting seasmal droght pattern is the obverse of the patiem of rainfall distribution as may be seen by comparing figure 22 with figure 11. Exdoding the arid areas. summer (broughts are longest to the west and winter droughts are longest to the east of the region. Summer droughts reach mons in western Arizona, in virtanly all of Califorma, most of Nevada, and parts of Oregon, Washingtom. Idabs, and fiah. Winter droughts reach go days in western Kansas and entern Colorado and exeed 70 days in the
entire southern Great Plains. Longer droughts are experienced in the Southwest 1 year in 10, on the average, but the seasonal variations in pattern of distribution are similar to those of the 5 -year frequency.
Throughout most of the Southwest, drought periods are shorter in summer than in any other season. In most of the region, spring is the season of maximum length of drought and autumn stands

 Fhonenix, ard 'Tuba (ily, Ari\%.
second. In the eastern part of the areit, however, winter is the season of longest drought periods, since the winter invasions of Polar Pacific air, bringing precipitation to the Southwest, fall off in frequency and become progressively drier from west to east. In the extreme western part of the region summer droughts are the longest. This is also related to the incidence of air masses, in this instance the relative infrequency of invasion of moist unstable Tropical Atlantic air into the westem part of the region.

The occurrence of a prolonged drought does not preclude the possibility of having annual or monthly rainfall totals which are equai to or above normal. In 1909, at Keams Canyon, only 0.15 inch of rain fell between March 31 and July 2. On Juiy 3, 1.01 inches fell. No rain fell between September 13 and November 12, but on November 13 and 14 there was a storm which brought a total of 0.60 inch of precipitation. The total rainfall for 1909 was above the normal. An abnormally wet month or year may reffect mainly the occurrence of a few large storms, and low totals do not necessarily indicate that droughts have been frequent or long.

There is every reason to expect at long intervals in the Southwest a drought extending through most of a year. Orcasionally such droughts may follow each other in successive yenrs. Such dry periods are normal features of the climate of the Southwest.

The Camatic Pattern in the Socthweer

A DEFINITION OF CLIMATE

Climate is an integration of the climatic or meteorological elements or factors which combine within a region to give it its character and individuality. The catalog of the elements is familiar, consisting of temperature, wind, precipitation. atmospheric humidity, evaporation, sumshine. cloudiness, and several others. These elements are extremely diverse, temperature being merely a form of molecular energy, wind a form of momentum, and precipitation a material which collects on the land in varied forms (rain, snow, hail), in various amounts, and at varying rates. Drought is an absence of precipitation. and evaporation a rate of loss of precipitation. All are complexly interclated: each is dependent on the others, and all are expressions of the operation of meteorological forces world wide in their scope.

Ingenions and accumte instruments bave been developed for measuring and recording the elements of wather and climate. There are, howerer, no instruments for measuring the chmatic complex. For the characterization of climate it is mecessary to select measured values of the individual elements in an effort to arrive at those which are corvelated with the signifieant physical and biological features of the different parts of the earth. To obtain this end, attention has at different times been focused on different sets of elements.

A climatic index that has been proved to be highly significant is the relation of precipitation to evaporation, but it is one that is extremely dificult to determine. Present mensures of both precipitation and evaporation are grossly inadequate. The analysis of precipitation in eadier pages has shown that total precipitation expressed numerically has little significance since atl precipitation is included, regardless of the conditions ander which it falls. The rainfall of a crop season is a composite made up of a series of rains, each possessing an individual pattern of distribution. The rains may be gentle showers or downpours, long or short in duration. Periods without rain may last for a few days or for several months. The measurements of exapomation are even less satisfactory than those of precipitation, and it is only within the past 2 years that

Consecutive Days

Consecutive Days

in 5 years in each of the four seasons in the Sonthwest.
direct means of measuring the actual amount of water lost from a land surface through evaporation and transpiration has been found.

It was the inability to measure precipitation effectiveness directly that led to the development of the many empirical formulas for expressing the effectiveness of precipitation. All are only approximations. In the present study the precipitation effectiveness ($\mathbf{P}-\mathbf{E}$) index from the Thomthwate classification of climates (105, 106) is used. It is determined by evaluating the monthly totals of precipitation in terms of the temperature of the month in which it falls.: The terms "arid," "semiarid," "dry subhumid," "moist subhumid," "humid." and "superhumid" refer to moisture provinces delimited by means of precipitation-effectiveness indices. The term "superhumid" has been substituted for the less specific term "wet." which was originally employed.

THE NORMAL CLIMATIC PADMERN

The climates of the Southwestern States are prevailingly arid and semiarid. Areas of extreme aridity are relatively linited and cover only small parts of southern California, Nevada, Arizona. New Mexico, and Utah. Semiarid conditions cover most of the remainder of these States and extend eastward through the Great Plains and northward into Canada (88, 10.5). The climate is more humid where mountains and high mesas and plateaus rise as islands above the general level. Some of these higher elevations exceed 12,000 feet and are superhumid.

The climatic pattern in the Southwestem States can best be understood by considering it with reference to the general pattern of climates over the earth. The deserts of North America, comprising portions of northern Mexico, southern Califormia, Arizona, New Mexico, Nevada, and Ttah, as well as small ateas in several other Western States, are a shrunken and foreshortened counterpart of the great arid regions of Eurasia and North Africa, which include the Sahara. the Arabian deserts. the deserts of Iran and Turkestan. the Thar of India. and the Gobi Desert of Mongolia. Continental west coasts between 20° and 30° north of the Eduator are arid. Similaty tocated arid regions in the Southern Hemisphere include the Atacama Desert of South America, the Kalahari Desert of Soath A frica, and the Great Desert of Australia.

The other extreme, the superhumid climate, appears on equatorial coasts and islands and on continental west cousts between 40° and 60^{-} both north and south of the Equator. The Pacific coast of North America from nortiem California to Alaska is superhumid. In Europe this climate is found in the northwest corner of Spain and the western coastal parts of Ireland, Scotland, and Norway.

Between the arid and superhumid regions are belts of semiarid. subhumid, and humid climates of greater or less width. The subhumich climate is subdivided into moist subhumid and dry subhumid. The generalized normal distribution of these six principal climatic types in the United States is shown in figure $23(10 \%, 10 \%, J / \delta)$.

varlations in the climatic pattern

Much emplasis has been placed on the variability of the elements that combine to make climate. Precipitation and temperature have

Fyavre 23.-Generalized normal distribution of the principal climatic types in the United States.
been shown to vary greatly from diy to day, from one month to another, and from one year to another as a result of variations in airmass interactions (pp. 5-11). Wind velocity, cloudiness, and evaporation are likewise known to vary with air masses (60). Since climate is an integration of these many complexly varying elements, it is obvious that climate must also vary from one year to another. Variation may be thought of as an element of climate, equal in rank with precipitation, temperature, or any of the others.

The extent of the climatic variations in the Southwest is illustrated by maps of two extreme years. 190) and 1934 (fig. 24), both of which show distributions in marked contrast to the normal pattern shown in figure 23. In 1905. both arid and semiarid climates, ${ }^{12}$ which ordinarily occupy most of these States. were virtually absent. A large area extending from the vicinity of Williams, Ariz., sontheastward into New Mexico was humid. Other smaller humid areas appenred in Northem Arizona and in New Mexico. In 1934, nearly two-thirds of New Mexico and almost as large a part of Arizona were arid, and practically the entire remander of the two States was semiarid. Only small, high areas had dry snblumid climate.

Table 9 shows the range of variations in climate from one year to another for a number of stations in Arizona. No Arizona station has experienced a superhumid year since weather observations have been made, although several stations in New Mexico have. A few stations have experienced humid years, but only Fort Valley and a few other mountain stations have humid climates. At Fort Valley, 16 out of 24 years were humid. 6 were moist subhumid. and the other 2 were dry subhumid. At Williams, althongh the climate is moist subhumid. only 7 out of 32 years were moist subhumid, 8 were dry subhumid. 15 were humid. and 2 were seminrid. A few stations experienced a range in climatic years from humid to arid. Jerome, for instance a dry subhumid station, experienced 1 humid year and 1 arid year in the 37 forwhich there is a record.

It may be that frequency distributions for a limited number of years will tail to reveal the true mature of the climate. For example, the freguency distribution for Miami and Oracle, Ariz.. are very similar and are close to the dry subhumid-semiarid boundary. Miami being dry subhamid and Oracle semiarid. It is quite possible that as data for additional years become a wailable Mami will prove to be semaricl or Oracle will be dry subhumid. Of course. this wond not constitute a change in climate but rather merely an affustment to bring abow greater accuacy in the designation of the existing climate.

