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Abstract 

 
Several imputation approaches using a large sample and different levels of censoring are 

compared and contrasted following a multiple imputation methodology. The study not only 

discusses these imputation approaches, but also quantifies differences in price variability 

before and after price imputation, evaluates the performance of each method, and estimates 

and compares parameters and elasticities from a complete demand system. The study’s 

findings reveal that small variability among the mean prices from the various imputation 

approaches may result in relatively larger variability among the underlying parameter 

estimates of interest and the ultimately desired measures. This suggests that selection bias 

may be avoided or reduced by validating the imputation approaches and choosing the 

imputation method based on an analysis of the ultimately desired measures. 

 
Keywords: Censored prices, elasticities, imputation methods, multiple imputation, protein 

demand. 

 

1. Introduction 

 

Survey design, implementation, and institutional constrains often lead to a frequently 

encountered problem with consumer survey data, the existence of censored observations. 

With home-scan data and household surveys being more accessible to researchers, this 

problem of increasing importance is becoming more and more common; usually taking place 

in high proportions (e.g., Taylor, Phaneuf, & Piggott, 2008; Dong, Gould, & Kaiser, 2004; 

Gould, Lee, Dong, & Villarreal, 2002; Golan, Perloff, & Shen, 2001; Sabates, Gould, & 

Villarreal, 2001; Dong & Gould, 2000; Heien, Jarvis, & Perali, 1989; Cox & Wohlgenant, 
1986) in dependent variables, independent variables, or both. It occurs when the value of an 

observation is partially known (also called item nonresponse). This happens when the value 

of a variable of interest (e.g., the dependent variable) is unknown; but information on related 

variables (e.g., the independent variables) is known. 

When there is item nonresponse only on the dependent variable, applied economists use 

parametric models (e.g., the probit and tobit models, or their multinomial versions). 

However, when dealing with item nonresponse on an independent variable, a surprisingly 

high number of studies such as Golan et al. (2001) and Dong et al. (2004) use very simple 

techniques (e.g., simple regional or quarterly averages) or omit missing observations. These 

simple techniques are often satisfactory but it is critical to compare and assess their 

performance with other imputation methods and approaches to determine if selection bias 
can be avoided or minimized. There are several ways in which a missing value can be 

substituted with a replacement value: deductive imputation, cell mean imputation, hot-deck 

imputation, and cold-deck imputation. Unfortunately, some of these methods may be time 
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consuming (e.g., deductive imputation) or perhaps unfeasible (e.g., cold-deck imputation) 

when the data sample is large and/or the data is limited.1 

In deductive imputation the researcher deduces the missing value by using logic and the 

relationships among the variables. For instance, if the geographical location of a household is 

missing, it can be recovered by using other variables such as the consecutive order of 

household interviews and the time period when the household was interviewed. If the 

previously and the subsequently interviewed households were interviewed during the same 

week and they both belong to the same city, then the logical imputation for the missing 

geographical location would be to use the same city from the two other households. 

Cell mean imputation consists of grouping the observations (e.g., households) into classes 

(e.g., strata and state) and using the non-missing values of the variable of interest (e.g., non-
missing prices) to impute the missing values of this or another variable of interest (e.g., 

missing prices). Cell mean imputation has been employed by Golan et al. (2001, p. 545) and 

Dong et al. (2004, p. 1099). Clearly, the more specific the classes are (e.g., strata and 

county), the more likely the researcher is to obtain an estimate that is closer to the true value. 

Cell mean imputation is appropriate if the missing values are missing completely at random. 

The disadvantage of this method is that the variance in the imputed variable decreases.2 To 

avoid losing variability in the variable of interest, the researcher may alternatively use the 

mean and standard deviation from the non-missing values of the variable of interest and 

generate values for imputation from a normal distribution with this mean and this standard 

deviation.  

Lohr (1999, p. 275) explains that the term hot deck dates back to the time computer 
programs and datasets were punched on cards. The card reader used to warm the data cards, 

so the term hot deck was used to refer to the data cards being analyzed. Similar to cell mean 

imputation, after the observations have been grouped into classes, hot deck imputation uses a 

non-missing value of the variable of interest to impute the missing values of this or another 

variable of interest. The non-missing value may be the previous non-missing value in the 

class, a non-missing value chosen at random in the class, or the nearest non-missing value in 

the cell, where the distance may be defined according to some criteria that is based on 

another variable. 

Contrary to hot deck, cold deck imputation uses a dataset other than the dataset being 

analyzed to impute the missing value. These datasets may be from a previous survey or from 

another source. Cold deck imputation is common in time series datasets. The researcher 

sometimes pulls data from different sources to complete a time series for a particular variable 
of interest on which little information is available. 

The various imputation methods can be compared following a multiple imputation 

methodology (see Lohr, 1999; Rubin, 1996; Rubin, 1987). In multiple imputations, a missing 

value is imputed more than once by using different imputation methods. Each imputation 

method generates a new dataset with non-missing observations. Each dataset is then analyzed 

as if no imputation had been done. “[T]he different results give the analyst a measure of the 

additional variance due to imputation” (Lohr 1999, p. 277). Typically, the same model is 

used to analyze each imputed dataset. 

This research paper compares and contrast several price imputation approaches, under 

large samples and different levels of censoring following a multiple imputation 

methodology. The general objective is to discuss and compare imputation approaches by 
using a complete demand system model on the imputed datasets. In particular, an Almost 

Ideal Demand System (AIDS) that incorporates the restrictions of adding-up, homogeneity, 

and symmetry is employed. The paper not only discusses various imputation approaches, but 

also quantifies the differences in price variability before and after imputation, evaluates the 

performance of each method under different levels of missing data, and estimates and 

compares the ultimately desired parameter estimates (i.e., the parameter estimates obtained 
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from the complete demand system) under each imputation procedure. There are few studies 

in the existing literature that have explored this critical issue using a large cross-sectional 

sample and different levels of censoring. 

To accomplish the general objective of the study, data on prices of several important 

protein sources in the Mexican diet (meat, dairy, eggs, tubers, vegetables, legumes, and 

fruits) are used from the 2008 survey of Mexican household incomes and expenditures 

(Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH)). ENIGH 2008 is a recent 

and reliable source of information, and it is published by a Mexican governmental institution 

(Instituto Nacional de Estadística, Geografía e Informática (INEGI)). In ENIGH 2008, a 

total of 29,468 households were interviewed. A comparison of price imputation methods 

under different levels of censoring is ideal with this survey because the sample of households 
is large. 

This study’s findings reveal that small variability among the price imputation approaches 

may lead to large variability among the underlying parameter estimates of interest and the 

ultimately desired measures (e.g., measures of price responsiveness). This means researchers 

have to be very careful when choosing a price imputation procedure if they want to avoid or 

reduce selection bias. However, results seem to indicate that it is possible that a simple cell 

mean price imputation that uses two levels of urbanization within Mexico’s 31 states and the 

Federal District (e.g., Golan et al., 2001; Dong et al., 2004) and results in a considerable lost 

of price variability, may lead to parameter estimates that are satisfactory under lager levels of 

censoring. Similarly, simply excluding the censored observations may result in a significant 

sample size reduction, but it may also lead to parameter estimates that are satisfactory under 
large levels of censoring. 

