

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Y 0% 2 20 a

START

Structure and Development of the Alimentary Eanal of the Southern Armyworm Larva

By l'alch A. Woke
Assistant entomoloyist, Dicision of Control Inccstigutions, Burcan of Lintomology and Plome Qutrantine

CONTENTS

lage :			[${ }^{\text {age }}$
Introduction.		Midmat (meseateron)-fontibuct.	
Materials and methors of sterly	2	Epiltelimm-Confinucd.	
Genertin deseription of the alimentary ennal	$3:$	Interstitial colls	1
Month marte mod labial glozels	3	Columnar teils	18
Enrggut (stombumatus).	:	(onlyeiform celts	21
Month andi imecommaryas	$1{ }^{\prime \prime}$	Interehationsliporthe then kiba	21
Oesophagtis	13	Growth of the mikual witheliun	
Proventriculas	il	Ifititeut (oroctodacumin)	$\underline{9}$
Stomolachl catye	12	Pryeus	
Mident (ruserberon).	12	Linterior intestine	25
stusemiature	13	${ }^{\text {doncterior intestice }}$	23
Pericophic membrame	14	Sumbary	26
Epithellum...	24	Abbredations used in illastrations	27

INTRODLCTION

Knowiedge of the inteman anatomy and physiology of insects is essential in the investigation of toxientogical problems, In preparation for such work the present study was undertaken to learn the structure, microscopic amatom, and posiembryonic development of the alimentary canal of the lary of the southern amyworm (Prodenia cridanid (Cram.)). (ytological stadies and more detailed descriptions will be included in future reports on the special problems with which such studies are perticularly concerned.

The southern amywom larva is well sulted as a generalized insect for experimental purposes. It breds readily in emall cages and is easily reared in large mombers throughont the year on its natural food plants. It feeds on a variety of plants and has a failly rapid development. In size it is comrentent for dissection ant sbservation.

This larva is used extensively in investigational work on digestion in Ieat-ceating insects and the eflects of varions insecticidal conpounds on the digestion and absomtion of foodstuffs, which is carried on as a special researeh problem. It is essentiat that clefinite information as to the morphology of the digestive tract of the normal insect be a vailable it the results of this investigational work are to be correctly interpreted. This study was theretore made as a part of the work on digestion and translocation of foodstuffs in insects.

The southern armyworm is a typical lepidopterous larra and one of a heteroreneous group of noctuid larvae known as armyworms. The group has been reviewed by Crumb ($\delta, 9) .{ }^{1}$ A technical description, by Dyar, of the egg and larval stages is included in a paper by Chittenden and Russell (\%). The species occurs in the lower Austral famal area and is probably of tropical origin. It is destructive to varions field and truck corps in the southern part of the United States (7,31).
The latrae are about 1.2 man. long at hatehing. Mature larvae range in length from aboul 39 to 40 mm .. and in breadth from about 6 to 7.5 mm . The aveage weight of such larae is about 960 mg . About half of this weight is due to ingested material within the alimentary camal. The larvate devolop in six stadia, requiring about 17 days at $27^{\circ} \mathrm{C}$.

An examination of the frew defailed accounts of the anatomy of the alimentary camal of lepidopteroms larrae reveals a diversity of structure even among closely related species. Especially helpful is a comparative stucly of the morpholory of the alimentary camn of lepidopterous larvae. includine species of Noctuidae ariven by Dauberschmidt (10). Bordas (ij) deseribed the alimentary canal and the Malpighim tubules of the harva of cach of several representative species of Lepidoptera. including four species of the family Noctuidne, and Snodgras ($2,4,2 \pi$) has describer the alimentary canal of noctuid species. Shinoda (23) made a comparative study of the histocytology of the midgut of several species of Lepideptera. There is no report in the literature on the alimentary canal of the larva of the southera amyworm. In its gemeral features it is similar to the alimentary camals of other lepidoperous latwa that have been described.

Materials and methods of study

The larvae used in this study. with the exception of the late sixth instars, were reared on fresh turnip folinge in wi incubator at $27^{\circ} \mathrm{C}$. The late sixth insiars (6in or more hous past the fifth molt) were rearad on the foliage of living turnip plants in a greenlouse insectary. Actively feoding larme were splected ant conserved for a time on fresh. clean leaver in a clem culture dish, in order that sund grains or other hard objects that may have been present in the lumen of the \underline{g} ut would be eliminated.

For the study of the microanatomy the paraffor method was employed. Larvae for study were selected and fixed duting turd immediately after the hatch. before and immediately after each molt, at 3, 12. 24, 36, and 48 hours after eath molt. and at other suitable times. Larvae of the first four insars were killed and fixed in Carnoy and Lebrun's mixture. Larrae of the fifth and sirth instars were killed by immersion in hot water (at $60^{\circ}-70^{\circ} \mathrm{C}$.) and immediately dissected. and the desired tissues were removed and dropped into Boun's picro-formol-acetic fixative. Serial sections of whole larvae and of isolated gut tissues were ent from 3 to 10μ in thickness, in both the transvelse and the longitudinal planes. A thicimess of 5 to 7μ was usually most satisfactory. The sections weye stained

[^0]with Ehrlich's hematoxylin and counterstained with eosin or erythrosin.

Studies of the gross anatomy were made on living and freshly killed larvae, and on living dissections in normal saline. The study of the musculature was facilitated by maceration of the material in MacCallum's macerating fluid.

The illustrations were drawn at suitable magnifications with the aid of a camera lucidn. Microscopic measurements were made with an ocular micrometer in a $10 \times$ or $15 \times$ ocular. and with a $1.8-\mathrm{mm}$. oil-immersion objective. The terminology used by Snodgrass (25) is employed. The histological methods are those of Lee (18) and Guyer (ili).

GENERAL DESCRIPTION OF THE ALMIENTARY CANAL

The alimentary canal (fig. 1) is a straight tube extending from the mouth directly through the head. thorax. and abolomen to the anus. Since the larva is a continuous feeder: the canal is normally distended by ingested materials and may occluy most of the cavity of the thoracie and abdominal regions. The watls of the camal are

Fioure 1.-A, Literal view of late sixth-instar southern armyworm, showing the location of the alimentary camal, the lablat glands, find the Mapighian talubs in relation to the hody segments, $x \cdots$, Outhine of hoad of bate si dut instar, dorsal view, with the right half of the craminm and the thoracie intermant cut awar to show the relation af the ephatic stomodaenm to the head parts, $\times 10$. C, Ontline of heste of late sixth instar in metian longitudinal dorsoventral section, to shaw the rempion of the ephalie stomodaenm to the head parts, $\times 10$. D. Median iongitudinal dorsoventral section op first instar, nge 9 hemrs, shwing the alimentary canal, $\times 40$.
elastic, permitting the configuration and dimensions of the tube to vary according to the quantity and distribution of the ingested material that is present in the lumen. The wall may become clistended in either the circumferential or the longitudinal dirention, according to the region, but the distension is generally in the circumferential direction. Except for constant folds in certain regions, the distended wall is smooth. The collapsed wall is wrinkled crosswise or lengthwise.
The alimentary canal (fig. 1, A) consists of three primary divisions, the foregut or stomodielm (stom), the hind-gut or protoxiaem (proc), and the midgut or mesenteron (ventriculus) (ment). These divisions are easily distinguishable by the unaided cye. The midgut is thick-wallet. wherens the foregut and the hind-gut are thin-walled and nearly tramsparent. The junction of the midgut with the linclgut is weil above the point of atachment of the Malpigham tubules in the posterior part of the pylorus. Tinder the miveroscope the junction of the midgut with cach of the other two divisions is seen to be marked precisely by the abrupt cessadion of the chamacteristic epithelime of the midgut and the begining of that of the other divisions. Both the makenature and the intima atso vary in the different remions.

The dimensions of the alimentary canal and its divisions vary according to the imfividual, the degree of its extemsion, and the quantity of material in the lumen, as well as with the stage of development. The lengith of the camal of a full-fed and moderately extended hara is appoxinately ft mn. The arerage lengths of the primary divisions are aproximately 9 mm . for the foregut. 27 min. For the midgut and $\$$ man. for the hind-gut. It is secia that in the mature lame the mident is appoximately illoee times as long as pither the foregut or the hind-gut. In the marly instars (fir. 1. D) the thre divisions are more nearly egual in length. Tsinatly the midgut is alrout one-fouth longer than cinher of the other two divisions.