Both Prescolt and Jerome are dry subhumid, yet there is a distinet difference in the frequancy distributions at the two phaces. In the 37 years of recorl, 18 years were humid or moist subhumid at. Prescott. whereas at Jorome there were only 4 such years. At Jerome, 14 years were semiarid or arid and at Preserott only 6 . It it cond be assumed that these frequency distributions conrectly deseribe the climates of the two phaces then the climate of Jerome would change if it were

[^7]

Semiarid Ory Subhumid Moist Subhumid Humid
 :and 1 ma .
to become like that of Prescott. The climatic change would involve an increased frequency of humid and moist subhumid years and a decreased frequency of semiarid and arid years.

There is a slight difference in the ammal precipitation at the two stations. The average through 1930 at Prescott is 18.53 inches and at Jerome 19.20 inches. The tendency for greater frequency of semiarid and arid years at the station with greater rainfall is a result of higher temperatures and greater consequent evaporation losses.

Tabre 9.-Frequency distribution of cimatic years for the period of record at 33 stations in Arizona. 1900-1939

Station	Climate for the berind of record	$\begin{aligned} & \text { Years } \\ & \text { of } \begin{array}{l} \text { of } \end{array} \end{aligned}$	Number of decurrences ${ }^{2}$ of a-				
			Humid yенг	\square	Dry Hbinmid year	$\underset{\text { Srar }}{\text { Somiarid }}$	Arid ycar
Fort Valley.	Humid	24					
Whlams -.-	Moist subhumad	32	15	7	8	0	0
Flagstaff	-.. 10.	39	13	14	10	$\stackrel{2}{2}$	0
Natural 1ridge		2 H	7	7	7		0
Prescott.	Dry mbluanid...	31	4	it	13	${ }_{8}$	0
Prindale......	- ...do... ${ }^{\text {do }}$ -	312	3	${ }_{7}^{8}$	13	7	0
Jerome..-	. do.	3	1	3	${ }_{19}^{19}$	13	
Fort Apache.	- do.	39	1	3	13	15	
Mrami - . ${ }^{\text {Ma }}$	${ }_{\text {do }}$	20	0	3	11	12	8
Oracie Fort Deflanee	${ }_{\text {Seniarld }}^{\text {do }}$	$\stackrel{20}{14}$	1	${ }^{3}$	10	15	
Fort Eurehuca.	\cdots io.	1	1	0	\%	4	
Snowtake.	. 40	\checkmark	0	1	3	12	
Bisbee. .	dio	3	0	${ }_{0}$	3	2	3
Glabe.	do.	34	0	0	12	17	
St. Michaels -	do	15	0	0		10	
Kebus Canyon	10	10	0	0	3	13	
Tombstone.	\cdots - 10	35	0	0	3	2	9
Holbrook--	- . 40	33	0	0	1	17	15
Clifton.	${ }^{10}$ do.	34 31 31	0	0	$\stackrel{2}{2}$	18	10
Fort Mohave..	Arst.	3	6	0	1	$\begin{array}{r}17 \\ 4 \\ \hline\end{array}$	14
Berison.	- do	39	0	0	1	17	21
Casa Grandc.-	do -	䍖	0	0	i	4	21
Chin Lee Tuba Cliy	do . ${ }_{\text {do }}$	is	0	0	0	7	11
Parker	do. ${ }^{\text {do......... }}$	$\stackrel{3}{4}$	0	0	0	8	20
Maricopa.	- do.	318	0	8 0	0	2	32
Phoenix.	. 0^{0}	35	0	0	0	4	34
Yums	... do.	$3{ }^{\text {a }}$	$\stackrel{0}{0}$	0	0	3 1	35 37
Lects Fery	... \%o...........	14	0	0	0	0	-37
Mohawe	-do.	(3)	0	0	0	0	30

[^8]There is, also, a very significent difference in storm frequency ${ }^{12}$ (table 10). A stom of 400 inches or unre in 24 hours maty be expected once in 13 yeirs on the average at Prescott, but only once in 50 years at Jerome; whereas a 1.50 -inch storm will occur equally often at both phates. It would require a chaiderable increase in anntal rainfall or a change in meteorological conditions for large storms at Jerome to become as frequent ats af Prescott.
An increase in average anntal precipitation might result from an increase in the frequency of rainstomen, an increase in size of imilvidual storms, or an increase in the proportion of harge storms to small ones. An increase in the number of storms would requite a

[^9]speeding up of the general circulation of the atmosphere such that more frequent interchanges of air masses occurred. An increase it the size of storms would require increases in the moisture content of air masses and in the vigor of their interaction. A change in the proportion of intense storms could be brought about by a change in the local surface configuration. Since none of these changes can take place except very slowly, it appears that what have sometimes been called climatic changes in the Southwest are in reality merely the anmat, more or less random, variations chazacteristic of all climates.

Tame 10-Frequench of 24 -how precipitation amounts at fregrott and Jorome, Ariz.

This distinction is extremely important becouse climatic change involves a significant change in the frequency distribution of climatic years, wheseas variation from one year to another within the limits set by the frequency distribution must be accepted as an attribute of every climate. To prove the existence of climatic change it is necessary to show that differences in frequency distributions derived from two parts of the same record cond not result solely from sampling error. Thess this can be done climatic clange in the Southwest in the last 2,000 years cammot be established.

Climathe Fideyuathons in the Past

In the Southwest there have been, without doubr, wide fluctuations in climate during the past several centuries. It is known that the climate of the Southwest, as everywhere in the Utited States, has changed since the Pleistucene, but the change hats been very gradual, occopying at least 25,000 years, and has not been very great in this region.

In the absence of tainfall reands of suffecient length many indirect lines of evidence have been examined to determine whethe? there has been any progressive climatic change in the Southwest during the last 2,000 years. In 1913. Henderson and Robbins (5\%, 7.68) summarized the evidence from archaeology, history, botany, and geology avalable at that time and stated that it was not conclasive; but they expressed the "opinion" that there had been "prorressive desicuation of the region since the berinning of the cliff-dwelling period."
Reexamimation of the evidence from these feelds surgests that it shows merely the existence of climatic fluctuations in the past simifar to those of today and does not demonstrate progressive change in any direction.

In recent years the science of dendrorhronology, developed in the Southwest by Prof. A. E. Douglass and his students, has accumulated evidence which has been used varionsly to prove and to disprove the existence of climatic change. A statement made only recently by
one of the students of tree rings clams that they are indicative of climatic fluctuations rather than climatic changes ($58, p p .67-68$).
Most important conclusion of the new science amounts to a certanty. The trees say the same thing over and over: The climate of the United States is not changing.

Trees say that there fans been no change in the amount of precipitation certainly for $6 \overline{0} 0$ years and prohably for 2,000 years. The trees record droughts centuries ago that lasted longel and were arier than anything this generation has known, for all our arar... \& dust storms. But the droughts were always followed by plentiful rainfall.

The popular notion that the drought-minfall cycle is regular is exploted by the tree-ring calendar.
Lake levels in the Great Basin have constantly risen and fallen and have been studied for evidence of climatic fluctuations and progressive changes. According to Antevs ($72, p, 71$) the expansion of the Pleistocene lakes in the Great Basin corresponded to the maximum extension of glaciers in the neighboring mountain ranges and of ice sheets over the northern part of the continent. He places the last major lake expansion at 30,000 to 35,000 years ago. The welldeveloped shore lines and the lack of deltas indicate that diminished evaporation rather than increased precipitation and run-off was the main factor in the rise of lake levels.
Jones ($72, p .47$), on the other hand. concludes on the basis of mineral concentration in the water that Lake Lahontan originated not more than 2,000 to 4,000 years ago and reached its maximum depth and extent only about 1,000 years ago. He states that in order to support Lake Lahontan at the high-water mark, $21 / 2$ times the present rainfall throughout the dranage basin would be required. Such a change in average precipitation in 1.000 years would have meant a tremendous climatic change, a change that would have been reflected over the entire western half of the continent. Under the conditions postulated by Jones the climate of Reno and Carson City, now semiarid, would have been humid and the more elevated portions of the area would have been superhumid.

Powell ($\$ 1, p$. lxaiz), in 1898 cited archacological evidence for the opinion that the cultures of the Southwest were developed under conditions approximately as adverse as they are at present.

The Pueblo peoples, ancient and motern, grew up under havd environment; shadowed ever hy the specters of thirst and famine, they were exerptionaly impressed by the potencies of pitiless nature and the impoteres of their own puny power; and the other desert peoples, sufners, the risk-hamed folk generathy, they dereloped an elaborate spstem of caremonies mad symbols fiesigned to placate the mysterions powers. * **

Occupsing an mid region th which water is the most prectots of all commodities, the Puebio peoples early acquired skin in the manfacture of atensils adapted to the conservation of water, and eventaliy became the parters par excetlence of aboriginat Ameriea.
Thus a climatic change of the matgitude indicated by Jones is altogether improbable.

