

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

Peat Resources in Alaska ${ }^{1}$

By A. P. Dachnowsht-Stokes

Physiologist, Division of Soil Survey, Bureau of Plant Indusiry? ${ }^{2}$
(Report of a study made at the reguest of the National Forest Administration, Forest Service)

CONTENTS

INTRODUCTION

The increasing consumplion of eommercial peat products for the purpose of addiug humus-forming organie matter to mineral soils and for improving soil conditions, for bedding in stables, as poultry litter, in the preparation of composts with waste materials, and for other pur-

[^0]proses, has created a demand for definite information concerning the different types of peat available and alse a desire to furnish the trade a substantial quantity of standard grades of domestic moss and sedge peat suitable for varions uses.

The state of uncertainty regarding domestic supplies of commercial types of peat of standard quality, including moss peat, and the increasing demand to make the United States less dependent on foreign imports, has forcibly directed attention to the possibilities of utilizing the large peat resources in Alasia. Here muskegs and grassy marshes of various kinds cover large areas estimated at more than 110 million aeres. The numergus inguiries which are received by the Department. of Agiculture have made it desirable to estimate these resources and to indicate briefly the composition and characteristic properties of several bypes of peat recognized by the trade, and the methods and difficulties involved in the manufacture of marketable standard grades of peat suitable for the purpose of adding humus-forming organic matter to the soil and impreving its condition.

As early as 1909, the Uniad States Geological Survey issued a publication deating with the preparetion and possible use of peat as fuel in Alaska, but no survey or description of peat areas was undertaken at that time. In 1939, in responsi to the need for information which would facilitate the industrial utilization of Alaska peat deposits heretofore undeveioped, and make possible a coordinated use plan for the natural resourees in the Territory, a program of fied work was formulated by B. F. Heintzleman, Regional Forester of Alaska, itı cooperation with the Bureau of Plant Industry, to determine the location, quality, depth, profile charneteristics, and other lactors of the potential supplies of peat materials that are ascessible and available for commercial purposes and thereby establish a busis for a well-rounded and coordinated development of the 'Ternitory's peat resources. The field work was continued lor a limited period only; it began May 29, 1939, and was carried on until August $7,1939$.

The methods employed in the investication were those generally used in field work. Charts of the United States Coast and Geodetic Survey and topographic sheets of the United States Geological Survey served as base maps. Actaal examination of the peat areas included profile soundings made from the surface to the bottom of the deposits in order to determine the botanical composition of vertical erosssections, to describe their physical characteristics, to reconstruct the types of origimal vegetation and environmental conditions-particularly with reference to the sequence and quality of difforent layers of peat, and to interpret the inherent structural features and reiationships in terms of use capability. The American type of peat sam-pler-a modification of the Wisconsin instrument employed by C. A. Drvis and others-was ased and samples of doubtfui character were sent to the laboratory for macroscopic and microscopic study.

The results of this preliminary investigation on the character and general condition of peat resources in Alnska are here presented. The report includes a brief statement of the sulient fentures of the pent areas examined in Alaska, and appraisal of the factors bearing on the origin, condition, and characteristics of peat materials connected with the problem of their prospective uses. No attempt is made to disenss costs of excavation, preparation, or sale values of pent products or to enter into the technical and theoretical phases of
utilizing the large peat resources of Alaska for commereiai or other purposes. It is considered desimble, however, to discuss the underlying principles upon which any sucecssful attempt must be based, to indicate briefly crroncous ideas which have been entertained, and to outline the working methods which have so far been employed succussfully. The first part of the report deals with the profle features, development, and varying conditions of Alaska peat deposits. Thr second part describes the operatious neeessary in the manufacture of commercial humus-forming peat products for soil improvement.
No claim is made that the following is in any sense a delinitive statement. Necessarily, the investigations have been of a pretimimary and explonatory nature only. To meet more exact requirements that are certain to arise, additional field work should be undertaken. There is need, among other things, for a series of good aerial maps for south-central and interior portions of Ahaska, followed by detailed mapping and a therough inventory of Alaska's peat resourees. A regional experiment station could well be cstablished to determine the possible uses of several kinds of peat of standard quality in the Territory, to inverstigate further the sperifie effiects to be derived [rom their use as soil nmendments ander a variety of conditions, to demonstrate the bencfits to be realized lrom composting with wastes of the fishing and canning industries, and to develop now methods and products. Previous investigations of the value of peat lave beron, and still are, unsutisfactory because they failed to identify and deseribe the kith of peat used. The predominance of the sainnon fishmer and caming industry in Alaska, the expansion of plants for the curing and reduction of herring, and the enterprises connected with raising Cur-bering animals indeate the outstanding commercial importane of these operations as a direet menns of livelihood for many inhabitmuts of Alaska. The adoption of a suitable and eeonomic method of manufacturing and marketing standard types and gualities of peat products and of composting with orgmie wastes would result in estab)lishing a new industry and in chminaling difficulties that are now attendant upon largerseale production.

réslimé of findings

The results of the fiedd work done may be summarized as follows:

1. Areas of pent in Alaskin are almost everywhere called muskegs. The word is of Indian (Algonquian) origm and applied in ordinary speech to matural and undisturyed arens covered mote or less with sphagnum mosses, tussocky sedges, and an open growth of scrabby limber. The use of the word "muskeg", as an ecological term is limited generally to peat-forming vegetation in Alaska and northwestern Cinnada.
2. Muske": can be classified into "slope" muskegs, "raised" muskegs, and "flat" or valley muskers. The names refer to real differences in topographic, structurad, and developmental conditions. The attempt to bring the different muskegs found in Alaska into a systematic arrangement approximately expressive of their ecological relations and history must not be considered final.
3. The first group represented in Alaskn includes all muskegs which have a sloping surface. This is an ocemic type of muskeg formation. It develops in constal regions where the peat-iomming vegetation is
dependent upon cool summers，high precipitation，and high humidity． The pent material accumulates on gently undulating，sloping land whict lies but little above sen level and on slopes of mountain ishands． Over much of the general surface hummoeks of sphagnum mosses rarely dominate any considerable area；they are only of local occurence． Scrubby conifers are associated with various ericaceous shrubs and conditioned by local chauges in water level and acration．The dominants are usually mixed communitios of sedge and moss vegeth－ tion in whill are prominent Seirpus capspitosus，Eriophorum angusti－ folium，E．vatinatum，Rhynchaspora alba，and several spocies of Sphaynum．Essentinlly the same type of vegetation covers the muskigs in higher phateaus and high lying slopes of mountains． Most of the muskegs began as sedge marsibes but often contain，below the present surface，one or two layers of stumps of spruee or pine forests which inveloped duting drier conditions．Slope muskers ate common in the exposed coastal regions bordering the Pacific and eertain forelands of Prine Withinm Sound：they inte espectally prominem on Mitkof ishand．
4．The seeond group in Ahask is sepresemted by the mised muskeg． It is distinguished by the marked convexity of the surface and hum－ mocks of sphagnum mosses which ly their cominnal upwarl growth lend to the accumuntion of moss peat reaching sereral feet in thick－ noss．High atmosplaric humidity and strong acid reaction accom－ panied ly a lack of nutriont miturat salts are the enviromental conditions which mantain the growth of sphamum mosses．Hum－ mocks are colonized by various phants of which Empetrum nigrum． Tacciniom ritis－idem var．mimus，cranberry，and sundew dominnte the surface of hummocks while Rhynehospere spp．tum cottongrase ocrupy the intersening hollows．Small shathow pools of water are frequent but nome of these repersent the sites of former bakes or ponds． Ledum groentandicum，Kalmia glauca，and Andromeda polifolia are the domimant heaths．There is eridenee that serubby heaths and conifers colonize the moss peat of well－drained muskegs．Raised muskegs develop in less extremely wet climatic conditions than those necessaty for the formation of slope muskegs．The group resembles the high moors on the Europan contiment．Chameteristic mised muskegs are well pepresomed at Junem，betwern howard and dope． and eretan localities in the interior．

5．The thied proup of muskers is mpresented in Alaska by the flat or valley muskegs．The group in chasely related to the sloper muskegs， from which it difers in enviroment in its limitation to lowhmes． valley streans，and erlges of hakers und ponds of which the water is more or less acid in reaction athd reladicely poor in soluble minemal salts．The surface of these muskers is liat or coneave and thoid development camot mo beyond a certain heright nor ean it spread laterally．This is probably coeredated with the dependence of the vegetation upon ground waters and its relative inability to grow above the focal water table．The normal suceession is from aquatic peat－forming plant communities to transitional stages dominated by sedges，rushes，and grasses．The hater stages begin with the appeai－ ance of characteristic sphagnum mosses nud their associates．This is correlated with marginal colonization by heaths and conifers．Any incrensing density in shrubs or trees may eventually kill out the sphag－ num mosses in the ground cover．Representative muskegs of this
group are located in the Copper River region, in the valleys of the Anchorage district and in the interior.
6. Information on the wildife of muskegs and the interrelationships between animals and yegetation is very limited. Muskegs show as yet no effect of grazing or the feeding by game and herbivorous fur bearers. There are signs of browsing on tree seedlings and twigs of low deciduous shrubs, and of feeding on beries and other fruits. There is an abundaner of shelter and food but, except in southeastern Alaska, the supply may be maecessible during the long winter months owing to henvy snowfall. Exeavated areas of pert, if not used for agricultural purposes, should be ponded and reserved for willlife.
7. Evidence points to the reent sinking of the shore line in certain phaces in Prine William Sound, and the subsidence of slope muskegs bolow sea level at Bomb Point mad Fidago Bay.
s. Muskegs at Wasilla Lake and in the vicinity of the Matanuska Arricutural Experiment Station rontain layers of Chara marl below the surface. The calcareous matemal is of grood quality and oceurs in considemble aboudance; it has palential value for reducing the aridity of agrieultural soils and in the manufacture of Portand cement.
9. Among the quabifing hactors that affect muskegs in the interior of Anska are hayes of Voleanic ash, wind-blown sitt, and a permanenty frazen condition. The line of permanent frose appears to have been rising periodically. Summer thawing ranges ustally befwem 20 to 45 mather below the surfice.
10. The interpretation of profile features of pent deposits has not adranced far enough to permit any deftite opmion as to the age or the pertod of time neressary for the areumbation of differea layers of peat in muskers. There is a possible relation (o Enropera postglacial periods.
11. The areas of peat buried moder many iee of stratified silt, gravel, and iee in the valleys examated nem Farbanks, would serm to represent interybacial periods in contrase to the present muskegs on the surfare of the valleys which in all probability developed since the last gracial stage. Thiese valieys are a reord of the prohistoric past; they contain valuable fossils of extinct animal life and plant remains of amont muskegs; they offer a unigue oppertunity for the seifentife study of the matum history of the rexion, changes in elevation and dimate interglacial stages, and the movements of vacetation and animal life. Portions of these watheys should be veserved by the Teritonal govemment for a study of the revod and its important relationships.
12. The agricultumal and industrial utilization of muskegs in Alaska should be a part of the regional phaning in wheh vatous interests are considered and adjustod. Several tervitorial and Federal agencies cond participate in a coordinated program. A more detailed and compmensive suryey of Alask peat deposits, in all its aspeets. should be ineluded in the series of regional phaning studies made for the development of the resourees of the Territory.
13. The presence of arer-frozen muskegs and mineral soils in the interior has not attracted many to agriculture. Nevertheless, the depth to which surfare layers of soil and pent thaw during the short but wam and dry summers and the reservoir of moisture they constilute, have decided adrantages. Aceording to sethers, erops such as rya, oats, balley, whem, many kinds ol vegetables and gokd pasture
grasses grow remarkably well and never suffer from drought during the growing season where frozen subsoils are melting.
14. Niontana Creek muskeg near Junean, Moose Lick muskeg on the road between Seward and Hope, and the muskeg near College in the Fairbonks district contain surface layers of sphagnum moss peat which are of good quality. They are suitable for commercial uses and as a source of supply for continental United States. The thickness and purity of the material depend largely upon the particular environmental conditions where the accumulation occured.
15. Most of the muskegs in Southeastern Alaska and in Prince William Sound consist of sedge peat. A good quality of commercially important sedge peat occurs at Petersburg, in Hamilton Bay, and other localities. It is overlain by sphagnum moss peat varying in thickness from 8 to 20 inches. Other types of peat, such as woody pent, hypnum peat, and sedimentary peat occur in minor quantities.
16. The seeond part of the report discusses the current demands for sphagnum moss pent and sedge peat as a sotrec of humus-forming organic matter for soil improvement. Field operations are deseribed rolating to practical working methods such as draining, excavating, drying, shredding, and packing. Selection of a few accessible deposits containing a good quality of moss or sedge pent, a uniform grading system, and maintenance of standurds of quality would avoid difficulties and mistakes of past commercial attempts. It would also benefit the research that should be molertaken to serve as a basis for the intelligent use of standard types and grades of pent materials under various soil and cultural conditions for the growth of plants or for other purposes.

general featuris of the peat deposits

Alaska has an area of about 586,000 square miles or about a fifth that of continental United Stales. It has a variety of climates, land forms, and vegetation and may be divided into six principal regions each with distinet characteristics and varions natural resources including different kinds of peat. A genera inventory of existing land resources shows that about 70 pereent of the total area of Alaska is covered with vegetation of which about 50 million acres has wres suffeciently dense to be classified as forest, approximately 100 million in tundra, and nemy 110 million in muskeg and grassy marshland (41). ${ }^{3}$ The Territory is almost wholly in Federal ownership and studies are under way for a careful planning of the use of these land resourees and for vigorous measures of conservation.

Alaska has two mational forests, administered from a regionat office of the Forest Service in Juneau. The Tongass National Forest inchades the greater part of southenstern Alaska, and the Chugach National Forest covers the timber belt on the shores of Prince Wiliam !found.

In Alacka the terms "tundra" aud "muskeg" have no satisfactory geographie or deseriptive definition and there is a prevalent confusion as to what constigutes a muskeg. This is true both in common parlance and in various publications which have described the vegetation of the Tervitory. While the term "tundra" covers all treeless vegetation of whatever type and is applied to a wide range of both

[^1]organie nad inorganie material, as shown on a may prepared by the United States Soil Survey (40), the so-called muskegs appear to have greater significance with reterence to a very definite mode of origin and structural formation. The term "maskeg" is of Indian (Algonquann) origin denoting an area covered with sphagnum mosses and tussocks of sedges. It seems best, for the present, to let the distinctions between different kinds of muskegs rest on the individun descriptions given in this report.
Before giving any detailed evidence for the character, composition, and stratigraphic features of the separate muskers in Alaska, it will be desirable to outline some of the basic facts and methods on which the conclusions rest.

It is no longer necessary to explain the several limes of inquiry and the methods of fiold work appropriate for a study of peat deposits that may be applied to an annlysis and classification of the various kinds of organic malerial which they contain. Such information has been set out in earlier publications ($2,13,14$). It will be recalled that the most obvious method of determining the main character of primary peat materials is based on the external form and the botanical identification of the phant remains which are sufficiently well preserved to be reeognizable. Peat materials of relatively uniform composition and purity represont a type and are classified as woody, fibrous, or sedimentary. Those grouped as woody include conse, lumpy, partly decomposed woody fragmonts, irregular to angular in shape, leaves, needles, hark, bits of. wigs, roots, and other components of trees and shrubs, as well as woody granular material, the conrseness or fineness depending on the degree of decomposition. The peat materials grouped as fibrous consist of underground stems and roots of grasslike phants which show more or less well devoloped horizontal cleavage plains or lamination, while those dorived from entire smail stems, such as sphagnum mosses prefered for commorcial use as stable bedding or packing and shipping seedlings and cuttings, are often characterizod by small columnar lumps and vertical aggregates. The third group includes all pat materials which are more or less colloidal or jellylike, torm a coherent and sticky mass, shimk greatly and become batd upon air-drying, and represent finely divided organic sediments that aceumulated in open water from aquatic vegetation.

The terms "muck" and "peat" have often leen used indiscriminately in literature. The term "muck" is properly used when it refers to any peat material that has been altered by dramage and aeration, the action of micro-organisms, of cultivation and consequently has atdanced in stage of decomposition so far that its botanical chararter is no longer evidant. According to its origin mack may be designated as reed muck, sedge muck, ete., the name referring to the type of port which has undergone decomposition. Muck is residual poat material ; it is usually granular in structure and the components are relatively loose and more or less rounded in shape. The breakingdown process may procned to complete pulverization. Muck is generally dark brown to black in color; it differs in the quality of its residues, is relatively low in absorbing capacity for wator and soluble salts, and the mineral content may range between 5 and 35 percent. Muck which contains more than 40 percent of mineral mater should not be confused with the well-decomposed and mineralized organic
muter in soils which is syntherized by micro-organisuns and spoken of as hamus. lafomation on physical and cheniend propertios of different kinds of peat is given in (Proubar 200 (12). Analyticnd data of entive peat profles from variotus secions of the [ruited States ure clisenssed in Trohmieal Bullotin 214 (/6). Adequate structural and comparative field deseriptions upon which developmental views may be based, und coordinated haboratory tests of sumples trom the enfire depth of a peat mea constitate the menne to draw eorred conclasions as to tho main proeess and eonditioms whieh grive rise to differences in fegetative cover, in stratifation or amogemeat of tavots of pent below the surfuce, and in tho main properties of the various peab materials.
 which differ in quality necorling to the ehameter of the peat-formmer Verebation and the eontern of mineral or othar eonstituents and useless or harmful mater. 'Thas the sucerssive lapers of perat in a deposit reflee the ehmenes in the composition of the regedation which rephered one anobler in at peat are throughou the whole period of its formation $(2 f)$. By the comparative exmmintion of phant remains and the stratigrmphic sequener of peat hayous of muskegs all over Alaska, if has berome possithe to matablish a coordimated fistory of the eomplex develoment which the muskegs have followed in response to changes itn climatie conditions, in water table and in supply of soluble satts afferibur physiologionl mod other vital processers, as well as to eftects of tronght, fires, floods, and arosion. In this way an analysis of the peat hyers superimposed upon one mother may fermployed also as thenotogical seale thainsi which other erents. sueh is climatike eycles. voleanier eruptions, or changes in sem bevel, can be measured (10, 11).

Figute l. - Numbers and appoximate tocation of moskegs cammined in Aluska.

The map shown in figure 1 indicates the location of the muskegs by name and number examined in Alaska and presented in this report.

PEAT RESOURCES IN SOU'PHEASTERN ALASKA

Most of southeastern Alaska lias within the 'Tongass National Forest. The dominam feature of this region is its monntainous character. Brooks (4) has described some of the geographic fentures. It comprises a marow mandand strip of the constal mountain range and a chain of ishands separated by a network of deep marine water courses. On the islands the mountains rise to heights of 4,000 feet and on the mainlund the peaks reach in places mome than 10,000 feet above ser hevel; they extend southeastery from the main body of the Temitory and along the west side of British Columbia. The islands, viewed from the watervats, are mountains which rise sharply from the water's edge. The hargest of these are Prince of Wales, Chigherof, Bananof, Admirnliy. Kuprenaol', Kum, Kevilhgigedo, and Mitkoí. Tho land forms indicater results of extensive Alpine ghaciation, the special leatures of which are Datterhornlike peaks, U-shaped and hanging valleys, cirques, mal finty extensive flat and wide lower valleys. There is lithe level land.

Because of the rough topography only short roads have been ronstrueted in towns and adjacont sethements. The region is most accessible by stemmers which operate through the Inside Parsage betwen Seathe. Foneouver, and Alaskan ports, and by airphanes and motor-driven launches used to rench intermediate places.

Southenstern Alaska is the most highly developed part of the Feritory; it contains one-thied of the total population, the grenter amounc of the fishing and caming industries, and a dense growth of forests of which the harger butk is commercin timber. The principal fowns are Juncha, Sitka, Eetehikan, Petersburg, and Wrangeh.

The climate of southeastern Alaska is mild, being moderated by the warm ocema curents of the northem Pacific. The summers are cool and the length of the growing season is nbout 160 days with long daylight in June. The period of heaviest precipitation is from the lafter part of August to December and the least from April to July. It is heaviest on the istands in the southem part of this region, diminishes northward, and appears to be much grenter on the mountain slopes thm at sea level. The total number of miny days in a year average 160 . There is no evidence of any areumalation of snow in the ghaciers, most of which appear to be receding very slowly. The preFathor winds come trom the south and southwest, and noitherly winds nhmost invariably bring fin and dy weather. The winter temperafures at sea level are comparable with those on the Athatir Const. The lowest sea-level tempernture on record at tumean is $-15^{\circ} \mathrm{F}$., at Sitka - 5° F., and at Ketrhikan - $8^{\circ} \mathrm{F}$. However, owing to the worthery latifude, the minimum temperatures drop rapidy with increase in elovation above sea level and with distance from tidewnter.
${ }^{\prime}$ Theme is little agriculture in southeastern Ahaska. Nost of the small arens under culfivation are near lowns, at the head of some buys, and on the tidal flats of wheth the grasses are used as forage for livestoek. The lower slopes of the mountains are timbered. Dense forests of hembock (74 perent), spruce (20 perceni). "cedar." pine and other specios (6 percent) bover practienlly the whole nrea to altitudes of 2,000 to 3.009 beot (87). A crowth of serubby conifers, alder, and withon extend in pheres 1,000 fee beyond these atitudes associnted with alpine vegreation, gheiers, and waterfalls. Seatered bhrough
the forests and in the foothills, on the fiats or benches and along the shore, occur areas of peat generally called muskegs and covered with vegetation consisting of sedges, sphagnum mosses, heath shrubs and scrubby lodgepole pine, "cedar," or spruce. A map giving essential data regarding the distribution of peat areas examined in this region is shown in figure 2.

Muskegs of the Ketchikan District

The Ketchikan District forms the most southern portion of the Tongass National Forest. It inchudes several islands, the larger of which are Prince of Wales, Revillagigedo, and Gravim.

REVILLAGIGEDO ISLAND

Revillagigedo Island is in the extreme southeastern part of Alaska. Ketchikan, on the southwest const of the island, is the leading port of entry; it has a number of salmon cameries and is an important center for frozen and iced fish shipped to eastern markets.
The island is separated from the mainland by the Behm Canal, and from Prince of Wales Island on the west by Gravina Island, Oleveland Peninsula, and Clarence Strait. The shore line is very irregular and deeply indented. The surface of the island is mountainous, varying in relief from 1,560 to 4,560 feet. The whole aspect of the landscape is characteristic of a glaciated region. Most of the island is heavily forested practically from the water's edge up to an altitude that may reach about 2,500 feet, depending upon local conditions. A relatively small percent of the lowland and lower slopes of valleys has features that are characteristic of muskegs and other types of pent land. They vary in size and as to possibilities for commercinl use.

KETMHIKAN (NO. :

In constructing the Tongass Highway, a rond from Ward's Cove to the lakes at the upper ond of the Ward Creek dramage, a cut was made through a muskeg (No. 1 in figs. 1 and 2) which shows the curved surface that is given to a peat deposit by the upward growth of sphagnum mosses absorbing and holding rainfall. The prat area is one-half mile northcast from Ward Lake or approximately 8% miles northenst of Ketchikan and at an elevation of about 50 feet above sea level. It covers less than 2 acres and occupies a troughtike depression scoured out of the rock by ice. The muskeg has a wellmarked convexity (fig. 3), with margins sloping down to the forest floor, and supports a ground cover which consists of low cushions alternating with hollows formed by the growth of different species of sphagnum mosses. Typical species are Sphaynum cuspidatum in the wetter habitats with an occasional species of Rhynchospora. On the drier and firmer portions of the hummocks occur S. fuscum, S. rubrum, S. squarrosum, and others. The latter are characteristic primary peat-formers of the mosses which cover the area. Associated with them are herbaceous plants such as Scirpus caespitosus, Eriophorum sp., Drosera rotundifolia, D. intermedia, Empetrum niyrum, cranberry, low blueberry shrubs, and others. This community is in an actively growing condition and colonized by small heaths such as Ledum groenlandicum, Kalmia polifolia, Andromeda polifolia,

Ftaure 2.-bistribution of the muskegs examined in major districts of soutileastern Alaska. National forest and palp-timber allotin ent boundaries are shown. Numbers of muskegs correspond to numbers in figure 1 and in headings of deseriptive matter to follow.