 

2. Methods and Procedures 

 

2.1. Imputer’s Models 

 

The cell mean imputation method is also referred to as a zero-order missing price 

procedure (Cox & Wohlgenant 1986, p. 913). Researches such as Golan et al. (2001, p. 545) 

and Dong et al. (2004, p. 1099) have employed this method. For instance, to impute prices 

for Mexican households that did not make meat purchases, Golan et al. (2001, p. 545) 

“assume[d] that those households face the average price level for that product in that 

particular location: a rural or urban area in a particular state or federal district.” Similarly, 
“[f]or [Mexican] households not purchasing a particular commodity, [Dong et al. (2004, p. 

1099)] replace[d] unobserved unit values with the average unit value obtained by purchasing 

households in the same area, represented by state of residence and degree of urbanization.”  

Other researchers such as Zheng and Henneberry (2009, p. 878) have used Cox and 

Wohlgenant’s (1986, p. 913) first-order missing price procedure. Using the non-missing 

prices of commodity i, this method first computes the regional mean prices (mpi) and then 

calculates the corresponding deviations from the regional mean prices (dmpi). That is, 

 

             .                                                                                             (1) 

 

Subsequently, this method regresses dmpi as a function household characteristics, which 
are proxies for household preferences for unobserved household characteristics. That is, 

 

              ,                                                                                              (2) 
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where     is a        vector of household characteristics,    is a        vector of 

parameters, and    is random error. Interested in analyzing unit values, Cox and Wohlgenant 

(1986, p. 913) assume that the deviations from mean prices reflect quality differences that 

are induced by household characteristics and nonsystematic supply-related factors. 

Substituting equation (2) into (1) and solving for pi gives the price/quality functions. The 

OLS parameter estimates obtained from equation (2) are used to predict the values of the 

missing prices. The quality-adjusted missing price estimates or imputed prices are obtained 

from 
 

  ̃     ̂                                                                                                (3) 
 

where  ̃  is an estimate of    for the corresponding missing prices. 
A similar but simpler approach consists of regressing the non-missing prices as a function 

of household characteristics, and then using the resulting parameters estimates to predict the 

missing prices. This method is referred to as a simple regression imputation approach (e.g., 

Lopez, Malaga, Chidmi, Belasco, & Surles, 2012). 

Other imputation methods are also based on algorithms. These include the expectation-

maximization (EM) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm. The 

EM algorithm finds the MLE of the vector of parameters by iterating two steps until the 

iterations converge. The expectation step (E-step) computes the conditional expectation of 

the complete-data log likelihood given the observed data and the parameter estimates.3 The 

maximization step (M-step) estimates the parameters that maximize the complete-data log 
likelihood from the E-step. For multivariate normal data, the observed-data log likelihood 

being maximized can be expressed as 

 log L( |    ) = 


G

g 1

                                                                         (4) 

where G is the number of groups with distinct missing patterns, log L( |    ) is the 

observed-data log likelihood from the gth group, and  
 

                 
  

 
   |  |   

 

 
 

hg

(      )   
  (      )        (5) 

where    is the number of observations in the gth group, the summation is over the household 

observations in the gth group,     is a vector of observed values corresponding to observed 

variables,   is the corresponding mean vector, and    is the associated covariance matrix. 

Schafer (1997, pp. 163-181) and SAS Institute Inc. (2004, pp. 2536-2537) provide a 

description of the EM algorithm for multivariate normal data. 

The MCMC algorithm has applications in Bayesian inference. The entire joint posterior 

distribution of the unknown numbers can be simulated to obtain posterior parameter 

estimates of interest. The Bayesian approach to missing data consists of a data augmentation 

procedure that is implemented in two steps. The imputation step (I-step) draws values for 

Xmis from a conditional predictive distribution of Xmis given Xobs. That is, with a current 

estimate of      at the tth iteration,  
 

     
     

 ~                
    .                                                                            (6) 

 

The posterior step (P-step) draws values for   from a conditional distribution of   given 

Xobs. That is, 
 

        ~                
     

 .                                                                              (7) 
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The steps in equations (6) and (7) are iterated creating a Markov chain 

 

 (    
        ) (    

        ), …,                                                                          (8) 

 

which converges in distribution to                 . It is assumed that this distribution is 

stationary (SAS Institute Inc. 2004, p. 2548). Schafer (1997) and SAS Institute Inc. (2004, 

pp. 2547-2552) provide a description of the MCMC technique. In this paper, the MCMC 

method uses a multiple chain to produce five (if a 30% censored level) or ten imputations (if 

a 70% censored level).4 Five imputations will produce a relative efficiency of 0.9434 when 

there is a 30% censoring level while ten imputations will produce a relative efficiency of 

0.9346 when there is a 70% censoring level (SAS Institute Inc. 2004, p. 2562). In addition, 
two-hundred iterations were performed for the first and subsequent imputations. The EM 

algorithm is used to derive the set of initial parameter values for the MCMC and a 

noninformative prior was used in the P-step (see Schafer 1997, p. 154; & SAS Institute Inc. 

2004, p. 2550). The imputations were combined by computing the average of the m 

complete-data estimates (see SAS Institute Inc., p. 2561). 

 

2.2. Analyst’s Model 

 

In practice, the model that is used to impute the data (i.e., the imputer’s model) is not the 

same as the model used to analyze the imputed data (i.e., the analyst’s model). This paper 

uses the Almost Ideal Demand System (AIDS) to analyze the imputed datasets that were 
obtained from different imputation methods and different levels of censoring. The results 

provide a measure of the additional variance obtained due to imputation (Lohr 1999, p. 277). 

The Almost Ideal Demand System (AIDS) was developed by Deaton and Muelbauer 

(1980) as an arbitrary first order approximation of any demand system. The functional form 

is consistent with household-budget data and it is not difficult to estimate. In the AIDS 

model, the Marshallian demand function for commodity i in share form is specified as 

 wih = αi + 
j

γij log(pjh) + βi log(mh/Ph) + εih                                               (9) 

where wih is the budget share for commodity i and household h; pjh is the price of 

commodity j and household h, mh is total household expenditure on the commodities being 

analyzed; αi, βi and γij are parameters, and εi is a random term of disturbances, and Ph is a 

price index. 

In a nonlinear approximation, the price index Ph is defined as 

 log (Ph) = α0 + 
k

αk log (pkh) + 
2

1
 

k


j

γkj log(pkh) log(pjh)           (10) 

In the linear approximation of the AIDS model (LA/AIDS) suggested by Stone (1954), 

equation (5) is estimated by 

 log (  
 ) = 

k

wkh log (pkh)                                                                            (11) 

The demand theory properties of adding-up, homogeneity and symmetry can be imposed 

on the system of equations by restricting parameters in the model as follows: 

 Adding-up:   
i

αi = 1, 
j

γij = 0, and 
i

 βi = 0;        (12) 

 Homogeneity:   
i

γij = 0;                                                          (13) 

         Symmetry:   γij = γji.                                                                   (14)  
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In the AIDS model, the Marshallian (uncompensated) and the Hicksian (compensated) 

price elasticities as well as the expenditure elasticities can be computed from the estimated 

coefficients as follows: 

Marshallian Price Elasticity: eij = -δij + γij/wi – βi /wi (   
k

       )    (15)  

Hicksian Price Elasticity:     
  = eij + wj ei                                                              (16) 

 

Expenditure Elasticity:  ei = 1 + βi /wi                                                                        (17) 
 

where δ is the Kronecker delta equal to one if i = j and equal to zero otherwise. 

 

One equation is omitted in the estimation of this system, but the parameters of that 
equation will be recovered by making use of the theoretical classical properties. Usually the 

equation excluded is the one holding the smallest budget share. 