There is historical evidence of large changes of lake levels in the Great Basin during the last century. That these rises and declines of water level are associated with fluctuations of precipitation is shown by the rainfall records themselves and by supplementary trec-ring records (19).

In recent years Bryan and his students have presented a great many physiographic observations which they interpret as being indicative of climatic change. Bryan has traced buried channels upward of one-third of a mile in length in the fill in the valleys of Arizona and New Mexico. Bryan (05,30). Hack (-50), and others have found that in some of the yalleys of the Southwest there have ben at least three p:st periods of increased erosion separated by times of dominant deprsition. Abriton and Bryan, for examule, consider that the alternate filling and channeling in the Davis Mombains, Trans-Pecos, Texas is due to climatic changes. ${ }^{13}$ They say ($11, p .14 \%$) :

It is a well-estabished working hypothesis thaf in at arial cinate and in armas
 periods of rebative homidity ami erosion by chameling occuss in perionds of relative aridity.

On a table giving a tentative correlation of the stages of filling and eroding in valleys of western Texas with those of the Jadito Wask described by Hack. each periorl of argradation is indicated as "more humid" and each time of "rosion, represted in the sedimentary record by disconformities, is shown as "less hamil" (11. p. 14/is'). TIuntington ($66, p p .31-36$) also attributes altermate filling and entting in the valleys of the southwest to elimatie change but he believes that aggradation is due to greater aridity and enting to increased caintal! (p. 109).

In the physiographie studies of Bryan the nature of the postulated climatic changes is varue and no chentrent distind ion is male bet ween progressive climatic changes and climatic flurtuations. Presmably "relative humidity" and "rclative aridity" are equivalent bo "fore humid" and "less humid," but what is implied by these terms is never indicated. Probably they refer to the nomal flueluations in the existing climate and not to climatio changres ($p \mathrm{p}, \mathrm{sis}-\mathrm{s} 9$).

Bryan recognizes the importane of the oceasional intense storm (.24. $p, .31$).

So fat as erosion and solimemtation are concomed, the rate of rainfall and Huctuations in rainfall are perhaps mare imporatht thath the a werage anotht.
 The highest monthy minfall in 51 years occurest in August 190), when 6.25
 3.63 incles of rain fell in '2t hours, an amomat exemoding the nomat anmal ratinfal! for the stalion by 0.3 inch. On August 16, 1990 , 3.33 inches fell. Tha
 ephemeral streams is obvions.
In recent years. howerer, Bryan has insisted that gullying in the Southwest, althongh contemporamedns with settement and its attendant overgrazing. was actualiy independent of it tund was cansed by progressive desiccation of the region. In an atdress in 1939. ${ }^{14}$ he concluded that the atemate culting fown and huideng up of streams record minor fluctuations in climate, ruming over handreds or even thousunds of years. The most recent cutting down. he sadid. is independent of the animals that rom the eountry and their effect on the regetation. It was imminent at the time when catile were introduced into the country and the coincidence in time betwey the introduction

[^10]of the cattle and the cutting of the channels is the same coincidence as that between the pulling of the trigger and the explosion of the cartridge.

It is hard to reconcile this statement with the known fact that a land surface which has been irritated by overgrazing and bivestock and wagon trails will be gullied by a less intense rainstorm than one which has suffered no such irritation. Bryan goes on to say that quily cutting might have been initiated in the southwest by 1940 or 1950 even had the country never been settled or orergrazed. Thas is true. but it would have required a series of much larqer stoms than those that caused the extensive gullying chumg the list half century. The probability of the accurence of such a series of intense stome is far less than that of the occurrence of the molerately intense ones that have brought about the existing gnllies. There is at present no possible means of forecasting such series of intense mins.

The evidence from history botamy ardarology and geology. relatime to the last 2000 yencs is indientive of climatic fanctuations whe the these we apperience tonay and comfime the meteorolorical aniom that the more or less random interactions of air mases that determane present climatie variations are the same as those of the past. Bridence for or against long-period climatic changes must necessarily be indirect on ciromstantial and it is imposible to dentify the varations as clamatic changes. If there has bren any progressive climmic change in either direction in the last 2 on rears in the somthwes. it is w small as to be completely obse ured or overshatowed by the fucthation: introduced by artmass activity.

EROSION IN THE POLACCA WASH

The general characteristies of the elimate of the Somathent have been considered. The following pages present a pieture of the relation of climate and other basic factors to the action aml offects of acelerated erosion in the Polace Whad drabage basin. which is typieal of much of the Southrest. The discussion benls first with the hasic conditions erverming erosion in the area. semol. with the presem state of the erosion. and thim. with the chameterist ic procesies of normal and accelemted eromon and theireftects.

Rising in a momber of figerlike herolwaters near the motheatern

 Ariz. The apper half of its combe lise in sanyons deeply carved in the Mresa (fig. 2). The lower hatif is mone open and traverses a broad phan and shathow basias. Other simitar and more or less panalled
 and Jadito Wash. dram the manander of Black Mesa.

Baste Condmons (ionthning Emesmon

CAMADTE OF THE POLACCA WASH

In the Favajo commary in northenstern Arizona, and extendinge into adjoining States. the wide range of elevations. from near 4.7 fon feet in the canyons amb major valless to amost 10.00 m feet on Navajo Mountain, canser to wide range of climate. Along the Polama Wash.

Fiouas 25.-Physiographic map of the Polacea Wash drainage basin, Arizona. Base compiled from field reconnalsance maps and aerial photographs.

PAINTED DESERT SECTION
\square
southmest

TUSAYAN WASHES SECTION

$$
\begin{aligned}
& \text { notizonses cose vertion }
\end{aligned}
$$

BLACK MESA SECTION

Mouth of
gurnt Corn Gully
ILongitutinol
Iolkrial fon
ck points and longitudinal give $8 n$ idea of conditions rea, but the elevation snd St. Michaels.
the climate raries from humid or moist subhumid to arid. In most years onty the highest parts of the headwaters area are sufficiently humid to hare precipitation adequate for a good range.

Weather records are available for only a few stations in the Polacea dramage, but by examining in addition the climate at other stations in this area a fair pieture of the conditions for a pertod of 12 to 43 years can be obtainet. depending on the local length of record (fig. 26). Temperature for the lower pats of the area aremages above $70^{\circ} \mathrm{F}$. for June. July. and August : the highest monthly average in the Polacea dramage is $76 . t^{\circ}$ for July at Lcupp (fig. 26). Minsimum temperatures mage upward to $104^{=}$or 105^{3} but are well below the records of 112° to 127° in the shathwestern part of the State.

Precipitation at stations in the Pobacea dramage rauges from an annal average of 7.07 incles at Lenpp (4.700 fect clevation) to 11.87
 believed to be considerably greater on the hagh mesas in the heatwatere Rain is received throughout be year. lut there is a welldefford summer maximmand a secendary perk in winter. Ahout one-cighth to one-quarer of the precipitation tals as show. whech in the Polacea dramage has been recorded for all monthe exerpt Jome. July. August. and September. Keathy stations have received som in at monthe excep fuly and Ausnsi. Prexipitation ineverses with Incrase in elevation away from the Little Colomato: whereas temperature tends to decrase.
 manally of high intenaty and shom duration, in emtrast to the widespread. more gentle winarmins. The degree of contast in ranfall characteristics from month to month is bromgh out in the char for Keams Canyon showing mean bamothly amonts of precipitation falling at specified 24 -lume inmensifes (fig. 27). July stmols ont as the month expericmeng the most intense downonis. No datit were a aralable for the compantion of short-period intensities. but it is cortain that the summer mins fall at much highor shor-time rates than do those of winter (tible s). High 24 hom amonts oceurring
 in the summer it is not manal for more than an ine to fill in less than 2 hours.
Intense stems are murd mome frepum in the headwaters of the Pohaca Wath than nemp its moth. It is pobable that 24 -hour sterm amomats of precipifation that might be expected ammally in the beatwaters would ower not ofteme than oure in 5 years in the vicinity

 thonately diminisher down the valley.
The erosional effects of precipitation are chasely related to the semsonal distribution and intensity of the judividual rains. Rainfall in months when the gromen is moderately woll proverted by regetation is obviously less fikely to canse erssion than is rain falling during colder or drier months. when the cover of reqetation is sparse. At most of the stations in the vicinity of the ? Po acea Wash. July is the raniest month. with Lugusi a (luse serond (fig. 26). The interne. local summer storms tend to be romghly oval in fom and may measure only a few hundred feet acrose and less than ont-quater of a mile in
length, but they range upward in size to several humdred miles in diameter (fig. 28).