The foregut and the hent-gut ate divided into several regions. Those of the foregut are dillient to delimit even umber the microscope. The regions of the hind-gut. on the other hand. are easily distinurushable by the maided eye.
In histoloxical section the wall of the alimentary eanal presents, in order, (1) an enveloping mombrane of eomective tissue. (2) one or two layers of musele fibers or bundles. (3) a basement membrame, (4) is single layer of epithelial cells, and (5) an intima in the foregut and in the hind-gut. and a shenth of detached material in the mirgut known as the peritrophic membune. The functional and structural charmeleristics of the musculature, the epithelial cells, and the intima vary greatly acording to the region.
The eytoplasm of all the muscle fibers of the alimenfary camal is delicately erow-strinted. The striadions are clearly visible withont staning or other sperial preparation.
The basement membrane is ustally indistinguishable from the substance of the bases of the epithelial cells that rest upon it. In phaces where it is detached enough to be seen ats a sepatate structure, it appears as at distinct, sharp, dark, and contimoons line ap-
proximately 0.3μ thick and adhering closely to the epithelial sheet (fig. $5, A, B m b$).

MOUTH PARTS AND LABIAL GLANDS

The mouth parts (fig. 1, \dot{B} and C) have the fell-known biting and chewing type of structure usually found in lepidopterous larvae.

The wall of the preoral cavity resembles that of the body wall of which it is a continuation. The all columnar type of epithelial cell, which is characteristic of the body wall, ends abruptly at the point where the wall of the preoral cavity becomes that of the foregut and is replaced by a very different type of epithelial cell to be clescribed as characteristic of the anterior pharynx.

The labial glands (fig. 1, 4 , labg7) are two simple, elongate tubes, which lie in the body cavity alongside the alimentary canal and extend usually from the metathoracie segment into the abdomen as far as the fourth abdominal segment. In the late sixth instar they are about 0.87 mm . in diameter at the Iarge anterior end and taper gradually throughout their length of about 16 mm . to a diameter of about 0.25 mm . at the posterior end. A duct proceeds from the large anterior end of each gland through the thoracic cavity and into the neck region of the larva, where the two ducts unite to form a common duct, which is prolonged into the head and opens in the spinneret borne distally by the prementum.

FOREGUT (STOMODAEUM)

The general structural characteristics of the foregat, or stomodaeum, are constant throughout larral life. A great inerease in size occurs. The following description is based on the late sixth instar except where specifically stated otherwise.

The foregut (hg. 1,4 , stom) extends through the head and thoras and joins the midgut usually in the region of the third thoracic segment (metathorax). The total length increases from approximately 0.3 mm . in newly hatched larvae to 9 or 10 mm . in mature larvae. The diameter of the Immen of the cephalic portion in mature larvae is approximately 0.5 mm . The walls of the entire portion in the thoracic region are elastic and capable of great distention. This part may occupy almost all the free space within the thorax when the lumen is filled with food materials, and in this condition it may have a dimmeter of approximately amm. When not distended the walls fold inwardly. The diameter of the tube of larvae that have not recently ingested food, and especially of starved larvae, becomes rather small, similar to that of the portion in the head. The walls are thin and transparent, permitting easy observation of the food materials in the lumen.

The foregut is clearly differentiated into several regions by structural characteristics and functional specializations. These regions are designated as the mouth, the buccopharynx, the eosophagus, the crop, and the proventriculus. The actual points of demarcation are not well defined, but the nature of the musculature and the character of the epithelium, the intima, and the internal structures serve
to differentiate the purts structurally. Separate regions discharge the functions of ingestion, conveyance, and storage of the food materials, and their subsectuent conduction into the midgut.

The wall of the foregut is continuous with that of the preoral cavity.

A characteristic of the epithelium throughout the foregut is the increase in size of the constituent cells with increase in size of the foregat during larval growth. No evidonee was found of increase in numbers through division, or through development from regenerative cells as in the midgut. Henson (TH) founcl that in Vanessa. urticae (L.) (Lepidoptera) the foregut grows by increase in size of the cells but not by increase in cell numbers. Trager (39) found that in Aedes negypti (L.) (Diptera) the foregut grows hy increase in cell size.

Movery and Buccopharyme

The mouth lies between the bases of the mandibies and is the anterior opening of the foregat.

The most anterior region of the forogut is the pharyn. The buccal cavity is structurally undiferentiated from the pharynx.
The posterior limit of the phargngen region of lepidopterous larvae is a matior of question. The portion of the foregut immediately posterion to the nerve ring may be regarded as a part either of the ossophoges of the pharynx $(1,3,2 \pi)$. The fact that dorsal didator muscles arising on the vertex of the head are inserted in this region indicates that by definition (25) it is a part of the pharyns, and it is so regarded in this discussion. The portion of the foregut anterior to the nerve ring is designated as the anterior pharynx (fig. 1, B and $C, a p h$) to distinguish it from the portion posterior to the nerve wing and designated therefore as the posterior pharynx ($p p h$). For convenience in description the pharym wil! be regarded as delimited posteriony by a group of large and widely spaced muscles that encirele the canal in the neck remion and probably function as a sphincter. They are here desigmated as the pharyngeal sphincter.

The pharyn as defined is located within the head and neck of the larva. In late sixth instars it is approximately 1.5 to 2.0 mm . long, narrow in the anterior or head part, and widened in the extreme posterior part (fig. 1, B, C). The pharynx is characterized by its musculature, the insertions in its wall of dorsal dilator muscles originating on the frontal and dorsal areas of the hear wall, a distinct type of epithelial cell in the anterior part, six internal longitudinal ridges bearing small teeth, and two large internal structures in the region of the pharyngeal sphincter, which are formed as invaginations of the wall and bear numerous large teeth.

The pharymx is heavily muscled. The mascle fibers are connected by momerous small branches. The measurements givon below apply to the late sixth instars (fig. 2). The mucle fibers of earlier stages are smaller. The several large, closely placed circalar mascle bands of the anterior pharynx ($4, C, \mathrm{cmol}$), in fixed and stained preparations, are approximately 30 to 48μ broad. An exta large muscle over the buccal cavity is about 65_{μ} broad. The muscles are arxanged in plaques, and the euds are attached to the intima. The muscles
lying nearest the nerve ring in the posterior pharymx (B and C) are narrower (17 to 36μ) than those in the anterior pharynx. The largest and most posterior circular muscle of the pharyngealsphincter group (D), in fised and stained preparations, measures about 64 to 120μ in width. It gives off numerous large longitudinal branches posteriorly to the oesophagus and crop, and many smaller

Fremen 2.-Cireular muscle fibers of pharynx of late sixth instars of the southern armyworn. A, Circuht muscle fibers of unterior pharynx, showing also branches of a dintor muscle mad entrance of the branches between the circular muscle fibers, $\times 65$. B_{1} (circular mascle flbers of posterior pharynx, $\times 65$. O, Jransverse sections of mach thattened circular muscle inbers of posterior pharyux, $\times 180$. D, Large circutar muscle fiber marking posterior termination of pharynx, with the second circular muscle fiber of the pharyngeal sphineter and lougitudinal brunches given off to the oesophagus, showing branching and uniting of fibers on oesophagus, $\times 65$.
branches to the pharynx. Anterior to this muscle are about four smaller circular muscles (25 to 54μ broad), which are irregular in direction although roughly paraliel to the largest circular muscle. These muscles ure widely spaced, the five extending over a distance of approximately 750_{μ}. They are connected by numerous small strands of fibrillae. Underlying the layer of circular muscles is a layer of longitudinal fibers, which originate as branches of the circular muscles. They are more numerous in the posterior pharynx. The entrance of the several branches of a ditator muscle between the circular muscles of the anterior pharynx is illustrated in fgure $2, A$, and attachments of two branches on the intima of the wall of the anterior pharynx are illustrated in figure 3.