 

2.3. Data 

 

Mexican data on household income and weekly expenditures was obtained from 

Encuesta Nacional de Ingresos y Gastos de los Hogares (2008), which is a nation-wide 

survey encompassing Mexico’s 31 states plus one Federal District (a territory which belongs 

to all states). ENIGH is a cross-sectional data sample published since 1977 (e.g., see Heien et 

al., 1989) by a Mexican governmental institution (Instituto Nacional de Estadística, 

Geografía e Informática (INEGI)). ENIGH collects data by giving direct interviews and 
recording household expenditures on groceries and several other items for one week. 

Seven food sources of protein were analyzed in this study. These are meat (which 

includes beef, pork, processed meat, chicken, processed poultry meat, seafood, and other 

meats), dairy (which includes milk, cheese, and other milk derived products), eggs, tubers 

(which includes raw, fresh, and processed tubers), vegetables (which includes fresh and 

processed vegetables and pod vegetables), legumes (fresh and processed), and fruits (fresh 

and processed). More specific information about the food products included in each category 

can be obtained from ENIGH (2008). 

In this study, a subsample of 3,572 households containing non-missing prices and 

quantities of several important protein sources in the Mexican diet is used. To accomplish the 

objectives of the study, prices from this dataset were randomly censored at levels of 30% 

(2,500 non-missing price observations and 1,072 censored price observations) and 70% 
(1,072 non-missing price observations and 2,500 censored price observations). In this study, 

all prices were censored for the same instances; therefore, this study considers only one 

missing data pattern (i.e., only one group of observations can be formed with the resulting 

dataset).5 Quantities, on the other hand, were not censored. 

 

3. Results and Discussion 

 

Several approaches to data imputation were explored in this study: excluding censored 

observations (ECO), cell mean imputation (CM), Cox and Wohlgenant’s first-order missing 

price procedure (CW), simple regression imputation (SR), the EM algorithm, and the MCMC 

algorithm. The ECO approach discarded the censored observations and focused only on the 
non-censored observations. The CM method considered only one cell; therefore, it replaced 

censored prices with the simple average of the non-censored prices. The CW and SR 

methods are regression imputation approaches.6 Table 1 summarizes the eighteen variables 
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that were used as proxies for household preferences in the CW method (see equation (2)) and 

in the SR method. Three of these variables were excluded to avoid the multicollinearity 

(urban, university, and C). This means that the baseline consists of urban households from 

the central region whose decision makers have completed university education or graduate 

school education.7 The EM and the MCMC algorithms compute the maximum likelihood 

estimate (MLE) for       of the data with the missing values, assuming a multivariate 

normal distribution. The numeric variables included in the EM and MCMC algorithms were 

the seven protein prices and fifteen variables from Table 1 (urban, university, and C 

excluded).8 

Table 2 reports the means and standard errors of the various protein categories under no 
censoring, a 30% censoring level, and a 70% censoring level. The column titled No 

Censoring reports the means and standard errors of the means for the entire 3,572 households 

with no censored observations. This column can be used to validate the various imputation 

approaches that were explored. 

 

Table 1. Proxy Variables for Household Preferences 

Variable Description 

p00_11 Number of household members who are less than 12 years old. 

p12_64 Number of household members who are or are between 12 and 64 years old. 

p65_more Number of household members who are or are older than 65 years old. 

inc Household income. 

rural This variable takes the value of 1 for household locations with a population 

of 14,999 people or less and 0 if otherwise. 

urban This variable takes the value of 1 for household locations with a population 

of 15,000 people or more and 0 if otherwise. 

element This variable takes the value of 1 if the household decision maker has 

elementary school education or less and 0 if otherwise. 

highsch This variable takes the value of 1 if the household decision maker has high 

school education or if he/she is a high school graduate and 0 if otherwise. 

college This variable takes the value of 1 if the household decision maker has some 

college, college or incomplete university education and 0 if otherwise. 

university This variable takes the value of 1 if the household decision maker has 
completed university or has some graduate school education and 0 if 

otherwise. 

NE This variable takes the value of 1 if the household is located in the Northeast 

region of Mexico and 0 if otherwise. 

NW This variable takes the value of 1 if the household is located in the Northwest 

region of Mexico and 0 if otherwise. 

CW This variable takes the value of 1 if the household is located in the Central-

West region of Mexico and 0 if otherwise. 

C This variable takes the value of 1 if the household is located in the Central 

region of Mexico and 0 if otherwise. 

SE This variable takes the value of 1 if the household is located in the Southeast 

region of Mexico and 0 if otherwise. 

d_car This variable takes the value of 1 if the household has a 4-wheel vehicle and 

0 if otherwise. 

d_refri This variable takes the value of 1 if the household has a refrigerator at home 

and 0 if otherwise. 

supermkt This variable takes the value of 1 if the household purchased the protein 

product or commodity from a supermarket and 0 if somewhere else. 
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Table 2. Observed and Imputed Prices (n = 3,572) 

 
Note: pi, i = 1, …, 7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables, 6 = legumes, and 7 = fruits. Average exchange rate in 2008 is 

US $1 = 11.14 Pesos (Banco de México). 

Source: ENIGH 2008 Database, computed by author. 

 

pi Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err.

(Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean

p1 46.4608      0.3650   47.0064      0.4462   47.0064      0.3071   47.0651      0.3141   46.9953      0.3124   46.9953      0.3124   46.9948      0.3123   

p2 23.7807      0.4708   23.9239      0.5504   23.9239      0.3785   23.7270      0.3893   23.8325      0.3874   23.8325      0.3874   23.8344      0.3874   

p3 18.7620      0.1311   18.8758      0.1769   18.8758      0.1216   18.8716      0.1252   18.8804      0.1242   18.8804      0.1242   18.8810      0.1242   

p4 15.5820      0.5964   16.0031      0.7511   16.0031      0.5165   16.0858      0.5219   16.0884      0.5180   16.0884      0.5180   16.0860      0.5180   

p5 13.3280      0.1362   13.1985      0.1662   13.1985      0.1143   13.2242      0.1189   13.2155      0.1173   13.2155      0.1173   13.2162      0.1173   

p6 18.6618      0.2500   18.4720      0.2282   18.4720      0.1571   18.4876      0.1615   18.5022      0.1591   18.5022      0.1591   18.5021      0.1591   

p7 10.3969      0.1455   10.4638      0.1685   10.4638      0.1159   10.4885      0.1184   10.4776      0.1177   10.4776      0.1177   10.4770      0.1177   

pi Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err.

(Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean

p1 46.4608      0.3650   45.2598      0.6193   45.2598      0.1938   45.3959      0.2255   45.3696      0.2156   45.3696      0.2156   45.3730      0.2156   

p2 23.7807      0.4708   23.4655      0.8953   23.4655      0.2794   23.9321      0.3333   23.6935      0.3108   23.6935      0.3108   23.6877      0.3107   

p3 18.7620      0.1311   18.5115      0.1558   18.5115      0.0487   18.5492      0.0568   18.4960      0.0547   18.4960      0.0547   18.4973      0.0547   

p4 15.5820      0.5964   14.6550      0.9537   14.6550      0.2977   14.5172      0.3249   14.5298      0.3079   14.5298      0.3079   14.5285      0.3079   

p5 13.3280      0.1362   13.6131      0.2372   13.6131      0.0740   13.6248      0.0844   13.6234      0.0834   13.6234      0.0834   13.6229      0.0834   

p6 18.6618      0.2500   19.0796      0.6189   19.0796      0.1937   18.8062      0.2198   19.0082      0.2119   19.0082      0.2119   19.0097      0.2119   

p7 10.3969      0.1455   10.2498      0.2817   10.2498      0.0879   10.1045      0.0972   10.2020      0.0926   10.2020      0.0926   10.2015      0.0926   

No Censoring

Excluding Cen. Obs.

