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Abstract

Several imputation approaches using a large sample and different levels of censoring are
compared and contrasted following a multiple imputation methodology. The study not only
discusses these imputation approaches, but also quantifies differences in price variability
before and after price imputation, evaluates the performance of each method, and estimates
and compares parameters and elasticities from a complete demand system. The study’s
findings reveal that small variability among the mean prices from the various imputation
approaches may result in relatively larger variability among the underlying parameter
estimates of interest and the ultimately desired measures. This suggests that selection bias
may be avoided or reduced by validating the imputation approaches and choosing the
imputation method based on an analysis of the ultimately desired measures.

Keywords: Censored prices, elasticities, imputation methods, multiple imputation, protein
demand.

1. Introduction

Survey design, implementation, and institutional constrains often lead to a frequently
encountered problem with consumer survey data, the existence of censored observations.
With home-scan data and household surveys being more accessible to researchers, this
problem of increasing importance is becoming more and more common; usually taking place
in high proportions (e.g., Taylor, Phaneuf, & Piggott, 2008; Dong, Gould, & Kaiser, 2004;
Gould, Lee, Dong, & Villarreal, 2002; Golan, Perloff, & Shen, 2001; Sabates, Gould, &
Villarreal, 2001; Dong & Gould, 2000; Heien, Jarvis, & Perali, 1989; Cox & Wohlgenant,
1986) in dependent variables, independent variables, or both. It occurs when the value of an
observation is partially known (also called item nonresponse). This happens when the value
of a variable of interest (e.g., the dependent variable) is unknown; but information on related
variables (e.g., the independent variables) is known.

When there is item nonresponse only on the dependent variable, applied economists use
parametric models (e.g., the probit and tobit models, or their multinomial versions).
However, when dealing with item nonresponse on an independent variable, a surprisingly
high number of studies such as Golan et al. (2001) and Dong et al. (2004) use very simple
techniques (e.g., simple regional or quarterly averages) or omit missing observations. These
simple techniques are often satisfactory but it is critical to compare and assess their
performance with other imputation methods and approaches to determine if selection bias
can be avoided or minimized. There are several ways in which a missing value can be
substituted with a replacement value: deductive imputation, cell mean imputation, hot-deck
imputation, and cold-deck imputation. Unfortunately, some of these methods may be time

29



Imputation Methods and Approaches: An Analysis of...

consuming (e.g., deductive imputation) or perhaps unfeasible (e.g., cold-deck imputation)
when the data sample is large and/or the data is limited.

In deductive imputation the researcher deduces the missing value by using logic and the
relationships among the variables. For instance, if the geographical location of a household is
missing, it can be recovered by using other variables such as the consecutive order of
household interviews and the time period when the household was interviewed. If the
previously and the subsequently interviewed households were interviewed during the same
week and they both belong to the same city, then the logical imputation for the missing
geographical location would be to use the same city from the two other households.

Cell mean imputation consists of grouping the observations (e.g., households) into classes
(e.g., strata and state) and using the non-missing values of the variable of interest (e.g., non-
missing prices) to impute the missing values of this or another variable of interest (e.g.,
missing prices). Cell mean imputation has been employed by Golan et al. (2001, p. 545) and
Dong et al. (2004, p. 1099). Clearly, the more specific the classes are (e.g., strata and
county), the more likely the researcher is to obtain an estimate that is closer to the true value.
Cell mean imputation is appropriate if the missing values are missing completely at random.
The disadvantage of this method is that the variance in the imputed variable decreases.? To
avoid losing variability in the variable of interest, the researcher may alternatively use the
mean and standard deviation from the non-missing values of the variable of interest and
generate values for imputation from a normal distribution with this mean and this standard
deviation.

Lohr (1999, p. 275) explains that the term hot deck dates back to the time computer
programs and datasets were punched on cards. The card reader used to warm the data cards,
so the term hot deck was used to refer to the data cards being analyzed. Similar to cell mean
imputation, after the observations have been grouped into classes, hot deck imputation uses a
non-missing value of the variable of interest to impute the missing values of this or another
variable of interest. The non-missing value may be the previous non-missing value in the
class, a non-missing value chosen at random in the class, or the nearest non-missing value in
the cell, where the distance may be defined according to some criteria that is based on
another variable.

Contrary to hot deck, cold deck imputation uses a dataset other than the dataset being
analyzed to impute the missing value. These datasets may be from a previous survey or from
another source. Cold deck imputation is common in time series datasets. The researcher
sometimes pulls data from different sources to complete a time series for a particular variable
of interest on which little information is available.

The various imputation methods can be compared following a multiple imputation
methodology (see Lohr, 1999; Rubin, 1996; Rubin, 1987). In multiple imputations, a missing
value is imputed more than once by using different imputation methods. Each imputation
method generates a new dataset with non-missing observations. Each dataset is then analyzed
as if no imputation had been done. “[T]he different results give the analyst a measure of the
additional variance due to imputation” (Lohr 1999, p. 277). Typically, the same model is
used to analyze each imputed dataset.

This research paper compares and contrast several price imputation approaches, under
large samples and different levels of censoring following a multiple imputation
methodology. The general objective is to discuss and compare imputation approaches by
using a complete demand system model on the imputed datasets. In particular, an Almost
Ideal Demand System (AIDS) that incorporates the restrictions of adding-up, homogeneity,
and symmetry is employed. The paper not only discusses various imputation approaches, but
also quantifies the differences in price variability before and after imputation, evaluates the
performance of each method under different levels of missing data, and estimates and
compares the ultimately desired parameter estimates (i.e., the parameter estimates obtained
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from the complete demand system) under each imputation procedure. There are few studies
in the existing literature that have explored this critical issue using a large cross-sectional
sample and different levels of censoring.

To accomplish the general objective of the study, data on prices of several important
protein sources in the Mexican diet (meat, dairy, eggs, tubers, vegetables, legumes, and
fruits) are used from the 2008 survey of Mexican household incomes and expenditures
(Encuesta Nacional de Ingresos y Gastos de los Hogares (ENIGH)). ENIGH 2008 is a recent
and reliable source of information, and it is published by a Mexican governmental institution
(Instituto Nacional de Estadistica, Geografia e Informatica (INEGI)). In ENIGH 2008, a
total of 29,468 households were interviewed. A comparison of price imputation methods
under different levels of censoring is ideal with this survey because the sample of households
is large.

This study’s findings reveal that small variability among the price imputation approaches
may lead to large variability among the underlying parameter estimates of interest and the
ultimately desired measures (e.g., measures of price responsiveness). This means researchers
have to be very careful when choosing a price imputation procedure if they want to avoid or
reduce selection bias. However, results seem to indicate that it is possible that a simple cell
mean price imputation that uses two levels of urbanization within Mexico’s 31 states and the
Federal District (e.g., Golan et al., 2001; Dong et al., 2004) and results in a considerable lost
of price variability, may lead to parameter estimates that are satisfactory under lager levels of
censoring. Similarly, simply excluding the censored observations may result in a significant
sample size reduction, but it may also lead to parameter estimates that are satisfactory under
large levels of censoring.

