

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

Life History of the Sugar-Beet Wireworm In Southern California

By M. W. Srone, assistant entomologish, Division of Truck Crop and Garden Insect Investigations, Bureau of Entomology and Plant Quarantine ${ }^{18}$

CONTENTS

	Page		Page
Introduction.		Lire-history studies..	14
Distribution...	.	Temperature retords.	4
Muture of injurs	3	The ens..	is
	s	The larva	29
Eflect of crops on ulsjursion.	9	The pumat...	15
Description of the stages	4	The adult.	51
Dese aunt	10	Sasorral contory.	52
The egy.	11	Sumunary..	8
The harat.	11	Literature cited.	Si_{1}
Elaterids associated with the sumar-beet wireworm	$\begin{aligned} & 11 \\ & 18 \end{aligned}$		

INTRODLCTION

The sugar-beet wireworm (Limonius californicus (Mann.)) ${ }^{2}$ is the most important soil-inhabiting insect pest of sugar beets and lima beans on the Pacific coast. Its destructiveness is also well known to growers of potatocs, vegetables, alfalfa, and bulbs. Because of the variety of crops attacked and the nature of the injury the losses caused by this species are difficult of estimation. Injory to sprouting sceds usually results in large losses through a reduction in stand, or involves the added expense of replanting. Growing plants may be killed or badly injured and their growth stunted. Often potatoes or root erops are so badly damaged that they are rendered unmarketable or require grading before being fit for marketing. In 1919, in Venturn County. Calif., alone, out of over 90,000 acres planted to lima beans

[^0]over 20,000 acres were estimated by the agricultural commissioner to have been damaged to the extent of from 10 to 100 percent, the loss amounting to $\$ 500,000$. In Los Angeles, Orange, and Santa Barbara Counties the damage annually ranges from 10 to 50 percent.

In 1914 Graf (4), ${ }^{3}$ of the Bureau of Entomology, published a preliminary report covering his investigations of the sugar-beet wireworm in southern California during the period 1909-12. The project was resumed by the Bureau in 1924, the investigations at this time being concerned primarily with the use of fumigants and baits in an effort to obtain a practical control. In that year Camphell (1) published a report on the use of calcium cyande as a soil fumigant for wireworms, and in $1926(2)$ his paper on concentrating wireworms by baits before fumigating the soil with calcium cyanide. This methed of control with calcium cyanide has been found the most practical so far devised and is being widely used for controlling wireworms in the truck-cropgrowing areas of California.

Without a thorough knowledge of the life history of this species, however, no definite statement could be made regarding the length of time after treatment that protection was afforded. In addition. the high cost of production together with the drop in the prices of agricultural products necessitated further reduction in the cost of control. For these reasons the Alhambra haboratory of the Burean of Entomology and Plant Quarantine of the Vnited States Department of Agricuiturt undertook a study of the life history under southern Califonia conditions, of the sugar-bect wireworm, in an attempt to reveal any unusun foatures in its life history that might be taken advantage of in combating this pest at a lower cost. These studies were, of necessity, performed principally in the laboratory or in outdwor cages, supplemented by such ohservations on the developmental stages in the field as were possible in view of the habita of the someies under consideration. A report of the results of these invertigations from the beginning of the studies in 1929 until the close of the season of 1934-35 as presented in this bulietin.

DISTRIBLTTION

According to Van Dreke (o) Limonizs californiens is distributed throughont the irrigated areas of the Pacife Coast States. In Coliformia it is especially abundant in Los Angeles. Ventura. Orange. San Bemardino, Riverside, Santa Barbama, San Diego, and Sacramento Counties. Graf (f) reports that the insect also oceurs in Invo, Monterey. Alameda, Marin, Eldorado, and Lakr (comities. Additional recorels obtained from specimens in the collection of the Califormia Aeademv of Scienees at San Franciseo include Modoc. San Jonouin, Mentocino. C'ontra Costa. Sin Mateo. Sapa. Sunta ('ruz. San Luis Obispo, Tulare, and Colaveras Counties (for. 1).

The subspecies occidentalis Cand. is more prevalent in the imland sections of Californin and forther to the north. Specimens in Van Dyke's collection have the following locality hobels: Los Angeles. Palm Springs, Trjon Canyon, and Paso Robles: and there are also some from Sonoma, Placer. Trinity, and Shasta C'ounties.

[^1]No extensive scouting to determine the complete distribution was possible, so the actual infested area may comprise many counties other than those mentioned above.

NATURE OF INJURY

The injury to most crops by Limonius californicus is from attacks of the larvae on the germinating seed soon after it is planted (fig. 2),

Figure 1.-Distribution of the sugar-beet wireworm in California. The counties from which the insect has been reported are shaded.
or to the young plant shortly after the seed has sprotited (fig. 3). The larvac may eat the entire contents of the seed, learing only the empty husks, or destroy only that portion containing the germ before moving on to another sced. Observations have shown that injury to seed is as necially severe where germination has been retarded by unfavorable soil conditions. The stems of growing plants are burrowed into below the surface, leaving only fragments of the stem to support the top

 Witron...
(fig. 4). Occasionally plants that are well rooted will recorer from a light attack. but in most cases the plant is killed outright. While lighter infestations are characterized by a fow missing phants here and there over the fied, it is common in cases of severe infestation to find spots ranging in size from a few square feet to an acre or more with all plants killed (fig. 5).

Potatoes are damaged mainly in two ways. (1) The planted seed pieces are burrowed into and injured, sometimes to an extent that necessitates replanting: and (2) feeding punctures, or "stings." in the mature tuber cause them to be sorted into a lower grade. or classified as culls (fig. 6i. Damare to sugar beets is to the young plants. which may be killed outright (fig. 7) or the taproot cut off so that an inferior beet develops (fig. 8). Injury to bulbs begins as soon as they are planted. and ofter is severe chough to precent proper growth. The larvac also feed on lima bems and on the stems and ronts of lettues, cauliflower, tomato, com, alfilfa, wheat and mons. killing or stunting the plants.

 sugar-beec wireworm.

In sonthern Cialifornia, injury to crops mave begin mory in February and continue throughout the spring and hate into. June. Where irvigation is practied, along the rood coastal areas, sorere injury may be experted wen throughout the summer. In mirrigated districts high surface temperatures ateompanied by the drying ont of the topsoil canse the larvar to deseren to lower depths. where apparenty- there
 migrate toward the surfacr to resume ferding. Damage wathy ceases about the middle of (ortober, is then snil temperatarea have droped sulficiontly to canse inactarity.

This speries serems to show a propernee for and is wataly more
 acidity or alkininity of the soil dow not appear to be a bactor in the
 that the rate of hatehing and the activity of mowly hatebed larvat were not rotareled in the least in soik with a hadrogerimion comerotemtion as

Figere s. -lima bean field (i) and stagar-beet field 13 , howing large areas where the plants have bean destryg dy the feding of the wgar-beet wireworm.

Figure G.-Feeding punctures of the sugar-bect wireworm on a potato.

Figcre $\bar{t} .-$ Young sugar-beet plants killed by the severing of the taproot by the vigar-hrer wireworm.
as rapidly as those confined in neutral soils. Field experiments in which sulfur (3) was used in quantitics ranging from 300 to 10,000 pounds per acre proved effective in lowering the hydrogen-ion concentration of the soil but failed to reduce the larval population and the damage to the planted potatocs. McDougall ($6, p .716$), in a survey of wireworm-infested fields in Queensland, found that larvae of Lacon variabilis Cand. inhabited soil ranging from pH 3.9 to pH 5.8

Figere 8.-Typical sugar-beet wireworm injury to young bects (Graf).
and that parts of any field inhabited by this species were usually more acid than the remainder of the field.

Dissemination

Females as well as males are strong, rigorous fliers, and arce especially active on warm, elear days. The maximum distance which individan beetles can fly is largely determined by the temperature, the wind velocity, and whether or not the field of flight is covered by vegetation. Marked females, which had been liberated on a warin day in a fallowed field near El Monte, flew toward a field of mustard and wers recovered there a few minutes later about 100 yards from the point os siberation. Adults normally fly with the wind, but they can fly with little diffi-
culty against a light brecze. During strong winds, such as prevail alonig the coast late in the afternoon, adults cense flying and crawl to the base of plants or under ciods for protection.

Ficld and oriposition studies show that normal activity for this species ocenrs when the soil-surface temperature ranges between 75° and $80^{\circ} \mathrm{F}$. When the surface temperature drops beow 70°, less flying occurs, and below 65° very little activity has becu noted. Adults were scaree daring cloudy weather and on days following. rains. The begimning of their activity each day is of course governed by temperature. Very few beetles were collected before $9 \mathfrak{a}$. m. or after $4 \mathrm{p} . \mathrm{m}$.

Effect of Chops on Dispersion

Observations in the field have shown that adults are atracted to alfalfa or green cover crops because of the lower temperatures prevailing there and for the shalter which such crops afford. Quite freghemty temperatures on the soil surface in the sun have reached as ligh as $105^{\circ} \mathrm{F}$. in February and 125° in March, while at the same time the temperature on the soil surface in alfalfa ficlds was from 20° to 30° lower. Studies in 1932 showed that 60 and 20 percent of a group of males and females. respectively, which had been resting on the sides of their oviposition cages, succumbed on February ${ }^{27}$ when the temperature on the soil surface in the sun remained at 105° for one-hate hour. In fallowed fields, therefore, when temperatures are in exeess of 90° on the surface it is matmal to expect an immediate dispersal to fields containing alfalfa or cover crops. Additional proof of this was demonstrated when liberating marked individuals of both sexes (on an extremely hot day near a group of mala traps. ${ }^{4}$ All the beetles took flight immediately in the direction of the piles of malva, where they wore recovered al few minutes later, nome remaning on the surface or ander the clods where liberated. That oriposition oceurs in alfallia fields is shown by comparative population counts made in December 1933 in plots of corn and alfilfa in which addalts had been confined the yar previous. The eome in the alfalfa plet showed an average of 24 larvat as compared with 10.6 larvae per square foot in the corn plot.

On the basis of this evidence, the importanee of alfalfa fiekls as hreding areas for this speries camot be underestimated, when control measurts are attempted.

Food Not a Factor is Dispersion

Observations be (iraf (f) have shown that adults favor old beet roots for food and feed lightly on alfalia, Johnsom grass, and wild beet roote. In anddition, the writer has observed feeding punctures on sliees of potatoes and large numbers of adults on rhubarb flowers, apparently feeding on the pollen. Buring the t-rear priod that owiposition studies were conducted no food was provided the adult pairs in their respective containers. In most casest these specimens were alive after all adults in the fiald latd died. Apparently no redationship betwern food and dispersal cxists. and, fis Graf has stated. the feeding of the adults. from th conomic point of view, may be disregarded.

