

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

$$
\begin{aligned}
& \text { 业 }
\end{aligned}
$$

START

microcopy resolution test chart NATGONAL BUREAL OF STANDAROS-1963-A

Influence of Variety, Environment, and Fertility Level on the Chemical Composition of Soybean Seed ${ }^{1}$

By J. L. Cartyer, agronomist, Division of Forage Crops and Diseases, Bureau of Plant Industry, and T. H. Hoppef, principal chemist, Bureau of Agricultural Chemisiry and Engineering:

CONTENTS

Page		Hage	
Introduction.	1	Enfect of varfety, location, and season on yield	
Enfect of varicty, location, aud sersor on yield		and eomposition of soybean seed-Cont.	$4{ }^{5}$
end composition of soyberu seed	4	Cructe hber content.	
Materials and methods.	4	Eflect of varify, fortility ievel, and season on	
Climatologieal datb.	'	the yiut not compesition of soybean sedd -	
Size of sect	1	Materials and methods..................-	
Size of secr	16	clurlor	
Oroter content	20	Cimathgicn data	
Oil content....	23	Size of sead	
Todiac number--	34	Protein coment	
Phosphorus content	37	Oil content.	
Potassimm content.	40	lodime number	
Calciua content	43	Summary and conchsions	
Total sugar contert.	45	Literature cited.	

INTRODUCTION

The rapid rise in the importance of the soybean crop in American agriculture and the great interest in the industrial utilization of soybean seed products has resulted in a demand for improvement of varicties for industrial processing and for information on the influence of environment on the compositional factors of the seed. From the time the crop was introduced into the United States in 1804 until the soybean became an important commodity in domestic trade, the breeding and selection work was concerned mainly with yicld and agronomic characteristics. Something over 10,000 introductions,

[^0]originating mainly in the Orient, have been distributed and studied. Most of the varieties now in commercial production bave originated from them.

In the spring of 1936 the United States Regional Soybean Industrial Products Laboratory ${ }^{3}$ was established at L'rbana, Ill., under authority of the Bankhead-Jones Act of 1935. One of the objects of this laboratory, as given in the original memorandum, was "to obtain through basic research, facts andmaterials applicable to the industrial utilization of the soybean and soybean products and to develop methods whereby these facts and materials may be utilized for the benefit of agriculture." In the organization of the laboratory provision was made for chemical-composition studies of soybeans grown in the agronomic work program.

The present study was undertaken to measure the influence of envirommental factors on the composition of a number of principal varieties adapted to the soybean belt of the North Central Region. This belt lies principally in the States of Ohin. Indiana, Illinuis, Iown. and Missouri. These States currently produce from 80 to 90 percent of the domestic produrtion of commercial sorbeans. The value of the results of the study lies in the information to be gained concerning the environmental and warietal variation in the composition of soybean seed as related to the selection of improved raricties and strains for processing and industriad utilization.

The soybean secd is not a simple chemical system. It contains all of the rlements and constituent chemical compounds essential to restart the life cycle for the growth of a plant to produce more seed. In nomally matured seed these elements and constituent compounds undoubtediy oceur in such proportions as to meet the nutritional requirements of the germinating seed ard voung plant. However, it must be recognized that the comperition of the seed is modified by genetic factors and environment; yet there is undoubtedly some regularity in such modifications tha has not yet been adequately inverstigated, hence is not well unde stood.
From the standpoint of industrial procersing the principal interest in the composition of soybean seed is in the percentages and characteristics of the oil and protein, as both substances hare real and potential industrial as well as food and feed uses. Piper and MEorse (22) ${ }^{4}$ have reviewed a large amount of literature which showed that variety and environment infuence the percentages of oil, protein. and ash constituents of soybeans and the iodine number of soybean oil.

Garner, Allard, and Foubert (12) observed that there is no critical period of intense oil formation at any stage of seed development. From their experiments with soybeans they concluded that, execpt for the period immediately following blooming and that directly preceding maturity, oil is formed in the seed at a fairly uniform rate, both relative and absolute. Their data for three raricties have heen recalculated on a pereentage basis of the maximum development of dry matter and of oil in the bean and are shown in figure 1. These data show a very uniform rate of development for both dry matter and oil for all three varieties, but at somewhat different percentage

[^1]rates depending on varietal characteristics. Variety P. I. 21755, ${ }^{5}$ which is an carly selection somewhat similar in range of maturity to Mandarin of the present study, required approximately 27 days for the seed to reach maximum dry-matter and oil development. This period was about 22 days for P. I. 32907, which is Peking, and about 40 days for P. I. 19981, which is somewhat similar in range of maturity to P. I. 54563-3 of the present study. It is observed that after the maximum development was reached in each of the three varieties there was a decrease in dry matter and oil, this decrease being greater for oil than for dry matter on a percentage basis but not in aisolute units. Some analyses of beans from the 1940 season confirm this decrease in dyy substance and oil after maximum development and

Pigure 1.- Rate of development of dry matter and oil in the seed of three soybean strains (calculated from data by Gamer, Allard, and Foubert (12)).
also show that there is some increase in protein and practicaliy no change in iodin sumber of the oil.
It is reasonable to assume that the chemical composition of the soybean seed and the characteristics of the soybean oil will be influenced by the climatic factoriaffecting the growth and development of the plant, particularly during the period when the bean is developing in the pod. The period between blossoming and physiological

[^2]maturity may be divided into two parts. The first is that of pod development and the second that of bean formation. The date of blooming will be governed by the date of planting and the photoperiodic characteristics of the variety. The length of the subsequent period of development, including the period of pod formation and the growth of seed in the pod, will be influenced by the characteristics of the variety and the nature of the scason. Hence in studying the influence of environment on the composition of varieties of different maturity ranges, it is not possible to choose any particular part of the season as critical for all varicties with respect to the influence of climatic factors on composition.

EFFECT OF VARIETY, LOCATION, AND SEASON ON YIELD AND COMPOSITTON OF SOYBEAN SEED

Materlals and Methods

AGRONOMIC METHODS

To supply the laboratory with a large selection of samples of soybean seed of known history, seed of 10 varieties and strains, chosen to include the leading varieties in the region as well as a range in genotypes, was sent to each of the agricultural experiment stations of Illinois, Indiana, Iowa, Missouri, and Ohio for planting. This work was initiated in the spring of 1936, at which time the seedings were made in $/ 10$-acre field plots, following the usual cultural practice in use at each station. General agronomic notes were taker during the summer. When mature, the plots were harvested and bushel-sized samples sent to the laboratory. These were further subdivided on a boernier sampler and 3 -pound samples taken for chemical analysis.

The following year seed of the 10 varietics was again prepared and sent out for planting in drill plots, which, however, were replicated for the purpose of obtaining more representative composite samples. Yields were taken at all locations in the fall of 1937. By 1938 it was found that bushel lots of seed were no longer needed for processing studies, so for the next three seasons the varieties were planted in rod-row plots, using replications to obtain more representative chemical samples and to permit more accurate yield testing.

VARIETIES USED

The varieties were selected to include early and late types in order to study the effect of ripening at different periods on the composition of the seed. The varictics and strains, with the exception of Peling, are all yellow-sceded. Peking is a black-sceded type, used principally for hay; but, since its oil has a high iodine number, it has been used in breeding work to improve drying quality of soybean oil. Most of these varieties are described by Morse and Cartter (20), who give the relative maturity ranking of the varieties (expressed in days from planting to maturity at Arlington, Va.) as follows: Mandarin, 100 days; Mukden, 105 days; Dunfield, 110 days; Illini, 105 days; Manchu, 110 drys; Scioto, 120 days; Peking, 125 days. The Illinois selection T-117 has about the same maturity as Scioto, whereas P. I. 54563-3 is a few days later than Peking. The two strains of Dunfield desig-
nated as A and B were obtained from the Illinois Agricultural Experiment Station and the Purdue Agricultural Experiment Station, respectively, in the spring of 1936 and were carried in the test in succeeding years by those designations.

A map of the North Central Region (fig. 2) shows the location of the six experiment stations where soybeans were grown for the study of the effect of location and. scason on composition of soybcan seed.

The soil type on which the soybeans were grown at La Fayette, Ind., was a Crosby silt loam; at Urbana, Ill., a Muscatine silt loam; at Ames, Iowa, an O'Neill silt loam; at Columbia, Mo., a Putnam silt

Figune 2.-Map of the United States showing 1939 soybean production and indicating the six locations where the fiet investigations were conducted.
loam; at Wooster, Ohio, a Canfield Silt loam; and at Columbus, Ohio, a Miami silt loam.

METHOD OF STORING SAMPLES

All samples for ehemical analysis, after being carefully composited, were placed in a constant-humidity storage room held at 18 percent relative humidity and $70^{\circ} \mathrm{F}$. temperature for sufficient time to attain equilibrium under those conditions prior to analysis. Although this precaution may not be necessary for many types of oilseeds, it is especially desirable for soybeans, as moisture content has been found to affect the percentage of crude ether extract removed by petroleum ether (1).
Analyses of variance of the data have been made according to methods by Fisher (11), and the significant variances determined aecording to the F values of Snedecor (25).

methods of chemical analysts

The samples of air-dry-conditioned soybeans were prepared for analysis by grinding in a Wiley mill, using a screen with 1-mm.-
diameter holes. Moisture was determined as the loss in weight on heating for 40 minutes at $130^{\circ} \mathrm{C}$. in a forced-draft electric oven. Ash was determined as the weight of the residue remaining after ignition for 3 hours in a muffle furnace at a temperature of 600°.

In detcrmining nitrogen (4), crude fiber (8), potassium (6), phosphorus (5), calcium (2), and total sugars (7), the official and tentative methods of analysis of the Association of Official Agricultural Chemists were used with but slight modifications oceasioned by the characteristics of soybeans.

It has been shown by analysis of checkrows in a soybean nursery at Urbana during 1937 that the oil content of the same variety may vary as much as 1 to 1.5 percent, and the protein content may vary from 1 to 3 percent. These observations are in accord with the findings of Viljoen (28) and indicate the importance of obtaining samples for chemical analysis by compositing several replications. It was not possible to analyze replications separately because of the enormous number of analyses involved; however, ail samples used in this study were obtained either by subsampling a large plot, as was done in 1936 and 1937, or by compositing five replications, as was done in 1938-40.

Since no replications were analyzed chemically, in the analysis of variance of the data the only error term available for the 5 -year study is the three-way interaction "varicties \times locations \times years." Two samples were destroyed by mistake at Columbus, Olio, in 1939, so values for the two strains T-117 and P. I. 54563-3 were supplied according to the method by Love (19), and that number of degrees of freedom deducted from the varictics \times locations \times years interaction.

In using the Kjeldahl-Gunning-Arnold method for nitrogen, mercury was used as the catalyst. The percentage of nitrogen was converted to the percentage of crude protein by multiplying by the 6.25 factor, as is customary in feed analyses. The sample from the oil determination was used for the crude-fiber determination. In ashing the sulfuric-acid-treated sample for the determination, the crucible containing the sample was placed in a cold muffe furnace and ignited for 3 hours at $700^{\circ} \mathrm{C}$. after the furnace came to that temperature. The residue from the ash determination was used for the determination of phosphorus and calcium. Repeated trials in the analysis of soybeans for phosphorus bave shown that nothing is gained through the use of the magnesium-nitrate-ignition procedure. There is apparently enough calcium and magnesium to retain the phosphorus. In using the Seales procedure for total sugars the solutions were standardized against a standard solution of pure sucrose, and the results expressed in terms of surrose.
The percentage of oil in the seed and the iodine number (Wijs), acid rumber, unsaponifiable matter, and refractive index ($25^{\circ} \mathrm{C}$.) of the oil were determined according to the official and tentative methods of the American Oil Chemists' Society (1).

In determining the percentage of oil, 2 gm . of the ground sample were wrapped in two thicknesses of $15-\mathrm{cm}$-diameter qualitative filter paper. A plug of cotton was placed on top of the sample, and the sample was extracted in a Butt extraction tube with petrolcum ether (as specified by the American Oil Chemists' Association). After 2 hours of extraction the sample was removed from the extractor and reground for 1 minute, using a mortar and pestle. Two huadred
revolutions of the pestle are very closely equivalent to a regrind of 1 minute. The sample was then extracted for 2 hours more. The solvent was removed from the extracted oil by a 3_{4}^{3}-hour heating on a steam bath, and the percentage of oil was determined by the gain in weight of the extraction flask.
A. $1 / 2$-hour reaction time was used in the determination of the Wijs iodine numbers, and during the reaction period the sample and reagent mixtures were kept in a refrigerator maintained at $18^{\circ} \mathrm{O}$. The refractive indexes on the oils obtained in the oil determinations were read to the fifth decimal place, using a water-jacketed double prismhead dipping refractometcr. A reliable thermostatically controlled water supply was used to maintain constant refractometer-prism temperature.

In order to check the reproducibility of analytical results obtained, lots of the soybeans were frequently resampled and rerun or analyzed again in duplicate. The results of this cherking on precision, shown in table 1, include not only the deviations meountered in chemical analysis but also those due to any variations in sampling. The calculated standard deriation within samples, in most cases of the specified determinations, are well within the maximum allowable deviation between duplicates allowed the amalysts in reporting results. It may be assumed that any deviation betweon samples greater than twice the observed standard devintion within samples for any of the specified determinations is of agronomic siguificance and may be attributed to differences in variety or environment.

Table I.--Reliability of chemical analyses of soybeans, including sampling error

Constituent	Allomable dieviation between duplicates	Samples rerin in dupliente	Arprage value for samples	Devintion between cerua hyerages on individual samples		Standard deviation within samplas
				Lowest	Highost	
Protelo ($\mathrm{N} \times 6.25$) .		Numder ${ }_{17}$				
Oil.................	. 25	17	18.99	.01	. 35	.27
Lodine number (ivis)	. 8	17	128.7	. 0	21	. 5
Asb-.........	.05	17	5.04	. 00	2.14	. 05
Potassimm.	. 10	8	1.74	. 00	. 11	. 05
Caichum.	. 010	17 17	. 288	. 001	. 018	. 008
Phosphorus......	. 010	17	. 660	. 001		. 009

Except for the values determined on the oil, the constituents determined in the soyben seed are reported in the cables and discussed in the text on a moisture-free basis.

Climatological Data

The 1936 growing sason in the North Central States was characterized in general by unusually hot weather accompanied by a deficiency in precipitation. The warm spell started about the last week in June and was not lroken until the first of September. Lowa experienced an unprecedented number of days with maximum temperatures above 100° F. according to the recorls of the linited States Weather Burcau, ${ }^{\circ} \quad$ At Columbia, Mo., the loot spell was probably the

[^3]worst on record and the drought nearly as severe as at Ames, Iowa. Temperatures were high at Urbana, Ill., with a precipitation deficit in July but normal rainfall in August. July and August temperatures at La Fayette, Ind., with departures above the normal of 8.2° and $6.2^{\circ} \mathrm{F}$., respectively, were similar to the temperatures for the same period at Urbana, III., and Ames, Iowa. This contrasted with the less severe departures from the normal at Columbus, Ohio, for the same 2 months of 4.7° and 4.8° F., respectively. At Columbus, Ohio, the last week of July and the month of August were marked by showers, thus breaking the drought much earlier than at either Ames or Columbia. Table 2 gives the mean and normal monthly temperatures and the total monthly precipitation during the summer seasons at the five locations for 5 years.

Table 2.-Mean monthly temperatures and total monthly precipitation at locations where experiments were carried on during the summers of 1956-40:

Year and location	Temperaturo					Precipitation				
	July	Angust	September	October!	Mesu	July	August	Sep-	October	Total
1985		- 3.	\bigcirc	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	Inches	Inches	Inches	Inches	
Ames, Ioma	82.2	78.2	67.4	50.1	69.55	0.08	1.41	9. 10	1.08	1 l .68
Columbin, M	86.6	85.1	72.9	56.6	75.28	. 97	1,3.4	10.21	2.09	14.61
Urbara, ll I.	83.0	79.0	70.0	54.7.	71. 68	1. 35	3.54	5. 83	3.49	14. $\frac{31}{91}$
La Favette, Ind...	83.8 79.6	80.2 77.8	70.8	55.4 55.6	72.55 70.93	1.82	4. 4.5 4.94	B. 3.43 3.29	4.35 3.11	15.85 13.44
1087										
Ames, Iowr.	75.3	74.6	65.2	40.8	106. 23	1.38	5.00	. 88	1. 16	8.52
Columbis, Mo	79.0	81.2	69.9	50.6	71. 38	2.92	1.98	1.02	1. 64	8. 46
Urbane, IH....	74.3	76.5	B5. 4	52.0	07.05	2. 43	. 80	5.34	3.82	12.49
La Fayette, Ind...	75.4	77.8	66.0	5. 2	${ }^{88} 810$	4. 54	1.68	2.58	5.47	14.27
Columbus, Obio-*-	75.1	76.6	85.0	52.8	67.33	3.91	2.88	2.45	2.41	11.08
1888										
Ames, Inma	77.0	75.5	66.8	50.3	69.65	4.04	1.87	3.18	42	9.52
Columbin,	81.0	81.3	71.6	05.1	74.75	2. 000	1.77	1. 48	. 59	6.45
Uгвппи, Ill	76.0	75.7	68.6	59.9	70.05	6. 45	4.28	. 88	2.50	14.11
Colambus, ohio--- ass	76.5	76.8	67.4	57.1	69.45	5.22	3.32	5. 40	. 70	14.84
Ames, Iowa..	75.4	69.4	${ }^{63} .4$	53.2	66. 80	3.03	4.47	. 83	1.53	9.86
Colmmbia Mo.	80.8	75.4	i5. 4	61.1	73.18	2.33	8.71	. 58	1.33	12.95
Urbana, 111	75.4	72.6	71.6	56.8	09.10	1.73	6,38	. 32	2.54	10.97
La Fayette, Ind....	76.4	74.8	\%3.0	58.2	70.75	8.05	1.49	47	3,48	13. 40
Colanibus, Obio...	74.6	74.0	72.4	67.2	60.78	2.55	. 48	1.38	3.17	7.60
j949										
Ames, Iown.	75.4	69.8	65.0	50.9	69.78	6.38	6.67	. 14	1.84	15.33
Columbis, Mo....-	78.8	76.6	69.2	[33, 6	72.05	2.08	6.64	. 32	2.00	11. 82
Urbama, [ll	76.0	7 7 .8	66.0	\%9.0	60. 20	. 85	2.80	. 18	1.08	6. 16
Ta Fayette, Ind. ..-	77.0	76.4	$8 \mathrm{BC}$.	69.6	70.35	1,60	3.003	1.01	2.70	8.40
Columbus, Ohfo.	70.4	73.1	64.8	56.9	6.8 .30	. 48	2.27	1. 55	1,38	5.69
38- to 65-year nvernges:										
Anjes, Dowa .-.	74.1	71.5	F94. 2	51.11	05. 43	3.26	3.78	4. 32	2. 62	13.08
Columbia Mo...	77.3	71.3	63.1	56. 8	00. 98	3.49	3.80	4.35	2.01	$14.0{ }^{\text {r }}$
Urbana, illa	74.8 75.8	$\stackrel{72.8}{73.4}$	69.2 68.0 68.0	55.0	6i. 61.8	3.20 3.71	3.53 3.71	3.24	2.71 3.80	12.08
Columbus, Onio.		73.10	616.5	55.2	67.40	3.5	3.26	${ }_{2}{ }_{2} .25$	1.40	10.84

[^4]

Figure 3 -Daily mean temperature, average mean monthly temperature, and daily precipitation at five locations during the 1936 growing season, together with date of blooming and ripening of three specified soybean varicties.

Frgore 4.-Daily mean temporature, average mean monthly temperature, and daily precipitation at five locations during the 1937 growing season, together with date of blooming and ripening of three specified soybean varieties.

Figure 5. - Daily mean temperature, average mean monthly temperature, and daily precipitation at five locations during the 1938 growing season, together with date of blooming and ripening of three specited soybean varieties.

Figure 6. -Daily mean temperature, average mean monthly temperature, and daily precipitation at five locations during the 1939 growing season, together with date of blooming and ripening of three specified soybean varieties.

Figure 7. - Daily mean temperature, average mean monthly temperature, and daily precipitation at five locations during the 1940 growing season, together with date of blooming and ripening of three specified soybean varieties.

The 1937 season was cooler than that of 1936, with a better distribution of rainfali, as can be observed by examination of the weather graphs for the scybean-growing season of these 2 years (fizs. 3 and 4). Temperatures during August varied only slightly from the average, being high at all locations. In general, a striking similarity is noticed in the weather at all five locations, the temperatures fluctuating together, though on slightiy different levels.

The 1938 growing season was characterized by temperatures uniformly above average, with means for August 2° to $4^{\circ} \mathrm{F}$. above at the five locations (fig. 5). Precipitation for July and August was fairly plentiful except at Columbia, where a drought beginning in July became more severe as the season progressed.

The 1939 growing season was characterized by near-normal temperatures at all locations during July and August and temperatures uniformly several degrees above average for the first half of September (fig. 6). Precipitation was adequate in the early part of the season.
At Columbus the month of August, with a precipitation 60 percent of average, was the driest in many years, seriously affecting yield of medium and late soybenn varieties. Temperatures, however, were not much above normal during the dry period.
Temperatures at the five locations during 1940 (fig. 7) were very similar. They were somewhat below average during the first half of July. A warm spell then occurred uniformly at all five locations and extended to the middle of August, after which the temperatures dropped off at the normal rate to the end of the season. Rainfall was about average and well distributed except for an abundance of precipitation at Ames and for a drought at Columbus, during July and early August, severe enough to affect seed yields.

Yield

The principal purpose of the present study has been to gain information on the variation in composition of soybean varieties when grown under different climatic conditions. Yield data were obtained for the last 4 years (1937-40) of the study and are recorded in table 3. Although the 1937 yields were taken on duplicated field plots and the 1938-40 yields on rod-row size plots with five replications and an extra variety included, the mean yields for the 4 years should be comparable.