Exculdign Cen. Obs.

Simple Regression

Simple Regression

No Censoring

Observed Prices Cell Mean Cox & Wohlgenant

Observed Prices Cell Mean Cox & Wohlgenant

30 % Censoring Level

EM Algorithm MCMC Algorithm

EM Algorithm MCMC Algorithm

70 % Censoring Level
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Table 3. Root Mean Square Error (RMSE) and Root Mean Square Percent Error 

(RMSPE) for Imputed Prices 

 
 

The ECO approach (i.e., the columns titled Excluding Cen. Obs.) reports the mean and 

standard error, for 2,500 households when there is a 30% censoring level and for 1,072 

households when there is a 70% censoring level. Since this strategy discards incompletely 

recorded units and focuses only on the completely recorded units, this strategy is sometimes 

referred to as a complete case analysis (Rubin 1996, p. 474; & Little and Rubin 2002, p. 41). 

However, excluding observations “can lead to serious biases… and it is not very efficient, 

especially when drawing inferences for subpopulations” (Little and Rubin 2002, p. 19). The 

last five approaches first impute the censored observations and then report the mean and 
standard error of the means for the imputed datasets. 

At the 30% censoring level, these approaches result in mean values with small variability 

but standard errors with relatively larger variability. For instance, compared to the dataset 

with no missing price observations (i.e., the No Censoring column), the mean prices from the 

different methods ranged from being 1.02% lower (i.e., the legumes mean price estimate 

from the ECO approach or from the CM method) to 3.25% higher (i.e., the tubers mean price 

estimate from the SR method). On the other hand, the standard errors of the means ranged 

from being 37.16% lower (i.e., the standard error estimate of the legumes mean price from 

the CM method) to 34.94% higher (i.e., the standard error estimate of the eggs mean price 

from the ECO approach). 

At the 70% censoring level, variability increases in both means and standard error of 
means. Compared to the dataset with no missing price observations, the mean prices from the 

different approaches ranges from being 6.83% lower (i.e., the tubers mean price estimate 

from CW method) to 2.24% higher (i.e., the legumes mean price estimate from the ECO 

approach or from the CM method). In addition, the variability in the standard errors of the 

means is larger at a 70% censoring level than at a 30% censoring level. For instance, the 

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE

p1 15.9498 0.5609 15.0249 0.5277 15.1083 0.5325 15.1083 0.5325 15.1139 0.5328

p2 23.6157 0.9100 22.4628 0.8696 22.4946 0.8713 22.4946 0.8713 22.5092 0.8724

p3 4.6705 0.5376 4.4238 0.5624 4.4348 0.5711 4.4348 0.5711 4.4406 0.5716

p4 22.1532 0.8809 21.8287 0.9245 22.0666 0.9111 22.0666 0.9111 22.0679 0.9113

p5 6.0702 0.5903 5.7229 0.5693 5.8029 0.5502 5.8029 0.5502 5.8044 0.5520

p6 9.4277 0.7907 9.2105 0.6643 9.2567 0.6841 9.2567 0.6841 9.2574 0.6825

p7 6.2683 0.7147 6.2678 0.7862 6.2593 0.7504 6.2593 0.7504 6.2635 0.7500

Overall 38.5966 1.9215 37.1921 1.8945 37.4087 1.8796 37.4087 1.8796 37.4223 1.8802

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE

p1 15.4196 0.5142 15.2015 0.5040 15.1526 0.5082 15.1525 0.5082 15.1572 0.5083

p2 22.6790 0.9412 21.8412 0.9802 21.7891 0.9366 21.7891 0.9366 21.7817 0.9365

p3 9.1615 0.6595 8.9020 0.6733 8.9764 0.6827 8.9764 0.6827 8.9763 0.6818

p4 29.3571 0.9543 29.4960 1.0555 29.5222 1.0570 29.5222 1.0570 29.5311 1.0588

p5 6.5642 0.5079 6.3488 0.5125 6.4298 0.5079 6.4298 0.5079 6.4293 0.5077

p6 9.8939 0.8132 10.2613 0.6832 10.3302 0.7581 10.3301 0.7581 10.3298 0.7570

p7 9.2151 0.7564 9.1513 0.7763 9.1047 0.7508 9.1047 0.7508 9.1035 0.7508

Overall 43.8608 1.9968 43.4365 2.0284 43.4447 2.0285 43.4447 2.0285 43.4483 2.0287

70% Censoring

30% Censoring

CM CW SR EM MCMC

CM CW SR EM MCMC
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estimate of the standard error of the eggs mean price obtained from CM method is 62.84% 

lower than the same estimate obtained from the dataset with no missing price observations. 

Likewise, the standard error of the legumes mean price obtained from ECO approach is 

147.59% higher than the same standard error obtained from the dataset with no missing 

observations. 

A simple comparison of the mean prices obtained from the dataset with no censored 

prices with the mean prices obtained from the various imputation approaches is inappropriate 

because positive errors would cancel out with negative errors. Hence, to appropriately 

evaluate which method generated the best imputations, the root mean square error (RMSE) 

and the root mean square percent error (RMSPE) were computed.9 Table 3 reveals that at the 

30% censoring level, the EM and the SR methods generated the best estimates (RMSPE = 
1.8696) while the worst estimates were generated by the CM method (RMSPE = 1.9215). At 

the 70% censoring level, the CM method (RMSPE = 1.9968) generated the best estimates 

while the worst estimates were generated by the MCMC method (RMSPE = 2.0287). Notice 

that the imputation method that provides the best estimates for each price varies across prices 

when considering the RMSPE disaggregated as opposed to considering the overall measure. 

Table 4 reports the parameter estimates from full AIDS models, equations (4) and (5), 

estimated under various approaches to price imputation for a 30% censoring level. From a 

total of 41 parameters estimated, at least 32 are statistically different from zero at the 0.05 

significance level for each approach. Compared to the parameter estimates obtained from the 

dataset with no censored prices, the parameter estimates from the different approaches are on 

average 31% higher or lower. The difference ranged from being 615.72% lower (i.e.,  ̂   

from the CW method) to 172.65% higher (i.e.,  ̂   from the ECO approach). These 

differences are remarkably higher under a 70% censoring level.10 

Tables 5, 7, and 9 report estimates for the Marshallian own-price elasticities, the Hicksian 

own-price elasticities, and the expenditure elasticities respectively. Differences are also 

observed between the different censoring approaches and the elasticity estimates obtained 

from the dataset with no censored observations. Compared to the no-cenrored Marshallian 

own-price elasticity estimates, the elasticity estimates from the different approaches are on 

average 6.32% higher or lower (Table 5). Compared to the no-censored Hicksian own-price 

elasticity estimates, the Hicksian elasticity estimates from the different approaches are on 

average 7.25% higher or lower (Table 7). Similarly, compared to the no-censored 
expenditure elasticity estimates, the elasticity estimates from the different approaches are on 

average 3.03% higher or lower (Table 9). These elasticity estimates range from 48.22% 

lower ( ̂  , EM method, and 70% censoring level) to 10.12% higher ( ̂  , ECO approach, 

and 70% censoring level), from 50.54% lower ( ̂  
 , EM method, and 70% censoring level) to 

10.57% higher ( ̂  
 , ECO approach, and 70% censoring level), and from 10.21% higher ( ̂ , 

CM method, and 70% censoring level) to 12% higher ( ̂ , CM method, and 70% censoring 

level) respectively. Consistent with the results from the AIDS parameter estimates, the ECO 

approach provided the closest estimates to the no-censored elasticity estimates. 