Vaccinium uliginosum, and a scattered dwarted growth of todgepole pine (Pinus contorta), Alaska yellow-cedar (Chamuecyparis noothatensis), and mountain hemlock (T'suga mertensiana)- (he latter low and fan-shaped. They give the area the aspect of raised moors described in former publications (19, 14, 29, 53).

Profile soundings made on the west side of the road, as weil as cross sections exposed in the cut, indicate three distinct layers of pent as follows:

Abstract

$0-21 / 2$ feet; moss peat. The material in the lummocks consists of vertically elongated components and is typically spongy for the first 8 inches shading from a yellow-brown to reddish-tinted moss peat below the first foot lovel; in the decper central portion of the peat area, the surface muterial to a depth of 18 inches embsists of reddish-brown, spongy, gompacted moss peat, relatively well-preserved, having a reaction of pH 4.0 : it is followed by thin seams of darker-colored moss peat in an advanced degree of decomposition, representing probably the plant

Figune 3.... A muskeg near Ketchikan, showing characteristic convex surface sloping from the enter towards the margin where it nerges with trees of the surrounding forest.
remains of a hollow depression on which, Iater, a hummoek developed; the layer slopes toward the margins, is thimer at the edges and contains smatl amonts of woody roots from cranbery and shrubby heaths: on the east side of the road the content of woody material is Jarger. The lower portion of the layer has an admestare of roows and rhizomes from cottongrass amd other sedges, is grayish brown in color, slightly decomposed, and contains dark colored organic residue.
$21 / 2-3$ feet; brown woody peat witi stumps ind roots of conifers and rootstocks of heaths; the layer is thinmer in the central portion and more fibrous from plant remains of tussochy sedges; in phees it contains a litter of needles and leaves of heaths showing very little disintegration; the material is acid in reaction.
$31 / 2-6$ feet; sedge peat, yellowish brown in color, more or less matted fibrous and definitely horizontal; it consists principally of rootiets and underground stems from a variety of sedges; at the lower level the material tends to be erombly and contains herbaceous plant remains, thin woody rontlets, seed capsules, bits of bark and twigs and scales of insects: the layer is fuirly sharply demarked from the underlying minctal sulstratum.

6-6 $6 / 2$ feet; dark gray micaceous sathl whieh montains well-decomposed organie residue with a reaction of pH 5.8 .

In the stratigraphie development of the raised type of muskeg it is evident that a marsh of grasses and sedges was replaced by a scrubby forest and later succeeded by sphagnum mosses which gave rise to u convex surface.

POINT HIGGINS (No. 2)
Contrasting sharply with the Ketchikan raised muskeg is the flat area of peat between rock outcrops near Point Higgins on the Tongass highway. It is an example of a local type of muskegs determined by
ground water overlying an impermeable rocky plateau where drainage is impeded. The surface is relatively flat, and the ground cover of sphagnum mosses is thin and not continuous. The area is timbered, the principal species being western hemlock (Tsuga heterophylla), lodgepole pine, and Alaska ycllow-cedar. The trees are slow-growing and usually quite limby. Among the heaths, the lowbush blue berries (Vaccininm caespitosum, V. uliginosum) and the mountain cranberty (V. vitis-didaea var. minus) are relatively abundant with various sedges, notably Scirpus caespitosus, which occur in patches and dense clusters. In general the flora inclicates a transition in which trees predomimate and tend to encroach on heaths and their associated sedges. Spaghmum mosses have not succeeded in forming a distinct layer of moss pert.

The profice features of this muskeg are quite complex. Soundings made in sections where moss hummoeks oncur, give the following record:

0-10 inches; the upper 6 inches consist of mosses whieh merge with yellowishbrown fibrous sphagnum moss peat; the material contains fine roots and underground shoots of eranberry ('「accinium oxycoccus, V vitis-idaea var. minus), crowberry (Empetrum nigremt, and Clondbury (Rubus chamaemorus); the lower 4 inches are moist and roots of heath shrubs are abundant; in the denser wooded portions of the area, there is a well-developed root and stump level to the depth of 18 inches; the roots of stancting timber are frowing horizontally and distiactly flat based;

10-36 mehes; reddish-brown, matted sedge peat, partly decomposed; it contains plant remains from sphagmum mosses; near the second foat level it consists of datk-coloced material with woody roots of trees and shrubs; the lower portion of the layer is sedge peat free from woody fragments, saturated with water atd acid in reaction;

3-7 feet; water poeket; contains brownish-colored organie residue in suspension;
7-8 feet; brown fine-gramed stieks sedimentary peat:
8-10y/2 fect; dark-brown matied filarous sedge peat acid in reaction; woady material and thin seams of sandy fine-grained organic residue are thore frequent toward the louttom;

101/2-12 feet; greenish-gray fine sand with plant ramains from woody shrubs, grasses, and sedges, gradibg into dark-colored micaceous sand and, at lower levels, into bhishi-rraty sandy clay.

Starting with the oldest layer, the development has been from a sedge marsh which supported woody shrubs, indicating that the water level was low at the primary stage. Later a rise of the water table occurred, expanding to the size of a small lake or pond in which sediments necumulated from aquatic plants. A floating mati of selges contributed to a hayer of sedge peat unable, however, to fill completely the body of water. Sphagnum mosses invaded at a more recent period, but trees near the edge of the muskeg ndvaneed upon the pent area and mantained themselves effectively under present surface conditions.

PRRSLVERANOF (NO. B)
Among the more interesting types of muskegs are those which cover slopes of hills and of mountains. They represent a type that may well be called slope muskegs. Characteristic exampies are the muskegs which oceur along the trail to Perseverance Lake at points about 1,000 feet and 2,000 feet from its junetion with the road to the seeond Ward Lake.

The muskeys have in general a gentle slope and conform to the fopormphy of the foothills. The surface irregularities possess characteristics that are due to shatlow pools of water which show no inclien-
tion of drainage. The dominants are sedges, usually mixed with sphagnum mosses. The trees are mostly lodgepole pine and hemlock, "cedar" being less abundant; they grow scattered, low and dwarfed; although in the open, their lower branches continue to die from unfavorable soil and ground-water conditions. The shrubs are small and dominated by heaths. Herbaceous plants and sedges are conspicuous, the following plants being prominent: Scirpus caespitosus, Eriophorum sp., and Rhynchospora sp. They constitute a more important characteristic of the ground cover than sphagnum mosses. Any noticeable convexity of surface is generally due to the rounded topography of the underlying mineral substratum.

The profile sections, obtained by sounding the small area along the trail about 2,000 feet from the road, are typical of slope muskegs, as follows:

0-1 foot; thin cover of light-brown fibrous sphagnum moss peat showing no appreciable differentiation from the color and texture of the growing mosses; it varies in thiekness from 3 to 5 inches; the material overlies a thim seam of darkcolored sedge peat which contains an admixture of sphagnum mossts and the woody roots and slooots of heaths; the material below it consists of dark-brown fibrous sedge peat much of which is waterlogged, giving a reaction of pH 4.5 to 5.0 .

1-73/2 fect; brown fibrous-matted, somewhat felty-fibered sedge peat; between the 4 and 5 foot level, the layer contains woody fragments from shrubs and conifers; it grades into a compacted yellowish-brown fibrous sedge peat; at the 7 -foot: level, the material is dark brown in color, in an advanced degrec of decompasition and crumbly when dry; it grades sharply into very dark-brown sandy organic residuc;

7/2-8 feet; firm dark-gray micaceons fine sand; very compact at the lower level. THORNE AFM (NO. 4)
Another notable contrast to muskegs of the raised and the flat lowland group is an area of peat which occupies a slope about a quarter of a mile inland on the westi side of Thorne Arm bisecting Reviliagigedo Island. The muskeg lies near the head of the bay and is reached by a trail. The peat area is best defined by its vegetation cover as that of a transition stage from a moss-sedge marsh to a succession of low heaths. The surrounding timber consists largely of Alaska yel-low-cedar, with Sitka spruce (Picea sitchensis) and western homiock The shrubby undergrowth represents an open growth of heaths and the herbaceous cover includes, aside from Scirpus caespitosus, Eriophorum sp. and Rhynchospora sp., such piants as Callha biftora, Menyanthes trifoliata, Sanguisorba offeinalis, Lysichiton americanum, Nephrophyllidium crista-galli, Gentiana douglasiana, Viola palustris, Trientalis arctica, Coptis asplenifolia, Cornus canadensis, Lycopodium sp., Limnnrehis sp., Veratrum sp., and others. The area is dotted sparsely with a fow hummocks of sphagnum mosses and small pools of shallow water which, like the pools of most sloping muskegs give a reaction of pH 5.3 and are poor in aquatic plants.

Soundings show the following cross section:
$0-22$ inches: the upper portion of the layer represents a thin cover of moss peat imbedded in closely matted roots of the growing grasses, sediges, and herbaceous plants which merge into brown fibrous sedge peat; the lower portion contains the woody shoots and roots from adjacent heaths, some of the roots extend as much as 18 inches below the surface; the extent and character of roots and the marked development of herbaceous plants are probably due to favorable aeration, although the medinm acid reaction (pH 5.5) and composition of the ground water are, undoubtedly, also involved; below the 18 -inch level the material consists of brown filbrous sedge peat which is very compact and slightly sandy at the lower level.

22-27 inches; dari gray silty and sandy organic residue, very compact and grading into loose gravel; no certain indication of bedrock.

It is to be observed from the profile features that, while the lower portion of the layer is more typically sedge peat, the upper portion represents material of a transitional character; it is not typical of sedge peat in the proper sense but of the plant remains of a stage the succession of which may have significance as an ecological unit and as an important and valuable adjunct in the maintenance of wikl, fur-bearing animals. Considerable opportunity exists on the various ishands for the expansion of herbaceous plants including deersrass (Scirpus caespitosus) which can provide a varicty of food and shelter for some forms of wildlife.

GRAVINA ISLAND MUBEEGS (NO. 5)

The topographic Ceatures of Gravina Island are similar to Revillagigedo Island, from which it is separated by Tongass Narrows. The island forms a comparatively low, timbered mountain mass west of Ketchikan, with bedrock exposed nlong its northeastern and northwestern shore. Some of the muskegs, which developed on benches with a gentle seaward slope, rest gemerally on rock, are shallow, and conform to the topography of the rock bottom; others are llat and consist of peat layers that are more or less horizontal and independent of the configuration of the underlying substratum, while a few show surface layers with a marked convexity.

The irregular-shaped muskegs on the slopes of Gravina Island are less accessible but of greater depth than those near the shore. The structural features of profile sections are typical of the slope muskegs on the trail to Lake Perseverance. The sphagnum moss peat at the surface is thin and not contimuous. Peat-forming sedges have been of greater importanec than woody shrubs and trees and have played a large part, although there is evidence that trees are now adrancing into the muskegs which were originally treeless.

The muskegs on the slopes at higher elevations, particularly those about 1,500 fect from the marine station and in a direction along the pipe line as far back as the dam and water reservoir, lack definite boundaries. They have the aspect of a sedge marsh from the number of sedges mad grassliko plants. The vegetation includes Loiseleuria procumbens, Geum calthifolium, Menyanthes trifoliata, Sanguisorba officinalis, Pinguicula villosa. Tofieldia intermedia, and others. Sphagnum mosses form a thin and irregular surface cover and show clearly that atmospheric humidity and high water-table conditions are not the only factors which condition the sproad of this type of vegetation. From the distribution of the many small pools of water, which are only $\mathrm{pH} 5.5-6.0$ in reaction. it is probable that the content of soluble salts in the ground water is the limiting factor unfavorable for the growth of sphagnam mosses. The rhizomes of sedges are sproading on the waterlogged surface and appear to have little competition. Heaths are of limited occurrence. Among the shrubs are Myrica gale and a dwarfed form of Juniperus communis var. saxatilis. But the profle sections furmish a clearer distinction in stages of plant succession than the erratic character of the surface vegetation. The profile structure, reffected by soundings, has the following features:

[^2]1-7 feet; brown fibrous sedge peat; at the 3-foot level the material is coarsely fibrous, gradiug into dark-brown sedge peat which contains woody fragments and coniferons timber belween the 5 , ${ }_{2}$ and $(3$-foot ievel; below it the sedge peat is grayish brown in eolor, moderately decomposed and contains small angular stones resembling slaty (graywacke) talus;

7-8 feet; rough angutar stones over bedrock.
The profile shows a distinct drying efleet belwern the 5 gand 6 - foot level whore the serge peat is partially decomposed and gives evidence of the position of stamps of an corlier forest.

Muskegs of rhe Petershuig; Disthict

The area in the Petersburg distried of the Tongass National Forest comprises Wrangell, Nitkol, Kıiu, Kupreanof, and seremother seaward ishnds. In qumeral aspert, the topographic character of this portion differs somewhat from that of the Katrhikan district to the south. The const lime of these islands is broken by hays. coves, and chamels marked by low lying hills that rately exeod 1,000 leot in altitude. The bydrograplice maps of this district slaw bumerous inhots and many protected chammels. These border land surfaces with gradual shopes and gently arehed backs, from the hend of the buy toward the steeper slopes some distance from the shore. One of the striking leditures is the shallowness of many bays and inlets. The floors of the stoping lowland appenr to consist generally of bedrock overlan with gravel, cobbles, snad, and silty clay brought down by rivers and gheiors. They are covered more or less effectively with forests and muskegs with a sloping surface. The peat-forming vegetation depends upon atmospheric moisture for its mode of derelopment and is in n sense a climatic lomation independent of local ground-water supplies and the mature of the underlying mineral substratum. Thus slope muskegs are redeted to much the same cool and moist climatic ronditions as raised muskres, exeept that the vegetation of the latter is more highly specinlized and that ground water poor in mutrient salts is an indisponsuble condition for a contimual growth of sphagnam mosses.

Wrangell Island

On Wrangell lshum, as generally in the Petorsburg district, a few types of slope muskers have been observed that are of a character intermedinte between sedge marshes and sphagoum moss bogs. Their pechliar fentures are discussed in the profile deseriptions ciren below. Muskegs of the raised type and herbaceous sedge marshes have not been seen in this section of Alaskn.

WRANGHid. (NG). B

On the north side of Wrangell lsland, near the town of Wrangell, there are several small muskegs none of them exceoding a greater depth than 8 feet. Some of the areas are near the shore and others are confined to slopes of rounded topography. The mountain sides are eovered with conifers but on the peat areas the trees are scattered and dwarfed in growth. Sphagnom mosses are common but of limited local occurrence, supporting varions hathos and herbaceous plants.

Profile sounding, confined prineipally to the areas along the eastern town limits of Wrangell, may be considered to reveal fairly typica!

Figere is.--Oblifue tacrial phetograph of muskens on Mitkof Island in the vieinity of Petersburg.
exmmples of the successive stages of vegetation and the corresponding superposition of hayers of pent that formed the shorewad type of muskegs. Cross sections observed in a number of places mad exposed riong roads and new! y ent ditehes feven the following fentures:

 reaction, and about 7 inchets in thickness; below it are sprace stumps with flat based reoks, and the woolly shoots of heatis.

10 -65 inches: brown fibrous sedge peat somewhat composed tund more or less cohesive from the peseme of fuoly divided organic residue, having a reaction of
 within the sedge peat; the wowly roots are fint aud rest on fine, partly decomposed, dark-brown seder peat; at the fo-inch level the sceige peat is reddish-irown, matted, mone or kess felts fiberodi mar the fin-ineh lovel the sedge peat contains sund and merges intor a sadely, gravelly mineral sulstrathon.

> ski Thall (No. i)

On the slope of the mountain enst of the Wrangell ladinn bastitute is a muskegy locally known as "Ski trail." Mincti of it for 2,000 feect up the trail is treeless and moss-covered. Over considerable portions of the surface the heaths are sman and ineonspicuous and the shablow pools have no drainage. The hrorders show in some plates donse clasters of pine. hemlock, and "redar"' in other places there seoms to be evidenee that trees were killed by local fires.

From soundings made at points between the upper and lowe portion of the Ski-trail moskeg, the structaral fertures of cross sections may be chameterized as follows:

Abstract

 naterial contams chatred wote? fragments and thin blatek seams of charred moss peat; at the lower level are oceational woody roots of conifers and heaths embedded In moss peat which varies in degree of decomposition; the reathon is strongly acid. is 56 inches: brown matted fibemos sedge peat; it consists of fine roots and llattened undergronmid stems from varions sudges and is definitely lamimated; betwean 36 and 10 inches below the surftee ocrur stamps and flat roots of eonjers overlying a dark-bwow partly decomposed sedge peat; the material grades into firm reddish-brown fibrons sodge peat which contans a satady arhnixture near the Fif-inch level and rests on bustelers.

MCTKOF 1SLAND

The most extensive and commercially important acreage of muskegs is that on Mitkof Island, located 111 miles northwest of Ketchikan and 108 miles sometheast of Juneau. The accompunying sketch map (fig. 4), drawn from nerial photographs (34), shows the size, accessibility, and distribution of these areas of peat. The obligue aerinl photograph (fig. b) shows the muskegs along the harbor and the chamel of navigation. In general the maskegs on the island slope at a low angle and the reliel conforms to the underlying rock structure. The town of Petersburg, overlooking Wrangell Narrows, which sepamates Mitkof from Kupreanof islands, is loented on the senward extension of a sloping musker. Its principal industry is fishing for halibut, salmon, crabs, and shrimp, and raising fox, mink, and other fur-bearing animals.

Exposures along Front Street and Hogue Alley within the town limits reveal profiles that shrank greatly upon drainage; a typical sertion of these exposures is as follows:

At the base is unconsolidated and moxidized bluth-gray glacial clayey and sandy gravel; the upper portion of it consists of a thin seam of sandy sedge peat which contains roats and rhizomes from Scirpus caespitosus, tussocky sedges, Equisetum sp., and herbaceous plants, seeds of Menyanthes trifoliata and thin woody roots. Above the glucial till is reddish-brown fibrous sedge peat, matted to felty fibered and more or less laminated; the layer is compressed, stands up

Figune 6.-- Struetural eross section of muskeg at Petersburg, showing bottom topography and sequence of peat layers along a lite (A) parallel with the slope and (B) at right angles to it. Nmbers at top correspond to locations of profile soundings. Ehevations are bused on one eommon datum of sea level.
well in vertical-walled dithers and excasations, and has a thickness of 6 ty feet. It contains hat-moted stump of conifere at two distinet lesels: the bower stand
 by medles, bark, enow, and weody fragments from pine, "exedar," and hombek: the apper one represents a seatered lifht stand of timber approsimately 3 feet above the mineral whatrathm, The presut suface veretation, before its removal, con-isted of dwaffed pine in a gremm cover of whammm moses, beathe, and other plant- common to makeres in this locality.
()n the busis of prommary soundings and observations in open ditehes and cut benks in various other parts of the town of Petersburg it was derifed to substitute for the records of individual profiles a set of tansert eress sections $/ / / 1$ in mindmimed areat and thas to measure the degre of variation in profile features and determine the gemeral course of formation and developoment.

The ares seloeted romprised os aeres. It is lowated in TV. 58.5. Ta li., bewern seetions 27 and 34 , on a slope aboce the northern town Limits where peat had emoditions were relatively uniform. Begimator at lot comer 13 an near H str., Bl indivitud stations were established in the form of chartod quadrats, fifot squme, and phened at intervals
 sea fed fmean high water) were determined with the uid of a surverors whin, thay tevel, and torester's compass, respertively. The senem! sequenere ol peat layers, as a whole, is presented in the dingrams shown in hig. 6 , which are intended to provide in praphice form the profile frabes that chanctorize the nowhern line of the area paralLe with the shope, and the enstern lime at a right angle with the slope. In this, an attompt has been mode to fumish not only the nedessary infommation low intonsise phaning, bat also to show the chameter of the diflerent types of peat superimposed upon ome amother and their relation to the contour of the tuderying mineral substrathm.

The prodile phameteristies may be deseribed as follows:
 in pontact with pretiptadion mostore is yellowish to reddish-brown in cokor, is
 mot erem milomy but varies in thickness and ravely exereds more that bis ineles in depth; the lower porfion. wheh is remeraliy at the level of the flactating whomet-water fable shows an admixhare of roots from sedges and rettougress:

 tioms in texture and water-molding capmedy.
 of a matted wedwark of the roests and hattened matorgwond stems derived fom

 motes inflication and stomge of water, a high-water table, and a reaction abging

 moments of pitnt rematis from sesiges; the materiat is dark hrown in color and xempenents aspast graw of timber unker conditions of lowered water kevels which farored aration and a fair degrese of decemposition.

 fibrous, yombish-brewn material wheb owers at lewer depthe and is saturated with water.
96102 inches; wooly peat, dark brown in eolor and consisting of lat-rooterd
 eruabyy grambar materim, wedhes, comes, bark, fablen timber and coase woody fraghents which show the decompesing netion of air atal micro-organisus; the layer is derived from a eoniferons swany forest that rathed its development on whallow part unker pondifans favernhle Lo (rer growth.

102-120 inches; sedge peat, brown, felty fibered, sonewhat compacted and partially decomposed; the material is grayish brown and sandy at the lower level; it contains seeds of buek bean (Afenyanthes trifoliata), coliodial organic residuc, herbaccous plant remains, and roots and rhizomes which extend into the underlying mineral stbstratum.
$120+$ inches; gray to bluish-gray sandy and clayey gravel.
This record shows that peat formation has been continuous ill ail probability sinee the retrea of the local graciers; that sedge peat of good guality accumbiated in considerable thickness, nbsorbing water, rotarding its monof, and storing it to the point of saturation; that a change of water level intervened bive daring the formation of a woody peat composed harely of material from two conifer forests; that the stand of timber in the older forest at the lower level was fairly dense and consisted of a mixture of hemlock, pine, "cedar," and
 glacial till was of slow and open growth and in smafl patches, hembock being less aboudant; that the present type of timber at the surface is mainly lodgepole pine, stunted, slow growing and widely scattered; and that sphagum mosses have appeared only relatively recently in muskers, as a readjustment consequent to poorer nutritional conditions than did not exist in these localities during the necomulation of sedge peat and woody peat below the surfece near the base. These interesting relationships serve to illustrate how slope muskegs represeat successions of several peat-forming types of regelation superimposed upon one another.
It is relatively easy to segregate the structural featares into layets of peat formed by sedge marshes. swamp forests, and sphagnum moss bogs, but a classification of muskegs camot be based on the assumption that the present surface vegetation and the texture and other characteristies or properties of the pent material just below the surface express significant difiereness. They assist in the understanding and corvelation of the facts necessary for a comprehensive view. It is important to recognize clenty that a serious stady of the complex of factors and correfations has hardiy bogun. It is char that cinssification and use capabilities of muskews must be worked out on a difterent hasis. The problem must br approneded not merely from a descriptive point of view but also from that of history and preticularly of former envirommental conditions of pent-forming vegetation.

METKOH HEHWNY (NO. D)

It is interesting to note that exposed cots and soundiags made in muskers along the Mitkof highway, about it miles southeast of Petershurg, show profile charateristas that are essentially alike to the slope muskers discussed above and to those in localities south of this district. The convexity of the local muskegs is due mainly to the form of the underiying mineral substratum. The surface vegetation is quite similar except that aghatic species of sphagnam mosses are relatively abundant in pools of water. Typical forms are Spaghoum cuspridatum and S. squarrosum, the former dominant also in wet depressions between hummocks. The more conspicuous hummock formers are S. fuscum, S. rubrum, S. medinum and S. papillosum. They nceumulated in places a thickness of 20 inches of moss pat, grading into a yellow-brown fibrous sedge peat below the second foot level. The struetural features of a typical cruss section include
felty-fibered, more or less haminated sedge peat, brown, with a reaction of pH 5.0 , and two separate layers of woody peat containing flat-based roots, stumps, and fallen timber derived from conifers. At the base is a sandy sedge peat, and the mineral substratum nem the 9 -foot level consists of sandy gravel overiaying bluish-green fine sand and silty chay.

KUPかをANOF 1SLAN5

Kupromof lshand is separated from Mitkof 1shand by a narrow tidewater passarge. On the worth end of the isfand are small mountain ranges of which the one near Kake vilhage has sumits rearhing altitudes of 3,000 feet, while the other just west of Portage Buy includes peaks 2,600 fert in elevation. A low pass from Portage Bay to the head of Duncan (amal separates the eastem from the western hat of the island.