The extent of a summer storm, in one dimension. at least. as measured by the odometer on an antomobile traversing the rain area, is usually not over 6 miles. Larger storms are occasionally encountereit.
Winter precipitation, heaviest from December to March, is usualy of the warm-front type and is of low intensity, wide extent, and long duration.

 intensities, Kennss Canyon, Ariz.

Owing to the seasonal differences in type of precipitation, daily incidence of rainfall and clondiness are both greater in summer months, as shown in table 11.
During the period from June to mid-October 1936 a number of rain gages were operated bet ween the vilage of Polaca and the head of the sonth fork of Keams Camon to secure data on the intensity, internal structure, and migraimo of the rainstorms of that area. At first 1 recording gage and 24 of the standard type were used, but in late July and eafly -hagst the number in use was ineroned to 6 recording and 36 standard gages. The distance between gages did not exceed 2 miles and avenged abont 1 mile (fig. 29).

Table 11.-Arerage number of days clear, clondy, or with precipitation of 0.01 inch of more in a summer and a tuinter month in the vicinity of Polacen Wash, Arin.

In the season studied. August had the most days of rain and the largest catch, 0.52 inches. September cmme second in total rainfall and July secoud in number of days on which rain was received (table 12). Contimous rainfall at any one spor usualy lasted less than 1 hour, although one rain of slightly over 3 hours' duration was recorded (fig. 30). Rainfall periods, hating severat hous. with rains of short duration separated by shom minless imervals, were found to occur, especially in late summer and in the fall.

 Oraibl Mesar.

The rainfall graphe for August 2 and September 1.2 (fig. 30) illustrate these types of storms and show the essential differences bet ween typical summer and winter precipitation. The storm of hagust 2 was of a convective nature, having a rather high intensity and a short chation. The release of the convective chergy in the prevaling Tropical Maritime air mass was brought abolat by the invasion of

 five chamelertstice sturms. These should be equmared with tiwe hage storms

and Polacea village in the summer of 1936 and distribution of precipitation in
sbown in tigure 5 .
a Polar Pacific air mass, which forced the tropical air to ascend aloft and condense its moisture. The storm of September 1-2 had an entirely different meteorological genesis. The rainfall, which was gentle and continued for approximately 15 hours. was cansed by a warm-front type of occlusion. A well-modified type of Polar Pacific air advanced aloft over the prevailing polar air that occupied the southwestern Trnited States at this time and a gentle continuous rain was produced in advance of the invading upper front.

Fgours 30,-Itainfoll graphs froan reording rain gages in the vicinity of Krums

 Se日m, Canfon, Stiz., Junc to October thas

The maximum shont-period intensities shown by the recording wares from June to the middle of Oetober 1936 were:
Maximum precepitalion in-" Ancher
方minutes 0. 20
10 minntes 3.4
20 mouters 57
30 minutes 63

The absence of any very high intensities may be attribuled in part to the shorthess of the period of observation but is also in agreement with general meteorological conditions of the area.

One of the harpest stoms reported by the coomarative Weather Buseau observer at Keams Canyon continued from July 21 through July 24,1915 . The total precipitation of the storn was 4.38 inches. Three of the 20 manest days of recome ocemred during this stom. It bronght 3 bercent of the average anmad ratinfall and approximately 25 percent of the total ranfall received that year. During the de days precelinut the stom. only oon inch of ran fell, and following it no rain fell for a per iod of et days.

In spite of the smath area of the Eobacea Wath daminage as compared with the area of the Southwest. year-to-year variations in climate cower a wide mage of clamatic types. The range of mantion during $t 0$ years of record is illastrated by the climatic maps of the honthwest for 1905 and 1934 (fig. 24). Extensine uphat arens which were hamid in 1905 were dry subhmad or eren semianide in 1984. On the other hamb. the widespread arid resion apperring on the lost map is entirely missing from the maty of the eather yome.

The matraitude of the variations from year to year is best bronght ont by the charf showing lactantions from the hatwaters down to the fooct of the wash at Lempp (fig. 31). During the 30 years shown, the climate at the hemonaters hat mared from hamid to dre subhumid: at Keams (iamon, from humid to semiarid: at the point of confinuce with the Little (ohorake from arid to semiarid. There is little toubt that if the record were lomere the range wouk be even greater.

GEO.OGY

BIIESIOKHAPLY

The Colomalo Platenus of Arizoma, Now Mexico. Ttah, and Colozado. comprising a hate region of wembilly horizontal reks. are noted for thein many ham mesas amb depp (anyons. In the center of the Narajo section of this physiographic province stands Bhack
 stath (fig. 1). In the eastern part of the Mesab the rathermeg grouml for the waters of the Podacea Wash, the elesution raneses from nearly

 hamerels of feed high to the chinle Valley on the east and hy smewhat lower eliffs the the bin of the Tusiyam Wiashes on the south (fig. : 3).
Owing to the altermation of resistant samelstomes and wemer shates in the beetrock of this region. Black Mesa and its progerting tongues are not all formed of on individual rock surfare but of many diflerent beds. The escarpments, which at first glance secon to rise perpendicubarly from the vatley. when sem in profle are rewaled as a series of step)s extendiuy to the mesa tops (fig. 32). Each of these steps or benches is separated from thome adjacent to it by diffs, the height and stereness of wheh depend on the thirkess and resistame of the sandstones or other beds from which they are formed. Fone levels are recognized, of whin the lower wo ate by lar the most extensive (figs. 32, 33, and 34).

Frouge 31--Ambul distribution of ematic zoness along the Polacca Wush
 Arizonit.

Figan 3t.-Tunction of Rel Cancon, left, and the Polacea Wash, as seen from the butte west of the mouth of Red Canyon. Rounded hills of the second highest surfice form the skyline af the left of the view. Below a narrow bench are the clifis of the second series. Clifts of the first, or lowest, bench form the major wall along both sides of the Wash.

Along the northeastern half of the Polacea Wash the land bordering the foot of the lowest clifi series slopes downward to the flat valley floor. The upper part of the slope, through most of this area, is a pediment (figs. 32 and 34) which projects irrecularly into the valley, as if composed of a series of spurs. Large sandstone masses that have slumped from the cliffs interrupt the slope of the pediment zone in many areas. Soil and vegetation are meager on much of the pediment area. The soil thickens at the lower end of the slope, where the pediment characteristically gives way to an allavial fan or an almost continesous alluvial apron.

The valley floor in the upper Polacca is in general broad and flat (fig. 34) and is covered with a deep alluvium which supports vegetation in abundance wherever subicient water is available during the growing season.

Below the vilhage of Polacca, the wash leaves the Mesa area, the high clifts disappear, and the stream channel traverses a series of shallow basins (fig. 25). Over much of the area. normal development of surface drainage is hindereci by low dunes and ridges of windblown sand. Small streams survive for only short distances before being absorbed in the surface sand.

Numerous abandoned channels and distributaries mark former courses of the Polacca, but the present channel is deeply entrenched in the valley fill. On the flood plain of the Little Colorado the Polacea tums westward for nearly 3 miles and joins the river west of Leupp.

STRUCTURE AND STHATIGRAPHY
The entire Polacca drainage is included in what Gregory has called
 tering in the vicinity of Polacea village and Coyote Springs. In the headwaters area of the Polacca Wash the regional dip is to the west gnd southwest and attains a maximum of about 3 degrees. Locally

Ftgure 35,-Diagrammatic profle showing the velation of geologic structure to physiography along the Polacea Wash.
the major structure is complicated by minor flexures, the most prominent of which is an anticlinal or clomed area 2 to 3 miles south of the mouth of Red Canyon, where the valley widens into a broad topographic basin (figs. 25 and 35). South of Black Mesa along the Polacci the rocks dip gently to the northeast and the wash passes through the dissected rims of successively lower formations (fig. 35).

The rocks of the Polacca Wash dramage, largely sandstones and shales, range in age from the Cretacoms Mesaverle formation in the headwaters to the Muenkopi shales of the Triassic along the Little

Colorado River at Leupp ($\overline{0} 1, \overline{z 2}$) (fig. 35). Not only the fopography, but vegetation and land use are closely related to rock structure and stratigraphy.
According to Gregory (51. p. 75) :
The Mesiverde of the Navajo country diflers in no essential respect from strata of this age at the type locality in Coblorato. At its base are ont or wore heavy beds of sandstone 30 to to feet think; hese arp sureerded hy strata consisting of about equal amonuts of hin samathat and shale with many beds of coal. The top of the formation incheles there or more beds of massive sandstone athaning thicknesses of 40 to 140 feet. It is a prominent cliff naker.
Figure 32 represents the Mesuverde as it is exposed in the headwaters area of the Polacat Wash in the vicinity of Cothonwod Tree Canyon. where the formation is exceptionally thick. Marked lateral gradations in resistance and lithology are common and are reffected directly in the geomorphice forms of the area.

