

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

Temperature, Moisture, and Penetration Studies of Wood-Staining Ceratostomellae in Relation to Their Control ${ }^{1}$

By Ralpf M. Lindgres,= formerly paihologist, Division of Forest Pathology, Bureau of Plant Indusiry CONTESTS

INTROD (:TION

Discoloring fungi that attack the sapwood of recently cut and stored forest products are of world-wide distribution and economic importance. Of the numerous species concerned. those causing bluish to gray blemishes commonly known as "blue stain" or "sap stain" are most prevalent. In the ["nited Stutes resulting damage is greatest in the Gulf sitates and Pacific coast regions, where moisture and temperature conditions favorable for the growth of the fungi occur through much or all of the year. Reminty, several factors have been operating to increase the ponomic importance of these organisms. One of the foremost is the use of second-growth timber having a larger proporion of suscrptible sapwood than is found in

[^0]virgin timber. In the Gulf States, particularly, there is the necessary trend in the lumber industry of supplanting large logging and milling operations with smaller ones, which, because of limited facilities and different handling practices, are often confronted with serious discoloration problems. Finally, prejudice against stained wood is increasing greatly and has extended to light discolorations, which formerly were considered insignificant.

Kesearch contributions from widely seattered sources have been stimulated by the ubiquitous wood-staining fungi. Much of this literature has covered control and taxonomic phases of the problem. During the past decade. extensive studies on control have resulted in the development of improved antiseptic treatments, which are now in wide and successful use on a variety of wood species and products (16). ${ }^{3}$ Along taxonomic lines, the preponderance of evidence has been that the genus (eratostomello contains some of the most common wood-staining species (4, 21). However, the investigations of Lagerberg et ah. (11) in licate that a group of miscellancous H yphomyentes is of equal or grever importance than (eratostomella species in northern Europe. Similar Hyphomvectes occur as discoloring fungi in the Enited states but are believed to be less important than in the Scandinovian countrios.

The present studies of wood-staining fungi concern temperature and moisture relations, rates of growth on agar and in wood, and certain practical asperts of the resulte in control programs. Sapwond of southern yellow pine and conmon species of ('eratostomella were used throughout the work. The several specific phases of the studies are conveniently treated separately.

TEMPERATCRE IN RELATION TO GROWTH OA AGAR AND stainiag of wood

There is surprisingly little literature an the rehation of temperature to the development of staining fungi on agar and in wood. Such data as ure availabie bave been obtained largely from work by European investigators on the cardinal points for growth on artificial media. So far as is known, no attempt has betem made to ronduct comparative studies with similar or closely related staining species occurring in the Enited States.

Employing an incomphete scries of controlled temperatures, Münch (15) considered the optimum for growth of Endocmatiophora coerulescens Nänch and sperios of ('eratostomalla to be between 20° and 25° (\therefore Slow growth was observed att $7^{\circ} \mathrm{C}$.

Falck (b) reported the critien temperatures lor a guestionable species to be $34^{\circ}, 6^{\circ}{ }^{\circ}$, and appoximately $\bar{y}^{\circ}\left({ }^{\circ}\right.$. Athough he mentioned (eratostomello pierar Mannets, Lagerberg ot al. (fl) bolieved that he worked with Leplographium handbergii hagerberg and Melin.

High resistance of f^{\prime}. pilifera (fir. Wint. Wo heat treatmonts applied to wood was reported by Hubert (\%). Athough wood-flecaying organisms varied greatly in reaction to Lemperatures of $95^{\circ} 10^{\circ} 180^{\circ} \mathrm{J}$. (35 5° to $82^{\circ}(1), 7^{\prime}$ pilifere was outstanding in its ability to momin viable for a time at some of the intemediate temperatures.

Six discoloring specios, inchading ('eratostomella rorndea Mënch, were tested on math hear by Lagerborg ol al. (11). A periodirity

[^1]in rate of growth was noted in contrast to the uniform rate shown by most Hymenomycetes. Optimum temperatures for the several species were between 22° and 25°, the minimum slightly above 0°, and the maximum above $27^{\circ} \mathrm{C}$. C. coerulea had a broad optimum range, between 22.5° and 25°, wherens Endoconidiophora coerulescens and Leptographium lundbergii had restricted optima of 22.5° and 25°, respectively.

Jussila (10) reported greaterst discoloration of export shipments of lumber at 22° to $25^{\circ} \mathrm{C}$. At 35° and 0°, stain development was retarded. Little discoloration occurred in shipments of lumber from Finland during periods when temperatures averaged less than 10°.

According to Vanin (20), Lebedev's investigations of several species, including ('eratostomella piceae, ('. coerulea, and C. pini Münch, showed the optimum temperatures to lie within the limits of 22.5° and 29°, the minimum between 0° and 10°, and the maximum between 27° and $39^{\circ} \mathrm{C}$. Details of the methods of experimentation are not available.

Some of the discoloring species mentioned above do not occur commonly, if at all, in the Chited States. This is not the case with (eeratostomella pimi and Endoeonidiophora cnerulescens, and may not be true of C'eratostomella coerulea. The last-named species apparently does not differ greatly in morphology from the common species recognized as (! pilifera in the United States.

The present studies inchuled isolates of C'eratostomella pilifera from several widely separated regions, (: pluriannulata Hedge., C. ips Rumboid, and (' coerulea, the last from Sweden and Canada. The specific purposes were to determine (1) eritical temperatures and rates of growth on artificial media. (2) tate of hyphal penetration and stain development in wood as afrected by temperature. (3) effect of altermating temperatures on growth rate, (4) possible thermal strains of ("pilifera, (5) comparative renction to temperature of (.) pilifera and ('. cofrulea, and (6) the importance of high temperatures as limiting factors in stain development in unsensoned lumber.

Growth on Agar at Different Temperatures

METHODS

In a preliminary series, nime different temperatures, ranging in approximately equal steps from 4° to $36^{\circ} \mathrm{C}$., were employed. Results of this work are not presented in detail because the chambers at $20^{\circ}, 24^{\circ}$, and 28° were not controlled accurately. Since the temperatures at $4^{\circ}, 32^{\circ}$, and 36° were fairly constant, some use of these data is made in estimating maximum and minimum points for development.

The growth studjes were made in $90-\mathrm{mm}$. Petri dishes containing approximately 201 .. of malt-extract agar, made of 2.5 percent mait extract and i.5 percent agar. Blocks of fungus-covered substrate, 5 mm . on an edge, were transplanted from actively growing plate cultures to the center of the dishes. After 6 hours at room temperature, the inoculated dishes were distributed in eight controlled temperature chambers which ranged from 5° to $40^{\circ} \mathrm{C}$. Diameter measurements of each culture were made daily for a period of 12 days, the size of the mycelial mat recorded representing an average of at least two
different measurements. Eleven isolates were studied, each isolate being represented by two or threc dishes at each temperature. The growth recorded daily for each isolate was based on the average growth of the three replicate cultures. Since the colonies were usually circular and the replicates varied little, measurement complications were slizht on the whole.

- For the study of growth at alternating temperatures, Petri-dish cultures similar to those described above were prepared for (C. pilifera and C. ips. Atter incubation for 2 days at $25^{\circ} \mathrm{C}$. the dishes, two for a given series with each organism, were shifted in rarions ways at 24- or 48 - hour intervals among the eight different temperntare chambers.

Collection and isolation data for the 11 isolates are given in table 1.
Table 1.--Designation and collection dinta on cultwes of Ceratostomella used in the stndies:

Fungrs		Cohection and isolation that			
	No.	Bhace	Wond	Date	Isolates
C. pilifesa.	\int_{3}^{362-73}	Mississippi so	Pinas nalustris Min do Minus tredu	$\begin{aligned} & 1933 \\ & 1982 \\ & 1982, \end{aligned}$	R. W. Davilson. Bo.
	$\mathrm{s}_{3} 3$	Mississimp	Pints pohastris	1932	C. T. Ramboid.
	6is E	do	${ }^{\text {d }}$ do	1932	
	313-92	Brexien	Pinus pondernsal Kaws	5331	
	19431 A 3	Calfornia	Pims innbertiana Dougi	1929	C.T. Rumbok,
C, corrulta	$\left\{\begin{array}{l}392-81 \\ 302-\mathrm{C} \\ \hline 1\end{array}\right.$	Comada	Pinas strohus I .	1930	E. A, Atwell.
C. plurianmulata.					
	$\frac{195}{345} 70180$	Mississiopi Floridn	Liquidambur sturacifua I, Pinas echinata Mill	$\begin{aligned} & 1929 \\ & 1982 \end{aligned}$	C. A. Rumbold. R. W. Datioson.

 T. Lagerbere, of Swedten.

RESULTS
Data for the growth of 11 isolat. . if ('eratostomella on malt-extract agar mantaned at constant temperatures are presented in table 2.

Tabls 2. firouth of Ceratosiomolla pilifera, C. phariannalhia, ${ }^{\circ}$. ips, and C. coerulea on mall-extart afar at lemperaheres of 5° to $40^{\circ} \mathrm{C}$.

[^2]Growth for different 24-hour observation periods at a given temperature was not constant for any of the fungi. Variations of as much as 2 mm . appeared in successive daily readings, some of which were due probably to slight errors in measurement and possibly to small fluctuations in temperature. The differences occurred with no apparent regularity, so that a definite periodicity in rate of growth

Frgdre 1... A comparison of the average daily diameter increment on malt-extract agar of 5 isolates of Ceralostomella pilifera from the southeastern United $\$$ States.
was not indicated. Likewise, there was no determinable increase or decrease in rate of growth with time in the relatively short periods of these tests.
Significant differences in the reaction of the isolates to the various temperatures are evident in plate 1 and figures 1,2 , and 3 . The C. pilifera isolates fall into two distinct groups which differ 2° to 4° in optimum and maximum temperatures for growth. The hightemperature group includes ail C. pilifera cultures crigimating in

Figdre 2.-- A comparison of the average daily dimeter increment on malt-xtract agar of Ceratostomella pilifera and C. coertiea from different geographie regions.

Figere 3.․ . A comparison of the average daily dimmeter increment on mat-extract agar of Ceratostomella ips and C. pluriannulata.

Mississippi and North Carolina and has as estimated cardinal points slightily below $4^{\circ}, 27^{\circ}$ to 29°, and 34° to $35^{\circ} \mathrm{C}$. The low-temperature group, which consists of isolates from California and a mountainous region of Mexico, has as estimated critical points slightly below 3°, 25° to 26°, and 31° to $34^{\circ} \mathrm{C}$. Figures 1 and 2 clearly show thesedifierences and also the degree of similarity within each group.

The two isolates of Ceratostomella coerulea varied widely in rates of growth and response to temperature (fig. 2). ${ }^{4}$ The isolate from Canada showed close agreement in critical points and increment with C. pilifera from California and Mexico, the former particulaty. Similar to these, its rate of growth was reduced appreciably at $30^{\circ} \mathrm{C}$. and was more rapid than that of the southeastern cultures of c ? pilifera at temperatures below the optimum. The Swedish isolate of C. coerulea showed the amerowest temperature range of any of the fungi tested, and its growth rate at favorahle temperatures was about one-haif that of the Canadian ('s coerulea and the reported rate for this species in Sweden. Considering these differences, some doubt must exist as to the normality of the culture. Although it lailed to produce perithecia in contrast to all other isolates, Lagerberg et al. (11) state that this often is true of old cultures of (9. coerulea. Its ability to discolor wood was not determined, but its cultural characteristics resembled those of stainir, fungi.

Of the several species, (Pratostomella plariannulata showed the slowest growth rates and ('. ips the highest (fig. 3). The cardinal temperatures for ('. piuriannulata were similar to those of the southcastem isolates of ('. pilifera. ('. ips was the highest temperature organism of the group; it failed to grow at 5° C.. made fairly rapid growth at 35°, and had cardinal points varying from 2° to 8° above those of the other isolates.

Temperatures above the optimum causerl a pronounced retardation of growth in all cases. An incruase of 5° to $8^{\circ} \mathrm{C}$. above the optimum resulted in inbibition of growth, whereas a deerease of 5° to 8° below the optimum uever reduced growth more than 40 percent and usually not more than 25 to 30 percent. A drop of 20° or more was reguired to stop growth at low temperatares.

The time of appearance of brown-colored hyphat, and the rate of change from hyaline to brown, varied with the different isolates and temperatures. Brown hyphae appeared carlier at favorable temperatures for growth than at 5° or $10^{\circ} \mathrm{C}$. and there was evidence that with hyphae of a given age, the chage from hyalime to brown progressed more rapidly as temperatures approached the optimum point. The fact that rate of hyphat darkening might have been affected by differences in the amonn of light in the temperature chambers cannot be disregarded.

There was a dieret relationship betwen the cribiont temperatures for grow th and viability of the isolates at anfavorably high temperatures. This was evident from the recovery made at 25° by cultures that had been inembated at 35° C. for 7 or 14 days. After 7 days.

[^3]Ceratostomella pilifera from California and C. coerulea from Sweden were no longer viable; after 14 days ('. coerulea from Canada and C. pilifera from Mexico failed to resume growth. AII other isolates eventually attained normal growth, but at rates that indicated a definite carry-over effect for 3 to 4 days from the incubation at 35°. The C. pilifera isolates from Mississippi attained a normal rate of growth most rapidly, followed by ('. pluriannulata and C. pilifera from North Carolina.

Loss of viability occurred at temperatures only slightly higher than the maximum points for growth. As mentioned above, f^{\prime}. coerulea and two cultures of $($ ' pilifera no longer were viable after either 7 or 14 days at $35^{\circ} \mathrm{C}$. After 2 days at 35°. the possibly abnormal C^{\prime}. coerulea from Sweden failed to grow; after 7 days at 30°. growth was resumed. None of the isolates except r? ips resumed growth after 2 days at 40°. One day at 40° was fatal only to (' coerulea from Sweden and occasional culturs of ${ }^{\prime}$. coprulea from Canada and of C'. pilifera from California and Mexico. ('. ips failed to grow after 7 dlays at 40°.

The effect of daily change of temperature on the growth of c^{\prime}. pilifera and (: $i p$ s is shown in figure 4. The average daily increment under conditions of constant temperatures is given for the purpose of comparison.

It is evident from figure 4 that both organisms became adjusted immerliately to the new thermal environments and continued growth at a normal rate, when the daily shifts were made between near optimum and suboptimum temperatures from 5° to $30^{\circ} \mathrm{C}$. In all such cases the daily increment was unither significantly higher nor lower than that of cultures maintained constantly at a given temperature. However, when the culture were subjected, in the course of shifting, to temperatures slightly above the maximum points for growth, a condition of retarded increment was evident for about 2 days. Thus. ('. pilifera showed subnormal growth for 2 days at 15° and 25°. following incubation at 35° for 1 day. Likewise, ('. ips grew at a reduced rate at temperatures of 15° and 30°, after being subjected to 40° for I day.

Hyphal Penetration and Developyent in Wood at Different Temperatches

METHODS

Blocks, approximately 1.5 be 2 ber 0.5 inches. were quarter-sawed from a fresh bolt of Pinus rechinta sapwood. Immediately ofter a surface treatment of 5 seronds in boiling water, the bloeks were placed in sterile Kolle flasks and inoculated be means of a platinum boop with a suspension of ascospores ansl ronidia of ('eratostomella pilifera (No. 3-3/3). The llasks were then distributed in chambers haring at the start 4° temperatum intervals from 4° to $33^{\circ}{ }^{\circ}(\circ$. Fluctuations of 2° to 3° developed in the $20^{\circ}, 24^{\circ}$, and 28° chambers while the tests were in progress.

One test series, consisting of a flask with "2 henvily inoculated blocks at each temperature, was for the purpose of observing hyphal development and the time of visible staining of the wood. A second

and larger series was intended for the study of radial and longitudinal penctration of the hyphae in wood. In the latter series, each flask contained 2 blocks, 1 of which was inoculated on a tangential and the other on a transverse surface. The blocks were inoculated by placing a spore suspension in a marked area on one surface of the block. Either 3 or 6 flasks were incubated at each of the different temperatures, the smaller number being used for the temperatures considered less critical. After 24,48 , and 96 hours, 1 or 2 flasks were removed from each temperature chamber, and the moisture content of the blocks, based on oven-dry weight, was determined. Sections for microscopie pammination were then prepared from each block by cutting out small cubes of wood at the point of inoculation. The cubes were beiled immediately in water and stored in a $50-50$ mixture of glycerin and alcohol. Usually 10 sections, 10 to 20 microns thick. were cut from each cube; these sections were stained in Pianeze III b and, after dehydrating and clearing. were mounted in canada balsam.

RESULTS

The stages of development of ('eratostumella pilifera on blocks of Pinus echinata that were incubated at farious temperatures are compared in table 3. The data are based largely on observations made through Kolle flasks with the unaided eye; consequently, the earlipst orcurrence of some stages probably was not recorded.

Table 3. Type of development of Ceratostomella pilyiera on the surfaces of Pinus rehenata blocks inctibated for 3 to 20 days al sc 10.320 .

[^4]The reaction of C. prilfera to different temperatures was in general the same on surfaces of wood as on agar. Differences were limited to the absence of growth on wood at $32^{\circ} \mathrm{C}$., the very slow appearance of visible growth on wood at the lower temperatiures, and the relatively slight variation in hyphal development between 20° and 28°. The studies on agar indicated that 32° was below, but probably close to, the maximum temperature for growth and that development was distinctly slower at 20° than at either 25° or 30°. Microscopic sections showed some penetration of hyphae at 32°, but neither mycelial growth nor staining was visible on the blocks after 20 days. At favorable temperatures, between 20° and 28°, colored hyphae and light staining of the wood surfaces were risible atter 4 or 5 days. Heavy staining of the surfaces and development of perithecia were evident within 7 days at these temperatures. A decrease in temperature from 20° to 16° and from 20° to 12° resulted in delaying the appearance of stain for 2 and 4 days, respectively. Only light development of colored hyphae and incipient staining were observed after 15 days at 8°.

The effect of different temperatures on the rate of penctration of C. pilifera into sapwood of Pinus echinata is shown in table 4. After 1 day, scattered hyphae, confined largely to the surface layers of the wood, had developed only at temperatures between 16° and $28^{\circ} \mathrm{C}$. After 2 days, slight hyphal penetration was evident at 8° and 12° but not at 32°. Penetraxion was greatest at temperatures of 20° to 28°; it reached 1.9 mm . in a radial direction and 6.8 mm . in a longitudinal direction. In general, penetration was three to four times as rapid longitudinally as radially. After 4 days, scattered hyphae were found in the surface cells of only a few sections of blocks incubated at 32° and no growth was evident at 4° or 36°. Again. the rate of penetration at the several temperatures between 20° and 28° was variable, particularly in a radial direction. Considering all temperatures except 32°, penctration was three to six times as great lougitudinally as radially.

Although direct comparisons between tables 2 and 4 are not possible at most temperatures, a general correlation is apparent between growth on agar and development in wood. At $4^{\circ} \mathrm{C}$., evidences of hyphal development were lacking both in wood and on agar after 4 days. ${ }^{5}$ However, at 8° slight surface penetration in wood was apparent after 2 days, wherens no growth was recorded on agar after a similar period. There was a further difference at 32°; growth was evident on agar within 2 days, but slight penetration in wood was recorded only after 4 diays. It appears from the moisture-eontent determinations that there was little loss of moisture at the higher temperatures during the first 48 hours, but that the trend was toward lower water contents after 96 hours. Stight drying of the surfares of the wood at 32° could have been a limiting factor in penetration, even though total water content of the blocks indicated favorable: conditions for growth.

In comparing actual rates of growth on agar and penctration in wood, wse is made of the radial incerment on agar rather than the diameter of the mat. On this hasis, it appents that growth during the first day was sompwhat more mpid on agar than in wood at the

[^5]favorable temperatures between 20° and $30^{\circ} \mathrm{O}$. However, after 2 and 4 days, the maximum longitudinal penetration in wood was almost equal to, and in several cases more than, the average daily growth on agar at all temperatures except 32°. Penetration in a radial direction in wood was about one-half to one-fifth that of growth on agar.
Tables 4... Penetration of Ceratostomella pilifera indo blocks of Pinus echinata sapwood incubaled for different periods at different temperatures

 penetradion "بapus an average of the maximump penetration in ench of the blocks of a series, Maximumb penctration equals the greatest jenetration feeorded in niny of the blocks of exeries.

Temperatures in Piles of Unseasoned Luaber

METHODS

During the summer of 1932 , air temperatures were recorded in and around piles of lumber seasoning at three southern sawmills located at Couchwood, La., Natalbany, La., and Hattiesburg, Miss. This general region is one of important blue-stain occurrence and high summer temperatares. The readings were taken between $10 \mathrm{a} . \mathrm{m}$. and 3 p. m. on days that were clear except for occasional clouds. Commercial piles of pine lumber that had been drying for less than 1 day to 40 days were selected. Partially or fully scasoned piles were usually adjacent to those in which temperatures were recorded.

All records inside of the piles were taken on the top surface of the board adjucent to the outside board, and at a point 4 to 6 fect from the front of the piles. The leights tested were 2 feet above the bottom, midway, and 2 fect below the top of each pile. The tem-
perature of the surrounding ajr was recorded in the shade at a distance of 1 to 2 feet from the pile, and at the same levels as the pile readings.

Seventeen piles of lumber, each having one series of temperatures taken for any I day, are represented in the comparative results. Some piles were used for only one series of readings and others. for severaf series on different days. For purposes of presenting the results, the temperatures recorded for piles of approximately the same ages are averaged. In the group representing piles 1 day or less in age, all readings concern different piles; for groups covering a range of several days in age, several readings on the same pile are represented to some extent in the averages.

RESULTS

The temperatures that were recorded in and around piles of lumber seasoning at three southern sawmills are summarized in table 5 . In presenting these results, it is realized that a number of factors, including size, type, location, and age of pile, as well as time and place of observation, would have to be considered in any detailed study of temperature variations in piles of lumber during seasoning. Nevertheless, the data reported herein are believed to indicate whether high temperatures are an important limiting factor in the discoloration of unseasoned lumber.

Table 5.-A comparison of temperalures outside and within piles of southern pine lumber of different degrees of dryness

The average of temperatures for the respective tested locutions within the piles ranged from 1.3° to $6.1^{\circ} \mathrm{C}$. lower than those of the surrounding air. The differences were least toward the bottom of the piles in most cases. Noticeable also is the general trend of smaller differences between outside and inside temperatures as the age of the piles increased; there was a $6.1^{\circ} \mathrm{O}$. difference in the upper portion of piles that had been stacked less than 1 day, as compared with a 2.4° difference in piles of 30 to 40 days in age.

The highest temperature that was recorded within any one pile was $31.5^{\circ} \mathrm{C}$. This pile had been drying for over 30 days and in all probability was no longer susceptible to stain. In piles that were less than 18 days old, inside temperatures seldom exceeded 28°, but in one case they reached 30.6°. In contrast, the outside temperatures usually were above 30°, and in one case reached 35.2°.

Both outside and inside temperatures decreased toward the bottom of the piles. This would be expected because of the downward and outward movement of the coel air resulting from evaporation of moisture from lumber.

In this study, the inside temperatures were recorded on boards that were adjacent to the outside boards in the pile. It is probable that such temperatures were somewhat higher than those that would have been recorded farther within the pile. On the other hand, the outside boards undoubtedly were subjected to higher temperatures than those recorded; however, any effect of temperature on stain development in such exposed boards would be greatly overshadowed by the influence of rapid drying.

Discussron

Among the factors that might affect growth response of fungi at different temperatures are the substratum, time of making observations, thermal history, and the favorableness of other environmental factors.

Considering wood-inhabiting fungi only, Woipert (22) reported that optimum temperatures for growth varied to some extent with the substratum. However, the differences in reaction were not of sufficient magnitude to preclude grouping the organisms tested into certain thermal classes. Correlations between the rates of wood decay and mycelial growth on culture media at different temperatures were attempted by the author (14). Temperatures that were favorable for mycelial growth were likewise conducive to rapid decay, but whether the cardinal temperatures or relative rates of growth were the same on agar and in wood was not determined. Gäumann (6) recently reported that the optimum temperature for vegetative growth of two wood-rotting fungi was 2° to $3^{\circ} \mathrm{C}$. higher than that for decay of wood. In comparing growth and respiration rates at different temperatures, Eelımann and Scheible (12) found that with a given amount of substratum, respiration might continue to increase at temperatures above the optimum for growth. Decay of wood was believed to proceed at the greatest rate under thermal conditions that were most favorable for the growth and ramification of the hyphac. Scheffer and Livingston (17) suggest that the optimum temperature for decay may be expected to lie somewhat above the optimum but considerably below the maximum temperature for mycelial growth. Although this difference in optima for growth and decay apparently is considered slight, they point out that it might prove greater under conditions in which growth of the fungus into unoccupied wood represents only a small part of the total artivity of the organism.

No significant differences were detected in the present study between the growth-temperature relations of ('eratostomella pilifera on malt agar and on wood. Penetration of hyphae and discoloration of wood were greatest at temperatures that also favored myeelial growth on egar. The average longitudinal spread in wood over a period of 4 days was in general close to the average radial increment on ayar at given temperatures. There was some evidence that the thermal range for rapid penetration and staining of the wood was broader than that for rapid mycelial growth on agar, and that establishment might occur somewhat more readily in wood than on
agar at the lower temperatures. The senreity of penetration at $32^{\circ} \mathrm{C}$. might indicate that maximum limits are lower on wood, but the possible influencing factor of surfaer drying of the wood cannot be disregarded at this temperature. While recogrizing that slight varia ions may occur, it is believed that the temperature relations of C. pilifera are practically the same on wood and agrat, and that growth of this organism in wood under difierent thermal environments can be determined with sufficient accuracy for most purposes from comparative tests on agar.