The anterior pharynx possesses a distinct and characteristic type of epithelium. The cells are comparatively large, measuring in late first instars approximately 7.4μ in greatest diameter, and in late sixth instars up to 50μ or more in diameter. They are much
enlarged distally and frequently detached from one another basally. The cytoplasm is granular and stains uniformly. The nuclei are distinct, centrally located, and large, measuring 3 to 4μ in diameter in late first instars and up to 21μ in late sixth instars. Typical cells are seen in figure 3, epthe. The epithelinl cells of the posterior pharynx are much smaller (7 to 16μ high in mature larvae). The nuclei are distinct. The cells are closely

Figune 3.-Itransyerse section of ridge in interior pharynx of late sixthanstar southern armyworm, $\times 290$. packed in the epithelial layer, and the cell boundaries are indistinct or absent.
The intima of the pharynx of late sixth instass (fir. 3, in) ranges in thickness from alout 10 to 16μ near the mouth and from about 5 to 8μ in the rest of the pharynx. In the first instar the intima of the pesterior pharynx is approximately 1.0 to 2.0μ thick. The comparatively thick external zone of the intima lying next to the epithelial layer is finely striated and laminated. The internal zone next to the gat lumen is thinuer, mote compact, and hyaline in appearance. Numerous small, fine teeth are supported by the intima and project ontward into the lumen. Some of these teeth are illustrated in saggital section in firwe $3, t$. The teeth in this region average about 5.3μ in length.
The wall of the pharynx is disposed in six longitudinal ridges, which project into the lumen and extend from the buccal cavity to near the posterior end of the pharyngeal region. They are observable in freshly killed larve as well as in sections, and appear to be of constant form, although they may allow for expansion of the wall as the lumen becomes distended. One ridge is located dorsad, one ventrad, two dorsolaterad, and two ventrolaterad. They are most prominent near the anterior end. As they are prolonged in the posterior pharynx, they become gradanlly less prominent and disappear as the pharynx widens in the neck region. The extreme posterior region of the pharynx is wrinkled transversely. Figure 3 is andanserse section of the anterior pharynx and shows a part of a ridge with the epithelial cells (epthe), attachments of branches of a dilator muscle ($b r d m$), the intima ($i n$), and teeth (t) on the ridge.

Two large invarinated structures (fig. 1, B, pinvst) bearing numerous teeth are foum internally on the ventrolateral wall in the region of the pharyngeal sphincter. They have essentially the same structure in all instars. Viewed dorsally they are elongate-oval in shape and are orientated with their longitudinal axes lengthwise of the canal. The sphincter as a whole embraces these structures during contraction. These structures may easily be observed in the intact phargns merely by slitting and spreading the dorsal integument of the neck and thorax and looking through the transparent wall of the pharynx immediately back of the head. Each of the st."ctures is an invagimation of the wall of the pharynx. The basal part is narrow and forms a peduncle supporting an enlarged distal part. The distal parti in late sixth instars is nbout 640 to 750μ long
and about 150 to 200μ brotad. The structure projects upward from the rest of the wall to a height of abont 300 to 400_{μ}. The height probably varies reatly according to the physiological condition of the structure. The peduncle is heavily muscled. The large and numerous muscle bands are inserted in the intima of each side of the structure. Longitudinal muscles are present near the base. The epithelial cells of the distal part are large, the cell boundaries are distinct, the cytophasm is reticular and stains uniformly. and the nuclei are large and distinct and stain deeply (fig. 4, A. epthe). The epithelium of the peduncle is narrow and otherwise similar to that of the rest of the wall of the posterior pharynx. The intima is thin, measuring about 2.1μ in thickness in both the peduncle and the distal part. The intima (in) of the distal part of the structure supports numerous large

Fretre 4-4. Horizontal section through one eorner of distal part of an invagimated postpharyageal structure of bate sixti-instar sonthern armyworm.
 invaginated posphargmged stmethre of late sixth-instav somehern amyworm, $\times 700$.
teeth (t), which project into the homen. Figure 4 shows, A. several of these teeth as they appear in a horizontal plane, and B, a longitudimal section of a tooth. A lumen extends from the underlying cytoplasm to near the rip of the tooth. The stracture appears to be a direct continuation of the intima. The teeth are ratiable in size, the larger ones in sixth instars being 10 to $2: \mu$ high.

The fumbion of the structures is problematical. From their position and strecture it appoars likely that they assist the sphincter muscles in forming a value for retaining the sold particles of food materials passed back to the onsophagus by the phatyox. The structures with their backward-projecting teeth may form an effective barrier, sme they may partally orelude the limen when it is restricted in siz by the contraction of the sphineter muscles. Observations of the region in feeding harae tend to confirm this riew. Because of the transparency of the wall of the toregut. the structures and food material are pasily observed in the intact orgm. In recently fed larva the crop and wesopharus may be distended by food materials. dithough packed tightly up the region of the pharyngeal sphincter and these pharyngeal structures, the lamen anierior to the sphincter is usually free of ingested material.

To test the effectiveness of the pharyugeal sphincter as a valve. the head of a well-fed sixth instar was cut of immediately back of the occipital foramen, and just anterior to the sphincter. The region immediately became constricted and held back the food material in the crop and ossophagus, even under extra pressure.

The larvae may be induced to regurgitate by applying pressure on the thorax. The regurgitated material is a fuid containing plant pigments and suspended chloroplasts, but no solid particles of the size ordmarily bitten of by the insect.

From these observations it is concluded that the pharyngeal sphincter, probably assisted by the invarinated structures, forms an effective barrier against the return of food materials from the oesophagus. If the teeth are provided with nerves, they may transmit stimulating impulses to the underlying muscles, and perhaps aiso to those on the wall of the pharyn. The writer has found no description of corresponding structures in the literature he has reviewed.

Oesophagus

From the pharynx the oesophagus gradianly enlurges until it joins the crop. Functionally the oesophagus and tie crop appear to be undifferentiated. The musculature is similar and continuous over both regions. A group of three to five large, circular muscles is regarded as marking the division between the two. As defined, the oesophagus of the late sixth instar is approximately 1 to 2 mm . in Iength.

The musculature of the oesophagus and crop is a network. It originates as posteriorly directed branches from the pharyngeal sphinctor mascles, which, by dividing und reuniting, form a plexus over the wall (fig. 2, D). In general the character of the musculature in the two regions is very similar, but it may differ somewhat in the direction of the main branches and in the shape of the meshes. In the oesophagus the main branches tend to rum longitudinally, and the meshes tend to be narrowed. In the distended crop there is less tendency toward a longitudinal direction, and the meshes are larger and more rounded. Longitudinal branches of the circular muscle fibers of the proventriculus unite with the muscle fibers of the crop. The large, circular muscle fibers between the oesophagus and the crop give off small branches that connect with the underlying plexus of muscle fibers. They differ from the muscle fibers of the pharyngeal sphincter in being smaller and lying closer together. The individual fibers in stained preparations from late sixth instars measure 30 to 54μ in breadth.

The epithelium and the intima of the oesophagas are similar to those of the crop (described below).

Crop

The crop, or inglavies, is between the oesophagus and the proventriculus. It is the largest region of the ioregut, and in late sixth instars extends approximately 3.0 mm . in length. The musculature of the crop is a contimation of that of the oesophagus, which has been described. The wall (fig. 5) through the oesophagus, crop, and proventriculus is composed of a comparatively thin epithelial sheet (epth) and a thick intima (in). The epithelium is homogeneons and has the character of a syncytimm. The cytoplasm is granular and takes stain uniformly. The nuclei are distinct and ovoidal. In stained preparations the thickness of the epithelial
layer of late sixth instars is usually between 3 and 6μ, although it may vary between 2 and 17μ. The intima in the same preparations usually varies between 7 and 9μ, but may vary between 5 and 15μ.

Figure 5--Longitudinal sections through walls of crop and proventricuhs of a late sixth-instar southern armyworm. A, Crop. B, Proventricalus. $\times 290$.

Proventriculus

The proventriculus is simple in structure and probably functions in regulating the passage of food material juto the midgut and in preventing its return to the crop. In living preparations of the alimentary canal the wall of the proventricular region may be obse:ved, under certain conditions, to constrict violently and regulurly as food material is forced from the crop into the midgut.
When both the crop and the proventricults are distended by food materials, the two regions are indistinguishable by the unaded eye. The proventriculus of the late sixth instar is approximately 2.4 mm . in length and is characterized by widely spaced circular muscles. The epitheliun and the intima (fig. $5, B$) are similar to the corresponding structures of the oesophagus and crop.
The musculature of the proventriculus (fig. 6) differs markedly from that of the other regions of the foregut. It consists of about 15 to 20 large, circular muscle fibers connected by numerous small branches. The fibers give off branches which extend in all directions, especially longitudinally. In fresh prepmations of late sixth instars the muscle fibers range in width from about 21 to 53μ or more. They may lie adjacent to one another, or they may be separated by clistances of 60 to 200μ or more (fig. 5, B). Figure 6 shows parts of two circular muscle fibers with their

Figure 6.-Chreular muscle fibers of proventriculus of late sixthinstal southern armyworm, showing branches and cross comections. $\times 6 \bar{a}$. intercomnecting strands and branching. The underlying longitudinal miscle fibers are numerous and irregular in direction.
Numerous small muscle fibers that arise as branches of the muscle fibers of the proventriculus extend longitudinally external to the circular muscle fibers and are attached at the junction of the proventriculus with the midgut. Dilator muscle fibers orginating at the junction of the first and second thoracic segments of the body wall also pass forward over the foregut to be inserted on the midgut.