[^2]
DESCRIPTIONS OF THE STAGES

The Adult

(Fig. 9, A)
The original description by Mannerhcim (7, p. 238) appeared in 1843. Van Dyke (9, p. 340) redescribed the insect in 1932 in a key as follows:

Clypeal margin not distinctly notehed and depressed at iniddle, head and pronotum more or less aeneous, anterior pronotal margin but slightly lobed at middle,

Figure 9.-Elaterids commonly found in fields in southern Cabiformia, $<~ t$: A, Limgnius californicus; D, Melanotus longalus; C, Anchastus cinercipennis;
D, Aeoleus livens; and E, Cardiophorus enebrows.
elytral intervals not carinate apically; apecies in general robust and not uarkedly narrowed either in front or behind
38. Species in general black with head and pronotum aeneous, elytra sometimes brown, distinetly pilose; second antennal segment slightiy longer than broad, thirds still longer and subeylindrical, together longer than fourth especially in the female; elytra finely striato-punctate, intervals broad, flat and distinetly and irregularly punctured; length $8.5-12 \mathrm{~mm}$. Pacific States_-cealifornicus (Mann.)

According to Van Dyke there are three color phases of this species, the black or typical phase, the brownish or reddish phase, and the
dark orange phase or subspecies oecidentalis. The last occurs farther north and more inland in the hotter sections. The examination of large numbers of adults taken under malva traps in Ventura County over a period of 3 years showed that approximatcly 4 percent of the beetles collected were reddish and the remainder brownish to black. Occasionally a few of the brownish or reddish adults were collected in Orange and Los Angeles Counties, but the majority were dull brown or black. The adults reared and reported herein were entirely of the black or typical phase of Limonius californicus.

The Egg ${ }^{5}$

The egg is ellipto-cylindrical in shape. Both onds are broadly rounded and resemble each other. Measurement of 30 eggs gave an average length of 0.69 mm . and an average width of 0.5 mm , The lenget varied between 0.63 and 0.735 nm. and the width between 0.773 and 0.53 mm .

The Larya

> (Fig. 10, B)

The nearly mature larva * * * is subeylindrical in shape and shiny, waxy yellowish-brown in color. The segments are very minutely and sparsely punctate. The head and venter are flattened dorsally and darker in color. There is a light dorsal stripe on the posterior end of each segment with the exception of the venter.

The head is depresed and considerably narrower in front. The mandibles are strong, notcheci, cleep brown in color, changing to black at the tip.

The first thoracic segment is broad and long, being about equal in length to the venter. The other thoracic segments, are short, being about equal in length to the first two abdominal segments. The remaining abdominal segments are a little longer and quite similar. The lege are short and armed with heavy, short brown spines.

The abdominal segments are slighty constricted where they join oue another. There are from two to four hairs on the lateral sitic of each segment. The spiracles are brown, conspicuous, and are situated in a poorly defined, light lateral stripe. They are slightly nearer the anterior end of the segment,

The venter is depressed dorsally, with raised edges. It is sparsely hairy around the edge. The caudal notch has a small tooth on each side pointing slighty upward and backward. The margin of the noteh varies from deep brown to black.

The average length of the mature larva is from 18 to 21 mm , and the width is from 2.5 to 3 mm .

The Pupa

(Fig. 11)
When first formed the pupa is opaque white, but after a time the eyes sliow through as pale, dusky, blue spots. About this time the thoracie segments become a pale waxy yellow, but no other changes take place until shortiy before energence.

The pupa very much resembles the adult beetle in shipe, exeept that the abdomen is slightly longer in the pupal stage. The head is bent forward slighty, and each anterior angle is armed with a long, heavy spine, which tapers regulariy to a point. The mouth parts are conspicuous. The antenme are laid along the margin of the head on the ventral side, and their tips are behind the tibite of the second pair of legs. On the unferside of the hend and near the prothorax are two short, heavy spines. There are also two short, stont spines on the dorsal side of the head near the posterior angles.

The case covering the springing apparatus is plainly visible between the anterior coxec. The leg cases are folded similarly to those of other Elateride. All of the posterior pair, excepting the tarsi, are covered by the wing eases, which are curved around and almost meet on the ventral side, at the distal end of the third abdominal segment.

[^3]

Elaterids ${ }^{8}$ ASSOCIATED WITH THE SLGAR-bEET WIREWORM

Although Limonius californicus is the predominant wireworm in southern California fields, several other destructive elaterids are frequently encountered (figs. 9 and 10). The harvae of the different species are readily separated by the shape of their anal segroents, as is shown in figure 12. Probably the most important of these is Melanotus longulus (Lec.) (figs. 9, $B ; 10, A ; 12, B$), an elaterid largely restricted in its distribution to western Ventura County, but which also occurs in Los Angeles County, in the vicinity of El Monte. The

Figere 11.-Pupa of Limonius californicus, ventral and dorsal views. $\times 4$.
adults (fig. 9, B), which are easily distinguishable by their shiny black dytra and quies movements when disturbed, ure active from the 1st of April until June. Dales of this species average 10 mm . and the females 11 mm . in length. The larsac are reddish brown, eylindrical, and much more active than L. californicus.

Aenleus livens (Lec.) (figs. 9. $\left.D ; 10, C^{\prime} ; 12, D\right)$, reddish in color, and with large dark spots on the thorax and (lyytra (fig. 9, D), is very common from the middle of February until diay in all areas inhabited by Limonius californicus. The malie averages 6.5 mm . in length and the female 8.5 mm . The larva (fig. 10 ('), waxy white with a brownish head and thorax, has a more flattemed borly than the other species encountered.

Anchastus cinereipennis (Esch.) (figs 9, (.; $\left.10, D ; 12, C^{\prime}\right)$ is the small, light to dark-brown, and very active olatritd which appears early in Mareh. The atults range from 4 to 6 mm . in length. The larva is

[^4]pale yellow with brown head and reaches a length of 12 mm . when raature.
Cardiophorus tenebrosus Lec. (figs. 9, $E ; 10, E ; 12, E$) is black, 7 to 9 mm in length, and common in alfalfa fields during February, March, and April. The larva, whitish with it brown hend, is extremely delicate and difficult to rear. If picked up in the center by forceps, both ends of this species hang down in a stringlike fashion.

Limonius canus Lec. and L. infuscalus Mots. are also known to be present in southern California.

Figure 12.-Lateral and dorsal views of anal segments of; -1, Limonius californicus; B, Melanotus longulus; C, Anchastus cinereipennis; D, Aeoleus livens; and E, Cardiophorus tenebrosus.

LIFE-HISTORY STUDIES

Temperature Recehds

Air temperatures were obtained by means of a thermograph placed in a Weather Bureau shelter $3 \not / 2$ feet above the soil surface. A thermogiaph was also used for recording the temperatures in the basement of the insectary. Soil temperatures were measured at the $4-, 8-$, and 12-inch depths, weekly recording thermometers being ased. The mean monthly air, basement, and soil temperatures for the period from June 1930 to December 1934 are shown in table 1 and figure 13.

Tarle 1.-Mean monthly soil, basement, and aiv: temperahures (${ }^{\circ}$ F.) Alhambra, Calif., 1930-34

- Instrument 3 !in feet from soil surface in standard weather Bureau shelter.

As shown by the ammal means, the soll temperatures at the different depths did not fluctuate widely in the successive vears. At the 4 -ineh depth the lowest annual mean recorded was $66.5^{\circ} \mathrm{F}$. in 19.32 and 1933 , and the highest was 68.2° in 193i. Temperatures at the 8 -inch depth were also consistent in the different years, ranging from a mean of 64.8° in 1931 to 68.1° in 1934 . Temperatures at the 12 -inch depth ranged from 64.9° in 1931 to 67.9° in 1934 . Naximum monthy soil temperatures at all depths except the 8 - and 12 -inch depths in 1933 were recorded in enly of 1931, 1932, and 1933 and in August of 1934. The lowest temperatures usually occurred in January. An average of the soil temperatures at all depths showed that 1934 was considerably warmer and 1931 cooler than the other yems.

Exept for 1934 , there was only a slight variation in the mean ammat basement temperatares. The lowest was $67^{\circ} \mathrm{F}$. in 1931 and the highest 69.9° in 1934 . Temperatures in the basement were generally lower in January, and the highest were recorded in July and August. During the 4 years there were only slight differences between the mean

Figure 13.-Monthy mean temperatures in the basement where life-history studies on the sugar-beet wireworm were carried on, in comparison with the soil temperatures at the depths of 4,8 , and 12 inches in tile-cage plots. Alhanbra, Calif., 1931-34.

temperatures of the basement and the mean soil temperatures outdoors at the $4-, 8-$, and 12 -inch depths.

Air temperatures were the highest in 1931 , averaging $63.0^{\circ} \mathrm{F}$. for the rear, and the lowest ammal minimum was 58.5° in 1933 .

As this investigation dealt primarily with the surar-beet wireworm in the irrigated sections, the datia on precipitation have not been considered.

The Vige

DEPTH NA SOH. ANH PLACES CHOSEN FOR OVIPOSITIOX

During the spring of 1932 studies were conducted to asertain the depth at wheh eqges are deposited in moist and dry soils. Series A consisted of four glass tubes. each l'e by 7 in hes in length. which were packed firmly to withm tinch of the top with soil siftel through a 60 -mesh screen and containing 14 percent of moisture by weight. In series B. 3 incfers of soil with if pereent of moisture was packed in the hottom of the tubes, on top of wheh was put 24 inches of soil containing as perent of moisture. A fertile female was then phaced in the top of cach tube, and rials were securely stoppered and placed in a constant-temperatare cabinet at $70^{\circ} \mathrm{F}$. Alter 3 weks the tubes were marked outside in in-inch divisions and each hatf inch of soil was removed and washed through a sieve and the eges carefuly comted.

The resulte, as thestrated in figure 14 . show that in the tuhes with moist soil nearly 50 percent of the egess were deposited in the first inch. whereas in the drier soil no exgs were recowed at the deph. During the examination of these tubes it was noted that the soil with the 5 -percent water between the 2- and 2 -inch depths had absorbed a small quantity of moisture from the damper soil. Cndoubtedy this explains the presence of a few egres abow the 2 toinch level. As most of the egess were deposited betow the 2 - -inch depth it appears that females, when compellect to do so. will burrow to a depth of 4 inches or lower to oriposit. in order to provide the egres with an optimum of mosture dheing their incubation period. No ofservations were made on the depthe of eggs deposited in the field.