Interestingly, even when there was small variability in the imputed mean prices (Table 2), 

considerable larger variability was found in the ultimately desired elasticity measures (Tables 
5, 7, and 9). This suggests that setting aside a portion of the dataset with non-missing 

observations for validation purposes may provide insight into choosing the most appropriate 

imputation method and avoiding or reducing selection bias. 
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Table 4. AIDS Parameter Estimates Under 0% and 30% Censoring Levels 

 

Approx Approx Approx Approx Approx Approx

Par. Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err

γ11 0.0269 *** 0.0062 0.0283 *** 0.0075 0.0324 *** 0.0074 0.0267 *** 0.0071 0.0303 *** 0.0073 0.0305 *** 0.0073

γ12 0.0203 *** 0.0031 0.0203 *** 0.0037 0.0146 *** 0.0038 0.0219 *** 0.0036 0.0228 *** 0.0037 0.0227 *** 0.0037

γ13 -0.0261 *** 0.0021 -0.0292 *** 0.0025 -0.0292 *** 0.0025 -0.0298 *** 0.0024 -0.0310 *** 0.0024 -0.0310 *** 0.0024

γ14 -0.0037 *** 0.0012 -0.0047 *** 0.0014 -0.0046 *** 0.0016 -0.0059 *** 0.0016 -0.0064 *** 0.0016 -0.0064 *** 0.0016

γ15 -0.0059 ** 0.0032 -0.0012 0.0039 -0.0001 0.0038 0.0016 0.0037 0.0003 0.0038 0.0003 0.0038

γ16 -0.0148 *** 0.0022 -0.0172 *** 0.0027 -0.0169 *** 0.0026 -0.0162 *** 0.0026 -0.0182 *** 0.0026 -0.0182 *** 0.0026

γ17 0.0033 * 0.0025 0.0038 * 0.0030 0.0038 0.0030 0.0016 0.0030 0.0022 0.0030 0.0022 0.0030

γ22 -0.0199 *** 0.0029 -0.0238 *** 0.0034 -0.0160 *** 0.0038 -0.0214 *** 0.0035 -0.0225 *** 0.0035 -0.0224 *** 0.0035

γ23 -0.0037 *** 0.0012 -0.0034 *** 0.0014 -0.0041 *** 0.0014 -0.0046 *** 0.0013 -0.0041 *** 0.0013 -0.0041 *** 0.0013

γ24 -0.0019 *** 0.0007 -0.0017 *** 0.0008 -0.0003 0.0009 -0.0013 * 0.0009 -0.0016 ** 0.0009 -0.0017 ** 0.0009

γ25 0.0082 *** 0.0019 0.0104 *** 0.0022 0.0085 *** 0.0023 0.0091 *** 0.0022 0.0089 *** 0.0022 0.0089 *** 0.0022

γ26 -0.0031 *** 0.0012 -0.0020 * 0.0015 -0.0026 ** 0.0014 -0.0030 *** 0.0014 -0.0029 *** 0.0014 -0.0030 *** 0.0014

γ27 0.0002 0.0015 0.0003 0.0017 0.0000 0.0018 -0.0008 0.0018 -0.0005 0.0018 -0.0005 0.0018

γ33 0.0264 *** 0.0023 0.0248 *** 0.0027 0.0260 *** 0.0026 0.0278 *** 0.0026 0.0272 *** 0.0026 0.0272 *** 0.0026

γ34 0.0039 *** 0.0009 0.0042 *** 0.0011 0.0024 *** 0.0011 0.0028 *** 0.0011 0.0028 *** 0.0011 0.0029 *** 0.0011

γ35 0.0010 0.0019 0.0017 0.0022 0.0027 0.0022 0.0023 0.0022 0.0027 0.0022 0.0027 0.0022

γ36 0.0027 ** 0.0015 0.0045 *** 0.0018 0.0047 *** 0.0017 0.0037 *** 0.0017 0.0047 *** 0.0017 0.0047 *** 0.0017

γ37 -0.0042 *** 0.0014 -0.0026 * 0.0016 -0.0027 ** 0.0016 -0.0022 * 0.0016 -0.0024 * 0.0016 -0.0024 * 0.0016

γ44 0.0072 *** 0.0007 0.0067 *** 0.0008 0.0087 *** 0.0009 0.0106 *** 0.0009 0.0101 *** 0.0009 0.0101 *** 0.0009

γ45 -0.0032 *** 0.0011 -0.0025 *** 0.0012 -0.0041 *** 0.0013 -0.0040 *** 0.0013 -0.0036 *** 0.0013 -0.0037 *** 0.0013

γ46 -0.0012 * 0.0008 -0.0008 0.0010 -0.0013 0.0010 -0.0019 ** 0.0010 -0.0008 0.0010 -0.0008 0.0010

γ47 -0.0010 * 0.0008 -0.0011 0.0009 -0.0008 0.0010 -0.0004 0.0010 -0.0005 0.0010 -0.0005 0.0010

γ55 0.0181 *** 0.0033 0.0129 *** 0.0039 0.0140 *** 0.0039 0.0122 *** 0.0039 0.0129 *** 0.0039 0.0129 *** 0.0039

γ56 -0.0058 *** 0.0018 -0.0078 *** 0.0021 -0.0076 *** 0.0021 -0.0074 *** 0.0020 -0.0070 *** 0.0021 -0.0069 *** 0.0021

30% Censoring

No Censoring Excluding Cen. Obs. Cell Mean Cox and Wohlgenant EM Algorithm MCMC Algorithm
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Table 4. Continued 

 
Note: Significance levels of 0.05, 0.10, and 0.20 are indicated by triple asterisks (***), double asterisks (**), and an asterisk (*) respectively.

Approx Approx Approx Approx Approx Approx

Par. Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err Estimate Std Err

γ57 -0.0125 *** 0.0018 -0.0134 *** 0.0022 -0.0134 *** 0.0022 -0.0138 *** 0.0022 -0.0142 *** 0.0022 -0.0141 *** 0.0022

γ66 0.0250 *** 0.0019 0.0267 *** 0.0023 0.0270 *** 0.0022 0.0276 *** 0.0022 0.0268 *** 0.0022 0.0268 *** 0.0022

γ67 -0.0028 *** 0.0013 -0.0034 *** 0.0016 -0.0033 *** 0.0016 -0.0029 ** 0.0016 -0.0026 ** 0.0016 -0.0026 ** 0.0016

γ77 0.0170 *** 0.0020 0.0163 *** 0.0023 0.0163 *** 0.0024 0.0185 *** 0.0024 0.0179 *** 0.0024 0.0179 *** 0.0024

α1 0.2673 *** 0.0097 0.2689 *** 0.0116 0.2754 *** 0.0109 0.2676 *** 0.0104 0.2662 *** 0.0107 0.2661 *** 0.0107

α2 0.1377 *** 0.0064 0.1372 *** 0.0076 0.1247 *** 0.0075 0.1326 *** 0.0071 0.1292 *** 0.0072 0.1292 *** 0.0072