Table 3. - Yield of seed per acre of 11 varieties and strains of soybeans at each of 5 locations during 1987-40

Year and location	Yfeld of seed per acre of the varfeties indicated											Mesn
	Man-	Mukden	Dunfleld, A	$\begin{gathered} \text { Dun- } \\ \text { Iteld, } \\ \text { B } \end{gathered}$	Illini	Mancha	Sedoto	T-117	Peking	$\left\|\underset{545 . I_{3}-3 \mid}{ }\right\|$	Mandell	
1887												
	Bn.	Ent.	Bu.	Bis.	Bu.	But	But.	Bu.	${ }^{\text {But }}$	Bu.	Bu.	Bu_{2}
Ames, rows	20, ${ }^{2}$	21.3	22.9	27.3	23.3	21.2	20.5	26.3	9.4	19.1		21.7
Columbla, Mo.	27.2	30, 1	23.5	3.15	33.8	32.2	31.7	27.5	22.0	22.6	-..----	28.7
Urbanas, Ill	23.8	22.0	21.0	18.4	29.8	32.2	21.4	28.7	21, 7	24.4	--.	22.6
La Fayette, Ind.	20.0	33.1	30.2	31.4	35.8	32.7	31.2	33.2	24. 7	24.2		30.9
Cohmbus, Ohio ..-	4.2	14.1	13.3	17.4	13.7	14. I	18.5	18.0	17.3	9.4		14.6
Mean.	21.0	24.1	24.2	25.1	25.5	24.5	24.7	20.7	19.0	19.9		23.6

Table 3.-Yield of seed per acre of 11 varieties and strains of soybeans at each of 6 locations during 1987-40-Continued

Yrar sud location	Yleld of seed per atre of the varieties indicated											Mean
	$\begin{aligned} & \text { Mbn- } \\ & \text { darin } \end{aligned}$	Mukden	Dunfleld, A	Dunfield, B	İlini	$\begin{gathered} \text { Man- } \\ \text { cha } \end{gathered}$	Sctoto	T-117	$\begin{gathered} \mathrm{Pe}+ \\ \mathrm{kln} \mathrm{E} \end{gathered}$	$\underset{54563-3}{\text { P. }}$	$\begin{gathered} \text { Man- } \\ \text { dell } \end{gathered}$	
1958												
	Bu.	$\mathrm{Br}_{\mathbf{\prime}}$	Bu.	but	$B u_{+}$	Bra.	Eiu.	$B u_{\text {c }}$	$B u$.	$B u$.	Bit.	Bu.
Ames, Lowa		20.1	23.1	22.4	22.6	21.3	28. 2	22.9	${ }^{23} 1$	27.7	20.5	22.4
UTbana, Mi,	16.9 29.8	19.7	20.3	19.8	20.9	19.7	20.7	21.9	17.0	20.2	18.5	10.6
La Fayette, Ind	20.8	38.8	${ }^{35.8}$	36.3	35.4 35 1	36. 2	${ }_{31}^{25.4}$	44.6	32.2	37.2	42, 4	37.8
Columbus, Ohio	2. 8	18.7	22.4	19.8	28.8	18.7	20.7	20.1	18.1	18.3	25.4	34.7 21.8
Man	24. 4	27.3	$2 \overline{2} .2$	20, 7	20.0	26.6	23.3	28.8	24.1	28.3	28.5	27.3
18*9												
Ames, Iows	12.1	23.6	27.4	28.0	28.1	26.2	27.4	28.2	12.2	21.2	27.9	24.5
Columbis, Mo	8.2	7.3	17.8	14.8	14.0	18.0	24.6	18.0	19.0	19.1	18.8	15.4
Urbana, Ili.	29.5	41.0	48.2	48.1	43, 5	48.4	48.6	51.4	34.9	40.0	46.0	42.7
La Fryette, Ind	27.7	30.4	35.1	31.4	31.4	32.5	31.2	35.9	23.4	29.2	30.6	31.3
Coinmbus, Ohfo	10.0	17,4	16.0	15. 5	17, 2	11.6	17.5	12.1	9. 5	11.8	18.6	14.3
Mean	16.5	23.8	28.9	27.0	20.0	27,3	29.9	26.7	21.2	24.3	28.7	25.6
Amos, Yowa	14. 6	23.6	32.2	32.2	32.4	31.5	30.7	25.1	31.9	23.1	30.4	27.6
Columbis ${ }^{\text {M }}$ (0	6.5	18.1	23.0	19.9	15.9	22.7	22.0	23.4	23.5	21.4	12.8	19.3
Urbana, Ill	20.9	25.0	29.9	27.7	29.4	31.9	34. 4	33.1	31.0	26.5	30.2	29.4
La Fayette, Ind	17.5	32.3	20.6	23.6	33.1	30.6	28.7	29.8	5. 5	20.8	27.1	27.5
Columbus, Ohio.	14.5	18.1	19.1	17.0	18.7	18.9	22.0	20.8	20.7	19.2	17.3	18.8
Mear.	14.8	23.3	26.8	2.15	25.3	27.7	25.7	20.4	23.1	24.0	24.6	24. 4
4-year mean												
Ames, Iowa.	16.1	22.0	97.4	27. 13	29.6	25.0	27.2	25.6	18.4	22.8	126.3	23.8
Columbin Mo	12.6	18.8	22.7	21.2	21.2	23.2	2 25.0	22.7	19.6	20.8	516.7	20.8
Urbana, Ill.	26.6	31.8	33.7	32. 3	32.3	35.4	37.5	36.7	30.4	32.0	139.7	33.1
La Fayette, Ind.	20.1	33. $\overline{7}$	32.4	31.2	34.4	33.2	31.1	33.1	24.4	30.1	133.1	31.1
Columbus, Ohio	14.4	17.1	17.7	17.7	IS. 6	15.8	10.7	17.8	16.4	14.9	520.4	17.3
Oeneral mean	19.2	24.7	20.8 ;	28.1	25.8	20.5	27.9	27.2	31.9	22.1	227.3	25.2

: 3-yent mean.

Maximum yields are obtained when a varicty uses the entire growing season. However, yiald may be sacrificed to obtain earliness as with the carly variety Mandarin, which is adapted to the northern tier of States in the North Central Region. It is used in the main soybean States of Ohio, Indiana, Illinois, and Iowa only as an early variety to be harvested ahead of fall grain seeding. Mandarin has been significantly low in yield at each location during each year since 1938, with the exception of the 1938 season in Ohio, when it was significantly high in yield. In explanation of this, it can be seen from the 1938 weather graph (fig. 5) that abundant rains occurred at Columbus the last of July, during the critical filling period for Mandarin. The severe drought during August at the filling period for the later varieties seriously reduced yields below what could have been obtained with better rainfall distribution. Mukden, being later than Mandarin, has yielded higher for an average of the entire period.

An observation of interest in connection with the principal commercial varicties adapted to the States of Ohio, Indiana, Illinois, Missouri, and Iowa is the very close mean yields obtained. On the other hand, Iate varictics that frequently are caught by frost suffer
reduced yield and may be difficult to harvest. Peking has averaged surprisingly well over the region, considering its lateness. The selection P. I. 54563-3 is even later than Peking and has suffered reduction in yield at Ames and Columbus in some seasons by being caught by frost. The 4 -ycar average yields shown in table 3 may be helpful in studying the relative performance of the varieties. Further discassion of effect of season is given in the discussion of the effect of fertility level.

Size of Seed

One of the characteristics used to describe soybean varieties is seed size. Much variation exists in the size of seed from different soybean types. On an average, a range of from 0.75 gm . per 100 seeds for the small-seeded wild soybean to 35.0 gm . per 100 seeds for the large-seeded vegetable types can be expected. The more common commercial types average from about 13.0 to 16.0 gm . per 100 seeds. Farmers prefer medium- to small-seeded commercial strains for two reasons: First, the smaller seeded types emerge through a crusted soil surface with less difficulty than the large-seeded types and with fewer broken cotyledon. ; and second, the smaller seeded commercial varicties have a larger number of seed per bushel, thereby permitting a slightly lower seeding rate. For industrial-processing purposes there is no particular preference for either the large- or small-seeded types within the limits encountered between the commercial varicties.

Size of seed is given in this study as the weight in grams of 100 seeds, determined after the seed had been stored at, $70^{\circ} \mathrm{F}$. and 18 percent relative humidity for sufficient time to attain moisture-content equilibrium. Although seed size is of relatively little importance, moisture content exerts an influence upon this determination. Therefore, aceurate results can only be obtained if uniform moisture conditions prevail.
The 10 varieties studied were known to differ significantly in seed size. Peking is shown to have a 5 -year mean of 6.92 gm . per 100 seeds whereas Illinois T-117 has a mean of 15.37 . P. I. $54563-3$ and Mlini have a smaller mean weight per hundred seeds than do Manchu, Scioto, Dunfield, Mandarin, and Mukden. It should be noted that the unusually low value of P. I. 54563-3 at Ames in 1937 was due to immaturity at the time of the first killing frost. Scioto, T-117, and Peking were also frosted, but they were sufficiently advanced toward maturity so that they did not decrease appreciably in size.

A separate study conducted on Illini in 1940 at six suceessive harvest dates, extending from the "full-podded bean stage" (late vegetrable stage) to complete maturity, showed only a small change in seed size due to time of harvest. This indicates that beans frosted near maturity will decrease appreciably neither in size of seed nor in relative yield as an indirect result of frosting. The data showing the relation of maturity to size of seed are graphically represented in figure 8. This figure also shows the trend in percentages of protein and oil and iodine number of oil during the period of desiccation following physiological maturity.

In table 4 seed size is summarized for 10 strains of soybenns grown at 5 locations for 5 years. See size was noticenbly smaller at Columbia than at any other location for the 5 -year period. A possible explanation for this may be the higher temperatures at Columbia, accompanied by insufficient rainfall during the filling period. This relationship can be substantiated by reference to figures 3 to 7. In 1939 (fig. 6) it will be noted that there was an abundance of rainfall at Columbiu during August. Therefore, larger seed size might be expected at Columbia for that scason. Referring again to table 4, it can be seen that the average seed size for all varicties was larger at Columbia than at any other of the 4 locations in 1939. Apparently

Figure 8.--Effect of stage of maturity on secd size and protein and oil content of soybean seed, and of the iodine number of the oil.
seasonal conclitions play an important role in modifying size of soybean seed, one of the important factors being the stage of development of the whole plant and its parts when unfarorable weather conditions occur. During flowering and early ovule and seed development the soybean plant regulates, by physiological abortion, the number of seed that it can fill under existing environmental conditicns. Thus, when unfavorable growing conditions occur early in the season the plants are smaller and less seed are set. Subsequent favorable conditions providing abuadant food for those seeds set tend to produce larger seed than would be produced if reverse conditions occurred.

$$
410227^{\circ}-42-3
$$

Table 4.-Size of seed, expressed in grams per 100 seeds, of 10 varieties and strains of soybeans grown at 5 locations during 5 ycars; average seed size by variety, location, and year; anà analysis of variance of the data

EXPERIMENTAL DATA

[^5]Table 4.-Size of seed, expressed in grams per 100 seeds, of 10 earieties and strains of soybeans grown at 5 locations during 5 ycars; average seed size by variety, location, and year; and analysis of variance of the dala-Continued

VARIETY AND LOCATION MEANG:*

Variety and locetfon	1936	1987	1038	1039	1940	5 yasts
Variety:	Grams	Grams	Grams	Grams	Grams	Grams
Mandarin	14.09	15.34***	15.01**	14.87	15.11	$14.88{ }^{\circ 0}$
Mukden-	14.83	13.51	13.30	14.62	15,98	14.43*
Dundeld, A	14.03	13.68	13.56	15.48	15.64	14.47°
Dundedd, $\mathrm{B}^{\text {d }}$	14.83	13.80	14.19	$16.37^{* *}$	16.84**	15.22**
Illini --.	13.18	12.42	12.41	14. 45	15. 13	13.52
Manchu	14.31	13.61	14.43*	15.14	16.45**	14.79**
Sctoto	15. 19	13.11	14.33^{*}	15.26	16.06°	14, $79 \times$
T-217.	16.48**	13.83	14.30*	15. 18	17.05**	15.37**
Peking	7. $8.88^{\circ 0}$	6.3200	6. 85°	15.18 ${ }^{15}$	17.05 $6.74{ }^{\circ 0}$	15.37 $67^{\circ \circ}$
P. Y. 54, ${ }_{\text {c }}$	14.82	11.38°	12.67	12.55°	12.67^{00}	$12.82^{\circ 0}$
Lacation:						12.82
Ames, Cowra	14.80	11.98	13. 89	14. 28	14.78	13.95
Columbie ${ }^{\text {U }}$,	11. $30^{\circ \circ}$	11. 90	12.82	14.65	$13.68{ }^{\circ}$	$12.87^{\circ 0}$
Ea Eavelte, Ind	15. 15	12.73	13. 45	14. 18	14. 70	14.04
Ea Easelte, Ind	14.33	13.98*	13.53	13.09	15. 55	14.10
Columbus, Ohio	14.30	12.00	11. $79^{\circ 0}$	14. 12	15.13	13.65
Averege of all samples.	18.87	12.70 0°	13. 10^{00}	14.08	14.77**	18.72

ANALYSIS OF VARIANCE

Source of varistion	Deprees of ireodom	Mrean Squere for indicated year					
		1836	1937	1938	1939	1940	5 ycars
Variclies......----.........----	9	25.89**********)	$30.31 *$	27.50**	38.35**	47.40**	157.79**
	4	23.62**	7.07**	6.80**	3.38**	4.84°	$12.78{ }^{\text {a* }}$
Years	4						33. $85 * *$
	36						2). $22^{* 4}$
Locntions \times years... Varietios \times locations							$8.23{ }^{\text {8* }}$
Varietirs \times locations $-\ldots \ldots$ -	36 142	1.96	1.06	. 84	1.24	. 95	1. 31 1.18

z Variety meams represent 5 lecntions; loention means reprosent 10 variecies.
$2^{\circ}=$ signincanty kawer than geacrai moan (o-percent level).
oo =highly signiffeantly lower than hanoral ment (Apercent ievel).

- In case of means=significanlly higher that general mear (5 -percent lavel) in case of mean squares, significant (5-percent lovel).
-In ense of taeans = highly signifleantiy highet than gencral mean (i-perceat level). In ease of mean squares, highly signiffont (l-pereent level).

Because spring and early summer growing conditions of 1940 were generally unfavorable when compared with later conditions, larger than average seed was produced. Contrasted with these conditions were the very favorable spring and early summer conditions of 1939 , which favored an abundant seed set, and the extremely dry weather in August and September of the same year, which produced the smallest mean seed size for all locations except Columbia.
As dry hot weather conditions ordinarily prevail during the month of August, the seed of an early maturing variety, such as Mandarin, would not be appreciably decreased in size, as would those of the later maturing varieties. This can be verified by numerous examples in this study, one of which is seed produced at Urbana in 1938.

Thus, the climatic influence on seed size becomes evident. The complex analysis of variance for seed size of these 10 varieties at 5 locations for 5 years, shown in table 4, bears out the above-mentioned point. This analysis shows that year contributes more variability to size of soybean seed than does location. However, both the mean
square for location and year are highly significant statistically. The large varieties \times years interaction is not surprising in view of the variable seasonal rainfall in the various regions. The varieties x locations interaction is low with respect to the error term (varieties \times locations X years), indicating that varieties tended to remain in their same respective rank for size of seed at the different locations during the 5 years. Although seed size in soybeans is a heritable characteristic, environment has been found to play just as important a part as it does with oiher quantitative characters, such os yield and composition.

Protein Content

The protein of soybean secd contains many of the biologically essential amino acids and therefore is of value as a feed for livestock, for which purpose it is usually marketed as soybean-oil meal. The protein has many uses (22) in human nutrition and also serves as an excellent industrial raw material, especially in the field of plastics and adhesives. The largest single industrial use of soybean meal is for plywood adhesive. It is estimated that more than half of all the plywood in this country is glued with adhesive made from soybean meal. A much smaller use is for wallpaper coating, and an additional small tonnage is used for plastics.
Refined soybean protein is produced to an extent of about 10 tons per day and is used at present primarily for sizing and coating paper, for sizing cloth, and for water paints.

Variation in the percentage of protein metabolized in soybean sced due to environmental factors has been the subject of much study. The increase in protein resulting from applications of lime has been quite consistent (10, 18). Stark (26) found an increase in protein with lime applications and also to a lesser extent with phosphate. Stark also concludes from a study of protein content resulting from several soil treatments at two locations that the chief factors affecting the composition of soybeans grown in different localities are soil fertility and soil raction. However, Stark was reporting data obtained from fields separated not over 50 miles and in a region of similar climatic conditions.

In the present study, seed of the 10 varieties and strains of soybeans grown at the 5 locations during the 5 seasons 1936-40 were analyzed for total nitrogen. Protein values were calculated as nitrogen $\times 6.25$, the conversion factor in common use by the feed and processing industries.

Protcin content of the seed varied considerably among the varietics and strains used in the stady, Mandarin being the highest and Peking the lowest for all locations over the 5 -year period, as shown in table 5 . In this table are recorded the individual analyses of the 10 strains grown at the 5 locations during the 5 seasons 1936-40, together with their means. The lowest protein content was 36.62 percent for a sample of Peking at La Fayette in 1940, and the highest was 53.19 percent for Mandarin at Columbia in 1939, a range of 16.57 percent.

Table 5.-Crude protein content (dry basis) of seed of 10 varieties and strains of soybeans grown at 5 locations during 5 yetrs; average percentage of protein by variety, location, and sear; and analysis of variance of the data

EXPERIMENTAL DATA

Yeer and locatlon	Crude protein sontent of sued of the rarieties indicated										Mcan
	Mandarin	Mukden	Dunbield, 1	Dилfild, B	Ilini	$\underset{\text { chu }}{\text { Man- }}$	Scioto	T-117	$\underset{\text { king }}{\text { pe- }}$	$\left\lvert\, \begin{array}{\|c\|c\|c\|c\|} \hline \text { P.I. } \end{array}\right.$	
1950											
Ames, Iown	47.318	49.25	4ti. 19	46. 00	44.94	${ }_{47.31}{ }^{\text {cti }}$	47. 50	${ }_{45}{ }_{5 c} 4$.	${ }_{46.88}^{\text {Pct. }}$	${ }_{46}{ }_{\text {cte }} 60$	Pct. 46. 06
Columbia,	41.00	45.18	47.37	42.75	44.75	45. 04	42.88	45. 13	40.25	49.25	45.05
Urbane, Il Fayete,	45.31	44.4 .4 49.31	42.00	41.31	43.88 43.38	45.13	44. 69	4.58	41.63	44.31	43. 53
Columbus, Ohio	46.88	43.38	42.63	38.75	45,44	45.31	40.25	39.81	43.00 4.03	42. 61 40.25	43.92 42.63
Mean	45. 54	46.31	43.05	42.07	44.48	45.99	43.73	43.20	43.68	44. 63	44.35
1897											
Ames, Iown	45.50	46.44	38. 75	40.03	40.56	44.13	42.88	41.50	50.44	40.38	42. 13
Coluthbia,	44.19	42.63	40.58	39. 04	42.06	43.13	41. 26	41.56	43.511	41.04	42.11
Urbana, Ill.	42.31	45.06	40.31	40. 19	40.69	43. 19	40. 56	39, 63	37. 69	41. 81	41.06
La Foyette, In	44.88	46.88	40.94	41.31	42.63	44. 69	42. 63	41.81	39, 69	41.75	42. 73
Columbus, obi	59.00	44.94	41.13	39.60	44. 明	43.38	41. 14	41. 19	40.00	42.00	42.75
1098	45.19	45. 19	40.80	40.35	42.14	43.50	41.75	41.15	40.25	\$1.61	42.16
Ames, lowa	47.75	46. 38	40.88	40.81	41.56	44.88	45, 75	42.88	40. 19	42. 62	43.37
Columbin, ${ }^{\text {M }}$	43.31	45.69	42.12	41.81	41.44	44.50	42.12	42.38	43.06	42.65	42.92
Urbana, If.	43.44	41.50	37. 19	36. 8.	38.25	40.75	40. 88	30.50	30. 88	38.38	39.66
La Fayette, Ind	49.12	49. 19	45.75	44.81	45. 50	47.69	42.50	42.12	39.94	42.88	44.85
Columbus, Ohio	45.25	44.56	39.t0	42. 516	40.10	42.10	40.50	38. 50	36. 38	41, 12	41.03
Mean	45.77	45,46	4(1). 78	41.30	41.39	44.01	42.35	41.08	39.89	41.54	42.37
1958											
Ames, Iowa	46. 81	45. 19	40. 60	30.75	41. 00	42.62	38.94	41.19	40.60	41. 50	41.80
Columbia,	53.19 40.88	48.69	41.35	${ }_{3}^{43.31}$	43.06	42.75	42.56	42. 62	39.94	40.50	43. 79
Urbaba, Ill	40.88	43.25	38.84	38. 69	38. 62	40.75	40. 25	39, 44	39.75	30.88	40.05
La Fayctte, Ind	44.81	45.31	30.44	41.31	42.31	42,56	43.06	43.00	39.81	42.19	42. 44
Columbus, Ohio	47.06	47.31	43.81	42.04	46.25	48. 25	44.09	14.17	30.75	43.61	44.63
Mean	40. 5t	46. 05	40.80	41. 20	42.35	42.90	52. 10	42. 10	38.95	41.54	42. 56
Amss, Iowa	43. 56	45.81	41.38	42.25	42.38	43.88	42.75	41.94	39.38	43. 50	43.28
Columbin. Mo	51.19	48. 75	398.38	41.69	43.56	43.31	43.35	41.64	38.c9	40.44	43.01
Urhana, M.	47.62	44.50	40.75	41.15	41.75	43. H	42.25	41.81	40.94	40.94	42. 52
La Fayette, Ind.	48.31	48.81	41.44	43.25	43, 44	4.1. 69	40.94	42.19	30. 62	40.25	42.78
Culumbus, Ohlo	48.56	${ }^{5} 5.06$	11.88	42.31	41.75	43. 62	42.75	41.19	40.06	42.81	43.00
Mean	40,05	45.78	40.95	42. 14	42. 58	43.70	42.41	41.76	3 S .14	41.59	42.92
6-yeas mean											
Ames, lows	47.41	40.61	41.34	41.89	12.09	44. 56	43. 70	42. 60	41.49	52. 94	43. 47
Columbin Mo	46. 58	45.79	42.21	41.00	42.97	13.89	42.45	52.68	42.29	42.90	43.38
Urbann, Ill	43. 11	43.75	30.84	30.01	40. 84	+2. 15	41.73	40. 59	39.38	41.03	41.36
La Fryette, Ind.	46.85	47.50	41. ${ }^{1}$	42.45	43, 56	45.18	42.49	42. 45	30.21	41.04	43, 35
Columbus, Ohio..	17.35	45. 15	41.69	41.25	43. 66	44.15	41.93	40.95	39.96	41.97	42. 81
Mran........	46, 42	45. 76	41.38	41.12	42, 51	H. OH	42.47	41.80	40.58	42. 18	42.87