The presence or absence of regelation does not appear to be a factor in the selection of sites beripositing femates, th the majority of lima bean fields that are hemuly infested ate continuously under dem cultivation and roid of regetation daring the oriposition period. Fimp packed, heary soils appear to offer no resistance, as these frack readily after rains to a depth of seraral incles. These cracks or crevices are not only utilized as phaces for oviposition hat offer protection to the females turing high temperntures and strong winds. As shown in the expriment, the drier soil eontaning is pereent of moisture was readily pemetrated by the frmates for a depth of 2 or more inches so that they might oriposit in the moist soil underneath. Thare is little fikethood. howeser, that oriposition wouk be handeret by a low mosture content, as during the period of female activity the surfaer soil in most of the hem and sugar-beet fedde is kept moisi, pither by rains or be irrigation.

The oriposition stadies in the labomary and whemeations in the field indicate that loose soils ranging in moisture womtent from 10 to is perent are preferred by the adites as plates for cage deposition.

INECHATION PERIOI

Incubation records were obtained from eggs which had been deposited in salve tins two-thirds full of fine soil conta:ning approximately 12 percent of moisture.

The eges were sifted from this soil on alternate clays and the clate of deposition of that group of cges marked as of the day preceding.

Figicre 14.... Jepths at which eggs were deposited in the soil by adults of the sugar-beet wireworm, Ahambra, (alif: A, Soil containing uniformly it percent of moisture: $B 6$, soil with 14 percent of moisture at the bottom fat and a percent at the top (b).

As time for hateling approalhed, and therenfer until hatching hand reased, the egus were washed from the soil rach day.

Records on the duration of the inculation periods for 968 cegres laid during the puriod February 20 to Day 6. 1931, which hatched over a period of 63 days from Xarch 30 to Diay 31 , imelusive. showed charly the rariation in the incubation period and its relation to temperature.

For instance, an arerage of 37 clays was recorded for the erges laid in February under a mean of $61.5^{\circ} \mathrm{F}$., and when temperatures in A tarch inerensed to 64° the period was shortened to 30.4 days. Temperatures during April and May were still higher. As a result, the a verage length of the period was further deereased to 27.4 and 24.4 days, respectively. The seasonal extremes of incubation were from 23 days in May to 46 in February. Temperatures during the 4 -month period averaged 63.9°, and the incubation period averaged 32 . 0 days.

Ini 1932 hatching began on Match 22 and contimaed for 79 days until June S, the records being based on 2,356 eggs deposited between February 24 and May 10 . Because of the slight monthly rariation in temperature during the incubation period, little difference was recorded in the average length of the period in the different months. The minimum of 26 days occurred in February and the maximum of 34 days in February and March. The average for all egers was 29.3 dinys.

The incubation records for 1933 showed that in this year egegs were lad between February 28 and May 9 and hatehed over a period of 65 days between April 5 and June 8 . The monthly weighted mean ranged from 36.6 days for eqges laid in February, when basement temperatures a a enged $64.1^{\circ} \mathrm{F}$. to 29.0 days for eggs haid in λ fay when the temperature increased slightly to 66.1°. Average temperatures for March and April differed only 0.5°. As a result there was less than 1 day's difference in the average length of the incubation period durins these 2 months. Individual recorls for the season showed that the egg period ranged from 27 days in May and June to 41 in February to April, the average being 33.7 days.
A summary of the incubation records for the 7,692 eggs umler obserration during the seasons of 1931, 1932, and 1033 is presented in table 2, and graphically in figure 15. The greatest range in the length of the arerage incubation period oceured in 1931, from 37 days for eygs: deposited in February to $2+4$ days for eggs laid in May. Basement temperatures during the 1932 senson were abnormally high and shortened the period to an average of 29.3 days. The averages 32.6 and $33 . \overline{7}$, obtamed in 1931 and 1933, respectively. may be considered fairly representative for the duration of the incubation period in the basement from year to year.

Tisle 2.- Summory of laboratory incubation records of rage of Limonius caligornicus for $1931+3$, , 1 hhembra, (alif.

It will be seen that in general the incubation period is longest for the eggs laid in February but gradually shortens as the temperature rises through March, April, and May.

INCLBATION IN SUNNY AND SHADED LOCALITIES

Most of the fieids in infested localities are under clean cultivation during the period of beetle activity, and the topsoil is usually low in moisture to a depth of several inches. Under these conditionis adults oviposit below the dry layer in the moist soil (fig. 14). To compare the lengths of the incubation periorl of eggs deposited in soils exposed to the sun and those in soils in the shade with the records obtained for eggs kept in the basement, salve cans containing newly deposited eggs were placed at a depth of 2 inches in ground exposed to the sun and in ground constantly shaded, and covered with a layer of dry soil. Re-

Figcue 15--Length of the inctbation period of eqge of Limonius californicus in salve cans compared with the mean bascment temperature at the Alhambra, Calif., laboratory, 1931-33.
cording themmometers were installed to measure the soil temperature 2 inches below the surface in the diflerent localities.

At this time of the year there was but at slight difference in the averuge temperature 2 inches teep in a soil exposed to the smand the temperature in the basement. Soil temperatures during the incubation period of eggs deposited on February 28 averaged 67.6° F., or 0.6° higher, and for egrgs deposited March 11, 71.5°, or 3.5° higher, than those recorded in the basement for February 25° and Mrarchil. The duration of the egge stage for the enrlier-deposited egys averaged 29.9 days, and for the later-deposited eggs 26.2 days, as compared with averages of 29.5 and 29.1 days, respectively, in the basement.
Temperatures at the 2 -inch depth in the shade were low (62.4°) and as an result the incubation period was prolonged to as much as 50 days.

[^5]
The Lama

Because knowledge of atalt behntior and of the necessaty rearing technique or equipment was hacking, the rearing stadies begua in (920) were tot so complete as could be desired. Fertile lemales collected in the fied were placed in moist, fane-mesh soil in 1 -omare salve cans and confined in the laboratory basement (ig. 16), where they were allowed to oriposit unmolested. Aiter several weeks had ehapsed, the soil in the salve cans was moved daly mad examined under a binowher microscope for newt hatched harae. When these were found. ther were transferred individuaths to other salve cans containiag fine-meshi soil amd 3 or 4 kemels of wheat. Later, as the larvac inereased in

 wireworm- were reared in malte cans.
size. they were fed S to 10 kemels of what monthy, depending on the sensom.
 Tume 12) were used in the rearng studies begm in t!?9. The datation of the developmental periochs is summarized in the first 3 lines of table 3. seven larvae died leasing only 3 k to show compheted revords. Five of the deaths oceured in the second year.
The first papation oreurred Augost 21 , 9330 . During August amb
 larval period of +64.3 days. Fourtern of the remander pupated betwern dugnst 24 and (October is in 1933, and 2 in Lugust 1932 ,

The larsae use in the rearing studies of 1030 were ohtaned by the
 observation at the beginang of the stady, bat 63 dent $4 t$ in the seconel
year. The eges hatehed late in the season, between May 8 and 2 , , and the larvan were fed 10 kernels of whent monthly thronglout the year. A summary of the data pertaining to these rearings also appenrs in table 3.

Table 3.-- Duration of the developmentel periods of the sugtr-beet wervorm in the labowtery, Ilhtmbra, Calif, $19 \geqslant 9.31$

: incharles the propupal juriant.

The first pupation in this group occured in the secoul year on August 20, 1931, and the hist in that year wis on October 27. The first and last adtults in 1931 ippeared on September 5 and November 30, respectively. Ot the 54.6 percent of total harvat that matured for a $2-y$ ear crele, over 33 pereent were males. Pupations in 1932, which totalded 25.5 pereent of the original harvace began on August 7 and continued until October 7 . The first adult was observed on Augusi 31 and the last on November 7. Nales agatin predomimated.

In the period September 12 to Oetober 1, 1933, seven individuals completed detelopment for a 4-yenr crele, and between September 26 and October 1 in 1934 the theer pemaining larvae matured. completing a 5 -year cycle. The liarval period of 1,593 days undergone by one of the latter was the longest recombed during these studies. Among the 4 -year havae the majority were females, while all the jovent harvac wore fomales. Although the specimens that matured in 1933 and 1934 were exeedingly hage larvae, they dehyed pupation until late in September of cach year, after the majority of the smaller and younger larear in other rearing experiments had already entered the pupal stage. One would expeet that these larger or older larvaw would pupate carlier in cither July or dugust.

The data for the 1931 group differ from those for the groups of 1929 and 1930 not only in including the eeres stage, but abso in that harsue which had hatehed about a month ratiar than was the case ia the two previons years were incluted. Probably the most surprising discosery was the fact that a few of these ardier-hatehed harvae pupaterd the same year, for a 1-year life cycle.

The stadies of growth were made on 100 individuals that haterned during the period March 30 to April 5 . inclusive. 1931, from eggs

[^6]deposited from February 20 to 28 , inclusive. Each larva was fed 10 kernels of wheat monthly during the year. One of the 3 individuals that matured in 1931 hatched on April 2 and pupated on August 21, after an clapsed period of 141 days in the larval stage. This was the shortest larval period recorded during these studies. All 3 specimens that matured in this year were males. Pupations in 1932 began on August 11 end terminated October 9. The adults, males of which were slightly in excess, were obtained thronghout the period August 31 to November S .

The 2 specimens that matured in 1933 for a 3 -year eyele pupated on September 26 and October 2 and transformed to male adults on October 16 and 24, respectively. Pupations in 1934 occurred on August 20 and 21 , and the 2 females morred for a 4 -year eycle on September 7 and 9 . respectively. Fourteen of the 100 larvat died without pupating, 7 in the first year and 6 in the second.

Another rearing series begun in 1931 consisted of 250 sugar-beet wireworms that hatehed between Marci) 27 and May 26 , from eqys deposited in the period February 20 to April 27 . The individuals in this group were also fed 10 keriels of wheat monthly. Twenty-nine of them failed to reach maturity, 13 and 14 dying in the first and second years, respertively.

The outstanding fact in this experiment, the datat for whel are shown in the hast 4 lines of table 3 . was the lauge increase of individuals completing development in the first year. In the group of 100 just discussed only 3 perent matured in the first year, wherens in this experiment, in which larvac of approximately the same age were uscd. 18.8 percent completed development in a 1 -year erale. So sex determinations were made on the latter, but owing to their small size it is believed that the majority were males. The first pupation oceurred on August 28 , or after an approximate period of 5 months from the time of hateling. Pupation continued in 1931 throughout September and terminated October 10.