2. Methods and Procedures
2.1. Imputer’s Models

The cell mean imputation method is also referred to as a zero-order missing price
procedure (Cox & Wohlgenant 1986, p. 913). Researches such as Golan et al. (2001, p. 545)
and Dong et al. (2004, p. 1099) have employed this method. For instance, to impute prices
for Mexican households that did not make meat purchases, Golan et al. (2001, p. 545)
“assume[d] that those households face the average price level for that product in that
particular location: a rural or urban area in a particular state or federal district.” Similarly,
“[flor [Mexican] households not purchasing a particular commodity, [Dong et al. (2004, p.
1099)] replace[d] unobserved unit values with the average unit value obtained by purchasing
households in the same area, represented by state of residence and degree of urbanization.”

Other researchers such as Zheng and Henneberry (2009, p. 878) have used Cox and
Wohlgenant’s (1986, p. 913) first-order missing price procedure. Using the non-missing
prices of commodity i, this method first computes the regional mean prices (mp;) and then
calculates the corresponding deviations from the regional mean prices (dmp;). That is,

dpm; = p; — mp;. 1)

Subsequently, this method regresses dmp; as a function household characteristics, which
are proxies for household preferences for unobserved household characteristics. That is,

dpm; = z;'B; + e;, )
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where z;" is a (1 x K) vector of household characteristics, B; is a (K x 1) vector of
parameters, and e; is random error. Interested in analyzing unit values, Cox and Wohlgenant
(1986, p. 913) assume that the deviations from mean prices reflect quality differences that
are induced by household characteristics and nonsystematic supply-related factors.
Substituting equation (2) into (1) and solving for p; gives the price/quality functions. The
OLS parameter estimates obtained from equation (2) are used to predict the values of the
missing prices. The quality-adjusted missing price estimates or imputed prices are obtained
from

p; = dmp; + mp; 3)

where p; is an estimate of p; for the corresponding missing prices.

A similar but simpler approach consists of regressing the non-missing prices as a function
of household characteristics, and then using the resulting parameters estimates to predict the
missing prices. This method is referred to as a simple regression imputation approach (e.g.,
Lopez, Malaga, Chidmi, Belasco, & Surles, 2012).

Other imputation methods are also based on algorithms. These include the expectation-
maximization (EM) algorithm and the Markov Chain Monte Carlo (MCMC) algorithm. The
EM algorithm finds the MLE of the vector of parameters by iterating two steps until the
iterations converge. The expectation step (E-step) computes the conditional expectation of
the complete-data log likelihood given the observed data and the parameter estimates.® The
maximization step (M-step) estimates the parameters that maximize the complete-data log
likelihood from the E-step. For multivariate normal data, the observed-data log likelihood
being maximized can be expressed as

G
log L(B1Xops) = D, 10g Ly(81Xops) @)
g=1
where G is the number of groups with distinct missing patterns, log L(8|X,;s) is the
observed-data log likelihood from the g™ group, and

log Ly(01Xops) = —2log|Z| = 2> (xng = 1g) % Cing —1tg) )
hg

where n, is the number of observations in the g™ group, the summation is over the household
observations in the g™ group, Xpg is @ vector of observed values corresponding to observed
variables, p,is the corresponding mean vector, and Z, is the associated covariance matrix.
Schafer (1997, pp. 163-181) and SAS Institute Inc. (2004, pp. 2536-2537) provide a
description of the EM algorithm for multivariate normal data.

The MCMC algorithm has applications in Bayesian inference. The entire joint posterior
distribution of the unknown numbers can be simulated to obtain posterior parameter
estimates of interest. The Bayesian approach to missing data consists of a data augmentation
procedure that is implemented in two steps. The imputation step (I-step) draws values for
Xmis from a conditional predictive distribution of Xgs given Xqps. That is, with a current
estimate of 8® at the t" iteration,

Xﬁ;;l) - Pr(Xmislxobs' g(t))- (6)

The posterior step (P-step) draws values for 6 from a conditional distribution of 6 given
Xobs- That is,

0D ~ Pr(|X,,., X)), @)

mis
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The steps in equations (6) and (7) are iterated creating a Markov chain

(X(l)

mis’ 9(1))' (Xr(rfi)s' 9(2))’ T (8)
which converges in distribution to Pr(X,,;, 6|X,ps)- It is assumed that this distribution is
stationary (SAS Institute Inc. 2004, p. 2548). Schafer (1997) and SAS Institute Inc. (2004,
pp. 2547-2552) provide a description of the MCMC technique. In this paper, the MCMC
method uses a multiple chain to produce five (if a 30% censored level) or ten imputations (if
a 70% censored level).* Five imputations will produce a relative efficiency of 0.9434 when
there is a 30% censoring level while ten imputations will produce a relative efficiency of
0.9346 when there is a 70% censoring level (SAS Institute Inc. 2004, p. 2562). In addition,
two-hundred iterations were performed for the first and subsequent imputations. The EM
algorithm is used to derive the set of initial parameter values for the MCMC and a
noninformative prior was used in the P-step (see Schafer 1997, p. 154; & SAS Institute Inc.
2004, p. 2550). The imputations were combined by computing the average of the m
complete-data estimates (see SAS Institute Inc., p. 2561).

2.2. Analyst’s Model

In practice, the model that is used to impute the data (i.e., the imputer’s model) is not the
same as the model used to analyze the imputed data (i.e., the analyst’s model). This paper
uses the Almost Ideal Demand System (AIDS) to analyze the imputed datasets that were
obtained from different imputation methods and different levels of censoring. The results
provide a measure of the additional variance obtained due to imputation (Lohr 1999, p. 277).

The Almost Ideal Demand System (AIDS) was developed by Deaton and Muelbauer
(1980) as an arbitrary first order approximation of any demand system. The functional form
is consistent with household-budget data and it is not difficult to estimate. In the AIDS
model, the Marshallian demand function for commodity i in share form is specified as

Win = a; + z 7ij log(pjn) + Bi 10g(Mn/Pr) + ein 9
i

where wi, is the budget share for commodity i and household h; pj, is the price of
commodity j and household h, my is total household expenditure on the commaodities being
analyzed; a;, £ and y;j are parameters, and ¢; is a random term of disturbances, and Py, is a
price index.

In a nonlinear approximation, the price index Py, is defined as

log (P = a0+ D axlog (pin) + % > Y. 74109(per) log(py) (10)
k k j

In the linear approximation of the AIDS model (LA/AIDS) suggested by Stone (1954),
equation (5) is estimated by

log (Py) = D Wi log (pun) (12)
k

The demand theory properties of adding-up, homogeneity and symmetry can be imposed
on the system of equations by restricting parameters in the model as follows:

Adding-up: Z o =1, Z 7% =0, and Z pi=0; (12
i i i

Homogeneity: Z 7% =0; (13)
i

Symmetry: %i = Vi (14
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In the AIDS model, the Marshallian (uncompensated) and the Hicksian (compensated)
price elasticities as well as the expenditure elasticities can be computed from the estimated
coefficients as follows:

Marshallian Price Elasticity:  ejj; = -0ij + yij/wi — i /w; (aj + Z Yij In pk> (15)
k
Hicksian Price Elasticity: ef; = ej+We; (16)

Expenditure Elasticity: ei=1+pfIw an
where ¢ is the Kronecker delta equal to one if i = j and equal to zero otherwise.