[^6]Table 5.-Crude protein content (dry basis) of seed of 10 varieties and strains of - soybeans grown at 5 locations during 5 years; average parcentage of protein by variety, location, and year; and analysis of variance of the data-Continued

VARIETY AND LOCATION MEANS: $=$

Varlety and location	1938	1937	1938	1839	1940	5 years
Varlety:	Percent	Persent	Percent.	Percent	Percent.	Percert
Mandarin	45.5	45.19**		46. $55^{\circ *}$	49.05°	
Dunheld, A	48.35	45. 40°	45.46 46.20	46.05000		
Dunfeld, B	42.07	40.35°	t1. 36	41.20	12 l	41. $52^{\circ 0}$
Ilini	44.48	42.14	43.39	42.35	42. 58	42.59
Manchus	45.99	43. 50	44. 01	42.98	43.18	44. $66{ }^{\circ}$
8cioto	43. 73	41.75	$\underline{+2.35}$	42.10	42.11	42.47
T-117.	43.20	41.15	41.08	42. 10	41.76	41.88^{00}
Peking-	43.68	40.26°	39.89 ${ }^{\circ}{ }^{\circ}$	39.95 ${ }^{\text {a }}$	39.1400	40. $588^{\circ 0}$
P.1. 5456	44.63	41,61	41.54	41.5	41.53	$42.18{ }^{\circ}$
Ames, Iowa	46. $66{ }^{*}$	42.13	43. 37	41.90	43.28	43.47
Columbis,	45.05	52.11	42.92	43.79	43.01	43.37
Wrbsus, Mi.	43.53	41.06	39.6300	$40.05^{\circ 0}$	12.52	$41.36^{\circ 0}$
La Fayette, Ind	43.92	. 42.73	41. $85^{\circ 0}$	42.44	42.79	43.34
Columbus, Ohio	42. 63	42.75	41.03°	44. $03{ }^{\circ} \mathrm{C}$	43.01	42.81
Average of all samples.	44.38.0	42.16°	42,37	42.36	42. 92	42.87

ANALYSIS OF VARIANCE:

Source of variatton	Degrees of irectora	Mcan square for Indicated yeat					
		1936	1937	1838	1939	1940	5 years
Varleties..	$\begin{array}{r}36 \\ 16 \\ 36 \\ 142 \\ \hline\end{array}$	24.64.0**	+17.55**	$20.48 * *$$41.54 * *$	23.09***	38.190* 81	
Locations.							
Yarleties \times -							35.46**********)
Locations \times years							15.97**
Varietles \times locations		4. 16	1.75	2. 40	2.63	1. 18	2.68
Varieties \times locations \times y							2.36

[^7]The mean values of protein content and the analysis of variance of the data are also recorded in table 5. The varicties are remarkably consistent in their performance in the different years. Mandarin, which was highly significantly higher than the mean of all varieties for the 5 -year period, had a high percentage of protein in all years. The variety Mukden is also characterized by high protein content.

Peking, the variety having the lowest mean protein content, was significantly low in all years except 1936. The differential severity of the drought in 1936 in the five locations may have been the cause of the greater varicty \times location interaction, and for that year no variety departed significantly from the mean.

The 5 -year means show Dunfield, one of the principal commercial varieties in the region, to be significantly low in protein content with 41.4 percent, whereas Manchu, another of the leading varicties, is highly significantly high with 44.1 percent. These percentages and relative ranking agree quite closely with the values given by Odland and Lea (21) in Rhode Island for the same varieties, 41.87 percent for Dunfield and 45.10 percent for Manciu, respectively.

Analysis of variance for the 5 -year period (table 5) gives additional information on this point, the low varieties \times locations interaction indicating that within the area covered in this study location was without effect on the rclative ranking of the 10 strains during those seasons. It should be pointed out that, since the samples for chemical analysis were composited and only one analysis was made for each variety at each location each year, no true crror term is available for use in evaluating the interactions. This situation is always miortunate in studies involving chemical analysis where the agronomist can produce more sampies than there is wistiom in analyzing chemically. Snedecor (25) and Salmon (23) indicate that caution must be observed when using interactions as an error term.

Among the locations, Trhana has produced low-protein-content secd during fow of the scosons, 1937 to 1940, and for the 5 -ycar period a mean protein value highly significantly lower than the general mean of the test was obtuined. The only season that Urbana was not the lowest of all locations was in 1936, the year of severely high summer temperatures. By refersing to the 1936 weather graph (fig. 3) it can be observed that temperatures were not so severe at Columbus, and rainfall, while low, was fairly well distrithuted, which may explain the low protein at Columbus that season. Fitting into the explanation is the very high mean protein content of the Ames seed for the same scason, Ames haring an extremely severe drought and unustally high July and August tempecatures. In 1939 the varietics averaged bigh in protein at Columbus, coinciding with a long period of drought and temperatures above normal. Another explanation, however, must be sought for the high ayerage protein produced at La Fryette during 1938, a season of well-distributed rainfall and nearly normal temperature.

Among the five seasons, as has been previously indieated, the mearn protein content of the secel of all the varieties at all locations was high in 1936. It is of interest to note in table 5 the high location mean square for that season in comparison with the varicties mean square. The dissimilarity of climates at the five locations may account for the higher loention variance and also for the high varictics \times locations interaction. This was obscrred to a lesser degree in 1938 and 1939. However, in 1937 and again in 1940, the effect of the seasons was evidently similar at the five locations, for there was relatively less variance due to locations and little varietics \times locations interaction.

Oil Content

The oil which comprises from 18 to 20 percent of the total weight of the seed of the leading commercial soybean varicties is of value for edible purposes and many industrial applications. Because in price per pound the oil is the more valuable of the two constituents, oil and oil meal, ordinarily obtained by processing of soybean seed, it is only natural that much interest is centered by farmers and processors in the oil content of different commercial varieties and in the influence of location and season on this constituent.

Seed of the 10 varieties and strains of soybeans under test were found to differ significantly in oil content or crude ether extract. The analyses are given in table 6 . The means of these analyses, together with the analysis of variance of the data, are also summarized.

The variety Mandarin was significantly low in oil content in every season except that of 1936. It will be recalled that over an average of all locations Mandarin seed was significantly high in protein content in these same years and was alse high for the 5 -year mean. It may be of interest to observe that during 1936 Manchu sced contained less oil than Mandarin, and at the same time more protein, even though Mandarin was higher in protein for the remainder of the years. Dunfield has been characterized as a variety prized in Manchuria for its high oil content (20), and in the present study this variety, with only one exception, has consistently maintained the highest mean percentage of oil of all the varicties and strains under test. The exception was Dunfield, B, for 1940, the data for which seem to be out of line with the other datal for that season. It will be noted that the A strain in oil content was equal to, or higher than, the B strain in 1937, 1938, and 1940; and, by reference to the protein analyses (table 5), it will be found that for these same samples the reverse is true for protein content in most instaness. A clefinite exception to this inverse relationship between protein and oil is found in the variety Peking, which has quite consistently been low in mean percentages of both these constituents. The one case in which Peking did not produce the lowest perecntage of oil of all varieties in the test oceurred in 1940 , when, for all locations, Mandarin had a mean value of 16.28 percent, whereas Peking had 17.80 percent. A glance at table 5 reveals that in this season Mandarin metnbolized into the seed the lighest mean percentage of protein of all the varieties. Apparently the climatic conditions responsible for the low oil content also produced a high protein content.

Table 6.-(Oil content (dry basis) of seed of 10 uarieties and strains of soybcans groum at 5 locations during 5 years, averafe percentage of oil by variety, location, and year; and analysis of variance of the data

Experimental dafa

Location and racan	Oil content of seed of the varieties indirated										Mebr
	$\begin{aligned} & \text { Mari- } \\ & \text { darim } \end{aligned}$	Mukden	$\begin{aligned} & \text { Dum- } \\ & \text { fiedt, } \end{aligned}$ A	$\begin{aligned} & \text { Sun- } \\ & \text { felli, } \\ & \text { B } \end{aligned}$	Iilini	Mntichis	Scioto	'1-117	Peking	$\left\lvert\, \begin{array}{\|c\|} \mathbf{P} \cdot \mathbf{I} \\ 5 \times 3-2 \end{array}\right.$	
1036											
A	${ }_{\text {Pct }}$	18. 10	10.80	${ }_{18} \mathrm{Pct} 11$.	Pet.	Pret.	${ }_{10}{ }^{\text {PCP }}$,	Pet,	Pct.	Pct,	${ }^{\text {Pat }}$,
Colutbin M	10.81	20.62	16.34	21.12	15.51	17.401	20.2	18.48		17.63	17.82
Urbama, 1il	18.94	20.69	2250	${ }^{2} .62$	20.30	18.70	20.70	21.74	12.6is	20.25	20. 18
La Fbyelte, Int.	18.14	18.19	21.71	21.80	20, 04	19.25	20.3ts	(3). 69	1ti. 1 (2)	19.15	19.08
Columbus, Onto	18.68	21.15	21,01	2\%. CW	19.65	19.02	22.43	22. 25	16.25	21. 18	20.01
Mern.	18.71	19.80	21,01	21.419	19.56	18.67	21.10	20. 25	16. 30	10. 13	19.59
1997											
Ames, Iow	18. 60	19.53	21.37	21, 13	21.61	19.85	17. 67	20.03	1ti, 05	18. 600	19, fi
Columbis M	18.17	20.51	21. 651		20.70					20.23	20.0 .1
Urbana, 11	18.51	10.25	21. 04	20.198	20.28	10.45	20. 81	20.81	18.05	11.70	10.98
La Fryette, Ind	18.11 17.81 18	18, 36	${ }^{20} 18$	${ }_{20}^{21.23}$	11.18.	10.51	19,37	20.35	16.85	10.50	11. 55
Mcan.	18.05	18.37	21. 311	21. 10	20.23	115. 55	21.15	20. 27	16, (t)	111. 32	19.07

Table 6.-Oil content (dry basis) of seed of 10 varieties and strains of soybeans grown at 5 locations during 5 years; average percentage of oil by variety, location, and year; and analysis of yariance of the data-Continued

EXPERIMENTAL DATA-Continued

VARIETY AND LOCATION MEANS:

Variets and location	1936	1937	21938	1939	1940	5 years
Variety:	Petcent	Percent	Percent	Percent	Percent	
Mandaria	18.74	$18.95{ }^{\circ}$	$18.67{ }^{20}$	$18.18{ }^{\circ}$	16. $28^{\circ 0}$	$18.16^{\circ o}$
Mukden.	19.88	19.37	19.24	19.15 ${ }^{\circ}$	18.68	19.20
Dunfleid,	$21.01 *$	21. 19-5!	21. $40{ }^{* *}$	21. 5°	$20.11 * *$	20. $97{ }^{* *}$
Dunfeld, \%	$21.49^{* *}$	21. $10^{* *}$	20.89**	21. 3n*	99.33 :	$21.91{ }^{\text {2 }}$
Inini	19.56	20.23	20.74*	29.37	19.00	19.98
Manchu	18.67	19.55	19.45	20.16	19.16	19.40
Scioto	20.10	20.15	20.59	20.89	19,74*	20. 29.4
T-117.	20.25	20. 27	20.63	20.82	$19.90{ }^{+}$	20.37**
Peking	16. $40^{\circ 0}$	$16.50^{\circ 0}$	17.2700	17.3700:	$17.80{ }^{\circ 00}$	17.04
P.2. 54503 -3	19.13	10.32	20. 34	29.53	19.91**	18.91
Location:						18.
Amas, lown.	$17.82^{\circ 0}$	19.61	19.23 ${ }^{\circ}$	20.46	18, 62 ;	19. $15^{\circ 0}$
Columbia M	18.01	20.05	20.23	19.85	$19.5{ }^{+}$	19. 76
Urbana, In...-	\%0. $48{ }^{*}$	10.98	21. $41{ }^{* *}$	$20.87{ }^{\circ}$	10.38	$20.36^{\circ *}$
La Eayctle, Ind	19.48	19.55	19.4	10.70)	18.95	19.18
Colambus, Ohio	2. $61{ }^{\circ}$	19.17°	10.6\%	19.15\%;	18. 35	10.44
A verage of all samples.	58. 58	19.67	19,03*	20.03**	$19.01^{\circ 0}$	10.63

See footnotes at end of table.

Table 6.-Oil content (dry basis) of seed of 10 varieties and strains of soybeans grown at 5 locations during 5 years, average percentage of oil by variety, losation, and year; and analysis of variance of the duta-Continued

ANALYBIS OF VARIANOE ${ }^{3}$

Source of variatlon	Dcgrees of freedom	Mean square for indicated jear					
		$18 \% 6$	1237	1838	1939	1540	5 years
Yariaties	9	10. $20^{* *}$	9. 1.27		$0.13 * *$$4.93 * *$	$\begin{aligned} & 7.05^{*} \\ & 1.90^{\circ} \end{aligned}$	37. $62^{* *}$10. $57^{* *}$
Locations.	4	$13.15 * *$					
Years ---	4						8.01**
Varietles \times yesrs..	36						1.45**
Locations X years...-	16 36	. 8 ä	. 30	. 33	. 74	26	3.95**
Varjeties \times locations \times ¢	146			+38	+ 74	. 26	. 31

${ }^{1}$ Missing data supplied.
2 Varlety means represent 5 locations; location meats represent 10 varieties.
${ }^{\circ} \mathrm{O}$ mignificantly lower than general mean (5 -percept level).
${ }^{\circ}=$ Highly sigdiflosntly lower than general mean (i-percent level),
*In case of mesns=significantly higher than general mean (5 -percent leve). In case of mean squares, signifieant (5 -perecnt level).
${ }^{+1 n}$ In case of means $=$ highly slgnificuntly bigher than general mean (1-percent leyel). In case of mean squares, highly significent (1-pereant level).

To the plant breeder and the grower of soybeans for processing, information on the effect of location is as important as the effect of variety or genotype on the oil content. A few observations can be made relative to the tendency for certain places to produce seed of high or low oil content. Among the 5 locations, the 10 varieties averaged highest in oil content at Urbana in 2 out of the 5 years, standing highly significantly ligher than the mean in 1938. Likewise, at Urbana for the entire period the 10 varietics also maintained an oil content highly significantly above the 5 -year mean, and 1.21 percent above the value for Ames. Although this relationship may be valid, the very low mean oil content of the varicties for the 5 years at Ames was due in part to the low oil content of these varieties in 1936, a season of unusual climatic conditions.

Among the 10 varieties and strains included in the test were Mandarin, a northern variety too early for the locations in the study, and Peking, a black-seeded variety, not suited to processing on account of the black flecking in the resultant moal as well as the low oil content of the seed. These and other strains were included to enlarge the range of genotypes under test.

Table 7 , giving mean values of 5 of the leading commercial varicties now comprising a large part of the acroage in the region, shoud be of special interest to growers and processors. This table presents the same relative picture for the 5 as was given earlice for all 10 of the varieties, as to the effect upon oil content of the region where the soybeans are produced. It will be seen that an average of these leading commercial varicties of the region at the 5 locations shows Urbana as producing the highest percentage of oil and Ames the lowest, although the difference is only 1.10 pereent.

Studies of the offect of location on composition of soybern seed have been made previously by other workers. Garner, Allard, and Foubert (12) grew soybeans in pots of soil brought in from different locations and concluded from their studics that the relative effects of different soil types are not specific and constant, but depend largely
on seasonal conditions. A similar investigation was undertaken by Viljoen (28), who axrived at the same conclusion.
Table 7.-The average oil conient (dry basis) of the five leading commercial varieties for the five-year period at each of the five locations calculated from the data given in table 6

Lecation	5-year ayerages for varieties shown					
	Mukden	Dunfeld.	Elini	Msncha	Sciots	Mexs
Ames, zowa	Percent 18.11	Percent	Percent 19.77	Percent 39.18	$\begin{array}{r} \text { Percent } \\ 19.04 \end{array}$	Percent 19.58
Columbia, Mo.	19.77	23.97	20.40	19.51	20.72	20.24
Urbans, 11	20.04	21.78	20.70	19.95	20.02	20.68
Lusayette, Ind.	18. 54	20.81	19.73	19.34	${ }_{28}^{18.83}$	19.65
Columbus, Ohio	19.25	20.68	19.37	19.01	20.34	19.73
Mean.	19.26	20.97	18.89	19.40	20.29	

From these studies it may be concluded that climate is the more important in its effects of the two factors, soil and climate, that go to make up the location effect. In table 6 are tabulated the variances due to varieties and to locations for the individual years as well as for the $\overline{5}$-year period. In 1936 the mean square for locations exceeded that for varieties, though not by a statistically significant difference. It is of interest, however, to recall the severity of the drought and heat in the western part of the north central region during that year. The varieties \times locations mean square is large, possibly indicating more interaction among the varieties in their response to location effects.

It is recognized in the present study that the climatic effects at the five locations are similar in most years, 1936 being an exception. When larger geographical areas are included in a test involving a wide range in varieties, more variance is apt to be found due to location than to variety. Morse ${ }^{7}$ in 1917 grew such a test over the southeastern part of the United States extending from Maryland to Texas. Table 8 gives the variances found for oil and protein content ${ }^{8}$ of the seed of 10 strains of soybeans grown at 12 locations.
Table 8.-Analysis of variance of data on oil and protein content of seed of 10 strains of soybeans grown at 12 locations

OLL CONTENT
Source of sariation $\quad\left\{\left.\begin{array}{c}\text { Degrees of } \\ \text { freedom }\end{array} \right\rvert\, \begin{array}{c}\text { Mean } \\ \text { squares }\end{array}\right\}$

PROTEIN OONTENT

[^8]From these F values for the one season it appears that possibly oil content is less affected by extreme changes in location and climate than is protein content.

In the present study the mean oil content of all the varieties at all locations has not varied much from year to year, averaging 20.03 percent in 1939, the high year, and 19.01 percent in 1940, the low year, a difference of only 1.02 percent.

Among the interactions there was a significant varieties \times years and locations \times years interaction, indicating a differential effect of climate on oil content of the varietics. Of more importance to the plant breeder is the low varieties \times locations interaction, indicating that the varieties remained in the same relative order with respect to oil content at the locations included in this study. In general, it might be concluded that within the area covered by this study any selections made for high oil content at one breeding nursery should prove to be reasonably high in comparison with other varieties when planted elsewhere in the area.

Iodine Number

The degree of unsaturation of soybean oil, as measured by the iodine number, is of especial importance from the standpoint of its use in paints and varnishes. The greatest spread in iodine number of the oil has been from 103.9 for a sample of the Dunfield grown in Columbia, Mo., in 1936 to 155 for a sample of the wild soybean grown in northern Manchuria. The percentages of linoleic and linolenic acid in the oil increase with increasing iodine number.. As these are the film-forming constituents of the oil, it can readily be seen that for use in paints and varnishes an oil with high iodine number is desirable. Properly to evaluate the iodine number of oil derived from introductions and selections some information on the effect of environmental factors as they affect unsaturation of the oil is helpful. From the standpoint of the utilization for food purposes, an oil of low iodine number is preferred, though this factor is of perhaps minor importance. An oil of high iodine number is of importance, however, in the drying oil industry.

Littic information is available on the effect of the various factors of environment in modifying soybean oil. Washburn (29) in 1916 published the results of a comprehensive survey of the composition of soybean oil, including in his studies the percentage of oil obtained from soybean varietics and selections grown over a wide range of conditions, together with the characteristics of the oil. Selected data from this bulletin will be presented later ($p .30$) under the discussion of climatic eftects on degree of unsaturation of soybean oil.

To obtain information on the quality of the oil of the principal commercial varicties grown in the North Central Region, the iodine number of the oil from the seed of the 10 varieties was determined as well as the oil content. The varieties in the test varied among themselves significantly in iodine number, as shown in table 9 , which gives the mean values for each of the varieties at the 5 locations for each of the years and for the 5 -year period. The individual analyses also appear in the table. The strains Dunfield, Mukden, and T-117 appear to be consistently low in iodine number during all the seasons. It will be recalled that among these strains, Dunfield and T-117 were
highly significantly high in oil content for the 5 -year period, whereas Mukden was slightly below the mean of the test for the same period. Among the varieties suitable for processing, Scioto, which has a good oil content though somewhat under Dunfield for the 5 seasons, has given the highest iodine number, averaging 133 for the period, and being significantly high each season. It has been exceeded in iodine number of the oil only by Peking, which is not now considered suitable for processing on account of its black seed coat and its relatively low oil content. Peking is of value, however, for use in breeding work to improve the iodine number. For this purpose it appears to be superior to the wild soybean, because of its type of growth, better yield, and higher oil content.