Changes in the growth-temperature relations with time have been reported for several groups of fungi. If the factor of time is important, the effeet of it would seem to be particularly evident in comparisons of growth of wood-rotting organisms for short periods on agar as against decay of wood during periods of severail months. In such eases, however, the possible effect of differences in substrata, as well as in time, would have to be recognized. Humphrey and Siggers (9) reported that for 7 of 21 fungi studied, the optimum temperatures for growth on agar shifted to lower points with increase of incubation periods. This chnnge suggested that the optimum temperatures for decay of wood over long periods might be lower than those indicated by the agar tests of short cluration. The author (14) noted that for 1 of 3 fungi studied there was a slight reduction in growth on agar and decay of wood with time at the higher temperatures. In the present study with ('eratostomella pilifera, there was no definite periodicity in growth rate, as suggested by Lagerberg et al. (11) for certain staining fungi. Furthermore, there was no apparent shifting downward of optimum and maximum temperatures for growth on ager or in wood with increase in time of incubation. The rapid development of most staining fungi on wood, as well as on agar, would make the factor of time less significant than might be true of many other wood-attacking organisms.

Data have been lacking on the effect of prior temperatures and of fuctuating versus maintained thermal conditions on the growth relations of wood-stalining fungi. In the present study. the subjection of cultures of C pilifera and C ips to daily changes of temperature within the range bounded by the optimum and minimum points for development resulted in neither stimulation nor refardation of growth. Departures from characteristic growth under conditions of constant temperatures were evident only when the cultures were subjected, in the course of the daily changes, to temperatures slightly above the masimum points for development. Incubation for 1 day at unfavorably high temperatures resilted in retarded growth of the culture for about? days in more favorable themal environments. Such evidences of redarded growth, which might have been due to killing of the actively growing hyphac at the margins of the culture, wore most pronounced for the organisms with the lowest optima. Except for the retording or killing eflied of temporary exposures to supramaximum temperatures, it is doubted that important variations it growth reaction of these organisms result from changing as compared to maintained tromperatures. It is rembed that differences of short duration mirrht have been olscured in the daily mensurements employed in this study, and that the datly and suddete changes of temperature are not lypical of the fluctunting conditions oceurring maturally.

There was a direct relationship between critical temperatures for growth of the isolates and wiability at unfavorably high temperatures. In all cases, the isolates with the lowest optima were the first to be killed and the last to recover from incubation at 35° and $40^{\circ} \mathrm{C}$. Likewise, the highest maxima were possessed by those isolates with. the highest optimum points. A comparison of the work on wooddestroying fungi by Liese (13) and Cartwright and Findlay (1) shows, according to the hitter, that the group with low optima are in general the most sensitive to kilhag by heat. Gumphrey and Siggers (9) apparently foud no consistent relation between the maximum and optimum temperatures for growth of a lage number of Elymmomycetes, although their data show a direet correlation for most of the species.

The limiting effect of extremes of temperature on the distribution of wood-inhabiting fungi has been mentioned by Cartwright and Findlay (1). They observed that fungi that ame of wide occurence have a broad temperature range. Furthermore, dominane of species in an enviromment in which other factors ate egualy lavorable was believed to depend on the relative rates of grow that different temperatures. The use of only three distinet species. the lack of data on the refative frequmey of their ocenernes, and then prediection for differemt wood substrata make comparisons atong the above lines of little value in the present study: lateresting to note, lowever, was the occurrence of Chermal strains of (eretostom lla pilffera which differed 2° to 4° in optimm and maximum temperatures for growth. All cultures ohtined from the warm sotheasern section of the Cnited States were in the high-temperature group. (". coerulea from Canda conformed closely in grow th the low-imperature group, which also sems to be truc of (Cow cuba in Europe (IN). Differences in scasonal and regional distribtion and prevalenes of drese and other staining fungi probably are to tee experted from the rariations shown in cardinal points for development. Recent studies by Yerrall (21) show a general serrelation betwern the semsonal reguency of staning fungi nud their grow th in relation to emperature.

On the basis of the present work. high temperatures, as they oceur naturally, are not ronsidered an important limiting factor in the discoloration of hamber during seasoning. Although the cardimal temperatures of ober strmand staning species probably are not within the limits of the detemined ones, it does not seem probable that many of the common diseoloring orgmisms have optimem and maximum points much below 23° and 30° (., respertively. The studies in southern lamber vards indieated that ar lemperatures around pites of lumber are often above the maximm for growth of staming fuxgi. Dut that (emperatures within the phes of drying lumber usually are favomble for rapid stain development. These records were taken during wam sumer monthe in a rexion where temperatures are probabiy is high as in any other locelity of impotant stain development in the tiated states. Tomperatures unfavorably high for grow th mbonhedly orem at times on the lop eourses and ontsicle boards of unsensoned piles, mat also throughout piles of dried lamber; however stain development usually is precluded ander such conditions as a result of rapid loss of moishere from the wood. Within the limits of moisture content farorable for growth of these fungi in wood, loss
of water from wood continues and is accompanied by the cooling effect of evaporation; if evaporation ceases, a moisture equilibrium bebween the wood and atmosphere has been reached and staining is unlikely, regardless of temperatme conditions. The principal effects of high temperatures probobiy are those of retarding growth and redueing inoculum on exposed surfaces of humber and logs, and of influencing the relative development of diferent staining species that vary in their temperature relations.

The importane of low temperatures in rotarding and inhbibing stain development varies with the locadity and season of vear. Mininum points for development of the several species of (teratostomella employed in these studies were in the region of 4° arth in one case between 6° and $8^{\circ} \mathrm{C}$. Other species probably have somewhat higher minimum points, although fow, if any, would be bikely to execed 10° as a lower limit. In the Gall States region, low tmperatures during the cooler months would be expected io retard, but seddom inhibit, stain derelopment for extended periods. In such northern rexpions as the Lake Stales, cessation of staining would seem to be the case during mosi of the winter season. Such conclusions are elearly corroborated by practical experiener in the two regions. In the Guif States, bosses due to discoloration are meountered throughout the year, but, with favorable moisture conditions, are likely to be more severe in the wam summer months. Control treatments are applied thronghout the year in much of this tomitory. In the Lake States, sensonal variations in stain occurreber are particularly pronounced, and definite dforts at control are expended only during the warm, moist periods.

It is apparent from fobl observations that the eftertiveness, as woll as use of preventive methods is intheneed by lemperature in relation to growth of staming fungi. Where temperatures of 20° to 30° C. preval, inconsistemt control of stain is obtaimed if the application of antiseptic dips or sprays to the surfaces ol lamber is delayed for more than 2 days alter sawing. de 5° or 10°, the effectiveness of such treatments is litde impaired by a simine of somewhat longer period of delay in appleation, Differences in the rate of penetration of the organisms at various temperatures might likewise influence the eflectiveness of other methods of eontrol.

Ceratostomella ips, which oceurs in common association with tree and log-atheking beotles, had the highest cardinal emperatures and most mpid mate of growth of any of the isolates studied. The optimum temperatare for growth of this species was close io the maximum for development of the other isolates. Aralable literature does not diselose whether the staming speeies associated with inserts usually are of n high-temperature and rapid-mowing type. Temperatures under bark. particularly of logs lying in the stan, of en exeed thoso of the ais, and at times would perebuhe the development of many staining fungi.

OH (OERATOSTOMEBAA PEIIPERA

Moisture is the most common limiting factor in the tevolopment of staining fungi in wood. Thless stornge of wood unter water is prartienthe, information on the minimum moisture requirements of stain-
ing orgenisms is of greatest usefulness in the development and application of control measures. Previous investigations have emphasized the minimum points, and the following review of literature is confined to this phase of the moisture problem.

Munch (15) reported only slight tevelopment of ('eratostomella coeralea in wood of Pinus syluestris L. with moisture contents in the region of 28 percent, oven-dry basis. He apparently considered 28 percent as being close to the lower moisture limit for the growth of this organism. Moisture gradients in the experimental material throw some doubt on the opinion that slight discoloration is nossible without the presence of free water in the cells.

Lagerberg et al. (11) used sections of pine and spruce that had been partially sterilized at $50^{\circ} \mathrm{C}$. The minimum moisture content for C^{\prime}. coerulea proved to be slightly below $2 \overline{7}$ percent, oven-dry basis. The limit for Endoconidiophora coerulescens was some what higher than that for most of the species stadied. No effect on lower moisture requirements resulted from the partial parafining of the surfaces of the experimental material. They conchded that stain development at, or immediately below the fiber-saturation point was of no practical significance, and that free water in the parenchyma cells was necessary for important discoloration of wood.

After analyzing data from lis own and other investigations. Hubert (8) concluded that hittle development of any of the sap-Stain fungi occurs at or below 20-peremt moistur, ovender bisis. The results of a number of studies employing several discoloting speries and kinds of wood were presented in tabular fom. Minimum moisture limits were shown to wary from 20 to 60 perem in the several tests; diferences were great even for the same fugus on a given wood.
('olley and Rumbold (3) tested C'eratostomella pilifera on sterilized Pinus taceda stioks in which a moisture gradient was established durmg the incubation period. The lower limit for stainger was believed to be approximately 24 percent, but a moisture content of 20 pereent was surgested as a practicable and safe working limit.

Jussila (10) reported that export hamber with less than 24 pereent moisture at the time of shiphent did aot discolor in transit. Considerable stain was encountered in lumber that had more than e4t perent of moistme nt the time of loading. or that was exposed to wet conditions during transport.

According to Vimin (20), Lebeder reportel that there was possible stain development at difterent moisture contents. over-dry basis, as follows: 22 to 33 percent for ('evatostomella cisrulea, 28 to 33 perent for ${ }^{\prime}$. pini, and 30 to 33 percent for ('. piceat. No stain development was reported for ('. cofrules at 22 perent, for ${ }^{\prime}$. pini at 28 peremt, and for ('. picear at 30 pereent. The details of Lebeder's experimental procedure and interpertation of results are not avaifable.

Most of the previous work did not permit accurate control or determination of the moisture content of the wood during the initial stages of penetration of the staming fungi. lin the present study, methods differing from those used previousty were employed in determining the critical lower limit of moisture for penatration of ('. pilifera into Pinus echinata sapwood. The manner in which moisture content was controlled is considered kess subjeet to error than the carlier methods of drying wood to various degrees and attempting to maintain con-
stant moisture conditions subserpently or of seding up moisture gradients in moist sticks with, or without, one med in water.

Methods

Blocks, approximately 1.5 by 1.0 by 0 .in inches were cut from uninfected Pinhe echinata sapwood shipped in log form trom Louniana. Thansverse sperimens were mado because moisture changes and fungus penetration in wood are more rapid longitudinally than either radially or tangentially. The blooks wore brough 10 motature equilibrium in a room with automatieally manatand mative humidity of 60 pereent. Ther were then placed in stoppered flasks and stemed in an adochave lor 20 minutes at atmospherte presure. The blocks were distributed among right large abinght desibeators dach of which contalined a saturuted solution, with exase chemicen, designed to give
 solutions. These salutions are listed in table di. Wire serems suspornded about 2 imeles above har surface of the liguid bipt the blocks from beroming moistomed. The desterators, solutions. and seroms were sterilized before insorting the blocks, as a precaution agamse later eontamination of the wood.

There blocks intended for controh and throw for later inoculation Wre transfered under as aseptie eonditions as pessible from the sterilized flasks to wach desiceator'. The desieretors were stored in aroom
 $\underline{2}$ of the blocks in weht desicrator wore remored and their mosture contents were dedomined. There of the remaniner four bigus were inorulated by trantioming with tamall noedhe aseospores and conidia of f. phliffer No. $3 \cdot 3 \cdot 3$ to one of the blocks, and droplets of a spore suspension in strile distilled water to the other two. After 10 days the awerfer moisture contents of the there inoculated and one control bock wore determined, and smatl rebles wore then ent from the place of inomention for soctioning purposes. [IFphal peractration and devalopment ware determined by misooseopic examitation of 12 sertions from amel, blork.
 were werl, and the blows wor not subjerted to a prodminary sterilization lratment: othorwise the methods were similar to those de eribed mbove.

Reselets

 molsture contents are stmmarsored in table a.

The moistare rontents remeded in the blacks were not in all eases the expered ontes lor the rhemiral solutions used; mevertheless a faidy satisfactory mage was obtatued in the requion of the eritiond points. ('lose similatily on the whole is arident betwern moistare rontents at the time of inorndation mat at therempletion of the test. The ugreement indiontes that an equilibriom of the wood with the air had been remehed at the time of thoculation and that appeoximately the same water rontent was maintained throughout the inrebation periont. Althongh diflerences are seen in the moisture pereentages of the six bloeks in each series, the greatest deviation from

Table 6.-Development of Ceratostomella pilifera in small inoculated blocks of Pinus cchinala sapwaod maintained for 10 days at diferent moistire contents

Solutions determiuing relative humidity of atmosphere surrounding blocks, time of examination, and treatment	Moisture content of blocks (oven-dry weight basis)	Microsconie sections showing hyphal presence ${ }^{1}$	Remarks
Dipotassium pliosphate (KinPOi): Al inoculation.. \qquad At end of test:	$\left\{\begin{array}{r}\text { Percent } \\ 14.5 \\ 14.2\end{array}\right.$	Percent	
Inoculated.	12.2 13.1 13.5 13.1	0 d No surface ar interior zrowth.	
Inoculated.	18.7 16.3 16.3	ll\|l $\begin{aligned} & 0 \\ & 0 \\ & 0\end{aligned}$	$1) 0$.
Al inocrlation..	19.8		
Alt end of test:			
Inocuiated.	17.7	$0 \cdot 1$	Da.
	15.2	011	
Barium chloride ($\left.\mathrm{BaCl} \mathrm{l}_{2} 2 \mathrm{il}_{3} \mathrm{O}\right):$			
At inocitatiors.	
At end of test:			
lnoculated..	18.7 1808 10.7	$\left.\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right\}$	1)o.
Alidoculation -	${ }_{2} 98$.	
At end of lest:			
inoculated.a--...........-...	(30.0	$\left.\begin{array}{l}0 \\ 0 \\ 0\end{array}\right\}$	Do.
Check...	38.0	.	
Sudium tibasic phosphate (Noitron. 12 $\mathrm{H}_{4} \mathrm{O}$):			
Al inoculation	${ }^{23} 8$		
At end of test:			
Ineculated.-	23.1 23.7 24.0	$\begin{gathered} 60 \\ 100 \\ 50 \\ 50 \\ 50 \end{gathered}$	Surface growth risible only in block No No staill. Ityphae itl wood sparse, silurt, thick with stubby protuber- unces,
Polassium sulfate ($\mathrm{K}_{4} \mathrm{SO}_{4}$):			
At luoctuation	23. 21.1	!	
At end of test:			
Inocutated.	${ }_{24.7}$		
	28.5	100 d	abourdant in rays and tracheids.
Water ($\mathrm{CH}_{2} \mathrm{O}$):			
at inocuiation.	27.7 38.0		
At end of test:			
	27.2		
[noculated..	23. 38.5 3	$\lim _{54 k}$	abundant in wo clemids, rameticularly in hlocks of 34,5
Cheek	47.2	${ }^{4}$	

[^6]the average within six of the seven series employing chemical solations was less than 2 pereent, and in four of them, approximately 1 percent. Unsatisfactory control of moistare contmat was obtained over water, three of the biocks being close to the fiber-saturation point and the remaining three from 5 to 20 percent higher. Absorption of some water of condensation and wetting in the ctse of one block undoubtedly were factors in these differences.

Tisible staming of the surface was noted only in the blocks exposed to a saturated atmosphere orer water. There was a cottony growth of white mycelium on the blorks ranging from 24.4 to 28.5 perent in moisture in the potassiom sulfate series. Sparse mycefium developed on the block with 24 -perent moisture in the dibasie sodium plonsphate series, but no hyphne were evident on the blorks having 23.7 and 23.1 percent of moisture.

Hyphan wore observed in the ays and tacheids of sections taken from blocks having 23.1 pereont and higher moisture. In the block having 23.1 perent of moisture, only a few short filaments were found close to the point of inoculation in two-thirds of the sections. At moistare contents above 24.4 perent, hyphar were fairly abundant in both the wood mays and tracheids. The minoculated check blocks for all sories showed no interior or exterior evidences of fungus growth.

Hyphal apperance and distribution in the wood eells varied eonsiderably in blocks of different moisture contents. Wature brown hyphas, which result in discoloration of wool, were melatively abondant at moisture contemts above 29 , inferguentat 27 to 29 , and absent below 27 pereent. Hyaline filamonts were well distributed through rays and tracheids at mostum perentages fobove 24.4. At the eritien moistare contents of 23 to 24 pereent, hyphal growth was himited to a sparse xerophytie type, which had penetrated only a short distanes from the morulated edge of the sections. The filaments were short, thick, henvy-walled in appenance and had st ubby protuberanes mother than defmite brande devolopment.

Becanse of contamination, tevinitersults were not obtambbe from the series of lests in whieh unsterih\%ed wood blocks were used. The blocks apparently hanl bewn exposed to Rhizopus sp. before being placed in the desierators. It appeared from the limited data that the minimum moisture limits were not significantly difierent from those in wood criven the farly mild hent treatment. Likwise, no detemminable diference in results wos ohtained in the use of dry spores and minute spore suspensions as inorulam.

Discuassmion

After 10 days, slight devolopment of Ceratostomello pilifera in storthaf pine sapwod was noted at moisture eontents betwen 23 and 24 pereent, oven-dry bnsis. Fowerer, it is not believed that typhat development under such conditions woukd have progressed to the discoloring sage. A moisture eontents betwem 24 and 25 peremi, hyaline finmonts were well distributed through the wood rays and fachoids mat appared hedy to continue development to maturity with lonure inecthaten periods. Ahove 2.7 prement in moistare rontent, die biocks comtameft mature hown hyphar and ustanly were visibly stamed at the end of 10 days of incubation. 'The conchasions
reached is in close agreement with that reported by Colley and Rumbold (8)-that a moisture content in the region of 24 percent is the lower limit for staining of wood caused by C. pilifera.

Doubt has existed as to whether free water in the cell cavities of wood is required for stain kevelopment. Most investigations, including the present, have found the minimum moisture limit to be in the region of the reported fiber-saturation point of the wood $\langle 27+$ percent). The fiber-saturation point is not a definite and constant value, but varies to some extent with different woods and treatment of the wood. It is generally necepted that it camot be reached in an msaturated atmosphere. Wood incubated in atmospheres of high humidity, but not saturated, showed fairly abundant penetration of hyphae; howerer, there was visible staining daring the incubation period of 10 days only in blochs exposed to saturated atmospheres over water. Although free water apparently is not essentind for limited hyphal penctation and development, and possibly siofht staining over an exbended period of time, it seems evident that significant staning from a practical staudpoint oceurs only when the wood is at or above the fiber-saturation point.

Insufficient moisture has never been considered a factor in the usuaf absence of stain development in the sapwood of living trees. Nost. investigators are inclined to ascribe this condition to exeessive water contents insiand (8,10). With certain tree species in which 150 pereent or more moisture in the sapwood is not uncommon, this explanation undoubted!y holds true in part at least, although other possible contributing factors cannot be disregarded entirely, In the case of heartwood in the living tree, insufficient moisture has beren mentioned as one of the possible reasons for the absence of staming fungi ($\delta, / 1$). This explanation is believed untenable for most species in that heartwood in the tree is usually, if not always, at or above the fiber-snturation point. In addition, relatively high water contents are not uncommon in tustained heretwood exposed to moist conditions of storage and use. The absenee of sugars, starehes, and other materials in the parenchyma cells or the presence of inhibitory extractives is considered a more probable influencing factor.

It has been suggested $(8,8)$ that a moisture rontent of 20 percent in wood be considered a safe and practicable working limit for control purposes. Such a limit is considered reasonable even though minimum moistare contents for stan devolopment modoubtedly yary to some extent for different organisms and for woods with different fiber-saturation points. Conceming the dfect of different wood substrata on mosture relations, Snell (18) reported that the optimum and maximum moisture contents for decay were inversely proportional to the specifie gravity of the wood. Whatever relations exist for wooddecaying fangi in this connection might rensombly be expeeted to hold for staining fungi also. It is improbable, however, that minimum moistuce requirements are influeneed by speeife gravity tosuch an extent as are the optimum and maximam points.

Wide use is made of the minimum point for stain development in control efforts that are directed at reghating the moisture content of wood. The maximum point is of practical usofulnoss principally for logs and large timbers that ean bo stored under water. White moisture contents below the minimum are renched arentually in air-seasoned wood, the determining factor in stain ereurrener is the
rate at which the wood dries. The rapid penetration and subsequent development of discoloring fungi reguire that the drying rate be fairly rapid if staining is to be avoided. Ender certain conditions of drying, wood may come to, or below, fiber saturation at the surface but retain a hirg moisture content in the interior. If this oceurs after the staining organisms have penetrated into the interior but while the hyphae in the surface layers are still in the hyadine stage, a type of discoloration known as "interior stain" may develop.

Food that has been dried below the fiber-saturation point is still subject to discoloration upon remoistening. The relative susceptibility of remoistened and fresh wood varies lor different organisms, woods, and methods of handling the woor (11). Discoloration of seasoned wood that is placed under moist conditions of use or storage is not uncommon. In the case of export shipments, Jussila (10) reported that stain was common in dry lumber that was exposed to moist conditions at the time of loading and unloading, in the holds, or on deck during transport. Similar observations have been made on shipments of lumber from the Gulf States.

penetration of ceratostomella pilifera into wood AND ITS RELATIOA TO COYTROL PROBLEMS

It is generally recognized that stnining fungi concentrate in the parenchymatous elements of sapwond and require the contents of surh cells as a rendy souree of food. While hyphae are not uneommon in the tracheids of coniferous woods, they are primarily massed in wood rays and resio ducts. In wood that is stained thoroughty by some of the common Ceratnstomella species, parenchymatous cells sometimes are decomposed to the extent that structure is obliterated. Tracheids usually are left intact except for occasional bore holes in the walls. Passage of the fungi from cell to cell is often through pits in the radial walls, but direct penetration of the tangential walls of tracheids is not uncommon. The mechanism of penetration is a disputed point; Lagerberg ot al. (11) believe penetration is accomplished ordinarily by mechanical mons, wherens Hubert ($\$$) considers secretion of eneymes by the lyphal lips as a more probable explanation. The constriction of hyphare in foreing passage through pits and walls and the oceurrence of swellings at the points of entrance and emergence are common for some species, but apparently not for all.

Information on the rate of penctration of staining fungi into wood fans been limited largely to general indications yielded by studies of factors affecting stain development. Wünch (15) reported an average longitudinal growth for C. pini of 5 to 10 mm . per day. There was little or no pemetration in freshly cut wood, but complete penctration within 10 to 12 days was obtained in cross sections, 8 ce. in theight, after a loss of water equivalent io 10 to tis pereent of the weight of the wood. Lagerberg et al. (11) present some general figures which indicate daily radial rates of peneration of the magnitude of 1 to 1.8 mm . for C coprulea, and 2 to 2.5 mm . For C. pini, under favorable or semifavorable conditions for growth. Greatly, reduced rates of penctration were indicated for both organisms as moisture, oxygen, and other conditions affecting growth became less suitable. The relation of temperature to the rate of penetration of C. pilifera into pine sapwood has been considered in the present bulletin.

The purposes of these studies were to determinc rates of penetration of C. pilifera in the different structural planes of pine sapwood, and to use such data in ascertaining how soon chemical treatments must be applied to fresbly cut wood in order to ohtain efficient, control. The occasional failure of chemical-control measures that are in wide commercial use has sometimes been the result of delaying treatment until the staining organisms had penctrated beyond the depth reached by the antiseptic solution

Rate of Hyphal Penethation Into Wood

METHODS

Sapwood blocks, 2 by 2 by 2 inches, were gunter-sawed from an uninfected \log of Pinus echinata that averaged about five growth rings per inch. Care was taken to obtain as true radial, tangential, and transverse cuts as possible. All surfaces of the blocks except the one to be inoculated were dipped immediately for a few seconds in a hot bath of paraffin (about $100^{\circ} \mathrm{C}$.), followed by transier to a cooler paraffin bath (about $60^{\circ} \mathrm{C}$). Single blocks were then placed in sterile 2-quart jars that had been phagged with cotton and sterilized. The blocks were inoculated by placing a spore suspension of a monosporus culture of Ceratostomella pilifera in a small area in the center of the surface to be tested. The jars were distributed between two rooms maintained at 60 and 90 percent relative hamidity and a temperature of 25° to $28^{\circ} \mathrm{C}$. After incubation periods of $24,48,72$, 96 , and 288 hours, six jars, containing blocks inoculated on the three types of surfaces, were removed from each room. Microscopic seetions were made from small cubes that were eut from the blocks at the place of inoculation. The maximum penetration recorded in all blocks of a given series and an average of the maximum penetration in each of the blocks of a series, based on the examination of 10 sections from each blook, are used in presenting the results. Moisture contents of the large blocks were determined from samples taken adjacent to the area from which the cubes were removed.