One equation is omitted in the estimation of this system, but the parameters of that
equation will be recovered by making use of the theoretical classical properties. Usually the
equation excluded is the one holding the smallest budget share.

2.3. Data

Mexican data on household income and weekly expenditures was obtained from
Encuesta Nacional de Ingresos y Gastos de los Hogares (2008), which is a nation-wide
survey encompassing Mexico’s 31 states plus one Federal District (a territory which belongs
to all states). ENIGH is a cross-sectional data sample published since 1977 (e.g., see Heien et
al., 1989) by a Mexican governmental institution (Instituto Nacional de Estadistica,
Geografia e Informdtica (INEGI)). ENIGH collects data by giving direct interviews and
recording household expenditures on groceries and several other items for one week.

Seven food sources of protein were analyzed in this study. These are meat (which
includes beef, pork, processed meat, chicken, processed poultry meat, seafood, and other
meats), dairy (which includes milk, cheese, and other milk derived products), eggs, tubers
(which includes raw, fresh, and processed tubers), vegetables (which includes fresh and
processed vegetables and pod vegetables), legumes (fresh and processed), and fruits (fresh
and processed). More specific information about the food products included in each category
can be obtained from ENIGH (2008).

In this study, a subsample of 3,572 households containing non-missing prices and
quantities of several important protein sources in the Mexican diet is used. To accomplish the
objectives of the study, prices from this dataset were randomly censored at levels of 30%
(2,500 non-missing price observations and 1,072 censored price observations) and 70%
(1,072 non-missing price observations and 2,500 censored price observations). In this study,
all prices were censored for the same instances; therefore, this study considers only one
missing data pattern (i.e., only one group of observations can be formed with the resulting
dataset).’ Quantities, on the other hand, were not censored.

3. Results and Discussion

Several approaches to data imputation were explored in this study: excluding censored
observations (ECO), cell mean imputation (CM), Cox and Wohlgenant’s first-order missing
price procedure (CW), simple regression imputation (SR), the EM algorithm, and the MCMC
algorithm. The ECO approach discarded the censored observations and focused only on the
non-censored observations. The CM method considered only one cell; therefore, it replaced
censored prices with the simple average of the non-censored prices. The CW and SR
methods are regression imputation approaches.® Table 1 summarizes the eighteen variables
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that were used as proxies for household preferences in the CW method (see equation (2)) and
in the SR method. Three of these variables were excluded to avoid the multicollinearity
(urban, university, and C). This means that the baseline consists of urban households from
the central region whose decision makers have completed university education or graduate
school education.” The EM and the MCMC algorithms compute the maximum likelihood
estimate (MLE) for (u,Z) of the data with the missing values, assuming a multivariate
normal distribution. The numeric variables included in the EM and MCMC algorithms were
the seven protein prices and fifteen variables from Table 1 (urban, university, and C
excluded).?

Table 2 reports the means and standard errors of the various protein categories under no
censoring, a 30% censoring level, and a 70% censoring level. The column titled No
Censoring reports the means and standard errors of the means for the entire 3,572 households
with no censored observations. This column can be used to validate the various imputation
approaches that were explored.

Table 1. Proxy Variables for Household Preferences

Variable Description

p00 11 Number of household members who are less than 12 years old.

pl2_64 Number of household members who are or are between 12 and 64 years old.

p65 _more | Number of household members who are or are older than 65 years old.

inc Household income.

rural This variable takes the value of 1 for household locations with a population
of 14,999 people or less and 0 if otherwise.

urban This variable takes the value of 1 for household locations with a population
of 15,000 people or more and 0 if otherwise.

element This variable takes the value of 1 if the household decision maker has
elementary school education or less and 0 if otherwise.

highsch This variable takes the value of 1 if the household decision maker has high
school education or if he/she is a high school graduate and 0 if otherwise.

college This variable takes the value of 1 if the household decision maker has some
college, college or incomplete university education and 0 if otherwise.

university | This variable takes the value of 1 if the household decision maker has
completed university or has some graduate school education and 0 if
otherwise.

NE This variable takes the value of 1 if the household is located in the Northeast
region of Mexico and 0 if otherwise.

NW This variable takes the value of 1 if the household is located in the Northwest
region of Mexico and 0 if otherwise.

Cw This variable takes the value of 1 if the household is located in the Central-
West region of Mexico and 0 if otherwise.

C This variable takes the value of 1 if the household is located in the Central
region of Mexico and 0 if otherwise.

SE This variable takes the value of 1 if the household is located in the Southeast
region of Mexico and 0 if otherwise.

d car This variable takes the value of 1 if the household has a 4-wheel vehicle and
0 if otherwise.

d_refri This variable takes the value of 1 if the household has a refrigerator at home
and 0 if otherwise.

supermkt This variable takes the value of 1 if the household purchased the protein
product or commodity from a supermarket and 0 if somewhere else.
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Table 2. Observed and Imputed Prices (n = 3,572)
No Censoring 30 % Censoring Level
Observed Prices Excluding Cen. Obs. Cell Mean Cox & Wohlgenant Simple Regression EM Algorithm MCMC Algorithm

Pi Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err.

(Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean
P1 46.4608  0.3650 470064  0.4462 47.0064 0.3071 47.0651 0.3141 46.9953 0.3124 46.9953 0.3124 46.9948 0.3123
P2 237807  0.4708 239239  0.5504 239239 0.3785 237270  0.3893 23.8325 0.3874 238325 0.3874 238344 0.3874
P3 18.7620 0.1311 18.8758  0.1769 18.8758  0.1216 18.8716  0.1252 18.8804  0.1242 18.8804  0.1242 18.8810 0.1242
[ 155820  0.5964 16.0031  0.7511 16.0031  0.5165 16.0858  0.5219 16.0884  0.5180 16.0884  0.5180 16.0860  0.5180
Ps 133280 0.1362 13.1985 0.1662 131985  0.1143 132242 0.1189 132155 0.1173 132155  0.1173 132162 0.1173
Ps 18.6618  0.2500 18.4720  0.2282 18.4720  0.1571 18.4876  0.1615 185022  0.1591 185022  0.1591 185021  0.1591
p7 10.3969  0.1455 10.4638  0.1685 10.4638  0.1159 10.4885 0.1184 104776  0.1177 104776 0.1177 104770 01177

No Censoring 70 % Censoring Level
Observed Prices Exculdign Cen. Obs. Cell Mean Cox & Wohlgenant Simple Regression EM Algorithm MCMC Algorithm

Pi Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err. Mean Std. Err.

(Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean (Pesos/Kg) of Mean
P1 46.4608  0.3650 452598  0.6193 452598  0.1938 453959  0.2255 453696  0.2156 453696  0.2156 453730 0.2156
P2 237807  0.4708 23.4655 0.8953 234655 0.279%4 239321 0.3333 236935 0.3108 236935 03108 23.6877 03107
P3 18.7620 0.1311 185115 0.1558 185115  0.0487 185492  0.0568 18.4960  0.0547 184960  0.0547 18.4973  0.0547
P4 155820  0.5964 14.6550  0.9537 14.6550  0.2977 145172 0.3249 145298  0.3079 145298  0.3079 145285  0.3079
Ps 13.3280 0.1362 13.6131  0.2372 13.6131  0.0740 13.6248  0.0844 13.6234  0.0834 13.6234  0.0834 13.6229  0.0834
Ps 18.6618  0.2500 19.0796  0.6189 19.0796  0.1937 18.8062 0.2198 19.0082 0.2119 19.0082 0.2119 19.0097 0.2119
p7 10.3969  0.1455 10.2498  0.2817 10.2498  0.0879 10.1045  0.0972 10.2020  0.0926 10.2020  0.0926 10.2015  0.0926
Note: pi, i=1, ..., 7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables, 6 = legumes, and 7 = fruits. Average exchange rate in 2008 is
US $1 = 11.14 Pesos (Banco de México).
Source: ENIGH 2008 Database, computed by author.
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Table 3. Root Mean Square Error (RMSE) and Root Mean Square Percent Error
(RMSPE) for Imputed Prices

30% Censoring
CM Ccw SR EM MCMC

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE
p1 159498 05609 15.0249 05277 15.1083 0.5325 15.1083 0.5325 151139 0.5328
p2 236157 0.9100 224628 0.8696 22.4946 0.8713 224946 0.8713 225092 0.8724
Ps3 46705 05376 44238 05624 44348 05711 44348 05711 44406 0.5716
P4 221532 0.8809 21.8287 0.9245 22.0666 09111 22.0666 009111 22.0679 0.9113
Ps 6.0702 0.5903 57229 0.5693 58029 0.5502 5.8029 05502 5.8044 0.5520
Ps 94277 0.7907 92105 0.6643 9.2567 0.6841 9.2567 0.6841 9.2574 0.6825
p7 6.2683 0.7147 6.2678 0.7862 6.2593 0.7504 6.2593 0.7504 6.2635 0.7500
Overall 385966 19215 37.1921 1.8945 37.4087 1.8796 37.4087 1.8796 37.4223 1.8802

70% Censoring
CM cw SR EM MCMC

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE
p1 154196 05142 15.2015 05040 15.1526 0.5082 15.1525 0.5082 151572 0.5083
p2 22.6790 0.9412 21.8412 0.9802 21.7891 09366 21.7891 0.9366 21.7817 0.9365
ps3 9.1615 0.6595 89020 0.6733 89764 0.6827 89764 0.6827 8.9763 0.6818
P4 29.3571 0.9543 29.4960 1.0555 29.5222 1.0570 29.5222 1.0570 29.5311 1.0588
Ps 6.5642 0.5079 6.3488 0.5125 6.4298 0.5079 6.4298 05079 6.4293 05077
Ps 9.8939 0.8132 10.2613 0.6832 10.3302 0.7581 10.3301 0.7581 10.3298 0.7570
p7 9.2151 0.7564 9.1513 0.7763 9.1047 0.7508 9.1047 0.7508 9.1035 0.7508

Overall ~ 43.8608 19968 43.4365 2.0284 43.4447 2.0285 43.4447 2.0285 43.4483 2.0287

The ECO approach (i.e., the columns titled Excluding Cen. Obs.) reports the mean and
standard error, for 2,500 households when there is a 30% censoring level and for 1,072
households when there is a 70% censoring level. Since this strategy discards incompletely
recorded units and focuses only on the completely recorded units, this strategy is sometimes
referred to as a complete case analysis (Rubin 1996, p. 474; & Little and Rubin 2002, p. 41).
However, excluding observations “can lead to serious biases... and it is not very efficient,
especially when drawing inferences for subpopulations” (Little and Rubin 2002, p. 19). The
last five approaches first impute the censored observations and then report the mean and
standard error of the means for the imputed datasets.

At the 30% censoring level, these approaches result in mean values with small variability
but standard errors with relatively larger variability. For instance, compared to the dataset
with no missing price observations (i.e., the No Censoring column), the mean prices from the
different methods ranged from being 1.02% lower (i.e., the legumes mean price estimate
from the ECO approach or from the CM method) to 3.25% higher (i.e., the tubers mean price
estimate from the SR method). On the other hand, the standard errors of the means ranged
from being 37.16% lower (i.e., the standard error estimate of the legumes mean price from
the CM method) to 34.94% higher (i.e., the standard error estimate of the eggs mean price
from the ECO approach).

At the 70% censoring level, variability increases in both means and standard error of
means. Compared to the dataset with no missing price observations, the mean prices from the
different approaches ranges from being 6.83% lower (i.e., the tubers mean price estimate
from CW method) to 2.24% higher (i.e., the legumes mean price estimate from the ECO
approach or from the CM method). In addition, the variability in the standard errors of the
means is larger at a 70% censoring level than at a 30% censoring level. For instance, the
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estimate of the standard error of the eggs mean price obtained from CM method is 62.84%
lower than the same estimate obtained from the dataset with no missing price observations.
Likewise, the standard error of the legumes mean price obtained from ECO approach is
147.59% higher than the same standard error obtained from the dataset with no missing
observations.

A simple comparison of the mean prices obtained from the dataset with no censored
prices with the mean prices obtained from the various imputation approaches is inappropriate
because positive errors would cancel out with negative errors. Hence, to appropriately
evaluate which method generated the best imputations, the root mean square error (RMSE)
and the root mean square percent error (RMSPE) were computed.® Table 3 reveals that at the
30% censoring level, the EM and the SR methods generated the best estimates (RMSPE =
1.8696) while the worst estimates were generated by the CM method (RMSPE = 1.9215). At
the 70% censoring level, the CM method (RMSPE = 1.9968) generated the best estimates
while the worst estimates were generated by the MCMC method (RMSPE = 2.0287). Notice
that the imputation method that provides the best estimates for each price varies across prices
when considering the RMSPE disaggregated as opposed to considering the overall measure.

Table 4 reports the parameter estimates from full AIDS models, equations (4) and (5),
estimated under various approaches to price imputation for a 30% censoring level. From a
total of 41 parameters estimated, at least 32 are statistically different from zero at the 0.05
significance level for each approach. Compared to the parameter estimates obtained from the
dataset with no censored prices, the parameter estimates from the different approaches are on
average 31% higher or lower. The difference ranged from being 615.72% lower (i.e., 7.,
from the CW method) to 172.65% higher (i.e., 55 from the ECO approach). These
differences are remarkably higher under a 70% censoring level.*

Tables 5, 7, and 9 report estimates for the Marshallian own-price elasticities, the Hicksian
own-price elasticities, and the expenditure elasticities respectively. Differences are also
observed between the different censoring approaches and the elasticity estimates obtained
from the dataset with no censored observations. Compared to the no-cenrored Marshallian
own-price elasticity estimates, the elasticity estimates from the different approaches are on
average 6.32% higher or lower (Table 5). Compared to the no-censored Hicksian own-price
elasticity estimates, the Hicksian elasticity estimates from the different approaches are on
average 7.25% higher or lower (Table 7). Similarly, compared to the no-censored
expenditure elasticity estimates, the elasticity estimates from the different approaches are on
average 3.03% higher or lower (Table 9). These elasticity estimates range from 48.22%
lower (é,,, EM method, and 70% censoring level) to 10.12% higher (é.,, ECO approach,
and 70% censoring level), from 50.54% lower (é5,, EM method, and 70% censoring level) to
10.57% higher (é&,, ECO approach, and 70% censoring level), and from 10.21% higher (&,
CM method, and 70% censoring level) to 12% higher (é,, CM method, and 70% censoring
level) respectively. Consistent with the results from the AIDS parameter estimates, the ECO
approach provided the closest estimates to the no-censored elasticity estimates.