Table 9.--Iodine number of oil of 10 varieties and strains of soybeans grown at s locations during $\overline{5}$ years; average iodine number of oil by variely, location, and year; and analysis of variance of the data

EXPERIMENTAL DATA

Year and location	Iodine number of oil from seed of the varieties indfented										
	Mandarin	$\underset{\text { den }}{\text { Muix- }}$	Dunfield, A	$\begin{aligned} & \text { Dun- } \\ & \text { fielid, } \\ & \text { B } \end{aligned}$	Llini	$\begin{aligned} & \text { Man- } \\ & \text { chan- } \end{aligned}$	Scioto	T-117	$\underset{\text { King }}{\text { Pr- }}$	$\frac{\mathrm{P} . \mathrm{I}}{5+363}$	Mean
1996											
Ames, Iowa	117.7	125.7	127.6	127.1	133.2	131.8	138.7	126.0	143.2	136.5	130.8
Columbia	121.7	109.8	168.2	103.9	123.3	117.0	129.6	109.3	132.0	118.5	117.2
Urbana, ill.	120.8	123.6	124.3	12.5	129.8	131.5	128.8	121.8	136.8	132.2	127.5
La Fayette, Ind	123.6	123.6	123.2	122.9	133.5	128.8	130.0	123.2	139.7	132.5	127.8
Columbus, Ohio.	129.8	124.5	123.3	122.0	131.9	129.3	131.5	124.7	140.4	133.5	129.1
Mean.	122.7	122.4	120.9	120.3	129.7	127.7	131.7	121.0	138.4	130.6	126.5
1987											
Ames, Iowa	128.6	126.6	128.3	129.2	131.5	131.0	136.9	128.4	I38. 6	132.2	130.8
Columbis,	124. 2	120.5	123.4	123.1	127.8	127.7	130.8	124.0	134.8	125.1	120.2
Urbana, lil	129.8	121.4	124.3	123.5	129.3	128.3	132.5	127.4	138.9	130.9	128.6
Ls Foyette, Ind	127.9	124.8	129.4	125.8	132.2	131.9	135.2	128.2	139.6	131.9	130.7
Columbus, Obio	128.8	127.5	130.8	132.8	132.8	134.1	187.0	132.0	1+6. 2	134.6	132.9
Mean.	127.5	123.6	127.2	126.8	130.7	130.6	134.5	128.0	138.4	130.9	129.8
1988											
Ames, 10 w	128.3	126.5	127.3	127.2	131.7	131.7	135.0	125.6	139.4	130.9	130.4
Comumbia	122.9	120.3	118.4	117.7	128.3	125.3	128.2	117.5	134.9	126.6)	124.1
Urbans, I]	120.0	127.4	126.4	125.7	131.1	132.1	132.7	123.7	138, 7	133.7	129.7
La Fryette, Ind	129.4	126.6	126.8	123.7	132.2	132.4	134.4	125.4	139.5	132.5	130.3
Columbus, Otio.	130.5	124.5	127.5	128.7	130.7	130,8	133.6	127.2	138.4	1328	130.5
Afean	128.0	125.1	125.3	124. 6	130.8	130.5	133.0	123.9	138.2	130.6	120.0
1989											
Ames, Fowa	126.5	125.8	121.2	122.1	129.6	129.0	131.0	121.3	134.6	124.8	
Columbia	130.2	221.8	123.9	122.5	126.0	129.6	131.8	119.6	133.9	122.6	124.3
Urbana, In -ind	133.5	129.1	123.5	126.7	132.2	${ }^{131.6}$	134. 2	123.9	135. 1	129.4	130.18
Columpus, Ohto	133.6	125.1	123.7	122.2	129.2	13.3	120.8	121.6	134.0	126.5	127.4
Columbus, Ohfo.	126.4	122.6	120.6	120.0	128.2	128.7	128.3	119.5	135.8	1123.8	125.5
Mean	129.6	124.8	123. 2	182.9	129.2	128.4	131.0	121.2	134.6	125.5	127.1
1940											
Ames, Iow	130.2	129.1	125.4	123.0	130.7	132.8	136.7	124.0	141.6	132.0	130.7
Columbla, M	133.9	125.6	127.8	120.4	128.6	131.6	133.8	125.0	137.7	129.8	130.0
Urbann, II1,--	128.1	125.4	127.3	123.3	E13. 1	131.1	132.7	124.3	130.0	128.4	128.8
Colurmbus, Oblo	125.8	129.2	130.8	130.1	134. ${ }^{\text {c }}$	134.6	133.0	${ }^{127} 6$	139.9	133.4	132.2
Colizmbas, Obio.	134.2	130.1	120.2	120.1	133.9	133.3	135.0	127.0	139.8	132.3	צ32.4
Mean	130.0	127.9	128. 1	127.2	131.8	132.7	134.8	125.6	139,0	131.2	180.8

[^9]Table 9.-Iodine number of oil of io earieties and strains of soybeans grown at $\overline{5}$ locations during 5 years; average iodine number of oil by variety, location, and year; and analysis of variance of the dala-Continued

EXPERIMENTAL DATA-Continued

VARIETY AND LOCATION MEANS ${ }^{\prime}$

Variety and location	1936	1937	1038	1030	1050	5 years
Variety:						
Mepdsria	122.7	127.5	128.0	1×0.6	130.0	127.6°
Mukder	$121.4{ }^{\circ}$	123.6	125. 1^{00}	$124.8{ }^{000}$	127.9°	124.6 ${ }^{\circ 0}$
Dunfield, A	$120.9{ }^{\circ}$	125. 2^{000}	$125.3{ }^{\text {oda }}$	123.200	$128.1{ }^{\circ}$	$124.9{ }^{\circ 0}$
Dunfeld, B	$120.3^{\circ 0}$	$126.8{ }^{\circ 0}$	$124.6{ }^{\circ 0}$	129.90.	127.200	$124.4{ }^{00}$
Hifni.	120.7	130.7	130.8^{*}	$123.2 *$	131.8 !	$139.5{ }^{\circ}$
Manchu	327, ${ }^{3}$	130.6	130.5	129.4	132.7	130. ${ }^{* *}$
Scioto.	131.7\%	134.5**:	$133.0{ }^{*+1}$	131. $0^{* *}$	$134.8{ }^{* *}$	$183.0{ }^{* *}$
T-117.	121.0°	238.0	$123.9{ }^{\text {04 }}$	121, $2^{\circ 0}$,	125.6 0°	123. $9^{\text {ao }}$
Peking	138.4**	$338.4 *$ -	$138.2{ }^{\circ}$	134.6"4,	139.0 $0^{* *}$	137.78
Columbis Mo	$117.2^{\circ 0}$	$12 \mathrm{ci} 2^{\circ 0 \mathrm{c}}$	124.100	126.3	130.0	$124.7{ }^{10}$
Urbana, Ith	127,5	128.6	129.7	138.0	128.900	123,9
La Fayette, Ind.	127.8	130. 7	$130.3{ }^{\circ}$	127.4	132.2	129.7
Columbus, Ohto	129.1	$132.3^{* *}$	$130.5 *$	$125.5{ }^{\circ}$	132.4	$120.0{ }^{* *}$
Average of all samples_	126.5	129.8	123.0	12\%.1	-130.8	128.6

ANALYSIS OF VARIANCE 3

Source of variation	$\begin{aligned} & \text { ⿹egrees } \\ & \text { of } \\ & \text { freglom } \end{aligned}$	Mean square for intilcated sear					
		1936	1537	1938	1939	1010	5 years
Varictios	9	187. $71{ }^{\circ 6}$	89.80	102.15	90. 76	80.6	$500.88 * *$
Yocntlons.	4	287. $24^{* *}$	$64.65{ }^{\circ}$	76.85	30. $70{ }^{\circ}$	22.10	24S.95**
Yebrs...........	4						1解 355^{*}
Varlelies X years...	36						12.55******
Locations \times years....	16						58. $15{ }^{* *}$
Varketies \times lecations. ${ }^{\text {V }} \times$	16 142	12.70	2.03	1. 69	2. 35	3. 50	5.70 4.18

2 Voriety means zapresent 5 loeatlons: Ioention means represent io varictios.
$3^{\circ}=$ significantiy lower thm generak man forpercent levelt).

 sigatheand (5-percent leved).
 squares, hiphly sifaifteant (i-juercent lovel).

A tabulation of analyses of soybean varieties, grown over the eastern part of the United States and analyzed by Washburn (29) several years ago, indicates a very interesting relationship between the area where the soybeans were grown and the iodine number of the oil. A limited number of these analyses, together with the mean monthly
temperatures obtained from the Atlas of American Agricuiture (15) for selected locations in the States, are given in table 10. From these analyses it is evident that a relationship exists between temperature during the growing season and iodiae number of the oil. Washburn found Ito San to be very high in iodine number when grown in Maine but lower when grown in areas south of there. The varicty Ito San uses the entire growing season in Maine, but in general matures carlier farther south. As soybeans are very critical in their reaction to length of day, in Maime the translocation of food materials to the seed and the metabolism of the oil occurred in a much cooler environment than at the other places from which Washburn collected seed. This was especially true in comparison with Kentucky conditions, where Ito San matures quite carly in the fall. The same comparison can be made for the ratiety Guelph which, on accomnt of it being a later type than Ito San although being too late for growing in Maine, would utilize the full growing season in Rhode Island, thus metabolizing oil in cooler fall weather. In Kentucky this variety, although maturing later than Ito San, would still develop its seed under warmer conditions. This relationship apparently holds also for Oklahoma, for, mader the warmer drier conditions there, Webster and Kiltz (30) report much lower iodine numbers than have been obtained in the present study in the north eentral region. Based on a 5 -year average at Sitllwater, they give an iodine number of 120.9 for Manchu and 119.0 for llini, whereas in the present study the 5 -year average for the five northern locations gives Manchu a value of 130.2 and Illini 130.5. Thus the oil formed under the warmer conditions has less ansaturation than that fomm in a cooler environment. Aecording in Hopper and Johnsom (1,f) this velationship also loolds for finx.

Table 10. Jodine number of soybran oil tabulatrd from futa of "ashburn.' with monthly weolhar dota from .1tias of 1 merican igriculture ${ }^{2}$

1 Wnsbburn, W゙. ト. 129.

If temperature during the period of soybean development does influme the type of fatty acids that are metabolized, then these effects should be observed on varieties maturing at diflerent times in the fall. The poriod from bloonaing to maturity for three va-rieties.-. Mandarim, an emrly type; Illini, a medium early type; and Peking, a late type have been included on the wenther charts for the 5 years (figs. 3 to \bar{z}, inclusive). These varieties are listed as taking 100 days, 105 days, and 125 days, respectively, to reach maturity (20), so they shouk be expected to mature at different intervals
in the fall. In table 9 the iodine numbers are given for the individual samples at cach location for each year.
By referring to the weather graph for 1936 (fig. 3) it will be seen that the variety Mandarin matured the first week in September, thus making the period for filling of the beans and concurrent metabolism come at the period of intensely hot weather during the latter part of August following a severe drought that had extended for several months. This fits in well with the low iodine number for Mandarin at Ames during that particular season. The same relationships hoid for Columbia and to some degree for Urbana and La Fayette. However, from the graph for weather at Columbus for this year it will be noted that a number of showers occurred the latter part of July and again around the latter part of August. materially delaying the ripening of Mandarin and bringing the filling period for this variety into a stretch of cool weather that started about the last of August. Following this hypothesis, we would therefore conclude that the iodine number of Mandarin at Columbus should be materially higher than for any of the other stations. This was found to be the case, as Mandarin at Columbus had an iodine number of 129.8 , which was the highest attained at any location for that variety during that season.

By referring to figure 3 , it will be noted that the varicty Illini was not too far adranced at Ames during 1936 to take advantage of the heary rain and succeeding showers that occurred during the first week of September, thereby considerably lengthening the vegetative period and bringing the period of seed development into the cooler wenther of September. The expectation would be, therefore, that Mlini would have a high iodine number at Ames, and by referring to table 9 it will be noted that Illini did have a high iodine number at Ames, in fact the highest of any location for that variety that season. By the same reason, the iodine number of Illini should be high at Urbana, La Fayette, and Columbus, but not at Columbia, for the filling period at Columbia probably came during the high temperatures experienced there during the first week of September.

The effect of the early September rains at Ames was felt even more by the varicty Peking, as it lengthened the growing season to the latter part of October, making the period of oil metabolism in the seed come during the much cooler wenther of that month. As a consequence, Peking nt Ames during 1936 had the highest iodine number for that variety during the five seasons. This forms an interesting comparison with the rarly maturing variety Mandarin, showing the apparent effect of temperature on metrbbolism of oil, for at the same location during the year 1936 occurred almost the lowest iodine number obtained for any varicty, namely Mandarin, with an iodine number of 117.7 and the highest iodine number obtained for any variety, namely Peking, with an iodine number of 143.2 , due at least in part to the extreme differences in temperature that occurred during the periods in which these two warieties were metabolizing oil in the seed.
In this connection it will also be observed that at Columbin during 1936, as has been previously mentioned, there occurred the lowest iodine numbers that the authors have observed to have ever been recorded for soybean oil, when the Dunfield strains had iodine numbers of 106.2 and 103.9 , respectively, probably due to the combination of the severe drought and unprecedentedly bigh temperatures that occurred in that year during Suly and August.

By referring to table 9 it can be seen that during the year 1936 the mean square for locations exceeded the mean square for varieties. The varieties \times locations interaction was also highest in that year. This can possibly be explained by the differential severity of the drought at the five locations.

By referring to the weather data for 1937 in figure 4 it will be seen that the variety Mandarin, although maturing at a slightly different period at the five locations, nevertheless developed under very similar weather conditions. Temperatures at Columbia were slightly higher than at the other stations, and it will be seen that the iodine number of Mandarin oil at that station was slightly lower than at the other four locations. However, in general, no great differences were noted.

The same is true for the variety Illini with the exception that the oil from that variety tends to be a litile lower in iodine number at Columbia. This difference is also noted for the variety Peking, which evidently was metabolizing oil during the warm spell the latter part of September and has an iodine number about four points below that at the other stations. From a study of iodine numbers obtained during 1937, it can be concluded that in general the climate at the five stations was quite similar.

During 1938 (fig. 5) the same weather relationships prevailed at the five stations during the period of seed development, and, therefore, it might be expected that the iodine numbers would be similar. However, Mandarin had an iodine number at Columbia some five points below that at the other locations, which is somewhat difficult to explain except that the mean daily temperatures did run slightly higher at Columbia than at the other locations during the middle third of the period between blooming and ripening.

For oil from the variety Illini, the drop in iodine number at Columbia was not so great as for that from Mandarin. The filling period for Peking occurred in a similar range of temperatures at all of the locations. The extreme dip in the mean daily temperatures during the third week in September att Ames also occurred at all of the other places giving a very similar environment to the five places. This observation agrees with the low varieties \times locations interaction found for iodine number during 1938, in fact, the lowest interaction for any of the five seasons.

During the 1939 season (fig. 6), the iodine numbers for Mandarin oil at all the locations were quite similar, though the iodine number at Columbia was higher than might normally be expected for that location, probably bectuse of a good distribution of rain, which lengthened the vegetntive season for that wriety and allowed filling to take place during a rather cool period in August.
No great differences were observed for oil from the variety Illini, although one might haye expected a low iodine number as the result of high temperatures prior to ripening. However, this unusually warm spell, with a mean Sepicmber temperature running something over 5° above the normal, carried rather consistently through all five locations and affected the varieties equally.

Practically no differences were observed for Peking oil, and an increase in iodine number that might have been expected at Ames did not occur.

More variability in climate was experienced among the five locations during 1940 (fig. 7) than during the two previous seasons. The matrarity of Mandarin was delayed at Columbia beyond its normal period of ripening, which undoubtedly caused oil to be lajd down during the cooler period of weather encountered during the latter half of August. This delay in the ripening of Mandarin was approximately the same as that experienced for the varicty in 1939, which then also produced oil with an iodine number considerably above that which would normally be expected for Mandarin at that location. The low iodine number of Mandarin oil at Urbana and La Fayette was probably due to the warm, spell occurring during the second and third weeks of August. This warm period was more intense at these two locations than at the other three places. For the varicty Dlini, maturity was considerably delayed at La Fayette and Columbus, this delay allowing oil formation during the cooler period the first 2 weeks of Soptember. This varicty, as well as the other varieties of about the same maturity range, had oil with a higher iodine number at La Fayette and Columbas than elsewhere. For the variety Peking, ripening was hastened at Columbia and Urbana, and the period of filling of the beans thus occurred during warmer wenther, whereas at Ames, La Fayctte, and Columbus, filling undoubtedly took place during a period of cooler mean temperature.

Although there were several exceptions to this hypothesis during the 5 -years' expericace with these 10 strains at the 5 locations, it seems that there is a definite relationship between temperature during the time of metabolism of oil in the seed and the temperature of the air. If oil motabolism is considered as a physiological reaction governed by enzymes known to have optimum temperatures for development, it can be postulated that the enzyme responsible for production of the more unsaturated acids works better at a lower temperature.

Analysis of variance of the data on the iodine number of oil for the 5 -yenr period shows that the varicties varied highly significantly with reference to the varicties \times locations \times yoars interaction. This was also true for locations and for yons. As would be expected from inspection of the weather graphis for the 5 yoars, there whs a highly signifiennt locabions x years interaction, possibly due in considerable part to the difference in weather conditions over the territory during the 1936 seasou. Of most importane to the plant breeder is the consistence with which a strain performs as compared with other varieties and strains included in murseries located in diferent sections of the area for which the strains are boing developed. The varidies X locations interaction with a mom scuare of 5.70 is low with respect to the three-way intemaction of 4.16 for the 5 -year analysis. Alhough, as was previously indiented, no true error fom is avalable, as only single field samples (akwys obtamed from compositing fold replications, bowever) wers andilyed chemically, it is felt that the agronomist is reasonably safe in concluding that varmeties and strains tend to maintain their rehative order with respent to jodine number of the oil when grown in different beations withm the ned cowed by these studias.

Total Asi Contbny

The total asla of soybean seed and esperially the amounts of the elements that comprise its constituents are of importance to the
feeder, and at present about 95 percent of the soybean seed crushed goes into feed channels. For such use a bigh ash content is desirable. If the meal is to go into industrial channels after extraction of the oil, the mineral content is of less importance. Therefore, for industrial processing a low-ash variety with high oil and protein content would be preferred and would remove less minerals from the soil per unit of raw material produced.

A few analyses have been reported on the ash content of soybean seed, and among these have been the data by Viljoen (28) who concludes that ash, phosphorus, and fiber values remain very constant, whereas the oil and protein content of the different varieties shows relatively great variability. Smirnora and Lavrova (24), reporting on work done in the Union of Soviet Socialist Republics, where several varieties of soybeans were grown at different stations, conclucled that, as regards the amount of ash aceumulated, the soybean varieties within the limits of a station differ but little from one another. They state that greater variation is observed in dependence on conditions of growth; thus the amount of ash accumulated differed at the different stations.

Total ash was determined on the varieties and strains at the 5 locations during the \bar{b} seasons 1836-40. The individual analyses and the means of the analyses, together with the analysis of variance of the data, are given in table 11 .

Table 11. Total ash content of seed (dry basis) of to varieties and strains of soybeans arown at $\overline{5}$ locations during 5 years; urerage percentage of total ash by variety, location, and year; and analysis of variance of the data

EXPERLIENTAT, DATA

Year and location	fotal nsh content of seed of the varterits inticited										
	ManAaria	Muktien				Mancha	Scioto ${ }^{\text {' }}$ '-117				
1096	Ict Pct		${ }^{2} \mathrm{Cl}$.	$\begin{aligned} & P C d_{0} \\ & 4.31 \end{aligned}$	$\begin{aligned} & \text { Pct. } \\ & 4.54 \end{aligned}$				Pct.	Pet.	
Ances lowa	4.60	4.43	-i. 25			$\text { 4. } 68$	4.85 :	4.641	4. 79	4.65	+ 5.5
Columbia Mo	5. 26	5.38	5.31	4. 75	5. 68	5. 10 :	5.36	5.32	5. 20	5.15	5. 23
Urbamb, 11	5.32	5.36	4.81 ;	4, 96	4.81	5.11	5.97	5.04	519	5.02	507
	487	4. $\mathrm{Bl}^{\text {d }}$	*. ${ }^{\text {c }}$	4.23	+. 52	4. 919	3.0官	4.01	5.15	4.84	4.73
Columbus, Oho	4.33	5.13	419	4. 70	4.37	4. 68	5.17	5.25	4.93	4. 97	4.84
Mexar	5.03	4.68	4.57	4. 3.5	4.67.	4. 50	5. 14	5.04	5.05	4.98	4.89
1897											
Antes, Iowa	5. 59	5.25	4.74	4.31	5. 34	6. 05	5.55	4. 8.8	5. 74	501	5. 28
Coltminis Na	5.55	5.29	5.28	4.53	5.10	5.13	5. 10	5.00	4.91	4.93	5.08
Urbunat ill	5. 30	5.10	3. Cl	4. 49	5. $3 \pm$	5. 61	5. 015	5.45	5.90	5.17	5. 12
La Forptte, ynd	5.31	4. 05	4. 12	4.33	4.15	4.85	5.02	173	5.26	4. 78	4. 78
Colurabus, Unto	563	4.53	3.67	4. 10	4.45	4, 30	5.45	4.75	5. 05	4.75	4. 60
Menn.	5.55	5.63	1. 62	$4.5!$	4.94	5, 관	5.30	4, 45	5.37	4.93	5.05
1038											
Amisy, Jows	-. 13	4. 60	4.33	4.32	1.46	4.93	4.84	4.60	4. $\ddagger 0$	-4. 78	4. 64
Coltanlina, Mo	5. 13	5. 41	5.60	t.05	5. 21	6.55)	5,50	5. 30	5. 26	5.34	5.31
Srlana, in	5. 59	5.33	5. 11	5.48	S. 21	5.53	5. 10	d. 37	5.37	5.31	5. 3.3
	5.30	4.89	4.76	4. 83	1.6\%	5. 012	5.05	4.33	5. 19	4.81	1.82
Columbus, Ohio	5. 619	512	0.07	4.70	6. 19	5.34	5.60	5. $\$ 1$	5. 47	4.78	6. 28
S1pan	5. 515	60	4.75	4.30	5.003	6.27	5. 22	5.09	5.1.1	5.04)	5.18
195											
Ames, low	5.68	4.65	I. 18	1. 62	5.24	6. 60	4. 84	1.52 ${ }^{\text {² }}$	5. 10	4.50	4. 3 3
Colbintama, No	548	5. 25	4. 5	5.06	4. 19	5. 34	5. 33	5.25	5.42	5.20	5. 22
Urbamn, li]	5.77	5. 20	6. 6	5.04	5.64	5.43	5. 32	5.31 1	5.62	5.09	5.37
Lathyelze 5 ml	5. 34	4.72	4. 61	4.44	5.65	4.85	5.32	4.82	5.36	4.85	4.58
Columbas, (hio	1.6	4.55	3.11	4. 45	4.17	4. \$3	4.53	${ }^{1} 1.82$	5.13	14.6	1. $5 t$
Mean	5.20	4.97	1. 33	f. 00	1. 612	6.03	4.95	4.63	5.32	5.05	4.81