Stomodaenl Valye

The structure usually calied the stomodaeal valve is formed as a simple invagination of the posterior end of the foregut into the anterior end of the midgut. The wall of the midgut is continuous with that of the foregut. The two lamellae formed by the invagination of the foregut wall remain together in fresh preparations, although separation is easily accomplished by teasing with needles under a binocular microscope, and they are tree from one another as observed in histological sections.
In the empty or partially filled lumen the invaginated portion hangs loosely. Since, however, the lumen is normally filled with food material moving in the caudal direction. the wall is usually distended and the invaginated portion of the foregut is pressed against the wall of the midgut.

The epithelial layer and the intima of the invaginated wall are in general similar to those of the proventriculus. Near the junction with the midgut the wall is formed in a small loop. The epithelian layer in the loop is made up of well-defined and comparatively large cells, which may function (17) to regenerate the epithelium of the foregut during metamorphosis.

The muscular layer is absent from the invaginated wall. The muscle of the proventriculas, and likewise of the midgut, terminates at the junction with no special development at that point. The function of retaining the food material in the midgut against pressure appears to be borne entirely by the well-developed muscle fibers of the proventricalus.

MIDGUT (MESENTERON)

The midgut, or mesenterom, changes little in general features, except in size, during laveal growth. The length increases from approximately 0.3 mm . in newly hatched larvae to 27 mm . in late sixth instars. The celluher constituents of the epithelium undergo changes that will be described below. The description of the gross anatomical features applies particularly to the late sixth instar.

The midgut is a mige, undifierentinted tube of approximately uniform diameter througlout its length. It extends from ite junction with the foregut near the posterior end of the thoracic region, throughout the first six abdominal segments, and joins the hind-gut usualy in about the sixth abdominal segment. In feeding larrae the wall of the tube is distemded by food material in the lumen, making the tabe almost completely fill the abdominal cavity. The wall is of similar structure thronghout, but in consequence of its elasticity it adapts its configuration to the contaned ingested material. This sometimes gives a superficial appearamee of a differentiation into regions.
The junction of the midgut with the hind-gut is marked by an abrupt cessation of the simple musculature and the comparatively thick epithelium of the midgut and the begianing of the more complex musculature, the comparatively this epithelium, and the intima of the pylorus. There is no special muscular development or structure that might be regarded as a valve.

Muscllature

The musculature of the midgut (fig. 7) has essentially the samo character throughout the length of the division. It is much simpler than that of the foregut or the hind-gut, and consists of an outer layer of fibers extending longitudinally and an inner layer of fibers extending circularly. In addition to the regular longitudinal muscle fibers there are six large longitudinal bands, one pair located dorsally, one pair ventrally, and \AA single band on each side.

Frgure $7 .-$ Muscuatare of midgat of a late sixth-instar sonthern armyworm. A, Circular and longitudiual fibers drawn from whole mount, $\times 200 . \quad B$, Longitudinal section from anterior thind of midgrat, $\times 400 . \quad d$, Trusverse sec'ion through wall of midgut, $\times 180$.

The regular longitudinal fibers (fig. $7, A, B, C, 7 m c l$) are widely spaced and occur at fairly regular intervals around the tube. In the late sixth instiar there are usually 17 to 22 fibers per millimeter. As many as $22 S$ per millimeter have been found in the late first instar. In fresh preparations they measure approximately 3 to $\tilde{5}^{\mu}$ in width in the first instar, and up to 15 to $2 \pi \mu$ in the late sixth instar. The distance between the fibers varies according to the degree of relasation or distention of the wall. The fibers occasionally lie adjacent to one another in preparations. In apparently nomal distention they are usually separated by a space of about 6μ (3 to 9μ) in the first instar and 70μ (64 to 106μ) in the late sixth instar. The number of fibers around the tube is probably constant throughout development. With increasing cireumference of the tube the fibers simply become spaced futher apart.

The muscle-fiber nuclei are distinct, elongate, centrally located, and reguiarly spaced.

Two large bundles of muscle fibers (fig. 7, $C, 7 m c 7 b d$) extend the full leugth of the midgut on the dorsal and two others on the ventral
side. In unfixed preparations of late sixth instars these may masure 60 to 90μ in width. Those in fixed and stained preparations have usually contracted somewhat. The two muscles in each pair lie close together. A single bundle of fibers occuns on each side of the alimentary canal. This muscle is much branched, especially near its terminations at the end of the midgut. The longitudinal layer of muscle fibers is covered by a very thin peritoneal membrane (C, $p \operatorname{tmb}$) and lies over a layer of circular fibers.

The circular fibers (fig. $7, A, B, C, e^{m c l}$) are much smaller than the longitudinal fibers and are eight or more times as numerous. They lie close together or separated by narrow spaces.

Pertrrophic Membrane

The peritrophic membrane occurs as a detached shenth closely surrounding the food mass in the midgat, and extending into the hind-gut. In histological secions the membrame is usually separated some distance from the distal ends of the epithelial cells. The space between the cpithelium and the peritrophic membrane is clear, with scattered gramular material. The peritrophic membrane may be removed from the midgut entire with the contained food material by puling from the anterior end. It is apparently produced by the enteric epithelium as a whole (11,20,30) and serves to protect the delicate epithelium against the coarse material of the food.

Epithelilem

The epithelium consists of a single layer of highly developed cells of three principal kinds-olammar or cylindrical colls, calyciform or goblet cells, and interstitial or regcnerative cells. Histological evidence indicates that the interstitial cells become columnar and calcyiform colls by differentiation and development. The columnar and calcyiform cells are momphologically distinct. All these cells occur throughout the epithelial layer in all instars. Representative cells from the different instars as they appear in fixed and stained preparations are illustrated in figure 8.
The marked development of these cells is related to their function in the elaboration and discharge of the secretions required for digestion, and in the abserption of selected products of the digestion and transference of the products to the hemolymph. The precise manner in which secretion, absorption, and thanference of materials takes place in the cell and the eflects of these processes upon the cell are of much interest and importance; yet surprisingly little is known on the subject. Further knowledge of the activities of the cells mader normal conditions should aid in an understanding of the absorption and disposition of ingested insecticides.

INTERSTITIAL CELLS

Interstitial cells of the insect midgut are commonly regarded as regenerative in function (25,30). The derivation of columnar and calyciform cells from interstitial cells in lepidopterous larvae has been reported by Henson (16) for Vanessa urticue and by Tchang (\#7) for

Galleria mellonella (L.). The following accome and discussion is on original obserrations in the southern armyworm.

Interstitial cells occur singly and in groups throughout the midgut epithelium in all instars. Multiplication by mitosis was not definitely estabished. The cells vary in form and appearance in such a manner that, when the forms are arranged serially, development of the principal epithelial cells firom smatl basal cells is strongly suggested. Farther evidence on this point will be given below.

Nidi (fig. 8, 0, ni) rest on the basement membrane between the bases of the prizipal cells. Each aidus is roughly triangular. Numerous epitheliml nuclei oceur in the basal hatr of the nidus. The chromatin material is coarely graumar. The cytoplasm is homogencous and stains more intensely with the hematoxylin stain than does that of the older cells. The nuelei are surounded by a very little cytopham. The greater quantity is foumd toward the distal part of the nidus. In many nidi there are faintly perceptible dividing lines extending upward toward the distal part. These probably indicate boundaries of forming cells.

Fery small isolated cells are semtered throughout the epitheliad layer, resting on the basement membrame between the bases of the principal cells. They occur singly, or several may occur together (fig. 8, F, H). These cells are romded basally. sligritly elongated, and narrowed distaly. The muclens oreupies abmost the entire basal part, and is surrouded by deeply staming cytoplasm.