To compare penctration from springwood and summerwood surfaces, 16 blocks, 2 by 1.3 by 0.7 inches, were cut in such a manner that wide bands of either springwood or summerwood were exposed on the tangential surface. The blocks were taken from a single bolt and from the same ammal rings insofar as possible. Half of the blocks were either surface-sterilized in boiling water for 5 seconds or autoclayed for 15 minutes at 15 pounds' pressure. Four blocks of each series of eight were then inoculated on either a summerwood or a springwood surface. Incubation was for 84 hours in a room maintained at 90 percent relative humidity and a temperature of 25° to $28^{\circ} \mathrm{C}$.

RESULTS

The data for the blocks incubated at 60 and 90 percent relative humidity are grouped because no significant difference in hyphal penctration or moistare content of the blocks could be detected. The average moisture contents of the blocks after the several ineubation periods, based on six specimens in each case, were 104, 98, 106, 105, and 100 percent in the room at 90 pereent relative humidity;
and $106,107,96,102$, and 96 percent in the room at 60 percent relative humidity. It is obivous that the method of handling the blocks permitted little loss of water, even after 12 days.

The depth of radial, tangential, and longitudinal penetration of Ceratostomella pilifera in blocks incubated for 24 to 288 hours is shown in table 7. Although penetration varied considerably in different sections from a single block, and oceasionally in different blocks of a given series, the rates shown are typical of the great mass of the data.

Tamle 7.-A comparison of radial, tangcnial. and longitudinal penetration of Ceratostomella pilifern into Pinus echinata blocks incubated for 24 to 288 hours at 25° to $28^{\circ} \mathrm{C}$.

[^7]Definite daily rates of penetration, which were maintained throughout the several incubation periods, are not apparent in table 7. Except for the first 24 hours, however, the data indicate an approximate daily rate of $0.5,1$, and 4.5 mm . in the tangential, radial, and longitudinal direction, respectively. Rates of Ω somewhat similar magnitude apparontly were being maintained at the end of 288 hours. Using these data as a basis, a ratio of 1:2:9 for the relative rates of penctration in the thyee structural directions is indicated. Earlicr studies in the field, in which a number of measurements were made of visible discoloration in pine lumber, had shown radial penetration to be two to four times as rapid as tangential penetration and onethird to one-seventh as rapid as longitudinal penetration.

A comparison of tables 4 and 7 shows close agreement on the whole in the depth of radial and longitudinal penetration for similar incubation periods and temperatire. Again, the rate of longitudinal penetration into wood is indicated to be as great or greater than the average radial growth on agar (table 2).

The radial penetration from summerwood surfaces was slightly less than from springwood surfaces, both in sleamed and unsteamed wood (tabic 8). Although the differences were small, they were fairly consistent for all blocks. A pronounced effect on rate of penctration resulted from steaming at 15 pounds' pressure for 15 minutes. It is noted, however, that the depth of penetration into the unsteamed wood was somewhat less than would be expected from table 4 and 7. Unfortinately, determinations of moisture content were not made
in this series; therefore, it is possible that moisture conditions were somewhat more favorable for rapid penetration in the steamed than in the unsteamed wood. Nevertheless, radial penetration into the steamed wood was two to three times as great as that recorded in any of the other tests.

Table 8.-Radial penetration of Ceralostomello pilifera from inoculated springwood and summerwood surfaces of sleamed and unsleamed Pinus echinata blocks incubated for 84 hours at 25° to $28^{\circ} \mathrm{C}$.

Surface inoenlated	'Ireatntent of blocks	Radin penctration ${ }^{\text {P }}$	
		Average Maximum	
Springwood	5-second dip in botliog water.	Mrin.	Tim.
Summerwood	-.do..-	1.2	1.3
Springwood ${ }^{\text {S }}$	15 pounds ${ }^{\text {d }}$ stenm for 15 minutes.	8.5	9.0
Summerwood...	. do....	7.0	8.0

${ }^{3}$ Gesed on the examination of do sections from 4 blocks in each cuse. A verage ponctration equals average of the maximum penetration in eagh of the blocks of a series. . Maximum penctration equals the sreatest
penetration recorded in any of tho blocks of sorics.

Rate of Hyphal Penetration as Affecting Use of ChemicalControl Treatments

methods

Radial and tangential bourds, approximately 1 by 6 by 14 inches, were cut from uninfected Pinus echinata sapwood. The boards were sprayed immediately with a spore suspension of Oeratostomella pilifera and then placed in solid piles in a room maintained at 90 percent relative humidity and a temperature of 25° to $28^{\circ} \mathrm{C}$. After periods of $1,12,24,48,72$, or 96 hours, a given number of boards were dipped for 10 seconds in a. 0.24 percent aqueous solution of a proprietary compound containing 5 percent of ethyl mercuric chloride. The treated boards were stored in small piles in the humidifed room for a period of either 21 or 28 days, at which time they were examined for surface and interior stain development. Two series, cousisting of 24 and 36 boards, were handled in the manner deseribed. Depending upon the series, two or three radial boards and an equal number of tangential boards were tested for each of the six periods of delay of treatment.

In determining the approximate depth of penctration of antiseptic solutions applied as 10 -second dips, use was made of solutions that give a color reaction in wood. Freshly cut boards were dipped for 10 seconds in each of the following: 5 percent sodium bichromate, 5 percent sodium dinitrophenolate, 10 percent hydrochloric acid (tested for red color with phloroglucin), and 4 percent zinc chloride (tested for blue color with a mixtare of 1 percent potassium ferrocyanide, 1 percent potassium iodide, and a 5 percent starch solution). Supplementary evidence was obtained from measurements of the bright outer zone in 20 boards that had been given a 10 -second treatment with the ethyl mercuric chloride solution either 72 or 96 hours after inoculation with C. pilifera.

RESULTS

In table 9 is presented a summerized statement of stain development in Pinus echinata boards that were dipped in an antiseptic solution within 1 to 96 hours after inoculation with Ceratostomella pilifera. The data for radial and tangentinl boards are not segregated, because they showed no important differences in interior stain development. Surface stain and mold were somewhat less abundant on radial than on tangential boards, but there was no basis for concluding that a longer delay of treatment would have been safe. From a practical standpoint, true radial boards of any size cannot be cut; furthermore, tangential side surfaces and transverse end surfaces always provide for the more rapid radial and longitudimal penetration of hyphac. Therefore, any differences that might have appenred in the present studies would have had little practical significance.

Conditions were somowhat less favorable for severe staining and molding in series 1 than in series 2, and this is indicated by the differences in surface developmerit. In the former series, progressive drying of the bourds during incubation was facilitated by leaving a 1 -inch space between the individual pieces in the pile. In series 2 the boards were separated only one-quarter to one-half inch in the pile. Differences in the original moisture content of the pieces were not a factor, as the range in both series was between 100 and 110 percent, oven-dry-weight basis.

Table 9.-Development of surface and interior stain in Pinus echinata boards innculated immediately ofler sawing with Ceratostomelle pilifera and dipped within I to 96 hours in an anliseplic solution

1 Surface moldink was caused by organisms present in tho humidiferl ingobation room.
, Based on 2 cadina andl 2 Langential boards for waeth delay [n treatiment. The hoards were separated 1 inch
 to $28^{\circ} \mathrm{C}$.
${ }^{3}$ liased on 3 redial and 3 hangentin! bourds for each detay in trentiment. The boards were separated $1 / 4$ to h inch in wite during intobation of 21 days.

There was heavy development of stain in the interior of the boards when treatment was delayed 48 hours or longer after inoculation (table 9). Although a 48 -hour delay apparentily was close to the critical time for efficient control of interior diseoloration, it obviously was too long under the very favorable conditions provided for staining.

Interior sfain developmend in Pinus achinata sapwood inoculated immediately with Ceratostomella pilifera and treated after cliferent periods of time with an antiseptic solution, A and B, treated 24 hours after foculation. End stain was general in this series and there were pateles of interior stain in oceasional hoards. C, D, and E treated 48,72 , and $9(6$ hours after inoculation, respecfively. The anstained areas indicale to some extent the depth to whieh the antiseptic solution penctrated and prevented the development of stain.

Delays longer than 48 hours resulted in complete aiscoloration of the interiors, exeept for a partinlly bright outer shell of 1 to 4 mm . (pl. 2). The bright outer zone was less distinct with incease of stain on the surfaces of the boards, which increase became important when the treatment had been delayed 72 hours or longer in series 1 and 48 hours or longer in series 2 . Daily examinations of the boards after inoculation showed that light patches of stain had developed before treatment, particulady in the 96 -hour series. In addition to such slight stain as was present at the time of treatment, failure of the solution to give continuous protareion during the prolonged severe conditions undoubtedly contributed 10 stain development on the surfaces.

Patches of end stain were found occasionally in boards treated immediately or within 12 hours, and were general when the treatment was delayed 24 hours (pl. 2). Sueh stain cannot be atteributed to rapid longitudinal penetation alone. Either the treatment failed to give complete protection to the ends, or inoculum was carried into the wood beyond the depth reaclaed by the solution. Failure of the treatment could have been immediate, or after exposure for a time to the severe conditions of the test.

Although the antiseptic solution employed in these studies is used widely and effectively for the control of stain in lumber and other wood products, no ready method for determining the depth of penetration is available. Longitudimal penetration of other aquabous solations ranged from 5 to 10 , with an average of 7 mm .; and the radial and tangential penetration was from 1.5 to 3.5 , with an average of approximately 2 mm . Supplementary evidence, obtained from the measurement of the bright outer zone in 20 radial and tangential boards having interior discoloration, indicated an average longitudimal penetration of the solution of 8 mm . and a radial and tangential penetration of 1.5 to 2 mm . Comparing these depths of penetration of the solution with the rates of hyphal penefration into wood, it appears that 48 hours is close to, but possibly longer than. the maximum delay of treatment for efficient contmol of statit.

Hyphal Disthibution and Development in Test Blocks Subjected to Different Conditions:

The type and abundaner of hyphae, both on and in wood, varied considerably with the incubation period, the surface inoculated, and the method of handling the blocks. Earlier and more abundant development of white and colored hyphate was evident on tangential and transverse surfaces than on radial surfaces. This was true also of steamed in comparison with unstemed wood; after 90 hours, brown hyphare were not pronounced on most of the unheated bloeks, wherens conspicuous development of colored lyphar and light staning were evident on all steumed bloeks. No recosnizable difference in growth on summerwood and springwood surfaces conld be detected after the rather short incubation periol of 84 hours.
Hyplal development within the wood was most abundant in the blocks inoculated on the transverse and langential surfaces. Colored hyphar usually were confined to the surface latyers in wood incubated for periods of 96 hours or less. In stemmed wood incubated for 110 hours, colored hyphare extended 4 to 5 mm . from a trausverse surface,
whereas in unsteamed wood, such hyphae were present only 1 mm . or less from the inoculated surface. Hyphal development was more abundant in all cases in stemmed than in unsteamed wood.

As to distribution in the wood elements, the hyphae were concentrated in wood rays and resin duets, but were not uncommos in tracheids (pl. 3). In the 288 -hour series, the rays were compacted with thick brown hyphace, and frequently only it semblance of the original parenchymf-edi structure remanad. Penetration of the tracheid walls occurred usually through bordered pits in the radial walls (pi. 3, C and D). Direct penetration of walls of tracheids was observed occasionally but pronounced dissolution was never evident.

In boards with interior stain, hyphae were observed in microscopic sections that included a portion of the bright onter zone and the discolored wood below (pl, 3, B). A definite line of demareation, in both abundance and lype of hyplate, was evident in passing from the elear outer area to the diseolored interior. Hyaline hyplate were found in the clear outer wood, but the mature brown stage was lacking. Development in this zone was sparse, and the sattered hyphae gave evidene of protoplasmic disturbatace or disintegration. In the stained wood, hyphae were abundant in rays and tracheds and were largely of the mature brown type. There was little doubt that the interior-stain condition had rasulted from killing of the hyphate in the surface layers of the wood before the colored stage had been reached, as indicated by the bright wood at the edges and uncut end of board B in plate 4 , but not until some of the hyphate had penetrated beyond the depth reached by the chemieal treatment.

Discussion

Penetration of a given blue-stain fungus into wood is influeneed by a number of factors, meluding moisture and oxyeren eonditions, temperature, and physieal and chemieal differnees which cither ocerer naturally or are induced in wood.

In the present study no attempt was made 10 compare wood at different moisture contents. but there is rason to believe that water and oxygen conditions of the test material favored rapid prowth of Ceratostomella pilifera. This boliof is supported by the facts that rates of penetration diflered lithe in paraffined ind umparaflined wood, longitudimal pernetration into wood equaled the rate of modial growth on mald-extrate agar, and stain development was mpid in boards from which litale or no loss of water was possible. The moisture content of the wood manged from 95 to 110 perent in practically all cases. The possibility that the fate of penetman might hive been somewhat greater at other moisture eontents, however is not disconnted. Lagerberg et al. (/I) reported slow penetmation of (. coerulea into pine sapwood of 150 to 1 bo pereent moisture content, oven-dry weight hasis. Jemetration was rapid at 110 to 120 pereent unless diffusion of oxygen into the wool was retarded artificially.

The effect of different temperatures on rate of penetration has been described carlier in these studies. Penetration of C pilifera into sapwood was most rapid at temperaturas that likewise favored greatest urowth of mycelina on ayar. 'lha incubation temperature (25° to $28^{\circ} \mathrm{C}$.) employed in the present series of tests undoubtedly provided favorable thermal conditions for rapid growth.

Comparison of stain development in hourds inoculated with Cerctostomella pilfera. A, No antiseptic solntion applied subseguently. B, Dipped its an antiseptic solution 72 hours after inoculation. The top end represents a cut through the board and not the surface to which the solution was applied.

Physical and chemical differences which occur naturally or are induced in wood of a given species may have an appreciable effect. on the penetration of staining fungi. Lagerberg et al. (11) found that changes in the nutritive value of wood cut at different seasons of the year had little effect on penetration. Likewise. rariations in the density of wood were not important for most of the fungi studied. On the other hand, staining was greatly retarded in wood that had been either stored in water or seasoned and later remoistened. The lose of water-soluble and other nutritive substances from immersion, action of other micro-organisras, ete.. was considered to be primarily responsible for the reduced susceptibility of the wood. In the present studies, steaming of the wood seemed to increase the rate of radial penetration of Ceratostomella pilifera. Changes in the chemical or physical conditions of the wood. rather than in moisture content, are believed to have been concerned. Greater penetration. or other eridences of attack. in steamed wood has been reported by (hapman (2) for blue-stain fungi and by Spradling (19) for Trichoderma lignorum 'Todes Harz. In the present work, radial penetration was sompwhat less rapid in summerwood than in springwood. Apparently, the difference, if any is slight, and its effect would be of litele significance either in initial penetration or in continued development of hyphar in woods with different amounts of springwood and summerwood.

Under favorable moisture and temperature conditions for growth, Ceratostomella pilifera penetrated into unheated sapwood at approximate daile cates of $0.5,1$, and 4.5 mm. in the tangential, radial, and longitudinal directions, respectively. Other staining species undoubtedly differ from $1:$ piliffra in rate of penetration. From the studies of growth on agar. \therefore. ips would be expected to penetrate more rapidy, and 1: pluriannulata somewhat more slowly than (: pilifera. It is not known whether relative growth of cifferent species on agar is a fairly reliable index of relative penetration into wood. although it seems likely sueh would be found to be the cease if suitable agar ansl wood substrata were used in the comparative studies.

A general ratio of $1: 2:=7$ to $1: 4: 19$ woukd be pexperted to cover refative penetration of f : piliffer in the threa structural planes of wood. Differences between staining speries in ratios of penctration in different planes probably would be less than in relative penetration in one plane. ts a general rule, longitulimal penetration ocrurs in the tracheids and resin durts primarily, both of which present only few obstructions in the form of cell walls. Tracheids in pine are often $\overline{5}$ to 18 mmo. in length. Radial spreat takes place largely in the wood rays, the cells of which apparently offer no great resistance, and may extend continuously throughout the sapwood. Penetration in a tangential direction can be accomplished only through numerous walls mostly of tracheids. Nevertheless, it is obvious from the present studies that tungential penetration is not iusiguificant.

Rate of penetration of discoloring fungi has a direct bearing on the use of surface treatments for the control of stain in lumber. The failure of antiseptic dips in rurrent use is sometimes the result of delay in applying the solutions to wood until the hyphar have penetrated beyoud the depth reached by such trentments. ('omparisons of depth of penetration of solutions with rate of hyphal penetration of
(. pilifera into wood indicaterl 48 hours to be close to, but longer than, the maximum delay for efficient control. Atthough the depth of hyphal penetration after 48 hours usually was less than that reached by the solation, maximm hyphal spread in the radial and tangential directions oflen was greater than the recorded minimum depth of the solution. A delay of 48 hours in treatment proved definitely inadequate in tests in which inoculated boards were dipped at various intervals in a recognized control solution. There was heary development of interior stan in practicaly all boards treated 48 hours or longer after inoculation. Moisture and temperature conditions favored rapid hyphat development in the wood throughout these tests.

The avidence available indicates that a delay of more than I day in treating lamber is not adrisable, if control of ('. pilifera is to be expected under all conditions. Trentments that are delayed 2 days might prove effective under many envirommental conditions, but cannot be considered as generally safe. Trentment after delays of 3 or 4 days, particularly during periods of rapid stain development, would seem to bave little watue exept in reflueng inoculam and retarding further staining on the surfaces. [se of chemical dips for this parpose alone could not ordimarily be justified. In actual practiee the use of other chemieal solutions and the possible presence of other orranisms that penetrate more rapidy than ('. pilifera would have to be eonsidered; also. the possibility that some longitudinal penetration of hyphac might oceur from side surfaces that have not been sawed exactly parallel to the orientation of the tracheids. Nevertheless. it is believed that a delay of no longer than 1 day will lead to satisfactory control in practicaliy all cases.

SUMMARY

Eleven isohtes of Cratostomella, including seven cultures of C. pilifref from different georraphic regions, ('. comerule from Camada
 ences in reaction to temperature on matt-ngur. The (\because pilifera isolates comprised two distinct groups when differed by 2° to $4^{\circ} \mathrm{C}$. in optiman and maximum temperatures for growth. The lowfemprature group and ('. corrulon from (hamda had as approximate critical points $33^{\circ}, 25^{\circ}$ to 245°, and 31° to 34°; the high temperature group and (' phuriannulata, $4^{\circ}, 26^{\circ}$ to 29°, and 34° to 35°. (\because ips had cardimal points varying from 20 to x° abow any of the other fungi tested. An merense of π° to s^{\prime} above the oplimum inhibited growth, whereas a decerate of 20° or more was required to inhibit growth at low temperatures.

White daily increments at a given tempemture wore not constant for any of the fungi, neither a definite prodicity in growth mate nor a determinable chauge in rate will time was indicated.

Theme was a dired comedation bewern cardimal temperatures for growth on agar and viability of the isolates at minavorahy high Lemperatures.

Loss of viability occurmed relativaly arly at temperatares only slightly higher than the maximum pints for growth. ('. cofrutea and two cultures of ? pilfern were to tonger viable after 7 or 14 days at $35^{\circ}\left({ }^{2}\right.$. All isolntes exerpl $(: i p s$ fuiled to resume growth after 2 days at 40°.

The time of appearance of brown hyphac and the rate of change from hyaline to brown waried with the different isolates and temperatures. Brown hyphac appeared carliest at the most favorable temperatures for growth, and there were indications that hyphae of a given age changed from lyaline to brown more rapitly at such temperatures.

Daily changes of temperature between the optimum and minimum points for development had no effect on the growth-temperature relntions of ('. pilifera and ('. ips. Both organisms became adjusted immediately to the new themal envionment and continued growth at a normal rate for that temperature. The only departure from typical growth rates in constant themal environments was retarded increments for about 2 days at favorable temperatures, following exposure of the cultures for 1 day to temperatures slightly above the maximum points for growth.

Adirect corredation was apparent between growth of ''. pilifera on agar and development in southern pinewood at different temperatures. Penctration of hyphac into wood was most rapid at temperatures that likewise favored rapid myedial growth on agar. The rates of longitudinal penetration into wood and of radial growth on agar were closely similar.

The average of temperatures for the respective locations within piles of unseasoned lumber at three sonthern sawmills ranged from 1.3° to 6.1° (. lower than those of the surrounding air. The highest temperature recorded within any one pile was 31.5°. It appears that high temperatures are not an important fimiting factor in the practical problem of discoloration of lumber during air seasoning.
The minimum moisture content for development of ('. pilifera in Pinus echinata sapwood was determined as approximately 24 percent, oven-dry-wsight basis. There was slight penetration of hyphae at moisture contents between 23 and 24 percent, such hyphal development being limited to short, thick, heayy-walled filaments. There was lairly abundant hyphal penctration in wood subjected for 10 days to atmospheres of high humidity, but not saturated.
After 10 days, mature brown hyphar were relatively aboundant in wood above 29 percent in moisture, infrequent at 27 to 29 percent, and absent below 27 percent. There was visible staining only in wood that was at or above the fiber-saturation point ($27+$ percent). Although free water in the wood did not appear essential for limited development, important sirining is not considered likely in wood below the fiber-saturation point.

Geratostomella pilifera penetrated into Pinus echinata sapwood at approximate daily rates of $0.5,1$, and 4.5 mm . in the tangential, radial, and longitudinal directions, respectively. Penetration was slightly less rapid in summerwood than in springwood, but the differenee was too small to be significant. Radinl penetration was greater in steamed than in unsteamed wood.

Under favorable conditions for growth, hyphae of (C. pilifera penetrated into wood beyond the defermined depth reached by control treatments within 48 hours, or shortly thereafter. Delays of 48 hours or longer in applying an antiseptic tratment proved excessive for the control of stain in boards which had beem inoenfated immediately after suwing. A delay of more than 1 day in the applica-
tion of treatments in practice is not considered advisable, if control of C. pilifera is to be expected under all conditions.

LITERATURE CITED

(L) Cartwrioht, K. St. G.. and Findlay. W. P. K.
1934. studies in the phrsiology of wood-desthoning fungi. if. temperature and rate of growth. Ami. Bot. 48:[481]-495, illus.
(2) Chapman, A. Dale.
1933. effect of steam sterlhigation on sunceprithidet of wood to bhtie-staining and wood-degthoting fengi. Jour. Agr. Res. $47: 369 \cdot 374$, illus.
(3) Colfey, Reginald H., and Rumbold, Camohine TT.
1930. rehation betweme moisprime content of the wood and hlue stain in lohlolly fine. Jout. Agr. Res. 4l: 389-399. illus.
(4) Davidson, Ross W.
1935. Fungi causing stain in logs and humber in the southern
 759-807, illus.
(5) F゙ゥл.ек, R.
1916. zenstönung des hodzes dunch pilze. In Troschel, F., Handbuch der Holzkonscrvierung, pp. 46-147. Berlin.
(6) Gädmand, Elenst.
1939. i'ber die wachsyums- usd zerstibungisintensitat von polybobus varobarits tad von shliodmymam commene bet verschmpenen temprattres. Angew. Bot. 21: 59-69. illus.
(7) Hubehet, Bithest E.

1924, efrect of kiln dring, steaming, and alb sbasoming on ceiteat fungi in wood. (. S. Dept. Agr. Bul. 12f2, 20 pp., illus.
1929. sap stains of wood and thele bevention. I. S. Dept. Com., Natl. Wood Clit, Rpt. 10: 77 pp., illus.
(9) Humphary, (${ }^{1}$. J, and Stoghrs, P. V.
1933. temperatuhe helations of wond-benthoynge fungi. Jout. Agr. Res. 47: 997 1008. illas.
(10) Jusstla, B. A.
1932. Fhimolohation of mawn thabelt dihing pransport from shipיing pont to port of destisarion.] Puntekniikan Tuthimuksen Kannatusyhdistys r. s. Garantiforemingen for Traiteknisk Forsknine r. f. (Foundation for Forest Prod. Res. of Finland) Pub. 3, 106 pp., ilhs. [In Finnish, Gutish summary, pp. 92-106.|
(11) Lagerberg. T., Londbehi. G., ath Melin, F .
1927. hological and martical reseabcues into blybing in pine AND spruce. Svenska Skogsvirdsfïr. Tiskr, 25: [1+5̄] 272. 5611-739, ilus. [Résume in Swedish, pp. 692. 739.]
(12) hemmans, K. B., and Schbimee, Whle.
1923. quantrative lextersuchung iober hol\% pilze. Arch. f. Hiyg. 92: 89 10s.
(13) hase. J.
 Angew. Bol. $13(2): 138-150$, illus.
(14) Lindaren, Raliph M,
1933. Dectay of wood and chowril of some hymenomy erbe as affectrib br tembeapule. Phytopathology 23: 73 81, illus. Minceh, Eanst.