Of the 163 larrae that matured in 1932 for a 2 -year eycle, the first pupated on August 22 and the last on October 24. The former transformed to an aldult on September 12 and the latter on November 21. In this group males were slightly in excess.

Pupations in 1933 of the cight individuals completing development for a 3 -year cyele began later than usual, on September 12 , and ended October 18. First and last beetles were taken on October a and Norember 13. Females outnumbered the mades $\overline{7}$ to 1 in this ase. The remaining three larvate that matured for a 4 -yar cycle in 1034 pupated between September 23 and October 14 and these emerged as two females and a male between October 16 and November $\overline{3}$, inclusive. In this as well as in other experments although all the individuals that matured in 1 year were from carly-laid igers, individuals also were found in the 2-, 3-, and 4 -vear cyeles from the early as wrill as the later-produced eregs. It is apparent that under farorable conditions, especially of temperature, growth is aceelernted. but it is also apparent that within any group under similar conditions there is considerable individual variation in rate of growth ant size.

The proportions maturing after life cycles of $1,2,3,4$, and 5 yemrs are shown graphically in figure 17 .

The duration of the larval period in the foregoing salve-can rearings ayerayed $170.6,504.6,846.2,1,225.0$, and $1,589.6$ days for those maturing in 1, 2, 3, 4 , and 5 years, respectively.
Basement temperatures during the larval period were in general the same each year, averaging 67° or $69^{\circ} \mathrm{F}$. throughout the entire year, but they naturally averaged higher ($\boldsymbol{a} 1 . \mathrm{S}^{\circ}$) for the records of those larvae that completed development in 1 year and did not pass through a winter.

The beginning of an attempt to record the different molts and the amount of wheat eaten by larrae in completing development was made in 1931. Owing to the diffeculty in ascertaining whether the kernels had been eaten or destroyed by fungus, this latter phase was discontinued until time permitted weekly instead of monthly examinations. Owing to the minute size of the earlier exuria and the difficulty in locating these, the keeping of molt records was not begun until July I, after which both larvae ind molted skins were of such size as to be readily perceptible in the soit.
For larvae completing development in the second year, the number of molts recorded from July I averaged 6 , for the third-year individuals the average was 7 molts, and for those maturing in 4 years the average was 12 molts. An examimtion of the data in table if for larvae that matured in 2 years shows that possibly 4 molts were missed. The arerage number would then be approximately 10, 11 , and 16 molts for harac completing development in the second, third, and fourth years, respectively. More accumte records were obtained by a different method and these atre given later under approprinte headings.

Since the previous rearing studies indicated that when the havac hatched early in the season a greater number of them would pupate the first year, owing to the extended perior of feeding, it was desired to obtain additional data as to

Figure 17.- Proportions of sugar-bect wireworms of the broods beginaing development in 1929, 1930, and 1931, completing the life eycle in the indicated mambers of years. the effect of time of hatehing on the rate of pupation in the first and in later years. With this in view a number of larvac of the brood of 1932 were segregated into 3 well separated groups according to their date of hatehing. Group 1 consisted of 40 larvae that hatched between Mareh 23 and 30 , from eges deposited in the period February 24 to 28 . The 40 larvae in group 2 hatched between ipril 15 and May 26, from eggs deposited between

March 17 and April 28．Group 3 consisted of 39 larvac hateled on June 8 from eggs deposited on May 10．Each larva in the different groups was fed 10 kernels of wheat monthly．A summary of the results appears in tables 4 and $\overline{0}$ ．

Table 4．－Duration of the developmental periots of 8 groups of sugar－buet wire－ worms hatched at differtht times in 1932，reared in salue cans，and fed to kernels of acheal mowhly，ilhambra，Calif．

EARLYHATCIED GROLP（MALECH $2 \pi-80$

$\begin{gathered} \text { Life } \\ \text { (yele } \\ \text { (years) } \end{gathered}$	$\begin{aligned} & \text { 1ntli- } \\ & \text { ruti- } \\ & \text { uals } \end{aligned}$	1tem	Duration of period					Tert－ pera－ thre			
			Eg	Larval ${ }^{\text {I }}$	Premipal	Pupa！	Egg．larval， and pupal				
1．．\ldots	3	Avernge	2．40 40 －	162.3 ± 3 自	30 02＋5．0	（2）3 3 ＋ 0.2	212， 5 ± 2 2，	71.1			
	20	$\left\{\begin{array}{l}\text { Maximum } \\ \text { Mintimuta }\end{array}\right.$	$\begin{aligned} & 37 \\ & 26 \end{aligned}$	$\begin{aligned} & 3+4 \\ & 514 \end{aligned}$	$\begin{gathered} 13 \\ 0 \end{gathered}$	$\begin{aligned} & 24 \\ & 24 \\ & 2_{1} \end{aligned}$	$\begin{aligned} & 5977 \\ & 5686 \end{aligned}$				
		｜itreapr	29． 3 ± 10.2	［33， 6 ± 1.0		$\underline{22} 3 \pm 0.1$	3s9．2 2 0．4	68， 2			
	\＄	$\left(\begin{array}{l}\text { Saximum } \\ \text { \ibimami }\end{array}\right.$	$\begin{aligned} & 30 \\ & 20 \end{aligned}$	192	$\begin{array}{r} 11 \\ 3 \end{array}$	$\begin{aligned} & z_{3} \\ & 21 \end{aligned}$	$\frac{941}{}$				
		A verage ．．．．	－ 2 ± 0.2	010． $\mathrm{t} \pm 1.9$	（6． $7 \pm$（1． 6 ）	22.0 ± 0.1	$900 . \times 2 \pm 4$	60.1			
＋．．．．．	1	．．．．．．．．	30.13	，＇2x3． 61	11.0	27.0	1．350．0	如：			

NTERMEDIATE ILATCHED GROEP（ADRIL， 15 TO MAY 20

LATE－HATCHED GHOCl（JTNE B）

2	23	$\left\lvert\, \begin{aligned} & \text { Ninimurs } \\ & \text { Nmimurn }\end{aligned}\right.$	29）	＋16	$\underset{\widehat{t}}{13}$	25	$\begin{aligned} & 335 \\ & 404 \end{aligned}$	
		｜averape	29.0 ± 0.0	459.5 ± 1.0	$9.1 \pm[5.3$		5120 ± 0.9	（＊）
3.	1	$\left\{\begin{array}{l}\text { Mnximam } \\ \text { Ainimnma }\end{array}\right.$	$\underline{29}$	136 735	14	15	$\begin{aligned} & 889 \\ & -83 \end{aligned}$	
		Averape	23.6019 .0	807.0 ± 10.0	4.4 ± 1.11	20． 2 ± 11.3	856.2 ± 10.6	10， 51

I Prepuran perind included in larval paribel．
${ }^{2}$ Average of daily mexu tempratures during larval period．
In the early－hatched group three larvae matured as males in 1032 in a 1 －year cycle，whereas in the two later－hatched groups none com－ pleted development the first year，apparently owing to the shortened feeding period．Pupations in this group in 1932 began August 30 and terminated September 13.

Thale 5.-Sumbary of prpations, mortality, and sex mation of the 1032 brood of the sugar-beat wireworm, Allhambra, Calif, 1932.55

Itent	Pupation and mortality data				Stax rutio	
	Group 1, tandy hinteh	Gronfי 2, it1termediate	$\begin{gathered} \text { Cirobes a nate } \\ \text { baten } \end{gathered}$	Total, all armups	Mates	$\underset{\text { mer }}{\text { men }}$
Fupalions:	Nram. Per ber reni	Nrur hir	$\begin{array}{c\|c} \text { Num- } \\ \text { ler } \\ \text { cent } \end{array}$		fer. ctht	Per cend
1032, 1-sear cyrle	$3: \overline{5}$	0.000	0 0. 1.0	3 3 3.5	100.0	4.0
1933. - year eyro	20 : 50.0	25 - 62.0	23 - 390	fis ${ }^{\text {and }}$	31.4	+3.6is
1934, 3-year ereme	8. 20.0	${ }^{6}$ 13.11	6 \% 15.4	20.608	30.0	70.0
1083.4 year ceche	3.5	$3{ }^{3} 5$	${ }^{1} 10$	- 3.1	0	thk, 0
Mortality.	30.0	bi 15.0	10 - 20.0	24. 24.2		
'1'stal.	40. 100.0	10. 160.0	39 j 100.0	$119.110 x .0$	fit 6	3 Bl
Larval mortality;						
!932. . . .	3 1500	1 1 10.11	6) 13t	1 fi : 13.4		
1933	2. 5.0	3 : 5	3 - 7	7: 5.9		
11934	11	0 0	1 - 6	$1.0,8$		
1035.	011	0 : 0	0 $\vdots 0$	0		,

 fumens. Consegaentig the sex rato was based on the indivitimis whose sex eouk be established at the

Early latching of larvae appenred not to acceleate the rate of pupation in the second your, as the pupation percentage in 1933 was even lower tor the early group than that recorded in the two laterhatched groups. In this year the eurliest pupations oceurred on August 20 in the intermediate- and late-hatched groups, ad the last pupation was on October 2. The adults, almost evenly divided between the sexes, emerged in the period September 12 to Ortober 24.

In 1934 the percentage of pupating individuals was slightly greater in the early-hatched group than in the others. The carliest observed pupation recorded during these studies occurred on June 13 in the late-hatched group. This specimen transformed to adult on July 2. The last pupation was from the intermediate-hatched harrae, on October 9, and the last adult emerged on October 31. In this year: females predominated over the mules in all groups.

In 1035 pupations of the remaining larvac, which belonged to the early- and intemmediate-iatahed grotips, began later than usuat, on September 18, and terminated October 0 . All four specimens, which emerged between Ortober 12 and November 5 , were females.

A summary of the pupations in all groups shows that of the 119 larvae at the start of the experiment the majority, or 37.1 percent, matured in the second, and 16.8 pereent in the third year. Group totals showed that 80 percent of the early-, 85 -percent of the inter-mediate-, and 74.4 percent of the late-hatehed groups eompleted development. The sex ratio for the entire brood was 40.6 percent males and 53.4 pereent females.

Apparently pupation of sugar-beet wireworms takes place during the usual period regardless of the time of hatehing. This is verified by the fact that not only the avernge but the maximum and minimum durations of the laryal period in the different years were less for the second and succeding years in the bate-hatched groups than among the ensly-hatehed larvae.