Conformably beneath the Mesarerde formation ond usually separated from it by transition bedis lies the Mancos shale, consisting largely of drab sandy clay shales and contuining a relatively small percentage of sandstone impure limestone, and coal. The beds are gypsiferous ($51, p, 7,3$). The gently sloping but irregular pediment zone of the apper Polacea Wush is developed on the Mancoss shate. Height and width of the zone depend in large part on the stratigraphic depth to which the canyon has been cat. Where the canyon floor is in the Mesaverde-Mancos tranition the pediment is sman or ahsent. but where erosion has cut downard into the Mancos shale the pediment usuatly is hroader.

Beneath the Mancos are the sandstones, conglomerates. shajes, and coal beds of the Dakota formation, which in the Pobacea drainage is seldom more than 25 to 30 feet thick. They outcrop locally on both limus of the struetural ared in the foom of the upper ralley and again come to the surface in the lower villey south of Polacia village.

The McEmo formation lies unconformably below the Dakota sandstome. It outcrops on the hims of the arch in the upper valley, and is also exposed in a broad band extending from about 7 miles below Polacca village to the vicinity of Coyote Springs. The shales and weaker sandstone members of this formation develop broad topographic flats or basins. The more massive sandstomes. commonly cross-bedded, outcrop as cliffs, and in this area they form a rim on the southeast side of the Coyote Springs basin.

The McEmo formation grades downward through a thickness of as mach as 100 feet to the rocks of the Gilen Canyon group of probatbe Jurassic age. Elsewhere in the Navajo comntry and Grand Canyon area, these beds, the Navajo sandstone, Todilto shate, and Wingate saddstone, ate prominent cliff formers. but such cliffs are only moderately developed in the Polacea dranage. They border the Polaca Wash irregularly from about 2 miles to 6 miles below Coyote Springs.

Beneath the Wingate sandstone, lowest member of the Glen Canyon group. lie the may-celored marls and shales of the Chinle formation of Triassic age. Most of the bects of this formation erode readily to an irregular badland topugraphy. A few of the more
resistant sandstone, limestone. and conglomerate beds form buttes. mesas, or long cliff lines such as those along the Polacca between the Tolani Lakes area and the point of entrance of Corn Wash (fig. 25).

The Shimarump conglomerate lies between the (hinle shales alove and the Moenkopi shales befow but in the Polacea dranage is not a prominent cliff former.

The Monkopi shale. the lowest formation represented in the Polacca dramage is of Triassic ane and comsists of highly colored platy sandstones and shales, which weather to low irregular badlands with scattered small buttes. The fomation is largely nonresistant to erosion and foms the weak zone followed by the Little Colorado River from Holbrook northwestwor for more than 80 miles.

Volcanic rocks of Tertary age form irregular hills and mesas in the Hopi buttes area southeast of the Polacra dramage ($\overline{5} 1$). The Giant's (hait (fige 25) a prominent lammark on the west side of the Polacca Wash between Coyote Springs and Toreva, is an eroded rolamic plug peobably connected whth the rocks of the Hopi volanie field.

SOIL
No detailed maps or deseriptions of the soils of the Navajo and Hopi Indian reservations have yet heren phblinhed. The Soil surver of the Winslow dreal. Arizona (10 , ${ }^{\prime}$, the only bulletin discussing soil types close to the reservation area. corers pat of the valiey of the Little Colomdo River for about 18 miles atst and 14 miles noth of Winslow but does mot inchele any of the Pohara Wanh damage d few recommassancer surveys and detalled maps of special areas on the reservation have been made by Government agomoles.

In peneral the soils wary with the molerlying rock and loral physiographie histery. The there main errouminge nesed in the Winshow area are applicable to the Polacen Yalley. These abe: (1) Residhat seits.
 Residual soils ara restricted laredy to masa sumbers and to marginal slopes on pedments. The valley flats and adere fans comprise the other two soil grouphings.

As the soils of the hoothwest are in genemal thin and poory fomed. the residual soils rebate closely to the maderdying parent materials in where properties and in resistame to emosion. Residual woils on areas of samentone ami shale. for example may support altogether different kinds of regetation and respond quite differenty to arosion, although lying within the same elinatice region. The amon umberan hy Manes shale in the Polacea Wian damage basin is one of the eritioal soil areas of the watetshed.

The bottom soils are in wheral heavier that the samo wots of the uptanks. the flat alhwial henches, and tor collavial slopes. Nliadi conditions amemerally nof mofarable on the higher lymg soils but make some of the lower lyind pomly dramed soils less sulabla for arricultaral usa. Wind howing has anodifand afmost all the wots.
 those that are loose and samdy.

VEGETATION

NAとU

The natural regetation of the Namajo comatry ranges from desert to subapine types and womedtes clowe with focal climatic combitions. Soil and dranage are important in dolermining the vegetal pattorn within individual climatic zones.
Five main climax type are present. Lowest of these is the sagebrush climax or northern desert shrub) (iig. 36). tound in parts of the valley of the Little Colorado. the I Panted Desert. and the southern edge of the Tusagan Wanhes. Next higher is the gratsland chmas: or short-grass zone, extending from the sagumsh area to the mesia borders and ocrupring ele vations of roughly 5.300 to 6.000 feet. The

 montane-forest elimax dominates and eontime to an cle ation of more than somo feet. The shatpine climas. whaterize by Engleman spruce extends from the uper limit of the montane forest to the top of Savajo Momam. about $10 .+16$ fert. the highest etwation in the Navajo comotry. The same geneal zemal plan is faund throug most of the arid to semarid hands of the southwest bou is extemedel to
 on the highest peaks in nowhern Aryona abowe 11 ,60 or 11.50 F fow.
 sharply drawn. Members of bach chmax exand in lesser abondance ints adjoiming zomos.
 tion to the montane-fores, pifiom-jumper, thom -grass. and sigehnosh zones. In general the vagetation mange from the mesa top to the valley floor closely resemble the climatie mane from the cooler. moister headwaters of the Pobarea Wath to its wamer, dree bower comses. The bombary betwern the montan-forest and pinon-jumiper zomen is sermal haterel feet higher in the Polata dramage on the pastern part of the Black Mesa thim clew where in the Natajo country. Pinomjumper here grows profusely on the mesa to attitudes of ahmest som feet (fige 33). Small growe of yollow pine and climatically asso-
 in the coolest and most humid areas. as in the apper emo of Cottonwood Tree ('angon and Red Canyon, and on the divide betwem
 in the hadedaters. but is prevent only lowally on the eanym thoms (fig. 34).
On the southem part of the mesa sufare, within 25 mides ap valley from Polacea village pion-juniper grows less thickly on the mesa
 39). Trees are mudh lase abmolant in the cliff and pedment zones here and are rare on the eanron flems.

On the wooded mesas in thim ladwatess country remmants of parktike areas of grasstand are found in shallow basins or flats where collarial material from gemle side shope bas atemulated to form a thicker soil tambe tayperso of this seme separated by how divides which support a growh of pinon-jamper, are present on the

 taken by brash and weeds and by expansion of the area of pinion-

cover has gradually diminished. Gully cutting has lowered the water table. Drought has reduced the ability of the grass to regenerate after the heavy grazing of Navajo and Hopi sheep and ponies. As a result more xerophytic plants have gained ascendancy.

In general, depietion of vegetation has been less in the valley floor of the lower Polacea than in the upper valley. Berause of its drier and warmer climate the lower area had a more xerophytic matural vegetation. Sand dunes in the lower valley have retarded run-off and conserved moisture. In spite of these conditions, however, many of the more palatable phants have been displaced by less desirable types.

Conversation with Lndians and traders and inspection of old records give a variety of opinions as to the former regetal cover of the Hopi and Narajo country. There is evidence that ther grass cover was once more nearly complete, but it is cettain that the abundance of grass varied considerably from place to place. Local areas probably have always been barren.

One of the earliest accomits of the vegetation of this region is given by Lieutenant Edward F. Beale, who, under commission from the War Department, surveyed a wagon road from Fort Defiance, Ariz. to the Colomado Rivei (fin). He passed westward down the valley of the Little Colorado River through the Navajo country early in September 185 s and returned up the villey shortly before the middle of Febraty 1858. His ronte through this areat did not traverse the I'olacea drainage basin but lay along the upland south of the Littic Colomato and within 5 miles of the tiver. Beale's joumal gives a glowing account of excellent and abundant grass between Holbrook and the month of Canyon Diablo, of fertile soil, and of plenty of water. He describes a luxuriant crop of grama grass on the mesa near Leupp, Ariz, and states of one diy's travel near there that nothjng had impeded their progress but the grass. This segion, he predicted, wonid become as grod a livestock country ats any in the United States and wond undoubtedy be heavily settled by whites once the Indians were held in check ($15, p p$. $44-40$).