1907-8. pe hlaufiula des namehmolzes. Naturw. Ztschr. f. Fourst. u. Landw. 5: 531 573 (1907): 6: 32 47, [297] 323 11908), illus.
(16) Scubppre, Theodole (\therefore., and Lindorbn, Rabpi M.
 [. S. Dept. Agr. Tech. Bul. 714, 124 pp., illus.
(17) am hivingston, B. \&.
1937. Relation of oxygen phestiene and thabrhatube to growth and calbon-dioxide prodiction in tie fungus pohystictus versicolor. Amer. Jour, Bol. 24: 109 : 19 , illus.
(18) Snell, Walter E.
1929. the relation of the moistere contents of wood to trs decay. 1if. Amer, Jour. Bot. 16: $\overline{\mathbf{5}} 43-546$.
(19) Spfadling, Mae.
1936. penetration of trichoderma hegnorcm into sapwood of pinde taeda. Jour. Agr. Res. 52: 541-546. illus.
(20) Fanin, S. I.
1932. blef stain of thiber and fow to control tt. 103 pp.. illus. Moscow and Leningrad. [In Russian.]
(21) Verrall, A. F.
1939. relative mportanee and seasonal prevalence of woodstaining feygin the socthern states. Phytopathology 29: 1031-1051, illus.
(22) Wolpert, F.S.
1924. Studies in the phthology of the fencl. xyif, the growth of certan wood-destroying fiengi in helation to the h-ion concentration of the medi. Mo. Bot. Gard. Abin. Il: 43-97, illus.

Bedrock is not exposed in the gully in the upger end of the $\mathrm{Ta}-$ sayan Washes section, but near the mouth of the Wepo the Mancos shale has been cut through and the first of several exposures of the underlying more resistant formaions is encountered. Similar outcrops are found at intervals downstream from the vicinity of Coyoie Springs to about 6 miles above Red Lake trading post. Low cliffs become more prominent down valley. especially on the southeastern side, and culminate in the Namio-Wingate cliffs, which close in 1.5) miles below Coyote Springs (figs. 25 and 35).

About 17 miles northeast of the Red Lake trading post the NavajoWingate cliffs recede from the wash. The Polacca then traverses a bromit lowland developed on the weak Chinle formation and elongater

 village. Jtat githly bere is abume to feet deep.
in a northrest-southeast direction parallel to the strike of the rock Here. about 2 miles east of Red Lake trading post. Oraibi Wash formerly joined the Polaca by several flow channels.
A: the surface is covered by a mante of sant. the areal distribution of fill material in much of the Tusayan Washes section is not well known. Some evidence can be obtumed from exposures along tho gullies (fig. 49) and from aerial photugraphs. In the Tolani Eukes region (fig. 205), the fill is remarkably unitorm. It appears to have been derived both from upscream ant from the vailey sides. Fans and leveed chans ds have spread the depositional material over the ralley floor.

Although the lateral slopes of the ralley appear to be relatively smooth when ciewed from a distance closer examination shows that they are ridged with many longitudinal sand dunes (a/j. $p, 13 /$)
paralleling the prevailing sonthwest winds (fig. 40). The sand largely covers the pediment slopes of the area, and in places long fingers of sand extend from the valley to the top of the bordering cliffs.
There has been little recent erosion of the fateral slopes in the area up ralley from Coyote Springs. in part becanse of the phant cover and in part because the practice of the Hopi Indians of utilizing for irrigation all flood waters off the slopes above their fiedds has acted as a check on rum-off and has prevented the formation of harge lateral gullies. Drainage of the lateral slope zome is obstructed and incomplete, and most of the gullies are small and discontinuous. Small

Froure an.-Physiopraphic man of an aren north of the junction of the Polacen and Wepo Gullies, stowing the absorption of streans by fle brad simblmantled alluvial surface.
streums survive for short distances, only to be absorbed by the surface sand (figs. 50 and 51). Little of the run-off of the area ever reaches the main Polacea (ituly.

The Tolani Lakes area is somewhat wamer and drier than the area above Covote Springs and is now a broad expanse of samel flats overgrown with brush willows and weeds. surh in Rusitan-thistle. Navajo families inhabiting the area have stripped it of moch of its natural vegetation. Movement of sand and encroacharent of undesirable plant species have resulted.

The condition of the present Polareal (Gully in the Tusayan Washes section is somewhat different in the reaclies above and below the mouth of the Wepo. Downstream to the mouth of the Wepo the Polacea Gully contains remnants of small terracelike benches, which

 atouss the mithth of the view.
suggest that this portion of the channel may have undergone four distinct, though probably very brief., phases of recutting. Below the month of the Wepo the suggestion of multiple rectuting disappears. A possible cause for sucerssive stages of cutting is found in the increase in voluan of flow effected when gullies in the Wepo, Burnt Corn and Keams Canyon Wathes became joined to the Polacea and in the junction of the lower and upper Polacca gullies.

Eridence of the history of past cutting of the Polacea Gully near the mouth of Wepo Wash is indistinct. Wind-blown material has so mantled the surface that the presence of an old. gently sloping. longitudinal fan, such as would have been formed at the lower end of a discontinuous gully, might well be obscured. It seems probable, though. that the cutting that started the extensive gullying of the upper wash began in the vicinity of the bedrock outcrops close below the junction of the Wepo and the Polacca ((iy. 26 . between E and F). This is suggested by the greater breadth of the upper part of the gully upstream from this point (fig. 26. E) and also by recollections of the Hopis that guly ying of the Polacca Wath was first observed in approximately this location.

The cutting of the Polacca Gully through the remander of the Tusayan Washes secion is thought to have set in somewhat later than that above the mouth of the Wepo. The location of the initial cutting points is obseme but chanmel crose sections sugrest one about 8 miles below Coyote Springs (fiys 20 . between G and B).

PAINTED DESERT SEGMON

At the sonth fud of the Tolani Laknes area the Polacea masses through a break in its last barrier. the cliffs of the Chinle formation, and reaches the valley of the Little Colorado River (fig. 25). Corn Wash eutars from the east near the upper end of the section. On the present flood plain of the Little Colorado River the Polacca Wash turns and parallels the matu strean for nearly 3 miles before joining it about threeguarters of a mile west of the towiz of Leupp.
This section of the Pohacea Wash is trmasitiom between the Tolani Lakne areat and the flood plain of the Little Coboralo. The surface changes from the light-colored samb. chameteristic of the higher parts of the wash. to a dack chocolate-red material, mostly silt. which appears to have been brourht here from the flood plain of the Little ('olomedo by wind. This process is now very antive and pates were noted where the regotation of the previons year had been buried 8 to 14 inches.

From the usstream ond of this section to the flood plain of the Little Colorado River, the Pohacg Gully is deeply entrenched in the valley fill. Sumerons chamels and distributaries mank former coursen of at Pohacea and Corn Washes, but none were abserved that indicated that the chammels had ever before been so deeply cut. Menndering and recuting of the grily are evident in this reach and increase downstram. paricinlarly below the point of entrance of the Com. Here, as abow the month of the Wepm. recurent dewn cutting may have been brought about by increate in flow calloed by the integration of draimge described at the top of this pare.

Processes and Effects of Normal and Accelerated Erosion

In the Polacea Wash, as in most other valleys of the Southwest, two groups of land forms can be distinguished. The first of these includes all the major and many minor features of the area-forms that have been proluced by the normal action of nataral processes. Superposed on these, and altering their shape and character, are land forms of the second group, which result from a recent quickening of the erosion processes. This acceleration of erosion has been sufficient to alter greatly the physiographic and ecologic aspects of the region.

DEVELOPMENT OF THE ROLACCA DRAINAGE PRIOR TO THE RECENT ACOELERATION OI EROSION

CANTON CABVING AND FALLEY 子TAITNG

The carving of the Grand Canyon and other major valleys of the Southwest, according to Gregory began some time after the Eocene ($52, p, .36$). When uplift and tilting of the land introduced the present or "caryon" cycle of crosion. What had been a low-lying plain with shallow valleys was rapidly dissected to an intricate pattern of deep, marrow, vertical-walled cmyons with ungraded floors. The main features of the Polacea Wash were probably eroded at that time.

There is no reason to think that conditions have been continually favorable to degradation since the becriming of the period of canyon cutting. Local erosion levels. rock benches. and perched stream gravels have been taken to indicate a lack of aniformity of tectonic movements or of climate, or both ($\pi, p, 2(i-3 \%)$. In the dry climates, where chanels carry water only during and after infrequent mins, irregularity of reqmen is one of the most marked characteristics of streans and may in itselt explain many of the features sometimes attributed harger changes. At any part of a chammel agradation in one man may be saccected by degradation in the next. and during local showers parts of the strem course may carry heavy rum-off while other parts remain dre. Under these conditions there is no reasom why cutting should be confined to the upstream area and deposition to the lower reaches. There may be many local alternations of erosion and argadation in valleys as long as those draining Black Mesa to the southwest.

The canyon cyele is still in progress. but for much of the last several thousand years deposition mather than cutting has been the dominant process. During this phase, called by Greqory the "epicycle of alluwation," parts of mamy of the canyons of this region were filled to a depth of a0 to 100 feet or more. Pottery and corn cobs buried in fills in the Navajo country indicate the recency of at least some of the deposition. Gregory describes in the upper Moenkopi Valley old cottonwood trees lately exhumed, whose trunks were huried in 10 to 30 teet of fill (in1.p.130).
Most of the Polacca Valley fill is water-haid, but aeolian material is present in scattered localities throughout the aren and is prominent in the lower valley and in some of the larger tributaries. Irregular
leases of sand, silt, and clay are common in the fill (fig. 52), and stringers of gravel are abundant locally. Lenses vary from less than an inch to a few feet in thickness and extend as much as several hundred feet laterally. Thickness appears to bear little relation to length; lenses only a few inches thick may persist for handreds of feet whereas others several feet thick can be traced for only a few tens of feet along the gully wall. Trenching of the valley fill by gullying reveals buried talus and slicle material and buried rock cliffs in addition to the many old channels (fig. 22). These are characteristicaily sand-filled, but in places they contain mod balls and other kinds of detrital material.

Frgune 52,-Fill sections exposer along the Polaccal (iuly: A. Extomds down valiey from a print one-gharter mile above the mouth of Red 'anyon Golly and ineludes the appermost kniekpoint of the main poheca: b. extends down ralley from a point tie miles abore the month of the Pamt Com Gally amd exhibits 4 sand-fined buried chanmels; (: repusents the regnharity of sequence of sand, clay, and sand byen in the Tolan bakes ameat 7 miles mortheast of the Red late tading post; D) in the upher ent of the Painted Desert section. 12 miles northeast of Lexpl, shows how the beds are more lensifike than in the Tolani Lakes aroz.

The fill material of the bex camyons in the headwaters area of the Pohaca dramage is largely sand. Minor gravel lenses are present locelly, and there is some sill mad chay. From about the mouth of Red Canyon Wash to the mouth of the Burnt Corn the fill is finer, consisting of clay and silt and minor anounts of sand. From there to the village of Polacea sand and chay are present mabout equal amounts, and there ars only minor: lenses of silt. From Polacea village to at tew miles below (oyote Springs (fig. 25) the fill is principally sand, with very little silt, but hocally contains groups of chay lenses. Small gravel lenses are better developed in this section than elsewhere in the Polacaa; bedrock is exposed in the gully at numerons phaces. The fill is largely water-had and is gray except for local lenses of red material. Buried sands of possible dune origin are not uncommon.

The fill material in the Tolani Lakes area aud for 10 to 12 miles up yalley has musually reguar and continuous beds (fig. 52, ("). These are: (1) A lower sand, 2 to 20 feet thick, prevailingly gray and water-laid: (2) a clay horizon 4 to 25 feet thick, containing an admixture of sand and silt, generally gray but haring red lenses in the downstream portion: and (3) an upper horizon of saud 2 to 10 feet thick, containing both water- and wind-deposited material. prevailingly gray but also having red lenses in the downstream yeaches. No buided chamels and only one exposure of bedrock were noted in this reach of the present Polacca Gully.

From the Tolani Lakes avea to the tlood phain of the Little Colorado River the fill is composed of a lower gray horizon of sand, comating locally some clay and m upper red horizon of elay eontaning minor amomets of sand (fig. 52, D). Lenses of red sand and clay are only rarely found within the bower horzon. Retding is uniform for comsidemble distances in some parts of this section but in others it is murkedly lenticular. No buried chamels or outerops of bedrock were noted.

Certain gencralizations can be made on the distribution of alluwial materials in the Polacar with relation to the position of the gully in the wash. The evidence is obtained principally from exposures on the walls of the main Polacea Gully and its tributaries.

1. The coarser materials tend to weupy side powitions and the finer types predomimate in the central patt of the canyons except (a) where a large tributary whose danage is entirely from the Mesaverde enters at a relatively marow part of the main camyon and carries the coarse material well out past the center of the main canyon so that fine materials can be presem only along the farther wail, and (b) where the conser matemals are largely lacking because the tributary drains only the Mancos shate.
2. Sand lenses in a central position within the emyon frequently thicken rapidy toward one side of the canyon and thin toward the orher.
3. Sand lenses, particularly those in a border protion. often grade both up and down cancon, through silf to chay.
4. Hong the eentral part of the eanyons. eqperialy the broader ones. the fill is commonly clay with only scatered lemses of sand and silt.
5. A fill composed almost exelusively of sand is found only in small narrow. high-gralient caroms. which are se sitated that the soure of material is confined to the Mesaverde formation.

The distribution of material in the valley fill is characteristic of proesses still operative. The major process of filling, even in walleys ats large as the Polacen. was by fan building. Part of the material came down from the headwaters of the canyon and was dopesited in lompitudinal fans. By far the larger part of the fill in the upper half of the Polacera, however. was durved from mesas bordering the wash and was bronght in along the sides of the ruyom by tributary drainage. Material froms both somres was carved down and deposited in the lower Polacea.

Sedimentation is betieved to have taken phae first along the lower reaches of the wash, probably in the Tobai Lake area. There the
infilling by the Oraibi and Polacea Wrashes began early in the epicycle of alluviation, and filling by local run-off from the surrounding slopes is still active.

Following or simultaneonsly with infilling in the Tolani Lakes area deposition began in the other basins along the course of the lower Polacea. The reaches of lowest rradient and flattest cross section teaded to be filled first. Depossition was irregular and spotty, however, and changed according to location of intense rains and movement of wind-blown sand. The floor of the wash gradually approached a graded condition, first in the basin areas and later in the narrower canyon reaches between.

In the canyon sections the process of infilling was by no means simple. Except in a few short narrow canyons of high gradient the surface development was largely controlled by transerse transport. Alluwial fans and apross were the dominating surface features, and the down-cmyon dramage made its way between or over the extremities of the marginal fans. For this reason the main dramage was sinuous and subject to change in position and gradient as these transverse torms developed. Shifting of the drainage lines led to local alternation of deposition and removal, with gradual adrance of the material down drainage. Fans and apmons were most abumdant along the margins of the wash. but large fans were also built at phaces in the main longitudinal dramage line.

The walls of deep gallies and arroyos reveal that the fills of many of the valleys of the Southwest ematain large buried chamels and are not uniform but appear to vecord several stapres of deposition (50). Buried channels may be seen in the fill of parts of the Polacea Yalley (fig. $\overline{0} 2, B$), but this valley shows little evidence of successive stages of filling. In the Jadito. Orabib and other valleys, Hack (m) has found many filed chamels and sufficient sedimentary, physiographic, and archaeoloric evidence to lead to the conclusion that there have been three stapes of filling and cutting since the origimal carving of the valleys. These stages have been interpreted as due to climatic canses. Consideration of the processes at work in the valleys, however, will show that regional changes from erosion to deposition and back again as a result of climatic change are not necessary to explain the conditions foum. More than that, regional changes from erosion to deposition woukd fail to explain fully the chamnding and other features of the valley fill.

Tnder matural conditions few of the valleys of the semiarid and arid regions contaned perennial streams or even contimons chamels down the dranageways. Arroyos were cut locally, and the material removed was catried a short distance down valley and deposited as a fan. The growth of discontinuons aroyos was much like that of the discontimuous gullies formed in many of the walleys in recent years by acederated crosion. Series of disemtinuons gully chamels can stifl be observed in the headwaters reaches of Keanis Canyou, Red Canyon. Burnt Com Canyon, and others in the Polncea dramage (pp. 92-95). Before the formation of the great Potacea Gully, a traverse down the length of the valley at any one time would show that areas of arroyo eutting altemnted with areas of deposition.

Each discontinuous arroyo ended down valley in a fan. These arroyos lengthened upstream by headward erosion and at their hwer ends became buried by their own debris. Where a complete series of discontinuous channels was developed down a drainageway the head of each arroyo cut into the alluvial fan being built by the next arroyo up valley.

Headward working of arroyo with deposition at the lower ends by backfilling of the channel: $\{50, p$. 29$\}$ proluced waves of sedimentation that migrated up valley. Material removed from the hend of the arroyo was tranported downstrean a tew feet or a tew miles and deposited. Although the sediment load moved down ralley, the enlarcement of individual deposits by addition to their upvalley ends resulted in the upward migration of each locus of sedimentation.
During fioods resulting from occasional intense precipitation the flow carried farther thim tusul. Chansels were pleared out and fans were dissected. Deposition of the sediment load formed a down-ralley extension of the fan, or. if the lengthened chanmel intersected another chamel down drainage. the load might be cartied math farther to form a new fan. Especially in these longer chanels perastent down-walley migration of bend. and meanders greatly increatell channel wilth (ity . 3) and in time they eould even cut out an entire valley fill. Rum-off from heavy or protracted rains. then. by cutting ont of older fills caused a down-ralley mingation of the lowis of vedimentation.

Erosion altemates with depusition as the sedimentation waves migmate past any one place. serval waves of sedimentation may be depositing fills in al ingle long valley simultaneguly: An apparently continusus fill, if formed by a wase of erdimentation. may vary greatly in age in different parts of a valley. Age corretations on ratley fills. therefore are hazamdus and camot safely be extemeted fion any considerable distance.

The stage worked out by Hack for filling and cutting in the Jadito Valley and sereral other valleys of the Hopiand Na rago montry and a similar listory fostulated by Bryan, and Abritton and Bryan. for vallers in New Mexies and Texas (11. 3/t) are exphained as the result of changre of climate. Hack mexarnizes that one chronology mill not apply tia all parts of a valley. Recratless of cimatic conditions depenition canot go on simutaneonsly throughout an entire drainage becanse pare of the area mas be cunderging erosion to provide the serlimont loand. The normal processes of erewion and sedimentation, as outlined abowe are adergute to promace successive filling and cutting of various parte of ralley: without any change of climate, and complex interations of the tup-valley and down-walley wares of sedimentation offer an uhmost infinite variety of fill sequences. The serlimentary history of the Polacea Valley and similar valleys in the sombest is far more complicated than is revealed by the few exposures on gully walls. but pern si. it is believed that the exphanation of surcessive deposition and remoral of fill lies: in sedimentary proreses amd irregular occurrence of heavy stoms rather than in any change of climate.
 oconied tempmarily by the chamel as it cut downard and migrated down valley.

Wind activity has played a part in the normal development of the Polacca Wash and neighboring washes. It was moch greater at some times than at others. Sand, believed to have been deposited by wind, is found buried in the valley fill. but whether there was ever such a widespread development of dunes in the Polacca drainage as was found by Hack (5.5) in the Jadito is not known. Some of the sand deposits of the Polacea fill, interpreted as old dunes, may be correlative with those between what Hack has designated as the No. 1 and No. 2 fills in the Jadito Valley.

RECENT ACCELERATED EHOSION

The Polacca drainage shows evidence of all three major processes of accelerated erosion: Sheet wash and rilling, gullying, and wind erosion.

sabet wash aniz rilling

Sheet wash. although far less spectacular than gullying, is active throughout the Polacea dramage. Even before the acceleration of erosion. sheet wash, sometimes called slope wash. was effective in the down-valley and lateral movement of weathered materials. Distribution of sediments indicates that a large percentage of the total ralley fill of the canyon section moved in from the flanting slopes by lateral wash. Today, with imporerishment of the vegetal cover, even more soil and coniser debris are carried down the allurial slopes and fans by sheet wash or by shallow rills. whose courses change from one rain to the next. Smouthness of the lateral slopes can be attributed to the grading action of these processes. Sheet wash and rilling deliver soil material to the gullies and transport debris through reaches of the canyon section that have no channels. As has been noted on p. 73 , all the material learing Dripping Spring. Horse Pasture and Little Hill on Top of the Mountain Canyons at the present time is moved by sheet wash or the related but more viscous and heavily loaded sheet flood. It is not known whether mass movement and wind action are carrying appreciable amonts from these tributary canyons.

The present destructive effects of accelerated sheet erosion are most clearly seen on the mesa margins, where bare rock and scattered clumps of vegetation now characterize what was formerly a soil- and regeta-tion-covered surface. Depletion of the regetal cover through heary grazing of sheep and goats appears to have started the acceleration of sheet erosion on the mesa surfaces. Once started, the more rapid rate tends to continal. A grood stand of regetation, either grass, shrub, or tree, helps to perpetuate itself by retarding run-off and conserving water. As vegetation is removed by grazing or erowion less water can be stored in the phants or given back to the atmosplere by transpiration; infiltation is diminished, and more water is allowed to run off. Hence the removal of the remaining regetation tends to proceed at an increasingly rapid rate.

Except on the flattest stiffaces the main danger is that sheet wash may give way to rills and gullies. This transition is in progress along the intermediate slopes and seems to be directly related to depletion of vegetal cover. The present grass and herbaceous vegetation can hold little water on the slopes and are too sparse to be effective in keeping run-off dispersed.

GULLYING

The striking feature of the present landscape of the Polacea Wash is the great medial gully whose deep chumel cuts the wash floor for a distance of 90 miles. Twisting along the center of the valley, with its bod 10 to 50 feet below the valley floor, the Polacca Gully has widened its channel by meandering, and has engulted millions of tons of soil material in the process. It has ruined some of the best agricultural land of the Indians, has subdrained the valley floor, and has discharged great quantities of silt into the streams below. Latge tributary guilies are present in the Burnt Corn, Wepo. Keams Canyon, and Orabi Washes. and countless others are now extending their chamels from the parent washes back into the flanking slopes and even to the mesa surfaces. These gullies are typically of the flatbottomed, vertical-walled, box type. which during periods of active growth are characterized by rapid headward erosion.
Continuous and Discontindous Geruies.-Gullies, at first, are short and discontimuous. With continuation of accelerated run-off they grow in length to join other discontinuous gullies upstream and downstream along the same drainge line. In this way are formed long "continuous" gullies, from which cutting proglesses up tributary drainageways, further extending the gally system. A continuous gully has an unbroken chamel from its head to its junction with a larger trunk gully or a natural arroyo or stream. Integration of discontinuous gullies into a continuous gully system has gone on until today the central gullies in most of the larger washes tributary to the Polacca form a part of the continuons chanel system.

Although there are many reasons why humid-land and arid-land gullies should be of somewhat different form. both continuous and discontinuous types are common in both of these climatic regions. In humid lands, just as in the arid southwest. discontimuous gully channels are a marked sounce of danger, becuuse what may today be at short and relatively duactive gully emptying onto a small alluvial fan may tomorrow become incorporated in a long continuous gully system and may begin to deepen and lengthen rapidy.

Discontinuous gulies commonly, though not necessurily, lie in linear series along drainageways. Series of such putlies are still present in the upper end of the Polacca Wash and in most of its major tributaries such as Burnt Corn and Keams Canyon Washes. Gullies on the pediment and allaviad-fan zones, also, are characteristically of the discontinurne type.

A typical series of diseontinuons gullies in the Polacea drainage is depicted in figures 54 and 35 . The profile (fig. 55) shows that there are no abrupt changes in the gradient of the canyon floor. Slitht bulges indicate alluvial fans that have developed at the lower ends of the discontinnois gullies. Discontinuous gully A hate a convex break in its profile (8,800 fect abowe the junction with Red Canyon Gully). This sugyests that the chamel is composed of two parts that have recently joined. The presence of the lenickpoint 300 feet downstram from the bedrock waterfall supports this evidence. Alove the waterfall the channel is essentially on bedrock throughout its course. Between the mouth of guily A and the main head of gully B (fig. 55) is a Navajo cornfield. The important relation of discontinuous chan-

Frgune 54.-Discontinuous ganies in the tributary that enters Red Canyon from the west about $23 / 2$ miles above the moath.

Figure 55 --Profile of discontinuous gallies in the tributary that enters lied Ganyon from the west about $21 / 2$ miles above the mouth.
nels to floodwater farming of this type in the Southwest has been pointed out by Bryan (29). Gully (contains a krickpoint whose advance is deepening the channel and lowering the gradient. This is a common occurrence in gullies of the Polacea area and is frequently brought about by the increase in flow which results from headward elongation. Variations in the imberent erodibility of the different horizons of the fill may aid in the formation of knickpoints but are not essentiad. Gully D, which is continuous with the Red Canyon Gully, has worked headward into the lower part of the allavial fan formed at the mouth of gully O.

Stages in Guily Growrh.-The exact processes of gully development and the stages through which the gullies in different parts of the country pass vary according to bedrock. soil. vegetation, and climate. Recent studies of the development of the large caring-walled gullies of the Piedmont of South Carolina (69) have indicated that gralies there pass through four well-defned stanes: A stage of chamel rrosion by downward seour; a stage of headward cutting by the action of plunge pools; a healing stage; and, a stage of stabilization. Rejuvenation of cutting. owing to a lowering of hase level or an inctease in rapidity of rum-off not uncommon! causes a reversion to one of the eamier stages. Gullies in the Polacca Wash arean and elsewhere in the Southwest pass through four stages similar in general to those of the Piedmont gallies but differing in details. These ure: (1) Initiation, which may take place in at least three different ways; (2) chlargement by headward elongation; (3) healing, by a reduction of slope of the walls and the establishment of vogetation; and, (4) stabilization, revegetation, and development of soil profile, and prossible eventual filling and obliteration.