α3 0.1506 *** 0.0033 0.1545 *** 0.0040 0.1536 *** 0.0036 0.1545 *** 0.0035 0.1557 *** 0.0035 0.1557 *** 0.0036

α4 0.0641 *** 0.0019 0.0648 *** 0.0023 0.0687 *** 0.0024 0.0701 *** 0.0024 0.0714 *** 0.0024 0.0714 *** 0.0024

α5 0.1896 *** 0.0055 0.1823 *** 0.0065 0.1835 *** 0.0061 0.1807 *** 0.0059 0.1814 *** 0.0060 0.1815 *** 0.0060

α6 0.1301 *** 0.0035 0.1345 *** 0.0043 0.1321 *** 0.0039 0.1307 *** 0.0038 0.1333 *** 0.0038 0.1333 *** 0.0038

α7 0.0606 *** 0.0044 0.0579 *** 0.0051 0.0620 *** 0.0050 0.0638 *** 0.0049 0.0628 *** 0.0050 0.0628 *** 0.0050

β1 0.0447 *** 0.0046 0.0452 *** 0.0055 0.0324 *** 0.0048 0.0406 *** 0.0047 0.0395 *** 0.0047 0.0394 *** 0.0047

β2 0.0312 *** 0.0037 0.0312 *** 0.0044 0.0523 *** 0.0042 0.0386 *** 0.0040 0.0408 *** 0.0040 0.0409 *** 0.0040

β3 -0.0345 *** 0.0015 -0.0341 *** 0.0018 -0.0352 *** 0.0015 -0.0349 *** 0.0015 -0.0349 *** 0.0015 -0.0350 *** 0.0015

β4 -0.0133 *** 0.0009 -0.0133 *** 0.0011 -0.0141 *** 0.0010 -0.0132 *** 0.0010 -0.0137 *** 0.0010 -0.0137 *** 0.0010

β5 -0.0133 *** 0.0026 -0.0133 *** 0.0031 -0.0173 *** 0.0026 -0.0160 *** 0.0026 -0.0162 *** 0.0026 -0.0162 *** 0.0026

β6 -0.0335 *** 0.0016 -0.0350 *** 0.0020 -0.0348 *** 0.0016 -0.0339 *** 0.0016 -0.0339 *** 0.0016 -0.0339 *** 0.0016

R-sqr R-sqr R-sqr R-sqr R-sqr R-sqr

w1 0.0384 0.0416 0.0221 0.0335 0.0339 0.0339

w2 0.0381 0.0451 0.0499 0.0416 0.0446 0.0445

w3 0.1780 0.1822 0.1636 0.1837 0.1870 0.1871

w4 0.0872 0.0902 0.0760 0.0785 0.0778 0.0781

w5 0.0265 0.0234 0.0245 0.0259 0.0245 0.0247

w6 0.1430 0.1516 0.1489 0.1438 0.1434 0.1435

30% Censoring

No Censoring Excluding Cen. Obs. Cell Mean Cox and Wohlgenant EM Algorithm MCMC Algorithm
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Tables 6, 8, and 10 reveals that at the 30% censoring level, the CM method generated the best 

estimates for the Marshallian (RMSPE = 396.0614) and the Hicksian price elasticities (RMSPE = 

1767.3065) while the worst estimates were generated by the CW method (RMSPE = 971.9238) 

and the MCMC method (RMSPE = 2236.7423) respectively. In case of the expenditure elastic 

estimates (Table 10), the best estimates were generated by the SR and EM methods (31.6429) 

while the worst estimates were generated by the CM method (RMSPE = 39.3499). 

The methods that provided the best estimates for the elasticities at the 30% censoring level are 

not necessarily the same at the 70% censoring level. In the latter, the CM method (RMSPE = 

994.2068) generated the best estimates for the Marshallian price elasticities while the worst 

estimates were generated by the MCMC method (RMSPE = 2212.905). In the case of the Hicksian 

price elasticities at 70% censoring level, the CM method generated the best estimates (RMSPE = 
1564.8632) while the EM method generated the worst estimates (RMSPE = 4890.0503). Last, the 

CM and CW methods provided the best estimates (RMSPE = 68.8568) for the expenditure 

elasticities while the MCMC method provided the worst estimates (RMSPE = 76.2207). 

Consistent with the results for the price analysis (Table 3), the results for the elasticity analysis 

(Tables 6, 8, and 10) were mixed when analyzing specific elasticity estimates (as opposed to 

overall estimates) at either 30% censoring level or 70% censoring level. 

Interestingly, at the 30% censoring level, the EM method generated the best mean price 

estimates (RMSPE = 1.8796, Table 3), but it was the CM method which generated the best 

elasticity estimates overall (RMSPE = 1877.5699). This suggests that the imputation method that 

would be chosen should be selected based on an analysis from the ultimately desired measures. 

On the other hand, at the 70% censoring level, the CM method generated the best mean price 
estimates (RMSPE = 1.9968, Table 3) as well as the best overall elasticity estimates (RMSPE = 

1852.7305). This suggests that under large level of censoring, simple techniques such as the CM 

method may perform satisfactory or even provide better estimates than sophisticated techniques 

such as the EM and MCMC methods. 

 

Table 5. Marshallian Own-Price Elasticity Estimates Under 0%, 30%, and 70% Censoring 

Levels 

 
Note: eij, i = j = 1, 2, …,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables, 6 = 

legumes, and 7 = fruits. 
 

 

 

 

 

 

 

 

No

Censoring ECO CM CW EM MCMC ECO CM CW EM MCMC

e11 -0.9300 -0.9267 -0.9120 -0.9288 -0.9189 -0.9184 -0.9412 -0.9035 -0.9472 -0.8995 -0.8999

e22 -1.1009 -1.1216 -1.0772 -1.1050 -1.1102 -1.1097 -1.0532 -0.9946 -1.0067 -1.0437 -1.0444

e33 -0.6560 -0.6783 -0.6487 -0.6292 -0.6360 -0.6353 -0.5835 -0.4990 -0.4441 -0.4615 -0.4624

e44 -0.8196 -0.8312 -0.7960 -0.7527 -0.7661 -0.7648 -0.7816 -0.7479 -0.4537 -0.4244 -0.4240

e55 -0.8924 -0.9227 -0.9138 -0.9256 -0.9211 -0.9211 -0.8313 -0.8230 -0.8574 -0.8379 -0.8377

e66 -0.6477 -0.6289 -0.6098 -0.6043 -0.6172 -0.6170 -0.7132 -0.6976 -0.5750 -0.5815 -0.5810

e77 -0.7998 -0.8063 -0.8089 -0.7862 -0.7917 -0.7920 -0.7797 -0.7851 -0.6921 -0.7873 -0.7873

30% Censoring 70% Censoring
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Table 6. Root Mean Square Error (RMSE) and Root Mean Square Percent Error (RMSPE) 

for After-Imputation Marshallian Own-Price Elasticity Estimates 

 
Note: eij, i = j = 1, 2, …,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables, 

 6 = legumes, and 7 = fruits. 

 

Table 7. Hicksian Own-Price Elasticity Estimates Under 0%, 30%, and 70% Censoring 

Levels 

 
Note:    

 , i = j = 1, 2, …,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables,  

6 = legumes, and 7 = fruits. 