[^10]Table 11. -Total ash content of seed (dry basis) of 10 varieties and strains of soybears grown at 5 locations during 5 years; average percentage of total ash by variety, location, and year; and analysis of variance of the data-Continued

EXPERIMENTAL DATA-Oontinued

VARIENY AND LOCA'月ION MFANS \&

Varjety and locnlion	1930	1037	193	1031	10.10	5 years
Veriety:	Percent	Percent	Percent	Percent	Percemt	perrem
Mandmin	5.08	5. $55^{\text {² }}$	5.49**	5.26**	5. $52^{* *}$	5.3**
Mukilen	4.48	5.0100	${ }^{6.07}{ }^{\circ}$	4.87	5. $18{ }^{\circ}$	5. 090
Dinnfieldi, ${ }^{\text {D }}$	$4.57^{4.50}$	4.	4.700	4. $4.10{ }^{\circ 0}$	4.745 ${ }^{\circ}$	4. $105^{\circ 00}$
111 ini .	4. $177^{\circ 0}$	4. 0^{19}	5.00	4. 6^{200}	4.84	$4.81{ }^{\circ}$
Manclit	1. SB	6. 20	5.27	5.03	S. 11	5. 19
sciolo.	5. 14.	5. 30	5.22	4.97	5.22	¢. $17 \times$
T-117	5.04	4.89	5. 03	4. 89	5. 10	5. 0 ?
Peking	5.00	5.37*	5.14	5. $32^{* *}$	5. 18	5. $21{ }^{*}$
P. 1. 54563	4.18	4.18	5. 价	5.05	4.80	4.98
docation:						
Ammes, Iows.	4. $515^{\circ 0}$	(4.28**	4. 6.44^{00}	4. $50^{\circ 0}$	4.88	4.7400
Columbia, Mo	5. 23×0	5.08	5,31**	5. $22^{\circ *}$	5. 25^{*}	5. $220 *$
Orbunp, III.	5. $0 \overline{7}^{*}$	5. $12{ }^{\circ *}$	5. $33^{* *}$	5.37**	4.83	5.21**
Ia Fayste, int	4. 733°	$4.76^{\circ}{ }^{\circ}$	$4.82^{\circ 0}$	4.88	4.94	$4.833^{\circ 0}$
Columbus, Oh	4. 84	4. $69^{\circ 0}$	5.28^{*}	4. 54^{00}	5. 24	4.92
A verage of all samples.	$4.800^{\circ 0}$	5.05	6.08*	4.91	5.04	4.00

ANALYSIS OF VARIANCE

[^11]The seed of varieties tested varied significantly among themselves in ash content. Seed of the variety Mandarin accumulated a high ash content in each season, the percentages being highly significantly above the mean of the varieties during the last four seasons and for the 5 -year period. Dunfield seed was significantly lower than the mean during all five seasons. As might be expected, in view of the consistently high mean ash content of Mandarin and low mean ash content of Dunfield seed, the greatest ranges for the entire test occurred in these varicties, the highest analysis being 5.90 percent for Mandarin at Urbana during 1937 and the lowest ash value being 3.67 percent for seed of Dunfield, A, at Columbus for the same season. The next lowest analysis (3.91) was for Dunfield, A, at the same location 2 years later.

Consistent differences were observed among the locations, the ash content of seed grown at Ames and La Fayctte being low and that of sced grown at Columbia and Urbana being high. In considering the variance of the data (table ll) it will be observed that the mean squares are always of greater magnitude for location than those for variety. This is in contrast with the variance found for protein and oil percentages and iodine number, where the relative effect of variety and location varied in the individual seasons, depending probably upon how similar the seasonal conditions were at the five locations during each season. Apparently the factors of environment that influenced protein and oil metabolism do not inffuence total ash accumulations in the seed in the same manner.

Total ash aceumulation in soybeun seed is affected by climate, as the mean ash content of the 10 strains at the 5 locations (4.89 percent) was highly significantly low in the 1936 season. The ash content for 1939 was 4.91, which was nearly as low as the value for 1936, though on the border line of being statistically signifiennt.

The varicties \times locations interaction is significant, indicating less consistency in rank of the varieties with regard to ash content at the five locations than was found for protein and oil.

Piosphohes Content

The phosphorus content of soybean seed has been noted in the literature, but apparently no attempt has been made to study its variation as affected by varietal and enviroumental factors. It has been generally observed that soybeans give little response in yield to phosphate applications. Hartwell (13, p. 15) states:

> The ability of soy beans to supply Woir ueeds for phosphorus, where none had been added to the soil for a quarler of a century, was found to rank between that of cerrots, which obtained their full repurements, and turnips which were prac tically unable to grow without phosphatic application.

Smirnova and Lavrova (2.4), reporting on composition of soybean seed, indicate that the composition of the ash does not remain the same and that its phosphorus content varies in direct proportion to the total amount of ash.

Among the 10 varieties and strains, the percentages of phosphorus in the seed (table 12) ranged from the low value of 0.419 for the variety Mukden at Columbus, Ohio, during 1937, to a high of 0.822 for Peking at La Fayette, Ind., during 1940, a spread of 0.403 , or nearly
double the low value. The mean of all varictics for the entire test is 0.659 percent. It is interesting to note that the next lowest value found during the entire 5 -yone study was at Ames, lowa, during 1939. This was for seed of the rarieties Scioto and ILini. By referring to table 12 it will be noted that seed of the varicty Illini had the lowest mean phosphorus content for the entire test and that the varieties difleced significantly in the pereentage of phosphorus accumulated in the seed. Among the rarieties, Peking seed stored the greatest amount of phosphorus both for the 5 -year period and in each of the single years, the ralues being highly significantly higher than the mean during the last 4 seasons. The veriety Mandarin was second with 0.696 for the 5 -yarar average, its seed having land a phosphorus content signifieantly above the mean for three of the seasons. It will be recalled that the variety Mandarin stood highest among the 10 varieties and strains in pereentage of total ash and Peling stood second (table 11). Thus there appears to be a relationship between the phosphorus and the asla contents of the seed.

Table 12.-- Phosphows ronten tdry hasist of seed of 10 varicties and strains of solbpeans grown at is lorations during $\overline{5}$ yrtors: aleragr perrentage of total phosphorus by variety, location, and yetro" and analysis of variance of the data

EXPERIMFNTAL DATA

Table 12.-Phosphorus content (dry basis) of seed of 10 varieties and strains of soybeans grown at 5 locations during 5 years; average percentage of total phosphorus by variely, location, and year; and analysis of variance of the dataContinued

EXPERIMENTAL DA'TA-COHETnued

Year and location	Phosphotus content of seed of the varieties indicnted										Mean
	Man- darin	Mukden	Dun- frelf A	Dunftekl, B	Inini	Manchu	Scioto	T-117	$\mathrm{Pe}-$ king	$\left\|\begin{array}{c} P \cdot I . \\ 5 \cdot \sin 3-3 \end{array}\right\|$	
1980											
Ames, Iowa	O. ${ }^{\text {Pct. }}$	fact. 0.651	${ }_{0}^{\text {Pct. }}$	Prts.	Pct.	Prd.	Pet. 0.610	PCd. 0.633	Pct.	P3ct.	Pct. 0.647
Columbia Mo	. 780	. 2501	. 713	. 703	. 744	- 740 -	. 726	. 724	- 2	6. +202 +202	0.673 .737
Urbana, Ili	.753	. 697	. 5978	. 620 !	. 588	, 6101	, An	-6H1	- 631	+617	. 653
La Fsyctie,	.742 .650	.668 .73	.622 $.6 \times 2$.631	.601	. 607 ,	. 679	-669	. $\mathbf{\$ 2} 2$	-698	. 678
					.	.		- 138	- Ain	. 720	. 707
Mgat.	. 730	. 703	. 64	. 650	. 640	. TSS	. 6 C 3	. 679	. 8 42	, 675	. 684
s-jear mean											
Ames, Iowa..	-644	- 609	. 510	. 5009	$5{ }_{5}$. $60{ }^{\text {H }}$	-1284	. 505	. 206		
Colmmbin Mo	- 729	. 723	. 691	. 661	. 665	-760	. 674	. 622	. 605	. 681	-690
Crbana, In-	- 268	-6107	. 6131	-609	. 649	. 11	. 699	, Asita	. 747	+ 701	. 609
La Fayctte, Ind.-	-600	. 658	. 616	. 615	. 624	. Gris	, 680	. 650	. 758	. 659	-60
Columbus, Ohio.	. 619	. 613	. 590	. 620	. 618	. 860	. 658	. Citi ¢	. 729	. 6 O8	. 643
Mean	. 696	. 660	. 63	. 627	.623	, 620	. 658	. 054	. 722	. 653	. 859

VARIETY AND LOCATION MEANS:3

Fnriety and lometion	1936	1037	1038	1039	1240	5 yenrs
Vorielg:	Percent	Percent	Perecmt	Prrcert	Percent	Percent
Maminrin.	0.601	0. 715°	0.6381	0.604°	0.7310*	0.066°
Dunflend,	-993	-609	. 680	-629	. 703	. 610
Dunlmed, A.	, 017	. 18.	. 625	. 58.89°	. 34	. $6.66^{\circ 0}$
Dinntios, 3	- 649	- $\mathrm{ma}^{\circ}{ }^{\text {a }}$	-621	.617	. 050	
Manchiu_	-623	- 025	- 620	+3803	. 019	$623^{\circ 0}$
Scioto.	-694	- 06	-135	- 5	- 6 Sis	G20
T-117..	. 68	.4391	-019		, 683	. 638
Peking	-723	-725**	. 3114	-71200	- ${ }^{1}$	79704
P 1.345(3)-3	-600	. 601	, fos	. 612	-675	. 653
Lnention:						. 923
AImes, lows	,643	. 623	. 60290	. 512^{00}	.047 ${ }^{\circ}$. 60500
Colnmbia Mro.	.637	. 6.52	-685*	. 710×4		. 6900
Crbana, If..	. 702	. $738{ }^{*+1}$. $710=$	- $3192 *$	-654 3°	. 699°
La Fayctie. Ind.	. 690	. 1238	. 612	. 650	. 678	, 90
Cotumbus, Ohio	. 684	. 616°	. 620°	$.596^{\circ}$.707	.6520
A veruse of all sataples	. 673^{*}	. 17.54	. 052	. 63.300	. $684^{* *}$. 659

ANALYSIS OF VARIANCE

Source of variation	Degrees of freedom	Mean square for indiented year					
		1936	1937	1038	1039	10.40	5 years
Varicties....	9	0.0043	0.0096**	0.0085	0.0087°	0.0056°	$0.0268{ }^{* *}$
Yocations.-.--..........-	4	.0755**	.0241**	.0203**	.0076**	. $0143^{* * *}$.0715 ${ }^{\circ}$
Varteties \times years.	30						.0195***
Locations \times years..............	16						- $01515{ }^{\circ}$
Vardeties \times locations	36	.002	. 017	-6010	. 012	.0013	. $0023{ }^{* *}$
Varicties \times locations \times years.	142						. 0011

[^12]Limited analytical work in the laboratory (9) has suggested that there is little variation in the phosphatide phosphorus of soybean seed and that the greatest variation occurs in the phytin phosphorus fraction.

Among the five locations, Urbana and Columbia have produced soybeans with a high percentage of phosphorus. Soybeans grown at these two locations also had ash contents highly significantly above the mean of the five locations. Soybean secd from Ames had a phosphorus content highty significantly below the mean of all locations, and it will be recalled that the total ash content of soybeans grown at Ames was the lowest for all the locations. However, at La Fayette the seed phosphorus content was slightly above the mean for all locations, whereas the ash content was highly significantly below the mean, so it is not safe to make the general statement that a location producing a low ash content in the seed necessarily produces a low phosphorus content.

Among the five seasons the 1936 phosphorus content of the sed of the varieties stadied was next to the highest, whereas the pereentage of total asth during that year was the lowest. During 1938 when the phosphorus content for all varicties was nearly at the mean, the total ash was the highest of tho five sessons, and rerain during 1940 when the phosphorus content was the highest of the five seasons, the ash content was barely above the mean. Therefore, the factors of climate that affect phosphorus content are not necessarily those which affect the lotal ash accumulated in the seed.

The analysis of varinne of the data shows, in general, the same relationships between variety and location mean squares as was found for total ash, indieating that location may affect phosphorus content and total ash content of the seed more than it affects protein and oil content. Whereas the varieties x locations interaction for peremtage of protem, perentage of oil, and iodine mumber of the oil was not signifieant with relation to the three-way interaction, this interaction was highly signifirant for phosphorus content. This may indieate that, shoud it become desimble to attempt by breeding and selection to inerease or decrease the phosphorus content of soybean varieties, it would be neesssary to analyo selections from many locations throughout the soybern belt of the North Central Region, as the varieties do not maintain the same relative ranking with respect to one another as they did for protein and oil contents.

Potassium Content

Information is available on the eflect ol potassium fertilizers on yield and on the perentages of organic constituents metabolized in the sead, but little has been published on the variations in potassitum content of the seed as affected by varictal and envirommental factors. Borst and Thateher ($8,7,98$) determined the composition of the plant parts at different stages of maturity and noted that...
Potassium in the matnre soed was relatively higher bothinpercentars and amount per aere than in other plant parts. There was some inclication that the pereentage of potassimm in the seed decremsed slighthy in the final stages of ripening.
Their data for the mature soybeans in a 6 -yenr period showed a considerable flutuation between sersons. When reporting on the variation in chemical composition of different soybenn varieties
obtained under Russian conditions, Smirnova and Lavrova (\%4) state, with reference to their work on ash, that the content of another ash element, potassium, is not relatively stable either in soybeans of one variedy or in those grown at one station. They record, for the same variety of soybeans, a difference in potassium content of the seed of 0.60 percent, from a low of 1.56 percent to a high of 2.16 , depending upon geographical location.

The potassium content of the seed of the 10 varieties and strains of soybeans planted at the 5 locations during the 5 seasons was determined, and individual analyses are recorded in table 13. The range for the entire test was from a low of 1.29 percent for seed of the strain T-117 grown at Urbana, 11. , during 1936 to a high of 2.17 for seed of the strain P.I. 54563-3 grown at the same location during the same year. The mean analyses are also recorded in table 13, together with the analysis of variance of the data. It will be seen that seed of .the 10 varieties differed significantly in potassium content, Peking having a mean content of 1.75 and Mukden 1.74 percent, which were the highest, and the two strains of Dunfield with percentages of 1.62 and 1.58 giving the lowest potassium values. If the mean percentage of potassium for the varieties grown at all locations during the individual years is compared with the percentage of ash and the percentage of phosphorus, it will be seen that the potassium content of the varieties does not remain as constant statistically through the seasons as does either phosphorus or total ash.

Table 13.-Total potassium content (dry basis) of seed of 10 varieties and strains of soybeans grown at 5 locations during 5 years; average percentage of total potassium by variely, location, and year; and analysis of variance of the data

EXPERLMENTAL DATA

Year and location	Potassium content of seed of the varieties indicated										
	Mandarin	Muks. den	Dunfleld, A	Dunfeld B	Illini	$\begin{gathered} \text { Mer- } \\ \text { chu } \end{gathered}$	Scioto	T-117	Peking	$\underset{5 . I}{P},$	Mean
1896	Per-	Per-	Per-	Per-	Per-	Per-	Per	Per-	Per-	Per-	Per-
	cent										
Ames, Iows.	1.47	1.59	1. 50	1.41	1. 44	1.43	1.45	1. 52	1.41	1.56	1.48
Columbia M	1.71	1. 41	1.64	1.73	1.83	1.69	1.83	1.98	1. 84	1.63	1.72
Urbans, Ill.	1. 48	2.04	1.68	1.70	1. 88	1. 59	1.97	1.29	1.39	217	1.67
La Fayette, Ind.	1.78	1.60	1. 55	1.43	1.76	1.65	I. 48	1.38	1.96	1.52	1.61
Columbus, Ohio.	1.43	1. 50	1. 48	1.49	1.57	1. 59	1. 40	1.41	1.73	1.90	1.55
Mean	1.67	1.63	1. 57	1. 55	1.60	1. 59	1.63	1.51	1.67	1.76	1.61
1987											
Ames, Yowa	1.53	1.71	1.56	1. 64	1. 64	1.70	1.78	1.84	1. ${ }^{\text {¢ }} 2$	1.79	1. 69
Columbia Mo	1. 86	1.77	1.64	1.68	1.94	1.74	1.80	1.76	1.76	1.78	1.77
Urbana, Ill.	2.06	1.80	1. 96	1.82	1. 88	1.98	2.03	1.93	1.97	1.80	1.85
La Fayette, Ind	1. 83	1.68	1. 58	1. 52	1. 59	1.67	1.62	I. 79	1.74	1.73	1.66
Columbus, Ohfo.	1.62	I. 85	I. 48	1. 56	1.56	1. 64	1.81	1.64	1. 74	1.60	1.65
Mear	1. 74	1.78	1.64	I. 66	1.74	1.75	1. 81	1.75	1. 79	1.76	1.75
1098											
Ames, Iowa.	1. 43	1.52	1.48	1.30	1.51	1.51	1. 41	1.53	1. 84	1. 52	1.40
Columbie, Mo	1.72	1.76	1.61	1.48	1. 74	1.65	1.62	1.60	1. 72	1. 65	1.68
Urbana, Ill.	1.85	2.053	1.80	1.91	1.97	1.71	1. 60	1.77	1.73	I. 72	1.81
La Fayctte, ind	1. 59	1.71	1. 50	1.47	1.56	1.71	1. 64	1.59	1.69	1.69	1.62
Columbus, Ohfo.....	1. 55	1. 70	1,62	1.45	1.68	1.66	1.63	1. 72	1.81	1. 64	1.15
Mean.	1.63	1. 75	1. 50	J. 54	1.69	1.65	1. 58	1.64	I. 72	1,64	1.64

Tables 13. Total potassium content (dry basis) of seed of 10 varielies and strains of sogbeans grown at 5 locations during 5 years; average percentage of total potassium by variety, location, and year; and analysis of variance of the data-Continued

EXPERIMENTAL DATA-Continued

Year and location	Potassium content of sced of the varietles incicated													
	Mandarin	Mukden	Dunficld. A	Dunfleld, B	Ininl	Manchus	Scioto	T-117	Peking	$\left\lvert\, \begin{gathered} P+Y . \\ 54593-8 \end{gathered}\right.$	Mean			
1989	Per-	Per-	Per-	Per-	Per-	Per:	Per.	$P_{\text {cr- }}$	Per-	Per-	Per-			
	cent	cent	cert	cent	cent	cent	cent	cerat	cent	cent	cent			
Ames, Iowa	1.47	1.60	1.62	1.41	1.61	1.69	1.56	1.58	1.90	1.74	1.61			
Columbia, Mi	1.56	1.05	1. 52	1. 46	1. 50	1. 50	1. 50	1. 51	2. 51	1.51	1. 52			
Uroana, Thl.	1.88	I. 86	1.78	1.86	1.96	1. 95	1.77	1.82	1.96	1.85	1.87			
La Fayette, Ind	1. 54	1.71	1.55	1.39	1. 62	1.61	1.80	1. 49	1.74	1. 39	1. 60			
Columbus, Ohfo.	1.41	1.60	1. 44	1. 47	1.39	1.53	1. 54	11.40	1.78	11.54	1.52			
Mean 19.50	1.57	1.68	1.58	1.52	1.62	1. 63	1.63	1.57	1.78	1.65	1.62			
Ames, Jowa	1.49	1. 76	1. 59	1.56	1.56	1.63	1.79	1.79	1.76	1. 76	1.67			
Columbia,	1.72	1.75	1.75	1. 64	1.71	1.80	1.66	1.86	1.89	1.88	1.77			
Urbana, Il	1.84	I. 36	7.67	1.88	1.78	1.81	1.78	1.80	1.72	1.59	1.77			
La Frayette, Ind.	1.72	1.88	1. 69	1.63	1.67	1.65	1. 70	1.80	1.88	1. 82	1.74			
Columbus, Ohio.	1. 48	1. 90	1.78	1.65	1.82	1.80	1.75	1.89	1.77	1.73	1. 79			
Mean.	1.69	1.85	2.70	1. 63	1.71	1.74	1.74	1.85	1.80	1. 76	1.75			
5-year mean														
Ames, Lowa	1. 48	1.64	t. 585	2. 48	1.55	1. 57	1.60	1.65	1.89	1. 67	1.59			
Columbia,	1.71	1.67	1.63	1. 30	1. 74	1.68	1.68	1. 73	1.74	1.69	1. 61			
Urbana, 31.	t. 82	J. 96	1.78	1. 79	1.81	1. 82	1.83	1.72	1.75	1.85	1.81			
Id Fayette, Ind.	1.65	1.71	1. 57	1. 50	1.64	1. 66	1.65	1.61	1. 80	1.67	1. 65			
Columbus, Ohto.	1. 54	1. 71	1.50	1.53	1.61	1.64	1.63	1.64	1.77	1.68	1.63			
Mean_	1.64	1.74	1. 62	1.58	1.67	1.67	1.f8	1. 67	1.75	1.71	1.67			
VARIETY AND HOOATHON MEANS ${ }^{3}$														
Variety and location				1936	1937	1838		1030	1040		5 years			
Varlety: Mandari				$\begin{gathered} \text { Percent } \\ 1.37 \end{gathered}$	Percent 1.74	Percent		Percent	Percent		Percent			
				1.74			1. 57	1.691. 85		$\begin{aligned} & \text { 1. } 64 \\ & \text { 1. } 74^{4} \end{aligned}$				
Mukden					1.63		$\frac{1.78}{1.64}$		1. 68					
Dunfelt, A				1. 57	1. 59	1. 8					$1.85{ }^{\circ}$1.70		1.62	
Dunfeld, 8				1. 55	1.66		1.540	1. 52	1. 63°					
Illini.				1. 60	1.741.751.78		1. 60	1.621.64		71	$\begin{aligned} & 1.58^{\circ 0} \\ & 1.67 \end{aligned}$			
Manchu				1. 59			1. 74		1.67					
Scinto				1.63	1.81			1. 58	1.63	1. 74		1.681.67		
T-117				1. 51	1.791.781.78		1. 72	1.78**		85^{4}				
Peking				1.67			1.80		1.75**					
P. I. 54563-8				1. 76	1.7			1. 64	1.65		76	1.71		
Location:														
Ames, ${ }^{\text {Columa }}$				1.48 1.72	$\begin{aligned} & 1.77 \\ & 1.95^{*} * \end{aligned}$			1. 61.	1.877°1.77		1. $53^{\circ 0}$			
Urbana, In				1.67			1.81**	1. 87^{*}	1.77		1. 81 **			
La Fayette, ind				1.61	1. 6.60°		1.62	1. 60	-1.74 $\begin{aligned} & 1.79\end{aligned}$		1.63			
Cohmmbus, Ohio				1. 55		$5^{\circ 0}$	1.65							
Avarage of ail samples.				1.0100	1.75**		1. 64	1. 62°	1.75**		1.87			

ANAEYSIS OF VARIANCE ${ }^{3}$

Source of variation	Debrees of frecdom	Mean square for indieated year-					
		1036	1037	1888	1930	1940	5 yeams
Varfeties.	8	0.024	0.015	$0.020{ }^{\circ}$	$0.0261 * *$	0.0244**	$0.0882^{* *}$
Iocations	4	. 083	. $168{ }^{* *}$. $1325{ }^{* *}$.2070**	.0215**	. $7738{ }^{\text {co*** }}$
Years-.-.-	4	.-....	--------	----..	-..---	------	+2310***
Varleties \times years	36			----..	-	--.---	. 10597°
Vocations \times Years	$1{ }^{16}$. 038	$\cdots 006$	--0070	. 0073	--9064	. 0132
Varieties X Iocations \times Jears -	142	------	--------	------		--s---	. 0181

[^13]If the performance of the varieties at the different locations during the seasons is compared, it will be found that the potassium content of seed at Ames tends to be low and that for Urbana tends to be high for the 5 -year period. However, there is not as consistent a trend during the individual years as was observed for phosphorus or ash. When the means of the varieties at all locations in the individual seasons are examined, a more pronounced seasonal effect than was experienced for either of the other ash constituents will be noted. Also, when the variance of the mean squares for varictics, locations, and years for the 5 -year period are studied, it will be seen that the potassium mean square for years is much larger in proportion to the mean square for locations than is found for cither ash or phosphorus. This gives some indication that season possibly has more effect on potassium than on phosphorus metabolism. In spite of this, it may be simpler to develop soybean varicties with high or low potassium content for the soybean belt, if this sbould prove desirable, since the varieties \times locations interaction is low compared to the three-way interaction used as the error term, indicating that the varieties tend to remain in the same order of potassium content with respect to one another at the different locations.