The sertion betweon Damem (hand and Wrangedi $\mathrm{Nampows}^{\text {nearest }}$ Petersburg is densely wooded with hemlock and spruce. An exception are the maskergs situated on the Lindenberg Peninsuha in the low pass between the tidal waters. The border of the muskegs has scattered lodgepole pine but there does not seem to be any evidence that trees were killed by fire. The muskers extend for a distame of about 3 miles on a slope of moderate grade. Sedges, including Scirpus capspitosus and speries of Juncus, (fures, a few cottongrass, reindeer moss lichens (rladonia rangiforina and others) and Empetrum nigrum, Kalmia polfolia and severn species of Faccinium, are the charateristio vegetative eover of this area. Sphagum mosses are not dommant; they oren in small hammork on which are found atso Drosera rotundifolia, Rubus chamaumoras, Comus canadensis, Pinguicuth sp., Lycopodiam sp., mad a few fems. There are numerous small shallow pools of water at different elevations, varying in size and turbidity; some contain yellow wate hiy, others support Menyanthes trifoliata or pond weeds; the water is pH 5.0 in reaction and shows no evidence of drainage. An interesting farture is funnel-shaped depressions resembling those mentioned by Aner (l) in his report on Canadian peat areas. They are found rarely in the peat depsoits of continental Cnited States. The funnel examined in this muskeg has a broad upper and a narrower lower conien form of irregulas shape. Its position is on the side of a sloping channel. The exposed profile sertion shows no disturbance except that the peat material in the depression is somewhat more decomposed than that of newly rut sections. There appears to be no subterranean channel since the water level stands 4 to 5 feet below the surface. It seems probable that the funne! is the result of water flowing from thawing snow and ice, or heary rains eroding peat material that is considerably looser in texture than elsewhere.

Profile samples were taken at 1 -foot intervals from the surface to the bottom in several muskegs located on the slope. They ranged in depth from 6% to 10 feet but the deeper ones appenred to be more waterlogged. The vertical sections show the following changes to have taken phace during the formation of the peat deposits:
$0-312$ feet; sedge peat: the upper 10 inches consist of dark-brown partly decomposed fibrous sedge peat having a reaction of pH 5.0 : embedded in it are varying amounts of light yellow-brown sphagnum moss peat, woody roots from heaths and scrubby pine, roots and rhizomes of the growing sedge-grass vegetation; the material below is reddish-brown fibrous-matted sedge peat and relntively: free from woody fragments; it acoumulated under conditions when trees could not establish themselves.
$31 / 2$ feet; woody peat with stumps and flat roots overiying dark brown, crumbly, moderately decomposed sedge pent.

4-5th feet; sedge peat: brown, felty fibered, acid in reaction, with occasional woody roots from shrubs and bits of deciduous leaves.
$5^{1 / 2}-6$ feet; woody peat. very dark brown in color: contains well decomposed organic residue which is gramular but more or less plastic; stumps oceur at the lower level.
fi-7 $1 \underline{2}$ feet: sedge peat, yellowish brown, fibrous, trading into dark-gray sandy. sedge peat.

bortage bay (No. ii)
Similar profile sections were noted at Portage Bay in a maskeg located aboat half a mile southeast of the bay on the trail to Petersbugg Lake. The Portage Bay muskeg is five-layered and its depth is 8% feet at the deepest place. The profile consists of sedge peat and two layers of woody peat at the 5 - and 7 -foot levels respectively. It is to be noted, however, that the sedge peat bolow the 3 -foot and 7 h-foot levels contains an admixture of well preserved light yollow brown plant remains from Hypnum mosses. The underlying mineral substratum is a gray tinted sandy gravel.

KAKE (NO. 12)

The muskegs back of the cannery and the first and second dam at Kake are less accessible and less typical. They vary in thickness of layers and in depth to the mineral substratum. The upper portion of the sedge peat contains small amounts of moss pent but many woody roots and shoots from henths; much of the material below the surface is waterlogged and contains timber which meke it difficult to obtain profile samples.

HAAILITON HAY (NO. 13)

At Hamilton Bay on Kippreanof Island a muskeg oceurs on the south sbore at a point about 2 miles east of Point Hamilton. It is located close to the beach and surrounded in places by an outctop of conglomerate Tertiary rock. Profile soundings indicate that the layers of peat accumulated in a local basinlike depression. Depths to the mineral substratum ange from 2 and 6 feet near the margin to 11 and 14 fort in the deeper parts of the peat area. Scattered stunted pine und a complex of low heaths modify somewhat the appearme of convexity which is evident in the central section when observed from the floor of the helmock and spruce forest around the muskeg. The topography of the surface and that of the undertying mineral substratum on which the maskeg developed, have not heen determined with surveyor's instruments; hence it is diffieult to stater whethor the frea represents a ruised or a that type of muskeg.

Sphagnum mosses have formed large and firm hummoeks in which grow subdew. Low cmoberry, Canadian dogwood and Empetrum. migrum. In places of that kind the living sphagnum mosses can readily be collected with rakes or other pieking devices and the eleared
areas, when properly cared for, should be used to propagate the mosses for future harvests.

The vertical profile structure of the Hamilton Bay muskeg is relatively simple and shows the following leatures in the deeper sections of the area:

Abstract

0.20 inches; moss peat; yellowish to reddish-brown, spongy, varying in thickness from 12 to 15 inches aind gradine into a reddish brown slighty decomposed moss peat which is strongly acid at the lower level.

20-125 inches; sedge peat; the upher portion consists of a mixture of moss and sedge peat, is waterlogged, and contains a few woody roots of shrubs; the material at the 30 -inch level is brown, fiboous, matted and rather firm; near the 70 -inch bevel oceurs an admixture of woody fragnents in brown partly decomposed sedge jeat; the material from the 82 -inch to the 96-inch level melndes yelhwish-inomm well-preserved plant remuins from Hyputem mosses; it grades into a brown frm felty-fibered seclas peat, wheh is stady underneath the 120 -inch level.

125-130 molas; sands gravel over biaish-tinted silty day.

Muskeg of the Junead District

In common with most of southenstem Alaskia, the part of the mainland on which Junenu is situated und the adjacent Douglas and Admiralty lslands are a portion of the rugged mountain mass that had been heavily ghaciated. The islands have no glaciers at the present time but several glaciers still romain on the mainland north and east. of Jmean, among them Mendenhall Glacier, Lemon Oreek Glseier, and Norris Glacier. Mountain erests within 3 or 4 miles of the coast. stand 3,000 feet above sen level, and a few rise to an altitude of more than 4,000 feet (22). A dense forest growth covers the mountain slopes to an altitude of about 1,700 lect and shelters a voriety of muskegs, lakes, ponds, and wildlife.

There are farge samon canmeries on the mearby shores, and furbearing anmals are raised them and on a ntamber of islatods leased from the Forest Servies.

Agrientatre is antimely for local meds mad consists of dairying and growing garden vegretabies and small fruit.

DOUKLAS ISH.AND SKI THALI. (NO, 14)

On the slopes of Douglas Island, which is separated from the mainland by Gastinean Glimmel, the muskegs are of a character somewhat difterent from the types that cover the general surface of the country around Junenu. The island is forested with hemlock and spruce which eatend up to altittedes of npproximately 2,000 feet. An undergrowth of bluebercy brush (Faccinium sp.), devilsclub (Oplopanax horridus), skunkeabbage (Lysichiton camtschatcense), elder (Sambucus leiospermas), Menviesia formainea, ferns, and others are prevailing features of the forest. Isolated lodgepole pine, small and stunted, ure characteristic of the open moss-sedge maskegs which are too wet, for other eonilers. In transition rones which are usualy found about the margins, the forest trees are serubby and ericaceous shrubs are dense.

The mineral soils of the better type of forest near the shore of Douglas Island are characterized by the presence of a thick needle and leafy litter which is poorly decomposed for the first 4 to 5 inches; the second horizon of 2 or 3 inches is dark brown and more or less granthar, wall decomposed organie residue with woody fragments; it
is sharply demarked from a groy loached coarse sandy clay about io to 6 inches thick; below that is dark rusty-colored sand, presumably stained by iron and in phaers rather comented; it shades into light-red sand and gravel whel merges with a gray coarse sandy gravel at a depth of 2 fert or more below the surface.

At a point opposite Juncau, a ski trail renders several muskegs acecesible as far up the slope as the pipe line which carries water to the town below. Beyond that point the trail is indistiact and the muskers which fover the higher slopes were not examined. Howerer, essentially the same yeneral character of vegetation forms the basis of all the local slope muskegs. They have an abundant growth of sedges, patches of sphagnum mosses, and mixed communities of low shrubs usually consisting of several species of henths. Sphagnum mosses do not form a continuous cover and the accumblation of moss peat occurs only in ocensional hummorks.
sioil-profile development in the muskegs is so marked in its infancy that no appreciable differentiation into horizons can be observed. Pent accumbation is contimous, the water table is generally at or near the surface, shallow pools of water are common, and the pH value ranges between $\overline{5}$ and $\overline{5}-\bar{b}$. The amatal addition of plant remans from the low-growing herbaceous vegetation, already mentioned elsewhere in this report. merges into a yellow-brown fibrous misture derived from roots and rhizonies of sedges with material from sphagnum mosses and beaths. The decompesition of the plant remains is greatly retarded owing to the lack of acration, soluble snlts, and the activity of microorganisms. Woody shoots and roots from beaths and pine have their best development it a depth of alout 10 inches below the surface. From the second to the fifth foot level the organic material consists of reddish-brown, fibrous, matted sedge peat which merges into the undellying brownish-gray sand, contaning root chanmels. Below it, the mincral material is gray, bluish-tinted, sandy gravel to 5 ? feet from the surface.

Bedrock exposed on the island is a shate and graywacke with some greenstone (2f). Influences associated with frozen subsoils or wind and roleanic action have not been observed in the profile sections and are not known to exist in this reqion.

JCNENC MANBAND

This section of the district consists of anmow strip of country lying between (hastineau (bannel and the high peaks of the Coastal Range. It is composed of ridges with a northuest trend parallel to the const, und rising more or less steeply from the wateresedge. Forest of spruce and themlock grow in protected loculities, in valley bottoms, and up to altitudes of nensly 3,000 fect. Muskegs occur mainly on the glacial (ill which covers the bedrock of the region; they are foind at a mumber of localities along the const but are believed to have a much wider distribution inhand.

(iABTINEAL゙ CHANNEL (NO. 15)

On the highway from Junen to Mendenhall Glacier a cut which was made in constructing the roadbed, exposes the portion of a muskeg at a point approximately 7.2 miles northeast of town. Rigg ($\$ 8$) has listed its vegetation cover and deseribes the genecal character of the peat area as a raised moor which developed in a satuer-shaped de-
pression and eonsists of three layers of pentr sedge, wood, and sphagnum.

At the time the area was cxamined by the writer (June 1939) a spur road, leading at mile 7 from Glacier Highway to Gustinean Channel exposed a fresh out of the muskeg which revealed the entire profile (fig. 7). Soundings made along the north side of the peat areat on Glaciev Highway corrolated with the profile foatures of the eastern portion where the raised muskeg extends toware the beach. The two cross sections show that the musker developed on a flat which at present has an elewntion less than 7 feet above mean high water, and that a portion of the fint appears to have beren covered at oue time ing

Figuta $7 .-A$ fresh cut of the raised maskeg enclosed by a forest on fiastinean Chamel near Juncau.
the tidal waters of Gustincau Channel at least several feet bigher than the prosent sea level. The evidence consists in a variety of large matino shells from bivalves which were buried when sedge peat began to accumulate. The profile section displays also the remains of old forests at wo levels, the lower one 3 feet above the mineral substratum, the upper about 2 feet higher. The woody peat at the lower level is dark brown in color and contains well decomposed granular orgmic residue as woll as needlos and woody material from conifers; the stumps in it vary in size and are a mixture of hemlock and spruce. The woody peat of the middle layer is less well decomposed and in places charred, indieating the existence of drought and fixes at that time.

Figure 8 records the seguence of a good quality of moss and sedge peat layers and the stumps of the buried middle forest in the upper portion of the cul exposed on Glacier Highway above mile 7. The material at the surface is reddish-brown, spongy, sphagnum moss peat
of good quality; it represents a growth of hummoek-forming mosses and contains none of the woody components, fibers of cottongrass, or seams of decomposed piant remains that characterize wet depressions. In other vertical sections the moss peat represents a more complex development; it varies in thickness from $31 / 2$ to 5 feet and merges below the 5 -foot level into a mixture of sedge and moss peat, yollow to reddish-brown in color. The fibrous materinl between the two forests

Fiovits 8.-Photograph of profile section of the muskeg exposed near Juneah, showing roots of spruce and fallen timber of the middle forest on sedge peat and buried by a subsequent accumulation of sphagmm moss pent.
consists of gray-brown, felty-fibered sedge pat while that near the bottom of the muskeg grades into sandy sedge peat with iron-stained root channels. It merges with a bluish-gray sandy clay, firm and mildly slkeline in reaction (pH 7.5). A tough giacial till, obviously derived from a former tributary of Lemon Oreek Glacier, covers the bedrock of this region, and marine fossils are found at a number of localities. Marine shells have been reported by Knopf (22) and are believed to have a much wider distribution inland, although generally concealed under peat.

There are several reasons for giving this maskeg a unique value. A feature of great interest is the fact that the period when the shore
of Gastineau Channel was free from ice and subsequent high tidal water was brought to a close by an advance of vegetation. Parts of the channel shore undoubtedly became forested from the timber line to the water's edge. As in the forest of today, the tree species were hemlock (Tsuga heterophylla, T. mertensiana) and Sitka spruce. But the superimposed ancient forests that grew at two levels on sedge peat and replaced the origimal sedge marsh may possibly indicate a general change in dramge or climatie conditions, or both. It is probable that the local ise movement included a number of advances and retreats. Durng a retreat, conditions favored decomposition of sedge peta at the surface and permited tor a time the invasion and growth of coniters. The timber was in turn buried beneath a layer of sedge and finally by moss pent, which accumanated during the later course of avents that terminated the successional development of the previous major groups of vegetation.

In this connection the interesting question sugrests ifsell, whether the ancient lorests buried in the muskegs of this sistrici and elsewhere in Alaska are contempormeons with the inter;acinal lorests reported by Cooper (7) at wo levels in the morainal gravels of localitios recently uncovered by the reeession of ghaciers in Glacier Bay. It is quite possible that the advance of iec which builh up the gravels at Glacier Bay, and the bemporary teecssion of the ice during which the superimposed forests came into existenee in muskegs, represent recent stages that con be roredated. The devolopment is measurable and may not vary considerably in age, but must awaif further evidence for solution (p. 32).

HBRBBATE RIVAG (vo. 16)
In the gravel-floored valley of terber River, which like Eagle and Mendemhall Rivers is of glacial origin, several muskegs occupy extensive flats. They support dense growths of cottongrass and buck bean, as well as quaking mats composed of sphagnum and hyphum mosses with sedges in the low and wet phaces, also isolated groves of dwarfed spruce and heaths (fig. 9). Willow-alder thickets with an undergrowth of ferns, iris, orchids, hpine, and other herbs occur on the intervening sandy ridges. From these ridges the less favomblo aras have been and still are being invaded by t proliminary cextusion of alder thickets in certain places, and divetly by spruce, pine, and heriths in others.

That cottongenss has been active in the formation of peat, and that the quaking-mal stage has been of lairly longer duration than the thickets and conifer shage, is apparent in the comparative thickness of vertical profile sections. From the surface to a depth of o feet the material consists of a yollowish-brown, coarsely fibrous and mattex network of rootlets and rhizomes from sedges in which are emberded the fenfy stems of sphagnum and hypnum mosses. The layer is appreciably looser on the downstream side of the valley and less acid in reaction (pH 5.5) than elsewhere. The underlying mineral substratum is gray sandy graval.

The advance of sphagnum mosses, henths, and conifers has taken phace in this region more rapidly west of the valleys along the coast. Between Favorite Chamel and the mountainous background, particulaty near Auke Bay and Pearl Harbor are fat muskegs from which samples of peat were collected in the hope of obtaining turther
evidence bearing on the recent origin of sphagnum moss peat. Examination of the material indicates clearly that layers of moss peat do not occur in the lower bulk of the pent when muskegs begin to develop. In the river valleys ground water is the most effective control of the growth and composition of marsiy vegetation and the character of peat layers formed by them. Farther west and near the coast, rainfall and humidity are of most importance in promoting the spread of sphagnum mosses and in determining the nature of the peat material tand the structure of the muskeg.

LoOD hoall (NO. 17)
Near the junction of Loop Road with Glacier Highway at mile 12.8. at cut was made in a muskeg situated along the road ahout 1 . 0

Figure 9.-Dense growth of cottongrass (Eriophorum sp.) forming a quaking mat which is the first stage in the development of muskegs on the gravel-floored valley of Herbert River at mile 26 of Glacier Flighway near Juncau, Alaska.
feet from the Auke Buy store. There has been considerable disturthanee in the matural conditions of the peat deposit but the vertical profile section exposed on the west side of the road revents a surface layer of brown sphagnum moss pent of varying thickness which has not contributed as yet to the development of a convex, dome-shaped surface. Below the 16 -inch level is a complex of moderately decomposed granular material with woody roots and stumps of the growing trees and shrubs.

The underlying sedge peat is felty fibered and reflects in its character very little variation in decomposition and consequently little change in wet conditions. At Ω depth of about 4 feet below the surface oceur stumps and charred woody peat indicating former drier conditions and the effects of fire. In the basal part, toward the 7 -foot
level and the underying glacial till. the altemating layers of sedge peat and woody peat are evidence that the development and stratigraphin fentures of the muskegs of the whole district took place in the same order and are synchronous.

The marrow valleys of Dontama. Windfall, and Cowee Creeks, extanding parallel to the coast northwestward of Junem to Berners Bury are forested winh trombork and spure but diversified by muskegs. The peaty arms ame locented usually on the flats or beoches and suppori a coveriby of sphagrum mosses with a dwarfed open growth of heaths and lodqupole pine. The muskes at Montana Creek is uppoximately 16 miles from funem, larger, and more easily areessibje. for economie developmont than any of the other peat arcas examined in this stip of territory. The recent eonstruetion of a government highway up the main valley of Montum (reck passes through this deposit ind comueets it with human.

A study of the growing sagetation, thengh leaving much to be desired for compleleness, shows that sphuyum mossess are in the main the redly effertive peat formers. The surface of the mised portion of the muskeg is not miform but consists of atternating hammorks and hoflows indabitated by different speries raising the lavel of the water table as the plants grow upward. Of the sphagum masses inhabiting drier situations, the mose prevalent are Sphatuam aculifolium. S. fuseum. S. mberum, S. medium. S. propilosum, the latter specins contributing to the prorressive developmemt on the side mast of the rend. The surface is dome shaped and hats the apperance of a mised maskeg. Staguan pools of water mad secondary smatl bakes of irreguha patern consed be sarions modes of origh, occur in scrernl phaces: some are bortered with sphagnum mosses (Sphaymum cuspidatum) but aquit ties such as Potamogeton sp. ityriophy/lum sp.. ('altha palustris, I'tricalaria mulgaris, and Nymphaere polysepala arte rare. The wet prions of the muskey support a few clumps of sedges (C'ares panciffora. ('. limesa, ('' spectabilis, Friupehorum rhamissomis) some grasses (Calamagrostis seabro). mad various hetbs such as Hippuris milgaris. Nephrophylidiam crisata-yalli, and Galium trifitum, but these are the least mportant as contributors to the formation of pert. Individual serubby mometan hembocks grow in fan-shaped form on the wetter sites of the muskeg.

From the soundings and samples of profile sections examined, the Montana Creck maskeg gives evidence of having beron originaly a sedge marsh which tater supported some timber hut was som replated by sphagnum mosses. The arrangement of its layers is practically Ha same as may be seen exposed on the flat rear Gastincata Chamel, except that the layer of wordy peat from the seeond superposed forest is not well developed. The surface layer of moss peat is relatively thiek and exceeds in extent and amount the moss peat in the Gastineau muskeg near thmeno. The chameter and distribution of peat layers are indicated in the following generalized profile section.

[^3]9-17 fect; moss peat with an admixture of plant remains, roots and rhinomes from cottongrass and sedges; the material is matted fibrous, generally free from colloidal orgauic residue, brown in color with a yellowish tint; at the $i, 5$-foot level it is moderately decomposed and contains some woody fragments but no development of a woody layer of peat; below it occurs Hypnum moss peat, yellowish brown in color, turming to a very dark brown upon exposure to the air.

17-20 feet; sedge peat, grayish brown, partly fibrous, composed of fine roots and flat underground stems of sedges which appear to have spread over shallow water; it contains woody fragments from shrubs and timber and gramuar matter representing the remains of a tree growing vegetation transitional in character; ut the lower level the sedge peat contacts with the underiying mineral substratum.

20 feet, gray fine micaceous sand on sandy gravel.
Around the margins of the convex portion of the muskey the materina consists of sedge and moss pent which is considerably fibrous and more or less woody.

Peat resourees of the raised muskeg typa have not teesived due recognition. The Nontsma (rock muskerg is well sutterl for the manufacture of peat products.

Its dranage will depend in part on the lay-ont of the mannfacturing plant but should be carried out gradually.

LENA HFACH (NO. 19)
In the vieinity of Lema Beach and Glacier Highway at mile 17. D^{-} the muskeg eut by the road repesents less advanced conditions in the spread of sphagnum mosses. The general surface is dome shaped, and thinly covered with stuntud conifers. Hummocks of spharnum mosses are common. Among the herts are species of Drosera, Rubus, Waianthemwi, Lycopodium, f'ornus canadensis, Orycoceus microcarpus, fruticose liehens of the reinderr moss type, and others. The shatus include species of 「acriniam, Leflam, Andromeda, and Empetrum nigrum. The depth from the convex surface elevations on the west side of the road to the andertying mineral sulstratum is 14 feet. The struetural profile feratures of the muskeg and the possible changes in genecal anvirommental conditions that may have affected the region during the period of peat acemmutation can las stated as follows:
$0-3$ e fect; sphagnum moss peat, brown, yeltowish tinted with thin seans of darker colored material due to local sariations in pockets of water and shallow pools and in uneven decay cansed by hyphat of certain liehons and algae.
$31_{r} 8$ feet; moss peat with an admisture of roots and rizanes from sedges, relatively well preserved; this material and the layer ubove it, support the view that acmmuation took place during a comparatively cool and moist period.

S-1019 fect; brown fibrons sedge peat, frlty fibered in texture; the raw nature of the material seems to indicate a moist but relatively warm period and high promud-water levels which favored an increase in the quantity of root and rbizome ravelopment
$10+2114$ feet; woody peat, dark brown in color claracterized by stump. of conifers wheh advanced over the pent area during a relatively dry and warm prriot.
$11 k_{-}-131$; brown fibrone sedge peat whieh contams organic sediments formed in shallow hodies of water and blant remaine from Hypmom moses in a well preserved condition; the appearanee of the material surgests a high water table and a moist period which was pessilhy cooi.
t3b. it feet; dark-brown wody pent with stamps of conifers in a well decomposed black granular residue whieh is sity at the lower level aud grates into a dark-gray fine sand and gravel.

Judging by the chameter of the peat layers, the poriod during which the woody peat accumatated was probably warm and dry, the area refatively woll draned, and the timber in the cutior time of a better
growth than that of the plant cover of today. Sphagnum mosses, on the other hand, did not mppenr and did not begin to spread until relatively recently.

In view of the essentially identieal sequemer and chatacter of havars in the muskegs of southuastem Anskn, it semem possible that to method is avalable to dotermine whethor the altermating driar und wetter conditions were synchromous over a wide stretels of country, and whether the ancient forests exposed at two levels in the gravel bluft near Muir Chacior at dacior Bay give evidence of changes in climatic conditions and may be corredated with the two superposed forests that originated probibly at corresponding periods in the moskegrs. It is more than probable that the ampormontal conditums derseriheol above may be eommated with those that athered Europe in postshacial time. In that case the carly try warm period when foresta spread over drying sedere perat woud eorrespond with the Bureal period: the following most and probably warm period, which encournged the developmernt of sedge marshes. with the Athantic peried; the nost dry warm pariok and its invasion and spread of forests, with the Subboreat proiod; and the hast moist and rool poriod marked by tho spread of sedges and sphagnum mosses, with the Subatantie period. In the present period forests are namin invaling muskergs.