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE

e11 0.1113 0.3157 0.0736 0.1418 0.0911 0.2216 0.0928 0.2293

e22 0.2086 0.1450 0.2392 0.1678 0.2663 0.1866 0.2679 0.1865

e33 0.2644 8.3271 0.2972 13.0268 0.2854 11.6893 0.2869 11.8010

e44 0.6481 5.5709 0.7454 4.8520 0.8006 5.6926 0.8078 5.7448

e55 0.2019 3.1883 0.1551 2.3391 0.1671 2.6428 0.1664 2.6433

e66 0.8954 20.7972 1.0144 25.9407 0.9566 20.6203 0.9566 20.6394

e77 0.3860 8.4851 0.4097 8.9000 0.4028 7.6417 0.4018 7.2458

All eij, i = j 1.2399 24.8028 1.3884 30.8365 1.3809 25.6848 1.3854 25.6482

All eij, i, j = 1, 2, …, 7 267.0056 396.0614 267.0065 971.9238 267.0070 694.2498 267.0070 683.6587

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE

e11 0.1070 0.3619 0.1070 0.3619 0.1138 0.4675 0.1124 0.4585

e22 0.3186 0.2096 0.3186 0.2096 0.2513 0.1339 0.2447 0.1328

e33 0.7800 21.5138 0.7800 21.5138 0.8629 24.6745 0.8663 25.9810

e44 0.9381 9.8106 0.9381 9.8106 2.5436 31.5370 2.5802 32.1871

e55 0.5910 12.7837 0.5910 12.7837 0.4668 10.1846 0.4746 10.4610

e66 0.4019 38.0428 0.4019 38.0428 0.5798 26.6884 0.5920 29.7259

e77 1.2067 42.6318 1.2067 42.6318 1.1940 38.0270 1.2246 37.1436

All eij, i = j 1.8890 63.1460 1.8890 63.1460 3.0447 62.1747 3.0913 63.9058

All eij, i, j = 1, 2, …, 7 267.0114 994.2068 267.0114 994.2068 267.0317 2167.6406 267.0326 2212.9051

30% Censoring

70% Censoring

CM CW EM MCMC

CM CW EM MCMC

No

Censoring ECO CM CW EM MCMC ECO CM CW EM MCMC

e
c
11 -0.5254 -0.5196 -0.5257 -0.5335 -0.5240 -0.5235 -0.5425 -0.5478 -0.5717 -0.5261 -0.5265

e
c
22 -0.8705 -0.8930 -0.8134 -0.8602 -0.8627 -0.8621 -0.8186 -0.6961 -0.7331 -0.7702 -0.7709

e
c
33 -0.6136 -0.6351 -0.6096 -0.5891 -0.5963 -0.5956 -0.5426 -0.4617 -0.4045 -0.4228 -0.4236

e
c
44 -0.7932 -0.8049 -0.7676 -0.7232 -0.7367 -0.7354 -0.7548 -0.7183 -0.4230 -0.3924 -0.3919

e
c
55 -0.7371 -0.7684 -0.7676 -0.7766 -0.7732 -0.7733 -0.6741 -0.6756 -0.7078 -0.6891 -0.6889

e
c
66 -0.6103 -0.5918 -0.5753 -0.5683 -0.5811 -0.5809 -0.6748 -0.6651 -0.5424 -0.5477 -0.5472

e
c
77 -0.6964 -0.7028 -0.7072 -0.6810 -0.6873 -0.6875 -0.6764 -0.6861 -0.5938 -0.6876 -0.6876

30% Censoring 70% Censoring
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Table 8. Root Mean Square Error (RMSE) and Root Mean Square Percent Error (RMSPE) 

for After-Imputation Hicksian Own-Price Elasticity Estimates 

 
Note:    

 , i = j = 1, 2, …,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables, 6 = 

legumes, and 7 = fruits. 

 

Table 9. Expenditure Elasticity Estimates Under 0%, 30%, and 70% Censoring Levels 

 
Note: ei, i = 1, 2, …,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables, 6 = 

legumes, and 7 = fruits. 

 

 
 

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE

e
c
11 0.1074 0.4619 0.0839 0.2068 0.0935 0.3238 0.0948 0.3361

e
c
22 0.2699 0.2670 0.2767 0.2540 0.3000 0.2706 0.3016 0.2706

e
c
33 0.2547 37.2035 0.2883 46.5190 0.2763 39.2094 0.2777 40.2197

e
c
44 0.6437 3.5044 0.7419 3.6957 0.7969 3.9035 0.8041 3.9611

e
c
55 0.2031 2.6494 0.1591 1.9659 0.1700 2.2310 0.1693 2.2282

e
c
66 0.8900 13.4721 1.0104 21.1317 0.9523 34.9030 0.9522 25.1823

e
c
77 0.3783 383.0000 0.4021 75.2798 0.3948 251.0664 0.3939 258.2006

All e
c
ij, i = j 1.2410 385.0638 1.3874 91.0782 1.3791 256.5352 1.3836 262.5646

All e
c
ij, i, j = 1, 2, …, 7 267.0100 1767.3065 267.0103 1884.7531 267.0117 2204.6346 267.0118 2236.7423

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE

e
c
11 0.1074 0.4619 0.0839 0.2068 0.0935 0.3238 0.0948 0.3361

e
c
22 0.2699 0.2670 0.2767 0.2540 0.3000 0.2706 0.3016 0.2706

e
c
33 0.2547 37.2035 0.2883 46.5190 0.2763 39.2094 0.2777 40.2197

e
c
44 0.6437 3.5044 0.7419 3.6957 0.7969 3.9035 0.8041 3.9611

e
c
55 0.2031 2.6494 0.1591 1.9659 0.1700 2.2310 0.1693 2.2282

e
c
66 0.8900 13.4721 1.0104 21.1317 0.9523 34.9030 0.9522 25.1823

e
c
77 0.3783 383.0000 0.4021 75.2798 0.3948 251.0664 0.3939 258.2006

All e
c
ij, i = j 1.2410 385.0638 1.3874 91.0782 1.3791 256.5352 1.3836 262.5646

All e
c
ij, i, j = 1, 2, …, 7 267.0100 1767.3065 267.0103 1884.7531 267.0117 2204.6346 267.0118 2236.7423

30% Censoring

70% Censoring

CM CW EM MCMC

CM CW EM MCMC

No

Censoring ECO CM CW EM MCMC ECO CM CW EM MCMC

e1 1.1241 1.1249 1.0914 1.1144 1.1111 1.1110 1.1224 1.0548 1.0932 1.0890 1.0890

e2 1.1568 1.1583 1.2472 1.1872 1.1974 1.1977 1.1546 1.2956 1.2403 1.2428 1.2428

e3 0.5517 0.5591 0.5261 0.5347 0.5323 0.5322 0.5364 0.5280 0.5433 0.5380 0.5380

e4 0.6646 0.6632 0.6688 0.6911 0.6825 0.6823 0.6693 0.6699 0.6994 0.7091 0.7092

e5 0.9214 0.9207 0.8941 0.9031 0.9015 0.9013 0.9186 0.8926 0.8935 0.8972 0.8972

e6 0.5273 0.5146 0.4985 0.5156 0.5156 0.5155 0.5631 0.4735 0.4798 0.4884 0.4885

e7 1.2211 1.2285 1.1960 1.2165 1.2133 1.2137 1.2032 1.1814 1.1755 1.1767 1.1766

30% Censoring 70% Censoring
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Table 10. Root Mean Square Error (RMSE) and Root Mean Square Percent Error 

(RMSPE) for After-Imputation Expenditure Elasticity Estimates 

 
Note: ei, i = 1, 2, …,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables, 6 = 

legumes, and 7 = fruits. 