In interpreting these data, it must be borne in mind that these results are perbaps limited to areas of faitly similar climates, such as occur in the five States in which these stuflies have been made.

Calcium Content

There is little direct information on the calcium content of the seed of soybean varieties as affected by geographical location and climate. Borst and Thatcher (8) in their study on the life history of the soybean give the calcium content of the soybern variety used in their studies at Wooster for the six harvest seasons. They found the percentage of calcium in the seed to vary from n low of 0.18 to a high of 0.32 , indicating that the metabolism of calcium is dependent upon seasonal conditions.

In the present study involving 10 soybean varicties that were grown at 5 locations for 5 years, it can be seen from table 14 that the calcium content varied from a low of 0.163 for sced of Dunfield, A, at Columbus during 1939 and of Mukden at Ames in 1940, to a higb of 0.470 for seed of the varicty Mandarin grown at Ames in 1936, with a mean value of 0.275 percont. The varieties varied significantly among themselves, as shown in table 14, and the seed were more consistent in their calcium content in the different years than in their content of some of the other ash constituents. It will be noliced that the calcium content of seed of the variely Mandarin was highly significantly highor than the mean of all the varjeties at the five places during the 5 years, and also in each of the individual yenrs. This was also true for seed of the variety Seioto. On the other band, the calcium content of seed of the variety Dunfeld, which is highty signifinntly below the 5 -year mean, was consistently low duaing all the seasons.

Table 14.-Calcium content (dry bacis) of seed of 10 varieties and strains of soybeans grown at 5 locations during 5 years; average percentage of total calcium by variety, location, and year; and analysis of variance of the data

EXPERIMENTAL DATA

[^14]Table 14.-Calcium content (dry basis) of seed of 10 varielies and strains of soybeans grown at 5 locations during 5 years; average percentage of total calcium by variety, location, and year; and analysis of variance of the data-Continued

VARIETY AND LOCATION MEANS:

Veriety and location	1936	1087	1938	1938	1940	5 years
Variety	Percent	Percent	Perceat	Percent	Percent	Percent
Mandari	0.431***		0.383**	0.369***		0.386**
Dunfeld, A	. 2880°	. 2226°	.2215000	. $2232^{\circ 0}$. 1789°	. 2240°
Dunfeld, B	$261{ }^{\circ 0}$	216°	$210^{\circ 0}$. $2244^{\circ 0}$. $194{ }^{\circ}$	21^{10}
nlini.	. 303	260	.247	. $2333^{\circ 0}$. 215	$252^{\circ 0}$
Mancia	. $364{ }^{\text {** }}$. 307	311**	.311**	. 272	313**
Scioto	. $395 \times$. $347{ }^{* *}$	342**	. $339 \times *$.293*	.343**
T-117,	. 294	. 234	244°	. $2400^{\circ 0}$. 225	.24800
Peking. ${ }^{\text {P }}$. 54563	. 295	. 275	261	. 286	. 239	272
P. 1. 54563-3.	. 2844°	. 252	. 247	278	. 204	. $2533^{\circ 0}$
Location: ${ }_{\text {Ames, }}$						
Columbia, M		+2800	. $2684{ }^{*}$. $2810{ }^{* *}$. 224	$.281{ }^{\circ}$
Urbans, II,	. $2855^{\circ 0}$. 297	. $2444^{\circ 0}$. 288	. 222	. 267
La Fayette, Ind	. 3810	. 235	. 247°	. 250	. 245	265
Columbus, obl	. 2711^{100}	. 285	. 261	. $225{ }^{\circ 0}$. 244	. 257°
Average of all samples.	. $320 \times$. 278	. 209	. 273	. $238{ }^{00}$. 275

ANALYSIS OF VARIANOE ${ }^{3}$

Source of variation	Degrees of freedorn	Mean square for indicated year					
		1936	1837	1938	1939	1840	5 years
Varieties			$\xrightarrow{0.014 * *}$	0.0166***	$\xrightarrow{0.0141^{* *}}$.	0.017.002	$0.0743^{* * *}$$.0185^{* *}$
Locarions.							
							. $0430{ }^{\circ}$
Varietes \times years							. 0009
			. $00{ }^{-1}$. 00008	.0007	001	. $0007{ }^{\text {+ }}$
Varicties \times locations \times years.							. 0007

[^15]Among the locations there was a tendency for soybean seed grown at Columbia to be highly signifieantly high in calcium content during three of the seasons and for the 5 -year period. Among the seasons also there were significant differences, the 1936 season producing, for an average of all varieties at all locations, seed with a high calcium content, whereas during the 1940 season the calcium content was significantly low. By reference to figures 3 to 7 , it will be seen that there is a decided tendency for percentage of calcium to be high in soybean seed during the warmer seasons. This can be brought out by a study of table 15 , which gives the mean August temperatures at the 5 locations for the 2 sensons, 1936 and 1940. For example, the mean August temperature for Columbia during 1936 was $85.1^{\circ} \mathrm{F}$., whereas for 1940 the mean temperature was 76.6°. Table 14 shows that the mean calcium content of seed of all 10 varieties at this location was 0.384 for 1936 and 0.254 for 1940. For Ames, Lowa, where the 1936 tem-
peratures were also severely high, with a mean temperature of 78.2° as compared to a 1940 mean temperature of 69.8°, the mean calcium content of seed of all varieties was 0.327 and 0.224 percent, respectively, showing a trend in the same direction as at Missouri during the two seasons. As contrasted with these differences between 1936 and 1940, the mean August temperatures at Columbus, Ohio, did not differ so greatly, the mean temperature being 77.8° for 1936 and 75.1° for 1940. The corresponding mean percentages of calcium in the soybeans were 0.271 and 0.244 , respectively, showing that accompanying the lesser differences in temperature between 1936 and 1940 was a lesser difference in percentage of calcium in the seed. From these data it can be inferred that temperature plays an important part in determining the amount of calcium stored in soybean seed.

Table 15.-Mean August temperatures at the five locations for 1956 and 1940

Location	1838	1940	Location	1836	1940
Columbus, Ohfo	${ }^{\circ} \mathrm{F}=8$	- ${ }^{\circ} \mathrm{F}$	Ames, โowa	${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$. 69.8
La Fayette, Ind...	80.2 79.0	76.4 74.8	Columbin, Mo.	85.1	76.6

This cffect of season is further shown by the analysis of variance for the calcium data. Although the variances due to varieties, locations, and years are all significant with respect to the three-way interaction, yet the mean square for years is greater than the mean square for locations. This has not been true for any of the other ash constituents and indicates that season has had a more profound influence on calcium metabolism than has soil under the conditions of this study.

Total Sugar Content

The sugars in soybeans have received very little attention in agronomic studies. The total sugars determined and reported here are calculated as sucrose (table 16). The values for the 10 varieties and strains grown at the 5 locations during 5 years ranged from 2.70 to 11.97 and averaged 7.97 percent. The greater number of the values vary less than 1 percent from the mean. The lowest station averages were for the 1936 season when the crop was injured by excessive heat and lack of precipitation.

Garner, Allard, and Foubert (12, p. 247) noted:
As a consequence of the physiological relationship of oil to carbohydrates, it appears that maximum oil production in the plant requires conditions of nutrition favorable to the accumulation of carbohydrate during the vegetative period and to the transformation of carbohydrate into oil during the reproductive period.
From inspection of tables 16,6 , and 5 , it is seen that the percentages of sugar increase and decrease with the percentages of oil and that when total sugar and oil contents chauge in one direction, the protein content changes in the other.

Table 16.-Total sugar content (dry basis, calsmated as sucrose) of seeds of 10 varieties and strains of soybeans grown at 5 lacations during byears; average percentage of total sugar by variely, location, and year; and analysis of variance of the data

EXPERIMENTAL DATA

[^16]Table 16.-Total sugar content (dry basis, calculated as sucrose) of seeds of 10 yarieties and strains of soybeans grown at 5 locations during 5 years; average percentage of total sugar by variety, location, and year; and analysis of variance of the data-Continued

Variety and location meang 19

Variety and location	1986	1037	1938	1939	1940	5 years
Variety:	Percent	Parcent	Percent	Percent	Percent	Percent
Mandarln	6.47	6. 82°	6. $933^{\circ 0}$	6. $90^{\circ 0}$	B. $58^{\circ 0}$	6. $76^{\circ 0}$
Mukden.	8. 27	$6.83{ }^{\circ}$	$6.86^{\circ 0}$	4.8400	$7.38^{\circ 0}$	$6.83{ }^{\circ 0}$
Dunfiela, A	6.27	8.58	8.45	8. $40{ }^{* *}$	9. $51{ }^{* *}$	8.24
Dunfield, \mathbf{B}	7. 22	8. 83	8.35	8.61**	$0.01{ }^{\text {*** }}$	8.40^{*}
Itlini.	7.34	8.38	8. $44^{* *}$	$9.06{ }^{\circ}$	9.91**	g. 83**
Menchu	6.62	7.54	8. 30	8.10	8.34	7.78
Scioto	7.37	8.72	8.61	$8.34 * *$	8.05°	8.22
T-117.	7.90	9.14	8.88	8.16	$8.97 * *$	$8.61{ }^{\circ}$
Peking-----	6.45	7.61	8.14	$7.51^{\circ 0}$	$7.77^{\circ 0}$	7. $50{ }^{\circ}$
P. I. 54563-3	7.98*	9. 49^{*}	8.52	8.37**	8.54	8. 58^{-4}
Location:						
Ames, Iowa	7.61	$9.18{ }^{\prime \prime}$	或. 26	7.99	\bigcirc	
Columbia, M	5. 544^{00}	7. 24°	6. $75^{\circ 0}$	7. $64^{\circ 0}$	7. $59^{\circ 0}{ }^{\circ}$	$\text { 6. } 95^{\circ 5}$
Urbana, Ill	7.14	7.94	$9.34 * *$	8.14	9.30**	8.37**
La Fayette, Ind	7.17	7.95 8.77	8.26 8.82	8.10 8.29	8. $63 \times$	8. 02 8.35%
Average of all samples.	6. $989^{\circ 0}$	8.20	8. $25^{\prime \prime}$	8.03	8, $40^{* *}$	7.97

ANALYSIS OF VARIANOE ${ }^{3}$

Sourec of variation	$\begin{aligned} & \text { Degrees } \\ & \text { of } \\ & \text { of } \end{aligned}$	Mean square for tndicated year					
		1836	1837	1938	1939	1940	5 years
Vbrieties.	9	2. 15^{*}	4. $27{ }^{7 *}$	3. $20{ }^{* *}$	2.62**	5. 13***	13.50**
Locations----...------------------	4	6. 8980	6. $55 * *$	8.93**	. 60	4.45**	${ }_{17} 17.31^{\circ *}$
Yebrs..............-----....--	4	---.....-				15.99**
	36 16						$2.30{ }^{\circ}$
Varietics \times locations---...-...----	36	. 57	. 71	. 88	. 28	. 50	2.88**
Varieties \times locations X years.-	142						. 42

3 Variety means represent 5 locations; location means represent 10 varieties.
$30=$ significantly lower than general mean (5-pereent icvel).
0^{0} mhighly significantly lower than peneral mean (1-percent level).
*In case or means n significantly higher than general mean (5 -pereent level). In case of mean sequares, slgrificant (5 -percent level).
${ }^{-4}$ In case of means $=$ highly significantly higher than general mean (1-percent level), in case of mean squares, highiy significant (i-prereent level).

The analysis of variance (table 16) shows that the average total sugar content is highly significantly high for seed of Illini, T-117, and P. I. 54563-3 and highly significantly low for those of Mandarin and Mukden, with reference to the mean of all samples of 7.97 percent. During the syears the values for the soybeans grown at Urbana and Columbus were highly significantly above and those for Columbia highly significnntly below the mean. The soybeans from the 1936 crop injured by drought averaged highly significantly below and those from the 1940 rrop highly significantly above the mean. The mean squares indicate that under the conditions of the study, location and year influence total sugar content more than differences in variety.

Crude Fiber Content

Recent work in the fied of nutrition has indicated that the determination of crude fiber is of questionable valuc. Determinations of cellulose, lignin, and hemicelluloses are considered as of more specific, value. Viijoen (28) found that the fiber seemed to remain very con-
stant irrespective of variety and the conditions under which the soybeans are grown.

The crude fiber was determined on the seed of the 10 warieties grown at the 5 locations during 1936 to 1939, inclusive, and was found to vary from 4.34 to 7.60 , and averaged 5.52 percent of the dry substance (table 17). The analysis of two samples of soybean-seed hulls showed a crude fiber content of 31.37 and 28.10 percent on the dry basis, respectively. From this it would appear that the crude fiber content may vary with seed size and thickness of hulls. These two factors do not appear to vary regularly for any one variety, as the crude fiber cloes not appear to vary regularly with the weight per 100 seeds. It is observed that the seed of the Peking variety, which has the smallest seed size of the varicties studied, has the highest crude fiber content and is the only variety in the list that has consistent significant variance from the mean. The mean squares indicated that greater variability in crude fiber is attributed to varietal differences than to location and season.

Table 17.-Crude fiber content (dry basis) of seed of 10 varieties and sirains of soybeans growa at $\overline{\text { o }}$ localions during 4 years; average percentage of arude fiber by varity, location. and year; and analysis of variance of the data
mperimental data

[^17]Tabie 17.-Crude fiber content (dry basis) of seed of 10 varieties and strains of soybeans grown at 5 locations during 4 years; average percentage of crude fiber by variety, location, and year; and analysis of variance of the data-Continued

VARIETY AND LOCATION MEANS 23

Variety and location	1936	1937	1938	1989	4 years
Variety:	Percent	Percent	Percent	Percent	Percent
Msnderin	5.74	5.35	5.37	5. 11	5.39
Mnkden	5.11°	5. 52	5.37	5.32	5.33
Dusfleld, A	\%. 49	5.32	5.43	4. 833°	5.34
Dundeld, 3	5. 56	5. 67	5.61	4.95	5. 43
Dlinl...--	5.34	5.35	5.25	5. 10	5. 26
Manchu	5.52	5.50	5. 31	5.34	5. 42
Scioto.	5. 20	5.52	5. $088^{\circ 0}$	5.13	5. 23
T-117.	5.47	5. 64	5. 48	5.46	5.51
Pexing	6. $44^{* *}$	6.90**	6. $29{ }^{* *}$	6. $\mathbf{2 Y}^{* *}$	6.48**
P. I. $54563-3$	5. 84	$6.21{ }^{\circ}$	5. 42	5. 62	5.80
Location:					
Ames, Iows.	5.37	5.97	5. 37	5.15	5. 46
Columbla, Mo	5.83	5. 43	5.33	$4.95{ }^{\circ 0}$	5.38
Urbans, II	8.27	5.30	5. 41	5.25	5.36
La Fayctte, Ind.	5. 70	S. 76	5. 48	5,48	6.61
Columbus, Ohto	6. 73	6.92	5.71*	$5.81{ }^{* *}$	6. 79
Average of all samples.	5.58	5.72	5. 48	5.83	5. 52

ANALYSIS OF VARIANCE ${ }^{1}$

Somree of vartation	$\begin{aligned} & \text { Degrces } \\ & \text { of } \\ & \text { Ireedota } \end{aligned}$	Mean square for indicated geat				
		1836	1987	1938	1939	4 years
Varietles.	9	$0.74{ }^{\circ}{ }^{\circ}$	i. 16	5.20	0.82	2.77**
Locations	4	- $30{ }^{* *}$. 60	. 23	1. 09	1. 29.0
Years .-..-...-.	3					1. $39^{* *}$
Varieties X years.	27					-16^{*}
Locstions \times years....	12					-11**
Varteties \times locations.......	${ }_{10 \text { 2 }}$. 15	. 03	. 63	. 11
Varieties \times locstions \times yebrs	10 ค	,			-	. 03

1 Varfety means represent 5 locations; lacstion means reprosent 10 varieties.
somsignilicantiy lower than gemerai mean (3 -percent level).
oa =highly significantly lower than generai mean (1-percent level).
-In case of means = signifcantly higher than general mesn (5 -jercent level). In case of mean squares, signiffant (5 -percent ievel).
${ }^{-1 s}$ easo of means $=$ higbly signifeantiy higher than general mean (1-percent lovel). In case of mean squares, highly sigufforat (1-percent ievel).

Unsaponifiable Matter in Crude Soybean Oil

The unsaponifiable matter in the crude soybean oil consists of a mixture of sterols, waxes, hydrocarbons, etc. The oil for this determination was obtained from the ground seed by three percolation extractions with petroleum ether (as specified by the American Oil Chemists' Association). The first solvent flooding was allowed to stand overnight before draining. The values were determined on the 10 varieties of soybeans grown at 5 stations during 4 years (table 18). They ranged from 0.50 to 1.25 percent and averaged 0.71. They do not represent the total unsaponifiable matter extractable from the soybean seed, but only that obtained in a lipid extract by a comparable empirical method.

Table 18.- Unsaponifable mattry in crude soybean oil of 10 varieties and strains of saybeans grown at 5 locations during 4 years

Yearand lotation	Unsaponifia ble matter in crude oil of seed of the varieties indicated										Mean
	Mandarin	Maxden	Dunfretd, A	Dunfield, B	Ihini	Man. chat	Sciato	T-117	Peking	$\frac{P \cdot I .}{54563-3}$	
18*6											
Ames, Lows.	${ }_{\text {Pct. }} 0$.	${ }_{0}^{\text {Pct. }}$	Pct. 0.83	PCt.	Pct.	Pct. 0.93	Pct. 0.98	Pct. 0.80	${ }^{\text {Pct. }}$	Pct, 0.77	${ }_{\text {Pcl }}{ }_{6} 87$
Cohumbia, ${ }^{\text {a }}$	1. 13	. 82	1.07	. 62	+ 85	1.07	. 71	. 80	1.09	+80	. 81
Urbane, M .	. 87	. 82	. 81	. 73	. 85	. 88	. 81	. 89	. 96	. 85	. 88
La Fryette, Ind	88	. 81	. 72	. 73	. 85	. 87	. 76	. 7	1. 25	. 67	. 85
Columbus, Obio	. 82	. 76	. 64	. 73	. 75	. 76	. 90	. 07	3. 05	. 75	. 78
Mean.	. 94	. 81	. 81	. 74	. 84	. 80	. 83	. 79 :	J. 10	. 78	. 85
1987											
Ames, Iown	. 6	. 58	. 56	. 57	. 53	. 74	. 74	. 57	1.03	. 71	
Columbia Mo.	. 82	. 65	. 66	61	. 69	. 71	. 79	. 71	1.01	. 72	. 74
Urbana, In.	. 77	. 82	. 65	. 68	. 70	. 77	. 76	. 66.	. 92	. 75	. 75
La Fayette, ind.	. 70	. 73	. 63	. 59	. 61	. 63	. 74	.67	. 79	. 63	. 68
Columbus, Onic	. 69	. 72	. 60	88	. 71	. 73	.64	. 69	. 83	. 64	. 76
Mzan	. 72	. 20	. 62	63	. 65	72	, 7	. 66	. 94	. 70	. 71
1988											
Ames, Iowa.	. 78	. 67	. 69	. 56	. 59	. 64	. 63	. 53	. 75	- 58	. 63
Columbia M	. 68	1.06	. 98	. 88	. 59	. 66	. 82	. 53	. 77	. 58	. 76
Urbana, III.	. 67	. 83	. 60	. 71	. 61	. 82	. 57	. 53	. 87	. 55	. 68
Ia Fayctle, ind.	. 63	. 66	. 54	+ 51	. 59	. 54	. 55	. 54	. 75	. 54	. 53
Columbus, Ohio	. 62	. 67	. 60	. 55	. 59	. 65	. 62	.61	. 31	. 58	. 61
Mean	. 68	74	. 67	. 64	. 59	. 62	. 64	. 55	. 70	. 55	. 65
1389											
Ames, Towr	. 74	. 62	. 55	. 53	. 55	. 58	. 62	. 61	. 86	. 59	. 63
Columbis Mo.	. 86	. 68	. 56	. 66	. 55	. 65	. 61	. 61	. 89	. 51	. 68
Urbana, Il	. 68	. 68	. 52	. 55	. 54	. 62	. 54	. 34	. 89	. 59	. 01
Ls Fayette, ind.	. 66	. 62	. 50	. 50	. 56	. 64	. 62	. 58	. 88	. 60	. 62
Colvmbus, Ohío.	. 67	. 84	. 51	. 51	. 63	64	. 60		. 78		, 63
Mean.......	. 72	. 63	. 53	. 56	. 57	. 63	. 60	. 58	. 80	. 58	. 63
4-rearmean	76	. 2	. 68	. 84	. 66	72	. 70	. 84	. 92	. 66	71

As seed-coat waxes contribute materially to the unsaponifable matter in the lipid extract, it is reasoned that, for smaller seeds with narrower ratios between seed coat and cotyledon and for varieties having thicker seed coats, larger values of unsaponifiable matter should be found in lipids extracted under comparable conditions. Crude lipids obtained by exhaustive extraction should yield higher relative values.