In geological and erological literature (o, $\hat{i})$ there ner frequent suggestions that the ghaciers in the northem hamisphere are recolinger and that vegotation mave bedergoing the readjustments conserpuent upon the restrietion of gheiation in Alnskn to mombtamous arens and of aretic conditions to polare perimes. The graduad spread of conifers into muskegs, and the adsune of the timber line morthward, described by different witurs ($\underset{\sim}{*} .19 .2 f$, justifies the conclusion that the present time is possibly a stage approximating the warmer and drixe conditions which existed at marlier intervals.

PEAT RESOL RCDEK IV SOTTHE-CBNTRAL ALASKA

South-central Ahask includes istands and the econten portion or high mountain ranges which ancirelr Prineo William Somod and
 tion; and also tha adjacont large watersheds which extemd inhand to contral Alaska.
'Ther ('lugach National Forest is the timber belt alome the const and on the rightot-way of the Aliska Railroad betwern the town of Soward and Ancharage. (irant and bligeins (/8) deseribed the topographe fantures of the const as rocky and procipitous, with ehevations from 2.000 to $\operatorname{si}, 000$ licet, rising rapidly to the summit of the ('hugach Wombtans, which retch atitades of over 10,000 fret. Drost of the higher valleys arr ocerniod by ghaciors many of which extend down to sen lever. The shome lime is broken by a sucecssion of bays, inlets, and arms of the Gound, washed by the warm waters of the Pacifie. Sproce, hombek, and a small monont of "ededar" ate tho prevailing forest growth, and the vary simuous conat lime maker much of the timber as wedl as muy maskegs aceossible. There are considerable deposits of umodifiod and woll-sortablarial material, the lattor [requently rariod, mad monh of fhe smbl, gravel, and silt in the brotader valley flats has bern spread out by streams flowing from the melting ghaciors. The previling rock formation is shato anel gray-
wacke with only a thin covering of soil on rock outcrops. Fishing is the chief means of community support, centering around Valdea, at the head of Port Valdez, and Cordova, on the east shore of Orea Inlet.

The level and rolling lands that occur inland in the valleys have a light forest cover and a climate not unlike that found in the northem tier of Prairic States. Precipitation is moderate and the stummer seasons are short but cather warm. The Matanuska agricultural area is located in one of these valleys in the vicinity of Anchorage. Vegrtables, root crops, and hay are the principal products supplied to mining and other communities along the Alaska Railroad.

The region has two importait gateways into the inturior of Alaska... the federally owned and operated Alaska Railroad, which "xtends from Seward to Fairbanks; and thu Richardson Highway, which luads inland from Valdez to Fairbanks and, by way of the Sterese Flighway to Circle on the Yukon River. Formarly, a mailroad connected tidewater at Cordova with the mines on the heradwaters of the ('opper River drainage area, but now the road is no bong in service.

Muskegs of the Cordova District

The Cordova district comprises the easternmost aren of Priner William Sound between Port Valdez and the Copper River. It has much the same climate as tinat of the southern const but its topographic features are varied in places by lowlands, small takes, hills, and groups of rugged mountains. The principal valleys are of glacial form with deposits brought to their prosent position chicfly through the agency of glucial ice and water.

The most extensive embayment along this portion of the const is formed by the Copper River delta, a broad gravel and silt-floored lowland with shoal waters which extend for some distance seaward. Nearly all of the tributaries of the river head in glaciers and carry hedvy deposits of glacial silt, sand, and gravel during flood stages in stmmer. The lowlands are in part timbered with spruce and hembock extending to an altitude of about 3,000 feet, but on some of the islands in the river and adjacent Hats the growth consists of cottonwood together with some white birch, spruce, and marshy muskegs. The track of the abundmed Copper River Northwestrm Railroad erosses the delta, making it possible to examine peat-covered areas in a number of localities.

copper hiver (no. 20)

The lower course of the Copper River differs in topographical fratures from deltas generally found onswhere. There are many slifting and anastomozing branches of the river, bars, and duneshaped hillocks sedclom more than 1 ij or 2 ij feet high, atad shathow basins of varying size in which oceur ponds, marshes, and transitions to muskegs. None of the pent-forming aroas are of any depth und most of them may be deseribed as flat, lying on sandy silt and grovel far enough from the seashore no longer to be reached by tidewater. They are of particular interest, however, for an understanding of any essential differences between the origin of muskegs formed in enclier periods and those that are developitig at the present time.

The distribution of peat-covered areas is not indicated on any topographical or geological maps of the district and for this reason any account of their location must necessarily be approximate. A number of them have been examined along the railroad, but owing to the scarcity of phace names they are indicated below by the nearest mifopost and described in terms of developmental changes. In this case it is also very important to thave an areount of the origin of muskegs based on aceurate knowledge of the nature and quality of the basal layers of peat.

At mileposts 22,28 , and 34 mast of Cordowa occur bodies of shallow open water which support chiefly buck bean. The uccompanying phants, in order of their abmodnoce, are species of Equisetam and Carer loge ber wifh Patonilla pelustris. The general aguatic regeta-

Figime to.--A pare stand of buck bem (Menumenthes trifoliath), a second stago in muskeg dowlopnent, oreupging shathes water in the flats of Copper River, Alaska.
tion of the ponds is not prolific when compared with similar habitats further sonth; there is a searecty of algae and of free-foating or submerged pondweeds and other plant life. The closely standing plants are anchored with rootstocks which spread over firm sandy silt (fig. 10) and give rise to a conrse-fibered and matted metwork of roots and thizomes in water standing knee deep. The reaction of the water and the organic material is around pH 7.0 . The margins are freganatly bordered by a narmow zone of sedges, followed by various species of willow thad alder thickets.

Betwern mileposts 7 and 19 oceur serveral well-defined sedge marshes (fig. 11). The vegrtation consists of Carer lyngbyei, C. aquatilis, and (. stricta wilh a lasser monont of Eleocharis palastris, Menyanthes trifoliote, and specias of Juncus, Scirpus, Eriophorum, and Equisefum. The what low is at or slightly above the surface,
and soundings which were made at various plares indicate approximately 18 inches of fibrous sedge peat; the material is yellowish-brown with a grayish tint from the admixture of silt; it contains rhizomes of buck bean at the lower level and severn! thin seams of fime sand; tho moderying mineral substratum is firm fine sand containing gravel. The reaction of the organio mater is only slightly acid, varying between pH 6.0 and 6.5. The contrast of this form of regetation. and the work accomplished by it, is very striking when compared with contiguous bodies of water which are only beginning to be colonized by buck bean and sedges, and with the ofder sedge marshes in nearly pure stands which transformed the samdy flats into pentcovered arens.

Similar marshes oceur nom mileposts 24. 25, 35, and 37, but they show patches of scrubby willow and atder, coltonwood, and a seat tered

Fiacres 11.--Streamway of Copper River, Alaskn, showing typical sedge marsh, n thisd stage of dovelopment, verumbing an aret which was formerly colonized by buck bean.
growth of suall spruce trees similar to those frequenty found on muskeqs.

Landward from the shifting braded thanels of the overlonded fiver, and especinly on sandy gravel banks along the streams, where the flats are better draned, the sedge marshes give way to a series of thickets and riverbank pophar forest. Bush willows and adder with ferns, elderberry, and spitea come in and are inereasingly laxariant where the sedges give way to grasses, such as Calamagrontis, and the pophars. Extensive pophr forests oreupy some of the broad flats and older dunes between mileposts 38 and 40 ; among the conspicuous trees are tall Balm-ol-(illend with northern black cottonwood (Populus trichocarpa hastata) and aldors in the openings. Soundiags made in the pophar swamp forest gave cross sertions with the following profile features:

0-22 inches; the upper 3 to 4 inches consist of brown leafy litter and other phat remains accumulating eontinually and interwoven by lonsely matted grass roots: the lower 8 to 9 inches consisi of dark reddisfi brown more or less decomposed organic material in which grass rools are less abunclant and the woody roots of poplar and alder are relatively more numerous. In the second foot level the peat material is reddish brown, partly fibrons sedge peat, a bit silty from previous overflows, shading into a vellowjish-brown sandy sedge peat in which are seeds and rhizomes of buck bean and the sedges that originally occupied the flat of gray sand and gravel.

In wetter phaces the pophars are grmed and stumted, protruang through tussorky sedges, sorabled nipger-heads, and isohted putches of scrubby willow and adder, charmeteristios of the competition and vigorous conditions of their habitat. The phant rover takes on a hummorty surface with intervening hollows which vary in size and depth. On the ridges oceur several small henths, mainly speries of Taccinium, but sphagrum mosses, reindeor mosses, and liehens are of very subordinate importanere. The composition of the community is quite indefinite, shading into neighboring transition types of vegetation. Nowhere in the Copper River district are henths, conifers, of sphagnum mosses abundant mough to justify the application of the term muskeg to the peat-fomming areas that are now developing in the delta along the Copper River railrond. The present types are still transitional staces of vegetation; they are essentially like those that formed the bottom layers of muskegs at curlier periods and they are characteristic of the effects of cround waters and their supply of mineral plant-food constitaents. The importance of atmosplieric water is not evident in those vegetation types; they have not reached the climatic limit of the rainy and cloudy coustal environment but are the forerunners of muskers. By far the most important factor in the development of muskegs over the top of marshes appears to be precipitation water. Where muskags have succeeded marshes localized in a basin, they are for a time restricted to the basin, until the upwurd accumulation of plant remains has raised the water level above the neutral or alkaline ground water.

CHITINA (NO. 21)
The upper Copper River Basin is a broad plateaulike country, deeply dissected near its margin and varied in phaces by hills, groups of mountains, and many small lakes and muskegs. A reconnaissance soil survey of a part of this region has been published by Bennett and Rice (8). The region has an entirely different condition of atmospheric bumidity and of winter cold from Cordova and the seaward side of the mountains.

In the town of Chitina a cut was made in the construction of the Copper River and Northwestern ruilroad which leads to the bridge where Copper River is joins by Chitina River, its largest tributary, A typical section exposes solid rock and gheial till in a depression that probably dates to the time of a glacier's retrent at that place.

At the base of the cut is 65 fert of unconsolidated gravel and sand with an even. concave surface which consists of 6 feet of fine sand. Above the sand and extending to the top of the cut is 15 feet of more or less woody peat showing about four to five layers of fat-rocted stumps of spruce superimposed upon one another. Throughout the deposit, the peat material contains a large quantity of wind-blown
silt and small shells of univalves, pieked up doubtless by prevailing winds from the beds of Copper and Chitima rivers. The surfuce regetation of the deposit, back from the cut, consists of shrubby willows and Potentilla fruticosa in a ground corer of rarious sedges, grasses, and small patches of sphagnum mosses.

The exposed cut has a vertical face and at the time of observation it was not possible to examine in more detail the stumps that oecur at different levels, their relative nge, or the periodicity in thin seams of wind-blown silt and rolcanic ash which are present noticeably in the eartior stages of peat formation. Capps (i) described a cross section of glacial till orerhan by peat with superimposed layors of stumps on the bank of White River below Russell (hlacier. From ring counts on n number of stumps it was estimateed that the peat material accumulated at a rate of about 1 foot in 2 of yoars and that the ies of Russell (flacier withrere from that point aboat 8,000 yemers ago.

EYAK (Yo. 22.

Northeast of the town of Cordova is Eyak Lake, an irreguin-shaped body of water in a vallery between two ridges of timbered slopes. The lake is fed by Power Creek and Shepherd Glacier and drains through Eyak River to the Pacific Octan across tidal marshes whieh border the const and extend eastward to the Copper River delta. The Copper River railroad follows atong the south shore of the lake.

On the west shore almost within the eity limits and opposite Nirvana Recrention Park, is a muskey which is serving as a burial place, known as the Russian graverard (fig. [2). The surface is

 Russina graveyart.
definitely convex-shaped, sloping gently from the center towards the periphery. The bound ary line is guite irregular and merges gradually into the adjacent woods and a ratatively steep slope which ends in forested ridges. On the lake side the muskeg is well drained and the ground cover consists of hummocks of sphagnum mosses which are now dominated by a variety of plants, including sedges and heaths such as Andromeda, Lellum. Einpetrum nigrum, Taccinium vitis-iduea. var. minas and herbs like Rubus chamaemorus, Drosera rotundifolia. and others. Quite as characteristic are the few seattered spruce and hendock, dwarfed and rather stunted. Here as elsewhere, the hummocks of sphagnum mossers, rather than sedges, heaths, and conifers, are the most conspieuous plants which could be called typical of raised muskers.

Profile soundings and mensurements, made on cats exposed along the Govermment road which follows the west side of the lake, give a. record as follows:
$0-21 / 2$ feet; sphagmum moss peat; spongy, yellowish-brown, strongly acicd, shading from hutunocks of growing Sphagntem papillosum, S. fuscum, S. rubrum and others, into brown, spongy-fibrous, matted moss peat; the central portion of the layer is much thicker than the sloping tumeins and characteristic of the greater central growth of mosses under the influence of atmospheric hmmidity, and the high eapacity of mosses to absorb and retain rainfail and prevent its flow outward; wet hollows are revealed by several thin stams of dark-colored, partially decomposed moss peat; some of these extend more or less cvenly between former hummoeky growths of sphagmon mosses, while others appear to have been small depressions related to shallow pools of water; at the lower level the material is brown and contains woody rootlets.

2, 2,-3 feet; woody peat, consisting of dark reddish-brown woody fragments, bits of twigs and branches, flat-rooted stumps of spruce, fallent timber, eones and leafy litter with crumbly phant remains from grasses and sedges giving evidence of partial decomposition cluring a dry period.
$3-\overline{5}, \underline{6}$ feet; sedge peat; brown, fibrous network of roots and rhizomes from a relatively pure stand of sedges; the material is matted and firm at the lower level, jndicative of moist conditions and thore recent tompaction; the layer conforms in general to the topography of the liat hut is rather sharply demarked from light gray voluanic ash, about $1 / 2$ to 2 inches in thiekness which lies between the sedge peat and the underlying sandy gravel: raot ehamels extend through the voleanic ash to a depth of 5 inches below.
i) $3_{2}-6$ feet; durk-brown sandy gravel containing well decomposed organic residue in the upper 4 inches.

Near milepost 4 along the Eyak rond, ocettrs a slope muskeg which ranges from $2 \% / 2$ feet deep at its margins to $5 \% / 2$ feet in the more central portions. It slopes toward the lake and appears to have developed over a glaciated rock outcrop. Brown, felty-fibered sedge peat forms the basal layer. The surface material consists of a relatively thin cover of sphagtum moss peat changing downward to an admixture of setge peat; below that is a woody layer which lacks well-marked differences such as are aharacterized by stumps.

Of exceptional interest is the fact that, as a result of road construction, the muskeg demonstrates a breaking and sliding of the surface material at right angles to the reneral slope. The movement is fairly well ithustrated in the accompanying photograph (fig. I3A), which shows the unevenness of the surface in consequence of such gliding movement. la northern Camada and Europe this phenomenon happens most frequently in spring when the surface layer is saturated by melting snow and ice and slides over the frozen lower layers (1).
It might further be mentioned that several muskegs in the vicinity of Cordova are not of the raised-moor type, although the surface is

Figure 13.-A, Muskeg along Eyak Lake Highway near Cordova, Alaska, showing sloping surface and a breaking of the surface in consequence of peat material sliding over frozen layers underneath, B, Muskeg with surface sloping from the eenter toward the periphery. The convexity is not due to the upward growth of sphagnum mosses but to the contour of the underlying mineral material.
characteristically curved. The exposed cross section of the peat area southeast of town near the end of Three-mile road shows a convex surface (fig. 13B), which conforms strietly to the topography of the underlying glacial mineral material. The profile indicates that a vegetation of segdes, sphngnum mosses, and low-growing heaths tends to spread uphill. The surface is not level and both the growth of plants and the rate of peat accumulation vary from place to place under the influence of different degrees of moisture content in the respective peat materials.

Muskegs on the Forelands of Prince Willam Sound

Northwestard of Cordow are a number of low-lying forelands, valleys, and islands regarded by Grant and Higgins (18) as parts of a peneplain of an earlier glaciation of the district, but which later was smoothed over by local tongues of ghacial ice. In height, the surfuce of this plain ranges between 20 to 60 feed above the present sea level, rising gradually from the shore to the flanks of the mountains that surround Prince William Sound. The forelands of Bomb Point and Sheep Point and the lowhand between Port Gravina and Port Fidalgo belong with this phain as do also parts between Landlocked and Galena bays.
Of parlicular importanee is the evidenee reported by Grant and Higgins pointing to relatively recent changes of sea level in certain places of this district. That a recent depression of the shore line has taken place is noticenble on muskegs at Bomb Point, but better illustrated at Fidalgo Bay and Hell's Hole which present more strongly marked evidence of a sinking shore line.

BOMB POINT (NO. 23)
On the southwest end of the peninsula between Orea Buy and Simpson Bay, and especially in the vicinity of Bomb Point, are a number of sloping muskegs locally called tundra. They are generally free of timber except for a scrubby growth of mountain hemlock. The ground cover tends to be uniform in height and consists chiefly of sedges (Carex sp., Rhynchospori sp.) deergrass, cottongrass, and hummocks of sphagnum mosses with low-growing heaths such as Andromeda polifolia, Ledum groenlandicum, and several species of Vaccinium. Subordinate are deer cabbuge (Nephrophyllidium cristagalli), patches of club mosses (Lycopodium sp.), sundew, cranberry, and others. The water table is near the surface and shallow pools of water are common, giving a reaction between pH 5.0 and 0.0 .

Near the head of a lagoon, profile sections were obtnined in a muskey of which the locntion and general form are shown in fig 14. The average depth of peat is 3 feet and the mineral substratum is a bluishgray firm silt giving a neutral reaction (pH 7.0). The organic material overlying the silt is brown felty-fibered sedge peat, moderately decomposed and has a reaction of pH 5.5. The peat layer near the surface consists of a thin cover of plant remains derived from sphag. num mosses with an admixture of roots and rhizomes from sedges.

At the western end of the lagoon, soundings taken at several points indicate a depth of $5 \not / 2$ feed of pent. The surface material ranges from yellowish- to reddish-brown and is essentinlly a varying mixture

Figune 14,-Wketeh map showing location of muskeg on north side of Bomb Point, Alaska.

Pigure 15.- Basal layer of sedge peat sloping into tidal water and exposed by low tide at Bomb Point, indicating a recent sinking of the shore line.
of plant remains from sedges and mosses, similar in composition and character to that described above for the muskeg at the head of the lagoon. Near the 33 -foot level below the surface is a layer of woody peat in which stumps of spruce and hemlock are rooted flat-based; below it occurs reddish-brown, fibrous-matted, and distinctly laminated sedge peat. The mineral substratum, however, is sandy silt and gravel in which occur cobblestones and boulders resembling morainal material; it slopes into tidal water, extends down to low tide, and is being cut into by waves. Rhizomes of Equisetum and several sedges as well as seeds of buek bean are present in the surface of the sandy gravel as well as in the layer of sedge peat which contacts it. The lower portion of the wave-cut muskey with its basal layer of sedge peat and the roots and stumps of conifers, covered at high tide, is shown in figure 3 .

SHEED BAY (NO. 24)

Between Simpson Bay on the east and Port Gravima on the west is Sheep Bay, a northern arm of Orea Bay. Entering it from the west and near the head of Sheep Bay is a small island that viewed from one side appears to be covered with a good growth of sedges, but from tnother shows hummocks of sphagnum mosses, some of which have a growth of Empetrum nigrum, Rubus chamaemorus, Vaccinium vitisidaea var. minus two species of Drosera, and reindeer mosses, while others are disintegrating on the sides, covered with a crust made up of black flakes, revealing on the under surface a layer showing bluegreen algae on isolated patches of Pelytrichum mosses and species of cladonia.

Profile soundings were carried out in several places, both in the center of the peat area and near its margins. All these tests agree in showing a depth of peat ranging between 3 and 4 feet. Sphagnummoss peat is present in a few inches at the surface; sedge peat, made up of the roots and thizomes from species of ('aren and Scirpus occurs to within a few inches of the bottom, and a thin layer of woody peat is at the base; it contains no stumps except woody fragments from branches, twigs, and leaty material from deciduous shmbs which give evidence that the muskeg began on a shaly sand and gravel with a type of vegetation dominated by alder, willow, and other shrubs.

GMAVINA POLNT (NO. 25)
On the foreland separating Sheep Bay and Port Grayina, muskegs were examined at a place directly north of Gravina Point in a valley whose sloping floor probably belongs to the same lowland as that between Simpson and Sheep bays. Near the head of a small lagoon, on the north side of the foreland (fig. 16), the muskeg is covered with small hummocks of sphagnum mosses. The plants associated with the active growth of the mosses are Vaccinium vitis-illaea var. minus, V. oxycoccus, Empetrum nigrum, Drosera rotundifolia, D. linearis, species of Pyrola, Limnorchis, Cladonia, and others. Spruce and hemlock are much dwaxfed and widely scattered, while heaths such as Kalmia, Leidum, and Andromeda occur in patches with taller shrubs of Menziesia, Myrica, and Salix. Seedling trees are not frequent in this community, and herbaceous plants such as Rubus chamaemorus, Pinguicula villosa, Cornus canadensis, Viola palastris, and species of

Ficure 16.-Sketch map showing location of muskeg on lagoon north of Gravina Point, Alaske.

Pigure 17.-Small pools of stagnant water on slope muskey near Gravina Point Alaske.

Limnorchis, V'eratrum, t'nifolium, and others are represented only ly occasional phants. The salient feature consists in the distribution of the dominants of the ground cover. On the higher slope of the muskey the vegetation includes more sedges and cottongrass (species of ('ares: Scirpus, and Eiriophorum) but the surface is intersected by at network of small, shallow pools tending to be circular in form (figy. 17). The aquatic vegetation consists mainly of isolated patches of Monyanthes trifoliatn, Myriophyllum sp., Potamofeton sp., and varions forms of algae, including Nostoe and soft nothes of bhe-green algae forming a granular gelatinous mass.

Profile soundings, made in various places, passed through a thin upper cover of yellowish-brown mixtare of moss and sedge peat; below it is a hayer of reddish-bown felty-fibered sedge peat ranging in thickness from $1 / 2$ to 3 leet wheh merges with the undertying sandy gravel.

Along the shore line the muskeg is bordered by outerops of rock and a belt of farly tall timber, manly spruee and hembeck. Nued of it has a luxuriant undergrowth of devilsclath. samonberry (Rubus spectabilis), Menziesia forruginea, several ferns. and a ground cover in which Hypmacefer predominate. A number of trees have been killed by high tides, which may possibly be due to a depression of the lowhand already deseribed.

One of the most dharteristie forchats with evidence pointing to a recent sinking of the shore lime is the point of land which separates Port (iravina From Port Fidatgo (fig. 18).

On the south side of the hand and northeast of Red Head nemr the north side of Port Gravim is a small bay known as Helb's Hote. Shallow water and a guantity of sand and gravel overying 2 feet of firm matted selge peat have groaty inereased the bench area. New bars have been buil up nearly half a mile seaward from the beach, while back of the strand, in the quiet and more sheltered places. small dunes are frequent with a phant cover distinct from that of the adjacent muskegs. The colonizers and stabilizers of the sand are Lathyrus maritimus and Mertensia maritima along the front of the dunes, creeping in among the culms of Ammophila arenaria and Elymus mollis. Drittwood and loose ananchored sand are confined to the beach alone while blowouts are ares.

Back of the dunes are trailing herbaceous vines, a lupine, Potentille fruticosa, Spirev sp., (alamagrostis seabra and others, giving way inland to a thir fringe of timber which borders the extensive and poorly drained muskeg.

In composition the surface vegetation of the sloping musker resembles those along Port Gravina. Cushions and hummocks of sphagnum mosses are of relatively subordinate importance in comparison with the part phayed by Scirpus sp . and sedges. Spruce trees are dwarfed and widely seattered. and mountain hemlock takes on a fan-shaped form. Heathis constitute the more vigorous plant growth. Myrica gale and both high-bush and low-bush species of Vaccinium are common, and there is considerable variation in the composition and size of isolated clumps of shrubs; but they do not seem to be dominant or abundant enough to justify a description of the muskeg
as a heath-covered lowhand or tundra. The surface is dotted with shallow pools of water, characterizing the high water-holding capacity of the peat material. There are hollows exposing the underlying morainal sand and gravel, but they are doubtless a reaction to snow and ice which fill the depressions daring the winter and presumably retard the growth of plants for a considerable period during the summer season. Morrover, summer thawing and drainage goes much deeper in the bare spots than in the plant-rovered portions of the muskeg.