Interestingly, even when there was small variability in the imputed mean prices (Table 2),
considerable larger variability was found in the ultimately desired elasticity measures (Tables
5, 7, and 9). This suggests that setting aside a portion of the dataset with non-missing
observations for validation purposes may provide insight into choosing the most appropriate
imputation method and avoiding or reducing selection bias.
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Table 4. AIDS Parameter Estimates Under 0% and 30% Censoring Levels

30% Censoring
No Censoring Excluding Cen. Obs. Cell Mean Coxand Wohlgenant EM Algorithm MCMC Algorithm
Approx Approx Approx Approx Approx Approx
Par. Estimate Std Err_Estimate Std Err_Estimate Std Err_Estimate Std Err Estimate Std Err_Estimate Std Err

Y11 0.0269 ***  0.0062 0.0283 ***  0.0075 0.0324 ***  0.0074 0.0267 ***  0.0071 0.0303 ***  0.0073 0.0305 ***  0.0073
Y12 0.0203 ***  0.0031 0.0203 ***  0.0037 0.0146 ***  0.0038 0.0219 ***  0.0036 0.0228 ***  0.0037 0.0227 ***  0.0037
viz  -0.0261 *** 00021 -0.0292 *** 0.0025 -0.0292 *** (0.0025 -0.0298 *** 0.0024 -0.0310 *** 0.0024 -0.0310 *** 0.0024
via  -0.0037 *** 00012 -0.0047 *** 0.0014 -0.0046 *** 0.0016 -0.0059 *** 0.0016 -0.0064 *** 0.0016 -0.0064 *** 0.0016

vis  -0.0059 **  0.0032 -0.0012 0.0039  -0.0001 0.0038 0.0016 0.0037 0.0003 0.0038 0.0003 0.0038
vie  -0.0148 *** 00022 -0.0172 *** 0.0027 -0.0169 *** 0.0026 -0.0162 *** 0.0026 -0.0182 *** 0.0026  -0.0182 ***  0.0026
Y17 0.0033 * 0.0025 0.0038 * 0.0030 0.0038 0.0030 0.0016 0.0030 0.0022 0.0030 0.0022 0.0030

v22  -0.0199 *** 00029 -0.0238 *** 0.0034 -0.0160 *** 0.0038 -0.0214 *** 0.0035 -0.0225 *** 0.0035 -0.0224 ***  0.0035
v23  -0.0037 *** 0.0012 -0.0034 *** 0.0014 -0.0041 *** 0.0014 -0.0046 *** 0.0013  -0.0041 *** 0.0013  -0.0041 ***  0.0013
Y24  -0.0019 *** 0.0007 -0.0017 *** 0.0008  -0.0003 0.0009  -0.0013 * 0.0009  -0.0016 **  0.0009 -0.0017 **  0.0009
Y25 0.0082 ***  0.0019 0.0104 ***  0.0022 0.0085 ***  0.0023 0.0091 ***  0.0022 0.0089 ***  0.0022 0.0089 ***  0.0022
v26  -0.0031 *** 0.0012 -0.0020 * 0.0015 -0.0026 **  0.0014  -0.0030 *** 0.0014 -0.0029 *** 0.0014 -0.0030 *** 0.0014
Y27 0.0002 0.0015 0.0003 0.0017 0.0000 0.0018  -0.0008 0.0018  -0.0005 0.0018  -0.0005 0.0018
Y33 0.0264 ***  0.0023 0.0248 ***  0.0027 0.0260 ***  0.0026 0.0278 ***  0.0026 0.0272 ***  0.0026 0.0272 ***  0.0026
Y34 0.0039 ***  0.0009 0.0042 ***  0.0011 0.0024 ***  0.0011 0.0028 ***  0.0011 0.0028 ***  0.0011 0.0029 ***  0.0011
Y35 0.0010 0.0019 0.0017 0.0022 0.0027 0.0022 0.0023 0.0022 0.0027 0.0022 0.0027 0.0022
Y36 0.0027 **  0.0015 0.0045 ***  0.0018 0.0047 *** 0.0017 0.0037 ***  0.0017 0.0047 ***  0.0017 0.0047 ***  0.0017
vs7  -0.0042 *** 0.0014 -0.0026 * 0.0016  -0.0027 **  0.0016  -0.0022 * 0.0016  -0.0024 * 0.0016  -0.0024 * 0.0016
Ya4 0.0072 *** 0.0007 0.0067 ***  0.0008 0.0087 ***  0.0009 0.0106 ***  0.0009 0.0101 ***  0.0009 0.0101 ***  0.0009
vss  -0.0032 *** 00011 -0.0025 *** 0.0012 -0.0041 *** 0.0013 -0.0040 *** 0.0013 -0.0036 *** 0.0013 -0.0037 *** 0.0013
vas  -0.0012 * 0.0008  -0.0008 0.0010  -0.0013 0.0010  -0.0019 **  0.0010  -0.0008 0.0010  -0.0008 0.0010
va7  -0.0010 * 0.0008  -0.0011 0.0009  -0.0008 0.0010  -0.0004 0.0010  -0.0005 0.0010  -0.0005 0.0010
¥s5 0.0181 ***  0.0033 0.0129 ***  0.0039 0.0140 ***  0.0039 0.0122 ***  0.0039 0.0129 ***  0.0039 0.0129 ***  0.0039
vs¢  -0.0058 *** 00018 -0.0078 *** 0.0021 -0.0076 *** 0.0021 -0.0074 *** 0.0020  -0.0070 *** 0.0021  -0.0069 ***  0.0021
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Table 4. Continued

30% Censoring
No Censoring Excluding Cen. Obs. Cell Mean Coxand Wohlgenant EM Algorithm MCMC Algorithm
Approx Approx Approx Approx Approx Approx
Par. Estimate Std Err  Estimate Std Err  Estimate Std Err  Estimate Std Err  Estimate Std Err Estimate Std Err