Stage 1.-Gallies may be initiated wherever there is sufficient acceleration of rum-off. Demuded spots may form in vegetated dramatreways and spread up and down ralley with succossive rumoff periods tant il they coalesce and are deepened to prodnce a well-defned steep)walled chamel. Leighly ($\%, p, p$. $2,2,2 \% \sigma^{\prime}$) has described this clevelopment along gently sloping matural dramageway in northwestem New Mexico. It is effective in the Polatea dramare and probably is operative throughout the Southwestm United States.

A method of gully initiation far more rapid than the first, and particularly common in the Polacea Wash dranage and in other regions of low anmual minfall, is effective where an intense storm centers on an area in which the vegetal cover is inadequate to protect the soil from erosion. It is nost common in summer. One stom occurrence may give rise to one chamel or to sevemb, dither along a single dranageway or scattered through the storm area in various positions where similar surface conditions exist. The length of the gully or gralies that are formed depends very largely on the size of the storm center and on the intensity and duration of precipitation. Although rum-off is rapid in the Southwest, owing to the hack of close-growing regetation, the flow does nof ordinarily travel far. Much water is lost by sinking into the soil or passing into the atmosphere. Evaporation is effective because the climate is dry and most of the flows are shallow and broad, either in sheets or in small rills and distributaries. Short gutlies may develop from intense stoms on any slope, but they are formed most frequently where the surface is relatively steep.

Gullies may also be initiated by cutting in the side wall of an existing chamel. Water entering the channel side tends to cause caring. and a reentrant is formed which readily develops into a well-defined tributary gully.

The boxilike cross section of gulilies and armoros in semiarid lands is almost as typical of channels a foot deep and less that 10 feet long as of large gullies and canyons. Bux-shaped gullies develop rapidly. and a chamel over 100 feet long and seremal feet deep may be formed by a single small rain. Shatlow V-shaped chamels, mote characteristic of humid lateds. are occasionally found in semiarid climates but are seldiom over at few feet in lenyth.
Stage 2.-Growth of gullies by headward elongation takes place at highly variable mates. In this stage the graclient of the gully is characteristically lower than that of the surface in which the gully is cut. The channel is commonly deepest near its head. although if knickpoints are present the greatest depth may lie immediately downstream from a major kuick.

By headward erosion one gully may reach another upslope along the same dramage line and join with it to form a single longer gully. The cutting head of the lower gully then hecomes an knickpoint and continues headward migmation. Down cutting and a temporary steepening of the gradient of the ofr upper gully result. The increase in volume of flow may canse renewal of down cutting in the downstream part of the gully chamel and the formation of a second headward-migrating knickpoint.

The presence of (one gully increases the probability that others may be initiated down draimare. Tuless the debris fan depositerd by the gully is large enough to absorl most of the water poured into it. much of the flow will traverse the fan in a number of shallow distributary channels. If the water from these distributaries reunites below the fan this concentrated flow moving across the ungullied surface may be sulficient to induec chameling whereas the surface fow prior to the formation of the upper gully and fan was ineffective.

Headward extersion of a graly is refarded as the drainage divide is approached because of the concurent decrease in the atra draining into the gutly head. In most pullins in the Polacea area the dramage divide lies not in the allurial fill but above is in the fan or pediment zones or on the mesa. Heatdrard growth of the gully is greatly retarded when bedrock is reached and is practically stopped if the entire head wail is composed of rock. There is not necessantily any diminution of the volume of water entering the gully over the head wall, however, and downward crosion will continue until grade is reached.

Verticaj incision of gullies is a far less continuons process in arid and semiarid lands than in more bumid areas. Not only are rains less frequent in the clry climates. but the downated cutting of a gully during a storm is more likely to be partly obscured by agradation of the chamel when ru-off diminishes.

In humid lands rains are frequent and permanent streams are relatively closely spaced. Much of the deloris carved from a gully during is period of heary run-oft is curried ditectly to a peremmial stream and thence by more or less contintors transport through
successively larger watercourses to the sea. Although more material is carried at high water than at low, part of the loid of permanent streams is constantly on the move. In arid and semiarid climates peremial streams are much more widely spaced. The infrequent beavy rains usually cover only relatively small areas and the run-off from only a few storms ever reaches permanent streams. Most of the load of the arroyos, washes, and gullies of semiarid lands is transported a short distance only to be dropped again where infiltration, eraporation, and transpiration have abstracted the water. In stoms of wider extent. usually of lower intensity. more of the drainageways "run through" to peremial streams. but at any segment of the chamel the load carried is tar less tham that moved by the run-off from the powerful local showers.

With the approach of a graded condition in a mally, vertical cutting diminishes. Lateral erosion becomes the dominant means of channel enfargement. This process can go on in the narrower cemb yons until all of the fill material abure the level of the gutly bed is remored. As the chamel becomes wider. however. other conditions remaning unchanged. the effective volume of water is reduced. owing to the change in the proportions of the chamnel cross section, so that the rate of lateral erosion decreases.
As each guly that is tibutary to a larger gully or stream is controlled in part by the larger drainage line. each change in groalient of the trunk gully is reflected in its tributaries. When overfalls or knickpoints adrance up the trunk past tributaries those tributaries become discordant and in turn barin to lower their chanuels by the headwad erosion of corresponding falls. Furthernore. the average volume of water passing througl the truak pully does pot become constant until all of the tributariey have ceatsed dheir heat ward elongation. The interdependence of the rations parts of a continuous gully system is thas so close that the advance of any part to a dater stare of development can take place ouly when the necessary conditions have been attained by the other portions of the network.
Staga, 3.-When. for any reason, the downward erosion of the golly floors is retarded. healing grains dominance. Opposing processes are active at this lime. Lateral cuttine br the stream tends to retain the steep gully walls, ind sheet wash. aided by mass movement. tends to reduce the walls to relatively low slopes. The duration of the lateral-cutting phase depende on the material of the gulls wals and the wolme and fregueney of fow of water through the gully. With inerease in mohility of the wall material or reduction in the frequency and wolume of flows in the gully, lateral cutting diminishas; regetation bearims to establish inself on the reduced slopes. and locally deposition may take plate. There is only scattered evidenes to indicate that this stage has berun in the Pohacca clrainage area.
Rechuction in slope of the gully walls by caring and sliding groes on so slowly that even a slight amomt of lateral erosion will maintain the rertical walls. Evidence of the work of stope-reducing agents cun best be sera on surfaces praterted from streme erosion. such as walls above high benches along the chamel.

[^8]Stage 4--The final stage. stabilization. is reprosented in the Polacea dranage amost solely by chamels formed at earlier periods. This stage may be divided into two phases. The first of thesc. stabilization proper results trom the establishment of vegetation within healed gallies. Slope, soil. and regetation become adjusted to the climate so that norma conditions of erosion agrain exist. The stabilized gullies, however, aet as drainage lines. They are the places where a rejuvenation of abormal erosion is most likely to occur with any renewal of accelemed rum-ofl.

With a continuation of cleposition after stabilization an additional phase may be brought about in which the stabilized channels are completely filled and obliterated. The climatic transition along the Polacca from arid at the lower end to subhumid in the headwaters is favorable to eventual filling of the channels. The abundance of avaitable material in the higher and more humid portions of the area woud make possible rapid acramatation if conditions of nomal erosion were reestablished.

Mechanics of Gcley Enlargement.-The processes of headward and haterad growth of the deep gullies of the Southwest vary with the amome of rm-off being carried and the composition of the walls. The shape of the gully head. whether pointed. boxlike, bulbous, or dendritic, is cletemined largely by the relative rates of the headward and sideward arowth and by the distribution and volume of flow of water over the rim.

Abrasion by flowing water at the top of the hend wall is a relatively minor cause of the enlargement of deep grullies. Other conditions remaining the same this abrasion increases with the velecity of the flow and is at a maximmm during the height of the run-off.

A far more powerful cause of headward erosion in gullies is the caring of the upper walls as a result of tundereatting. This process is espectally active where the materials of the fill. instead of increasing in resistance downward, have the most resistant layers close to the surface. In the Southwest this weakness at depth is generally traceable to lenses of water- or wind-laid sand. which have very low binding qualities; to beds that are subject to drying and eracking. which makes them more valnerable to the attack of ruming water; or to beds that become fluent when soaked.

When first subjected to a turbulent flow of water, chayey hyers that have been broken down by cracking behawe mach as wotid a bed of gravel. Before the individual clods can be soaked throagh they are carried off in suspemsion or are rolled away along the strean fioor. Even large chanks several inches in diameter ire removed. These become rounded to form cobhe-shaped mud halls, which are common in some parts of the area and have been found atso in the fill in buried channels. Gravels may be embedded in the surface. but when the balts are broken open the interior structure is seen to be still that of a clod from the grally wall, and ofter, shows bedding planes or at rectangular cramb frattire. Only the outside shell becomes plastic in the ombinary short period of transport during run-off. If left in water long the clay softens and the structure breaks down.

The presence of loosely erackex muterial and a cloddy structure in a gully wall depends on the preseme of wafferient soil colloids to produce shrinkage when the soil is dried and on a hack of pressure
from above to close the cracks as shrinkage takes place. In a typicul section of a deep colloidal soil exposed in a gully bunk, the uppermost layers have either a clodlike structure in which the interstitial spaces are about equal in sizo vertically and horizontally or a structure in which the horizontal spaces are slightly smaller than the vertical ones. Lower down, where the overburden is preater, the structure becomes essentially columnar. Horizontal cracks are sinall, and vertical cracks are lugger but tewer in number.

Whdercutting of gully banks for several inches. or even a few feet, without caving shows that the weight of the soil column is not transmitted uniformly to the lower layers but may be supported in part by a sort of cantilever suspension, Lacally, deep it the fill, there are very commonly one or more massive elay-sand members sufficiently strong to support the overburden and permit horizontal as well as vertical cracking in the Jower layers. Examples were noted where horizontal craves open more than an inch were formed immediately below massive uncracked beds buried at a depth of 10 feet. Loose cracking of stata low in grally walls is far more a product of desiccation working laterally from the gully than wif nomma soil structure formed from the surface downward.

Eran where the lower horizons are wot columnar or blocky in st ructure, soaking during high water followed by flow and caving are the most affective processes of gully -head arision. Soaking of the bead wall takes place not anly from fiow on the gully floor but from the splashing of the water in the plange pool and from the thin surface-tension film of water that rickles down the gully head. After the stage of maximum rmooff, water that has suaked into the walls near the bottom of the gully tends to seep back out, carrying in suspension mony fine woil particles. If the wall materials have been softened greatly by the soaking. portions of the bank give way. Such caving may contime for homs or even days after rum-off has ceased.

Widening of the channel down antly from the head depends on the composition of the grally walls and on the rate and rolume of flow.

The shallow dejth to which the average fill material of this region is moistened by rain indicates that seepage of surface water downward through the soil is asually unimportant as an argent of gully enlargement. Cracks, animal burrows, or other surface openings, bowever, readily determine the direction of grally development. If water entering underground passages emerges firom a gully wall through a contimuation of the pastage or by seepage along lower permeable horizons, saking and shmping or fiowage of materal into the gully is intensified in that direction. Eventually the higher horizons will cave. and another quily chamed will be started.

wist progion and perostiton

In a climate as dry at that of most of the Polacea dramage basin the vegrtal cover is mare if ever sufficient to prevent completely the shifting of sand on soil by the wind. Tuder these conditions, comanon to at large portion of the Southwest. a deerease in vegetation or an increase in either erosion or deposition by raming water permits wind crosion to set in.

In several parts of the Polacea drainare especially from the vicinity of Polacea village downstream to the valley of the Little Colorado,
sand blowing has recently been renewed, and active dunes now occupy the surface (fig. 56). Although the most noticeable effects are in the valley bottoms, wind deposity are also found on the uplands. In reentrants near the somthwestern horter of Black Mesal large dunes

keally have baried the perdinent zone and sweep from ralley floor
 area of more than a square mile on the surface of First Masa, northeast of Watpi (fig. ais), and itregular hummeks extend over a greater area.

Longitudinal dunes ($76, p .121$). oriented in a general southwesterly direction parallel to the prevailing winds (figs. 25 and 40), are the dominant type on the valley bottom. Dunes are especially abundant. in the Tusayan Washes section, where sand storms are said to have increased in frequency cluring recent years.

Wherever wind-blown sand is found as a continuous surface mantle, it is effective in preventing erosion by ruming water. Parts of the Polaca drainage are almost immune to sheet wash and serious gullying because of absorption of the flowing waters by sand and becuse of the obstruction offered by drifting sand to the formation and maintenance of channels. By reason of their retention of water these sand areas are favorable for vegetative growth and are valnable to the inhabitants of the region ar agricultural land.

ACCELERATED EROSION EN THE SOCTHWEST

Recent acceleration of erosion in the Polacca drainage and in the Southwest as a whole is now generaly recognized. There is as yet, however, no general agreement as to the cause of that acceleration. Any valid explanation of this recent trenching mast recognize that a large part of the region is affected by it and that in some localities it began as much as 80 to 100 years ago, though in most areas it had its start more recently.

Date of Acceleration of Efosion

THE SOL'THWEST

Rich, Gregory. Bryan, and others have gathered many records of the beginning of acelerated erosion in the Southwest. The dates rary from valley to vallyy as do also the mature of the terrain. time of settlement, type of land use, climate, and reliability of the information. Hough, in 1906. made a general statement for the entire region that acceleration of erosion began 30 years earlier or about $18 \% 5$ (64). Bryan considers this too early and places the begiming of cutting about 1885 (23). ${ }^{18}$
Most accounts by early travelers in the Southwest indicate that acceleration of erosion did not begin until after the establishment of settlements and the expansion of the cattle industry. Local exceptions may be noted. Explorers and military parties that crossed the Rio Puerco of the Rio Grande drainge in New Mexico between 1846 and 1877 report banks 10 to 30 feet high and a channel as much as
 would suggest that chameling had set in far earlier than the late eighties, the date given for it by lecal inhabitants (33, $p, 3.39$). The explanation of apparent disagreement of the two accounts may lie in the development of discontinuous chamels, which eventually joined to form one great contimoons gully (pp. 92-95). Albert. Simpson. and Juckson, whose joumats tell of the carly condition of this river, may have crossed some of the earlier channeled reaches. Later, as gulying spread up and dowa the valley, subdraining the bottom lands

[^9]and impeding the diversion of water for irrigation, the population was more seriously affected. At least three river towns were abandoned (n, $2, h(0)$.

Judging from an early account by Simpson (95.p. 3s). Chato (anyon, a tributary of the San Juan River in northwestern New Mexico, had no grally in 1849. Jacksom. in 1977 . foumd nn arowo 16 feet dete, and 40 to 60 teet wide ($\% 1, p p .431-4,0 /$), and by 1924 this chammel had enlarged to 30 by 200 to 300 teet in section (2, 1.340).

Agrieultural land along the Rio Salado, tributary to the Rio (itande at Sin Acacia, N. Mox. was setled in 1880 . According to local inhabitants. an exceptional rain and flood in 1 sitis cot a new chanmel for the stream along the course of an old road. Most of the farming land of the ralley has since been destroyed by further cutting that bet ween 1882 and 1918 increased the width of the Nio hadado 10 to 40 times (26).
'The chamel that wecupies what was once the math street of Silver City in southwestern New Mexico, was cut largely in the years 1890 to 1905 ($32 ; 3.1 .1 .11$). Intense ratns tell in this area in July and September 1875 , and July and tugust 1881 but it was nor until the 6 -ineh rain of Juy 21 . 1892. that the major excavation began. August 1903 had two more disast rous floods on suevessive afternoons. In 1917
 and by 1084 the depth was repored to have increased to at least 54 feet ($\left.31.1, \frac{1}{4} 1\right)$.

Arceleation of ernsion on the (iila River in somthern Arizona and on various of tis tributaries took place between 1870 and 1900 (10.4; 17.3). Rillito Creck, a tributary of the Santa (ruz River, began eutting a tew miles northeast of Tucson after the opening of at Ented States Ammy pest on the Rillito at Fort Lowell in 1872 . Panfano Wash, entering the Rillito from the south. eroded mapidly daring floods in 1881 and in the nineties ($50 . j$. 9 . 9).

In 1870, the valley of the sath Pedro. a lomer tribtary of the Gila in southeastern Arizona, had a shatlow grasse bed and banke cowered with laxurian regetation. Willow, cotfonwool, syemore, and mesquite timber were abundant. and there were large beds of saceaton aind grama criasses and satublumblat. By 1900. the river had eut 101040 teet below its furmor banks. Trees and umiarboush wore grome, and cattle and horses trailing bet ween feed and water had cut many small

Another areount of the lower San Pedionsty that antil about 1888 the Valley eomsisted of a marton strip of very tertite subiretrated fiedds. Bearer dams retarded the flow and prevented channel cotting.

 feed depe had been cut atmost the whole length of the river. Freshets
 curtailing the area of foon hand, the derp chamel dained the botoms,
 20-7.f). Bryan pointe to the chanere in plant assomations in the San Pecho Valley as daracteristic of the recently diseeded ralleys of the Southwest. Wilhin the memory of men now living the pheretophyies, or shallow quand-water phans, hase disappoarol and have been re-

The Gila itself has cut away much of the former flood plain in its apper course, but below the month of the Santa Cruz River it has deposited enough sediment to fill the old deep chmmel and form a sandy plain a quarter of a mile to hall a mile wide ($2.3, p, 1,34,3-34.3$).

Floods that have carved a large chamel in the flow of Blae River Canyon in the Gila River domage began in 1900. Between 1900 and 1921 the number of ranches in this basin der eased from 4.5 to 21 and the population from 300 to 95 ($23 . p .342 ;$; $/ 4$).

The present chamel of san simon Creek. wheh enters the Gila River from the south aboul 4 miles east of safforl, is 10 to 30 tecet deep, 600 to 800 feet wide and 60 miles long. Olmsterd reports that it developed after the cuting of a small flowdway by setilers in 1883

Arroyo cutting in strems tributary to the Manras River. and so indirectly to the Gila. began between 1881 and $1891(\mathbb{N})$.

In northern Arizoma and southern Utah much of the chmmeling of flat-floored washes appears to have started bet ween 1860 and 1890 . According to Brady (20). the Rio de Fheg. worthwest of Fhagstaff. Ariz. formerly fowed through a grassy flood plain but in 1936 was deeply entrenched. Cutting begran in $1886-37$. When a kegging road down the center of the valley was in use. The arroy enlarged rapidly between 1890 and 1892 and by 1900 it was 15 to 20 fert wide and 10 teet deep. When reported on by Brady in 1936 it was go feet wide and 20 teet deep.

Cottam and Stewart (-37.1%. 614) state that Monntain Madow. in sonthwestern Chah, was dissected by huge gallies during a protracted period of torrential storns in the spring of 1884 .
Davis reports that cutting on Kamb Credk is known to lave begom in the frood of July 29.18843 , which was followed in 1884 and 1480° by high waters from manamy heary shows. In these three years a sully 60 feet depp by about io fer wide amd 15 mile long was cut in the fill of Kamb (reek ($3 . p, 11$). Lakes known to have existed in Bonito Canyon in 1800 (5 g, p. 1/I), in Tyende Valley in 1ss0, and in Laguna Canyon in 1862 have bern dramed and the rathere deeply trenched.
 the Segi region was bewitelech in 1884. The lakes vanished and farm lands were cht ont.

Prospectors pottery hunters. Government officials, Narajos and
 years before he worte of between 188\% and 1892 . Those on Pueblo Colorado Wash at (ammo wew fommed about (sem (.j/. p. 7.31).

THE POAMOAS DHANAGE BASEN

The begimniner of acerelated brosion in the Polacea drainaye basin ean be dated only approximately, but the several hase of evidenee are all in quemal arieement. Darly tarelers through the Savajo country appear to have sad nothing about the passence of qulled channels.

The first descriptions yet found are by Bourke. who risited the Hopi snake dance in 1881. He noted on August 16 that high wind-xippled sand dunes on the plain south or southwest of the ip of First Mesa provided heary going for their mules ($1 \%, p, 3 / 1$). To the west. in the center of the broad valley separating First and Second Mesas, he says, is a miny-season strean apparently Wepo Wash flowing from the north and joining what is now called the Polacea Wash. Where his party crossed the Wepo it was a brook 20 feet wide and 3 to 6 inches deep, with a swift current. Corn, melons, pumpkins, and
 does not mention any difficulty in crossing it is presumed that the Wepo at the trail between First and Second Mestas wats at that time a sufface flow with only low banks. The "clay talus" fommen the slopes trom the base of the mesa clifts to the plain, Bourke says. was "slashed and wrikled in all possible directions by ravines and arrogos. ranging from 2 feet to 200 fect in depth. across and bet wetl which rums a maze of sheep and goat and donkey trails ${ }^{*}(1 \%, p p$. $2 \boldsymbol{4},-2,3)$. Dissection of these steep) infertile slopes is probably thoust as okd as the congested settlements on the mesa tops above hem and must have long preceded the widespread gullying of the wash flomes.

On Angust 19 Bonde's party started southeast from the plain below Mishonghovi at the tip of Serond Mesa. When seatedy a mile on their way they ran into an alkali flat full of mud holes. and their mules and wagon hecame deeply mirel. Atter digging ont they proceeded down drainage and succecded in crossing at a phate where the water flowed betwere vertieal banks 10 feet high. The wals. of a crumbing sand and flay mixture had to be graded down to allow the wagon to pass. Less ihan 2n0 yards farther anoher and more troblesome
 of these mod flats and the two manes whyrestestrongly that the miry wea and the arroy first crosed may have bern along the wequ. The secom and larger arovo or wally way have ben the Polacea. From this it would appear that fullying abong the Polacra had indued corwative cuting on the tributary freo or that moth had trenched independemly. In aty event, fotting on the Wopo did not extend up drainaye so far as the lexgry area, which may have beell on a broad allurial fath. The phace where the Wequ hat been crossed 3 days before must have beon still father upstram. These few ohservations of walley trenching sugent that by 1 sha acedeman of arosion had made a start in the centmal part of the Polacta damare but that the gullies were not continuous up the washes and hatd not reached anything like their present widthand depth.
The first topographic surver of the polacea drumaqe made in 1883. is shown on the ('myon I) Chelly. Marsh Pas, and Tusayan recomansmace maps of the Inited States Gookrical survey. Be-
 these old maps it is impossible to be sure that all damageways were mapped. Permanont and intermitent strants are shown in'several of the other ralleys. Wowever. and it is unfikely that a well-developed strep-wahed gully down the Polacea Wash woald have been ignored. Varions springs in the Pohece drainage are shown and the Canyon De (helly quadmarle imdiates a premanent strem about 4 miles long in one of the Polarea healwaters. As near as can be determined
this channel was in Dripping Springs Canyon (fig. 42), and it may have been a natural feature. These early maps, therefore, suggest that gullying in the Polacer drainage was not well developed until some time after 1883.

According to information obtained from the Hopis, accelerated cutting of the Polacca Wash began in the $1890^{\circ} \mathrm{s}$ at a point several miles below the village of Polacca. The exact location is not known, but field evidence suggests that cutiong began abeut it miles down valley from the village (figs. 25 and 20 between E and F).

On the basis of the positions of longitudinal fans and on comparisons of cross sections of the present gully above and below the fans, the approximate positions of other old gully channels along the course of the present Polucca Gully can be locited. One such discontinuous channel is thought to have extended from about a mile southwest of the mouth of Rel Canyon (fig. 26 between A and B) upstream for at lenst 2 miles ; one for a clistance of about 3 mises up from the mouth of the Burnt Corn (fiy. 26 between (${ }^{\prime}$ and D); and one from about 6 miles to 9 miles above the mouth of the Burnt Com. The longitudinal fans were formed by deposition from discontinuous channels and were later cut through when the channels became incorporated in the continuous gully system.

According to this interpretation. active discontinuous channels were present in four reaches of the main drainage of the Polacea Wash, possibly before the end of the last century. Integration of these chamels under the influence of continued acceleated srosion produced the long, continuous Polacea Gully.

Eridence from the major tributaries of the Polacea also indicates that acceleration of erosion began some time after 1890. A land survey made in 1891-92 ${ }^{19}$ shows a discontinuous gully in the Wepo Wash, terminating about 5 miles above the present junction of the Wepo with the Polaceu-a reach that now contains a continuous gully channel. In Keams Canyon Wash, according to Hoover, writing in $1930\left(6.3, p .4 .33^{\prime}\right)$:
The greatest trenching has taken place rithin the last 10 or 15 yeurs. Before 1880 there was no serions arroyo wash in Keams Cimyom, but later the government experimentan farm there was largely washerl away mat land to be abandoned. The school was moved two miles down the canyon to its present site. The wash is now about of feet deep and goes through the middle of the old fields and cemetery.
Gregory, who worked in this area intermittently from 1909 to 1913. said that the deep alluvial fill of Keams Canyon was thea being removed so rapidly that location of roads and preservation of buildings was a serious problem ($5.1, p, 7.17$).

Cutting of neighboring washes has also taken place largely since 1900. Hoover says of the Oraibi ($\left.0 ; 2, p .433^{\prime}\right)$, the next wash west of the Polucea, in 1930:
The old Orabi Wash of 30 years ago was no more than five or six feet deep and can still be traced where it was abmudentel for that great gash about 3 feet deep and spyeral humdred feat across. Locully it has cat to bed rock, and here there is a constant flow of surface water. It is representative of what has taken place in all the valleys.