Finume 18.-Sketel map of iureland between Port Gravina and Fidalgo Bay showing location of Hell's Hole, Snug Corner Cove, and Two Moon Bay muskegs.

Profile soundings indieate depths of sedge peat ranging between 3\% and $\overline{5}$ feet. Cross-sections cut at low tide along the banks of a small umamed stream which enters the muskeg from wooded siopes, revenl nearly 6 feet of sedge pent. Differentiated on the basis of the more prominent features the cross-sections show:
$0-5 / 2 / 2$ feef; neper few inehes composed of a mixture of sphagnum moss and sedge peat grading into brown fibrous, matted sedge peat, fairly uniform in texture and composition toward the 4-inot level; between 4 and 4 yh feel below surface the material is stringy-fibered, rather coarsc, permeable, and contains many rlizomes from Scirpus sp.; near the bottom, the sellge peat has a larger content of blackpolored rhizones from Equixetum sy. and many flat rhizomes as well as seeds from Menyanthes trifoliata; root clatmels extend into the underly iny morainal material Which is nearly 3% geet below tidewater.

On the bay side, the lower portion of the layer of sedge peat is over 2 fect below seat level; it extends out over a distance of 70 feet from the shore, indicating a sinking of the land at least several feet below the present ocern level. The general features of the shore are illustrated in figure 19.

Snug Corner cove (No. 27)

This eove is a small projection from Port Fidalgo back of Knowhes Hard on the northwestern edge of the foreland (fig. 18). The topography of the adjacent fowland is more rugged than that typical of other sections on the coast. In some places it is narrow with stemp slopes and in others it widens with benchlike formations sloping gendy from the shore line to varying devations above sea level.
The muskegs situated on the west shore of the cove are similar in surface vegetation to the slope muskegs previousty described, but the profite soundings show that the depth of peat is ramely over 4 feet in thickness. The organie material waries somewhat in physical characteristics and composition. In general it consists of felty-fibered sedge peat, chocolate-brown, pH $\overline{\text { ñ }} 0.0$ in reaction, more or less waterlogged, and laminated between 2 and 3\% foot levels, yellowish-prown and firm near the 4 -foot level and somewhat woody. An admixture of sphagnum moss peat occurs at the surface in the upper 2 or 3 inches, but in many places moss peat is entirely lacking.

The mineral substratum is a buish green sund and gravel and contains iron-staned root channels.

An interesting feature is old trails leading to the beach and wom deep into the sedge peat. They are the resull of widdife traveling over the matted leath regetation. In some piaces the trails appear to berome gullies and may lead to conditions described for stream banks in the muskey at Hell's Hole.

two moon bay (no. 2s)

This bay is an eastward projection of Port Fidalgo, lying between Snur Corner Cove and Irish Cove. The bounding lowhand is rather stecp and maged but much of the enclosed area is of low relief and includes a number of muskegs. The deposit of peat examined is on the east side of the bay (fig. 18). It is a sloping expanse, begiming at the bay and extending ridgelike to the timber at the upper end of the slope. Some parts of it along the shore bave been cut by wave erosion, exposing 4 feet of brown fibrous and more or less laminated sedge peat. The material rests on sand and gravel as well as on bedrock along the shore.
The muskeg has the aspect of a sedge marsh from the number of sedges and cottongrass that grow upon it, but in the ground cover are sphagnum mosses and a large variety of herbaceous plants. Characteristic among these are Coptis trifolia, Cornus canadensis, Pinguicula villosa, Caltha biflort, Rubus chamaemorus, Sanguisorba microphylla, species of Trientalis, Limnorchis, Tiola, Cnifolium and others. They are never predominant in any place and form a rather small percent of the plant cover when compared with the distribution of local patches composed of such heaths as Empetrum, Vaccinium, Andromeda, Kalmia, Ledum, and the bnyberry (Myrica gale).

 whalife ha- wom derp ataik into the mated peat. The serevtation an

 dumbe in dime romblion-

 well marhed.

 tide and the dallas sater nowe the share i* posibilo dus to this

 at the same land in the inturer lamduard side of the makeme.

Mueh of the maskeg bears a surface veretation which is like that of the muskers previously daseribed. All the somblings agree in showing that the depths of peat on the upper slopess range from 2 to 4 fect. Most of the material ronsists of reddish-brown fibrous sedge peat which at the surface contains small amounts of spharmam moss but at the lower level consists of sedga peat with a grayish tint ; the material is moderately decomposed, and grades into sandy gravel. Thicknesses of peal incroase loward the lower shopes, but profite sections in which the bosal hyyer of sedgee pent is below seal laved do not exeecis 8 tee in depth.

Whare the muskeg is more poorly drained, sperialized habitats like shallow pools of water ire quite numerons at all devations. Near the shore line howerer, where there is more movement of ground water. sphagnum mosses and sedges do not oceur. Thall-rrowny spruce and hemberk have established themselves, forming a thin frige of timber. There is, furthermore, a "orresponding ahopation of the sedge peal in wheh the roots of trees are growint. Typienl eross sections of the masker exposed by the tides and observed ia rertieal cuts as woll as harge blows of peat which fall ontward along the store, reveal the following changes in profite features:

0 to inches: woody sedpe peat: datik-brown, cmably, patially decomposed: contaths small amounts of lenfy lither and woody framents at the surface and bemath it a dense motwork of fine roots of the growing bertaterons phants: woody foots of trees thed shobs are penetratiog to a hower kevel.

10 - (2a inches: sedge peat the npqer portion consists of dark-brown, partly fibrous and brittle peat and is osernped by woody roots from trees and shrubs some of which are fathased, while sthers estond downwart through a reddish brown matted sedge pent to the serond font levelt betwert the bird and fifth level the sedge peat is brown, firmly mated, haved, and compacted. Tidewater is is feet below the surfate.

6573 inches: wooly peat: dark-hrown, grambar, and finc-grathed organiresidue, woody, comathing sumpe of sprew wheh arosespend with those atong the shore and exposed by tidal waves.

7390 inches: sedge peat : bown fibrous sedge peat, mated, wers firm, party
 into the umberyime minctul material.

90 OS inches: buthisgreen silty sand and gravel.
The evidence, it will be seen, ineludes both an old beatel line whieh at one time was 2 to 4 feet or more above the presont high tide, and a forest stage in the development of the muskeg which can be correlated with a former drier and wamer poriod. The developmentat changes indicated by the entire profile section of the moskeg corespond, in a troneral way at least, to those that affected the muskegs in southenstern Ahaska.

Meshegs of tur Kenal Dastmer

'The Westem portion of Sombentral Alaska includes Komai Faninsuln, bounded by Prines Willinm Sound on the east, the Jnofie ()cean and its warm fapan Curtent on the south, and Cook Inhet on the west. Exeept for a strip across the western side, the peninsula lies entirely within the (hugath Natiomat Forest. Sewned is the prineipal town. It is the orean Lerminal of the Ataska Railroad and is served by regular mail and passonger bonis from Seatele. Wash.

The surface of the peninsula presents two widely difloring physiogrophe fentures. The emstarn parl is chametarized by ligh rugged snow-covered mometains, 5,000 to 7,000 feet in devadion, and valleys
deeply eat by the former action of ies. The western part eonsists of a broad sloping lowhand into which flow the larger strems that have their source in the large glaciers in the Kemai Mountains.

Fema Peninsula is fuite heavily timbered in most of its valleys up to elevations of 1,200 feet above sea level. Spruce is the more ubundant timber but hemtock is found in some localties and also birch, adder, and willow. The investigntion of muskems was carried on only in the castern portion of the peninsula, but in my comprehensive study of peat resoures, chose of the western portion would be worthy of consideration. The soils and agriculture of the peninsula, induding maskegs and their distribution, have been reported by Bemett (2) in a recomaissance survey made in 1916.

MOOSE WCK (NO. M)
North of Kema Lake a Government road extends from the Alaska Ratimay owe Moosse Pass and the valleys of Quartz, ('mnyon, and Sixmife creds to Hope on Turnarain Arm. The ereeks meander through comparatively flat ghaciated valleys, in which are located a number of muskeys at elerations over 800 feet above san level. In many places high benches slope toward the valleys in more or less sharply defined termecs. They consist generally of washed gravel, sand, and bluish-gray clay, derived in hage part from the rocks of the neighboring mountains. Mofft (27) reports that the sands in the bench deposits are not firmly packed; they earry a large amount of ground water which may come from a source outside the glacial materinh. Sufficiently detailed studies have not been made, however, to determine the character of the ground water or the nature of the various muskegs and the frasibility of their commerial development.

Evidence that some of the muskegs in the mountainous district are of the raised type and present a contrast to those developing on the eonstal lowhands farther south, is seen in the Moose Liek muskeg reached at mile 42.5 by why of ate Coper Landing Government road. The general view given in figure 20 shows the condition at this point. The difference is hargely in the reduction of sedges and in a corresponding increase in hummocks of sphagnom mosses, but other feratures are in relation to suceessional stages. The eenter of the muskeg, corresponding with a higher water level and a moderately convex surface, is ocenpied by an association complex in which sphagnum mosses (Sphagmum cuspidatum, S. medium, S. varnstorfi and others) predominate over cottongrass (Eriophorum sp., Rhynchospora sp.) and herbaceous plants; surrounding the mossy earpe are local patehes of woody strubs, among them Ledum palustre. Andromeda polifolia, baybery (Myrica ghle) and dwarf bime (Betula glandulosa) in a ground cover of Empetrum nigrum, Traceinium ritis-illaea, rar, minus, hetens and others. Nearer the periphemil margin of the muskeg, the plant commanities are mixed and diversified by a scattered growth of dwarfed spindle-shaped sprues (Picea glauca, P. mariana); they may be regarded as transitional changes, due to a lower-ground waler level and less acid conditions near the sand and gravel bluffs of the valley.

A point of special interest in this combection, however, is that portion of the road bank through which water, mildly alkaline in reaction ($\mathrm{pH} 7.5-8.0$), is sepping into the muskeg. By coutrast the
ground water in the moss peat which fringes the tract is very strongly acid (pH 4.5), and there is as yet no shmeply marked difference in the surface vegetation. From observations of wildilife tails, however, it appears that moose in rather large numbers frequent this small area (fg. 20, B). In addition to moose, other forms of animal life are found to range over the muskeg, probably on aecount of the saline character of the seepage water and the refurment of nutritious mineral salts.

Profle soundings and pits dug al various places show only minor differences in depth and structural relations. The following represents practically an average of vertical cross sections:
> $0-418$ feet ; sphagnum moss peat; the uppernost foot eonsists of reddish brewn spongy-fibrous, well-preserved moss peat in which are thin roots of the growiag blant cover; between the second and the third foot level the moss pent is very firm and contains at the lower level leafy fragments from birehand heaths, needter, woody material, and roots from sprace; at intervals are thin seams of darkbrown, partly decomposed moss peat which represent small and locnl wel depressions; near the fourth font level the moss peat is very firm; it contains volcanic ash of fine-groined, nlmost glassy texture, am mated roots from cothongrnss and sedmes.

> 4h-6 feet; sedge pent; reddish-brown fibrous sedge peat with an admixtare of material from sphagmam mosses: the lower part of the layer eontains dark-irown well-decomposed woody material and framents from shrabs.
> f-6k feet; very firm gray silt over sandy gravel.

The number of soundings made is not large, but it is believed that the quality of the moss peat is representative of the peat area and that the upper layer has commercial value.
moose pass (no. 3i)
On both sides of the Seward Hope highway, hetween miles 51 and 52. the road crosses muskegs on flats none the summit, which are dominated by sedges but show various phases of succession. In general, they are treeless marshes that are passing through developmental stages, with sphagnum mosses storing water, and witi spruer and heaths where the change in conditions is acempanied by lowerd water levels. In places where the acetumation of plant remains contintes tupward and the roots of growing sedges are removed more and more from ground water conlaining minoml salts, the marsh vegetation furnishes the conditions for the establishments of sphag. num mosses which depend for their growth upon atmospheric water. However, ground-water conditions are mfavorable for the mosses and in marginal places decomposition of poat material exceeds aceumulation of new plant romains. Various heaths and conifers are colonizing these sections increasingly. That this has taken place also in former times and on a much larger scale, has been shown by means of profte sections recorded elsewhore in this report.

In the Moose Pass muskeg the present chnnges in vegrtution are not retrogressive, but are a transitional zonation, corresponding with differences in the water trible. Soundings in the portions of the muskeg supporting dwarfed spruce and birch show a thin surface layer of dark-brown sedge peat, largely decomposed, containing dry leafy littor and woody material; the water lavel is below the surface. Farther in, where hummocks of sphagnum mosses with associates such as sundew, gold thread, and others are frequent, the surface

0-6 feet; sedge peat; rectdishi-brown, felty fibrous material consisting mainly of a matted network of fine roots, basal sheaths and flattened rootstocks from various sedges and grasslike plants; air-dried material is brittle; at lower ievels the layer contains colloidal constituents, wind-blown deafy fragments, and small woody roots and twigs; near the bottom the peat material is sandy.
6-61/2 feet; gray sand, very firm, on slaty gravel.
The vegetation, history, and botanienl composition of the maskerg indicate its origin and stratigraphic structurr as woll as its present transitional aspiects.

SCMMHT LAKE (NO. 32)
ln the high valley near Summit Lake (eleration 1,310 feed) nod at, mile $41 . \overline{5}$ and $48 . \overline{5}$ on the Sewarl-Jlope highway, muskegs oceur which lorm a border along open water or occupe tiats. On the whole, the surface vegetation has the aspect of the preceding muskeqs described above. Associations of sphagnum mosses, heaths, and conifers are in a state of teansition. The existing climate tends to make their own contimed existene diftientt, furnishing conditions for the natural suecession of conifers.

Profile sections atford a measure of the rehative daration of ench group of pent-forming veretation and they eonfirm the conchusion, reached in this way, that sphagnum moseses have apperared only recently, and that woody shubs and sonifers tend to replace the species which colonize mashes with higher water levels. Vertienl cross sections of the se muskergs are gemrinty as follows:

0-5 ${ }^{1 / 2}$ feet; thin cover of sphagmam moss peat, carreing woody material in phaces where spindle-shaped spruce and low heaths are dense; below this the sedge peat is redetish brown in color and comprises oceasional bands of yellowish brown fibrous matted material, interbedded with finer organie sedinents; mear the base of the layer, the sedge prat is gray-hrown and fibrous but ineludes fine organic residues and gray sand.

512-6 feat; bhish-tinted gray sumd resting on conrse aravel.

Muskegs of the Anghorace Imetrict

The chiof geographic fertures of this district are the mountains which form a spur of the son-coverd Chugach Range, and the valloy floors that blend with terrames and fats and are composed of sand and gravel supplied by former valley glaciers. These deposits wore ladd down by the action of iee and reworked by water and are thiok enough in places to coneral the bedroek. All of the gracial streams, particularly the Matanuska, Eagle, and Knik rivers, are carrying and depositing silt, sand, nod gravel, dissecting and croding the graved benches around Auchorage, with the aid of tides which ate slowly undereating the blulls ficing Knik Arm and Gook Inlet and exposing peat deposits.

The district, lying an it does baek from the actan, has a climate more like that of the interior of Alaska. Prucipitation is light, especinlly during the rather mild summer season when only a lew inches of raitifnil may ocear. The winters are severe bat the suowfall is said to be moterate, usualy up ton total of 3 or 4 feed of snow aceamulating annually.

The surface of the terrices and flats is grencrally woll forested with the exception of the lakes and muskers, and the belt of sand dumes nolong river bends. Dtist storms atre frequent in the valieys, crused by the strong down-valley movements of tion cool air overlying the
glaciers, displacing the hot nir in the lower valleys, picking up silt and sand from the river flood plain, and piling up sand in danes and wind-blown silt over the valleys.
Benneti and Riex (2, 3) mapped the soils of a portion of this distriet during reemmaissunce ficld work in 1914 and 1916, using topographic maps prepared in connection with the geological survey of this region.
More recently (1938), the Alaska Plaming Council has sponsored a soil conservation survey and ceonomic study of the Matanuska Yalley in cooperation with W. A. Rockie of the Soil Conservation Scrvice. The Alaska Railrond erosses this area and much of it is now aecessible by a network of highways. A branch of the railroad rums from Anchorage along the Mataniskia River to ('hikaloon.

SPENARE (No. 33)

Abome is miles sonthwest of Anethorage, at the end of the Spenard Road, are muskers with several unnamed small! lakes. Field observations show that in an otherwise flat surface lyine within the 100 -foot contour line. depressions of varying size were oceupied by a shallow hake. Peat began to nccumulate as a margimal deposit, continued over low ridges that erossed the lowhand in several places, and subsequently filled the depression, with the exeeption of the still remaining ponds as the last remmant of the former larger lake. This vew was confirmed when soundings were undertaken and test pits were examined along the line of a proposed channel eonnecting Lake Spenard with Lake Hood.
The muskey has a coneave form and is bounded by rising ground fringed with a border of serubby black spruce and an associated undergrowth of bireh, alder, and shribber henths. The organic material on the surface consists of a dry litter of needtes from conifers and leaves from heaths with fungral hyphae, representing a poorly decomposed, acid raw "mail." Below it. the plant remans form a mixture of partly decomposed fibrous sedger pent with sphagum mosses, woody roois and rarying amounts of course rootshoots from shrubs. All the soundings, including those made in in muskeg on the east side of Lake Spenard, agree in showing that between the first and fifth foot level the material is chiefly reddish-brown tibrous sedge peat with a thin seam of voleanic ash approximately 4 leet below the surface. Between the 5 -and 8 -foot level, the material is composed of yellow-brown Hyphum peat chatacterized by species that form floming mats in open water. The underlying mineral material is course sund, greonish gray in color.

In passing from the timberecl phase of the muskeg, along the relaLively drier margin with a water table fluctuating belween 10 and 14 inches, to the wetter conditions around the ponds, the conifers diminish in size and are seatered in an undergrowth of dwarl birch (Betulu glandulosa), bayberry (Myrica gale), shrubby cinquefoil (Potentilla fruticosa) and a ground eover consisting of Scirpus cuespitusus, several sedges not readily distinguishable from cottongrass, and a variety of sphagnum mosses. Hummoeks of mosses increase in height around tree trunks and in the interrening spaces between the taller heaths sueh as Kalmia, Ledum and Andromeda. Typical plants indicating association with sphagnum moss cushions are Rubus chamaemorus. Drisera rotundifolia, Empetrum nigrum, small-lealed cranberry, and others.

The complex of plant communities situated in the central portion of the muskeg is characterized by species of sphagnum mosses which dominate wet hollows (Sphagnum cuspidatum, S. cymbifolium) and the more active hummock builders (S. medium, S. papillosum, S. fuscum and others), which cover the mounds. Some of the larger hummocks are capped with cranbery, suodew, clubmoss, small seedlings of spruce, and a fow low-growing heaths.

Around the open water are quaking mats composed of sphagnum mosses, some of which are emerald green in color, interwoven with the slender stolons, rhizomes and rootlets of a number of sedges and cottongrass. In the open water occur communities among which are species such as Menyanthes trifoliata, yollow waterlily (Nymphaea sp.), and submeryed forms of (eratophyllum, Potamogeton, and in few others.

Profile soundings near the margin of the open water gave the following record:
$0-8$ inches; sphagnum moss peat, yellow brown in color, spongy filmous, ent bedded in a network of rhizomes and roots of growing pedges.

8-60 inches; sedge peat, brown coarse-fibered, loosoly matted and waterlogged; the materinl is reddish-brown at the lower level and contaits a thin seam of volcanic ash between 3 and a feet helow the surfice.

60-130 inches; hypnum peat, yellowish brown in color, rehatively well preserved, finely fibered near the bottom; contains rbizomes and seeds of Menyanthes sp., and plant remains from herbaceous aquatic vegetation.

130-140 inches; sedimentary peat, fine-gruined, more or less colloidal in structure and light brown in color; the transition to underlying mineral material is not well marked.
$140+$ inches; firm gray sund over coarse sand.
It is thus evident that the vertical sequence of peat hayers is a menns of establishing also the ecological succession of phant associattions and the changes in environmentad factors, and of indicating, moreover, the extent to which the horizontal transitions of today have undergone changes in botanical composition. Sphagnum mosses are, doubiless, a dominant of recent times and soon to be replaced by vegetation indicating drier conditions.

MERMILL FLELD (NO. 34)

Southeast of Anchorage, about $11 / 2$ miles. is the eirmort Merrill Field from which a road passes to the lower valley floor. The lowland has interrupted strips of muskeg in some places, and fairly large muskegs in others. They usunly have a stand of spindle-shaped black spruce, ranging in height from less than 5 feet in wot spots to about 12 feet in drier sections. This is particularly noticable nenr the marginal bluffs. Within the muskeg the vegetation tends to be more uniform and the dominant species among the shrubs are dware birch, cinquefoil, bayberry, two species of Ledum, and a low willow. The salient feature of the ground cover consists of cushions of sphagnum mosses on which are to be found n. variety of plants. In the order of abundance, they rare: Vaccinium vitis-idaea, var. minus, Cladonia rangiferina, Rubus chamapmorus, patches of Polytrichum and Eriophorum sp. with Scirpus caespitosus. The depressions between the mounds support several sedges, Equisctum sp. and isolated bushes of dwarf blueberry (Vaccinium capspitosum, V. uliginosum). Much of the veretation is water-logged in the contral portion of the muskeg except
for small islands and ridges whose surface is higher and generally represents a timbered phase.
Profile soundings were taken in several places over this area. In the marginal portions, averaging 30 inches in depth, the upper 5 inches consist of reddish-brown sphngnum moss peat which is sharply demarked from a lower layer of dark-brown woody material in an advanced degree of decomposition; below the 17 -inch level the material consists of brown, conrsely fibered sedge peat shading into grayishbrown silt which contains organic residue and root channels of sedges; the underlying mineral material consists of firm sandy gravel.

Centraliy located profile soundings gave an average of 6 feet of peat on sandy gravel. Intermediate test pits, excavated by members of the C. C. C. organization, revoal a thickness of peat averaging 5 feet. The general heatures of profle sections are as follows:
$0-8$ inches; brown sphagnum moss peat which contains many rootlets, rhizomes of sedges and woody roots of slyubs; below it is th thin layer of ash, brick-red in color, probably iron-stained, which rests on woody material.

8-25 inches; brown moderately well-deconposed woody fragments, varying in size, derived chicily from a stand of spruce timber; it contains an admixture of sedge peat at the lower level.
$25-54$ inches; grayish-brown somewhat silty sedge peat, matted-fibrous; toward the base of the layer, the material is laminated and made un, in part, of Hypnum mosses, contains rhizomes and seeds of Wenyanthes trifoliata and fine-grained organic matter derived from aquatic vegetation.
$54-61$ inches; transition to sandy gravel.
While the two muskegs in the vicinity of Anchorage have been sclected for description of flat types, it may be of interest to indicate briefly the main features of a raised type of muskeg near Palmer in the contiguons Matanusion Valley. The modifying influence of the warm constal walers and the protecting mountain range give the valley a climate which lacks the extremes of temperature that characterize hac great interior valleys of the Yukon and its tributaries.

PALMER (NO. 35)

The muskeg examined noar Paimer lies three-fourth of a mile sonth of town in section 4 of T. $17 \mathrm{~N} ., \mathrm{R} .2 \mathrm{E}$. It is a small area enclosed on three sides by a fairly tall and dense stand of timber, chiefly spruce. The surface is characteristically convex, sloping from the center towards the poriphery where it merges with the trees of the forest. The marginal ilope is occupied by a dominant growth of heath shrubs such as Ledum, Andromeda, Kalmia, and Vaccinium, and occasionally colonized by seedings of black spruce and birch. Along the margins there is no trace of seepage or a type of marginal ditch (lagg) which is known to be a feature of some European raised moors. The surface vegetation growing in the center of the muskeg contains most of the species reported lor the raised type of muskegs further south. There are spongy hummocks lormed by the active growth of Sphagnum fuscum, S. medium, S. acutifolium and others. and wet depressions in which S. squarrosum and S. euspidatum are dominant. Most of the drier hummocks are clad by Empetrum nigrum and Vaccinium vitisiddea var. minas. Subordinate species are dwarf cranberry, sundew, Rubus chamaemorus, and isolated patches of deergrass, cottongrass, and a Cew lichens of the reindeer moss type (rludonia sp.) Brownishcolored patches on the mounds are generally invading Polytrichum
commune which, however, do not represent a feature of retrogression or desiccation.