 

4. Concluding Remarks 

 

Several studies often use simple techniques to account for censored prices in models where 

prices are independent variables. These simple techniques either omit the missing prices or use 

price imputation approaches such as deductive imputation, cell mean imputation, hot-deck 

imputation, cold-deck imputation, and regression imputation. This study compares and contrast 
several imputation approaches under two levels of censoring by following a multiple imputation 

methodology (e.g., analyzes the ultimately desired measures). The imputation approaches 

analyzed are: excluding censoring observations (ECO), cell mean imputation (CM), Cox and 

Wolhgenant’s (1986) first-order missing price procedure (CW), simple regression imputation 

(SR), the EM algorithm, and the MCMC algorithm. 

Differences in price variability before and after price imputation are quantified, the 

performance of each method under different levels of missing data are evaluated, and elasticity 

estimates for several important protein sources (meat, dairy, eggs, tubers, vegetables, legumes, 

and fruits) in the Mexican diet are estimated under the various imputation procedures. These 

elasticity estimates are relatively recent and contribute to a better understanding of the Mexican 

demand for protein sources. In addition, these estimates can be used to analyze current and/or 
future trends in protein consumption. 

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE

e1 0.1283 0.0873 0.1111 0.0731 0.1082 0.0717 0.1086 0.0718

e2 0.8784 0.5167 0.4656 0.2852 0.5254 0.3203 0.5329 0.3225

e3 0.3633 3.9599 0.3624 3.6817 0.3634 3.6695 0.3641 3.7370

e4 1.0277 32.5670 0.8455 31.4511 1.0237 27.9184 1.0262 28.5841

e5 0.2886 1.5184 0.1988 1.0176 0.2239 1.1391 0.2235 1.1350

e6 1.1353 21.6681 1.2125 15.3382 1.1935 14.3849 1.1930 14.5627

e7 0.4210 0.2067 0.4118 0.2048 0.4154 0.2072 0.4154 0.2072

All ei, i = 1, 2, …, 7 1.8777 39.3499 1.6597 35.2016 1.7649 31.6429 1.7683 32.3191

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE

e1 0.1483 0.1018 CW 0.1018 0.1064 0.0700 0.1074 0.0707

e2 2.7710 1.0150 0.148317562 1.0150 1.5162 0.6035 1.5337 0.6093

e3 0.6588 19.2315 2.77101464 19.2315 0.6289 21.6351 0.6221 20.9504

e4 1.1759 19.5651 0.658753257 19.5651 1.1047 15.9901 1.1107 16.2046

e5 0.3454 3.2614 1.175925238 3.2614 0.2855 2.3004 0.2866 2.3024

e6 0.6699 63.0620 0.345369372 63.0620 0.6878 70.9856 0.6851 71.4305

e7 0.9989 0.3374 0.669907679 0.3374 0.9735 0.3114 0.9990 0.3117

All ei, i = 1, 2, …, 7 3.3291 68.8568 0.998908267 68.8568 2.3299 75.9505 2.3525 76.2207

30% Censoring

70% Censoring

MCMC

CM CW EM MCMC

CM CW EM
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The study’s findings reveal that even when there is small variability among the imputer’s 

model estimates, there may be larger variability among the analyst’s model estimates. Therefore, 

it is recommended that the imputation method that is selected is based on an analysis of the 

ultimately desired measures. These measures may suffer from selection bias if an imputation 

method is inappropriately chosen. In addition, evaluating the imputation methods using a simple 

comparison of the mean prices or elasticities is inappropriate because calculating means cancels 

out positive errors with negative errors; therefore, computing the RMSE and the RMSPE is 

recommended. This is critical because the method that provides the best estimate is not necessarily 

the same when evaluating the estimates using a simple comparison and when evaluating the 

estimates using the RMSPE. Unfortunately, the RMSE and RMSPE cannot be computed for the 

ECO approach and the ECO approach may also be unfeasible when the censoring occurs in each 
price at different instances (i.e., the complete-case data may have few observations). 

This study also found that the imputation method or approach that provides the best estimates 

varies across the imputed variables (i.e., pi, i = 1, 2, …, 7) and across the ultimately desired 

measures (i.e., eij, ei,    
 , i, j = 1, 2, …, 7). Furthermore, results are sensitive to the censoring 

levels. That is, the method that generates the best estimates at the 30% censoring level is not 

necessarily the same method that generates the best estimate at the 70% censoring level. In 

particular, at high levels of censoring, a simple method such as the CM may perform satisfactory 

or even better than sophisticated methods. 

Provided that the results are sensitive to the imputation approach chosen, it is recommended 

that a portion of the dataset is set aside for validation purposes and that the imputation method that 

would be chosen be selected based on an analysis from the ultimately desired measures (e.g., 

following a multiple imputation methodology). 

Further research may be conducted with datasets where prices are not missing at random or 

where prices are not censored at the same instances (e.g., with datasets that have many missing 
data patterns). It should be noted that in this study the EM algorithm was observed to provide 

similar results to the SR method because only one missing data pattern was considered. This is 

because the EM algorithm uses maximum likelihood estimation. It was also observed that the SR 

method performed similar to the CW method when a simple regression was estimated for each of 

the means considered in the CW method. Finally, the estimates from the cell mean method may 

improve if more cells are used in the analysis. The more specific the classes are, the more likely 

the research is to obtain an estimate that is closer to the true value. 
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Footnotes 

 
1 When there is item non-response on both the dependent variables (e.g., quantities) and 

the independent variables (e.g., prices), researchers combine both of these techniques, first using 

price imputation models and subsequently using models such as the censored nonlinear quadratic 

almost ideal demand system (censored NQUAIDS), the censored QUAIS, Amemiya-Tobin 

approach extensions to demand systems estimations, double-hurdle models, etc. 
2 For example, using four strata and Mexico’s 31 states plus the Federal District produces 

128 different values for the missing values.  Using two strata and 32 states/locations produces 64 

different values. 
3 The initial estimates for the EM algorithm can be obtained from the non-censored 

observations. 
4 For a discussion of single versus multiple chains refer to Schafer (1997, pp. 137-138). 
5 In practice, each price usually has a different censoring level and a price could be 

censored at a different time than another price.  When this is the case, the dataset that only 

contains the non-censored observations may have few observations.  In addition, the dataset that 

contains the censored observations may have many missing data patterns, but not all possible 
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patterns may show up in the dataset.  For example, with i variables, p1, p2, …, pi, up to 2i groups of 

observations (possible missing patterns) can be formed. 
6 The CW method computed the mean for each Mexican state and the Federal District. 
7 The parameter estimates from the simple regression imputation approach (i.e., method 3) 

at a 70% censoring level and the parameter estimates from the first-order missing price procedure 

of Cox and Wohlgenant (1986) under both the 30% censoring level and the 70% censoring level 

are available upon request. 
8 The MLE of the means and variance-covariance matrix from the last iteration of the EM 

or MCMC algorithms under both the 30% censoring level and the 70% censoring level are 

available upon request. 
9 The root mean square imputation error and the root mean square percent error for price pi 

are defined as       √
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    respectively, where   equals 0.30 or 0.70 depending 

on the censoring level (see Pindyck and Rubinfeld 1997, pp. 384-386).  Similar definitions are 

used for the Marshallian and Hicksian price elasticities as well as the expenditure elasticities. 
10 The AIDS parameter estimates under the various approaches to price imputation for a 

70% censoring level are available upon request. 
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