[^10]Jadito Wash, adjoiuing the Polacca drainage on the east, has a present channel in some places as much as 100 feet deep. Most of this, according to Hack, has been cut since 1914 ($0 \overline{5}, p .68$).

The weight of evidence indicates that accelerated erosion in the Navajo country began between 1880 and 1885 , and gradually spread until by about 1914 all the major drainages and most of the larger tributaries were trenched by a system of continuous gullies. Since then gullies have cut deeper and have joined to form a more complex continaous gully system. Eulargement of channels and extension of the system continues. Parts of some of the larger gullies appear to be less active than they were a few years ago.

Cacses of Acceleration of Erosion

DIASTHOPHISM

Available information indicates that accelerated erosion in the Southwest was initiated at slightily different times in different areas but that by far the greatest incidence was in the period 1880-1900. In the search fur the cause of acceleation of erosion these geologically short time fimitations must be kept in mind.

Rejuvenation of stream action would be a possible explanation of the trenching of the valley floors. In individual streams this could be brought about by increase of flow, through capture, or by the cutting through of a resistant barrier such as a massive bed, lava flow, or landslide. More or less synchronous acceleration on streams throughout the Southwest could scarcely result from any such local causes.

A far more widespread cutting of gallies in valley floors could be brought about by steepening of chunnel gradients through diastrophic action. Any type of doming, warping, or tilting of the earth's crust, however, would involve it directional orientation along which grades would be increased and an orientation in the opposite direction in which grades would be decreased. Warping that would produce increased cutting in southward-flowing streams should procluce agradation in those flowing toward the north in the same area. Fertical uplift or doming would produce a steepening of gradient of streams flowing radially outward from the uplifted area.
No evidence of recent drainage changes of these kinds has been found in the Polacca or elsewhere in the Southwest. Observation of the growth of continuous gullies from short discontinuous ones (p. 92) further suggests that acceleration of erosion has been brought about by changes on and above the earth's surface rather than within the crust.

AGRICL'LTLRE

Where cultivation of the land entails conuphete remoral of natural vegetation and for part of the year leares the surface entirely bare, the hazard of soil erosion varies with the farm calendar and with the seasonal variations in climate. In the Navajo and Hopi reservations agriculture is well addapted to the climatic conditions and is far less likely to induce serious erosion than are the usual agricultural practices of farmers in somewhat more humid lands.

Few of the Indim fields of northeastern Arizona are ever plowed. Corn, the major crop, is planted in individual holes made with a planting stick: Most of the fields are in sandy areas which retain much of the scant rainfall and therefore do not wash badly. Sand blowing rather than gullying is the major dificulty to be combatted on these fields, and windbreaks of reed, brush, or stones are commonly used. Fields on allurial fans or on flood plains of arroyos are more subject to gullying. Ever here, however, the usual Indian agriculture does little to increase the hazard. Stewart (100, p. 329) reports that flood-water irrigation as practiced by the Hopis and the Zumis today is a highly effective means of preventing grilying. The result of land abandonment may be seen on a field that went out of tribal control when boundaries of the Zuni Reservation were realigned about 35 years ago. The fiat-bottomed stream which was formerly used to provide floodwater irrigation for the field has now cut a channel approximately 75 feet wide by 20 to 30 feet deep.

Diversion dams and distribution ditches to irrigate the fields are reported to have been very numerous in the past (82,100), and if properly maintained must have acted to prevent rather than induce accelerated erosion. Abandonment of these works, as Reagan (88) has suggested, may have been a contributing factor in starting accelerated channel cutting. Bryan ${ }^{20}$ believes there were fewer dams than Reagan indicates fud that their effect on alluviation and erosion was small. It seems certain. however, that in the areas most intensively cultivated the water-control structures of these early farmers were highly effective in retarding run-off and in causing alluriation.

Little is known of the number of inhabitants in northeastern Arizona betore the coming of the Spaniards. Espejo in 1583 estimated the number of the Moquis at 50.000 , but this is thought to have been far too high ($43, p .15$; $48, p, 6611$). In 1776 the engineer Miguel Costanso ${ }^{\text {E1 }}$ made an estimate of $7.494(43, p .15)$. This figure, which is also given by Escalante agrees well with other estimates of that period. In 1780, however, after 3 years without rain, Governor Anza grave the population as 798 and the deaths as 6.698 . Whipple in 1853 noted the population as 6.720 (111, $p, 15$), the Eleventh Census in 1890 as 1,996 (43. p. 4. $)$, and the Indian Service in 1939 as 3,339 , including 114 Hopis residing off of the reservation (109, table 3).

Considering that the Hopi population probably has never exceeded 8,000 and that the Navajos have gradually risen to their present 48,235 (109, table 多) from a start of about $8.000 \mathrm{in} \mathrm{1868} ,\mathrm{it} \mathrm{is} \mathrm{improb-}$ able that the Indian lands have ever been much more intensively farmed than they are today.

In recent years only about 38,000 acres on the Navajo and Hopi reservations have been under cultivation, exclusive of a small area aromd Gallup. N. Mex., and of acreage operated by the Indian Service. The cultivated acreage. less than 60 square miles, is approximately 0.25 percent of the two reservations excluding the Gailup area, or an average of 1.6 cultivated acres per square mile.te The

[^11]proportion in the Hopi country is higher, 7.6 acres per square mile in 1936, but ubove and below the Hopi lands on the Polacca and adjoining drainage basins cultivated land falls to less than the average for the reservations. Considering the small amount of land cultivated it seems impossible that agriculture could have been a significant cause of the acceleration of erosion.

climate

Many of those who have considered the acceletation of erosion in the Southwest have concluded that it has been bronght on by a change of climate. The exact mechanism operative or the amount of change necessary to prodnce the accelerated cutting are not stated, bat references to progressive desiccation. decreased rantall, or greater relative aridity are common. Huntingtom ($60,60,6{ }^{\circ}$), Gregry (51), Visher (110), and Bryan (0.3, 谒) have suggested such a change as che cause of recent chamel trenching (pp. $45-46$).

The possible effects of change of climate on rate of erosion are many ind raried. Incruase or decrease of precipitation are the changes most prone to affect run-off and are therefore of greatest significance in the problem.

Decrease of precipitation in an arid or semiarid land reduces the vigor of plant growth. The less hardy specimens die, the survivors are reduced in size or streugth, and there is a general shift toward a more serophytic vegetation. With decreasing precipitation there is also less water to flow off the lands. Three results are possible: 11) If the effect of vegetal depletion is less than that of reduction in precipitation, rum-off will be less destructive and the hypothetical change of climate will bring less erosion than formerly; (2) vegetal depletion may balance decrease in precipitation and erosion conditions may remain the sume as before; (3) depletion of vegetation may be more effective than the decrease in precipitation and, particularly if individual storm intensity remains the stme, rum-ofl and erosion will be accelerated.
Moderate incrase of precipitation may have the opposite of any of these three effects. In an arid or semiarid land moderate increase should improve the vagetal cover on slopes. A preat increase in preeppitation is likely to caluse degrading of stream valleys temporarily, until vegetal protection can adjust fully to the new cimatic conditions. There is a question, then, in any area whether increase or decrense of anntual precipitation would be most tikely to caluse acceleration of erosion. It has been assumed by most of the proponents of the climatic-change hypothesis, that a decrease in precipitation, by lowering the resistance offered by vegetation to run-off has brought about the increase in crosive activity in the Southwest. Auntington $(66, p, 3 \mathscr{2})$ stresses the complimentiny process. He points out that depietion of vegetation bechuse of decreased precipitation so increases the amotint of debris removed from the siopes that streams are overloaded and must argrade rather than degrade their valleys. It must be kept in mind that processes are different in upstrean and downstrean parts of the same drainageway. In arid drainages that do
not run through to a major stream all material eroded from the headwaters must be deposited at lenst temporarily in the lower course. The boundary bet ween the eroding and the depositing zones migrates upstream or downstream with each period of rum-off.

Possible results of a lowering of precipitation would depend in large part on the specific moteorological changes. In northern Arizona, for example a reduction in winter rains would have a different effect from reduction in summer rains. Bailey has poined out that a change in intensity would be important even if there were no change in total precipitation (13, p. 3.3"). A meteorological shift that would lessen the frequency and intensity of summer thundershowers and of the occasional tropical cyclones in the Southwest. while maintaining the same anmal total. might increase the protection afforded by the plant cover to the gromed surface. A shift that would delay the inception of the summer mins by only a few weeks, however. would seriously dumage the veretation, thus favoring acceleration of erosion.
In a land of abondant main an increase rather than any slight decrease of precipitation wouk be needed to catuse acceleration of erosion.
It has been pointed out in the discussion of the distribution and intensity of precipitation in the Sonthwest and in the Polacea drainage in particular that summer conditions are markedly different from those of winter (pp. 8-11. 47-48). The silent differences and their effects on the operation of normal and accelerated erosion are summarized in table 13.
 atrol frosian in the Naraje emuntry

Under normal conditions the vegetal cover of the Navajo country in summer gave adequate protection against all but the most intense rains. Carving of new chamels took phace largely where storms of unusually high intensity centered oner areas where the vegetal cover was locally impoverished or destroyed by fire or other causes or where steep slopes allowed very rapid ru-off. Most of the stoms covered areas of less than 30 square miles and had low total precipitation and durations of less thim an hour. High temperatures and amost continuous wind movement cused rapid cvaporation outside the immediate stom area and only slyhtly shower evaporation within. Infiltration into the soil and transpiration from the natural plant cover were higher than they are today and were at their peat in the summer months.

Outside of the highly localized storm center the run-off rapidly diminished in volume. owing to losser from infitration and from exapcration and transpiation. asatly termed "evapo-transpiration" by hydroloyists. Erowion and transponting power decreased as the volme of flow lessened and the material washed from the stom mea was deposited at no great distance.
Summer conditions tem to recard ratu-off and localize the effect of each stom. As a result the arrovos that were formed in summer under normal conditions werw mostiy short and unonaected aud characteristically terminated in alluvial fans. Lomuritudinal allavial fans. representing in part at least dequsition at the lower end of discontinyous arroyo chanels in the period of normal erosion, are present on the surface of the upper Poharca Wrash.
In contrast to the intense summer storms. winter storms are characteristically of low intensity, may lats for several days, and are of wide areal extent (table 13). These storms are accompanied by widespread choudiness and fow evapomation: winter vegetal cover is light and transpiration therefore inefferlive. Yuder these conditions the widespread winter storm although less able to initiate new channels locally, may cause run-of throughout the entire area. Especially if coalescence of tributary drainage brings together considerable flows of water. winter run-off. whether from rain or melting snow, tends to clear ont chamels and enlarge discomintous arroyos lying within the drainageways.

With normai phant coves. the lands recterem quickly from the effects of heavr storms. Tegretation crept batk into the newly carved chammels and :ided in trapping sedment. Veretation on the surromoding area prevented rapid rom-off from average rains and permitted heating of the storm-cut chamels.
Depleted phant cover is mach less effective than the natural cover in retarding ran-off and removing water by transpiation. It is also less effective in aiding infitration. In areas subject to accelerated erosion the effect of depletion is shown in several ways Summer storms of an intensity of precipitation insufficient to cause cutting of new channels on a londscape clethed with natural vegetal cover can initiate chamels in areas of depieted vegetation. Thus in a region having matural cover. only the area affectect by the intense cenfral part. or tye, of the typical summer storm would be subject to initiation of new chamels, whereas in a region of depleted cover a much harger part of
the storn might cause destructive erosion. Similarly, where the ground retains its natural cover, a main of given intensity would carve chanels only on steeper slopes and where dramage wats concentrated in sags or draws. Where pround cover is depleted. a storm of the same intensity conld inithate chanmeling on gentler shopes and on surfaces outside of draws and sags. hence subjecting a much larger part of the area to accelerated erosion.

Plant cover oflers much less protection against erosion in winter than in summer. Merhanical obstruction to run-off is slight. espercially where the cover has been deplated. and transpiration in winter is essentially inoperative. It is fortunate indeed that mins in the Southwest are characteristically of low intensity during this seatson of poorest vegetal protection.

Chamel initiation is inactive in the winter months exept along some of the major dramagewas. Instead, the run-off trom the slow. protracted, widespread rains and metting snows increases the size of chamels already formed. Owing to the high proportion of cloudiness and the lowered rate of evaporation during the winter, in addition to a more sparse regetal cover, run-off can traved a considerable distance little diminished by absorption or evaporation.

Chamel claring and headward growth of gullies lead to integration of the discontinuous gullies formed by summer rains and convert smath separate chamels into parts of one great continuous daminage system. This develomment of long. continuons chamels throurg which water is mapilly dramed from the region is one of the most serious consequences of acelerated erosion in the Navajo country today.

> ACtMENC: WNA BFFECTB OF INTENSE PBECIPRTATION

A plant cover sufficient to protect the ground from the arerage storm, or even from the 5-ybar or 10 -yatr stom, may be quite inadeguate to protect against the $50-$ - $50(0)$ - or $1,000-\mathrm{ye}$ ar storms. The timing of rains and the conditions immediately proceding intense ains also weight their effectiveness. Vegetation impoverished by a long period of drought (pp. 31-35) is muk less able to withstand a heary rain than is a phat cover brought to bountiful growth by a succession of well-spated rains of low intensity.

The effects of heasy rains are amply shown in the gullies and grallied chamels, so nearly minersal in the Woullwest today. mad in the floceds. wash-outs, and iave-ins that have calused destruction of life and valuable property. Hempy rains ate not new oo the Sonthwest. 'They are an essentiat part of the meteorotogical reamen that has characterized this rexion at least since the readjustments that followed the close of the lee Age (97). Rum-of from heary wains here as well as in other parts of the comery howeres, is now nore rapid than it was before white settlement ($1 / 13$). From the earliest cerods to the present there has been an ever-increasing ery that foocols are getting higher ajstrean, chamels are cathing more deeply. downstram reaches are angrading. and the regetal cover is not so grod as it one was.

The ofenremre of destractive raths in the latter hatf of the last (entary is amply shown by newspaper accounts, joumal entries, and official correspondence. Representative storns and their effects are described below.

The Arizona Miner (1) for August 8, 1868, reported:

About 9 oblock Somday morning last there occurred, in Yumat county, in this Territory, one of those dreadful tatastropities in Nature, known as a "water spout," which * * * is withont a parallel in similat phemomenat. Mr. James Grant, mail contractor on the La Paz and Prescott route * *** left Lat Paz Sunday morning, and proceeded about 14 miles when he beheld a tremendous black cloud to the eastward, moving toward nim from the direction of Grante Wash. Nothing damoted, he kept on his journey whtil arriving at the big ravine, 14 miles this side of Theson's Well, now Rovert's Starion-where he fontod the freight trisins of Miller Brothers and Camplell \& Buffum, of Prescett, in a budly demoralized condition. While the wagons, or at part of them. Were crossing the cavite or wash, a flocd of water. which came vers near testrosing the whole train rushed ujon thein ${ }^{*} * *$.
On the 31st of August. 187-2, the Arizona Miner (98) published a delined letter from (hmp) McIowell, stating:

On the 9th inst.. we bad the createst hood in this section that has ever been winnessed here, 3 bo-100 inthe's of water fed (by the hosipital watue, in less
 is immanse, Jhe Govermment diteh is menty all washed away, We lost over Sin,000 worth of haty.

A few years latar. in 1880 , the Indian Agent on the Navajo Reservation commented ($1 /, 0, p, 1, \frac{1}{2}$).

The effect of the hency winds intad daths has bern to destroy in many locatilies the entire crops of what and come. The ratus were mosundy servore his Sedson, more so than for four or five ythas past. 'the dam at rhe abobes,
 about half an landr's time, and rocks wotghing lons earried a distance of soveral handred yards.
Bourke, a keen observer of natural phomomena. described ($/ \mathcal{F}^{\circ}, \rho p$. T-6) many of the starns his party encountered in Arizona and New Mexico in the summer of 1851 .

Thos, who are not familitu with the tomful type of thander-storms which

 Toneka amb Santa Fet Railmad tw keep their trains rumping with anything dike regnarity. The warsi storm of the surios that of thes tilly monning of Ampust 2), althourh spasmudic io its maturat, was phemomenal in the amomot of

Constant stoms forced Bourke and his party bo remain at Keam's
 pp. $2 \% 6-3 \% 7,28(1)-381)^{\circ}:$

The first examing affer bur trivinl, as the sum was setting, the mist rhicketed suddenty, and a formful dondi-hurst brake ymon us: in lass time than it takes

 stibsided as guipkly is it lith come.

Insids of half in hour the whoif tempes bat come and gone. Eight to ten fept of water had swort like a solid wall down the rampow dambel of the rerek, and the stars were fagath shining?

No description coutd an justice 10 onte of these Arizuman elond-lotursts. Mr.
 of every drop of water falling within an area of len miles satare. It does
not take much caleulation to show the power of one of the storms prevaling here during the tainy season.

Following the trail southward throagh the Hopi Butte country to the Mormon settlement of Sumset. on the Little Colorato River. Boarke's party reached the Breaks of the Little Colorato in the afternoon of August 21, 1881 (17, p. 347).
Here could be made out the grade of what mast at one rime have been a very respectable piece of enginetring, a tond down into the valley batow, or rather down to the lower heuch.

Wheever had done the work had done it well. but fruitiessig. A tearful dond-burst must have swepr aver this phace latule and with immense power had hurled great enbes of rock from their possitions or quawed out awful gaps 5 and 6 feer deep and 8 and 10 feer wide in the path we were to tescend.

The destructive power of some of the stoms of a single month in 1881 is well shown by Bo rekes accounts. Then, as now. railroad tracks were washed out. substantial rock dame were carried away, and rouds were made impassable by gullying. Other smmer storms in northeastern Arizoma led the Indim Agent ($2 / . p .1 \%$) to report. September 1. 18\% :

Some of the dams constracted lans year have washed out; in fact it wond be difficult to make a dam in this ermutry to wifhetand che terrible foods during the raing semom, withour a grear outhy uf expense. For this reasem the construction of dams. except for remporary ases, shend be abmomed and the work directed to reservits, dirfores and the developing of springe.

The heary mins of $1880-1890$ are of , wrticular interest because of the evidence that acceleration of erosion first became apparent in many of the ralleys of the southwest during that periot (pp. 10t). Among the excessive and destructive stoms of the 1 siso freneml Greely ($4 \pi, p p .1 \frac{1}{\prime}, 7$) in a report on the climate of the arid regions of the Southwest listed for Arizonn and New Mexion.?
 food at Silver ('ity. [N. Mex. 1 which damaped bumbing and drowned a bor.
 the toth. and the wh. of which the speond dit wasiderable danage.

Angugt. 1841.-Spar Wiekenburgh. Ariz. a chond butst. (musing the Hassay-
 a mile wide ar $11 \mathrm{~h} . \mathrm{m}$, and from 2 to 15 feet deep; in 13 homs the river was again dry. On the 17 th a flowd interrupted commonicatim and did much humage in the satt River Valley mear Thmenix.
 Fé Railwis on the fith, and all trathe was sumpended sonth of has hegas. In
 in many places rhe pord hed wats covered with grent herps of sand.
 and Yumas.
 deep. On the 1uth several miles of tank were washet awny east of Yuma. On the 1trh the Gila broke throuph its levees and forded tumat.

Fulf. 18S4.-The florfled coblotito washed away parts of the railway bridge at Yuma to the 1 st and 3 da .
 assume the propartions of a rives. Palegraph commanication was interrapted. railroad bridees were washed away and several mest of track deveroged.
June. 1886-Bligh water in the Rion Grabde. in the Valserde, eompletely

[^12]the 2 d and 3 d of the month. Between the 7 th and 10th the freshet having moved downstream brampd away houses and milway tracks, destroyed bridges, and snhmerged thrpe towns in the Mesilla Valley.
August, 1886.-This wis a motith of thoods at Yuma. On the 1st, light rain fell during the greater part of the day: Spyenty-five miles west of Yuma the rain was heary, cansing a washour on the railway and dehying tranis. On the 15th there was a thanderstorm measuring $1 . \bar{\pi}$ - inches, of which 0.80 fell in 20 minntes; the railway was wasifed out both mast and west of Yunat, cansing a complete suspension of traffic for sureral days. On the 27 the heary rain in the momatnins washed ont the track east of Yuma and delayed tratins.

September, 1886.-Between the 11th and 13th, heary rains fell bodween Socorro and Abmatereque. washing awias sevoral mifers of tritek, a loridge wer the Salida was putered insecure, nad several homses wero destroped in Socorro and stam Mareial.
Jmy. 1887.-On the ith a remarkably heavy rain foll at Nugales, flooding streets, destroying bridges. and washing away milway tracks. During the prevalence of a thunderstom in the altemom of the Sth: a clond-harst arcurred on the cast fork of the White River in the momatains east of Fort Apache. A vohme of water 3 fert deep came down the canton, which subsided in 1 wo hours. On the afternom of the 13thanother heavy min oechryed at Negrates in cutheretion with wheh there was reported at clond-harst in the mountains southeast of Shama. Railway trotie was stomed for nearly a month.
 the 9th. destroying sevaral miles of track and some hridues near Patima. On the 12th. Findes of track and rhrece lridges were wathet away on the Sonora
 for a distance of 8 miles.

The nineties and the early years of the nex decade were not without intense storms. 1905. howeres. stanks out as a particularly wet vear (pp. 18-21) : in Janary. Fehruare Mareh. April. and Nowember precipitation was far more than nomat at many stations. but the summer months were drier than usalal. Becrave the rains wore mosily of the winter type. characterized by lame total precipitation rather than high intensity, many widespirad floods resulted. Recorche of a tew of the rains of 1905 and their efferts in damage to property and loss of Jifer as published by the Arizona Republicath, of Phoenix. are listed helow:

Jomary 71 from nuthomice someres it was learned that while fil wast the heaviest min fur seven years in contral Arizant, the losses to the raideade comprised arthing but mimer washomts **** The siluntion wats mueth berter tham wond have hecon the ciks if the meripitation hat been of the midsummer,

 is no sigh of the voult affalfa. If it had beem obler somethitig might have been expected of it ret, lat this erop was romuvel by the roots, the surface of the gromd being shatared off or cot fall of mininture armas. isee 3, $\beta . / . \mid$
 time this yonr the Gila bridec is wreemed. At least 400 feet of it was takent
 broik may be sill Larger. [Sec 4, p. $\overline{4}$.]
[Mareh 15] A Mr, Browi * * * suin that one farm muler the Arlington
 than haif gone, must is part of the property of the Arlingtom Land adod Cattle company lat becol swallowed up hy the river.

The river has at no tinge overfowed ins hanks in that immeriate neighturhond but has risen ulmost fol the tof of the bainks, The water runs with territhle swiftuess and the banks melt away. whole neres at a fime. The crusion is incremsed by heary drift whod which the water hats against the lokse soil. [See $;$;, p. 6.$]$
 and hail stom so far wet this seasom vestertuy afternoom. * *** Mr. Sint
mons * * * reported that in forty-five minutes the precipitation amounted to 1.42 inches and it semmed from that place to be mining as hard or harder on all sites.

About mo feet of the M. \& P. track went nat * * *. [See 6, p. \%.]
[Apria 16] J. T. Hord whe has dived for some years on a farm near the river at the south end of the Novinger road [neter Phomix. Ariz.], has moved to thwn. * * * Of the sixty-five areve he bad the to a weok ago onty twenty-five acres are left and with the forty acres that were swept away in the floth. went his honey extractor, the buideng it was in, various cotbuidings, an outside celhar, nearly all the mestuite and shate treos on the farm and all of his batk yard. The water hat undermined his abain houst so bad it was at bonger sate to stay in it and one-lalf of it is sticking out over the angry stream, or was yesterciay. [Sce 7, p. 4.]
[April 26$]$ Gallun N. M. Abril 25 . The flood sitmation on the Archison. Topeka and santa Fe milway was particolly mohanged tonight and it is regarted as rery dobthat if any trans can be mosed betore late tomorrow if then.

Bridge No. 引o, over the Rio San Jose, just at the west swithlat Eomace, is in a very dangerous conlition mad may qu out at any moment. The snow is very deep in the monatins and nil the streans are ruming batak full in sme places overflowing the lowituds. [See $8, p$. 1.]
[November 30] Al other llow news mow takes a back seat atad the Maricom \& Phoent ratrand bride over the Gin river again steps into the limelight. As was feated tuestay hight, disistar orertork it and yesterday anoming if was learned that four thatied feet of the long structure hat lifen swept away and feats are ettertained that the browh will be further widened before this morning.

Heary floods on the lower Colorado River in the spring of 1905 entarged the intake to the irrigation camak of the Imperial Yabley, and the river cut a new chamel 7 b miles acrose southern California to the Salton Sink. This basin had been dry when first explored by the Spanish in 1774 and remmined dry almost contimuously until the Salton Sea was formed in 190.5 .

Protracted winter, spring, and fall rains such as caused the extensive flooding in 1905 are very eflective in claming out and widening channels and in bringing abot intermation of gully systems. There is little information avaibube on the effects of the 1905 bains on soil erosion. However, as the heary winder and spring mans prodaced a grood veretal cover. it is to be expected that arosion would have been felt math more in endarement of chamels abready started than in the eutting of new grulies down vegetated ilopes.