The interstitial cells exist in all gradations in size up to fully mature cells. The small and intermediate cells are arranged singly or in groups according to their probable origin from isolated basal cells or from nidi. Those shorter than fully mature cells are also very slender (fig. $\left.8,6.5 . \%, m^{\prime}\right)$. The cell wall is usually bubged about the proportionately lare nuclens, which is elongated in the direction of the longitudinal axis of the cell. The cytophasm stains deyply with hematoxylin. Interstitial cells of the height of the primeipal cells (R) tate the hematoxylin stain in the same intensity as to the mature cells.
The sequence of development and differentiation by whirh the principal cells of the epithelimm (fir. 8) appear to be derived from the smali basal cells is as follows: Embryonic rudiments on the basement membrane add new cells. which grow upwards between the main cells and on reaching the height of the main cells differentiate into columar (R) and calyciform (Q) cells. During a period of further growth the newly differentiated cells reach the full size and appearance of the principal cells. Those destined to become columnar cells increase in diameter and develop a striated border (R). Those destined to become calyciform cells develop a small goblet in the distal part of the cell, which increases in depth (11.Q) until it ecoupies the entire cell (I, N, P, T^{\prime}) exept a small hasal part containing the nuclens. As the goblet increases in depth, the nuclens desecnde before it and becomes reorientated to lie with its longitudinal axis at pight angles to that of the cell. While the roblet denpeas the eell increases in diameter also.

This sugrested role for the interstitial cell appeats to be established by observations of successive periods during the first and second

Frouns 8.-Epitinelial cells from the midgat of the soutbern armyworm. A, Primordinl columnar and ealyciform epititeljal cells from first instar 10 mintutes after inateling. B, frimordial ealyciforn epithelial cell from first. instar 10 minutes affer hatehtng. O, I'rimortial colummar epithelial cells from firgt instar 4 honvs aftev hatelaing, showing clear spaces in eytoplasm. D, Primordial columanar and calyciform epithelial cells from first instav 12 Contimued on next puge.
stadia. Here the progressive stages of development ean be easily followed.

No form of interstitial ech was fomel doringe the firs $2 t$ hours of larval life. At 30 homs there were a dew yay small eplls and a few nidi in the anterior part of the miderat and a few slightly more domgated ones in the posterior part. Ins before the firet molt the cells of the anterion part were much domeated, and home of the posterion part were ome-thind to two-thinds the height of the colummar cells. and nomerous. At age for hours, ; hours after the molt to the seotod instar, there were alreatly mandere of interst itial cells as tall an the colmmar cells. The efoplasin had asimmed the same staining ghatithes as the mature cells. Thes partially developed relts were harsow.

 celle contabed small groblets. Imong the deveroping interstitial cells no distinctive eharacter wat oberved to semate thous that were to become colmmate from thore that were to become calydiom cells. Sot until the goblets appeared were the two dist inguishable and then for several hous develophem wat toward inereasing diameter of both the colmman and the calyedorm eells. atud dereming of the troblet in the calyciform cells.

Nombers of nidi and small interstitial cells, isolated or iu froups. appered just after the moll to the seronel instar. There were also partly developed cells which mat have come owe from the previous jnstar, Soon ammerous nidi and all size of intertitial cells were present, and this condition contimed theoughent the rest of the

Figrop h- (inntimital.
 first instar $\overline{0} 0$ hours after hathhing. F, A basis interstitial cell form
 npwards between two mimordial edmmar guthelind eells. from a first

 the gohbe axtents war half way towitrt the base of the cell, from at sedond

 mobr. R, Five developint intersifial eells of the hoight of the principal eps-
 epithelial cell from the allterine thirt af the mitlent of a late sixth instar.

 epithelial cell from the midelo thita of the midem of a fato sixth instat 1 , A typieal eabeifum epithelial coll from the middle thim of the midgut of a late sixth imsiar. Th. A typital colummar mitholial ereh from the posterior third of the miskot of a hate sixth instar. All xinti.
larval development. None were found, however. in the sixth instur 60 hours or more after the molt. New columnar and ealycifom cells therefore appear to be added cont inmously throughout haval development, legming carly in the second stathum and duding some time in the last stadium.

COLVMNAR CELAS

Of the different kinds of cells. those designated as colummar cells are the most conspicuons by reason of their numbers and appearance. The term "columina" or "cylindrich" generally applied to cells of this kind is scareely descriptive. In shape and appenance they are very variable, depending on the instar, on the stage of developinent, on their location and physiongical state, and on the degree of comtraction or relaxat ion of the tube watl. When the gut wall is shrunken, the cells become laterally compresed, tall and marow. The cells
 but are usually enlarged distally with more slencler basal ends ($E .(T, I . J$, Ir) $)$. They are tall and elongated in the direction of the diancter of the gut. never along the anteropenterior axis. an accurs in mumy kinds of insects. Fenson (乍) found that the later condition sometimes exists in larva of Thenesw urticat.

The columar celle of the posterior part of the midgut in all instars are smaller and shorter than those of the anterior part. The decrease in size from the anterion to the posterior end is gradual. The three similar forms from the anterior, middle. and posterior diats of the midgut of the sixth instar. shown in firure $8 . S$. I, and W, are of about average size and appeamed for their respective rexions.

The individual cells pessess distinct hateral boundariee and exhibit manked polarity: The usually apmar to cohere by their lateral surfaces. Their slender hasal ends rest on the basenent membrane, while the surfaces of the eularged distal ends are exposed to the gut lumer:

The cytoplasm is finely grambar. Clear spares sometimes occur, especially noar the distal emb. Many of the cells are longitudinally strinted in the basal part.
 distal part of the cell. It is elongated in the direction of the longitudinal axis of the cell.
A striated borler is present on the free surface of the cells in all instars. It is present in a low, brushlike border on the primordial columnar epithelial cells at hatrhing. and increases in height with the subsequent development of the cells. In all instars the border on the cells of the anterior part of the midgut is taller than that on the smaller cells of the posterior part. The striated border is a delicate structure of apparently cytophamic origin. In fixed and stained preparations it is marked with parallel channels or striae arranged in the longitudinal axis of the cell. Since it is probable that secreted and absorbed materials pass through this structure its purpose may be to enlarge the functional cell surface. One function of these cells must be to select the kinds of materials to be absorbed. No morphological part of the cell scems befter suited by position and structure to perform this act than the striated border? The structure and
function of the border in other arthropods has been the subject of much discussion in the literature. The interested reader is referred to the recent papers by Newell and Baxter (20) and Ziluh (38) for detailed discussions of the views expressed by different, investigators.

The primordial columnar epithelial cells that are present at the time the larva leaves the egg have the general features of the full-size cells that they later becone. They differ in many ways from the developing interstitial cells, which are found late in the first stadium and thereafter throughout the remainder of the growth period. They develop rapidly during the first stadium. Each cell approximately doubles its height and its diameter, thereby increasing its size several times. Immediately after the larva leaves the egg, the columnar epithelial cells of the anterior part of the midgut average in height approximately 22 mm ., in basal diameter approximately 4.8 mm ., and in diameter of apex approximately 5.4 mm . The nuclei are ovoidal in section and average about 8.3 mm . in length by 5.6 mm . in greatest diameter. The ceils of the posterior part of the midgut are smaller.

In sections prepared from larrae 10 minutes ont of the egg (fig. $8, A$) the columnar cells are typically slender basally, expand slightly distally, and merge with adjacent cells in the distal part. A clear space of variable size is thus left between the basal parts of adjacent cells. This space extends upwards to the point where the adjacent cells merge, which may be about half way up the cell, as shown in figure $8, A$, or mach nearer the distal end. In some preparations no space appeared between the cells, and in such instances the cell boundaries were often indistinct or impossible to discem.

The cytoplasm is usunly homogeneous. It is sometimes broken up by clear spaces, as seen in figure 8. C. The mucleus usually is so lurge that the cell cytoplasm is bulged about it.

Later development (fig. $8, D, E, G$) is accompanied by rapid increase in the quantity of cytoplasm and subsequent enlargenent of the cells. The cells may be alinost perfectly cylindrical (C) or expanded distally (E). Greater variance in shape exists toward the end of the stadtum (G). The cells found near the end of the stadium appronch closely in size and appeazance this kind of cell foum in all subsequent instars. The spaces between the bases of the cells become smaller or obiterated entirely, permitting the Iateral surfaces of adjacent cells to meet. To a limited extent, however, spaces between the cells do persist throughout the first stadium and are found even in the second and third stadia. In the late part of the first stadium and in all the other stadia the spaces are in part occupied by interstitial cells. The lateral attachment of the cells is apparently not firm, since the cells usually occur singly in tissue smears of epithelium. The cytoplasm of cells in the early part of the stadium more frequently contains large irregular clear spaces. Later the cytoplasm is most likely to be finely granular and homogeneons. The nucleus increases in size and at the end of the stadium is survounded by considerable cytoplasm. The striated border increases in heipht during the stadium from 2.7μ in the beginning to 5.3μ near the end (measured in the anterior regrion of the gut).
At the begiming of the second stadium the columnar epithelial cells of the anterior part of the midgut average approximately 46
mm . in height, in basal dianeter 10 mm .. and in dinmeter of apex 20 mm . The nuclei average abeut 16.9 mm . in length by 9.7 mm . in greatest diameter. It is evident that during the first stadium the size of the cells has increased more chan 10 times. Full size is reached early in the second stadium. The new eells that develop from this poine on to not exceed, on an averare the size attained by the first cells to mature.