The contrast between the conditions described by Lieutennt Beale and those of the present day has been shown in a publication of the Otfice of Indiam Affairs ($\boldsymbol{7}$) . Recent photographs of the approximate localities described by Beale suggest a notabis depletion of the veretal cover.

In 185s. the year of Beale's eastward trip. Lieutemant Joseph C. Ives expedition. which had been exploring the Colorado River, entered the Navajo-Hopi country from the southwest. After a dilficult trip on which he and his party were scriously short of water they reachecl the puphlos on the Hopi messas (ri), $p, 1 / 9$). When the party arrived at "Monshahnel" (Mishonguovi), on Second Mrsa. May 11, the Hopis frided them to a camp grotnd of which Ives says ($70, p p, 12(1-121)$:
In ten minutes a sifkt was reached which all ingreed was the best grazing amp the comantry afforderi. I nf longer wonderet that their one lorse looked so thith. A singir animal conld scarcely have existed for three days upon all the grass in the neighturthood.

Because of exhaustion of the mules and because of the poor prospect of finding water the party abandoned their plan to travel northward from Oraibi when they had gone only about 30 miles.

Returning southward they crossed the neck of Second Mesa and on May 17 camped in the Wrepo Valley along the trail from Oraibi to First Mesa. Ives records that "the valley was well covered with grass. Large focks of sheep attested the wealth of the citizens of this department of Moquis" (\%0, p. 1206). The "department of Moquis" to which he refers is the group of Hopis on First Mesat, and Wepo Valley is one of the best watered of the entire area. It has been cultivated extensively by the Hopis in recent decades.

Kit Carson risited the Hopi pueblos on October 21, 1863, to obtain their assistance in a campaign. In his report on the action he noted (49, p. 34):
dition, from the fact that the country for several miles aromal their village is quite barren and is entirely lestimute of vespettion.
 for subsistence is on the little corn they ratise when the wrather is propitious, which is not alwars the case in this latitude.
Crop failures in 1864 and 1865 bore out Carson's statement of the peoples' dependence on weather and were in part responsible for a severe famine. As Colonel Carson's observations were made in October it is obvious that he would not have scen the grasses and crops at their best.

Almost 20 years later John G. Bourke, captain in the United States Cavalry, made a journey to the Hopi pueblos to observe the traditional snake dance. He left Santa Fe early in August 1881 and spent the night of August 7 at Furt Defiance, Ariz. His route from there lay west across the Defiane Platean and D'ueblo Colomdo Wash to Keams Canyon and the Hopi mesas. Atter the dances he returned to Keams Canyon for a short sojourn. He and his party started their return to the line of the raibroad on August 19. From Mishongnovi their trail led through the Hopi butte country to the Mormon settlement of Sunset. along the Little Colorado about 3 miles northeast of Winslow.

Bonrke's special interest in ethology did not prevent his making full and apparently accurate notes on the matural history of the region the party traversed. Observations on the abundance of grama grass are particularly pertinent. About 16 miles west of Fort Defiance he notes that the pine wools gave way to piñon and cedar as the road descemided the slope of the platean. There was much large saqebrush and Spanish bayonet. and "crana grass. in thick bunches. filled all the gromul not covered. or too deeply shadowed, by other vegetation" ($17, p, 66$). In the valley he found little piñon. Sagebrush was more abundant. "The quass still remained exrellent" (17. 7. 60). On August 9, riding from Pueblo Colorado Wash to Keams Canyon. Bourke notes that the vegetation in the valleys was almost exclusively grama. He refers to an absence of flowing water but says that grama grass of the finest kind was growing haximiantly everywhere ($17, p .7 .2$).

The valley of the Polacea Wash was far less hospitable. Bourke describes it (17, p. 96) as a plain of heavy sund.

For the whole fonton miles fown Feims canyon and across the Folacen Wash to First Mesal one bat to hear with pationce the tntemse heat of the sun's rays, rellected back winh incerased power by fin minne crystatis of

The difficulty the mules had in traversing the high sund dunes southwest of the end of First Mesa and the presemer of shifting sand. thinly grassed. in the valley between Mistmonori and shongopovi

 guantity and quatity as we receded from them. The herds and fleke hath, beyom ghestim. tation ame stimyed ont the herbage, that the demand for fuel hat colused the cutting down of much timber.

On August 19. the party tarmed sontheast from Mishongroovi and after crossing the bohace Wash contimerd southward apparently aloner the eastern side of the valley (7\%. $1 / .3,-3$).

* * * the unal man through a bite pasture-hand, matiod with vernel green.
 villages, This phan we eximatid to be seves mifere bosat, comered in its whole

The grasey phain was sureeded sonthward be a hilly area and buttes of ofd and picture:que shapes obvinati the Fiopi Buttes. Sagebrush and greasewoust took the phace of grase in his ragged contry but beyond the first mange of hills we party descended into: :-

 showed momistakably that the Xavabes were somsibite of the vathe of this zrand mastarage [isee $17, p$. 3多i.]
In contrast to these garken pote of the resoration the breaks of the Little Colorato extending 15 miles back from the river were deseribed

 for thase thins of bumt. beked chay atad samd.

 p. E2) that from the mouth of Lemans (amoon:

Bownam, in 1917. Wars of the regetation of the Narajo-Hopi country as a whole (1/S. 1. .
The patent of that fork :hat sand foor is very great. and pobably wht more

 stepuing on a lwig or a spertr of grass.

From these atcounts it is apparent that even 80 years aro grass Was seare in the riminty of the Hopi viluares. In favorable locathons far from the phebios, however, there was gook grass owory at least as late as Bunde's visit in 1881 . The estimates the variout
travelers give of the vegetation depend not only on the particular area observed but on the season and year in which they saw it. Beales impressions gained in Septomber and Febrary monthe following wet seasons of the vear (figs. 12. 13. and 26), are in strong contrast to those of lves, who suw the Narajo-Hopi country in May, one of the two driest months. Vegetation receiving water from melting winter snows or permanent springs. as along the Wepo Wash. would be green in Hay and Wane, but veretation depement on summer rains of July and August for its prowth wouk not be much in evidence. Colonel (arson's risit in October 1803 and Sotts in November 1691 were at a time of year when the grasses wonk not have been at their best. Carson's statement that the country atomnd the villages was brren, howerne would probably be almost equally true in summer and seotts desta. \therefore on of the lolacea Valler as "almost a desert waste" agrees with Boarke's entier observations made in August a month when summer mias are usually plentiful in that rexion and vegetation should be at the height of its prowth.

Similar differences in condition of veqetation arise from the wide yearly fariations in climate. However, total ammal precipitation and inerage temperatures are less significant than the distribution of individual rains and dronghts (pp. 31-3:5). That August 1881 mast have had mather favomble procibitation is shown by the accounts in Bourkes jommal (pp. [13-114). His party was rabed on or saw rain near them ahmost daily for 2 weeks.

The fine plains of choice grama gass sescribed by Bourke are now gone from the Navajo countre. Where grana grass is present at all, it grows as seatemed individual plants mather than in thick chumps.

LAND L'SE: PAST AND RRESENT

Our hest knowledge of northenstern . .rizona comes from the jourmats of Coronadosexpedition, a pary from which explomed the area in $15+$ to. At that time the eombey was imabited by Pueblo Indians and had not yet been ocetpied by the Navajos. The ladolo economy was agriseltumb amd the Indians had no livestock matil sheep and homses were butedued by (omonado.

By the early sevmemth embury he Navios had entered the terrifory of the Paeblo dwelless and within the next 100 yars hat made themselves droaded emmise of the Pueblo peoples. The warlike imaders atfacked the Spanards and Paebio dwellers ahke and in these rabls oblatined the first of the sheep which have since becone
 that weaving was eatablished among the Navaios at the time of the Puoblo kebellion of l (wot when the sumatals were driven from many of their hokhags, particularly in the morthere part of what is now New Moxico. In lefe, the Spamarts fought their way back into that aroa. and promame sethenents were establinhed.

Ferding and weaving became more and more important among the Navajos, and acording to Amsden ($L, \cdot / \cdot / 4,3$) these prople had ganed a recognized supremary in mative weaving of wool in the Gonthwest as arly as the begming ot the nmetreath centmy. Entil at least the lime of the Civil War, the concentration of human
and domestic animal population of the Navalo aml other tribes of this area of northeastern Arizona was relatively low, and their use of the land could have changed it but little from the natural condition.
The Narajo Reservation was created in 1s6s. when the tribe was released trom Fort Sumner. N. Mex.. after the Sarajo uprisings had been put down by Kit Carson. It was estimated that 8.000 Inditus (-3) and livestock conisting of 1.550 borses. 20 tubles. 940 sheep. and 1.025 goats (61) were placed on the reservation at that
 goats were distributed to these Indians in 1sina, and 3 years later 10.000 mone were brought in. Although these figures are low in com-
 1.3) to more than 1 milim sheep and grots ${ }^{13}$ reported on the reserration in recent years, it is evident that the perion following is68 marked at great increate in grazing and was the beginming of a tritical time in the erosion history of the area.