EFFECT OF QUANTITY OF FOOD ON SATE OF LARYAL DEVELOPMENT

In previous wireworm-rearing experiments 10 kernels of wheat were given the individual harrae at each monthly examination. Later feeding studies slowed this quantity to be adequate. During the first year of larval life, in July, August, and September, the number of kernels eaten monthly in several instances reached a maximum of 17, the monthly areage ranging from 12.1 kernels in July to 15.4 in September. Averages slightly in excess of 10 kernels were also recorded for October of the second year and for May of the third year of larval life.

An experiment was started in Mareh 1930 to determine the effects of small as compared with large quantities of food on the rate of pupation. The results are summarized in table 6. Groups 1 and 2 consisting of 10 and 15 larrae, respectively, were fed individually 1 kernel of whent monthly, and the 25 larvae in group 3 were fed 8 kernels of wheat monthly. The results of this experiment show that the rate of pupation is lessened when only small guantities of food are available and that the larvae are capable of existing under such adverse conditions for 5 or more years; also, that they pupate readilywhen their food supply is increased.

Table 6.-Effect of various quantities of food on the rate of larval development of the sugar-beet wireworm, Alhambra, C'alif., 1930-8.4

| Lens |
| :--- | :--- | :--- | :--- |

1 Fed i kernel of wheut each per month trom date of hatching.
${ }_{3}^{2}$ Fed ac groue 1 until Irach $193 t$ after which fed S ternets cach pur month.
3 Fed 8 kernels of wheat gach per mooth from date of hateling.
To determine further the effects of various quantities of food on the rate of development of the sugar-beet wireworm, a series of 138 larvae that had hatched between March 23 and May 4 from eggs deposited between February 24 and April 3, 1932, was divided into 3 groups and fed individually each month as follows: The 30 larvae in group 1 were fed 10 kernels of wheat monthly except during the period between October 1 and March 1, when the soil was changed monthly but they were given no food. This period of starvation of the larvae in salve cans was intended to resemble a similar condition in an infested field void of crops during the winter. The 30 larrae in group 2 were supplied with an abundance of food, 20 kernels each month; while those in group 3 , totaling 78 larvae, were fed the usual 10 kernels of wheat monthly.

The results showed that the majority of pupations in all groups occurred in the second year and that the pupation percentage in group 1, although fed 10 kernels monthly and starved during the winter period, was identical to the percentage obtained in group 2,
fed 20 kernels monthly. The pupation percentages in the third year were very similar in the 2 groups. Group 3, fed 10 kernels monthly, had a lower percentage of second-year pupations but an increase in the third year. When the percentages of pupations for both years in all groups were combined it was observed that the percentage in group 1 was slightly higher, totaling 90 , as compared with percentages of 86.7 and 82.1 in groups 2 and 3 , respectively. Althougls deprived of food for a period of 5 months, the mortality of larvae in group 1 was 10 percent as compared with 17.9 percent in group 3 which were fed 10 kernels continuoisly. The evidence presented, though meager, indicated that a monthly diet of 10 kemels during the period when larvae are most active is as advantageous to larval development, or more so, as a diet of 10 to 20 kernels of wheat fed monthly throughout the year. In other words, there would be no retardation in the development of larvae inhabiting fieds not cropped during the winter months if sufficient food were avaitable during the spring and summer.

Of the 138 larvae used in these studies, 78 , or 56.5 percent, matured the second year and 39 , or $2 S .3$ percent, the third year. A total of 21 larvae, or 15.2 percent, succumbed. Sexes were equal the second year, but more females than males matured the third year. There was less than a day's difference in the awerage length of the larval period for the 2 -year-cycle individuals in all gromps. The avernge larval period for the 3 -yeareycle specimens ranged from 884.6 days in group 3 to 901.5 days in group 1.

To substantiate the studies begun in 1932 on the effects of various quantities of wheat on the rate of pupation and the cluration of the larval period, a similar experiment was begun in 1933 on a much larger scale. In this experiment 450 larvae that had hatehed earls, at an intermediate time, and late in the season were segregated into 3 groups of 150 each and fed individually each month as follows: The lirvae in group 1 were fed 10 kernels of whent, larvae in group 2 were fed 20 kernels, and larvae in group 3 were fed 10 kemels, except for the period between October 1 ind March 1, when the only treatment was a change of soil each month.

Each of these groups was further divided into lots of 50 each according to the dates of lateding. One lot in each group hatehed between April 5 and 10 , from egrs laid between February 28 and Matreh 5 ; an intemediate lot hatched between April 23 and 28 , from egres lad between March 21 and $2 S$; and the third hateded between Niay 20 and June 8, from egres deposited between 4 pril 16 and May $^{9} 9$.

The results, as to the duration of the stages, were similar to those obtained in the stuslies of 1932, which were on a smatler acale but with the same quantities of fool.

There were very slight differences in the number of individuals completing development in the 3 groups fed different quantities of wheat, and larsal development wis not retarded in the least when food was not provided during the winter months, nor wis development atecelerated by the continuous feeding of 20 kemels of wheat per month throughout the year. This indicates that the feeding by larvae during the winter period is negligible and conseguently their development is not hastened by the presence of food in any year of their life in the period from October through February, inclusive.

Contrary to previous results, the time of hatehing of the larvar in these studies appeared to have had no effeet on the rate of pupation
in the first year．The 20 －kernel group had 4 larrae that matured for a l－year cyele as contrasted with 2 pupations in each of the other groups．This small number was due possibly to the lower tempera－ ture that prevailed in the basement during April and May of 1933， which retarded feeling and，subsequently，the development of the larvae during their first year．Temperatures in the basement during the spring and summer of 1934 were well above normal，resulting in increased food consumption and in a greater perectage of second－year pupations than was recorded in previous studies．

The duration of the larval period for individuals of the 1－．2－，and 3 －yederedes varied in the different groups according to the time of hatehing．In the early hateh the average for individnals of the 1 －yem cycle in group was 205 dars，wherens in the intermediate hateh 1 individual in group 1 matured after 190 days and for the 2 specimens in group 3 the arerare was 154 days．Onc l－year harra in group 1 and 1 ingroup 2 of the later－hateh larrae completed their de elopment in 156 and 150 days，respectively．The duration of the larval period for the 2 －raderede specimens in group 1，fed 10 kernels continunusly， ranged from 515.8 dates for the early hateh to 501.8 days and 472.1 days for the larve hateling at an intermediate time and late in the semon． The a watage decreased accordingly in the other groups from in to 510.7 and 476.5 days in group 2 ，and from 509.5 to 498.2 and 469.6 days in group 3，for the early－－intemediate－and late－hatehed larrat， respectively．A similar decerase is shown for the individuals com－ pleting development in the third var of haral life．

The duration of the larral period in the group starved during the winter averaged slighty－less than in the other groups fed 20 and 10 kernels eich month．This further corroborates the evidence presented carline that winter feeding dows not hasten the growth of the larme or the subsecfuent rate of pupation in any group．

Table $\overline{6} .-$ Sinmmary wi pupations，lareal martalitios，and sex ratios wf the whis brood，rarly－．intermediate，and late－hatched sugar－beet wireworms；－if specimens in rach of lhe nine lots：．Whambra．Calif．
tidole 1．FEJI II KERNELA OF WTEAT MONTHES

lirnin									2ix ratios：	
	－－	．．	．	．．	．－．．．		．．			－
	14．ather Apr $\because=11$				Jatchler！ M6yが条 Jume		Tutal		Maluc	
．．	－		．	\cdots	－－－		－	．	－	－－
Pn！ 	$\underset{\substack{\text { Ste }}}{. N_{1}}$	Pir raf		$\begin{aligned} & \operatorname{ser} \\ & \text { rent } \end{aligned}$	Symor	I＇ri－ rest 2	Num－ fer \because	Sers fint 1．$:$	I＇Cr－ rent 5	lip rent丳
\＄931． 2 －rar ctul	＋ 3	ne：	i2	－1	$41 i$	412	131	47.3	14．3	11． 7
	1	\because	＇	i	1	2	－	$3:$	\cdots	7
Tfids	4	－	41	Pa	－H	！ 1	1%	y^{2}	小i	i14
Larval mantility：										
1483	$\stackrel{\square}{5}$	11	9	1	11	11	1	9		＊
1431	\because	11.	1	2	3	4	－	$\therefore 1$		
11.3 .5	1	$\underline{1}$	1	${ }^{*}$	1	＇	1	7		
	\cdots＊	12	1	2	\cdots	－ 4	$!$	i． 11		
	11	4	3	${ }^{1}$	t	\downarrow	3	\because		

Table 7.-Summary of pupations, larval mortalities, and sex ratios of the 1933 brood, early-, intermediate-, and late-hatched sugar-bed wireworms; $\overline{0} 0$ specimens in each of the nine lots; Alhambra, Calif.-Continued

GROCP 2 , FED 20 KERNELS OF WHEAT MONTHLY

(GROU1'3. FED 10 KEIN ELE OF WHEAT NONOFLL
[Exerpt purforl from Oet. 1 to Mar. I, inclusi wh:

Larval mortality; 1933
1934
193.3

Continuing as lartar to le3f

TOTAS-(iROLJSI, 2, AND 3

3	20	3	2.1	2	1.3	ε	1.8	67.5	125
127	8.8	133	84.7	1:H	S1. 3	3 H	Sita	45.	31.3
1	. 7	5	3.3	2	1,3	s	1.6	42.	57.2
131	$\times 5.3$	$1 \neq 1$	ษ1. 0	1/a	92.0	411	91.1	19.4	30.6

Larval mortality									
1433 .	3	911	1	. 7	11	1	4	. 9	
1934.	13	4.	$\underline{9}$	1.3	111	ti. :	2.5	5. 5	
193,	2	1.3	2	1.3	1.	. 7	5	I.1	
Total...	is	12.11	\therefore	3. 3	1 l	7.3	$3+$	2.:	
Comtiauing as larvac to 1936;	1	. 7	1	2;	1	. 7	${ }^{\text {fi }}$	13 1	

${ }^{3}$ Soil changed monthy unly.
The larsal mortality was low, with a range of from 8.7 percent in the 20 -kernel group to 6 percent in the 10 -kernel group. The greatest mortality was in the early-hatched and the least in the intermediatehatehed group. For all groups, the mortality, resulting either from improper handling or from natural causes, totaled 34 . or 7.5 percent.

EFFECT OF CONSTANT TEMPERATURES ON RATE OF DEVELOPMENT

In the studies on the effects of constant temperatures on the larvae of Limonius californicus ordinary insulated wooden cabinets were employed. Heat was furnished by incandescent lights under thermostatic control. No attempt was made to control the humidity. The larvae held at $70^{\circ} \mathrm{F}$. were fed individually 8 kernels of wheat monthly, and those of the group confined at 80° were fed 10 kernels semimonthly. All stages of the insect in these rearing groups were held at their respective group temperatures. Data pertaining to the rearing of the various stages of L. californicus at these temperatures are shown in tables 8 and 9 .