Mature cells of the anferion part of the midgut of the late second instar and of the third. fourth. fifthe and sisth instars, measure on an average approximately 50.0 mm . in height. 19.5 mm . in basal dimeter, and 27.1 mm . in diameter of apex. The nuclei average about 20.5 mm . in lengeth br 12. (j nim. in greatest diameter. There is a tendency for greater teviation from the mem average size with succeeding instars. The cells of sixth instars may vary between 35 and 70μ in hejght.
The cells of the hater instam asuatly are chasely apmesed haterally and apparenty cohere. Howerer. it has been derered in histolotical preparations, eren of the sixth instar. that eefle in the posiderion part of the miderat are oftern distinctily sepatated from neighboring cells by a clear space.

The development of the cedls during the early part of larval life is regarded as a contination of embryonic procesese.

There is a question rearding the significance of the ghobular protrusions that tre observed in bistological preparations on the distal rends of many of the colommar epithelial cells of hate sixth instars (fige 8, T). Such formations were never found in parlier instars. or in the early part of the sixth stadime A series can he arranget in wheh the globule is seen first in a period of apparent formation in the distal end of the cell. then pushiug through the striated border. later as a bubble attached by a narow stalk extendine throurch the striated border to the sell, and finally completely detacherd and free in the area between the epitheliun and the peritrophic membane. The globule is often clear. but as ofen it is partially or completely filled with gramues that stain like those of the crop hasm of the cell. Such formations in other species of insects, inchuctiner lepichopterous larrae, frequently have been deseribed as probably secretion vesicles. Suggestions have been made that the fomations may occur as a process of cell disintegration or as artifat. Among the many investigators who have studied and discossed this question are Boardas (4 . 6), Buchmann (i). Gehuchten (1.). Haseman (15). Fenson (10). Neweomer (19). Paylosky and Zarin (21). Shinoda (2.3. 23). Snodgrass ($2 \bar{i}$), Thang (23^{\prime}) and Wigglesworth (3i). In the southern armyworm it appears unlikely that these formations are related to the secretory process, whereby digestive enzymes itre prodaced throughout farval life. Feeding is continuous, and the kind of food ingested is unchanged throuphout the larval perioch. It fothows that secretion of digestive enzymes shonld likewise be continuous and probably umbanged in kind or manner. The fact that these formations are found only in late sixth instars sugrests that the uatal mode of secretion must be of a different mature. The witter prefers to interpret the globular protusions as evidence of begiming disintegration of the cells preceding the metamorphosis.

CALYCIFORM CELLS

Calyciform cells oceur throughout the midgut epitheliam in all instars. The ratio of calyciform to columnar cells is generally about $1: 3$ or $1: 2$; occasionally it is $1: 1$. The calyciform cells have never been observed to exceed the columar cells in number.

Calyciform cells are present in the epithelium at the time the larva hatches (fig. $8, A, B$). They increase in size during the first and second staclia at about the same rate as the columar cells.
The fully developed calyciform cells (fig. 8, $N, \mathrm{~V}$) are ustally expanded in their middle part, slightly natrowed basally, and distally tapered to a marrow neck which communicates with the gut lumen. They are equal in height to the columnar cells, but are generally narrower even in the widest part. They are therefore smaller than the associated columnar cells. The hasal part of the cell rests on the basement membrane and fills the spaces between the more slender basal parts of the columar cells. The lateral boundaries are always distinct.

The large goblet or calystike part occupies most of the cell. The cavity appeared clear in the histological sections prepared for this work. The inner wall of the goblet is lined by a structure (fig. $8, \mathcal{L}$) that has the same affinity for erythosin counterstain as the strizted border of the colummar cells. Its position in relation to the rest of the cell suggests that it may be an invagination of the distal cell surface. Another basis for this conception is the probable sequence of its development from interstitial cells, as outlined in the discussion of thiese cells. It is therefore thought to be homologrous to the striated border of columnar cells. The invarimation of the cell surface would thas give if far greater surface exposiure than is had by the columnar cells. While strine and other structural details characteristic of the striated border of columar cells were not perceived, this might be due to greater compactness of the structum elements.

The cytoplasm and mucleus of the cell are arowded by the goblet into the extreme basal part. The eytoplasm is like that of the columnar cells. The coarsely granular nuclens occupies most of the basal part. It is ovoidal and is orientated with its longitudimal axis at right angles to the longitudinal axis of the cell.

INTERRELAJJONSIFIP OF THE THREE KINDS OF CELLS

The presence of inve ctistinct kinds of cells in the midgut epithelium brings up the guestion of their morphological relation to one another. As to the interstitial cells, their position as young columnar and calyciform cells appears well established by the moliphological evidence. The great numbers in which they are produced suggest that their primary role is to increase the number of regular epithelial ceils progressively during lareal development. Their regenemative function in certain lepicopterous larvae is discussed by FIenson (16) and by Tchang (\mathbb{R}^{7}).

The morphologital relationship of the colnmnar and the calyciform cells of lepidopterous larvae has received much attention. Some writers, notably Shinodn ($2,2,23$) and Buchmann (6), regard the
two forms as homomorphous, whereas Henson (16) and Tchang (26,87) believe them to be dimorphous. Shinoda regards the different forms as functional variations of a single cell type. He associates the functions of secretion and absorption with the columnar phase, and states of senescence and rejurenescence with the calyciform phase. The transition from one phase to the other is shown by the presence of cell forms that are intermediate in structure and apparance. Tehang and Henson regard the columnar and catyoiform cells as distinctly different linds of functional epithelial cells and find that both are derived directly from the interstitial cells.

The fullowing observations indicate that in sonthem armyworm larvae the forms are dimorphous: (1) No intermediate forms were found in the first stadium or early in the second stadium, even though both columar and calyciform cells were present at the time the larva left the egg and both these forms underwent develowment with increase in size during this period. The presence of culyciform cells at hatching would not in itself invalidate their status as senescent cells, for digestion of yolk and egg chorion might already have begun. But the complete lack of any cells remotely suggesting transition forms seems to rule out, changes from the one form to the other during this period. (2) The forms present in the second and later instars that might be taken for transition forms are more likely calyciform cells newly differentiated from interstitial cells. (3) The evidence indicates that both forms in the later instars are derived from interstitial cells.

An assumption that the culyciform and columary forms are different kinds of colls leads to the question of their respective functions. The single kind of functional epithelial cell present in insects lacking calycitorm cells resembles the colmmar cell of lepidopterous larva in cytoplasmic characteristies althourg it may be different in shape. Since both functions are necessary, this cell mast be both secretory and absorptive. From morphological evidence there appears to be no reason why the colummer cells of lepidopterons larvae might not also perform both functions. The goblet cell is not known to be the only, or even the main, type of celi in any insect. It appears less adapted to the function of absorption because of the position of the cell surface within the goblet, where it is not directly exposed to the fluids of the gut lumen. The cell may be secretory. No evidence is available to reveal the mature of the contents, if any, of the goblet. The cavity would appear to be il satisfactory reservoir for secretions. They might readily reach the gat lamen continuously or as needed through the marrow neck of the goblet.
orowth of the minort mpithelich in helarion to chll gize and

The growth of the midqut epitheliam between hatching and anturity of the insect is clue to the increase in the size of the epithelina cells during the first stadium and the early part of the second stadium, and to the increase in numbers of cells throughout the remaining Iarval stadia.

The primorchal epithelial cells, both colummar and calyciform, have been shown to increase to several times their original size during
the first stadium and reach full size in the early part of the second stadium. No increase in numbers takes place during this time, although by the beginning of the second stadium many of the interstitial cells have attained the height of mature cells. The increase in size of the midgut epithelium during this period must therefore be due almost entirely to the increase in the size of the constituent primordiat cells.

The continued growth from the second instar to the mature larva must be attributed entirely to the increase in numbers of cells derived from the large numbers of regenerative cells, since the newly formed cells do not exceed the primordial cells in size. There are approximately 55 cells in a transverse section of the midgut of an early second instar and 700 to 720 in the sixth inslar. The increase in numbers is in approximately the same ratio as the increase in the circumference of the midgut. No evidence of division of the functional epithelial cells was found. Their development in the larva is evidently a contimation of embryonic processes.