The values for the Peking varicty, which has the smallest seed of the varicties studied, averaged the highest. In this connection the followiry iabulation, giving some information on the percentage of hulls or seed coats found on the 10 varictics of soybeans, may be of interest. The highest station-year average percentage of unsaponifiable matter was for Columbia, Mo., in 1936, which also had the lowest station-year average seed size (table 4).

Percentage of hulls or seed coats oblained from the seed of 10 varieties and strains of soybeans grown al 1 location during 1 season

The acid numbers were determined on the oils extracted for the determination of the unsaponifiable matter. As the results were consistently low and showed no noticcable variability, they were not statistically analyzed and are not presented. The average value, approximating 0.15 , indicates that the harvesting and storage of the soybean samples for chemical analysis were uniformly satisfactory.

EFFECT OF VARIETY, FERTILITY. LEVEL, AND SEASON ON THE YIELD AND COMPOSITION OF SOYBEAN SEED

The extent to which the fertility level of a soil affects the yield and composition of the sced of soybean varieties and strains is of importance when locating nurseries for testing new selections. A study of this effect was made possible in the spring of 1937 through the cooperation of the Ohio Agricultural Experiment Station.

Materials and Methods

An experiment bearing on this problem was started in 1928, according to Stringfield and Salter (27), in cooperation with the Bureau of Plant Industry. The study, as initisted then, involved a 3 -year rotation of corn, oats, and whent on a Canficld silt loam soil at Wooster, Ohio. Stringfield and Salter describe the soil as derived from sandstone and shale and as naturally low in fertility but responding well to fertilizers and manure. The treatments established on the four levels, as shown in table 19, were designed to provide four distinct gradations in fertility. The corn, onts, and wheat cropping was continued until 1937 when soybeans replaced onts in the rotation. It is evident from table 20 , showing the response of corn (27), oats (17), and wheat (16), that distinct levels of fertility have been established.

Table 19. --Plot treatments' at the four fertility levels used in the 3 -year rotation tests with corn, oats, and whent (on Canficld sild loam)

$\begin{gathered} \text { Fersitity } \\ \text { level } \end{gathered}$	Trentment depel for crop indicated		
	Corn	Oats	Whent
	Nont		Nome,
		do	
	8 tons manure, 200 nounds 0 -ic-0	(b)	100 pmands $2-14-1$ in fill, tote potunds
			nitrateorsotia in spring.
	if tons mandife, tho pornds 0-16-0 brondeast, wo pounds + -12-1 in hitl.	do.	800 younis $2-1 \cdot 4$ it in fill, 200 nounds nitrate of sodata spring.

[^18]Table 20.-Average yield response per acre of grain crops to the four leyels of jertility esiablished on Canfeld silt loam

Fertility fevel	Crop yield for-		
	Cora	Osts	Wheat
	Bushets 33.6	${ }_{\text {Bushers }}^{33.6}$	Busheis
B-------------	44.8 52.6	45.8	${ }^{275 .} 5$
D.---------	53.6	43.5	38.7

Since the spring of 1937 eight soybcan varieties, involving a wide range in genotypes, were planted across the four fertility levels. The varieties Mandarin, Dunfield, Mandell, Illini, and Peking were common to the varicties \times locations study and the varieties \times levels study. The varioties Morse, Virginia, and Jogun were added to enlarge the range of types. Morse, a grain type, and especially Virginia, a hay type, do well on relatively infertile soils. Jogun, a large-seeded vegetable soybean. variety, is a short bushy type that does well on more fertile soil.

Seed yichls only are available for the 1937 season, but yields as well as representative samples have been analyzed for protein, oil, and iodine number of the of for each of the 3 following years and are presented to indicate the effect of fertility level on the composition of soybean varieties and strains.

Climatological Data

Menn monthly temperatures and total precipitation for the four seasons, $1937-40$, are given in figure 9 and table 21.

Table 21.-Mean monthly temperatures and precipitation at Wooster, Ohio, during 1937-40
TEMPERATURES

Yenr	Mas	June	July	Angust	Septem-	October	Mear
	- F.	- 5	- F.	- R^{\prime}	- F.	- F.	- Fr.
1037.	58. 6	88.2	71.8	73.2	61.4	51,4	64.1
1938.	50.6	65.7	71.6	73.2	63.4	53.6	64. 5
1939	61.0	70.8	71.2	71, 6	6i7, 7	33.8	66.0
1940	66.1	68. 2	71.2	70.4	60.4	51.4	82.9
Normal.	58.6	67.8	71.8	68.8	G4, 1	51.8	64.0

PRECIPITATION

Year	May	June	Iuly	August	Scptem-	October	Total
	inches	Inches	mehes	Inches	chez	Inctues	Inches
1937..	3.52	4.08	3. 13	2.75	2. 62		21.31
1038.	4.40	4.71	3.83	3. 56	3.19	+ 48	20.18
1939	1.45	4. 90	1.75	2.83	1.00	2.84	15.77
1940	4.11	5. 76	4.02	5.12	1. 16	1. 865	21.82
Normai	3.65	3.85	4.08	3.72	3.28	2,60	21.17

[^19]

Figure 9.-Daily mean temperatures, average mean monthly temperatures, and daily precipitation for four seasons at Wooster, Ohio.

Yield

In general, the yield of soybean seed, like that of any other crop, is the resultant of the interaction of soil, climate, and variety. This fact explains why low yields result from a combination of fertile soil, good variety, and unfavorable climate, or from fertile soil, poor variety, and favorable climate, or from infertile soil, good variety, and favorable climate. In other words, low yields may be obtained if any one of the three elements becomes a limiting factor. On the other hand, maximum yields may be obtained year after year if a favorable combination of soil fertility, variety, and climate occur. Since this favorable combination occurs infrequentiy under general farming practices, it was deemed expedient to plant several soybean varieties, comprising a wide selection of genotypes, across these four distinct levels of soilfertility plots adjacent one to the other for the purpose of studying scientifically the interrelationship of soil fertility, Fariety, and climate upon plant characteristics such as growth, yield, and chemical composition. By this method information was obtained concerning the degree of those elements necessary for maximum yield as well as the evaluation of each in its effect upon yield. It is from this point of view that the yicld data will be presented.

The effect of soil-fertility level on yield of each of eight varieties of soybeans may best be observed from a study of the 1938 yield data given in table 22 and shown graphically in figure 10. During this year the favorable climatic conditions permitted each variety to attain its maximum potential yield as limited only by soil fertility. The data show in a general way that all varieties responded advantageously to increasing levels of soil fertility and, with but few exceptions, the megnitude of the response, in bushels per acre, from the lowest to the highest levels was similar. This was true despite the rather large differences in range of yield. For example, on the Λ level of fertility Mandarin and Mandell yielded 12.7 and 18.5 bushels per acre, respectively, whereas on the D level they yielded 24.6 and 29.9 bushels, respectively. The range in yield for Mandarin was 11.9 bushels and for Mandell 11.4. The range in yield for the other varieties, except Virginia, was about the same. The similarity of these values indicates that all varieties but one possess the genetic constitution to produce seed in proportion to the fertility of the soil on which they are grown, though not in proportion to the same average yield. That is, whereas Mandarin increased its yield 11.9 bushels from fertility level A to D, and Mandell increased its by 11.4 bushels, it is highly improbable that at this location Mandarin would ever exceed Mandell in production of seed per acre, unless Mandell werc killed by a very early frost. So, although soil fertility exerts a definite influence on yield under favorable climatic conditions, it cannot alter the limitation set upon yield of a given variety by genetic make-up and thereby cause each variety to produce equally.

Figure 10. - Average response of eight varieties of soybeans to four levels of soil fertility, showing total yield, seed size in grams per 100 seed, protein content of seed, oil content of seed, and iodine number of oil.

Table 22. - Yield per acre of eight varieties of soybeans groton on four levels of soil fertility, 1987-40; analysis of yariance of yield by seasons and for the s-year period 1988-40

EXPERMENTAL DATA

Year and tertility level	Yieid of seed per acre of tha varioties indicated								Megn
	Mandarin	$\begin{aligned} & \text { Man } \\ & \text { dell } \end{aligned}$	$\begin{aligned} & \text { Dun- } \\ & \text { fold } \end{aligned}$	LIEn'	Jogun	Morse	Peking	Vir-	
1957	Bushels	Busheis	Busheis	Bushels	Bushets	Bushets	Buahcis	Busheds	Autach
A.	10.3	11.6	9.5	10.9	4.7	10.4	6.9	8.3	9.2
B.	14.6	16.8	14.6	16.8	0.2	18.5	11.3	15.2	14.8
0	14.0)	17.5	14.7	15.5.4	10.6	19.8	13.3	14.8	15.0
D.	10.2	15.5	10.5	13.8	8.3	18.5	10.3	10.4	11.9
Mean	12.3	15.4	12.3	14.2	8.2	16.3	10.5	12.4	12.7
A...----....---	12.7	18.5	20.7	17.4	10.6	19.1	16.4	21. 4	17.1
B	18.6	33.2	22.6	22.5	15. ${ }^{\text {a }}$	22.8	22.3	22.4	21.2
¢	\%3. 1	8. 2	26.8	25.5	17.2	22.9	24.8	22.2	23.6
D.	24.6	29.9	28.8	28.2	24.4	26.2	25.8	25.8	26.7
Meam.	19.8	2 2. 5	24.7	73.4	16.9	22.8	22.4	23.1	22.2
1098	8.8	16.4	17.2	21.3	7.5	17.3	14.9	17, 9	15.2
B.	10.8	18.0	18.0	22.4	10.0	17.7	15, 5	17.7	16.3
C	13.4	21.6	20.6	24.4	17.4	$\underline{2.4}$	19.3	20.6	19.2
D.	14.8	20.1	21.4	21.8	13.0	17.9	20.2	15.0	18.0
Nesn.	12.0	19.0	19.3	22.5	10.5	18.8	17.5	17.8	17.2
1940									
B	15. 6	8. 4	8.6	17.3	5.3	15.0	9.6	8.7	8.1
C.	13.2	20.2	12.5	22.1	4.6	17.3	16.8	16.9	15.4
D.	7.0	20.2	9.1	21.0	3.5	12.5	12.7	14, 4	12.6
Mean.	11.0	16.4	11.4	17.6	4.0	13.5	13.6	13.1	12.6
3-year mean (1938-50)	14. 2	10.9	18.5	21.1	10.5	18.4	17.8	18.0	17.3

ANALYSIS OF VARIANCE:

Source of variation	De- grees of Sreedom	1937		1938		1038		1850		3-year period, $1035-40$	
		Mean sq̧are	Faiue	Mean square	$\underset{F}{F} \text { value }$	Menn square	$\underset{\vec{V}}{\text { value }}$	Mean square	$\left\lvert\, \begin{gathered} F^{4} \\ \text { Filue } \end{gathered}\right.$	Mean square	$\underset{\text { ville }}{F}$
Varietles.	7	27.35**	21.7	27. 210	10.3	183.67**	2 z .2	68.12*	11.2	130.43**	36.8
Esvels.	3	$58.46{ }^{\circ}$	52.8	131.21**	19.5	26.02**	11.5	82.08*	13.5	179.85**	47.4
Years .-s	${ }^{2}$									737. 18**	194.5
Varielies \times levels.	21	1.11		2.65		2.26		6. 10	.. .	3.43	-8
Levels \times yeurs	6									2. ${ }^{3} 3^{* *}$	2.8
Varintles \times levels \times years.	42									3.79	7.8

$10=$ signtifeant ((r-percent level).
**-highly slgaifcant (1 -percent level).
Although such varieties as Mandarin and Mandell responded well to increased fertility in 1938, Virginia, which had the largest yield of all the varieties on the low fertility level, failed to give much response to increase in fertility. Virginia is noted for its ability to grow well on poor soil and probably can forage more successfully than other varieties for its mineral needs.

The yield data for the remainder of the years 1937, 1939, and 1940 show the influence of climate in varying degrees upon the reaction of
varieties to soil fertility. Reduction in yield, on a given fertility level, below the 1938 value may be ascribed to interaction of that variety with fertility and climate, whereas the magnitude of reduction of all varieties from their 1938 yields on a given fertility represents differential varietal reaction to a modified climate-fertility relationship.

In further evaluating the importance of soil fertility on production of soybean seed, the data in table 23 warrant careful study. It may be observed that for any given season, and therefore for a given set of similar conditions of variety and climate, the B level of soil fertility produced a significant mean increase in yield over the A level for all varieties. The mean increase of C over B, while significant, brings into the picture the differential interaction of variety to a specific soil and climate relationship. This is indicated by the mean increases in yield of Mandarin and Mandell for C over D. The former variety would not, on an average, benefit by being produced on a fertility level higher than B, whereas Mandell would justify a fertility level higher than B. Other varieties may similarly be compared. The mean increase of D over C proves that the D level of soil fertility could not be justified for the production of soybean seeds.

Table 23.--Increase in yield per acre of iwo soybean varieties over a 4-year period, due to level of soil fertility

As observed in the analysis of variance, table 22 , the varieties differ significantly umong themselves. The mean squares for levels and years are also highly significant, with years contributing the most variance. Among the first-order interactions the varieties \times years and levels \times years mean squares were highly significant with respect to the varicties \times lerels \times years mean square. The varieties \times levels variance was nonsignificant, indicating that, over a period of years of yied testing, the fertility levels were without much offect on the rank of the varieties with respect to yield, especially within the range usually experienced in farm practice.

Size of Seed

Among the varicties included in the study was Jogun, a large seeded vegetable variety a veraging 29.78 gm . per hundred seeds for the 3 -year period. Contrested with this was the small-seeded Peking, which averaged 5.96 gm . per hundred seeds. As would be expected from including such types, the mean square for varicties was large and bighly significant statistically. Likewise this was true for all the individual seasons.

Table 24--Size of seed (grams per hundred) of eight varietics of soybeans grown on four levels of soil fertility, 1998-40; analysis of variance of size of seed by seasons and for the 3-year period 1988-40

EXPERIMENTAL DATA

Year and fertility lovel	Weight of 100 seeds of the variptics indieted								Mean
	Mandstin	$\underset{\text { Man- }}{\text { dall }}$	Dun- ficld	Illini	Jogun	Mnrse	Peking	$\begin{aligned} & \text { Vir- } \\ & \text { ginia } \end{aligned}$	
1988	Grams	${ }_{\text {Gramb }} 13.13$	Grams	Grams	Gramt	Grams	Grams	Orgms	amy
B	14.25	13.25	12.88	10.86	22.53	16.30	6.62	9.98	14. 22
C	14.84	13.83	13.44	10.58	28.35	16.39	6.80	10.03	14.29
D	14.54	13.00	13.37	10.68	35.44	16. ${ }^{\text {c }}$	6.67	10.46	15. 21
Mear	14.52	13.58	13.06	10.91	30.64	16.18	6. 62	9.92	14.42
	15. 08	13.90	14.10	11.67	29.53	16.11	6.37	9.74	
	15. 16	13.50	12.95	11.48	27.73	16.58	6. 30	9.06	14.10
C.	15.66	14. 18	13. 13	11. 57	20.53	16. 68	8. 39	9.20	14. 53
D	15.84	14.54	13.43	11.33	28.313	16. 58	6, 34	0.51	14.57
Mean	15.4	14.03	13.41	11.53	28.95	10.48	6, 33	9.38	14. 44
	13.63	12.80	11.81	11.25	38.07	12. 27	4.07	7.62	
8	14.10	14.61	14.25	12.08	\%3.03	12. 54	4. 62	12.17	14.16
C	16.58	15.32	15. 1G	12.89	30.48	13.37	4.91	8. 30	14.75
D	15.58	15.64	1.4. 8.4	13.31	31. 50	13.70	5.25	[4, 54	15.5
Menn	14.97	14.62	14.02	12.38	29.75	12. 97	4.94	10.91	14.32
P-vear arerage lor each level									
A	14.30	13. 31	12.82	11.48	28.94	14. 54	5.91	8.84	13, 78
B	14.30	13.78	13.38	11.47	28.75	15.17	5.85	10. 40	14. 16
C.	15.69	14. 44	13.91	11.68	20.45	15.48	8.00	9, 33	14. 512
	15. 32	14.70	13.88	11.78	31.90	15. 6.5	6.09	11,50	15. 11
Mean	14.98	14.06	13.48	11,61	29.78	15.21	5. 06	10.07	14.38

ANALYBIS OF VARLANCE:

Source of variation	Deprees of treedom	1038		1939		1940		$\begin{aligned} & \text { 3-year period, } \\ & 1938-40 \end{aligned}$	
		$\begin{gathered} \text { Mean } \\ \text { square } \end{gathered}$	$\underset{\mid c}{F}$	Ment stuare	$\stackrel{F}{F}$	$\begin{gathered} \text { Meary } \\ \text { square } \end{gathered}$	$\begin{gathered} \vec{r} \\ \text { value } \end{gathered}$	$\begin{aligned} & \text { Xrean } \\ & \text { square } \end{aligned}$	$\underset{\text { vaiue }}{F}$
Varicties	7	$206.97 \cdot 0$	153.39	I81. $02^{* *}$	123.67	196. 46.4	168.83	576.25**	880.80
Levels....	2	2.41	1. 70	. 41	2.81	10.63^{3+4}	9.14	7.20**	9.24
$\mathrm{V}_{\text {arieties }} \times$ levers.	21	1.34		. 15		1. 16		- 14	
Varfelies \times years.	14							4. ${ }^{\text {a }}{ }^{\text {a }}$	4.18
Levels \times years	6							$2.86{ }^{\prime \prime}$	3. 43
Varieties \times lsvels $\times 5$	42							. 84	

: *-signlfiant (5-percent level),
**- highly significant (1-rercent ievel).
Among the levels there was variation in seed size with the seasons, this response being nonsignificant in 1938 and 1939, but for the 3 -year period the levels variance was highly significant. Among the seasons the average seed size for 1938 was 14.42 gm . per 100, for 1939 it was 14.44 gm ., and for 1940 it was 14.32 ; so, as would be expected, years showed a nonsignificant variance. There was not a great difference in the type of weather in the 3 years, as far as temperature and distribution of rainfall was concerned. There was a more abundant supply of moisture in 1938, resulting in higher yields but not affecting size of seed. Although there was significant varieties \times years and levels \times years interaction, yet the varieties \times levels interaction for
size of seed was nonsignificant, indicating that in general the levels were without significance in affecting the order or ranking of the varieties with respect to this character.

The individual determinations of seed size for the cight varieties on the four fertility levels, together with the analysis of varinnce of these data, are given in table 24.

Protein Content

Among the varieties there was a significant variance in protein content of the seed each season and for the 3 -year period. Several varieties were common to the varieties \times locations study, and from a study of table 5 and table 25 consistency is noticed in their performance. Mandarin was high in protein content in both studies, whereas Peking was low. This would be expected from the low varieties \times locations interaction in the one test and low varicties \times levels interaction in the other.

Table 25.--Crude protein content (dry basis) of seed of eight varieties of soybeans grown on four levels of fertility, 1958-40; analysis of variance of percentage of protein by seasons and for the 3-year period 1983-40

EXPERIMENTAL DATA

As seen in table 25, there was a nonsignificant variance for years but significant varicties \times years and levels \times years interaction. The average performance of the varicties was therefore quite similar in the three seasons, as was noticed for size of seed. The environment at the critical period for carbohydrate metabolism in the plant and for oil and protein metabolism in the seed for cach varicty must play an important role in determining protein composition as well as size of seed. This relationship is indicated in Mandarin, which had larger seed and lower protein in 1938 and smaller seed with higher protein in 1939 compared with 1940. More work is necessary, with very careful observance of the stage of plant development in relation to climate, to establish this relation. Such a relationship, however, woudd not be mexpected, as slightly shrunken wheat usually contains a high percentage of protein.

Oll Content

One of the most important of the present objectives in plant breeding work with soybens is the development of high-oil strains. Preliminary selection work nust be done on a soil that will permit the identification of those strains that will produce high oil in the area for which the selection is being developed. Therefore, information on the response of rarieties to fertility level as well as geographical location is of value.

The individual analyses for seed oil content of the eight soybean varieties on the four fertility levels during the three seasons are given in table 26. The average performance of the eight varicties is shown in figure 10, D. The Faricty Mandarin was high in protein content and low in oil content in the varicties \times locations study and this same relationship is found for the fertility-level study. Similarly, Dunfield was high in oil content in both studies, whereas Peking was low:

Among the fertility levels there was a significant variance (table 26), the B level producing seed with an oil content significantly above the other three for the entire period. Conversely, protein content of seed was significantly lower on the B lerel than on the other three levels. Although distinct responses in yield were noted due to fertility, the effect on composition has been relatively small.