Table 8.-Duration of the developmental periods of the 1931 brood of the sugar-beet wireworm, at constant temperatures of 70° and $80^{\circ} F_{.}$. Alhambra, Calif.

AT CONSTANT TEMPERATURE OF $30^{\circ} \mathrm{F}$.

[^7]Table 9.-Summary of pupations, mortalities, and eex ratios of the 1981 brood of the sugar-beet wireworm reared at constant temperatures of ro ${ }^{\circ}$ and $S 0^{\circ} \mathrm{F}$, Ahhambra, Calif.

REARED AT $70^{\circ} \mathrm{F}$.

The 50 individuals reared at $70^{\circ} \mathrm{F}$. hatched in the period March 17 to 23 from cggs deposited between February 22 and 28, 1931. As might be expected, the average duration of the various periods was very similar to that obtained in the 1931 series reared in the basement at a slightly lower average temperature. In comparing the rate of pupation with that of the latter group, it was found that with the exception of the third and fourth years the percentages were lower than those recorded for the basement-reared series.

Of unusual occurrence was the recovery of a prepupa on February 8, 1932. This specimen pupated on February 17 and transformed to adult on March 23. All remaining individuals pupated normally in the different years.

In this group the duration of the egg stage ranged from 18 to 29 days and the pupal period from 16 to 26 days.
The 50 larvac held at a constant temperature of $80^{\circ} \mathrm{F}$. had hatched on March 10 and 11 from eggs deposited during the period February 22 to 24, 1931. Apparently this temperature was especially favorable for larval development. The larval mortality was also low, totaling 7, or 14 percent. Most of the pupations in the first year occurred later than usual, in October and November, thus extending the length of the larval period to an average of 216 days as compared with the averages of 159.7 and 171.3 days for individuals 2 ared in the basement during the same year (table 3). Starting on February 22 in 1932, larvae pupated spasmodically throughout the spring and summer
until September 8. These abnormal pupations shortened the averuge length of the larval period for the 2 -year-cycle specimens to 445 days, whereas for the basement-reared larvae averages of 527.4 and 520.5 days were recorded. The 1 specimen continuing to 1933 completed 23 observed ${ }^{9}$ moits, finally pupating on October 25 after 960 days in the larval stage. Both the egg and pupal periods were shortened considerably, the former ranging in duration from 14 to 17 days and the latter from 12 to 20 days.

In the group held at $70^{\circ} \mathrm{F}$. and in the 1931 basement series pupations ocenred over a period of 4 years, whereas at 80° all but one of the larvae had completed development or suceumbed at the end of the second year. This shows that the higher temperature in the cabinet held at 80° tended to aecelerate development, while at a constant temperature of 70° the rate of pupation and the duration of the larval poriods were more in accord with the results obtained when specimens were reared in the basement at variable temperatures ranging from a mean of $\overline{7} 1^{\circ}$ to 68° in the first and later years. The claily variation in the basement was from 3° to 8° with a sensomal variation of from a minimum of 50° in November to a maximum of 90° in July. Both these extremes occurred in 1931.

EFFECT OF DIFFERENT KINDS OF FOOD ON RATE OF DEVELOPMENT

Since the sugar-beet wireworm is not restricted to any one food it was decided to determine the effects of different kinds of food on the rate of its development. A series of 150 larvar that had hatelied between April 23 and 28 , 1933, was divided equally into 3 groups and ed individually as follows: Group 1 harvae were fed 1 lima beam, group) 2 larvae 1 kernel of corn, and the larvae in group 3, 10 kermels of wheat each, at monthly intervals. All larvae were confined in salve cans and held in the basement under identieal conditions, exeept tor food. It was observed at each examination that neither the corn, nor the wheat, nor the lima bean had been entirely consumed, so apparently a surplus of food was available at all times. The results of this study are summarized in table 10.

Tamle 10.-Effect of different foods on the rate of decelophent of the sugar-brft wireworm

[^8]Owing to the henvier mortality only 72 pereent of the original number pupated the second year in the lima-bean group, as compared with $8 S$ and 84 pereent in the corn and in the whent groups, respectively. There was only one pupation the first year, that in the whent-fed group. A summary of the pupations to the fall of 1935 shows the com group with the highest pupation percentage, whent next, and lima beans third. A few individuals in cach group continued as larvae into 1936. Although the experiment was on too smak a scale for basing definite conclusions, the results indicate that there is probably little if any differenee in the rate of development of the sugar-beet wireworm on the three kinds of food. It is difficult to say whether the large mortality in the lima-beng group was due to the use of this type of food or was the result of improper handing.
The size of the resulting adults would indicate that both corn and wheat were far superior to lima beans as food for wireworms, sitice 10 males that bud been fed on corn during the larval stages averaged in weight 41 mg . cach, and 10 fed on wheat 47 mg , as compared with 32 mg. for a like number of adult males that hat been reared on lima beans. The frmales were heavier, atreraging 70,66, and 56 mge. each in the com, whent, and lima bean groups, respectively.

SIZE OF WIREWORMS IN HELATIGN TO AGE AND TLME OF PCPATION
It was observed that the larear which hatehed on May 21, 1930 , anet had been contined in a flowerpot and foel corn at intervals, varied in longth when examined 7 months hater on January f_{1} 1931. As many entomologists have used length as a basis for estimating the age of elaterid larvae, it was de emed advisable to separate 30 of these into 2 erpal groups meisisuing 6 and 12 mm , in length, respectively. These were confined individually in salve cruns and fed 6 kernels of what monthly. The number from ench group that completed derelopment in 1931 amd 1932 was practieatly the some except for one less 3 -year-cyele individual in the $12-m$ mil. group. The lengeth of the larral period for the 2 -yearecyde indiviluals in the 6 -mm. group averaged 467 days as compared with 4 多 days for the 12-mm. group. For those completing devolopments in 3 years the averages were 835 and 842 diys in the 6 - and $12-m m$ groups, respectively The proportion of sexes in the $6-\mathrm{mm}$. group was 50 on, and in the 12 mm. group 60 and 40 pereent males and females, respectively. The results indicate that the Iength of larvar has no signifiesent relation to the time of pupation, nor can it be med as a criterion for estimating age.

QLANTITY OF FOOD COXACMED HY LAUTAF AT DIFFERENT STAGESOF GROWTH

To determine the namber of whent kernels eaten monthly, and when the least and when the mest serious dimage could be expected in the fiela, cight harrae that hat hateded on April 15,1032 . were confined in individ!al containers and supplied with six kenels of wheat at bach weekly examination. The inspection of whent at such frequent periods math it possible to detemune aecurately whether or not mach kemed had ben destroyed.

As shown in figure is the number of krmels caten monthly raried accorling to the changes in temperature. Above 70° F., harvar were

 ATMINOW IDVYIAV

大THINOM NIIV3 STINYIY IV3HM y3EWnN 39V83AV
liatate $18 . \cdots$ Average numbers of whent kermels caten monthly during the life of a group of sugar-bect wireworms, with the mean basement temperatures, Alhmolora, Calif., 1932-34.
exceedingly active, eating on an average from 6.1 to 15.4 kernels monthly. The lowest average was 1 kemel when the temperature averaged 60.5°. The greatest numbers of kernels were eaten by larvae, 3, 4, and 5 months old, during the months of July, August, and Scptember, although it had always been thought that first-year farvate were incapable of doing much injury. In view of these results, however, they are undoubtedly responsible for a large share of the damage to vegetable crops planted in the fall.

The number of wheat kernels consumed by the 2 -year-cycle larvae, all of which matured as males, ranged from 99 to 119 and averaged 106. Of the 2 larvae completing development in 3 years, the male ate 209 and the female 228 wheat kernels.

MOLTING

To obtain records of the nolting of larvac of Limonius californicus, nowly hatched larvae were placed singly in tightly stoppered 1-by 3inch glass tubes with a thick plaster of paris bottom. These fitted tightly into holes provided in a large plaster of paris block. To insure an optimum moisture within the containers, the block was wetted at 3- or 4-day intervals. The food consisted of a small picce of the starchy portion of a corn kernel which had been left soaking overnight. The containers were examined on alternate days for molts and to replenish the food supply. A binocular microscope was necessary until the third instar was reached, but after this the larvae were of such size that the cast skins could be detected with the naked cye.

During the first 2 or 3 months the larvac were extremely delicate and readily susceptible to attacks by fungi; also, a heavy mortality resulted when the containers became either too dry or overnoist. After the fourth instar the larvae were transferred to 1 -ounce saive cans containing 60 -mesh soil and three or fou kernels of moist whent. By sifting the fine soil through a 60 -mesh sereen the cast skins could easily be detected. Additional fool nad new soil were provided at each weekly examination.

nember and dubation of instars

The number of larval instars in the case of 9 sugar-beet wire worms completing development in the second year ranged from 10 to 13 (table 11). The number of instars wout have been considerable less had development been completed in 1 year, or more if they had matured in 3, 4 , or 5 years. Of a series of 25 larvae hatched in 1930, and which had been fed individually 1 kernel of wheat monthly, 1 larva contimued to and died in 1934 after completing 22 molts. Another of the same series which pupated in 1934 completed 19 molts. Owing to difficulty in locating the earlier molts in this series the first 5 or 6 were missed, so it is possible that these larvae, which were reared under adverse conditions, had undergone from 25 to possibly 30 molts. There appears to be no relation between the number of instars and the sex of the resulting adult, since I specimen that completed development in 10 instars was a female and the 1 with 13 , a male.

Pable 1 .-Duradion, in days, and number of instars of 9 sugr-beet wirewarms reared at Alhambra, Calif., 1939-94, which completed development in 2 years

The length of ench individual stadium depends primarily upon the temperatare and the quantity of food avaihable. At high temperatures larvae are very active, feeding voraciously and growing rapidly, but when the temperature drops, their activity and growth are retarded.

Observations were made on the growth of the same larvae that furnished the data for table 11, and the average learth of the wireworm and width of the head capsule were recorded durime ench instar period as slown in table 12. For comparison the head-capsute width as computed by Dyar's law are also given.