Henson (16) found that the midgut epithelium of the larva of ∇ anessa wrticae (Lepidoptern) likewise grows both by the increase in size of the original cells and by the addition of new celis. Trager (28) found that the midgut cells of Bombye mori (Lepidoptera) increase in length during the first and second stadia in proportion to the length of the body, but during the third and fourth stadia they remain of constant size. No measarements were made to determine the condition in the fifth (hast) stadium. The situation is different for some other insects. Truger ($\approx \delta, \mathcal{D}$) has shown that the increase in size of the midgnt epithelium of Lucilia sericata and Aedes aegypti (Diptera) throughout harval life is a result of a proportionate increase in size, not in number, of the midgut epithelini cells. Berger (3) found that in Culex pipions (Diptera) the functional midgut epithelini cells increase in size throughout larval life but do not divide. Regenerative cells replace those shed into the lumen and also increase the number of functional cells. Abercrombie (\$) found, in the Japanese beetle (Popillia japonica Newm.), that increase in cell volume of the midgut columnar cells is proportional to the increase in size (weight) of the entire larva.

HIND-GUT (PROCTODAEUM)

The hind-grut, or proctodateum, inereases greatly in size during larval development. The total length increases from approximately 0.3 mm . in newly hatched harae to 8 mm . in late sixth instars. The general structural characteristics are constant. Except where specifically stated otherwise, the description that follows is of the late sixth instar.
The hind-gut (fig. 9, A) extends directly from the posterior opening of the midgut to the ans. The pylorus, the anterior intestine, and the posterior intestine are distinctly differentiated, and their points of separation are marked by strong sphincter muscles. The appearance of the parts vazies greatly according to the state of contraction and the quantity and distribution of material in the lumen. Iu the condition of moderate distention the three regions are approximately equal in length. When strongly contracted longitudinally, the pyloric
region may be very short. When fully distended, both the anterior and the posterior intestine are globular and sepurated by at definite stricture. The structare between the pylorus and the anterior intestine is known as the pyloric ralve, and that between the anterior intestine and the posterior intestine as the rectal valve. It should be pointed ont that in lepidopterous larya the proctodaen or pyloric valve is formed, not between the midyat and the hind-gut, but between the pyorus and the anterior intestine.

The epithelin celis gradually incrense in size during lurval development. They upparently do not inerease in numbers either through

 an epitheliat rell and the intima, $X \pm 00$.
division or throgh development from regenerative cells. Henson ($/ 7$) found that in Fenesser whirue the hind-qut grows by increase in size of the cells and not by increase in cell numbers. Trager ($2 S$) found that the hind-gat celts of Locilio sericota coutinued to increase in size throughont laral life in the same proportion as the body length of the larya.

Pyzonts

The prorus (fig. $9, A, p y$) is a well-developed region of the hindgut and forms a connecting link between the midgut and the intesfine. The anterior part is enlarged and calyalike, and the posterior end is much constricted.

To the umided eye the onlarged anterior part may appear as a part of the midgut. It may radily be distinguished, however, by its transparent wall and by an abrupt change in the muscufature.

An internal circular fold of the wall of the pylorus (fig. $9, A$, incf) occurs at approximately the middle of the enlarged part. Invaginations of the wall in the fold project anteriorly and posteriorly. The
anteriorly directed inraginated structures in late sixth instars are about 40 in number and appear as oval or elongate padike thickenings approximately 100μ long. Each bears numerous teeth about 7μ long. The epithelial cells are large with distinct nuclei, and the intima is much thickened on the distal part.

The much constricted extreme posterior part of the pylorus is encircled by brond (about 80μ) circular muscle bands, which lie close together and fom a strong sphincter vaise the pyloric valve (fig. $9, A, p y v$). The fimetion of this value is probably to regulate the passage of material into the intestine.

The execretory diverticula (fig. 1, $A, m a l t$) consist of two groups of three Malaphian tobules. A short collecting ressel (fig. 9. A. colc) for each group of tubules opens ventrolaterally into the lumen of the posterior part of the pylorus after having entered from beneath the pyloric sphincter. Each collecting ressel receires a Malpighian tubule and another short ressel, which in turn receives two more Malpighian tubules. Each tubule is long, slender, and simuous. The walls are thin, and ovoidal dilations are frequent. All the tubules extend forward, adbering closely to the wall of the midgut to about the region of the third or second abdominal segment, them abruptly, and return along the wall to the hind-gut. After many convolutions in the region of the pyloras, each tubule fimuly enters the posterior intestine near its anterior end. The lumen of the tubules contains numerous white erystals, and on this account the tubules are conspicuously visible through the ventral body wall of the larva.

The masculature of the prorus consists of an underlying layer of circular muscle fibers and an overlying layer of widely spaced longitudinal muscle fhers. The regrion of the pylorus anterior to the interma circular fold is surrouded by smaller circular fibers about 26μ broad in late sixth instars, which lie close together or separated by a space equaling or less than the width of the fiber. They are intercomected by strinds of muscle tissue. The circular fibers lying between the invaginated structures and the sphincter muscles are broader (about 43μ). Widely spacect and branching muscle fibers extend longitudinaly over the circular mascle fibers. They are inserted beneath the sphincter muscle of the pyloric valve.

The epitheliun of the pylorus (fig. 9, B) is flat and averages about 5.8μ in thickness, with considerable variation. The cell boundaries are indistinct or absent. The nuclei are large and distinct. The cells of the extreme anterior end of the pylorus are much larger (ap to 28μ in length) and hare distinct boundaries. They may function (RiN $^{\prime}$) to regenerate the epithelium of the hind-gut during metamorphosis. The structure of the intima appears to be similar to that of the foregat. It averages about the same in thickness as the pyloric epithelitm (5.8μ) and also raries considerably.

Anterior Intestine

The anterior intestine (fig. $0, A$, aint) is an undifferentiated saclike chamber. The wall is thrown into mmerous internal longitudinal folds. The musculature consists of branching and uniting circular fibers arising as branches of widely separated (250 to 450μ)
and irregular longitudinul fibers. The circular fibers in late sixth insturs are about, 37μ broad and lie about 26μ apart. In early second instars they are about 2.5 to 4μ broad and lie 5.3 to 7.4μ apart. They are intercomected by strands of muscle tissue. The epithelinl cells (fig. $9, G$) are comparatively large (15 to 30μ in (iameter) in mature larvae and possess distinct lateral walls. The nuelei are distinct. The intima is thin.

The rectul valve (fig. 9, A, rece) appeas as a stricture between the anterior intestine and the posterior intestine or rectum. Internal longitudinal folds of the anterior intestine are prolonged into the region of the rectal valve. The rexion is surrounded by broad muscle bands (about 6n to 80μ broad), which lie adjacent to one another or are separated by narrow spaces (up to 21μ).

Postebion Intestine

The posturior iniestine, or rectum, (fig. 9, A. pint) is a second undifferentiated sadike chamber: Two thin membranes fie between the bisement membrane of the epithelium and the muscle layer. The Malpighian vessels are disposed in convolutions in the space between the epithelium and the membranes, and between the two membranes. The ciroulac fibers are small (about 10μ broad) and lie close together, forming a practically solid layer over the rectum. A large sphincter muscle surromds the anus. Dilator muscles that have their attachment in the body wall of the posterior segment extend over the rectum and are inserted on the wall of the rectal ralve and the anterior intestine. The epilhelium and intima of the posterior intestine are similar to those of the anterior intestine (fig. $9, D$).

Structures corresponding to those described as rectal trlands in various insects were not fomol. Rectal glands are reported to be present in adult Lepidopiera, but absent in their larvae ($1, p .243$).

SUMMARY

The structure, microscopic ennatomy, and postembryonic development of the alimentary cmat of the larya of the southern armyworm (Prodenin eridania (Cram.)) are described and figured in preparation for physiological and toxicological investigations on this insect.

The ammentary canal is simitar to the alimentary camals of other lepidopterous larvae that have been described. The general information gained from the study is already well known in the field of insect anatomy. Specific information on the conditions found in this particular species was required for practical reasoms. No previous work has been reported. The structure and development of each part of the canal is described.

The foregut and hind-crut increase in size by increase in size of the constituent cells, and the midgut increases purtly in this manner but primarily by increase in numbers of cells. The columnar and calyciform cells are already differentiated at hatching. They reach full size during the second stadium. Interstitith cells arise during the first stadium, clevelop during the first stadium and the early part of the second stadium, diflerentiate into calyciform and columnar cells, and complete development. These cells are of the same size and
appearance as those that develop from the primordial cells. New epithelial cells are continuously producad throughout laval life by development and differentiation from interstitial cells.