vs7  -0.0125 *** 0.0018 -0.0134 *** 0.0022 -0.0134 *** 0.0022 -0.0138 *** 0.0022 -0.0142 *** 0.0022 -0.0141 *** 0.0022
Y66 0.0250 ***  0.0019 0.0267 ***  0.0023 0.0270 ***  0.0022 0.0276 ***  0.0022 0.0268 ***  0.0022 0.0268 ***  0.0022
ver  -0.0028 *** 0.0013 -0.0034 *** 0.0016 -0.0033 *** 0.0016 -0.0029 **  0.0016 -0.0026 **  0.0016 -0.0026 **  0.0016
Y77 0.0170 ***  0.0020 0.0163 ***  0.0023 0.0163 ***  0.0024 0.0185 ***  0.0024 0.0179 ***  0.0024 0.0179 ***  0.0024
oy 0.2673 ***  0.0097 0.2689 ***  0.0116 0.2754 ***  0.0109 0.2676 ***  0.0104 0.2662 ***  0.0107 0.2661 ***  0.0107
a 0.1377 ***  0.0064 0.1372 ***  0.0076 0.1247 ***  0.0075 0.1326 ***  0.0071 0.1292 ***  0.0072 0.1292 ***  0.0072
a3 0.1506 ***  0.0033 0.1545 ***  0.0040 0.1536 ***  0.0036 0.1545 ***  0.0035 0.1557 ***  0.0035 0.1557 ***  0.0036
04 0.0641 ***  0.0019 0.0648 ***  0.0023 0.0687 ***  0.0024 0.0701 ***  0.0024 0.0714 ***  0.0024 0.0714 ***  0.0024
as 0.1896 ***  0.0055 0.1823 ***  0.0065 0.1835 ***  0.0061 0.1807 ***  0.0059 0.1814 ***  0.0060 0.1815 ***  0.0060
s 0.1301 ***  0.0035 0.1345 ***  0.0043 0.1321 *** 0.0039 0.1307 ***  0.0038 0.1333 ***  0.0038 0.1333 ***  0.0038
a7 0.0606 ***  0.0044 0.0579 ***  0.0051 0.0620 ***  0.0050 0.0638 ***  0.0049 0.0628 ***  0.0050 0.0628 ***  0.0050
B1 0.0447 ***  0.0046 0.0452 ***  0.0055 0.0324 *** 0.0048 0.0406 ***  0.0047 0.0395 ***  0.0047 0.0394 ***  0.0047
B2 0.0312 ***  0.0037 0.0312 ***  0.0044 0.0523 ***  0.0042 0.0386 ***  0.0040 0.0408 ***  0.0040 0.0409 ***  0.0040
B3 -0.0345 *** 0.0015 -0.0341 *** 0.0018 -0.0352 *** 0.0015 -0.0349 *** 0.0015 -0.0349 *** 0.0015 -0.0350 ***  0.0015
Ba -0.0133 *** 0.0009 -0.0133 *** 00011 -0.0141 *** 0.0010 -0.0132 *** 0.0010  -0.0137 *** 0.0010  -0.0137 ***  0.0010
Bs -0.0133 *** 0.0026  -0.0133 *** 0.0031 -0.0173 *** 0.0026  -0.0160 *** 0.0026  -0.0162 *** 0.0026  -0.0162 ***  0.0026
Be -0.0335 *** 0.0016 -0.0350 *** 00020 -0.0348 *** 0.0016 -0.0339 *** 0.0016  -0.0339 *** 0.0016 -0.0339 *** 0.0016

R-sqr R-sqr R-sqr R-sqr R-sqr R-sqr
wy 0.0384 0.0416 0.0221 0.0335 0.0339 0.0339
Wy 0.0381 0.0451 0.0499 0.0416 0.0446 0.0445
W3 0.1780 0.1822 0.1636 0.1837 0.1870 0.1871
Wy 0.0872 0.0902 0.0760 0.0785 0.0778 0.0781
Ws 0.0265 0.0234 0.0245 0.0259 0.0245 0.0247
Ws 0.1430 0.1516 0.1489 0.1438 0.1434 0.1435

Note: Significance levels of 0.05, 0.10, and 0.20 are indicated by triple asterisks (***), double asterisks (**), and an asterisk (*) respectively.
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Tables 6, 8, and 10 reveals that at the 30% censoring level, the CM method generated the best
estimates for the Marshallian (RMSPE = 396.0614) and the Hicksian price elasticities (RMSPE =
1767.3065) while the worst estimates were generated by the CW method (RMSPE = 971.9238)
and the MCMC method (RMSPE = 2236.7423) respectively. In case of the expenditure elastic
estimates (Table 10), the best estimates were generated by the SR and EM methods (31.6429)
while the worst estimates were generated by the CM method (RMSPE = 39.3499).

The methods that provided the best estimates for the elasticities at the 30% censoring level are
not necessarily the same at the 70% censoring level. In the latter, the CM method (RMSPE =
994.2068) generated the best estimates for the Marshallian price elasticities while the worst
estimates were generated by the MCMC method (RMSPE = 2212.905). In the case of the Hicksian
price elasticities at 70% censoring level, the CM method generated the best estimates (RMSPE =
1564.8632) while the EM method generated the worst estimates (RMSPE = 4890.0503). Last, the
CM and CW methods provided the best estimates (RMSPE = 68.8568) for the expenditure
elasticities while the MCMC method provided the worst estimates (RMSPE = 76.2207).
Consistent with the results for the price analysis (Table 3), the results for the elasticity analysis
(Tables 6, 8, and 10) were mixed when analyzing specific elasticity estimates (as opposed to
overall estimates) at either 30% censoring level or 70% censoring level.

Interestingly, at the 30% censoring level, the EM method generated the best mean price
estimates (RMSPE = 1.8796, Table 3), but it was the CM method which generated the best
elasticity estimates overall (RMSPE = 1877.5699). This suggests that the imputation method that
would be chosen should be selected based on an analysis from the ultimately desired measures.
On the other hand, at the 70% censoring level, the CM method generated the best mean price
estimates (RMSPE = 1.9968, Table 3) as well as the best overall elasticity estimates (RMSPE =
1852.7305). This suggests that under large level of censoring, simple techniques such as the CM
method may perform satisfactory or even provide better estimates than sophisticated techniques
such as the EM and MCMC methods.

Table 5. Marshallian Own-Price Elasticity Estimates Under 0%, 30%, and 70% Censoring
Levels
No 30% Censoring 70% Censoring

Censoring ECO CM CW EM MCMC ECO CM CW EM MCMC
e;; -09300 -0.9267 -0.9120 -0.9288 -0.9189 -0.9184 -0.9412 -0.9035 -0.9472 -0.8995 -0.8999
e -11009 -1.1216 -1.0772 -1.1050 -1.1102 -1.1097 -1.0532 -0.9946 -1.0067 -1.0437 -1.0444
es3 -0.6560 -0.6783 -0.6487 -0.6292 -0.6360 -0.6353 -0.5835 -0.4990 -0.4441 -0.4615 -0.4624
ess -0.8196 -0.8312 -0.7960 -0.7527 -0.7661 -0.7648 -0.7816 -0.7479 -0.4537 -0.4244 -0.4240
ess  -0.8924 -0.9227 -0.9138 -0.9256 -0.9211 -0.9211 -0.8313 -0.8230 -0.8574 -0.8379 -0.8377
ees -0.6477 -0.6289 -0.6098 -0.6043 -0.6172 -0.6170 -0.7132 -0.6976 -0.5750 -0.5815 -0.5810
e;7  -0.7998 -0.8063 -0.8089 -0.7862 -0.7917 -0.7920 -0.7797 -0.7851 -0.6921 -0.7873 -0.7873
Note: e, i =j =1, 2, ...,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables, 6 =
legumes, and 7 = fruits.
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Table 6. Root Mean Square Error (RMSE) and Root Mean Square Percent Error (RMSPE)
for After-Imputation Marshallian Own-Price Elasticity Estimates