Table 12.-Lengit of tareae amd size of head capsale of the sugar-beth wirteorm in erach insfar

During the period of the first 6 instars between April 5 and November 23 the larme increased from their initial length of 2.7 mon. to an average of 13.8 mm ., indicating that growth was exceptionally rapid during this period. This is also confirmed by the records of kernels
eaten (fig. 1S), which shows that the largest quantity of food was consumed during the first year of larval life, especially during the months of July, August, September, and October. The duration of the instars was also shorter, ranging from an average of 26.1 to 30.3 days. With a drop in temperature during the winter and with less feeding the latter part of the first and during the second year, the average daration of the seventhand succeeding instars was lengthened. Molting continued very irregularly in 1934, causing considerable orerlapping of molting dates and a wide variation between the maximum and minimum records. With the longer interals between instars the length of the larvae increased in proportion until the maximum of 26 mm . was reacherd.

Owing to the rupturing of the exuviae directiv in back of the head, considerable difficultr was experienced in obtaining accurate measurement of the head capsules, especially in the later instars. For this reason measurements were discontimued after the tenth instar. MeDougall (\bar{o}) in a recent paper reported similar difficulty with Lacon variabilis Cand., and found that mensurements of the ventral mouth parts were more dependable in determining larval instars. A study of the observed head-width measurements as completed however, indicates that these are in elose agreement with the theoretieal dimensions calculated by the application of Dyars law.

SUMMARY OF DENELOPMENTAL, STEDES OF WUEWORMS IN SALVE CANS
As shown by the data in various rearing experments in which different quantities and kinds of food were used, the larmi hife of the sugarmeet wirewom is extremely variable, ranging from 5^{5} or 6 to 53 months in duration. Of farrac that hatebed on the smme bate and were fed the same kind and quantity of food, some pupated early and some fater in the same year while others contimued in the larval stage for several years. Often larrae 2 or 3 years of are would delay pupation until late in October, whereas larvat that were maturing in I year pupated earlier, in August or Scptember of the sume year. The factors goreming the length of larval life are difficult to detemine. Apparently temperature cannot be considered, as all individuals were reared in the basement under similar conditions of temperature. Nor is soil moisture a factor, as the optinum of 14 percent wats closely adhered to when the soil was replenished in the salve eans at each monthly examination. The food was treated the same, asually soaked in water over night before being used the following day. Eridently different kinds of food are not concerned, as irrecrular pupations also occured when lima beans and com were used.

Table 13 shows the arerage durations of the laral perion of 1.479 individuals reared in satve cans, and which matured in from 1 to is vars. Owing to the late hatching of the larvae in 1929 and 1930 , none of these completed development during the first year; in addition, the average life span of these larrae was shortened as compared with others that had hatehed carlier in their respertive seamens.

Table 13.-Average duration of the larval period of sugar-beet wireworms, which mathred in from 1 to $\overline{5}$ years when reared in salve cans, Alhambra, Calif., 1929-85

$\begin{gathered} \text { Year } \\ \text { serips } \\ \text { started } \end{gathered}$	1-year cycle		2-year cycle		3-year uycle		4-yenr eycle		5-year cyele	
	Records	$\begin{aligned} & \begin{array}{l} \text { verage } \\ \text { jnerigl } \\ \text { meriou } \end{array} \end{aligned}$	$\begin{aligned} & \text { Rec- } \\ & \text { ords } \end{aligned}$	$\begin{aligned} & \text { A verage } \\ & \text { Larval } \\ & \text { period } \end{aligned}$	$\begin{aligned} & \text { Rec- } \\ & \text { ords } \end{aligned}$	Aversge larsil period	$\begin{aligned} & \text { Rec- } \\ & \text { Ords } \end{aligned}$	Avarage larval period period period	Recortls	$\begin{aligned} & \text { A verage } \\ & \text { herriad } \\ & \text { period } \end{aligned}$
	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	Days	$\begin{aligned} & \text { Num } \\ & i \\ & i \end{aligned}$	${ }_{\text {chas }}{ }^{\text {Da }}$	$\begin{aligned} & N_{\text {amp }} \\ & \text { ber } \end{aligned}$	${ }^{\text {Da }}$ D	$\begin{gathered} N_{u m n} \\ \text { ber }_{2} \end{gathered}$	${ }^{\text {Day }}$	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	Days
18680	0		226	${ }_{485}^{46}$	108	83.1	$\stackrel{-}{7}$	1. 1.218 .0	3	1.
1031....	50	150.6	${ }^{2} 51$	${ }_{5}^{533} 8$	${ }^{12}$		5		0	
1983	3	${ }^{177.3}$	146		15				0	
Total ormver nge	61	17.1 ± 1.0	1193	502, 8 ± 3.4	204	857.8土4.4	18	1,233.3土5.3	3	559.7 ± 1

II specimens continued as larcae to 1036 .
In all cases the larval periods of the individuals developing into females averaged slightly longer than those of the larvae that developed inte males. In the 2 -year-cycle group 407 male larvae averaged 506 days in the larval stage as compared with an average of 509 days for 386 femate larvac. The average duration of larval life for 48 males that matured in the third year was 861 days, and for 66 females 871 days. In the fourth year the average larval period was 1,225 days for 4 males, and 1,239 days for 8 femates.

The numbers of sugar-beet wireworms reared in salve cans completing development each year during the period 1929 to 1935 , inclusive, are shown in table 14. As previously stated, the absence of 1-year-cycle individuals in 1929 and 1930 was due to the late hatching of the larvac.

Table 14.-Numbers and percentages of sugar-heet wireworms reared in salve cans completing their development in different numbers of years during the perion 1929-85

II2 spectmens coutinucd as lar vite co 1036.
There appears to be considerable variation in the pereentages of individuals pupating in the different years. Especially was this true in the 1931 series, which had 14 percent maturing in the first yenr, and in the 1933 series, which had a pupation percentage of 96.1 in the second year. Apparently the high temperatures that prevailed throughout the spring and summer of 1934 stimulated larval feeding and increased the number of pupations as shown. In the third year the percentage maturing ranged from 2.2 in the 1933 series to 36.8 in the 1929 scries.

The latter also had the highest percentage of maturing individuals in the fourth yeari.

Temperatures in the basement during the period of these rearing studies ranged from a monthly mean of $57.9^{\circ} \mathrm{F}$. in January to 79.4° in July of 1931. The lowest daily minimum was 50° on November 24, 1931, and the highest maximum was $90^{\circ} \mathrm{F}$., recorded on July 26,1931 .

OUTDOOR REARING STEDIES

For outdoor rearings unglazed drainage titles were used as cages (fig. 19). These were made by cementing two 6 -by- 12 -inch drainage tiles end to end. They were set vertically in the ground 23 inches

Figure 19.- U'nglazed tile cages used for outdoor rearing, showing screen tops in position, Alhambra, Calif.
deep so that 1 inch remained above the surface for the attachment of screcn cages. To prevent the escape of the larvae one-falif inch of plaster of paris was poured into the bottom of each tile cage and allowed to harden. Soil of a sandy loam texture was taken from infested fields and screned and then placed in the eages and fumigated with earbon disulfide. Fine-mesh screen tops were attached prior to the emergence period to prevent possible oviposition by stray claterid adults. Twenty-five small larvan were put in cach eage. They were first fed wheat, but as they grew older their diet was changed to com. Lsually 15 to 20 kernels were provided at intervals of 6 weeks during the spring and summer and peery 2 months during the winter, when their activity lessened. The moisture content of the soil was kept as near the optimum as possible by frequent irrigation. It was necessary to remove and sift the soil in the different series after tramsformation to remove either the 1-, 2-, or 3-year-cycle adults present. In 1931 the cages were taken up and the soil pushed out so none of the larrae were injurel. In later years a trowel was
used to remove the soil, which caused some larval injury as noted under handing mortality in the different years. Recording thermometers were used to record the temperature at the $4-$, 8 -, and 12 -inch depths. Further details regarding equipment and methods of rearing sugar-beet wireworms in outdoor cages are explained by the author in another article (8).

The life-history studies outdoors in 1931 were based on the activities of 750 larvae that hatched in May and were confined in 30 tille cages. The examination of all cages in the fall of 1931 resulted in the finding of 2 adults (mates) that had completed development after slighty more than 5 months in the larval stage. Over 61 percent of the total larvae were found missing, leaving 288 individuals continuing into the second year. The second examination in November 1932 showed that 8 percent of the original number of larvae hatd matured for a 2 -year cycle and that 28.8 percent had succumbed. Of the 12 larvae reniaining, 5 matured in 1933 for a 3 -year cyele and 7 died or were eaten.

The proportion of sexes for all years totaled 55.3 percent males and 44.7 percent females. During the 3 years a total of 683 , or 91 percent, of the larrae either died from natural causes or were the victims of cannibalism. This large mortality, expecially in 1931, may be attributed to the high soil temperatures, which on July 26 reached a maximum of $110^{\circ} \mathrm{F}$. at the 4 -inch level, 96° at 8 inches, and 88° at the 12-ineh depth. The mean soil temperatures at anl depths were considerably higher than those recorded during the first year in the brood studies of 1932 and 1933.

The 1,025 larvae used in the tile-cage studies in 1932 were segregated into 3 groups according to the time of their hatehing group i having hatched between April 1 and 15, group 2 between A pril 15 and 23 , and group 3 between May 2 and 6 .

The first examination, in November 1932, showed that the number completing development the first year decreased according to the time of hatching, from 18.1 percent in the early-hatching group 1 to 2.7 and 1.1 percent in groups 2 and 3 , which hatched later. Dissections showed that the sex ratio of these individuals was 63.6 percent of males and 36.4 of females. The mortality was highest (98.9 percent) in the group hatching late in the season and lowest (64.6 percent) in the early-hatched group. A total of 808 , or 78.8 percent, of the Iarvae were found to be missing. Of the 119 larvae removed from the cages, 18 were injured, leaving only 101 for observation in 1933.

In that rar 9.9 pereent of the original number matured in group 1 and 3.5 percent in group 2 for a 2 year cycle. No larvae remained in group 3. The proportion of sexes of these individunls showed females slighty in excess. Only one larva in cach of groups I and 2 continued into 1934 for a possible 3 -year cycle.

In summarizing the number completing development in all groups, it was found that 9.6 percent of the larvae matured in 1932 for a 1 -yenr cycle and 5.8 percent in 1933 for a 2 -year cycle. The sex ratio of the adults was in the proportion of 54.9 and 45.1 pereent males and females, respectively. Over 84 percent of the Iarvac used were found missing or were injured. Mean soil temperatures were high during the life of the l-year-eycle individuals and lower where development required 2 years for completion.

Studies of larval development outdoors in 1933 were based on the activities of 2,000 larvae that had also been segregated according to early, intermediate, and late hatching dates, and placed in 80 tile cages. The larvae in the respective groups had hatched between April 12 and 21, between April 29 and May 10, and between May 12 and 19.