ABBREVIATIONS USED ON LLLUSTRATIONS

aint, auterior intestine. $a n$, anus. ant, antema. aph, anterior plarynx. bmb, basement membrane. or, brain.
brdm, brancin of dilator muscle.
clp, clypeus.
cmet, circular musele fiber.
colv, collecting vessel of Malpighian tubules.
er, crop.
dmict, dilator muscle.
epis, epistomal suture.
cpth, epithelium.
epthe, epithelina ceils.
glop, globular protrusion.
in, intima.
inc, interstitial cell.
incf, intertal ciredar fold.
labgt, labinl gland.
fabhphy, labial hypophnrynx. Tm, labrum.
macl, longtitudinal muscle fibers.
lmalbd, longtitudinal muscle band.
malt, Malpighian tubules.
mol, muscle.
$m d$, mandibles, meut, mesenteron (midgut). mith, mouth. $m x$, maxilla. n, nucteas. mi, nidus. oc, oesophagus, p, parietni. pint, postarior intestine. piuvst, postpharyngenl invaginated structures.
pph, posterior plaryin.
pre, preoral cavity.
proc, proctodaeum (hindi-gut).
proll, proventriculus.
$p f m b$, peritoneal membrane.
pu, pylorus.
$p h v$, pyloric valve.
recu, rectal ralre.
scl. sarcoleuma.
 $8 x^{2}$, spingeret. siom, stomodeaum (foregut). stome, stomodaeal valse. strb, striated border. t_{s} teeth.

LITERATURE CITED

AbBotit R. L.
1926. CONTBMbutions to THE phybiology of pigestion in the aubtrajlan noace, perapianeta augtralaslae lat. Jour. Expt. Zool. 44: 210-254, illus.
(2) Ammeronibie, W. Fulion.
1936. SIUDLEE ON CELL NUMBER AND THE PHOGRERSION FACTOR IN THE GROWTH of japanese bejtie taryae (popillia vaponica newalan). Jour. Morph. 59: 9-112, illus.
(3)

Beroer, CHableg A.
1988. MULTPPICATION AND hedUciton of gonatio chromosomei gboupg as a begulalr jevelopafental process in the mosquito, culky prpiens. Carnegie Inst. Vash., Contrib, to Embryol. 167, 27: 211-232, illus.
(4) Bordag, I.
1911. MORPHOLOGIN ET STRUGGURE HIBTOLOGIQUE DE L'APF'REIL DIGEGTIF DES lafyes des lepipoptitieg. [Paris] Acad, des Sci. Compt. Rend. 152: 212-215.
(5)
1.911, L'APPABELL DIGESTIF LT LES TUBEG DE MCALPIGHI DES FARVES pEG LEPLbOTEREE. Alln. des Sci, Nat, Zool. (9) 14: [191]-273, illus.
(6) BuCHMANN, W. W.
1928. aUR ERNAZERURGEPHYSIOLOGLE NORGALER UND HUNGERNDER PYRAUSTARalpen. 2. über dib zellveriniberungen im mitteluarat wス̈hREND DER SEIKRETON. Zook. Anz. 79: 223-243, illus.
(7) Chitienden, F. H., and Rubseld, H. in.
1910. tee bemitropical army wohm (prodenia eridanla ctam.). U. S. Dept. Agr., Bur. Ent. Bul. 66, pt. 5, pp. 58-70, illus.
(8) Crumbr, S. E.
1927. tele abmy worme. Brooklyn Fint. Soe. Bul. 22 : 41-[55], illus.
(9)
1932. the more mpportant climitna cutwomm. Brooklyn Enc. Soe. Bul. 27: 73-[100], illus.
(10) Dauderschamdt, Karl
1933. vergletomende morphofohie def lepidopterendaraies und giliner: ankinge. Ztschr. f. Angew. Ent. 20 : [204]-267, illius.
(11) Dehn, Miadeleine von.
1933. unterbucefungen über dif blidung der peritrophigchen absdban bei din ingekten. Zatschr, f. Zellforsch. u. Miktos. Anat. 19: [79]-105, illus.
(12) Gghuceten, A. van.
1890. brohbrghes bistologiques sur l'appabeif, migestif de da lative de la pryceoptera contaminama. Cellule G: [185]-[क98], illus.
(13) Grell, Kard Gottiemis.
1988. der darmtiattus von panoupa communis la tund beine anhänge ber Lanve Und imsago. Zool. Jahrb., Abt. f. Anat. u. Ontog. Tiere 64: 1-86.
(14) GUEER, MITCHAEL F.
 ofechnique. El. 4, 331 pp., illus. Chicago.
(15) Habriman, Leonard.
1910. the gtructurn and metamomitosis of then ahimentaby canal of The larya of psygeoda Alternata bay. Ent. Soc. Anler, Ann. 3 : 277-313, illus.
Henson, H.
1029. on the developalent of the mid-but in tere labyal stages of vanesea urticas (meginolrtela). Quart, Jour. Micros. Sci. 73: [87]-106, illus.
(17)
1981. the struorure and post-bmbryonte devetolmint of vanessa vaticae (lepidoptiga). I, the Lahbal alimentaiy canal Quart.. Jour. Mieros. sci. 74: [321]-360, illus.
(18) Lee, Arthur Bolles.
1937. tile michotomist's vade-nceum. . . Id. 10, edited by J. Brontë Gatenby and Theophllus S. Painter. 784 pp ., illus. London.
(19) Newcomer, E. J.
1914. some notes on digestion and the cell structure of the digestive epithelium in insectis. Ent. Soc. Amer, Ann, 7: 311-322, illus.
(20) Newher, G. E., and Baxter, ©. W.
1936. on the nature of the free cell-hozder of certain myogut eptrebelis. Quart. Tour. Micros. Sci. 79: [123]-10̆0, illus.
(21) Pavzoviky, E. N., and Zarin, E. J.
1922. on the structure of the aliaientary canal and its ferbients. in the bee (apis mellibera l.). Quart. Joul. Micros. Sci. 66 : [509]-556, illus.
(22) Shinoda, Osamu.
1026. contrbutions to the knowledge of the intestinal secbetion of ingects. i. mbintistinal secretion of mbidoptera, with an appendix: behavior of mitochondida in the midintes-
 Univ., Col. Scj. Mem. Ser. B, 2: [08]-116, illus.
(23) Shinoda, Obaicu.
1927. CONTEIBUTIONS TO THE KNOWLEDGE OF INTESTINAE SECRETION IN INSECTS. II. A COMPARATLVE HISTOMCTOLOGY OF THE SID-ZNTESTINE IN YARIOUS ORDERS OF INSEGTS. Zlschr. f. Zelfersch. u.

(24) Snopgrass, IR. E .
1928. MORPHOLOGY AND EVOLUTION OF THE INSECT HEAD AND its APPEND-
(20) Ages. Sinithen. Inst. Misc. Collect., v. SI, no. 8 , $158 \mathrm{pl} ., \mathrm{illus}$.
1035. principles of tasfot morfaologs. GGi ppe, illus. New York and Lonton.
(26) I'ganno, Yung-rai.
 Moyen des cifnimiex de mexidomeres. Soc Zool. de France,
(27)

 meifonella m.). Bul. Biol. de lat Frabce at Belg., Suj. I2, 144 mp .
(2S) Trager, Wimendy.
 Exipt. Zool. 71: 489-5008, illus.
(29)

10B7. GRLL SLEE iN mELATION TO THE GHOWTH AND MHEAMORPHOSIS OF THE MOSQUFTO, AEDES AEGMFif. Jour Exjt. Zuol. TG: $467-4 \$ 9$, illus.
(30) Wigacesworte, V. B.
1939. THE PMECUMES OF INSECT PBysiology. 424 pp., illas. London.
(31) Wisteop, C. B., and Rwed, L. B.
 southern anmyworms. Fla. Ent. 21: 30-47, ©
(32) Ziccti, AnOLIM,
 Zool. 148: 80-132, illus.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE When this publication was last printed

'lhis hulletin is a contribution from
Burean of Entomology and Plant Quaran- Lee A. Strong, Chief. tine.

Division of Gontrol Inrestigations_-_ Lon A. Hawkine, principal Physiologist in Charge.

[^1]

[^0]: ${ }^{1}$ Italie numbers in parentheses refer to Litprature Clted ${ }_{+}$p. 27.

[^1]: U. 5 government prititig office ight