Additions to the Sarajo Reservation changed its boundaties but did not greaty lighten the grazing load.

Most of the rillage of the Hopi Indians in northeretem . Lrizona long antedate the forming of the Hopi Respration in ingo. and the agrachtural practice of these geople have changel but litte from contact with the white man. They ate bespontally tiller- of the ool
 hoeine or weding he ham- the mall size and momer of their lields, and the hation of fields on fat or nearly Hat surface have combined

Arehaodogical erikene indiates that at one time mallhowe riflages. conntry. Reagab states that they were mure clowery - baced than
 wash and that had it. rillage and water wa-so catofully gathered and hathated that nome wat alhowed to brape down the chamare-
 camons and mate it arabhe for irrigation and rilhge suphry

 the correponding general bendetion of regetation. Trates of the flam and other stucture call still be fermed forally ($/ 1 / 4,1 / 1$). Whether these work were to moneron at any one time ar Reagan -ngrgest: is upen whethom. Mo-t of them have lome bem in tisrepair. If the dams and ditehe of these early agrobiturist- payed wen a minor part in bringing atont agradation of the valley thors,
 through increase in ron-ofl'. might have furthered to as emall extent the reent acederation of crowion.
 and in gemeral are hitle inelined to miving cativated urops. Some have departel from this tradition. howere? and the Indian Service

[^11]

reports that in the calendar year 1938, 42.5 pereent of the Navajo families planted gardens, as compared with 82.8 percent of the Hopis (709, table 1.9).

For the majority of Navajos, who are primarily berdsmen, suarcity of forage, firewood, and water forces a change of abode seasonally cr oftemer. According to Hoover ($63, p$. 4.3), pressure of increasing population now confines most families to particular grazing areas within which their movements follow more or less regular routes. Many of the Navajos have definite summer and winter ranges, a few miles to 60 miles apart, to which they return and in which they occupy the same hogra each year. In the Black Mesa area the best watered lands for farming are along and at the mouths of arroyos, so there is a general move to the valley bottoms in summer. In winter the mesas are more hospitable. Pasturage then is good in the juniper zone. Jumiper and pinon are available for firewood, and melting snow provides water. Snowfall ix not excessive, and the thees catch much of the snow and provide shelter for the livestock $\left(6.3, p .44^{37}\right)$.
Although the Navajo herder may cover a wide summer circuit and return to the same hogan on the mesia in winter, he does not move constantly but lives for mony days or weeks in each of several homes. These Indians do not drift with the sheep from day to day, as do most herdsmen, but bring them to the corral each night and drive them out aqain in the moming. Intense utilization of a restricted radius results. When a section of the range no longer affords subsistence the sheep are driven to a new area a new hogan and corral are built, and the process is repeated. The Navajos are not village dwellers. Though several hogans may be built together in some favored location, they are more commonly widely seattered.

With the large increase in Navajo population and the corresponding growth in size of the flocks. the carrying capacity of the reservation has been strained to the limit. Concentration of corrals, and hence of grazing and trampling, in areas of the best grass or close to the feww watering places (fig. 40) has denuded the soil and induced sheet and gully erosion. Grass is rapidly giving way to bure ground or is being replaced by Russian-thistle, snakeweed, rabbitbrush, and other unpalatible shrubs and weeds. In some localities having of wood, water, and other supplics has developed ruts which serve to concentrate the run-off. As the rats enlarge to chamels the old wagon trails are abondoned and new routes are chosen, ustally only a few feet to the side. Series of nearly parallel linear gullies commonly result (fig. 41).

Present Erosion Conditions ${ }^{36}$

The Polacea Wash, both in present condition and in physiographic history, is typical of the larger dramage basins of northeastern Arizonia. Flow in the wash is intermittent and rarely is there a con-

[^12]tinuous stream of water from headwaters to mouth. Through aimost its entire length the Polacca contains a recently formed, cleep, steep-walled channel or gully, ${ }^{17}$ the cutting of which has der, royed large areas of the valley flat and, even more important, has brought about a marked lowering of the water table. Although accessible by car and truck, the Polacea Wash contains very few dams, bridges, or other engineering structures that might alter the natural drainage and is therefore especially suitable for study.

The Polacca drainage basin can be divided according to topography and erosion conditions into three main sections (figs. 25 and 26): The Black Mesa section, the Tusayan Washes section, and the Painted Desert section. Other washes draining southwestward from Black Mesa have similar divisions.

Frgune 41-Linery gullies, 4 miles southeast of Polacea vilage, formed by erosion oi wheel mits on wagon trails loading to a spring.

BLACK MESA SECTION

The Black Mesa section of Polacca Wash extends from the headwaters, near Yale Point, downstrean about 45 miles to the vicinity of Polacea village (fig. e25). After traversing 10 or 11 miles of headwater canyons the wash passes through a broad, open basin for more than 20 miles. From there it is again confined in a canyon for about 15 miles before reaching the southern boundary of the mesta.

The relatively short courses of the headwater channels on the mesia surface are characteristically broad and shallow. After no more than 4 or a miles the washes descend from the upland into maxrow rock-cut canyons, which gradually broaden downstream (figs. 37 and 42).
In the larger canyons pediments border the alluvial floors, but in the upper ends and in many of the smaller canyons the flat floors

[^13]

Figure 42.-Physiographic map of the eastern headwaters of the Polacca Wash, showing the messis, cliff lines, pedimenta, alluyiai fans, and vailey floors.
abut directly against steep canyon walls, appearing almost as if the sediments had flowed in like water to seek their own level against the flanking slopes. The pedimente are in larye measure zones through which the cliffs hare receded, but from which the products of recession have not been completely removed. Eridence for this is found in the presence of isolated "stacks," the position and structure of which indlicate clearly that they are erosional remnants.

Accelerated sheet wash. rilling, and gullying are actively reducing the pediment surfaces, and deposition of the resulting debris is forming extensive alluvial tams a few luodred square feet to many acres in size extending onto the valley floor. Many recent deposits of this type have buried good grassland to a depth of several inches or more, as in the large longitudinal fin at the mouth of the Canyon of the Little Hill on Top of the Mountain (fig. 42). Where lateral fans are numerous they form more or less continuous aprons down both sides of the canyons and force the longitudinal drainage to the center. Mrregular growth of lateral tans bings about periodic sideward shifting of the main drainage Jine.

In short reaches of the headwaters canyons the channels are essentially in their natural condition and show little sign of acceleration of erosion. Through most of the area, however, washing along the drainageways has been sufficiont to cut away the protectire vegetation and convert normal channets into active guthies. It is significant. in evaluating the present state of accelemated erosion in the headwaters, that the gullies in Dripping Springs, Horse Pasture, and Little Hill on 't'op of the Momatain Canyons end in lans and do not extend to the main Polacea Gully. Therefone, whaterer sediments are now being carried out of these tributaries are carreel by sheet wash and sheet flood. The absence of gutly chamels fathig from the tributaries suggests that natural stabilization might still be attained if the canses of acceleration of erosion conld be removed.

The cutting head of the Polacea Gully. when mapped in 1935, was about 0.8 mile above the mouth of Cotinnwood Tree Canyon. 'This head was wide, shallow, and digitate (higs. 42 and 43), and it was advancing through a section of the valley that had a broad, smooth floor. Owing to the flatness of the floor the flow spread out and entered the head from man sides.

Opposite Red Canyon and for about a mile below its morth the floor of the main walley is made up of a large compound longitudinal fan consisting of three major lobes. Of these, the one across the month of Red Canyon and the long narpow lobe extending down into the basin area (fig. 44), and dissected by the prosent Polacea Gully, appear to be the youngest. Several secondary fans are also recognizable and suggest that the main fan was formed by coaiescense of smaller ones. A few okd dramagewnys, shatlow and grass-covered (fig. 45), indicate former lines of longiturimal drainage through this reach and suggest the type of damage line that may have been present before the accoleration of erosion. At present the convexity of the cross profile of the canyon flow is sufficient to canse a division of drainage, and getlies have developed atong both sides of the canyon. The main gully follows the morthwest side of the fan, and just upstrean from the junction with the Red Canyon Gully it contans a knickpoint nearly 30 feet high.