Changes which result from a donser colonization of heaths have not been observed. Very little zonation of vegetation is to be seen except as the outer margin of the muskeg is approached, in which transitions occur and the mounds of sphagnum mosses are relatively drier and Vaccinium vitis-idaea var. minus becomes more abundant.

Profile soundings were made at several points; together with an excaration, they give the following features of interest in this muskeg:
$0-25$ inches; moss peat, light yellowish brown in "olor, relatively well preserved and spongy-fibrous; no appreciable differentiation is visible between the material of which the hummocks are composed and the moss peat into which it shades to a depth of 20 inches; the upper 14 inches contain roots, stolons, and rtizomes of the growing vegrtation and an occasional stump of spruce; the moss peat below that level is frozen; it contains a thin semm of gray fine voleanic ash, approximately two inches in thickness on which the fat-rooted stumps of spruce appear to have become establighed; below the frost the the moss peat is darker in color, compact. and contaius solid ice; it is interrupted by another thin seam of volcanic ash near the 27 -inch level, and covers an underlying layer of frozen woody poat.
$27-31$ inches; wondy peat, diark brown in color; consists mainily of accumulated materinl from spruce and hirch, woody shrubs, needles, and leafy fragments.

3 inmos; lransition from gray silty organif residue to gray firm silt, perma nently frozen.

From the facts stated above it appears that throughout the profle section traces of wind-hlown silt and sand seem to be of small importance. If the thickness of 14 inches of moss peat between the present surface ol the muskeg and the layer of stumps near the frost ine represents the accumulation during the lifetime of the buried stumps, it should be possible to determine the rate of peat accumulation by ascertaining the age of the stumps and recording any variations in tree-ring thicknesses.

Of much significance is the fact that the line of permanent ground frost has been rising with the constant thickening of the moss peat and its insulating effect (30). It might be assumed, therefore, that climatic changes within the valley are favorable for a rising level of frozen peat, cutting off the supply of water and nutrients from the lowest roots of the growing vegetation. This is not consistent, however, with the evidence supplied by cultivated fields, cleared out of the virgin forest which soon lose all trace of frost-bound soils, and by the muskegs themselves in which forests are now advancing into the treeless portions that ar covered with sphagnum mosses and tussocky sediges."

WASILLA (NO. 36)

Between Palmer, the Matanuska Agricultural Experiment Station, and Willow Creek lies a succession of muskegs bordering small lakes or occupying sharply-defined basin-like depressions. A few of the

[^4]muskegs examined are undeflan with calcareous marl which has potentina value for local domestic use as lime in the improvement of agrieultural soils and in the mamufacture of porthand cement. A representative type of these muskegs is at Wasilla Lake. It is located in section 1 of T.' $17 \mathrm{~N} .$, R. I W., ahout 60 feet south of 1 graded rond .that passes through Palmer and Wasilla.

The water of the lake has a reaction of pH 8.0 and is chear to a depth of aboul 4 feet; below this the water is filled with grey deposit of Chara marl which extends to a depth of 12 feet and rests on samby gravel. Tests of the marl show a strong reaction for carbonates with difute hydrochloric acid. Near the border are aquatic phants among which species of Potamoyeton and Myriophyllum are abundant, but Shara is rare; at the margin of the lake, the closely standing culms of (arex and Scirpus with Menyanthes trifoliata form a narrow fringe reaching out with their thizomes to deeper water.

The banks of the muskeg, which are about 1 to 2 fect above the water, give evidence of being ufloal. Soundings taken along the border indicate that a layer of peat 4 fect in thickness, is underlain by marl. The floor is uneven but the aretage depth at which sandy gravel is reached below the surfice is 12 to 13 feet.

Throughout the muskeg are signs that changes are taking place at the surface either retrogression or transition. Cushions and thmmocks of sphagmum mosses, pH 4.3 in reaction. show patches of Polyfrichum, Hypmum, and bluc-green algac. Letum and other heaths are being rephaced by a number of deciduous shrubs, the most noticeable of which are bushy willows (Salie spp.) and species of Ribes and Rost. The general surface shows Myrica yale, Potentilla fruticosa and Vaccinium vitis-itlaca var. minus but they might be regarifed as part of the flom which formery covered the muskeg. The vegetation is domimated by sedges and grasses and characterized by the following species in an order of abundance which, however, is not always the same: Calamagrosiss. Scirpus, ('ares, Elemharis, Frestuce, and Galium. The contrast of this form of veretation with the phats found on typical muskegs is striking and accentuated by the transitions from shrub, to marsh and sphagnum moss bog commanities. It is mot known to what extent fire or dranage should be eonsidered as factors in retrogression stages.

Profile sections made in places adjacent to hummocks of sphagmum mosses and near the margin of the lake give the following record:
prat, spongy fibrous in texture, acid amb viativels free from waty material:
it grades into a minture of brown moss and wedge poat whith exntatin roots and
rhizomes of the growing veretation from the io- to fs-inch level: the materiat
rests on a thin sean of woleater ash; below il, is medias-brown whagmm moss
jeat to a depth of 38 inefre bolow the sumface, which contains the matted metwork
of roots and rhizomes from tussocky seckes; mear the fombh ferot level is a layer
of clark brown woody sege peat with stamps of sprtce and birch on marl.
at the base it merges into brown organic sodiments, about 2 to 3 inches thick
and derived from afuatic phants and phankton organisms.
108-110 inches; sandy gravel.

The profile fentures deseribed strongly suggest changes during the development of the muskers similar in character to those observed in the Palmer muskeg. The nature of the marl indieates the presence of an carly lake and a primary free-floating aquatic vegetation whel

Was soon replaced by speecies of Chara and probably certain blue-green algue; they are the chef agents responsible for the great precipitation of lime over the floor of the lake. Thereafter trees of spruce and birch with their associates appeared over the surface of the marl, indicating a change to drier conditions. This was followed by a cool, moist period assoctated with the active growth and spreading of sphagmum mosses and serges. The salient features of interest in such changes have been deseribed on pages 32 and 68.

W11LIOW (YO. 37)
Threr-abenths of a mile north of Willow on a graded roud, is a winding chamel resembling a series of pondlike depressions in a fhat plain. The veretation of the open water has several aquatic mosses (IIypmaceae) with Potentiller palustris, Menyanthes trifoliata, and a growth of watertillies. The pond margins are colonized by a stand of sodges, nowhere flowering but probably Carex aquatilis, C. limosa, mad (c. rostrata, which grow tall and rank, forming quaking mats as they advance over the water with their spreading roots and stolons. In less wet places are low thiekets of willow, alder, birch, and horaths . it t patches of spharnum mosses. Profile soundings agree in showing a depth of 13 inches of brown fibrous matted sedge peat which contains an indmixture of moss peat; the material is underiain by conse sandy grivel.

Further on along the graded road, nearly $3 . \bar{a}$ miles northenst of Willow, the areas of tall sedges with their ground cover of sphagrum mossers give way to muskegs in which dwarfed black spruec is the characteristie tree. The basis of the muskeg is a hummocky growth of sphagmum colonized by other vegetntion as the accumblation of pera is built up. There is a Intge variety of shrubs including Betula glandulosa, Myrioa gale, Potentilla fruticosa, Andromeda polifolia, Chamaedaphnt calyculata, mal Spirea sp. The shrubby undergrowth doos not make any large fataction of the surface vegetation but it gives the aspere of a beath transitional in the development of a flat muskeg. Fluetuations of water level may be the factor inhibiting the growth of herbaceous plants.

The hammocks of sphagrum mosses between shrubby thiekets are capped with Empetrum nigrum, Taccinium vitis-idaea var. minus, T^{5}. orycoccus, Drosera rotundifolia and others. In the intervening holfows are species of Eriophorum, Carex, and Equisetum. Scrubby, spindleshaped black spruce with a superficial root system oceur to a varying extent over most of the muskeg. Althotigh the trees are relatively smail. they seem to have persisted for some time, but stumps were not fond in the layers of pent below the surface. The general depth of peat in the muskeg ranges between 3 and 4 feet and the underlying mineral material is silt on fine gravel.

The salient features of vertical soundings are as follows:

[^5]All such evidence indicates comparative youth of the local muskeg; its history is much the same as that of similar muskegs elsewhere in this district. The facts at hand are not sufficient, howerer, to determine upproximately the time that has ehpsed since the muskeg began its development and fommation on the silt and gravel. The advance of vegetation in its successional stages and an approximation of the conditions existing at earlier times have been among the principal subjects of peat investigations in the teritory. It remains for future observations to determine the rate of accumulaton of pent material and to discover the fength of time since the surface of mineral soils became exposed upon which muskers are in process of artive development in a changing enviromment. How much further the changes in surface vegetation are groing, cannot be stated. It is entirely possible. however, that the present stages in muskeg development are only a forerunner of a bype of forest closely adjusted to the conditions of the climatic elimax of the region.

PEAT RESOURCES IN INTERIOR ALASKA

The main toporraphic features of interior Alaska correspond in a brond way to a central plateau. For the most part this region is a gently rolling upland broken by an number of rounded domes and mountain croups, and diversified by many broad valleys. It is drained into Bering Sea by the Kuskokwim, Tanana, Yukon, and other rivers and their tribumaes, and includes a number of lowhand areas of considerable extent covered in places with muskegs.

The greater part of the teland has an average elevation of 300 feet and seliom rises to more than 600 feet. It supports lorests of open woodland types which are largely confined to the valley floors and the lowest slopes of ridges. The stands are mixtures of spruce and birch. Cottonwood groves are frequently seen nlong the larger streams and tamarack also grows in this region. In the main the trees are too small to be commercial timber but are highly important for big game and fur bearers. Over large areas the ground romans permanently frozen; during summers it thaws to shallow depth only, ranging from 20 to 50 inches below the surface.

The climate is continental in type. Precipitation is small, varying locally from 10 to 16 inches a year, of whieh approximately one-haf comes during the growing season. The winters are long and eokd, the temperature avomging less than - 20° for famuary and often dropping to below the minimum of $-60^{\circ} \mathrm{for}$ contimental United States. The ammal snowfall varies from 3 to 8 lede. The summers are short and warm with a growing season from 80 to 90 days. It is quite generally the opinion amoner older residents of the country that present-day methods of hydrablic mining have redueed the fow of creeks and lowered gromedi-water levels.

The climate is generally such as to favor agrientaral possibilities of the land. The prolonged daylighe in summer eazbles grain erops to make rapid growth, and vegetables like enblage, celery, ind lectuce attain large size during the short season even well within the Aretic Circle. The principal armavailable for agricultural settlement is the Tanana Valley, Information regarding soils has been published by Bennett and Rice (3) and publications qiving the results of ngricaltural experiments are issued by the Coilege of Agricultare of the

University of Alaska (if). The most important farm erops are grains, root crops, and potatoes. Oats and barley are grown both for grain and forage. Pasture is available for 4 months of the yenr and the Tanana region is well suited to dairying and for the production of hogs. Gardening is suceesslal in nearly every town and in several outlying districts, and a variety of edible wild berries can be gathered in many places.
Fairbanks is the primeipal city of the interior and the seat of the University of Alaska. It is located amost exactly in the geographical center of Alaska. As a focal point of transportation, it is the horthern terminus of the Alaska Railrond, the Richardson Highway, the Strese Highway -and of various air routes.

Meskegs of the Moe vt Mokinbey Ravge

This district lies on the south flank of the Alaska Range and includes the southeast side of Alount MeKimley (Moment Demali). It has been described in reports by Tuck (38), Capps (6) and Moffit (28). The relief of the aren ranges in devation from 500 fect along the Chulitna River to 20,300 feet at Mount Mckinley. Practically the entire district. with the exreption of the ligher peaks and ridges, has been glaciated. The Susitna River and its tributary, the Chulitna, fow in broad valleys and drain the lager part of the district. The Alaska Railroad follows the east bank of the Sasitna River and most of the muskegs in the valley and on the pass cam be ensily reached from points along the railrond.

Humocave (vo. 38)

Botween mike 283 and 284 on the Maskn kailrond are gravel and rock walls, sereral hundred feel above the Chalitna River. The location is not far from Hurricane Gulch. In constructing the roadbed a cut was made which extends practically through the entire length of a muskeg. The depression which the muskeg occupies is concave but narrow, and its depth in the central portion averages 10 feet. The glacial material at the base is sandy gravel which has an uneven surfice and eontains organic residues.

Scatered stunted black spruce (Picea mariana), and dwarf birch (Betula glandulosa), low shrubs of Ledum groenlandicum, Andromeda polifolia, Kalmia glanca, Potentilla fruticossa, and T'accinium uliginosum, in a ground cover of spharium mosses in hammocks nearly a foot in diameter and 8 inches high, with their associates Empetrum nifrum, sundew, crablerry, and Zussocky sedges (Sicirpus cuespitosus, Eriophorum sp.) give a floristir aspect to the muskeg. In barned-over openings are firewed (chamaeneriore angustifolium), reedgrass ((calamagrostis sp.), a few memones, gentians, and aster.

On the enst side of the railroad bed, the cut exposes the shallower margins of the muskeg. The material consists generally of conifer debris partially decomposed, more or less embedded in erumbly woody peat averaging 4 feet in thickness. It contains two superposed layers of stumps and roots of spruce mad birch, which are sepmrated by a seam of grayish white volemic ash ranging between $3 \frac{1}{2}$ and 6 inches in thickness. The reation of the woody peat is pH 4.5 and that of the voleanic ash is pil 5.8 to 0.0 .

Exposures along the west side of the eut reveal an upper hayer of brown, fibrous sedge peat which is felty-matted in phaces. It aremages a thickness of 6 to ${ }^{7}$ feot mand has a reaction of pel a.5. At the surfiee are 3 to 4 inches of spongy-fibered sphaymum moss peat strongly acid in reation; near the 4 -foot lewel below the surfare is an intercalated 3-inch seam of voleanic nsh which is doubtless of the smane age as the layer of ash atong the eastern mingin of the muskeg. Below the sedge is yellowish brown, well-preserred. somewhat hmimated typumm peat ranging from 2 to of feef in thickness. It is tu be noted that both sedere and hypman peat fom at theker layer in the deeper portions of the muskeg. The hayer of hypnom prat is free from woknac ash hut it contains at the fower level plant remains representing varions sediges and agmatic vergetation.

From the facts stated above it appears the the depression may have been for a time a water basin which supported floating mats of IIfipmacefa and pond weeds. It was hater temanted by sedges and particularly by trees on the slopes facing the west. Sphagnom mosses bnve dominated the muskery only within relatively recent times.

[BEOAD 1PASS (NO, 3O)

The appronelo to Broal Pass from Huricine Culch is a more or less Eradual aserent. The puss ifself is deseribed by Moffitt (28) as a gravel-floored fat sevemat miles wide, at an elevation of about 2,350 feet above sen fevel. It is drained primarily by Nemanand Chatitnal Rivers and nemp it is summit Lake, which marks a watershed draining hoth to the Bering Seat and the Pierific, i. e., betwen Cook lulet and the Yukon River.

The reyion is near the timber line. The muskegs thave a seatered and serubby growth of spruce and much of the underyrowth and ground cover is not unlike that ancountered farther sonth. Willows and alder oceur along the small tributary egeeks, while grasses as well as sedpes are relatively more abbudant in wetter portions of the muskegs. the later lorming charateristic tussooks that are raised above the water level.

Profile soundings agree in showing a brown, [elty-fibered and rinsoly matted selge peat, ivemuring 3% teet in thickness, underlain by greanish-blue sandy gravel. It the surface, the laver contains an admixtare of sphagnimmoss peat, and no a depth of io feet below the surface, is a thin bed of gray voleanic ash of dayey pousistence.

THOHOFARE PASS (NG). 10)

The highway within the enstern pertion of Mome Mckinkey Nutional Park erosses open momithin vallere, sloper of Fonthills, and
 leyel. A spur. 1受 milas in length, comerts the main highway with Wonder lake.

Muskegs were observed on the passes. (espereinlly between Thorofare Pass and Wonder Lake, but were studied hastily only ia passing. They are small in arenl extent and show a matlike growth chatacteristie of high momenin altitudes and the rigors of the elimate. Sproces and heath shruls, such as Leflum and stadromedn. have a relatively smaller part in the floristic compssition of the surfaec
vegetation than tassocky sedges and the low eushions of sphagnum mosses on which are found Empetrum nigrum and several herbaceons associates. Transitions leard to alpine vegetation having a foothold in stony ground and loose rock talus. An examimation of any particular transitional stage that passes into muskeg reverals lack of definizenoss in the type of phant rommmities. A number of phants such as Betulte glowdulosa, Empetrym, Taccinium and Eriophorum are indifferent to a peaty habitat; they intermingle with the small clumps. rosettes, and carpets formed by species of Sarifrafo. Dryas, Arcto staphylos, Silcm, and others which fime their most characteristic development on the bare stomy gromed.

Profile samples obtained in different phaces show that the pent has been accumatated chielly by sedges and that hypmum mosses accompanied them in the curly stapes of muskeg development. The material is brown, mathedfibrous, pH 5.0 in rametion, and the thickness of the hayer aremge ? foch, probablay representing a considerable length of time at those high altitudes and short growing sensons. The sedge peat is undertain ly smady gravel over stony gravel.
An enumbation was made of the plants on muskegs wheh occur in depressions on tatus sloping to MeKinler River. It gives a good iadication of the degree of local rariation. The list incladespotentilla fruticosta, Rubus chamarmorus, (ornus canadrosis, !accimium uliginosum sar. alpinum, and species of Delphinium. I'edicalaris, Artemisia, and Talerima. As a rule the phants have a meager root system which is mainy superficini, although exeeplions wete noted where the de velopment of roots is fairly latge.

In the flats on Mekinley kiver, shallow pools of water were examined when are fed by springs and give a mikly alkatine reaction pli S.O. Along the magins a calcareous crust and grambes of marl formed by bluc-green algae cover stones as well as aquatic phants, mainly Hypmacear and asperies of Potamoyeton. The layer of mant is thin, rarely exceeding 2 or 3 inches in thickness.

Miskegs of the Pambanks Disthicy

The Fairmoks districe forms part of the semiard central platean of Naska. Prindle (32) revognizes three Lopographic divisions: The Tanama lowhad which merges with the foothills of the Alaska Range; the uphand north of the Tamana valley, and the Yukon lowland. The memaltitude of the valley flows is from 400 to 800 feet and that of the uphand and smmits in the Sawtooth Mountains from 1,500 to 3.000 fect above sea level.

The Tmana fowhand is a broad flat which widens toward the Yukon. It is more or less timbered and contains muskegs and lakes some of which are the remmats of former watercourses.

The dominant copographic feabures of the upland north of the Thaman are slighty rounded. comelike ridges separated in most of the area by comparatively narrow, closely-spaced valleys. Some of the valley floors have muskers.
The Yukon flats include many mendering streams with lokes and muskegs. Near the water courses the flats are timbered and the trees grow to considerable size. Among the most characteristic and generally distributed trees in the Fhirbanks district are spruce, birch, poplar, and tamanack. The smaller streams are ollen bordered by
willow and alder, and the muskegs have a ground cover of sphagnum mosses in which cottongrass, sedges, blueberries. cranberries, and others are locally abundant. Sphagnum mosses have been utilized for stopping leaks in dams and ditches and for roofing and chinking log cabins, shtuce boxes, and mine shafts. The hydraulic methods, practiced in the region to work gold-lomang gravels have greatly accelerated the destruction of muskergs.

Farmanks is situated on Chema Slough, a channel of Tauma River. Northwest of it, between the miversity farm and the city, is a maskey loented in section 33 of T. 1 N., K. 1 W., about 1 ta miles from the Alaska Railroad at College, Alaskn. A graded read crosses tho muskeg at its southern end.

Ficina 21.-T'est pit dug several years ago in muskeg near the liversity at Faiblanks; an carly attempt at commercial exploitation, it is now tilled with water and supports floating mats of cotongrass atad phagmum morests.

The muskeg comprises over 400 neres mad occupies a basinlike depression. The vegetation is essentially simila to that of the muskers in the vaileys northol Fairbanks but the relativeabundancediflersamd the chief fenture of interest in this area is the prescnce of tamarack as well as spruce. The whole muskeg, and particuharly the more central portion, is dominated by actively growing sphagmm mosses (Syhugnam medium, S. fuscum, S. rubrum, and others), which form hammoeks about 1 , feet above the intervening hollows. In the outer marginal portions several sedges are prominent, and the sphagnum mosses decrease in amount. The stand of spruce is lhicker and usually with an modergrowth of heaths which can bear moderate shading and a lower water fevel. The tather trees and heaths fringe the shallower margins. In the more open center, the phants characteristic of the ground eover on
the wetter hummocks inchade Iacciminm mitis-iduad var. minus, Rubus chamatmortes, cranbery, and sundew. Thes somerbat drier hummoeks support Ledum groenlandieum. (hametedophne calyculata, thdiomedt polifolia, Befula glandulosa, sovern blaeberves. and ocrasionally a sectling of tamarack and sporer. Subordimate species are cottomgrass (Frophorum sp.) and lichens. Vary litlle zomation of the regetation is to be seen bat as the center of the maskers is appronehed, the tree growth is thore dwarled and seathered and hammocks of sphagnom mosses become relatively more abmotant.

A test pit dug seromb vars aro, now filled wihe water and supporting quaking mats of cotiongrass mad sphagnam mosses (fig. el in did not reneh bottom. It diselesed that the masker is frozera bedow the surface with the exerption of a few inches of surfiter than duming the summer months. Profike soundings made bear the test phit and at serem other points show the following:

 of reots and rhizomes of sedges.
$3^{\frac{1}{4}}$ of fert: woody sedpe peat, dark brown in molor and more or kess ermathe: most of the layer is composed of woody framents derived from shraboy heathes and comifers: hat-rooted stamps werar hear the b-foot lesol.
 famonats af woody matoriat, is redelisl-breswa in color and somewhat decomposed; below it, the matarial is fibrous matted moss and sedge peat; some of it shows
 difion, preveroting further sommdings.

It should be emphasized that the profile section, deseribed above, does not represent havers or pat mandal at equal depths devewher in this musker. The exposures of muskegs in the Goldstrenm Yalley and at Fox exhibit a thekness of moss peat and proble leatures that may not be uncommon in this aren. Sphagmon mosses have characterized the reerent stages of muskeg development and might be expered to have contributed more extensive and the ker layers of moss pent than observed so far in the frairmans maskeg. The phant rematns which comprise a haver of patit, the quatity or purity of the pant materials. the well as the stmotural sequene of the separate gayers depend hargely upon the particular anvirommental conditions of the strem volley, motably upon the water supply and the reded of the underlying mineral substratum upon which the muskeg begun to develop. Farther investigation of profile hatures in this aren is very desimble for an waderstanding of important exological refationshaps and industrial possibilities. It is evident the expernene and familiarity with the prineiples of the proeress of musleng formation will nide in recognang inherent differenes and konting areas of pant that have commercial value.

©OADSTHEAY (V). 12)

In the Fairhanks distriet muskegs are not umommon in the stranm valleys that are production of pharer gold mining. lox Vealley, Gobdstrean Yailey, the ralley of Eugineer (reek, Ester Creek, and others in the vicinity of Farbanks are of this character. A map of their
 them are solidy frozen and open-cat mothods of mining are applied

8ムが, 1i
record of superimposed beds in a columar section of Dome Creek Valley:

A more detailed observation of sections examined during this investiration shows layers of ice which contain thin layers of stratified graved or sand and are eapped be sereral feet of gravel; beds of volcanie ash varying in thickness; and deposits of peat alternating with thick layers of silty organic residue to which the term "muck" is applied by miners. The noteworthy characteristies of the valley deposits are the great depth of materinh, generally ranging from 80 to 250) feet in the larger and wider valleys, their consolidation by ice, the strong "bituminous" odor of the organic matter, and the teeth, tusks, and bones of mammoth, mastodon, elk, and other extinet animals that are frequently found at lower levels in the alluvial material overlying bedrock. Representative fossils are in the collections of the University of Alaska Museum and in the American Muscum of Natural History in New York (fig. 22, B).