Although there is significant varicties \times years and levels \times years interaction, it is of imporiance that the varicties \times levels interaction is nonsignificant with respect to the three-way interaction. This indicates fertility level to be without much effect on the relative order or rank of the varicties for oil content within the range of soil fertility levels ordinarily encountered in breeding work.

Table 26.-Oil content (diry baszs) of seed of eight varieties of soybeans grown on four levels of fertility during three seasons, 1938-40; analysis of variance of percentage of oil by seasons and for the S-year period 19ss-40

EXPERTMENTAL DATA

Year and fertlity level	Oil content of sted of the varleties indicsted								Mean
	Nandarin	Mandell	Dunfild	IHİn	Jogun	Morse	Peking	Virginin	
1998	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent	Percent
A.n......-...-.	19.03	17.12	20.86	18. 65	17. 20	18.92	17.41	18.74	18.87
B	10.29	18.78	20.33	19. 14	17.20	18.21	18. 10	18, 55	18.75
C	19.81	18.70	20. $\overline{\text { 2 }}$	19. 19	17. 37	17.88	18. 27	18. 27	18.75
D.	20.14	10. 20	20.52	19. 23	17.40	18.23	18.79	18.43	18.98
Mexn	19.57	18.95	20.57	19.38	17.32	18.31	18.14	18.50	18. 84
A.......-. -..	18. 91	18.78	20. 12	20.28	17. 61	19.19	17.00	17.61	18.60
B.......-	19.78	20.32	23.16	21.88	17. 74	18.51	18. 11	18. 33	19. 70
C	17. 77	18.72	21.81	20.20	16. 85	17.09	17. 12	18. 10	18. 60
	18.15	18.32	21.98	21.50	10. 30	18.48	18.87	19.15	18. 80
Mean.	18. 65	19.09	21.75	20.95	17. 16	18.52	17.28	18.31	18.97
A. $\begin{array}{r}1940\end{array}$	18. 36	18. 20	19.418	19,31	15. 32	19.37	16. 46	18.72	18. 15
8	18. 50	18. 74	19. 62	18.64	15. 85	19.40	17.87	18.20	18. 48
C	57. 62	18.75	18.57	19.47	15.26	18. 55	16.24	17.21	17.70
D.	10.62	18.41	18.03	18. 01	15.38	17.85	15. 47	16. 93	17. 24
Mean.	17.83	18, 53	18. 62	19.44	15. 45	18. 79	16. 51	17.77	[7.87
3 -year meath.	18.68	18.85	20.42	10.89	I6. 64	18.54	17.31	18.10	18. 57

ANALYSIS OF VARIANCE ${ }^{1}$

Boure of variation	Degrows an fresdom	1938		1930		1040		3-year period, 1938-10	
		Mear squart	$\underset{\text { value }}{F}$	Mcatt sfuare	$\underset{\text { valtue }}{\text { ent }}$	Mean square		Mcan sfluare	$\underset{\text { value }}{F}$
Vnrieties.	7	$4.00{ }^{*}$	32.76	10. $0.5{ }^{\circ *}$	24. 11	6. 99^{4+}	38.30	18.31**	碞. 38
Levels..	4	.11	. -	2,0.4	4. 62	2.34**	12.81	2. $05^{\circ+*}$	7.11
Years	2							11, 05.**	38.24
Vardeties \times levels	21	. 12		. 44		. 18			5. 75
Varictics \times yenrs.	14					. -		1. $666^{* *}$	5. 75
Lepels \times years.	6							l. $26^{\circ *}$	4. 21
Varleties \times levels \times yenrs	42							. 28	

1 " = stgalficart (5 -percent Ievel).
** $=$ highly signiflcant (1+percent level).

Iodine Number

Iodine number of the oil was determined for seed of the eight varieties of soybeans for each soil-fertility level for each of the seasons, 1938-40. These analyses are recorded in table 27. Among the varieties, Peking seed oil is the highest in iodine number and Jogun and Dunfield the lowest. The iodine number of oil from seed of all the varieties is high at Wooster when compared with that found in the varieties \times locations study, the mean values being 134.9 and 128.6, respectively. From the analysis of variance for iodine number (table 27) it is apparent that varicties and years contribute much variation and levels comparatively little, though all three are highly significant statistically.

Table 27.-Iodine number of oil in the seed of eight varieties of soybeans grown on four lewels of fertility during three seasons, $1988-40$; analysis of variance of iodine number of oil by seasons and for the 3-yent period 1988-40

EXPERIMENTALDATA

Yarr ond tertility lovel	Iodine number of the oll from seed of varisties indicated								Mean
	Mandarin	$\begin{gathered} \text { Manti- } \\ \text { doili } \end{gathered}$	$\begin{aligned} & \text { Durl } \\ & \text { Bell } \end{aligned}$	Inm!	Jegun	Morse	Peknam	Virgina	
1838									
	1133.0	135.8	135.3	135.2	130.2	140.6	142.8	141.7	130.8
	132.4	133.0	133.2	13312	129.7	140.0	142.2	140.0	135.7
C	131.5	132.6	132.7	123.0	130.4	134.2	1+3.0	133.5	135.2
D	132.6	132.3	132.8	133.5	130.0	150.5	192.8	139.7	135.5
Mear	132.4	133.7	133.5	134.0	230.1	10.1	1.227	140.2	135.9
A.	120.8	132.0	126.1	132,	126.2	133.6	137.0	128.2	130.7
8	130.7	130.9	126.5	133.4	126.5	133.8	$t 37.7$	132.2	131.2
	1296	120	122.4	120.3	126.0	131.4	138.9	131.5	130.8
	129.0	130.9	127.2	131.4	325.5	132.8	130.1	18 in 2	130.9
Mean.	129.8	13 L .1	120.6	131.3	126.1	132.9	138.2	130.8	130.0
	135. 8	138.7	135.0	139.5	138.3	140.2	143.4	140.3	138.6
B	135.9	${ }^{135} 3$	133. 4	137.7	135.2	138.3	142.3	838.0	137.4
	135.0	135.2	133.3	138.4	137.6	138.0	142.9	139, 5	137.2
	135.5	136.0	183.7	13 nc 9	137.5	133.3	14.8	141.1	188.1
Mean	135, 5	135.0	133.9	$13 i .6$	136.7	139.2	143.3	140.0	137.8
3-year menn	1388 ${ }^{\circ}$	133.8 !	131.4	134.3	380.0	137.4	14.4	137.0	134.9

ANALYRLS OF VARIANCE:

Source of rarintion	Deprees of fres. dom	103		1939		1040		$\begin{aligned} & \text { 3-ycar period, } \\ & 3035-10 \end{aligned}$	
		(Menn	$\underset{\text { value }}{F}$	Mens stuare	$\underset{\text { snlue }}{F}$	Mean square	$\underset{\text { value }}{F}$	Mean square	$\underset{\text { value }}{F}$
Vericties.		$81.91 \times$	180.13	50.09**	52.34	34. $73 \times *$	44.04	150. 78**	325.1
Lerels.		$3.00 \cdot{ }^{\circ}$	8.58	. 52		$3.11 *$	4.33	$4.33^{* *}$	9.31
Yarieties \times lavels	$2{ }^{2}$. 45		1.87		. 79		110.680	8885
Varietics \times yerrs.	14							10.95**	23,62
	${ }^{6}$							1.76**	3.79
Vartetles X levels \times years								$4{ }_{6}$	

${ }^{\circ}=$ signincunt (5-percent level).
**xighly signifleant (1-percent lovel).
In the previous discussion on iodine number as affected by geographical location (p. 31) it was pointed out that climate, or more specifically the temperature at the time of rapid translocation of food materials into the seed, infuenced the degrec of unsaturation of the oil. From figure 9 it is evident that the last part of August and the first part of September in 1939 was much warmer than the same period in 1938, whereas 1940 was even cooler than 1938. From table 27 it is evident that the mean iodine number of soybean oil for the three seasons is inversely related to the temperatures, for in 1939 the value was 130.9 , in 1938 it was 135.8, and for 1940 it was 137.8.

Among the first-order interactions, although all were significant statistically, the one for levels X yoars was small, indicating that in general the soybeans on the four levels performed similarly in the three seasons. The varieties did not react similarly to the seasons, a
dissimilarity to be expected due to fluctuation from year to year in temperature at the critical filling period for each variety. This is readily seen when it is recalled that the soybean varieties used differ in their date of blooming and period of bean derclopment, and when it is noticed in figure 9 how the temperature cycles varied from season to season. In other words, as far as environment in the critical filling period is concerned, among the eight varieties grown in three seasons there are more than three crop years of climate represented. Although the varieties \times levels interaction is significant, yet there was not sufficient reversal in the order of the varieties to be of concern to the plant breeder, provided no appreciable differences in date of filling and ripening is experienced between soil-fertility levels.

SUMMARY AND CONCLESIONS

Soybean varieties were grown under different conditions of climate and soil in the five leading soybean-producing States of the North Central Region during the five seasons, 1936-40, inclusive, by the United States Regional Soybean Industrial Products Laboratory. The purpose of the investigation was to determine the influence of varicty and environment on the chemical composition of the seed produced, as an aid in breeding and testing new varieties of soybeans for industrial utilization.

The 10 varietias selected for study ranged from early to late in maturity and provided a good cross section of genotypes. The chemical-composition data were studied statistically by analysis of Fariance. The seasons occurring during the period of study included as adverse and as favorable climatic conditions as may be anticipated in the area.

The percentages of carbohydrate, nitrogenous, lipid, and mineral constituents in the soybean appent to be influenced by the physiological vigor as controlled by the environment during the entire growth period of the plant. The iodine number of the oil from the seed of a variety appears to be critically influenced by the prevailing temperatures during the period of bean development and oil metabolism. High temperatures depress and low temperatures raise the iodine number.

In general, the oil content of the soybean secd is most specifically a varietal characteristic, and the iodine number of the oil is about equally influenced by variety and climate under the conditions observed in these investigations.

The influence of adverse environment during the period of development of the seed on the seed size is creatly offset by abortion during the period of ovale formation through which the individual plant adjusts the number of beans it produces to its physiological resources.

In general, the percentages of oil and total sugars yary in the same direction and inversely with the pereentages of protein.
In general, no large varintions were observed in the percentages of crude fiber in the seed and unsaponifiable matter in the oil. However, there is some variation in these constituents due to variation in seed size and ratio of seed coat to cotyledon.

Temperature levels significantily influenced the calcium content of the seed produced by a given varicty. Invarially high calcium content resulted when the soybcans were grown at high temperatures.

Total ash, phosphorus, and potassium content of the seed appeared to be influenced more by soil type and fertility than by variety or variations in climate.

Eight raricties of soybeans were grown at one location on four widely different levels of soil fertility. Fertility level affected yield but was without noticenble effect on composition of soybean seed with respect to oil and protein content and iodine number of the oil. Within the limits ordinarily encountered in breeding and rarietytesting work, soii fertility does not apperr to affect the relative rank or order of varicties and strains of soybeans with respect to these chemical factors.

Under the conditions of this study varicties were found to differ significantly in the compositional factors determined. Pedological and elimatic factors did not greatly influence the relative standing or ranking of the several varicties with reference to the percentages of oil, protein, phosphorus. and calcium. Hence, with respect to composition of sced, the performaner of a variety or strain of soybeans at one location gives an indication of the relative performance that may be expected by it at other locations in the area.

The importance of this work is in the finding that varieties and strains of soybeans seem to inlerit their characteristic chemical composition, making possible progress in breeding for desired chemical composition as well as rield and other agronomic factors.

LITERATIRE CITED

(1) Americhs Oll Chemists Soctety:

193S. Repobt of the govbbas analisis committee. Oil and Soap 15: 214.
(2) Associatime of Gffighl Ahbirtleteral Chemists.
1940. Aabitar. In Oficial and Tentative Methods of Analysis, ed. 5 , eh. 12, procedine 11, ple. 127 128, illus.
1940. criden fiber. $f /$ official and Tentative Methods of Analysis, ed. 5, ch. 27, procedure 27, p. 3 5s.
1940. Niprogens. In Official and Tentative Methods of Analysis, ed. 5 , ch. 2, prucedere 23, 1. 26.
1940. phosphoris. In (fficial and Tentative Methods of Analysis, ed. 5. cll. 2, irowedure 12 (a), pp. 22-23; ch. 12, procedures 5, pp. 125-126. and 30 (b), p. 133.
(6) … --
1940. potassicm. In Onicial and Tentative Mrethods of Analysis, ed. 5 ,
(7) --- $-\cdots$ ch. 2, proeedures 41 (c), p. 31, and 42 (a), p. 31.
1940. stoars. In Oficial and Tentative Mrethods of Analysis, ed. 5 , ch. 27 , procedures 28 and 29 , pp. 3 3s 359 ; ch. 34 , procedures 24 (c), p. 495, arm 36, pu, 499 - 000.
(8) Borst, H. L., and Thatcier, L. E.
1931. life history and composition of the sombean plant. Ohio Agr. Expt. Sta. Bul. 494, 96 pp., illus.
(9) Earle, F. R., and Milver, R. T.

193S. the ofrtrhence of phosphoncs in soybeang. Oil and Soap 10: 41.42.
(10)

Feilers, C. R.
1915. the efret of notilation, ferthizeh treatmext, and certain minerals on the yield, composition and nodele formation of soybeane. Soil Sci. 6: 81-129, illus.
（11）Fisher，R．A．
1936．btatistical methods for research workers．Ed．6，rev．and enl．， 339 pp．，illus．Edinburgh and London．
（12）Garner，W．W．，Allard，E．A．，and Foubert，C．L．
1914．OLL CONTENT OF SEEDS AS AFFECTED BY THE NUTRITION of THE plant．Jour．Agr．Res．3：227－249．
（13）Hartwell，Burt LL．
1920．field experimhnts which included the bot beañ．R．1．Agr． Expt．Sta．Bul．183， 15 pp．
（14）Hopper，T．H．，and Johnson，Muried．
1941．flax prodection and climate of norte dakota and minnesota， 1919－1937．N．Dak．Agr．Expt．Sta．Bul．298， 71 pp．，illus．
（15）Kincer，J［oseph］B．
1922．precipication and hemidity，In Atlas of American Agriculture， Part II，Climate，Sect．A，U．S．Dept．Agr．Adv．Sheets $5,48 \mathrm{pp} .$, illus．
（16）Lamb，C．A．，and Salter，Robert M．
1936．response of wheat varieties to different fertility levele． Jour．Agr．Res． 53 ： $129-143$ ，ilhus．
（17）一一一 and Salter，Robert M．
1937．hebponge of oat varieties to different fertility levelg． Jour．Agr．Res．$\overline{5} 5: ~ 785-793$ ，illus．
（18）Lipman，Jacob G．，and Blatr，A．W．
1916．factors influencing the photein content of soybeang．Soil Sci．1：171－17S．
（19）Love，Hakry H．
1936．application of statistical methods to agricultural regearch． .01 pp．，illus．Shanghai．
（20）Mores，W：J．，and Cartier，J．I．
1939．boybeans：culture and varieties．U．S．Dept．Agr．Farmers＇ BuI． $1520,39 \mathrm{pp} .$, illus．［Revised．］
（21）Odhand，T．E，and Leh，G．F．
1939．soybean yarietieg for bay and grain．R．I．Agr．Expt．Sta． Bul．271， 19 pp．，illus．
（22）Pipen，Charles V．，and Mohse，Willam J． 1923．THE soybean．＇f 29 pp．，illus．New York and London．
（23）Salmon，S．C．
1940．the die of modern suatistical methods in field experiments． Amer．Soc．Agron．Jour．32：308－320．
（24）Smirnova，M．I．，and Lavrova，M．N．
1934．vahiation of the chemical composition in diffenent soybean varieties．Trudy Prik！．Bot．，Genet．，i Selek．（Bul，Appl． Bot．，Genet，and Plant Breeding，Ser．III，No．5，pp．1－103， illus．［In Russian．English summary，p．103．］
（25）Snedecor，George W．
1940．statistical methons aprlied to experiments in agricultote and biologiv．Ed． 3,422 pp．，illus．Ames，Iowa．
（26）Stanh，Robert W．
1924．environmental factors affecting the protern and the oll content of soybeans and the fodine nember of soybean oll．Amer．Soc．Agron．Jour．16： 636645.
（27）Strlngfield，G．H．，and Salter，Robent M．
1934．differential hesponse of corn varieties to fertility levels And to seasons．Jour．Agr．Res．49：991－1000，illus．
（28）Vilsobn ${ }^{\text {N }}$ N．J．
1937．an investifation into the composition of the soybean in sotit africa．Union So．Africa Dept．Agr．and Forestry Sci． Bul．169， 68 pp．
（29）Washborn，W．F．
1916．sort bean oil．N．Dak．Agt．Expt．Sta．Bul．I18，pp．33－48．
（30）Wedster，James E．，and Kiltz，Berton F．
1935．ofland protein studies of oklahoma grown sor deans．Okla Acad．Sci．Proc．（1034）15：32－36．

1

[^0]: ${ }^{1}$ Submitted sor publication June 1841 . This work was performed under an allotment from the Special Resenrch Fund Butharized by Thie I of the Bankhend-Jones Act ol June 29, 1035.
 2 the assistance of those who have made the progress of these lavestigetions possibic is tratefully acknowledged. The planting, observation, and harvestimpol the fleld plots and rod-row tests were made ander the supervision of the setimr author by Leonard F, Williams, J. D. Vnsvery, Ablemt E. Probst, C. K. Shuman, Denver t. Allen, and Miartin G. Weiss of the Division of Forage Orops and Disenses, Buregu of Plant Industry, nind by $\mathrm{A} . \mathrm{M}$. Munger and L. L. MeHones, formerly of that Division. The chenticel analyses of the soybeans were made by the amiytical section of the laborntory, first unther the supervision of R. T. Minder of the Burenu of Aprleulturat Chemistry nut Engineering, and later under that of the funloranthor. The following nanlysts nssisted in the work: K. R, Mafors, P. Krauczumas, F. J, Max, W. C. Bull, C. R. Scholfield, R. F. Kelly, M. F. Stiekneg, and L. E. Wener of the Burcat of Agreultural Chemistry and Engincering. Credit is also due to Ruth E. Schmutzler of the Division of Forage Crops and Diseases and O. R. Weber of the Divisions of Ceren Crops and Diseases and Forage Cropsand Discases, Butcaus of Piant industry, for their bid tn tha statistical work. The help of L. F. Thatcher, Ohio Agricultural Experiment Stetion, is acknowledged for bls aid in handing the soll lerthity-lovel plots. Acknowiedgraent is gratefully made of the yalunble assistance of W. J. Morse, senfor agronomist, Burean of Piad induatry, in planaing and guiding the agronomic work.

[^1]:

 Dakata, Ohm, South Jeaknta, and Wisconsin.

 4talic numbers in parentheses refer to Literature Cited, D, B5.

[^2]: ${ }^{5}$ Division of Plent Exploration and Introduction number,

[^3]: ${ }^{4}$ Compiled from Clitnatologicul Duta issues of the U. S. Wenther Bureate.

[^4]:

[^5]: ${ }^{1}$ Missing data suppited.

[^6]: I Missing data supplied.

[^7]: 1 Variety means represent 5 locations; locstion means represent 10 varicties.
 $20=$ signifantly lower than general mean ($\overline{0}$-percent lerel).
 ${ }^{\circ}=$ highly signiAcantly lower than meneral mean (1-percent level).
 -In cosse of means=significantly higber than gencral menn (5-jercent fevel). In case of mean squares, asgulacant (5 -percent levch).
 ${ }^{4}$ In case of menas $=$ highly signincantly bigber than general mean (i-percent levell. In case of menn squares, heghly significent (1 -percent level).

[^8]: I Private commanication from W. J. Morse giving analyses of selections grown in 1917.
 i private commanication from W. J. Morse giving analigses of selections grown in 1917, Fins, and Waxes, Buresc of Agriculturai Ochamlstry and Enginecring.

[^9]: 1 Missing data supplited.

[^10]: 1 Misshage dman suppliped.

[^11]: ? Varlety inebus represtant 5 locentions; !ocation mans represemt 10 varleties.
 ${ }^{30} x$ gigniffently lowir than gentrat mean (6-percunt Jevel).

 signjicant (5-nurcent level)
 squares, highly sigolifeani (1-jercont level).

[^12]: a Missing data smpplled.
 ${ }^{2}$ Variety means represent 3 locations locatlon means represent 10 varietses.

 ${ }^{00}$ highly slyniftesntly lower that general mean (1 -percent invel).
 -In casc of heans = simnifcantly ligher than general mean (5 jpercent hevel). In case of mean squares. significant (6 -jercent feve).
 ${ }^{* *}$ In case of means $=$ highly signfleantly bigher than getreral mean (1-j)ereent level). In case of mean squares, highy gignificant (i-pureent level).

[^13]: 1 MIssing dats supplicd.
 ; Variety means represent 5 bestions; location means represent 10 varleties.
 O stgnificantly lower than gencrsl mean (0 -percent level).
 $\infty=$ highly slgnif cantly lower than gereral mean (l-percent level).
 -In case of means $=$ signtfleantli' higher than general mean (5 -percent level). In case of wean squares,
 squares, highly significant (i-pereent level).

[^14]: ${ }^{1}$ Mlasing data supplied.

[^15]: ${ }^{1}$ Varjety means represent 5 locations; location means represent io varietias.
 $1^{\circ}=$ signifleanty lawer than gearal mean (5-percent level).
 -a hifhly significantly lower than gencrah man (3 -percent level).
 squpres, significant (5-percent level).

 - In cise of means = highly significantly higher than general mean (1 -percent lavel). In case of mean squares, highly signiUleant (1-percent level).

[^16]: 1 Missing data supplied.

[^17]: 1 Misslog dota supplicd.

[^18]: : Froma table by Lamb and Salter (1G, p. 19t).

[^19]: ${ }^{1}$ Complied from Cilmatolosical Data lssucs of the U. S. Weather Buresu.