The tropieal stome that mover ap the (aliformat const in September 1989 (pp. 13-14) cansed extensive dhmage in Arizom and in the sonfhern part of Catitomia. The stom of September 4-7 brought the heariest ram Phemix. Ariz.. had exporienced in 28 years. Camal banks boke, trafie was interrupted. hedle and homes were imumated. and gullies were carved on arriedtaral lamel. Trathe on the Atehison. Topela \& Santa Fe Raimond was intervoted for sereral days by washouts between Valentine. Ariz. ame (softs. Culif. Betore the damage from the stom of September $4-1$ could be fally repaired, man from the second tropical aclone reached the area. Many of the reconstruted sections of track were washed out again, and of her sections untourhed by the first storm were badly damaged. Bridges, cutverts, bulkheads, and embankments were most seriously affected.
 six locations. Severat of the breaks were nearer 2,000 feet in lenerth.

In a fer areas additional damage was done by other storms coming still later in September. ${ }^{.4}$

The Southern Pacific (Co. had no more than average stom damage to the Arizona portion of its lines in Sepember 1935). In southeastem Califonia the storm apmently watherer and in the fwo States damage to the railrond right-of-way approximated $\$ 175.0000^{25}$ The Arizona Highway Department reperts that in ite ophaion this was the heariest stom experienced in northwestern Arizona in the past 50 years. Tratio was deliyed on L'. S. Highway No. fie bet ween Kingman and Topock and on T. S. Highway No, 80 between Hassayampa and Yuma because of run-off in the dips. A stretch of about 10 miles of C.S. Highway No. 83 between Kinguan and Boulder Inm was so badly damaged that it will have to be rebuilt. The cost is estimated at $\$ 1.500000$. A timber bridge some 300 feet Jong accoss Detrital Wash was carried away bodily and will have to be replaced. ${ }^{\text {ac }}$

Destructive floods from the abmormal sepmember rans swept down the lower Colorado River Yalley in Culitomian and Arizona early in the month. Property along the river was damaged extensively and canals and bands of the Cuma irrigation project and the Imperial In wifation District were alfected by wash-outs, gullying. and silting

$$
\begin{aligned}
& \text { Imperinl and Conchella valleys sutfered the greatest damage. Nearly every }
\end{aligned}
$$

New rivers) excerded heir provions maximum records. II a number of it
stancer libe channels were insulticient til cilry all the wather, and the ramuf

> depilh frim inclies to severai ferl. $* * * *$
> Truck gardens in many places wepe conered with sereral inehes of sand and silt, Leaving the fields perfeetly thit. but erocled ly liarge palleys.
tuted that it will be neeessary to reenass ruct then.

Lrse precipitation fell in the Navajo Country in the northeastern part of the state, but even if stoms had been as heary there accoments of the damage would be few. Records of destructive ratis in the Navajo country come hargely from reports of Indian Agents. as storms seldom receive notice in the public press unless they happen to disrupt highway or rail travel or damge irrigation or watersupply works.
Many stoms have contributed to the conting of the present large gully in Kams Canyon. on the Polatca drainage. Bourke's descriplion of the heary rains he observed there in 1881 (p. 113) shows the power of tash run-off.

In 1911, the Annual Report of the Magui Agency, Keams Canyon, Ariz.. stated that buildings of both the :gency and the school were being injured by the constant cracking of the walls. This was believed to be due to the gradual slipping of the soil toward a latge arroyo in front of the grounds. The arroyo. it was noted. was coin-

[^13]stantly becoming larger by reason of the heavy rains in July and Augast of each year. ${ }^{37}$ The report for the same agency in 1913 shows a picture of the atroyo in Jeams Cunyon "within one mile of its beginnung. where the cunyon is narrow: Depth approximately fifty feet." The caption notes further that 10 years before there had been no evidence of such an arroyo. ${ }^{\text {as }}$
The annual report ${ }^{20}$ for the next year states that the first days of July were rainy and that on sunday. July $5,19140.6$ inch of water fell in 15 minutes. Great damage resulted. Rains between August 26 and September 3. 1915, in the vicinity of Keams Canyon destroyed roads and rendered communicatim exceedingly difticult.
In 1919 the Superintendent ${ }^{\text {su }}$ of the Moqui Agency reported: "On July 10th, 1919, in Keams Canyon. one inch of rain fell in thirty minutes. This was a flood that eaused oue to wish he had an Ark."

Only 2 years later, on August 4. a cloudburst washed out the retaining walls at the Keams Chyon agency and destroyed roads. crossings, and bridges, cutting off all communication with the schools. ${ }^{31}$
lt is apparent from the foregoing descriptions and from that by Hoover (p. 106) that the major gullying in Keams Canyon probably started between 1903 and 1911 but that the gully did not approach its present size until about 1915 or 1920 . The part played by the occasional intense rains in the cutting of this gullied channel is clearly indicated by the above accounts.

Intense rains have caused accelerated cutting and serious property damare in many other patts of the Navajo country. A cloudburst on the evening of July 24. 1921. near Fort Defiance Agency rushed down Bonito Creek 10 feet deep destroying protective works that had stood for 16 years. A road and 200 feet of pipe line were washed a way. cutting off the water supply. Damage was estimated at $\$ 10.000$ to $\$ 12.500^{.32} 9$

Superintendent Kineale at of the San Juan Agrency at Shiprock. N. Mex.. reported on September 19, 1925:

I have to report a ciond burst yesterchay P.M., about 3: 00, lnstimg practically ons hatf heotr, Itar water liowed ofor the hichway neme the athletie tield to a deptl of threr feet; the ware house, jail, and all eotinges were surmonded by water to a dejuth of one feet or mote; water fowed down the highway

 destroved; ditches dilled and ubliternted; bridges and roadis washed out; the basement at the Masa Soloon was partinlly filbed with mud and water. However there was moreident or loss of life.

There have then mumerous sueh storms, during the past six weeks, on all sides of us, keeping the arroyas full and the roads for the most part impassable. but this oute bit Siniprock sifuarety.

[^14]If records of heary mans and resulting erosion damage in the Navajo country were more complete, a much more detailed picture should be available of the close relation between storms and erosion suggested by these senttered accounts of the cutting of Keams Canyon Gully and the damaging erosion near Fort Defiance and at Shiprock Agency.

As there is no indication that there has been either an increase or a decrease in the average ammal amounts of precipitation in the past 2,000 years or that hetvy storms are now any zore frequent or more severe than they have been in the past (pp, 43-46). the explanation of the increased erosion by run-of and the heightened foods must be sought outside of the fied of meteurology.

GRAZING

Evaluation of the role of owergrazing in bringing about accelerated arosion in the Southwest can be based in part on ronrelation of the time of starting of heary grazing and the clate of grully cutting in various ralleys. As the Southwest developed primarily as a cattle country, it is only natural that the introcluction of large herds took phace as early as or earlier than the establishment of permanent white settlements. Herds arew in size rapidly, and the rrazing load increased until in many areas it soon exceeded the safe range capacity. In humid yeats when the vegretal cover was at its best the large lond could be carried. With the coming of a dry yeat or a suression of dry years. however. the cover was far from sutficient for the livestock. It was inadequate also to protect the land from erosion.

The tacts are clear that abeluration of emoson followed close on the heels of the introduction of heary grazing. Considering the hare number of ralleys thronghont the Southwest where this is fomad to be true, the relation can hardly be fortuitous,

Riflito Creek, near 'Tucson, began cutting after the opening of the Arney post at Fort Lowell in 1872. According to Smith (Of, $p .98)$ the valley was first settled in 1858. and at that time was an unbroken forest, principally of mesquite, with a crood stand of grama grass and ohher grasses between the trees. When the Army post was opened hay was needed in lage quantilies. A fow rears of cutting hay killed much of the grass and cattle introduced during the seventies furiher destroyed the forage and developed trails. which soon eroded to crullies.

According to a runcher (53, p. 72), the Sam Pedro Valley, Ariz. had a luxuriant growth of vegetation in 1870. Te emotinues:

 one-balf that number and they wore doing poorly.
Another rancher (9. $1 / p, 13-14$) on the Gan Perlmo suid in 1900:
Of the rich grama prasses that wiginally covered the conatry so little bow remains that mo aceount gat be tak+h of thens.

[^15]range. Thes were simply left there until the pasture was destroyed and the stock then perished by stiuvation.

Hoover states (61, p. 4s) that the changed beharior of the Gila River is generally attributed to overgrazing aud the cutting of timber in the upper basin.
Before 187 there were few enttle, but ther increased rapidly after the settloment of the Apache Indian trombles timat year. Duriug the eighties there was a series of wet years with abondince of maturat forage. The ranges built up rapidy, and overgrazing resulted. During the same perion the mountains of the Upper Basin in sotatheastern Arizona were beting rapid!y stripued of their timber for use in the mines. The hillis were baree than now, hecalase with the advent of the railways better mine timber was brought in from the outside: but the rutting for finel eontimbed. At the mad dif this series of wet sears came the disastrus floced of 18 sm . Eeffore this. fight waters of the Gila merely spreari out over the fiats and inrigated them. Now with the banks of the riser unprotected bs brush and grass, the chamel suddenty widened. and many good ranches along the river were rut out. Smallor branches of the river in the apper basin cut chambels as math as twelve feet deep. On the desert deep chamels appeared in what hatd been grassy swates.
Diversion of water by irrigation projects farther up the Gila Valley and consequent reduction of flow is also thought to have contributed to the changes in the regimen of the river ($61 . p .45$).

The balance of grazing, vegetal cover and climate can readily be upset. In a series of years with normal or greater than normal precipitation the range may have carried the grazing load with little detrimental effect. With the coming of a drier than normal season. year, or series of years the depletion of vegetation may have been so great as to adjust the grazing load automaticalls by starvation. Calvin ${ }^{35}$ in a study of the bistory of the Upper Gila Region suys:

With an immense gruss-covered rauge, then, in its virgin condition, and wirh the additional advantages of a mild climate, Arizomia was quobosly destined to develop ahost overnight into an imporiat stock-raising comotry.

When the two transeontimental railroads crossera Arizona atoout 1880. they gave still further impens to the lipestock industry along with others. A great part of the sudden influs of proulation took to ramehiag. * * * Many nade fortunes at first, but compeifion naturally grew kerner. By the midelfe fighties, every running strenm and phemanent sprity had its setther. Ranch houses were built, and ranges stocked with cattle brought from every phrt of the west.

In the fatl of 1888 . the first earloud of pedigreed Berefortls were mbended in Arizona.

In the early eighties. there was a heavy demand for heef it the ereat mining camps of the Territars and another from the (aliformin markets. ** *
 As a result, ranchmon turiod for the first time to eastern markets and when a shipment of five tmodred head brought the owner aratifying price, a and treth in runching practice developed. It became the eustom for several years to retain the she stock on the range, and to hold the steers until three years old and sell them as feeders to the cori-growing states or 10 (hatifornia.

The retention of chtte on the range then began to assume great importance for the parposes of the present study. By 7897 it was coneeded that tha manges were stocked, says Camphell, to the limit of their capacity. Then the dranth arrived.

Little effort was mabu by owners to sell or ship thefr stock, as they waitar for the grass of thr coming sensint. Rut 1892 was worsp than its prederessur. By May cattle were dying. fume always a dry month in the Southwest. further dissipuled the moisture which remaned. The July rains did not come. The August rains did not come. Giittle were prishing everywhere.

[^16]* * * Another year dragged onwards, and then in May, June. and July of 1893 occurred the worst losses of all. "All ranchmen concerle," says Governor MeCord, Jowking backwards in his lieport of 189T, "that it (the loss) was no less than fifty per cent, and some insist that seventy-five per cent is not too great an estimate."

The first tragic half-cycle was complete. for the enumbly had pussed in twenty years from tis virgin grassocoered stite to a parched, close-picked condition in which the last palitable leaf had temporarily been destroyed by starving animals. * * *
Sutficient history has been cited to show extreme unwisdom in the practice of overstocking br the ranchmen. They estimated the carrying capacity of the
 without a reserve of some kind has alwass proved fatal.

Other changes incident on settlement have been at least contributory causes for accelaration of erosion in some areas of the Southwest. When settlers cut a short duanage chmmel to confine flood waters of San Simon Creek near Solononville in 1883 (79, p. 79), they started a gully that is now at least 60 miles long. The gully of the Rio de Fhag, Ariz., was started partly by erosion along an old logging road used in 1886-87 (20). The san Vieente arroyo which formed down the main street of Silver City. N. Mex.. has been mentioned on p. 103. Bare of regretation but unpared. the street lay in a matural drainageway. It began to erode. and the channel enlarged rapidly to its present depth of more than 50 feet. Lumbering, forest fires, and overgraing, Calvin says, are the reasons for the increased rate of un-off from the watershed abore Silver City (.31. p. i9). Setting :aside of the Gila Forest in 1908 gave mature a chance to revegetate the watershed. and (alvin reports that floods ure now so much smaller and less frequent that there is a popular notion that the area no longer receives the big ruins that formerly fell there, an impression not borne out by the records. Revetment work and gruliy-control dams installed by the Tuited States Soil Conservation Service and the Civilian Conservation Corps have furlher protected the city from the possibility of recurrence of destructive floods (\%)

In southern Colorado, according to Duce (44), ranchers are unanimous in stating that trenching of valleys has taken place within the (i0 vears proceding 1918. Development of the arroyos he says, seems to have been contemporaneous with ranching. Duce notes that cattle often trabl down the center of a camyon, and he believes that wearing of trails and destruction of veretation by livestock were the cunses of the accelerated erosion.

Additional evidence of the part played by heary grazing was presented by Dodge in 1909 (仅). He found in the Chinle Valley strong indication that the run-oti from rains formory flowed over gently sloping valley foors in sheets. The Navajos. he snys, charge that sheep. first introluced to the area by the white man. have closely (ropped the native grass. This and the traveling of sheep in droves. often in single file. have aided in loosening surface detritus and giving water opportunity to berome concentrated in streams. Dodge notes (12. p. 5.3.7) that, at the dime he wrote, the malin Chinle Yalley and its larger tributaries were barren and were cut by aroyos, bat-
one branch is grass-covered and dat-finorall and supports willow trees. Water flows in sherts corer the surfire fud is wot concentrated in streams. This vatey has never beon wrupied as a grazing area for sheep by the Natajos because of a superstition that it contaius certain phants that are injurious to sheep.

The presence of clead willows in branches of the Chinle Valley that have been grazed and are now deeply dissected by arroyos suggests that moisture conditions and the ralley floor were formerly like those of the one remaining branch that has escaped erosion.
In the Navajo country, grazing of domestic animals could not have been extensive before the founding of the reservation in 1868. By 1872 about 44,000 head of sheep and goats had been brourht into the the reservation (10, pp. 198-199), and growth of the flocks had undoubtedly increased the number considerably. Compared with the number of sheep and goats on the reservation in recent years, this number is very small. It seems lardly likely, therefore, that the grazing load of the seventies would be heavy enough to introduce serious erosion. In the eighties or early nineties the critical grazing load may have been reached.

As the small vegetational surplus was consumed, overgrazing prepared the way for erosion. Where part of the vegetal cover had been removed, even light storms were able to produce erosion. Sheet wash and rilling came first, followed by the cutting of gullies, which enlarged in each succeeding period of run-off. Gullying of the main chamnels of the washes and integration into continuous gully systems followed. The headward growth of gullies and the starting of new ones have gone on year after year during the period in which the orergrazed condition of the ranges has become increasingly acute. Natural grasses have been displaced by less desirable vegetation, and locally vegetative depletion has gone so far that only scattered remrants of sod on bare rock surfaces give evidence of the former soil and grass cover.

Orergrazing has altered the plant association on the mesa areas of the Polacca Wash drainage and has so increased the run-off that all rains except those of very low intensity cause soil erosion. The run-off from the lighter storms is too slight to do much gully cutting near the divides ano seldom becomes sufficiently concentrated through coalescing drainage to cause channeling on the mesa tops. Light rains, however, do soak the walls of preexisting galifes and induce caving.

In the pediment zone along the Polacca Wash the gentler slopes, and especialiy the back slopes of the asymmetric ridges formed by slumping (p. 79), were formerly well vegetated, and grasse as well as brush and trees were present in many parts of the area. Hogans were frequently built within or adjacent to this zone, and these gentle slopes were subjected to heavy grazing. Many of the slopes which formerly were soil covered are now bare, and gullies have been cut in the benches where alluvial material was once deposited. Most of the grass has been destroyed, and except for local abundance of piñon-juniper, brush and weeds now compose the sparse plant cover of this zone.

The vegetal cover of the alluvial fans and valley flats of the Polacea drainage has also been seriously depleted by heary grazing. The extensive gullying of the faus and fiats, though, is influenced not only by overgrazing within the canyons but by depletion of vegetative cover on the mesas, which causes accelerated washing over the cliffs and down into the canyons.

The situation on the Navajo lands is like that in parts of Africa having similar climate. It is suid that the overgrazed native pastares are today the most seriously eroding areas within East Africa. Pastures near the water holes are so badly overgrazed and trampled that water can no longer penetrate into the soil. Cattle trails develop into gudlies radiating from the water holes, and the overgrazing spreads outwards so tar that cattle may have to travel 20 miles for water. ${ }^{36}$ Where pasturage is too poor for cattle, sheep and goats are substituted. When goats have devorred the gromd vegetation they browse the lower parts of trees and shrubs up to a height of 5 or 6 feet (33 , pp. 130-139).
In the Union of South Atrica it has long been the native custon to drive livestock daily to and from a kraal, or enclosure. This practice closely resembles that of the Navajos. who use a corral until the surrounding area is crazed out and then move on. The development of centers of serious overgrazing and trampling is common in both areas and has led the Drought Investigation Commission of South Africa to state that the abolition of kraaling is their most pressing and necessary change in tarm methods (99).

It has been held for many years by Bryan and others that overgrazing is not the basic catse of the acceleration of erosion in the Southwest. Part of the reasoning behind this stand is that the buried chamnels and filled washes within the present main valleys give evidence of at least three alternations of cutting and filling. Bryan says ($28, p$. 281), speaking especially of the Rio Puerco in New Mexico:
It appears imherently most proballe that the evelic changes have a common. and doubtless a climatic, canse. The introduction of fivestock tud the ensuing overgrazing shoud be regarded as a mere trigger poll which timed a change about to take piace.
From Bryan's viewpoint it might logically be concladed that anything man can do to reduce grazing and other surfince irritations will in all probability be madequate to prevent the continuance of accelerated soil erosion in the Southwest. If this view is in error, and the erosion has been the direct result of man's use of the land, there is every reason to believe that by judicious reorganization and restriction of land ase the damage can eventually be checked. Expressing Bryan's hypothesis in another way, change of climate might be regarded as the debilitating agency that had lowered the resistance of the land-overgrazing as the germ or infection that had touched off the epidemic of accelerated erosion. Even it the present severe destruction could be checked, the general run-down condition would contime and a full cure would hardy be possible.
The other view, that held by the authors of this bulletin and by many others interested in actively combatting the soil destruction in the Soutlowest, is that overgrazing by livestock introduced by the white man has reduced the resistance of the land to erosion and that intense storm precipitation has been the germ or infection that caused the outbreaks of accelerated erosion, In this view, lessening of the grazing load would so build up the regetat cover and the resistance of

[^17]the soil to erosion that only stoms of extreme intensities woud be able to cause serious erosion. The latter view is the more attractive in that it offers hope of continued use of the lands through wise control. Fortunately the evidence points strongly to the validity of this interpretation.

As has been seen in the discussions of the climate of the Southwest and of the possibility of climatic change (p. 38-46), meteorologic and climatologic considerations show no trend toward a more arid climate in the Southwest in the past few thousunds of years and no evidence of any present day trend either toward more arid or more humid climate.

The large stom of high intensity and heary fall of precipitation rather than a general climatic trend explains the accelerated erosion of the arid and semiarid lands. Large stoms have always occurred. Before overgrazing lowered the resistance of the surface only the greatest rains could carve arrovos and enlarge wash channels. The lands recovered rapidly, moreover. and disentinuons chamels had little opportunity to join with others to form long contimuous waterways. Perhaps only the 100 -year rain cut new chamels on the naturally vegetated surface, perhaps only the 500 -year rain. Big stoms have been and always will be unpredictable. None may oceur for many years, or two or more may take place a few days apart. Big storms, especially if grouped and if coming at a dry season or after a long drought. have always been able to cut chanmels and start a subcycle of accelerated erosion. Many of the periods of chamel cutting before the coming of the white man to the Southwest may have been brought on in that way. Arroyos observed by Dellenbaugh (40) in places where he says there were no cattle and never had been may allso have been cat by occasional storms of extreme intensity. Buried channels fom in the valley fills of the Southwest doubtless resulted from earlier 100 -year or 500 -year rains, possibly some following the "great drought" of the last quarter of the thirteenth century A. D.

Big storms will continue to visit the Southwest. The lands can never be protected against the greatest of these storms. but much can be done to avert damage from the average summer storm or ceven from the 1 -year or the 5 -year storm. In the present state of the lands all these storms cause damage.

Various means can be ased. Control of grazing and lessening of the grazing load are paramount. The plant eover must be increased. Water conserving measures such as pastare furrows will aid. Dams and other gully-control structures and water spreading devices will offer protection agatinst all but the greatest storms. Structures must be carefully designed and be well suited to the peculiar foundations provided for them by the valley fills. They should be built to withstand the 25 -year or no-vear rain. with the knowledge that a rain of greater intensity may destroy them. As grazing practices are improved and vegetation spreads to take a firmer hold on the soil, reduction of run-off will lessen the load imposed on control structures.

Confirmation of the view that overgrazing rather than climatic change has brought on the accelerated erosion in the Southwest is found in the vegetation on protected plots. Cooperrider and Hendricks report that a conservatively grazed fenced aren near Albuquerque has approximately twice as much cover as the surrounding
range and hence probably somewhat more than twice the protection against erosion. Another phot, an old cemetery 2 miles southwest of Albuquerque, has a far higher percentage of grass than the surrounding overgrazed land and a total density of vegrtation mote than three times that outsicle the fence $(30, p p, 2 \geqslant-3)$. The satne trend is being shown on newly fenced areas in the Navajo Country wheregrazing is controlled and the number of livestock is limited. Sot only is the vegetation better. but in the frist year of the test the sheep within the enclosure weighed almost one-third mote and grew about one-third more wool than those outside. The lamb crop in the controlled area was half again as large as that on the range ontside ($S^{\prime \prime}, p p .38^{\circ}-39$). The mamagement that was best for the land and was best adapted to protect the soil agitinst acelerated urosion also yielded the most profits.

SCMMARY AND CONCLUSIONS

Local information, physiographic evidence. and comparisons of old and new survers indicate that in the Polaccat Wish. as in most other valleys of the Southwest. acceleration of emsion firs became active 50 to 60 years ago. This acceleration. which was made appatent by the trenching of wash floms. Was accompanied by a depletion of regetation. It has commonly been attributed to a proqressive desiccation of climate. but this explamation is not substantiated by aratilable evidence. and stady of the climate of the Southwest suggests other possible reasons for the changes in erosion.

Becaluse of a more critical bahane of climate and regetation, climatic variation produces far greater clifferences in plant growth and erosion in dry rerions than in hamid lands. Fariations in precipitation and temperature from year to year may result in marked shifts in the climatic patiern. Areas momally spmarid may be arid one year: and subhmmid the mext. Differences botween the precipitation for corresponding months in different yeats is even more striking. Ont year at of ven montly may receive niore than the areque ranfall for an entire rear. The next year the same month may receive none.

The ditimal and ammal marehes of temperature and precipitation. cansed by the relation of the earth to the sum. are complicated by the invasion and interation of the various air masses that enter the Southwost. 'Therse masses aro cool and moist, cool and drey warm and moist, or warm and dry, depemting on the source region from which they come and the ronte they follow. They canse the ratriations in temperatur and precipitaion in the southwest. The smm of the variations produced by the interations of the ditlerent typers of air masses which enter the Gonthwest determines the yearly departare of the climate from the normal.

Examination of evileber in tree rings, lake levels. cutting and filling of vallers, and in the development of puehlo peoples fatils to reveal proof of any climatic chanare in the touthwest in the last 2,000 years. Climatic fluctations of the magnitude experienced today have oceurerl. and intense storms and promps of intense storms have had their offect on the landscape, but if there has been any progressive change toward either a more humid or a more arid climate that trend is so slight as to be completely overshadowed by the shorter period fluctuations.

Under natural conditions, in the Polacea Wash drainage and through most of the Southwest. the plant cover protected the soil and retarded the flow of water of the lands. In the valleys. deposition exceeded removal. Discontintous channels were developed locally as a result of heary storms. but most of the chamels or arroyos extended only short distances and ended down drainage in alluvial fans. There was no continuous deep channel rumning the full length of the Polacea Wash.

With acceleration of erosion. short discontinuous gullies became more numerons. As long is these were separate units. rain falling in one part of a drainage basin might be felt as run-off for a few miles or tens of miles down valley. but the fow seldom traveled much farther. All but the largest chamels were ephemeral, shifting or disappearing after each rain.

As acceleration of erosion continued. more of the quilies lengthened until they joined other gollies farther along the wash. The water, confined within harrow channels. traveled longer distances. and gully cutting proceeded more rapidly. Interration of dramage by the joining of discontimuons gullies increased the tate of headward cutting and of downward scour. Gullying in the Polacea Wash is believed to have started with at least five larere discontinuous gullies. which later joined to form a continuous gully chammed reaching from the headwaters area to the Little Colorado River. Gullies in many of the tributary canfons form a part of this continuous system. Discontinnous grullies that do not reach the main axial chanmel but end in fins are abundant on the ralley sides. More and more of these lateral slope gullies are now becoming continuouspermanent tributaries of the main chamels.