The Goldstream Valley may fairly be considered an average example. and its history may have been much the same as that of similar valleys in this district. Sections exposed there indiente at least four superimposed muskegs which developed during sucerssive (interglacint?) periods.
The earliest peat formation developed over the gold-benring gravel on bedrock. The material consists of coarsely fibered sedge peat, in pheces showing stumps of sprue and bireh with sphagnum mosses; it is gemerally overlan by ice. A typieal cross seetion of the second deposit of peat, some 12 to 15 fert above the base, is composed of woody sedge peat in an adranced degree of alteration, with two to threc layers of stumps and roots of spruce and birch, woody fragments from heath shrubs, and patehes of sphagnum mosses; it is usually capped by sand and gravel. Approximately 10 to 12 fect below the present surface is a third stage of pent formation. The material is mainly fibrous, tussocky sedpe peat which in its upper portion contanins woody material. an admixture of Hypmum. Polytrichum, and plant remains from sphagnum mosses; it overlies silt on gravel and is covered with silt or stratified silty organie residue. On the surface back from the eroding bluff is the muskug of reecot age but much disturbed by the mining operations.

A short distanee from the highway and about $\underline{2}$ miles west of the town of fox, a few remments of a muskeg were examited which. before the removal of the overburden, extended aeross a harge portion of Goldstrem Yalley.

The remetation, history, and changes in conditions that must tenve characterized the muskigg during the reent period of its devolopment are shown io the following profile fetures:

[^6]4娄-6 feet; sphagnum moss peat; yellow brown, spongy fibrous in a more or less frozen condition and flaky in structure; it contains sunall leafy fragments and woody material derived chiefly from heath shrubs.

6-8 feet; sedge and hyphum peat; s yellow brown in color, laminated; at the lower level the plant temains are compact and consist of Hyphaceae, well preserved and relatively free from rhizomes and roots of sedges.

8-9 feet; woody peat; dark brown in color, contains needles, leaves, and loose woody material from conifers and heath shrub; morges more or leas sharply into gray volcanic ash over silt.

FOX (NO. 43)
Another locality at which muskegs are well developed is the terrace deposit bordering Goldstrenm Valley and Ester Creek. The fact that they are fairly undisturbed and were observed at several other localities indicates the need for more detailed peat investigations throughout the district.

In section 31, T. 2 N., R. 1 E., mining excavations have exposed the front of a terrace directly east of Fox near the mouth of Fox GuIch. The material observed in the vertical cross section consists of gravel orerlaid by micaceous silt and mantled by pont 7 to 8 feet in thickness.

The surface vegetation resembles that of the Fairbanks muskeg. It consists of a border of tussocky sedges varying in width. The central portion of the muskeg is composed of small irregular hummocks of sphagnum mosses on which grow Empetrum nigrum, Vaccinium vitis-idaea var. minus, Rubus chamaemorus, cranberry, sundew, and patches of Polytrichum sp. The dominant heaths are Ledum groenlandicum and various blueberries. Birch is represented by occasional, isolated, low-growing plants of Betula glandalosa, and the few conifers are twarfed forms of spruce associated with tamarnch.

A typical eross section exposed in the cut bank of the terrace deposit shows the following:
$0-34$ inches; sphagnom moss peat, straw-colored shading to yellow brown, spongy-fibrons, relatively free from woody material and rhizomes, compact and distinctly laminated at the lower level.
$34-37$ inches; small stumps of spruce and flat-based roots of spruce in dark brown moderatcly decomposed moss peat ; contains an adinixture of woody material from heath shrubs.

37-80 inches; sphagnum moss peat, reddish brown in color, more or less compact and lamianted; haky when dry; below the 6 -foot level the material contains small amounts of rhizomes and rootlets from cottongrass and woody roots from heaths.
$80-92$ inches; sedge prat, gray brown in color, fibrous matted, composed in large part of well-preserved sheaths and tat, jointed rhizomes of tussocky sedges.

92-95 inches; woody peat, dark reddish brown in color, crumbly; contains bark of birch and spruce, needles, leaves, and woody material from ericaccous shrubs, roots, and stumps of sprtae; at the basn, the woody peat merges with a thin layer of conse fibrous sedge peat; root chamels extend into the underlying mineral substratum.
9.7 incher; gray, micaceous silt finely stratified, probably deposited during lacustrine eonditions or by stream action.

It sems clan from the profile features deseribed that the mineral and organic deposits in the valleys of this region have great scientific interest. The district has not been exposed to direct glaciation. Deposition of materials in the valleys began, doubtless, in the early

[^7]stages of the Pleistocene and continued to the present time. Conditions were somewhat diflerent from those now prevailing. Of particular interest is the frozen condition, known to exist also in northern Canada and which has been described by Nikiforof' (30) for northern Asia. The excavations in the valleys offer a anique opportunity for a study of the history of this region; the sequence of events connereted with periods of more abundant precipitation and active erosion. Collowed by periods of peat aceumulation; changes in elevation, in elimatic conditions, and in the movement and development of fanna and flora. The ralley deposits contain invaluable and continuous records dating back into the prehistoric past and include bones of extinct animal life and the plant remans of interglacial peat deposits. There are, evidently, clues to aid in determining how many of the major ghacial stages of the Plestocene the ralleys represent, and whether the profile sections of more reent muskegs record advances and retreats of the last glaciation, or substages of im interglacial period (p. 2s), rather than atternating cold and warm epoclis. It seems probntle nlso that the layers of volcanic ash in muskegs are very nearly contemporancous. They may serve, therefore as a means of corelating profile features of muskegs in this regrion and aid in locating the rokanoes that produced the ash in these deposits. At present many of the valleys are rapidy being destroyed and great stretches are now bare, stong valley lloors. [it is hoped that at least portions of some of the ralleys may be set aside as a reserve for scientifie investigations.

SLGGESTIONS FOR COMMERCIAL LTHLIZATION OF PEAT RESOLRCES IN AJASKA

In the earlier part of this report the subject of muskegs has bean considered from several viewpoints. Stratification or arrangement of peat layers below the surface is the most distine tive structural fenture: it arises from diflerences in phant remains that accumulated under changing conditions of environment. The character of the peatforming regetation and the influence of climate and topography. mineral substratum, and ground water nutrients that constitute the en cironment are the more important factors in the exteusive development of muskegs and in their classification.

A large proportion of muskegs are located along the shores of istands and the mainland. Those developed on seaward slopes and valley flats, are relotively acesssible, and are capable of serving as a source of humus-forming organic material for the continental United states. Of spegial significanec are havers of sedge peat and sphagnum moss peat. The possible thickness of these layers ranges from 4 to more than 6 fect. What gunatity ean be supplied by the territory is still problemation. The data in hatd are too imstequate to form the basis for any elose estimate but it camot be doubted that the reseresare large.

Ender present ciremmstanees, in basis for brow consideration of the uses of the territory's peat resoures is lacking. The possibility of e:tablishing a locol small-scale peat industry seems definitely faromble at this time. But the difficultins afferting the economy of Ahaskin are the highly seasomal industries operating for short periods in summer in areas with a sparse population. This gives rise to special problems
in transportation and planning (41). It requires the continuing transfer of labor from seasonal activities to some other form of seasonal employment. If a peat industry holds out a new prospect of employment. then it is desirable to make a more thorough survey and study of the problem than the time at the disposal of the writer permitted.

The development of a peat industry in Alaska must inevitably be by a series of steps. To aid in this exploitation, it would be well to point out what has been done in the past and is now in progress along those lines. In the following, it is not the intention to enter into techuical or theoretical phases bearing on a plan for the development of peat resources, except to point out that a practical working method capable of commercial operation and reducing the cost of production is an essential prelimimary step toward the establishment of a peat industry in Alaska or continental Cnited States.

Importance of Commercial Peat Pronuction

The commercial production of peat in continental United States has fluctuated from year to year (fig. 23), but the trend upward has been

Figenf 23.---Development of domestic peat industry in continental Cnited States during 1908-38, based on reports of the T'nited States Bureall of Mines (99)
greater in recent years than at any time in the past. The domestic production of peat first attained commercial importance in 1908 . A peak was reached during the Word War in 1917 and 1918.

The quantity and value of the output in recent years, and of the ammal supply of peat that is being imported, are griven in table 1 . It should, however, be borne in mind that the figures on domestic production are not complete. They do not represent the total production of peat in the Cnited States or the different kinds of pent materind marketed, and they do not take into consideration the many small producers as well as municipalitios which operate plants for hoen use. The steps taken toward standardizing grades of peat in this country indicate a growing knowledge regarding the commodity
and an appreciation of the valuc of selected products for use as organic soil amendments and for various other purposes for which the demand is increasing.

Table 1.-Quantity and value of peat produced in the United States ${ }^{1}$ and imporied, ${ }^{2}$ 1915-39

1 From complations by the J. S. Geologieal Survey and the Bureau of Mines. Bata for 1927-33 not avaljable.
'From compilations by the Bureau of Mines, No imparts previous to 1919.
Relatively few States as yet produce the larger part of the total for the United States. Reports covering the production of peat in 1939 were received by the Bureau of Mines from 39 producers operating in 15 States. The distribution of producing plants indicates that existing operations are determined largely by the scope of the regional market but limited by the geographical location of the peat area and the degree of skill employed in selection and preparation of the peat material. New Jersey and New York were the leading producing States in 1939. Other States, in the order of quantity of output reported, were Michigan, California, Florida, Colorado, Ohio, Minnesota, Iowa, Washington, Pennsylvania, Maine, New Hampshire, and Massachusetts,

Imports by Foreign Countries

Imports of moss peat first began in 1919 and have increased steadily in recent years. The annual supply of forcign moss peat has been mainly from Europe and to a lesser extent from Canada and Japan. A glance at table 2 will show that Germany and Sweden supplied the larger quantity of the material, that the average value per ton has been rising, and that the total value of imports of moss peat has passed the million dollar mark. The Bureau of Mines (99) reports that, of the total imports, approximately 62 percent was received in 1937 through customs districts at Atlantic ports, 21 percent at Gulf ports,

16 percent at Pacific coast ports, and 1 percent at Canadian border ports of entry.

Table 2.-Pent moss imported for consumption in the United States, 1937-38, by cotuntries

Country	imports in 1037		Imports ị 1838	
	Quantity	Yalue	Qumntity	Vriue
	Short tort		Short tone	
Belgium.	2, 323	$\$ 0,024$ 68,730	3,989	\$91, 197
Denmark	1,000	16,839	1,239	17,293
Estonia	1,139	20,018	1,486	26, 514
Finland.			, 57	1,659
Germany.	52,828	630, 218	36, 381	525,564
Japan.	83	$1+701$		525,
Leatyia.	1,414	23, 582	$\mathrm{I}_{1} 60{ }^{-1}$	37,106
Netherlands	5,018	65,501	6, 709	65,968
Norway....	968	18,604	744	13,323
Poland and Danzig			222	3,145
Sweden...........	19, 058	338,902	15,127	282, 224
U. S. S. R. (Russia)	1,250	17, 918	1,433	25,455
United Kingdomm.	707	11,030	498	6, 402
Total.	86, 871	$\mathrm{I}_{+} 21 \mathrm{I}_{\mathrm{r}} 127$	68.509	1. 092.542

Standards and Specifleationg for Commercial Peat Products

As an initial step toward standardizing the various kinds of peat now placed on the market, attempts were made several years ago to distinguish between the commercial peat products with respect to botanical composition as well as to physical and chemical properties and value for soil improvement (12). Of great importance to the peat industry is the fact that the Treasury Department, through its Procurement Division, has adopted standards for grades of a numbar of distinct types of peat recognized commercially and has issued specifications and proposals to cover the purchase of three kinds of humus-forming peat material required by the Federal Government. Standards have been set up in order that in the event of an emergency, quantity production will not be delayed by lack of information, and that operating plants may produce a uniform quality of peat material when and where needed.

The standardization of peat products implies the selection of a few types that are most suitable for the purposes desired. Specifications, on the other hand, are concerned with a description of the characteristics of the type of peat to be procured. It is evident that the peat industry can largely influence the work of standardization by cooperating with the respective Federal ayencies. Fiven those producers and dealers who are not interested in procuring Government contracts should familiarize themselves with the specifications for the grades of peat produced in this country and they should be bound by these specifications in all work pertaining to soil improvement.
The following schedule, specifying price, unit, and time of delivery, has been adopted tentatively by the Procurement Division of the Treasury Department for supplies of peat materials which the Govern-
ment purchases for use by Federal departments and other establishments:

Sphagnum noss; light grayish green. whitish. or pinkish colored, andecompased, well air-dried. derived or gathered from surface growth of sphagnum mosses: free from pine ncedles, twigs of woody shrubs, and other impurities; acid reaction varying between pH 4.0 and 5.0 . waterabsorbing capacity ranging from 1.100 to 2.100 percent: shall contain approximately 30 percent moisture by weight on oven-dried basis: 3-pound sample required:
(1) By the bale
(2) By the 10 bales
(3) By the carload: state appoximate number of bales to carloard. ..
Peat:
Moss (Sphagnum) peat; brown; acid reaction approximately 4 to 5 pH ; free of wood materiai, and mineral matter such as sulfur and iron; in air-diry condition; water-absorbing capacity varying from 1,100 to 2,000 percent: shall contain approximately 35 percent moisture by weight on oven-dried basis: if satisfactory in other respeets, moisture content in excess of $3 \overline{3}$ percent may be accepted, but settlement will be made on weights corrected to 35 percent maisture basis; bidder should state approximate number of pounds to bale: $\overline{5}$-pound sample required:

Horticultural grade; granulated or shredred:
(1) By the bale.
(2) By the 10 bales.
(3) By the carload: state approsimate number of bales to carload.
Potritry litter grade:
(1) By the bale
(2) By the 10 bales

Stable bedding:
(1) By the bale
(2) By the 10 bales
(3) By the carload; state approximate number of bales to carload.
Reed peat or sedge peat; brown; fibrous, shredded coarse or fine; low ash content (5 to 10 percent) ; low in mineral material such as iron and sulfur; low in content of woody material; water-absorbing capacity ranging from 350 to 800 percent; water content not to exceed 45 percent by weight on oven-dried basis; if satisfactory in other respects, moisture content in excess of 45 percent may be accepted, but settlement will be made on basis of weights corrected to 45 percent moisture content; $\overline{5}$ pound samples reguired:

Acid grade; reaction may vary from 4.5 to $5.5 \mathrm{pH}:$
(1) By the 100 -pound bag or 200 -pound bale or box

Pries Unit | 'Ilane of |
| :---: |
| thelivery |

telivery

	Price	Cbit	Time of debivery
Peat-Contimued.			
Reed peat or sledge pent-Continued.			
Acid grade-Continued.			
(2) By the ton (2,000 pounds) ; in 100pound bears or 200 -pomd bales			
or boxes.			
(3) By the carload: loose bulk; state approximate number of pounds or			
Slightly acid to slightly alkaline grade: reac-			
(1) By the 100 -pound bag or 200 -pound bale or box			
(2) By the ton (2,000 pounds); in $100-$ pound bags or 200 -pound bales			
(3) By the carload; loose bulk; state approximate number of pounds			
Reed muck or or cubic yards per ton to carlond.			
brown to black : granulated; slightly acid to			
slightiy alkaline in reaction (pH $\overline{5} .0$ to 7.5) :			
free of hmps: tow in ash content (8 to $1 \overline{5}$ per-cent); low in content of woody material and			
absorbing capacity ranging from 100 to 350			
percent; water content not to exceed 50 per-			
content in excess of 50 percent may be ac-			
cepted, but settlement will be made on basis of weights corrected to 50 percent moisture			
of weights corrected to so perent moisture			
In bags of approximately 100 pounds:			
(1) By the bag (bidder to state exact			
(2) By the ton (2,000 pounds) - .l....			
approximate number of pounds or			
cubic yards per ton to carload.			

Advantages of Peat Materials for Soil Improvement

The addition of organic matter to soils is one of the oldest methods used to improve its physical condition, to reduce run-off and erosion, and to increase plant growth. Its greatest effect is on the structure of mineral soils. Heayy clay soils are lightened, made more granular, less plastic and consequentiy more permeable to water, air, roots, and micro-organisms; in light sandy soils the cffect is in binding the soil particles, retarding excessive percolation, increasing the stability of the soil aggregates, and making them more retentive of moisture and nutrients. The bencficial effects were known to farmers and gardeners long before it was understood in what ways incorporation of organic matter in the form of composts or barnyard and green manures acted
as soil amendments，served as food for micro－organisms．or augmented crop production．

A mumber of distinct types of peat have been used for the purpose of increasing the content of organic matter in the soil and improving its condition for the growth of plants．The available literature on experiments with peat as a soil amendment is extensive and cannot be reviewed hore．However，many previous tests of the ralue of peat have failed to describe the type and quality of peat used or the character of the soil to which it was applied．Speeific results are known only in a general way（23，26，36）and no careful experimental investigations have been made of the various effects under differing environmental conditions．These are some of the reusons why many State and Federal agencies have failed to indieate the necessity for the development of a program to restore organic matter in soils by means of humus－forming peat material，and why the general public lacks information regarding standards of quality and types of peat and their effect upon structural changes in soils．

Some of the experiences with peat，notably those having an alkaline reaction or containing resinous material，hare been found to be un－ favorable，but on the whole sufficient observations have been recorded to demonstrate that a good quality of moss peat，sedge prat，and other types of fibrous peat，as well as their decomposed phases（muck）．have considerable potential value for soil improvement when property utilized．They alter structural conditions and increase acration and movement of water；influence the solubility of soil minerals and aid in conserving the easily soluble nutrients，as well as those contnined in fertilizars applied to the soil；aftect favorahly the growth of roots of plants and activity of beneficial micro－organisms；increase the content of soil humus formed from the decomposition of the peat materials and improve the transfer of soluble salts from parts of the subsoil accessible to air and roots；and make the surface soil more friable and capable of absorbing more water than an untreated soil of the same kind，thus reducing rum－ofl and crosion．The loss of soluble salts due to leaching ean be reduced by adding humus－forming types of poat．The soluble nutrients are absorbed and retained for a time by the peat material，but they are returned to the soil on the decomposition of the pent；and they adel nitrogen through the action of bacteria that uso atmospleric nitrogen and depend on the supply of organic matter for food．Noss peat and sedge peat appear to affect also the arailability of certain mineral salts and pertilizers， especially rock phosphtate and moke them available for the growth of succeeding plants．

Since the addition of organic matter to soils is of great importance under most climatic conditions，the type of perat sclected usually should be one that will produee the hargest quantity of humus in the time desired．Owing to the uniformity and guality of the produed and its advantageous phavical properties，sphagnum moss peat，as well as sphagnum moss litter，is sorving today a variely of purposes， especially in dairy barns，pouttry houses，and for hortientural pur－ poses．In the preparation of moss literer considerable amounts can be obtained by raking or harowing several times during a summer the surface of cleposits on which mosses grow in the form of hammocks． After exposing the mosses as a thin loose layer to wind and sun，the
material is conveyed to a suitable storehouse or shed and afterwards pressed into brles.

A good quality of moss litter has properties similar to moss pent but is light grayish green or pinkish colored, undecomposed fibrous material, soft and clastic, a good absorber, deodorizer, and insulator and may be used profitably for bedding purposes and for packing Truits, vegetables, fish, menti, and eggs.

A good quality of moss peat such as that in the Juncan district, Alaska, is spongy in texture, yellowish brown in color. relatively low in pH reaction ($\mathrm{pH} 4.0-4.5$), low in ash ($1.5-3.0$ percent on the dryweight basis) and nitrogen, and high in water-absorbing capacity (about 1,000-2,500 percent on a dry-weight basis). It contains appreciable quantities of hemicellulose and cellulose and a rehatively low content of lignin complexes. However, the organie components which tend to enrich the soil solution or develop a buffering capacity need a mach more adequate chatacterization; hence further investigations and chemical analyses are necessary. In moss peat, decomposition is hastrned by the addition of soluble nitrogen and lime; mineral mutrients in the form of complete fertilizers are also important for a gradual relcase of matrients. Composts with sphagnum moss peat, owing to its disinfecting and deoforizing properties as well as its high absorptive capacity for ammonia, and the manures obtained from the use of moss peat as stable and dairy bedding and poultry litter. make this type of peat a valuable humus-forming organic material and carrici of fertilizer constituents. Several commercial preparations of mamure and moss perat. such as "Driconare" and "Henure," are on the matket. Other uses of moss peat include mulching for evergreen trees and shrubs to prevent injurious effeets of alternate freezing and thawing, and packing of seedlings and cuttings.

Of the other types of peat, the shredded grades of fibrous sedge and reed peat are most commonly used for improving soil conditions. A good ruality of humus-forming reed peat or sedge peat of the type in the Petersburg distriet of Alaska. is reddish brown in color, with a reartion ranging from pH 4.5-6.5. has an ash content varying between 5 and 15 percent on a dry weight basis amd a water-absorbing capacity ranging from 500 to 900 pereent on a dry basis. Decomposed phases or mack are usually dark brown in color, are less acid in reaction, contain more mineral matter, and have a much lower water-absorbing rapacity on a dry-weight hasis. Many factors have contributed to their use: mmual loss of humus in soils destroyed as the result of cultivation, run-off, and erosion; deerease in the supply of manure; increase in concentration of ehemeial fertilizers: loss of soluble nut trients by leaching: structural changes in surface soils; restricted and unsymmetrical growth of roots.

The main advontages from using sedge peat and related types of prat as humus-forming materind ure its low ash content, frecrlom of wed seds and the case of incorporating the peat material with a mineral soil, making it looser, more frimbe more setentive of nutrime salts. and favoring a freer movement of water aud roots of growing plants. It is mainly as a soures of humbs-forming and soil-improving material of a redatively persistrot mature that sedge peat, reed peat and cultivated phases or muck have the qreater value. The extent to which the improvements ake place moder sarying soil conditions is not well known. However, there is litte loss ithough leaching of
soluble mineral satts as the peat materiol undrerges decomposition in the soil, and the nitrogen contained in the peat in form of resistant organic complexes becomes patially available in time. On that account sedge and reed peat are used abso to a considerable extent in making composts. In many parts of the Conited States these types of pent could be used to good advantage for making eompost heraps. The practiee is an old one, especiully in European countries. Some of the possibilities for composting with fish scrap, slaughterhouso wastes, sewnge, lawn elippings, straw, leaves and trimmings from regetables, garbage, and other materinls are well worth consideration in order to supply the soil with organic matter and nutrients. Amony the publications on this subjed are those by Dhams and Gobeen (25). Suyder and Wrant (85). Dachmowski (8), Waksman (42), and others. Composts contuin minaral constituents in a more avalable form and they do not cause nitrogen starvation which accompanises the decomposition of raw manure as well as nuw peat by micro-organisms.

It should be borne in mind that a peat compost is not a balanced fertilizer. For this reason it is advisable to supplement it with chemical fertilizers. Decomposition of raw neid pent materinds is improved by the use of available potash, phosphate, and a small quantity of lime. An excess of soluble nitrogen retards decomposition and results in loss.

The rate of application of peat materials or peat emposts shoudd be governed by the churacter of the soil as well as the kind of plants to be qrown. Moderate applications will usually bring better results. Peat materials or composts should be well mixed with the surface soil by raking or prelerably by means of a compost mixer. Thorough preparation and granulation of the soil and pent mixture is essential for the purpose of improving its physical condition and especially important in the case of humus-forming types of peat. Applications of moss or sedge peat and mack should be completely turned under in the fall or early spring to allow for partial decomposition. The peat materials decompose most rapidly when the soil is well supplied with moisture and with a liberal dressing of a nitrogenous fertilizer. Some advantage is also clamed for the fucrow method of application where only a small quantity of peat or peat compost is required to increase the content of organic matter in the soil

Methods Limployed in the Manufactuie of Comsiercial Peat Products

The processes and operating methods employed for the commercial utilization of pert resources for luel and related products have been deseribed by Odell and Hood (31) and by Hatnel (20). A brief statement of the steps taken in the development of a peat inclustry that would yiold products for use in soil improvements was given enclier by the writer (12). It was also pointed out (θ) that the suitability of a peat deposit for economic purposes depends upon (1) Iocation, facility for drainage, and necessibility to shipping points and markets; (2) tyone and quality of pent material and its relative freedom from stumps and roots, colloislal organic residues and mineral matter; (3) depth and thickmess of fibrous hayers of peat not less tham 3 to 5 feet: (4) acreage sufficent in extent to warant operations and the establishment of a plant.