[^14]About 1 mile below the mouth of Red Canyon, the cliffs diverge sharply and the Polacea Valley expands to a broad basin more than 20 miles long. The semilunar arrangement of bedtrock outcropes well out from the cliff face and the slight arch in the beds forming tho cliffs to the north make it apparent that the upstream end of this basin has developed on an anticlinal structure of the ('retaceous bets.

The north and west sides of the basin are brunded by bigh cliffs. but to the southeast the cliffs are low or absent and the basin extents to the edge of an outward-facing rim overlooking the tributary drainage of the Chinle Taliey. The divide between the Polacea anil Chinle drainages is marked by an isolated bute of remnant mesta. Waterless Mointain. visible in figure tt. In this view. looking ssuthwest from the northeast end of the bavin. the tim of the basin formed

 in the L'olacea Wash mphoitu the mouth of Led ('anyon, as seen fouking sotathwest from the bank of the prowent ['uticeat Gulls.
by the Chinle drainger em be seen at the extreme left. close to the horizon. The isolated butte is on the horizon. Left of center, and from it long pediment slopes extemd down to the mam Polacca drainageway in the renter of the view. Along the right horizon appear itw cliffs bounding the valley on the northwest. The alsence of cliffs along the southeast margin gives this basin somewhat the appearance of a gallery, facing out on the Clinle Valley.

A low bedrock ridge, extending duwn the center of the upper ent of the basin for about 4 miles gives a somewhat convex cross section to the valley floor. This convexity is nugmented by deposits of wind-blown sand. Drainare is imperfect exrept in the troughe along the two margins of the ridge and small hakes are oreasionally fount among the sand hills and in depreswons in the ralley foor. The usefuiness of these lakes for water stonge is greatly inereased hy collecting ditches which lead water into them. It is thought thit some of the depressions in the valley floor were once part of an old
drainage system. but the great amomen of sand that has shifted over the area has makked aty definite relationhis- that otherwise might be established.

In the basin area. the fan zome is better developert than in the headwater canyons and forms an almost continuous ahlurial apron. Only on the south. where the basin lies entirely within the Mancos shale beds, is the apron porrly dereloped or absent. and here a mantle of material more or less directly derived from the underlying bedrock merqes with the ahurium of the valhy fion. (iullips. most of which terminate down soqe in fans. are abombint on the allurial sloper.

Below the mouth of the Burnt Com the Polace dranage pasees from the broad bavilike ralley to the namower canon segmear, which continues southwew wat io the edge of Bhack Jiesat.

In this part of the wash the clif lines form a broken, irregular chain along both shles, and the perliment fopes stretch far out into the valley. The allurial lopes here are relatively narmow and steep and are essentially conthuous aproms fomen of coalesing fans. Sheh wind-blown saml is present on the slopes (fig. 46). where it ribecures surfare features and imerrupts drainge. so that only the larger tributaries reald the main wash. In opire of this covering the :lones are diserter by mamerons gullips (fig. fit). Nost of these reminate in allurial fans. and whaterer fow they eary sink int, the mantle of surtace sand that berone, proyresively thicker huwn tipam.

The talley flow in thi-streth is rehatively namon except where it brodens into loxal basins ar the month of triburars drainages. It is noteworthy that every brsin of any moniderabe size in the Bhack Mesa sertion of the wash has an extensive longitudinal fan in it. upper em. There are several ach basins in the upstream porthon and one comewhe harer bewimike area at the month of Burnt Com Wath. In the mall bavin along the Polacea Waw about 6 miles above the entran'e of the Burnt Com there is eridence of an oh longitmbinal atheral fan that hav given the valley foor a conves
 has alver bern developen in the upper part of the basin formed at the morth of Batnt (om Wath (figes 2.) and 26). This distribution of longitukinal fans seems on indicate that before gullying began the Polacea contaned a serie: of disomaectel chmonels. Pach engaged in building a fan at ite month. The lowation of the tans mas probably detemined be the low gradient of the basins, where spreading of the for weluced the carving power of the water and cansed depwition of the load. Only exceptionaly probonged and widenpread rams gave tun-oft sufficient to "oun themp" and carve a channel rompletely across the basin thats.

At many places in the deeper canyons of the Black Mesa section of the Polacta and along the southem marrin of the Mesa large masses of the cliff. tens of feet to many hundreds of feet in length, have broken lowse and have slid dommazed. This process is chiruteristic of areas where massive rocks such as the Mesaverde overlie the Mancos shale or other weak beds (\cdot, 4). Movement may be sudden or fairly show, and displacement is genemally small compares with the size of the block. The rock mass moves downward as a

Figure 47.-Physiographic map of the Polaces Wash drainage from the mouth of the Burnt Corn downstream for 7.5 miles. The main, Polacea Gully, the secondary' gullies in the tributary canyons, and the minute network of lateral gullics on pediment and fan slopes are ahown.
(Facees p. 7.8)
unit or as several subsidiary units and rotates backward, sometimes as much as 50° or 60°, on an approximately horizontal axis parallel to the cliff from which it descends (fig. 48). Such movements usually are known as slumps ($(\mathscr{3}, p p .65-6 \delta)$, but owing to their abundlance in the Navajo-Hopi country the local term Toreva-block, from the Hopi village of Toreva about 5 miles west of Polacea (fig. 25), has been applied to them by Reiche (85). Many of the blocks are more than 1,000 feet long. and some exceed 1,700 feet. In places, successive slumps from the sime cliff have produced series of steplike rock benches.
That the process has been long continued is shown by the varied stages of disintegration of the blocks, by the location of man-made structures, and by accounts of local inhabitants. Ruins of thir-teenth- and fourteenth-century pueblos on the crests of two of the largest and nearly last-formed slump blocks of a series near Chimopovi indicate the age of some of the movements. More recent slumps are known to have occurred near the Chimopovi Day School, about 1870, and approximately (f miles north of Black Mountain Store in 1927 ($85 . p p$. $547-548$).

Where large slump blocks are abund ant they add considerably to the available flat or gently sloping lmal in the pediment zone. The shallow sag betwoen the displaced block and the parent cliff is a fivored site for Navajo hogans. This may be attributed partly to the moderately grod vegetal cover (usually grass and some sagebrush, indicative of taromble soil and moisture conditions), to protection from the wind, and to springs that issue nearby at the base of the slump blocks.

fosayan washes secmon

In the Black Mesa section of the Polacal (pp. 72-79) the longitudinal profile of the wash closely parallels the southwesterly dip of the Cretaceous rocks into which it has been cut. Evidence of this is noted in the wiformity of height of the cliffs along the valley and in the absence of bedrock outcrops in the wash except on the limbs of the anticline about 5 miles below the mouth of Red Canyon (Gig. 25).
In the lower half of its conse to the Little Colormon, instead of paralleling the dip of the geologic structure the wasla cuts through the underlying rocks at a low angle. and the more resistant beds outcrop either in the bed of the wash or along the valley flanks, or both. Local steepening of the stream gradient and confining of the valley between low cliffs of the outcropping formations results. In localities where soft rocks formerly outcropped, erosion has worn them back to form broad basins. the size of which depends on the thickness of the soft beils. The schematic profile in figure 35 shows graphically the relation of the geologic formations to the stream profile.
The upper part of the Tusayan Washes section is a transition from the nartow valley above iuto the basin formed along the southern edge of Black Mest. The confining cliff lines diverge rapidly, as the Polacia enters this broad basin. Keams Canyon Wiash joins Polaccia Wash from the cast at the northeastern end of this section, and Wepo Wash enters from the north about 7 miles farther down the valley.

Figcme 4 . Close view of a large slumped block of Mesaverde sandstone northats of the motith of Burnt (orn (anyon.
The block has moved from left to right and his rotated to tilt steeply toward the chiff from which it was deriveni.

[^0]:

[^1]:
 contrin a steep-wallat ehammi.
 and Ehysiographte Iblulsion.

[^2]: matle and ldysiographive Jotrindon.

[^3]: Disinkn.

[^4]: T Prior to Dacembor 1898 the ptation Halma Was Fort Monatye
 IN NEW MEXJCO AND AKJZONA.] [Un[bubliched manhacript.]

[^5]:

 fext.

[^6]:
 spaetheil "TEdClito."

[^7]:

 mesint.

[^8]: ${ }^{2}$ No Arizona station has experiefted a samerhamid year sinee weather observations heran.

[^9]: It It mant he remembered that the relinhtifty of thens storm-fregheney determinatlons are
 therefore be considered morely as hatatratise of the poht that climatie change to an axtremely complex phenomenon.

[^10]:
 cllmatic change.

[^11]:

[^12]:

 and w^{2}, Roisinson took part in lator fiek work, with k. A. Johnson actiat as arty leader.

[^13]: ${ }^{17}$ The term "frally" as used here is resiricted to chanhels doveloped magely as a result of
 shape, font are matural features.

[^14]: distather.