Gully cutting is the most abvious and most destructive of the erosive processes at work in the Bolacea dranage, but sheet erosion and wind erosion are also reducing the weptulness of the lands. Owing to sheet wash on the mesa surfaces bare rock now is exposed where once was arass-covered soil. On pediment slopes and alluvial fans, sheet wash is gradually removing the most raluable part of the soil corer. Wind erosion is destructive in cerain parts of the area and has become of inereasing severity within the memory of the native inhabitants. Shifting samds have forced the abandomment of fields and corrals and are now so widespread along the lower Polacca that they obscure the basic structure of pediment. fian, and valley fill. Wind erosion will becone still more dominant in this part of the area mose veretation is panted to andror the shifting danes. In the Painted Desert section of the Folacaa Wanh the shifting material includes not only sand but fine chocolate-colored silts from the flood plain of the Ititle Colorido River.

The work of the wind may be beneficial locally in helping to check erosion by running water. Blow sand, being porous absorbs even fairly heary rains. Where irregularly deposited it also tends to catch some of the precipitation in pockets and prevents its running off over the surface. Shifting sands. by filling or damming vills and larger channels. retard destructive run-off and protect both the immediate locality and the area downstream. Samdy lands are among the best areas in the Polaceit dranare for rasing crops or for gowing a protective covering of vegetation.

There is no evidence of any appreciable uplift or tilting of the land or any change in base level that might explain the recent acceleration of erosion in the Southwest. The agricultural history of much of the area, purticularly of the Navajo and Hopi Indian reservations, shows no extensive cultivation and no use of harmful practices that would cause the widespread accelerated erosion. No evidence has been found of any progressive climatic change that would explain the recent increase in the rate of erosion.

Owing to the delicate adjustment of vegetation to climate in the Southwest. a succession of even a few dry years may so impoverish the plant cover that rains of heary. or even moderate. intensity can initiate a period of accelerated erosion. Climatic records and news reports show that from time to time parts of the region have been visited by storms of exceptional intensity (pp. 112-119). These are as characteristic of the Southwest as is its semiarid climate.

For all given climatic conditions there is a certain minimum plant cover needed to protect the land agrinst destruetive erosion. In arid lands with little or no vegetation and low precipitation there may never be sufficient regetation to ofter protection trom the infrequent rains. The dryness of the ground and the lack of well-marked water chamels may prevent rapid run-off, but a permment inadequacy of cover is characteristic. In semiarid lands the plant cover may be barely adecqate to resist the impact of the chmatic elements. The marein of safety is slight. hence the amount of vegetation that can safely be grazed is small. In subhumad and hamid lands, athough storms are more frequent and more intense the cover of vequetation is thicker and a larger amount can be griazed withont cansing soil wastage. The marked contrast of the humid and arid lands in adequacy of cover must be considered in evaluating the permissible grazing in any area. In the Polacca dramage and on mange lands theough most of the South west the permissible amount has long since been exceeded. Vegetation now is far from adequate to protect the surface against the erosive forces.

The Polacea drainage is now suffering the results of a grazing economy that was introduced to the Indians of the Sunthwest about 1540 and has been practiced with little change to the present time. The haman and animal popalation was not heavily concentrated in this part of northeastern Arizena until after the civil War. It appears to have taken 15 to 25 years for the increaved grazing on this land to reduce the ragetal cover to such an extent that changes in erosion became rerognzable to the huma mhabitants. Serious gullying at most other localities in the Southwest correlates well with expmasion of the cattle industry stimulated by the buitding of the railroads. Accelemation of erosion is requated to have begun in much of the region between 1880 and 1890 . and in certain areas probably a deade or two earlier.
Althourb accelerated erosion has carved deep channels almeft tine entire length of many of the major washes in the Soulhwest and has carried away millions of tons of senil material. this does not necessarily mean that gullying need continue or that entire valley flats must be lost to productive use. If the remowal of vegetation can be curbed and revegetation bogun. it may be possible to check the accelerated cutting. If the vegetal cover can be improved until it
is adequate to check further erosion, the damage can be stopped. There is always the possibility that natural stabilization may be achieved. But even if the stream cuts to bedrock and establislies a local base level of erosion, thereby greatly retarding down cutting. lateral swinging against the sides of the chamel may continue to remove the valley fill. Natural stabilization without a reduction of grazing and an increase in the plant cover is unlikely.

In the Polacca drainage. as is general in the Southwest, the lowering of the ground-water level through the cutting of deep qully channels is more significaut than the removal of soil by run-off. In most of the semiarid and arid regions the soil profile is imperfectly developed or immature. hence. the loss of a few inches from the ground surface is far less vital than a similar loss would be in a humid land. Water is of areater importance. It is essential that the run-off. instead of draining away immediately to deep gully channels. be kept on the lands. Wjith increased water supply, vegetation can establish a more complete cover. The plants will not only help to hold back retn-off by the mechanical obstruction they offer but by transpiration and by promoting infiltration they will diminish the amount of water to be carried amay.

Changes in methods of herding are seriously needed. The Navajo practice of driving livestock regularly to and from the corral brings about a localized destruction of veretation by trampling and grazing around corrals and watering places. a condition typical of mative grazing on frontier lands in many parts of the world. The first step in preservation of the usefulness of the Navajo lands will be the abolition or modification of the corralling system. This must be accompanied by reduction in the number of animal units. A shift to a system of rotational pusturage in fenced enclosures would help greatly to reduce the damage from trampling and would make it possille to allow time for the worst cunges to recupente. Vegetative plantings will probably be needed to aid in the reestablishment of a good plant cover composed of species valuabie for grazing rather than the natural pioneers that characterize the margins of the present eroded surfaces.

Mernanical aids such as diversion dams, distrihution ditehes, and spreader structures. modernized since the days when they were applied to these areas by the Hopis and other ayricultural Indians. can be used to keep water out of the gullies and spreat it on the valley lands. where it can do more gond. The major dependetce. however. must be placed on a plant cover adequate to protect the soil against the occasional heary mins.

The accelerated erosion that is damaring the lands in the Southwest appears to have beell caused by mant and by proper methods man can check the erosion and reclain the land for his use. Checking erosion will be more diffecult in certain years than in others because some years will have greater than dyerage precipitation, some less. Wet year may follow wet year or drought year may follow drought year in lotg series. Certain months will be exceptionally wet or dry. hot or cold. Occasimal intense storms will deluge the land. and, depending on the completeness of the plant cover at the time. they may drain away with little erosive effect or may carve new chamelways and enharge old ones.

In spite of the large fluctuations that are characteristic of the climate of the Southwest, intelligent action to increase the protection and reduce the irritation to the surface and to reduce surface run-off and loss of water. will go far toward controling accelerated erosion and making possible the rehabilitation of the Southwest.

LITERATURE CITED

(1) Anonymous.

1SG8. bersting of a wateuspout. Aliz. Miner, Aug. 8, unpaged. (2) \qquad Presott.
1805. a mixem blessting: unusdalicy meiny precurtation in abzona. Ariz. Repub., Jaw. 11, pp. 1, 3. Fhoenix.
(3)
2903. Losers my the fiood. Ariz. Repub., Fed. G, p. 1. Phomix.
(4) 1905. gila bitdge tone again. Ariz. Ruphb., Feb. 20, p). $\overline{\text { b }}$. Phomix.
(5)
1005. famms iesten tr. Ariz. Repmb. Mat. 15, p. 6. Phomix,
(6)
(T)
1900. the worst ran yet. Ariz. Brqual., Mar. 17. p. 7. Phenix.
(8)
 1005. new mexican floons. Ariz. Rephal., Apr. 26, p. 1. Phemix.
(9) 1905. oila bribie partix gone Arig. Repul. Nor. 30, p. 3. Pioenix. abers J, W.
(10) Abmity J. W.
 30th Cong., 1st sess.. H. Ex. Toc. 41, ph. [419]-546.
(I1) Albrytton. Clatue C.. Ju.. and Bryan. Kibk.
 tevas. Geol. Soc. Amer. Bul. 50 : 1423 - 7474 , illus.
(12) Ambnen, Charliss Avery.
 Ama. Calif.
(13) Batbey, Reed W.

(14) Barters. Jumies.

(15) Beale. Enwalin Fttzgizad.
 (Washington. D. C.I (Bith Contr. Ist sess., F. Ex. Doe. 124.)
(16) Bennemp F. 'T.

18so. [retobry on the samato indan agency.] U. S. Commr. Indian Aff. Amm. Rut. 1880: 131-133.
(17) Borrke, John G.
1884. the snaike-dange of the moputs of hhtzona, betng a dabrative of a hotriney from santa fol now metico, to the tillages of the moqui thdasts of amzona. . . $37 t$ plo. ilhus. New York.
(18) Bowmany, Isatab.
1011. lores'r physhography; physiography of the detted states and
 New York and London.
(19)
1935. our expaniming and contracting "Desmit." Geog. Rev. 25: 43.-61, illtrs.
(20) Brady, L. F.
1936. tee arroyo of tee mo de fong: a squis of an fboston cyote. North. Ariz. Mus. Notes 9: [33]-37, ilhus.
$323402^{\circ}-\mathrm{iP}-\mathrm{O}$
(21) Brunt D .
1937. onsmatic cyoles. Geog. Jour. 89: [214]-230, ilins. [Discussion. p. 230-238.]
(19) Bryan, Kibl.
1923. erosion and gebimentation in the papago cointry, amzona. wjth a skerch of the geology. U. S. Geol. Suevey Bul. 730: 19-10, illus.
(23) 1925. date of ghaninel trenching (abroyo octitng) in tee ardo soothwest. Science (n. s.) $62: 338-344$.
(24)
1925. THE PAPAOO COUNTRY, NKIZONA, A GEXiRAPHIC, GEDLOMIO, AND HYDIOlogic reconcaysance with a gudde to deseht watziling plages. U. S. Geol. Survey Water-Supply Paper 499, 436 pp., illus.
(25)
1926. recent jeposits of ohaco canyon, new mexico, in rblation to ter drfe of the pre-histomic plofies of pueblo bonito. (Abstratet) Wash. Acud. Sci. Iomr. 16: $\overline{\text { I }} \mathbf{5 - 7 6}$.
(26)
1927. oganier. grobion of the mo salado. gocorbo county, new mexico. J. S. Geol. Survey Bul. 780: 1i-19.
(27)
1928. change in plant absochatyons by change in oround water level Eeclogy 9: 474-478.
(28)
 tributary of the rio ghande in new memoo. Jour. Geol. 36 : 267-282. illus.
(20)
1929. Ffood-water fabming. (ieng. Rev, 19: 444-4:0, illus.
(30)
1939. stone cultureg near cerio pebrrinal and theil geonoticar. antiquity. Tex. Arehaeol. and Paleontol. Soc. But. 11: 9-42, illus.
(31) Calmin, Ross.
 orty's eatay fistorx. N. Mex. Mag. 12 (8): 10-11, 37-39, 41, illus.
(32)

1936, how man staebt mecame the me mitch. U. S. Soil Conserv. Serv., Soil Conserv. 2: 102-105, illus.
(33) Champion, A. M.
1933. sotr erosion in afbtca. Geor. Jone. 82: [130]-139.
(ia) Clahidi-Fafsimd, Kateamase.
1938. a btatistical mbithod mon estimating the nemahidity of a stattonyear manflaid-kecoris. Amer. Geophys. Union Trans. 19: $\mathbf{n} 26-$ 529, illtas.
(35)
1040. befabidity of station-ypar banfatioprequency metbuminations. Amer. Soce. Civil Engin. Proe. G6: 1f02-1622, illus.

1037. sofl erosion and strein mow on hance ando forbet tanis of tee deper rio obande watersmed in belinton to dand resotrgees and human wetfale. U. S. Deyt. Agr. Terh. Buh. \%ifi. 88 pp, illus.
(37) Coftame, W. P., and Stewart. Georee
1940. Pant succession as a besfic of grating han of madow bestecathon ay emoson hinch setplement in 19ge. , Jour. Forestry 38: 613-629, illus.
(38) Davis. N. W.

IB68. New mexton brpmantuabency. no. 3t. t. S. Commr. Indian Aff. Ann. Rpt. 1808: 159-162.
(39) Davis, W. M,
 Earvard Uuiv. Mus. Compar. Zool. Bul, 4-: 1-70, itlus.
(40) Dedlenbatgh, F. S.
1912. choss outming and abtrogrining of steenm-bens. Science 35: 630-658.
(4I) Dodd, Theo. H.
1868. New mexico superintendency. no. 32. U. S. Commr, Indian Aff. Ann. Rpt. 1868: 162-165.
(42) Dodge, Richard E.
 western wintim btates. (Abstrict) Brit. Assoc. Adv. Sci. Roit. (1.809) 79: 581-530.
(43) Donaldson, THoncse.
1893. modit pueglo indinss of arizona and puebio midans of new arexco. L. S. Census (ift., 11th ('ensus, Extia ('ensus bul.t tho pp., illus.
(44) Duce, Jamhis Tlerry.
 (1. S.$) 47: 450-459$.
(45) Emmons, Gardner.
1935. ATMESPhKRIC STR
 obsenvations. Mass. Inst. Techmol., Mut. Course. I'rof. Notes 9, 58 pp, illus.
(46) Foster, L. J.
 7:3-754.
(47) Grerix: A. W.
 (ong., 2d sess., E, Ex. Doc. 287 , A.O in. illus.
(48) Grecory, Hebreri E.
 illus.
(49)
1910. the oasis of TUBA, Arizona. Assoc. Amer. Geog. Ann. $\overline{1}:$ 107-119, illus.
(50)
 GANGE OF Parts of amizona. new mexico. and utah. U. S. Geol. Surver Water-Supply Paper 380.219 ph., illus.
(51)
1917. GDOMAGY OF THE NAVAIO COCNTHY, A REXONXASSSANCE OF PABTS OF ARIGONA, NEW arexico, AND UJAB. T. S. Geol. Survey Prof. Paper 98. 161 mp.. illus.
(52)
1832. Colomado plateay hegons. T6th Thifontl. Geal. (otg. Guidobook

(53) Griffithes, Davin.
 31 pp., illus.
(54) HAAB, W. H.
 9: 211-219.
(55) HACK. JOHN T.
1939. THE Late qDaternaif fistiliy of several, vaidexs of northern
 Notes 11: $\lceil 67]-73$, illus.
(56) Hanson. Hembert C.

(57) Eapt, Staffomd C., Pisten house, Gomon, and Donson, G. C.
 L. S. Iept. Agr. Tecti. Bul. B95. 134 pha, illus.
(58) Hawdey, Fhobexce M., and Crark. Netl M.

(59) Henderson, Junius, and Rormins, Whfred William.
1913. climate ang evidence of olimatic changes. Smithst. Inst., Bur. Amer. Ethnol, Bul. 54: 43-70, illus.
(60) Holzman, Benjablen.
1937. sounces of moisture for prectititation in the untred states. U. S. Dept. Agr. Tech. Bul. $589,42 \mathrm{pp}$., illus.
(61) Hoover, J. W.
1929. the indian country of southern abizona. Geog. Rey. 19: 38-60, illus.
(62)
1980. tusayan : the hopt indian counthy of mbizona. Geog. Rev. 20 : 425-444, illus.
(63)
1031. nafaito nomadism. Geog. Rev. 21: 429-445. illtas.
(64) Hough, Watter.
1906. peebio environahent. Amer. Assoc. Ady. Scl. Proc. 55: [447]-454.
(65) Huntington, Hillsworth.
1912. the fluctuating cimate of north america, Gege. Jour. 40: 2?4-280, 392-411, illus.
(83) - Schuchibr, Geables, Dogelass, andiew E., and Kullame, Candres J.
1914. the cinmatic factor as mutbtratiod in ard americ., (ariegie Inst. Wash., Pub. 192, 341 pn., illus.
(67) -and Vtehfr. Steppenen Samaent?
1922. climatic changes ; their nature and gauges. 229 pip., illus. New Haven, Conn.
(68) Hurd, Wriais E .
1939. nohth pacific ochan, sepphamer 1039. U. S. Monthly Weather Rev. 67: 30̆(i-30̆8.
(69) Irgland, H. A., Sharle, C. F. S., and Earole. D. H.
1939. princtites of gidly erosion in the piedmont of soutfy carolina. I. S. Dept. Agr. Tech, Bul. (33, 143 pp., illus.
(70) Iyes, Josepfi C.
 AND 1.ass . . . 36th Cong., 1st sess., H. Ex. Doc. פ0, pt. I, 131 pp., illus.
(71) Jackson, Wibhinm H,
 Geol. and Geng. Surver of Ter. Ann. Rpt. 10: 411-450, illus.
(72) Jones, J. Clatme antevs, Erxst and Ht'mington, Hilswohth.
 illus.
(73) Leigily, John.
1936. meambring abriyos of the dhy somphwest. Geog. Rey. $26: 270$ 282, illus.
(74) Leopolid, Aldo.
1921. a plea for recognton of artifictit, works in forest ehosion control poincy. Tour. Forestry 19: 207-279,
(75) Lockeit, H. C., and Snow. Mhiton.
1039. atong the brale trati. a photographic accoont of wasteb ringe
 I. S. Off. Indian Aff., 50 pp., ilus. Lawrene, Kams.
(76) Met.tin. Frank A.

 113-[17:3], illus.
(77) Minmu Conspryancy limtact. Requneeting Staff.
 Dayton, Ohio. (Tech. Rpts. pt. 日.)
(78) Niciol. A. A.
 Bul. 68, p. 181--29응, thus.
(79) Olmstemp, Fbank H.
1919. a herokt on pioh contiong of the gilia hivar in grabam col'nty, Actizona. Gith C'ong., 3d sess., S. Doc. 436,94 pp., illus.
(80) Patikrison, S. S.
1889. report of navaio agency. U. S. Commr. Indiau aff. And. Rpt. 1888: 188-196.
(81) Powerl, J. W.
1898. rerort of mye: pleector. Smithsn. Inst., Bur. Amer. Ethnol. Aun. Rpt. ($1895-96$) 17, pt. I, pp. xxyii-lxaiij.
(82) Reagan. atbert B.
1024. becent changes in the platziv hegion. Science (n. s.) 60: 283285.
(83)
1824. stream agghdation through hehgation. Pan-Amer. Geol. 42: 335-3:4.
(84)
1927. conthirutions to the geology of the navaro country. amzona, with notes on the abchamonery. (Ahstract) Stanford Univ. Abs. Diss. (1924-1926) 1 : 138-150. illus.
(85) Retche, Parry.
1937. the toreva-biork-a olstinctive cainiglide tyee. Tont. Gent. 45: 535-74s, illus.
(86) Rich, Јонк I,
1911. megent streim thenching in the semi-hbid portion of soctilwestern neen megco. a rentit of hemonhl of vecetation cover. Amer. Jour. Sci. (Ser. 4] B2 $_{2}$: [237]-24in ilfus. [Abstract in

(87) Rowalt. E. M.
1989. 8omi. mpensie of rawar and pamm hand in the nouthwest. U. S. Dent. Arr, Misc. Pulb. :
(88) Rusfeli. Richamid Joel..
1931. miy clinhten of the unitein stateg. i. ofimatio map. Cilif. Uhiv. Pubs.. Geng. 5 : [I] -41 , ilhus.
(89)

 illus.
(90)
1934. chamatte reabs. Geog. Rev. 24: 92-10\%, ihus.
(81)
1936. the desim-bimpall factoli in benubation. Intermatl. Geol.

(92) Schlegri, Hram:
1898. [excessme, mangath, 1. S. Weather But., Climate and (rop Serve, Ari\%. Sect. Rpt. Ausust p. 3.
(93) Smampe, C. F. Stewait.

19\%8. tandshines anionelatel phenomexa; a stomy of mass-mavemexts of soll sam rook. 137 pm, illus. New York.
(94) Shreve, Furbist.
 Assoc. Amer. Geog, Amm 24: 181-15if, jlus.
(95) Simpron, James H.
1850. jodrinat of a midtaity heconnasganoe from s.inta fe, new

 140 ph., illus. Philadeljohia. 1852.]
(96) Smith. G. E. I'.
 Agr. Expt. Sta. Bul. G4. pr. [817-244, Illus.
Smite. H. V.
 41S, ilus.
Smite. Johi.
1872. [ieptrim from camp modoweli.] Ariz. Miner, Aug. 31, p. [3], Ireseott.
(99) South Abrica Drofght Tnvestigation Commisision.
 ilhus. Cape fowa.
(100) Stewabt, Guy R.
1940. Consebvition in pueblo agricutture. I. primitive phactices. in. present-day flood water hafigation. Sci. Monthly ys: 201220, 329-340, iltus.
(101) - ank Nichoinon. Eunest A.
1940. water goinsehyation ing hopi agricclttre. U. S. Soil ¢onserv. Serr., Soil Conserv. $6: 45-4 S$, 51 , illus.
(102) Strahobn. A. T., Barinin. Mare ath Carpenter. E. J.
1926. Soll, subvey of the winslow area. arizosis.
C. S. Bur. Soils, Field Oper. 1921, pip. 155-188, ilus.
(103) Stleifan. Rtchabi H.
1909. the socalled change of chimate in the gramahio west. U. S. Dept. Agr. Yearhook $1908:-289-360$. illus.
(104) Swift, T. T.
1926. Date of chining trenching in the solthwest. Science (n . s.) 63: 70-71.
(105) Thornthwatie, C. Warben.
1931. the chimates of nohth americi iccoming to a den clashification. Geog. Rev. 21: f33-6ай, illus.
(106)
1933. the crimates of the eartay. Geog. Rev. 23: 433-440. illus.
(107)
 Amer. Geophys. Union Trans. 18: 476 488, illus.
(108)
194. atlag of chimatic tyme in the faipen stateg, 1900-1039. U. S. Dent. Agr. Misc. Publ. $421,7 \mathrm{pp}$. text, 90 pls .

1939. Stamsticil sifplement ty the antian heyout of the chmmisstoner of inman affalds, for the fiscal tear ended idjez bil, 1939. H2 1m. Washington, D. (.
(110) Vtsher, Stephen S.

19:0. chinate and geonger. (Abstractl se-ience (n. s.) 51 : 520-523.
(111) Whipple. A. W., Evbank, Thomas. and Ttrape Wa, W.
1855. Report cron tuf twotan thibes. I/ Rejorts of Explorations and Survers, to ascertain the Most Practicable und Econamical Route for a Railioald from the Mississippi liver to the Sicific
 Doc. 78.)
(112) Whlety. H. 4 .
1983. Ameltrin atl mass pitorenters. Mans. linst. Techuch. and Woods Hole Oceanog. Inst., Phys. Oceanug. and Met. Fitpers. ‥ 2, No. 2, [116 mp, illus.
(113) Wins, Fred.

182G. the whast fork of the eitia river. Science (u. s.) 64: 16-17.

[^0]: : Recerved for pubication June 13. 1041
 Tiniversity of Minnesota, and C. A. Richards and Chat Bartley, of the Division of Eorest Patholopy. Eis thanksare extendect to Mae Eprading (hitiester, T. © Subetier, and the late E. Seelicer, all of the Division of Forest Patholosy, and to st. D. Chapman. formerly of this Tirision. for their bejphul assiskance in some of the lanambory and fiehi work: also to those who kindly supplied culures for inse in the stasifes.

[^1]: 2Itadie mumbers in marendeser refer to hiterathere fited, I. int.

[^2]: : Order as in tuble 1.

 controlled tomyeratures of $4^{\circ}{ }^{\circ} 8^{\circ}$, $32^{\circ}+$ and 3$)^{4}($.

[^3]:
 Lagerbers ant has been kept with thar sitek cultures ever siner. It is possible, however, ihat contimouts

 of tha unidentileq cultures were tinde."

[^4]:

[^5]: in detail becatase some of the intermedinte temperatares varied mexsively.

[^6]: 12 blocks in ench surim were uged only to deturming approximate moistife contents of the blocks at the time of fnuctilation.

 2 12 mictoscopic sectlons were examiaed fromeach of the 4 blocks. The fourth black in tach seriex is an uningeculated check, none of which ghowed strface or fiterior growth.

[^7]: Based an the microscopic examination of 20 to 40 sections from 2 to 4 blocks in each case. Average pepetration equals an average of the maximum penetration in each or the bjocks of a series. Maximum penetration equals the greatest penetration recorded in any of the blocks of a series.

[^8]: $393400^{n}-72-7$

[^9]:
 -19才0. Wuslatagion, [). ('

[^10]:
 the Interior.]

[^11]: 20 Sed fontnote $7 \mathrm{in}, \mathrm{n} .10 \mathrm{n}$.

 1776. Mexleo Clty.

 1835. [Mlntegrapled.] (Sue tables 1 and 24.)

[^12]: clambologhendis.

[^13]:

[^14]:

 San June Ageney, Shjpock, N. Mex., Sept. 1in, 1025. [31h., Nti. Arch.]

[^15]: Twelve years ago 40,000 eattle grew fat along in rertan giortion of the Sun
 and development. If instean of 40,000 hema 10,000 lith been kept on this runge, it would in all jobonbility be furniming good pastare for the same number to-day. Very few of these cattle were sold or remuved from the

[^16]:
 servation Service, Safford, drz.

[^17]: coLoxy. [10:38.] [Unzublished mamuscritl.i