30% Censoring
CM CcwW EM MCMC
RMSE  RMSPE RMSE  RMSPE RMSE  RMSPE RMSE  RMSPE
€11 01113  0.3157 00736 01418 0.0911 0.2216 0.0928 0.2293
€22 0.2086  0.1450 02392  0.1678 0.2663 0.1866 0.2679 0.1865
€33 02644 83271 02972 13.0268 0.2854 11.6893 0.2869 11.8010
€44 0.6481 55709 0.7454 48520 0.8006 5.6926 0.8078 5.7448
€s5 02019 31883 01551 23391 0.1671 2.6428 0.1664 2.6433
€66 0.8954  20.7972 10144  25.9407 0.9566 20.6203 0.9566 20.63%4
77 03860  8.4851 04097 89000 0.4028 7.6417 0.4018 7.2458
Allejj, i=] 12399  24.8028 1.3884  30.8365 1.3809 25.6848 1.3854 25.6482
Alle,i,j=1,2,..,7 2670056 396.0614 267.0065 9719238 267.0070 6942498  267.0070  683.6587
70% Censoring
CM CcwW EM MCMC
RMSE  RMSPE RMSE  RMSPE RMSE ~ RMSPE RMSE  RMSPE
€11 01070  0.3619 01070  0.3619 0.1138 0.4675 0.1124 0.4585
€22 03186  0.2096 03186  0.2096 0.2513 0.1339 0.2447 0.1328
€33 0.7800 215138 0.7800 215138 0.8629 24.6745 0.8663 25.9810
€44 09381  9.8106 09381  9.8106 2.5436 315370 2.5802 321871
€s5 05910 127837 05910 127837 0.4668 10.1846 0.4746 10.4610
€66 0.4019  38.0428 04019  38.0428 0.5798 26.6884 0.5920 29.7259
e77 12067  42.6318 12067  42.6318 1.1940 38.0270 1.2246 37.1436
Allejj, i=] 1.8890  63.1460 1.8890  63.1460 3.0447 62.1747 3.0913 63.9058
Alle;,i,j=1,2,..,7 2670114 9942068 267.0114 9942068 267.0317 2167.6406 267.0326 22129051

Note: g, i =j=1, 2, ...,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables,
6 = legumes, and 7 = fruits.

Table 7. Hicksian Own-Price Elasticity Estimates Under 0%, 30%, and 70% Censoring

Levels
No 30% Censoring 70% Censoring

Censoring ECO CM Ccw EM MCMC ECO CM Cw EM MCMC
g7 -05254 -05196 -05257 -0.5335 -0.5240 -05235 -0.5425 -0.5478 -05717 -0.5261 -0.5265
e%, -0.8705 -0.8930 -0.8134 -0.8602 -0.8627 -0.8621 -0.8186 -0.6961 -0.7331 -0.7702 -0.7709
e%; -0.6136 -0.6351 -0.6096 -0.5891 -0.5963 -0.5956 -0.5426 -0.4617 -0.4045 -0.4228 -0.4236
g% -07932 -0.8049 -0.7676 -0.7232 -0.7367 -0.7354 -0.7548 -0.7183 -0.4230 -0.3924 -0.3919
%5 07371 -07684 -0.7676 -0.7766 -0.7732 -0.7733 -0.6741 -0.6756 -0.7078 -0.6891 -0.6889
g% -0.6103 -05918 -05753 -0.5683 -0.5811 -0.5809 -0.6748 -0.6651 -0.5424 -0.5477 -0.5472
e%; -06964 -0.7028 -0.7072 -0.6810 -0.6873 -0.6875 -0.6764 -0.6861 -0.5938 -0.6876 -0.6876
Note: ef;, i=j=1,2,...,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables,

ij

6 = legumes, and 7 = fruits.
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Table 8. Root Mean Square Error (RMSE) and Root Mean Square Percent Error (RMSPE)
for After-Imputation Hicksian Own-Price Elasticity Estimates

30% Censoring
CM CcwW EM MCMC

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE
e 01074 04619 00839 02068 0.0935 03238 00948  0.3361
€% 02699 02670 02767 02540 03000 02706 03016  0.2706
€% 02547 372035 02883 465190 02763 39.2094 02777 40.2197
%44 06437 35044 07419 36957 07969 39035 08041  3.9611
e%s 02031 26494 01591 19659 01700 22310 01693 22282
€% 08900 134721 10104 211317 09523 349030 09522 251823
%7 03783 3830000 04021 752798  0.3948 251.0664  0.3939 258.2006
AlleSj,i=] 12410 385.0638 13874 910782 13791 2565352  1.3836 262.5646
Alle%;,i,j=1,2,..,7 267.0100 1767.3065 267.0103 1884.7531 267.0117 2204.6346 267.0118 2236.7423

70% Censoring
CM CcwW EM MCMC

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE
e 01074 04619 00839 02068 0.0935 03238 00948  0.3361
e 02699 02670 02767 02540 03000 02706 03016  0.2706
€3 02547 372035 02883 465190 02763 39.2094 02777 40.2197
%4 06437 35044 07419 36957 07969 39035 08041 39611
e%s 02031 26494 01591 19659 01700 22310 01693 22282
€% 0.8900 134721 10104 211317 09523 349030 09522 25.1823
%7 0.3783 3830000 04021 752798  0.3948 251.0664  0.3939 258.2006
All e, i=j 12410 385.0638 13874 910782 13791 2565352  1.3836 262.5646

All ecij,i, i=12,...,7 267.0100 1767.3065 267.0103 1884.7531 267.0117 2204.6346 267.0118 2236.7423
Note: efj, i =j =1, 2, ...,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables, 6 =
legumes, and 7 = fruits.

Table 9. Expenditure Elasticity Estimates Under 0%, 30%, and 70% Censoring Levels
No 30% Censoring 70% Censoring

Censoring  ECO CM CW EM MCMC ECO CM CW EM  MCMC
ep 11241 11249 10914 11144 11111 11110 11224 10548 10932 10890 1.0890
e, 11568 11583 12472 11872 11974 11977 11546 12956 1.2403 12428 1.2428
e3 05517 05591 05261 05347 05323 05322 05364 05280 05433 05380 05380
eq 06646 06632 06688 06911 06825 06823 0.6693 0.6699 06994 0.7091 0.7092
es 09214 09207 08941 09031 09015 009013 09186 0.8926 08935 0.8972 0.8972
eg 05273 05146 04985 05156 05156 05155 05631 04735 04798 04884 0.4885
e; 12211 12285 11960 12165 12133 12137 12032 11814 11755 11767 11766
Note: e, i = 1, 2, ...,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables, 6 =
legumes, and 7 = fruits.
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Table 10. Root Mean Square Error (RMSE) and Root Mean Square Percent Error
(RMSPE) for After-Imputation Expenditure Elasticity Estimates
30% Censoring