Aside from their value as a source of fuel for power production, hydrogenation, carbonization, and recovery of chemical byproducts, and as an insulating, packing, and preservative material either in the form of compact slabs or loose mull, the most successful commercial utilization of moss and sedge peat hus been as organic soil amendments. The objective of the following account is to describe the essential preliminary operations and to summarize the methods and difficulties involved in the production of marketable humus-forming pent products from muskegs.

DRAINAGE

The first operation in the preparation of an area of peat selected for commercial utilization should bo drainage. Good dramage is important not only for removing the excess of water contained in peat materials and reducing the weight of the material to be excavated aud handled, but it is essential also for clenring the aren of trees and slumbs and producing a firm working surface. A good dramage outlet and shallow open ditches used as mains and laterals or cross drains are preferable to a few deep ones, since the effects of a drain extend only for a short distance from the walls of the ditch. Where areas of pent have been overdraned, the water level can be raised and objectionable conditions cme be remedied or controlled by the use of dams placed in outlet ditches. The drainage system should be adequate to remove any excess of water following a heavy rainfall without resulting in too great a lowering of the water table and unncerssarily increasing the risk of damage by fire. A peat deposit settles more or less rapidly after dramage if the layers of peat are coarsely fibrous and the ditches are deepened from year to year.

The distance between parallel lines of ditches depends on rainfoll and on the type and texture of peat materinls, the thickness and mature of the underlying pent loyers, nut the bottom reliel of the mineral substratum. Peat areas with a convex or raised surface and those with a sloping surface can be drained as deep as the fibrous layers are found. Flat and valley deposits, however, which lie in water basins, can be drained only at great expense (9).

EXCAYATHON

Several methods of excavating pent material are in use by proclucers in the attempt to simplify the process, incresse the output, and reduce the cost of production. The more important of these methods consist of spading, harrowing mod digging by means of mechanical exeavators.

In Europe mueh of the peat material is excavated with a specially sluped spade or slame (fig. 24), which cuts two sides of the peat block at one stroke. The blocles or sods are brick-shaped and of uniform size, lifted with forks and spread on the fied to diy or carricel in barrows to a drying area on bigher gromed adjarent to the peat deposit for overwintering. The pent is cut vertically as woll as horizontally in areas in which the hayers of peat are uniform, relatively thick, and show little variation or damare from unevell drying und crumbling. The sods are generally 5 by 5 by 12 inches in size. Hand cutting is resorted to where labor is charap and pleatiful. A skitlful workman is able to cut in 6 hours from 3,000 to 4,000 sods. In such cases the peat area is divided into squares of suitnble size. The sods are spread on the drying ground and later stacked in small loose piles
for further air-drying or hauled by a small trackway to the central drying and operating plant. It is reported that three workmen can cut and spread approximately 20 tons of air-dried peat in 1 week by the use of the slane spade as a cutting tool. One ton of air-dried peat per man per day appears to be the usual estimate. From time to time various small machines to cut peat sods have been devised but they have been superseded by more complicated power-operated excavators.

Ficure 24.-Slanes used for hand-cutting of thocks of peat and method of excavation.

In this country the surface of some peat areas is harrowed. The process is relatively simple and consists essentialiy in clearing the peat area of all vegetation, harrowing the surtace, or plowing and later harrowing it thoroughly in such a manner that the loose material in the top few inches evaporates much of its moisture. The type of peat and drainage conditions of the deposit should determine the kind of harrow to use. Rototillers and rotary harrows, carried on caterpillars, shred a peat layer to considerable depth, while disk harrows or spike-tooth and spring-tooth harrows give rise to clods and lamps of peat material. A thin layer about 2 inches or more thick is air-dried to a water content of 45 to 50 percent, scraped or raked several times, loaded into cars of a light narrow-gauge railway laid on the peat area at convenient distances. It is then piled or transported to drying sheds for further treatment.

Haanel (20) states that at the Welland, Canada, peat deposit, five men with one horse were able to gather about 3,000 cubic feet of air-dried peat daily which would yield about 23 tons of the commercial product. There are machines with caterpillar traction and a combined harrowing and elevating mechanism capable of being raised or lowered according to the depth of the harrowing to be made. The excavating portion scripes thin slices of peat material and elevates it to a conveyor from which it is spread over the surface of the peat area to a distance of 30 to 50 feet. It forms a thin cover of coarsely
shredded material which is dried by the air and sun. Successive slices severat inches in thickness can be seraped or harrowed. spread, and collected according to weather conditions without affecting materially the drying process.

Various types of mechanical, automatic, and contimous excarators have been devised which need not be described or discussed here. European operators have devoted considerable attention to these. Some are of the bucket and endless chain type; but these are unsuitable for use in peat deposits where roots and stamps of trees and layers of colloidal or sedimentary pent are present to any extent. Others are designed to travel on the surface of the peat area by means of caterpillars with conveyors or spreaders which automatically dump peat material on the drying-ground. Still others represent a floating dredge with pipe-lime attachment, or hydraulic excavation with suction pump for conveying the peat in the bottom of a working trench or poid to the adjacent drying field. These lines of development in Europe and data relating to the machines used for peat production may be found in the reports by Haanel (20), Odell and Hood (31), and Davis (15).

From a national standpoint it is obvious that areas from which peat has been excavated, as we!! as deposits that cannot be worked for commercial or agricultural uses should be preserved for storing water supplies and as widlife restrves.

Alk-DRYING

The drying of peat materials on a large-scale production is a factor of economic importance which has led to the adoption of various devices for reducing the moisture content. Numerous failures have resulted from attempts to accomplish the drying of peat by artificial methods of dehydration, either by pressure in yarious types of machines or by hent, including partial carbonization. In all types of artificial driers, devised for eraporating the excess water from pent, the necessury pressure or heat is supplied by the combustion of fuel. The principal cause of railure of delydration projects may, therefore, be the cost of fuel. Fruitless efforts along the line of artificial pressing and diving have convinced European and Chandina investigators of prominence that the matural air-drying process is the only practical method from which to expect a reasonable degree of success in preserving the absorptive properties of the material and in attaining a lower cost of production.

In air-drying operations, the mpidity with which eraporation of anoisture in pent materials occurs deprads principally upon the length of the drying season and the atmospheric conditions of which wind and temperature are the important factors. The guantity of moisture in the atmosphere under rarious conditions of temperature, inchuding a discussion of the moisture content of the air in different climates nad regions, are given in publimations of the Wenther Burean.

The rate of drying of cut blocks or harrowed peat spread on the lield is dependent on the nature of the surface of the drying field, the method of stacking or sprending the material, and on the seasomal wenther conditions.

A peat deposit covered with sphagnum mosses and sedges. nud properly draned, provides a favomble surlace for drying blocks and
sods of pent under climatic conditions of Alaska. The surface of a burned-over pent deposit, or one from which the vegetation rover has been removed. is not suitable for drying blocks of peak. Areas with low shrubby growth which en be pressed down by machinery supported on caterpillars become smooth and efficient drying fields. In very humid dimate or ramy seasons a procedure essential to proper drying of peat sods consists of trestles of varions forms, roofed huts, or diving sheds. A common method in northern Europe is to spors sods of pent on shapp-pointed stakes or exosenmen projecting from poles sot in the pent aren. Drying proeeds freely and shrinkage takes place on all sides of the peat blocks. il they ne tamed from time to time to expose the underside to the air. or collected and stacked in loose open piles 4 to fere in height. Sntisfarfory results have been obtained by emploting a porinble belt convegor supported on saterpillars for sprading and colleding air-dried sods, but tumang or sods or blocks is generally performed by manalal laber and an ordinary hand rake is the anly implement requiped. 'Tramsurtation of the bleoks of peat to the central pland may recpare porlable field fatels and small dompears which are londer and delivered to the main track by means of manam labor or a tractor.
 material is raked several limos and subseguently semped into piles. It remoins in a piled comdition for several monthe or olse is transported by bedt comegors or cass to stomge sheds and spread aut in a
 operations have been devised, with varging sucess, whereby a harrowing and sprading machine on raterpillars seaters the peat material in long rows parnllel 10 marrow-gatge tracks and in such widths and thirkness ns may be desimble. The advantages of this method of spreading and drying are importnat. The material is lighty deposited, is relatively foose. and an this way a smoonh upper surface is produced which dries more or hess miformly and rapidly. A further adrontage is that the thickness of the harowed pent can be regulated acooding to the gencml deying conditions previling. i. e.. the material is spreat more thickly in the summer months and thinner during later or mare miny sensons.

After being brought to the conteal plant. the air-tried, brek-shaped blocks of peat as will as furbow slices mad harrowed matromal, inded-
 or shredder: Shredding machines are of different sizas and eonstruetion but buite on the sumo prineiple. The simpler lape of shrededer is more or less similar to the storeders and som mixers used on the fatm: it consists of t wo deums provided witl: teeth which rotole wifh differcot velocitios againsf etach other. Some of the more compliented types, suitable for commerial peat operations, have rotating or fixed knives, while others nre swing-hammer shredders wheh resemble those used for shareding pulpwood. Tha smatler und simpler sherddors are operated by hated power and those of harger eapacity are driven by motor power.

From the shodder (he peat moterial passex through n serexing sustem. This consists mandy of rotating sieves difloring in size of meshes
and capacity. The coarser materinl is remored from the finer grade nad the two products ate nfferward tomsermed to presses or to bagging machines and baled or bagged separately. To prevent the formation of combustible pera dust, it is very important no to redued the mosture contem of the material to a point below an-drying where it becomes britle, absorbs air, resists wetting, and pulverizes to perat dust.

Cniformity in type quality, color and texture is of great importmane in disposing of any commercal peat product. This canot be secured without grading. Stmodard grades furnish the basis for imports and for trade in domestie types of peat. ['miform and wellrerognized grades of moss peat, sedier peat, and its ratious decomposed phases (muck) are essential for marke information, inspection, and sates. Standard types of peat and uniform grades climinate friction betwen producers and denters. reduce kesses caused by misunderstanding and rejection. and discourage the use of inferior products.

The number of grades should be kept preferably to only two, or at most three a fine textured and one or two coarser products. During meent years tenative standards of type and grades of pent materind have been worked out by the Department of Agriculture. They are described on page 72 in terms to meet the guality reguirements for imterstate commerec, and they have been adopted by some of the Federal and State agebeies and hading producers.

PACKING AND MARKETING

Commercinl peat products are shipped to the market in bulk carloads (cubic yards or tons) and in various contniners including baskets, lightweight wire-bound boxes and crates, burlap bays and paper cartons. Several of the containers provide an uneertain mosasure of the contents or do not stand shipping and storing for any length of time cither under cover or in the open. During recent years considcrable progress has been made in standardizing the size of some of the containers used. A further advantage would be the practice to indicate contents in terms of cubic feet or yards per unit weight.

The sale unit for imported moss peat is the bale. The presses used for baling are vertical, strongly constructed of wood and built rither for hand power or motor power. The shredded, even-textured, spongy moss prat is pressed down to one-third or one-fourth of its original whume and while in the press the bale is covered with burlap, secured with 6 to 10 shats of wood, and bound with iron wire. The standard bale contains one-third cubic meter of spongy moss peat (about 12 cubic teet or 20 bushels, sufficient to cover an area of 250 square feet 1 inch deep); it is low in mineral matter and woody or fibrous (cottongrass) material: the moisture content ranges from 15 to 25 pereent and the average weight of the bate is approximately 140 to 160 prounds.
Among domestic producers there appars to be a trend towned the use of lightweight wooden boxes. burlap bags, and special paper containers. Thew is still need for the elimination of many sizes and for properly identifying and describing the quality of the materin by distinctive names, trade-manks, or eertifeates. The large variety of sizes and kinds of eontniness in use has increased the mathinery necessary to manufacture peat products and it has added to the cost
of the product to the consumer. The peat industry is growing so rapidly that facts relating to recent methods, processes, machinery employed, and the present variety in commereial peat products should receive more careful consideration.
Much of the marketing problem in commersial pent products belongs to the fields of economics. It includes trunsportation, distribution, costs, marketing agencies, and cooperative organizations. and it requires a knowledge of the fundamentals of economics. The essentiads for success in profitable markeling of peat products are: A standard type of peat material; milorm quality of the graded product; grood packing and handling methods; selection of deposits located favorably with respert to markets; and orgmization to ascertaim important commercial facts and avoid the added cost imposed by freight rates, sales, and competition with supplies from other producers or winh interios products.
One of the great difficulties that is hodding up the development of a domestic peat industry is lack of organgation amone the producers for the purpose of establishing and maintaming high standarts of quality, ascertaining important facts upon which to base sound judgments, and developing the maket for humus-forming types of pent material in order to achiese large-seate production and aconomy in trunsportation. delivery, and other costs. It is important that producers and dealers who do their own marketing devote time and study to what the market demands both in products and metbods of handing the material used as soil amendment. Special attention should be given to the standardization of products and to the specifications describing the material and its properties required by'Federal, State, and private agencies. The producer is responsible for the quality of the product and the improvements that can be made in producing and marketing the commodity. He can improve the grading nad packing of his product, and the shipping and handfing of it. These improvements would aid greatly adeguate research of the benefits to be derived from the use of humus-forming types of peat, and they would not only help to dispel popular misconceptions concerning the effects of additions of peat material to the soil, but they also would stimulate the sale of the commodity to retail and wholesale dealers and other kinds of buyers. Cooperating marketing has been emploved to a very limited extent. There have been some failures, probably due to lack of proper information, poor methods of operation, or indifference toward cooperation and mangement. Cooperative associations to be suceessifa should be organized on a basis of producers of stamhard qualities of peat products and regional markets.

LITERATERE CITAD

(1) Aven, Vaño

L933. PEAM HoGs of solmpanaspern canada. In Handbuch der Moorkume $7:[1 / 10\} 293$, illus,
(2) Bennery, Hicaf ll.

1918, REPOR' ON A BEOONNOHSANCE OF THE SOLLA, AGRICELPGRE, AND

1915. soh. meronsoussanev in Abaska with an ExTMATE of The

(4) Brooks, Alfred H., gind Abbe, Cleveland, Jr.
1906. geography and geology of alaska. U. S. Geol. Survey Prof. . Paper 45,327 pp., illus.
(5) Capps, Stephen R.
1932. Glactation in alaska. U. S. Geol. Survey Prof. Paper 170: 1-8,
(6) illus.
1933. THE EASTERN PORTION OF MOUNT MCKINLEY NATIONAL PARK, C'. S. Geol. Survey Bul. 836: 219-300, illus.
(7) Gooper, William 8 .
1939. a FOURTH Expedidion to glacier bay, alaska. Ecology 20: 130-155, illis.
(8) Dachnowski, Alfred P.
1922. preparation of peat composts. C. S. Dept. Agr. Dept. Cir. 252, 12 pp.
(9) Dacinowski-Stokes, Alfued P.
1926. FACTOHS AND PROBLEMS IN THE SELECTION OF TEAT LANDS FOR (10) bipferent uses. CV, S. Dept., Agr. Bul. 1419,24 pp., illus.
1929. RECORDS OF CLMATIC CYCLES IN leat derosits. /a Camegie Inet-1 Wash., Reports of the Conferences on Cycles, pp. $55-64$. Wastiington, D. C.
(11)
1930. PEAT PROFILES OF THE EVERGLADES IN FLORIDA: THE STKATIGMAPHIC FEATHRES OF THE "LPPEA" EVERGLADES AND CORGELAJTON WTH environmental changes. Wash. Acad. Bci. Jour. 20: 89-107, illus.
(12) 1933. GRADES of PEAT AND MOCK FOR SOIL LMPROVEMENT. U. S. Dept. Agr. Cir. 290, 30 pp., ilhs.
(13) - 1933. PEAT DEPOSITS IN USA. THEIR CHARACTERISTIC PRORILES AND CLASsificetion. In Handbuch der Moorkunde 7: [1]-140, illus.
(14)
1936. PEAT LaND in the pactfic coast states in helation to land and water resotrges. T. S. Dept. Agr. Misc. Pub. 248, 68 pp., illus.
(15) Davis, Charles A.
1910. the pheparation and dee of peat as foel. [V. S. Geol. Survey, Bul. 442: 101-1.32.
(16) Feesjel, Iuvin C., and Byers, Horace G.
1930. THE PHYSICAL AND CHEMICAL CHARACTERISTICS OF CERTAN AMERYCan beat profiles. [̌. S. Dept. Agr. Tech. Bul. 214, 27 pp , ilfus.
(17) Geongeson, (${ }^{1}$. C.
1937. Nfohmation for prospective settleas in alaska. Alaska Agr. Expt, Sta. Cir, 1, 36 pp., illus.
(18) Grant, U. S., and Higgins, D. F.
1910. RECONNASSANCE OF THE GEOLOGY AND MINEHAL HESOCBCES OF prince wihmam sound, alaska. U. S. Geol. Survey Bul. 443, 89 pro. illus.
(19) Griggs, Robert F.
1934. THE EDGE OF THE FOREST IN ALASKA AND THE REASON: FOR ITS Posirion. Ecology 15: 80-96, illus.
(20) Hacinel. B. F.
1926. FINAL HEPOIT OF THE PEAT COMMTTEEE . . PEAT: ITS MANDfactore and एises. Canada Dept. Mines, Mines Branch No. 641,298 pp., illus.
(21) HilL, James M.

1933, bone derosits of the faimianks district, alaska. [U. S. Geul. Survey Bul. 840… 13, 29 163, illus.
(22) KNOPF, ADOLPM.
1912. The EAGLE RIVEH REGMA, nofthenstehn alaska. U. S. Geol. Survey Buf. 302, 6.1 pp ., illus.
(23) Laumie, AleEx.
1930. the pre of peat in the gheenhodse. Mich. Agr. Expt. Sta. Spec. Bul. 194, 28 pp., illus.
(24) Lewis, Francis J., and Dowding, E. S.
1926. the vegetation and retrogressive changes of peat abeas ("Meskegs") in central alberta. Jour. Ecol. 14: \{317]-341, illus.
(25) Manns, Thos. F., and Goheen, Joseph M.
1916. a preliminary heport on muck humos as a fertitizer and carrier of bengbiclal soll bagtetia. Del. Agr. Bxpt. Sta. Bul. 115, 40 pp., illus.
(26) McCool, M. M.
1932. valde of peats por mineral soll mphovement. BoyceThompson Inst. Contrib. 4: 245-255, illus.
(27) Mopfit, Fred H.
1906. gold fields of the turnagain arm region. C. S. Geol. Survey Bul. 277: 7-52, illus.
(28) - $-\cdots$ and Pogue, Joserph H .
1915. the broad pass megion, alaska. U. S. Geol. Survey bul. 608, 80 ppo, illus.
(29) Nichols, Ghorge E.
1919. rased bogs in eastern mane. Geog. Rev. 7:159-167, ihus.
(30) Nikiponoff, Constantin.
1928. the perpeyualhy frozen subsoll in siberla. Soil Sci. 26: 61-81, illus.
(31) Odell, W. W., and Hood, O. P.
1926. possibilities for the commerclal utilization of peat. U. S. Bur. Mines $\$$ Bul. 253, 160 pp., illus.
(32) Paindee, L. M., Kat\%, J. J., and Smith, Philip S.
1913. a geotogic reconnalssance of tife paibbanes quadrangit, dlaska. U. S. Geol. Survey. Bul. $525,220 \mathrm{pp}$., illus.
(33) Rigg, Cieonge B.
1937. Sone baised bogs of southmastern alaska with notes on flat boas and moskeas. Amer. Jour. Bot. 24: 194-198, illus.
(34) Sargentr, R. H., and Moffit, Fred H.
1931. abhial photographie surveys in sodmeastern alaska. U.S. Geol. Survey Bul, 797: 143-160, illus.
(35) Snyder, R. M., and Wrant, Z. N.
1932. studies on the biological decomposition of peat. Mich. Agr. Expt. Sta. Teoh. Bul. 129, 63 pp., illus.
(36) Sprague, H. B., and Marrero, J. F.
1932. further studies on the vadue of vabious types of organic mateer for mproving the physical condition of solls for PLANT GROWTh. Soil Sci. 34: 197-208.
(37) Taylor, Raymond F.
1932. the successional trend and its relation to second-growte forests in sodtheastern alaska. Ecology 13: 381-391, illus.
(38) Tuck, Ralfh.
1934. tie corry district, hlaska. U. S. Geol. Survey Bui. 857-C, pp. 99-140, illus.
(39) United Stapes Bureau of Mines.
1940. peat. U. S. Bur. Mines Min. Yearbeok, 1940: 937-940, illus.
(40) United States Department of Agriculture.
1938. soins AND MEN. U. S. Dept. Agr. Yearbook, 1938 , 1232 pp., illus.
(41) United States Natyonal Resources Commttee.
1937. regional planning, pt. 7, alaska-Its resouhces and development. 213 pp., ilhus. Washington, D. C.
(42) Waksman, Sbemtan A.
1938. humus; origin, chellical composition, and mportance in nature. Ed. 2, rev., 526 pp., illus. Baltimore.

[^0]: 1 Received for publication Jume 24, 1440 .

 of the Biological Surves. Department of the Interior; to F , 'T. Benn, Superintendent of Mont Mekinley
 Manager of the Alaska Rajlroud, and the lat lign. Jatues Wickersham, former Delegate to Congress Iroin Aleskis.
 Sincere thanks for cooperntlon are aine also to Hr . A. Rachte, A sisistant Repional C'onservator of the Sol ('onservation Serviee; Lt Dr, D: D. Irwin of the Nratanuskn Agrieulturnl jxperinent Station; Dr. A. H.
 identiflention of blants; to Mexsrs, S. O. White, If. A. Jeusem. amd G. K. Manta of the Alaska Gamo Com-
 others botla in and out of Nask: who furnjshed information and extended muty cotirtestes. Grateful

[^1]:

[^2]: 0-1 feet; upper 3 inches yellowish-brown sphagnam moss peat grading into a dark-brown mixture of sedge and moss peat in which woody shrubs are rooting; the layer is saturated with water and gives a reaction of pH 4.5-5.0.

[^3]: $0-9$ feet; sphagaum moss moth; the surface is spongy, well preserved, typicaly reddish-brown, faily eompact and pht i. in raction; there are present verticallyelongated components of fibrons material from mosises, collongrass and other sedges and several thin, sharply defned seams of dark brown and more deconposed mose pent whieh represen material that was formed ita shatlow pools of water; the layer is moist bolow the 2 -fool level and contanis thethane fras.

[^4]: ${ }^{4}$ in Cook Tnfet near foint. Woronzof shathwat of A ochorage, an excellent exposure of a muskeg alony a tuew) y cut bluft revenis that fts history las been of much the same eharncter. The cut bank has vers stepa slopes, and as crosion takes place hy tive Lites, latere blocks of the overhageing face fall outward aud down to tide level. At the hase of the blafis bluld stick clay with an even surface. Above the clay and extending

 and yedges uzain colonized the nrea: thry ewntinued, intermittedy, necumblating 18 inches of peat composed for the mast part of a minture of moss nad sedipe pimh. The quantity of volcanic ash noticeable in seams nearer the surface is relatively smail hadicating lesser interierener from volconice eruptions during recent periods. 'the presemt vegelation on the surface of the underent muskeg eonsfts of biack spruce, birch, ant small eushions of sphazum mosses thminated hy several spectes or henth slmubs.

[^5]: 0.316 feet; mixture of moss and sedge peat, brown, frbrous, typieally matted in the upper 6 inches; the material below it consists of 2 inches of dark brown, partly decomposed moss and sedge peat on which are resting roots of woody shrubs; this shades into compacted brown, fibrous sedge peat containing fiatiened rhizomes of Scirpus and Eriophorum; the layer extends to the third foot level where it merges with 6 to 8 inches of dark brown organic sediments derived from aquatic plants.
 $3 y / 4$ feet; transition to silty organic residue, brown in color, on sitt over fine gravel.

[^6]: $03^{\prime}+$ feet; spaghman moss peat; for the first 10 imbles the materinl is light brown, grayish thated, compunt ams shighty doemmposed; the mext $1 \bar{b}$ inches are sedme brown in color, spongy fibrous, and shade into moss pent which eontains wouly material from varions shrubly bunthe.

 3 ; thi feed; woody sedge peat; the mper portion contans eonese tibous tussocky manterial from eottongrass and sedges; hear the 4 -foot level are standes of spruce rooted in dark-brown woody peat.

[^7]:

 level contnitas rhlzonter and rootlets from sedges with silt protnbly from food stages of the river.