CM CW EM MCMC

RMSE RMSPE RMSE RMSPE RMSE RMSPE RMSE RMSPE
e 0.1283 0.0873 0.1111 0.0731 01082 0.0717 0.1086 0.0718
e, 0.8784 0.5167 0.4656 0.2852 05254 0.3203 0.5329 0.3225
es 0.3633  3.9599 0.3624 36817 03634 3.6695 0.3641 3.7370
€4 1.0277 32.5670 0.8455 314511 1.0237 27.9184 1.0262 28.5841
es 0.2886 15184 0.1988 10176 02239 11391 0.2235 1.1350
es 1.1353 21.6681 1.2125 153382 11935 14.3849 1.1930 14.5627
es 0.4210 0.2067 04118 0.2048 0.4154 0.2072 0.4154 0.2072
Alle;,i=1,2,...,7 18777 39.3499 16597 352016 1.7649 31.6429 1.7683 32.3191

70% Censoring
CM CW EM MCMC

RMSE RMSPE RMSE  RMSPE RMSE RMSPE RMSE RMSPE
e 0.1483 0.1018 CW 0.1018 0.1064 0.0700 0.1074 0.0707
e 27710 10150 0.148317562 1.0150 15162 0.6035 1.5337 0.6093
es 0.6588 19.2315 277101464 19.2315 0.6289 21.6351 0.6221 20.9504
€4 11759 19.5651 0.658753257 19.5651 1.1047 15.9901 1.1107 16.2046
es 0.3454 32614 1175925238 3.2614 0.2855 23004 0.2866 2.3024
es 0.6699 63.0620 0.345369372 63.0620 0.6878 70.9856 0.6851 71.4305
es 0.9989 0.3374 0.669907679 0.3374 0.9735 0.3114 09990 0.3117

Alle;,i=1,2,...,7 3.3291 68.8568 0.998908267 68.8568 2.3299 75.9505 2.3525 76.2207
Note: e, i = 1, 2, ...,7, where 1 = meat, 2 = dairy, 3 = eggs, 4 = tubers, 5 = vegetables, 6 =
legumes, and 7 = fruits.

4. Concluding Remarks

Several studies often use simple techniques to account for censored prices in models where
prices are independent variables. These simple techniques either omit the missing prices or use
price imputation approaches such as deductive imputation, cell mean imputation, hot-deck
imputation, cold-deck imputation, and regression imputation. This study compares and contrast
several imputation approaches under two levels of censoring by following a multiple imputation
methodology (e.g., analyzes the ultimately desired measures). The imputation approaches
analyzed are: excluding censoring observations (ECO), cell mean imputation (CM), Cox and
Wolhgenant’s (1986) first-order missing price procedure (CW), simple regression imputation
(SR), the EM algorithm, and the MCMC algorithm.

Differences in price variability before and after price imputation are quantified, the
performance of each method under different levels of missing data are evaluated, and elasticity
estimates for several important protein sources (meat, dairy, eggs, tubers, vegetables, legumes,
and fruits) in the Mexican diet are estimated under the various imputation procedures. These
elasticity estimates are relatively recent and contribute to a better understanding of the Mexican
demand for protein sources. In addition, these estimates can be used to analyze current and/or
future trends in protein consumption.
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The study’s findings reveal that even when there is small variability among the imputer’s
model estimates, there may be larger variability among the analyst’s model estimates. Therefore,
it is recommended that the imputation method that is selected is based on an analysis of the
ultimately desired measures. These measures may suffer from selection bias if an imputation
method is inappropriately chosen. In addition, evaluating the imputation methods using a simple
comparison of the mean prices or elasticities is inappropriate because calculating means cancels
out positive errors with negative errors; therefore, computing the RMSE and the RMSPE is
recommended. This is critical because the method that provides the best estimate is not necessarily
the same when evaluating the estimates using a simple comparison and when evaluating the
estimates using the RMSPE. Unfortunately, the RMSE and RMSPE cannot be computed for the
ECO approach and the ECO approach may also be unfeasible when the censoring occurs in each
price at different instances (i.e., the complete-case data may have few observations).

This study also found that the imputation method or approach that provides the best estimates
varies across the imputed variables (i.e., p;, i = 1, 2, ..., 7) and across the ultimately desired
measures (i.e., e, &, e, i, ] = 1, 2, ..., 7). Furthermore, results are sensitive to the censoring
levels. That is, the method that generates the best estimates at the 30% censoring level is not
necessarily the same method that generates the best estimate at the 70% censoring level. In
particular, at high levels of censoring, a simple method such as the CM may perform satisfactory
or even better than sophisticated methods.

Provided that the results are sensitive to the imputation approach chosen, it is recommended
that a portion of the dataset is set aside for validation purposes and that the imputation method that
would be chosen be selected based on an analysis from the ultimately desired measures (e.g.,
following a multiple imputation methodology).

Further research may be conducted with datasets where prices are not missing at random or
where prices are not censored at the same instances (e.g., with datasets that have many missing
data patterns). It should be noted that in this study the EM algorithm was observed to provide
similar results to the SR method because only one missing data pattern was considered. This is
because the EM algorithm uses maximum likelihood estimation. It was also observed that the SR
method performed similar to the CW method when a simple regression was estimated for each of
the means considered in the CW method. Finally, the estimates from the cell mean method may
improve if more cells are used in the analysis. The more specific the classes are, the more likely
the research is to obtain an estimate that is closer to the true value.
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Footnotes
! When there is item non-response on both the dependent variables (e.g., quantities) and
the independent variables (e.g., prices), researchers combine both of these techniques, first using
price imputation models and subsequently using models such as the censored nonlinear quadratic
almost ideal demand system (censored NQUAIDS), the censored QUAIS, Amemiya-Tobin
approach extensions to demand systems estimations, double-hurdle models, etc.
For example, using four strata and Mexico’s 31 states plus the Federal District produces
128 different values for the missing values. Using two strata and 32 states/locations produces 64
different values.
The initial estimates for the EM algorithm can be obtained from the non-censored
observations.
4 For a discussion of single versus multiple chains refer to Schafer (1997, pp. 137-138).
> In practice, each price usually has a different censoring level and a price could be
censored at a different time than another price. When this is the case, the dataset that only
contains the non-censored observations may have few observations. In addition, the dataset that
contains the censored observations may have many missing data patterns, but not all possible
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patterns may show up in the dataset. For example, with i variables, py, p., ..., pi, up to 2' groups of
observations (possible missing patterns) can be formed.

®  The CW method computed the mean for each Mexican state and the Federal District.

! The parameter estimates from the simple regression imputation approach (i.e., method 3)
at a 70% censoring level and the parameter estimates from the first-order missing price procedure
of Cox and Wohlgenant (1986) under both the 30% censoring level and the 70% censoring level
are available upon request.

8 The MLE of the means and variance-covariance matrix from the last iteration of the EM
or MCMC algorithms under both the 30% censoring level and the 70% censoring level are
available upon request.

° The root mean square imputation error and the root mean square percent error for price p;

; — 1 \H«l (o imputed actual)?
are defined as RMSE = Gop 2h=1(Pin — Dl and

1 Hal pii;nputed_pgzhctual ) )
RMSPE = (H—*l)thl B respectively, where [ equals 0.30 or 0.70 depending
on the censoring level (see Pindyck and Rubinfeld 1997, pp. 384-386). Similar definitions are
used for the Marshallian and Hicksian price elasticities as well as the expenditure elasticities.

10 The AIDS parameter estimates under the various approaches to price imputation for a

70% censoring level are available upon request.
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