The examination on November 1, 1933, further substantiated the results obtained in the 1932 series, manly for the reason that the greater percentage of larvae that matured for 1-year cycle were found in the early hatched group. Although there was only a few weeks ${ }^{5}$ difference in elapsed time between hatchings, 5.9 percent of the larvae matured in the early hatched group as compared with 1.1 percent in the intermediate and none in the late hatched group. Only 21.1 percent of the 1 -year-cycle adults were females, indicating that female larae, with few exceptions, require a longer feeding period to complete their development. The mortality during the first year was the lowest recorded, ranging from 42 percent in groups 1 and 2 to 33.3 percent in group 3. The total mortality was 815 , or 40.7 percent of the original number. A total of 95 , or $4 . \bar{i}$ percent, of the larvae in all groups were injured churing the process of removing them from the cages, leaving 1,019 larvae for examination in 1934.
On completion of the 1934 examination on November 1 , it was found that 21.4 percent of the larvae had matured in group $1,16.8$ percent in group 2, and 20.7 percent in group 3 , for a 2 -year cyele. Of these 44.5 percent were males and $\overline{5} 5.5$ percent females. The mortality in all groups totaled 588, or 29.4 percent. Six of the 34 remaining larva were injured, leaving 28 to be returned to the cages. Of these 21 matured in 1935 for a 3 -year cyele and 7 succumbed.

A summary of all groups showed that 3.5 percent of the larvae matured in 1933 for a 1 -year cycle, 19.8 percent matured in 1934 for a 2 -year cycle, and 1.0 percent in 1935 for a 3 -year cycle. Of the 489 individuals that matured, 44.5 percent were females. The mortality totaled 75.4 percent, being slightly lower than that recorded in previous years. There was a difference of only $2^{\circ} \mathrm{F}$. in the soil temperatures at all depths in the 1-yeer-cycle groups, and a difference of 0.2° during the second year.

Table 1.5 gives the summary of the life-history experiments intile cages during the period 1931 to 1935 , inclusive. As was the case in the salve-can rearings. the greater number of larvae that matured during the first season was found in the early hatched and the least. in the later hatched groups. A similar decrease was noted for the larvae completing development the second season. Although the tile-reared larvae were in constant competiton for food, they had a greater percentage of individuals maturing the first year than did the harvae confined individually in salve cans. It is possible that soil temperatures, which averaged from 4° to $5^{\circ} \mathrm{F}$. higher than in the basement during the season, may have been the principal factor responsible for the slifference in the percentages obtained. A further comparison shows that the majority of the tile-reared laryae completed development in 1 and 2 years, only a few continuing to the third year, whereas the greater percentage of the salve-can-reared larvae matured in 2 and in 3 years, some evell continuing for 4 or 5 years before reaching maturity.

Table 15.-Summary of life-history shudies of the sugat-beel wireworm in tile cages, Alhambra, Calif., 1981-85

Iteru	Group 1, eariy hatched	Group 2, intermetiate	Ciroup 3, late matched	Total
1-year cycle:	Vhmber Percent	Iumber Perc	mbiter' Percent	Namber Percent
Larvad in tile cages at start	$1+550$ - 100.0	1.000100 .0	1.223: 10000	Nunderl Percent $3,775 \quad 100.0$
Mortality during first jear.		991: 50.11	- 733 ; 519.8	3.08j
Lervad recovered first year Adults recovered first y'ear.	841 : $\$ 1.3$	$392 * 59.1$	488. 39.8	$1,5 \geqslant 2 \mathrm{l}$ - 40.3
Lartae injured by handling first				
yebr-..........---.............	48.3 .1	47 \% 4.7	$18 \quad 1.5$	113 3.0
Lar waereturned tocages first year	3031 征.2.	345 34.5	470 38.4	1,40s 37.3
Mortnitty during second year....	300 19.4;	215 21.8	325128.5	843 2:3
larvae recovered second year		9 9 ${ }^{\text {¢ }}$ \%		+5: 1.3
Larve injured by handling second yerr	5	3	0	
Larvae returned to cages second	5. . 3	3 - 3	00	3 . $3^{\text {a }}$
year	11 . 7	6: .is	23 1.9	$40,1.0$
Mortality during third year--...	0.1	1) 1!	II , 9	if:
Larvan recovered third year..... Aduits repored third yenr....	0 0	0 : 0	1510	0: 0^{-4}

Of the 3,775 larvae used in the tile-rearing experiments, only 714 , or 18.9 percent, completed development; 2,940 , or 77.9 percent, were either the victims of cannibalism or died from natural causes; and 121 , or 3.2 percent, were injured by handling.

Daily minimum and maximum soil temperatures were fairly consistent in the different years. From 1931 to 1935, inclusive, minimum daily temperatures at 4 inches ranged from 35° to $44^{\circ} \mathrm{F}$.; at 8 inches, from 37° to 48°; and at 12 inches, from 41° to 50°. Maximum temperatures recorded at 4-, 8 -, and 12 -inch depths were $110^{\circ}, 96^{\circ}$, and 88° in July 1931. In the period 1932 to 1935, inclusive, the highest daily temperatures at the 4 -inch level ranged from 98° to 101°, at 8 inches from 91° to 92°, and at 12 inches from 87° to $88^{\circ} \mathrm{F}$.

duration of the prepural period

To ascertain as accurately as possible the time of pupation in the salve cans, the larvae were examined at 3-day intervals beginning about the middle of July, and thereafter throughout the pupation period. At each such examination the larvae that had entered the prepupal stage, as indicated by inactivity, shortening of the body, and enlargement of the middle segments, were placed in a depression on top of the soil in salve cans, where they were observed daily until pupation.
The prepupac, as well as pupae, are delicate, helpless, and readily susceptible to attacks by a fungus and by bacteria. In many instances the prepupae would be completcly entwined by strands of hyphac, but if these were removed or washed off, pupation would occur normally. Mites ${ }^{10}$ also were frequently observed feeding ou injured or dead specimens, apparently in the role of scavengers.
As shown in table 16, the earliest prepupa was obtained on May 29, in 1934, and the latest on October 23 , in 1931. The yearly average duration of the prepupal period ranged from 6.4 days in 1931 to

[^9]9.4 days in 1933, and for the 4 -year period the average was 7.6 days. Females remained in the prepupal condition for an average of 8.6 days as compared with 7.4 days for the males.

Table 16.-Duration of the prepupal period of the sugar-beet wirelcorm in salve cans, Alhambra, Calif., 1931-84

The Pupa

TIME OF PLPATION IN SALVE CANS

The time and duration of the pupal period during the 4 years 1931 to 1934 was obtained by combining the data from all pupations in the different rearing groups, regardless of the quantity or kinds of food. Individual records were then segregated according to the weekly period in which the pupation occurred. The temperature records included in the time of pupation were obtained by averaging the daily temperatures in the bascment rearing room for each week. Temperatures for the duration of the pupal period consisted of an average of the daily mean temperatures in each week from the date of the first pupation to that of the last transformation to the adult.

The first pupation in 1931 occurred on July 22 and the last 98 days later on October 27 (tabie 17). The scason was marked by the oceurrence of unusually high temperatures both outdoors and in the basement, and this was undoubtedly responsible for hastening larval decelopment and subsequently the beginning of the pupation period. Referring to figure 20 it is observed that two distinct peaks occurred, one during the weeks ended August 25 and September 1 and one for the week that ended September 22. Temperatures advanced sharply in the week preceding and during the time in which the first peak occurred, after which they declined and continued low during the period of the second peak. In the latter case it does not appear that temperatures were significant, as the rate of pupation increased rapidly even though temperatures were on the decline. The rearings in the salve cans showed that 4 - and even 5 -year-old larvac pupated Iate in September after the majority of the younger larrae had already entered the pupal stage, thus indicating that the first peak was not the result of pupations of older larvae. Sex identity also does not appear to be of any consequence, as both male and female pupations occurred irregularly throughout the season.

Figure 20.-Time and rate of pupation of the sugar-beet wireworm in salve cans as compared with mean basement temperatures of the laborators, Alhambra, Calif., 1931-34.

Table 17.-First and last records of pupation of the sugar-beet wireworm in salec cans, Alhambra, Calif., 1931-3.4

	Year	First recurel	$\begin{gathered} \text { [.ast } \\ \text { record } \end{gathered}$	fiture (form first to last recrarl. inclusive
1931.		Suly 2	Oet, 2	Days
1932.		Aug. ${ }^{7}$	Oct. $2-1$	79
1983.		Aus. 16	Oct ${ }^{2}$	73
1934.		Jane 13	Oct. 2	132

Low temperatures in the basement rearing room prior to the pupation period in 1932 not only retarded larval development but apparently delayed the beginning date of pupation to 2 weeks later than
in the previous years. The pupation period extended over a period of 79 days from dugust 7 to October 24, inclusive. The majority of pupations were recorded between August 26 and September 1, with a gradual decline starting on September 29 (table 18).

Table 1S.-Time of pupation of the sugar-beet ceirexorm in salve cans, Althambra, (alif., 1931-34

In 1933 the first pupa was obtained on August 16 and the last 72 days later, on October 27. Temperatures were similiar to those recorded in 1932, the average for the pupation period being only fourtenths of a degree higher than in the previous year. Nearly 60 percent of the pupations occurred during the 2 -week period September 9 to 22 .

The first pupation in 1934 occurred on June 13 and the next on July 13. These were the earliest pupation records obtained during the 4 years. Starting on July 26 the number increased gradually matil the peak of pupation was reached in the week ended September 8 . Nearty 67 percent of the pupations occurred during September. Weekly temperatures cluring the season were pairly high, averaging 74.8° F., which was four-tenths of a degree below the average obtainet in 1931.

The summary for the 4 years was based on 1,525 individunls which pupated over a period of 14 weeks during the intersal from July 22 to October 27. This summary shows that over 88 percent of the pupations occurred during the 6-week period August 19 to September 29 . As the length of the pupai stage is approximately 21 days, ploughing for the destruction of pupae would then be most effective if done on 2 occasions, on or about September 5 and 25.

TIME OF PUPATION IN THE FIELD

The data on the time of pupation in the field were based hargely on the records obtained when making population and depth stulies at intervals during the summers of 1931, 1932, and 1933.

In 1931 two newly transformed adults were recovered at the 9 －inch depth in a barren field near Temple，Calif．，on July 31．As the aver－ age length of the pupal period is approximately 21 days，these indi－ viduals probably pupated on or about July 10．In 1932 the first pupa was taken on August 6 ．They were very abundant on a comffeld near El Monte and in tile rearing cages on August 30．Probably the most unusual and unaccomntable discovery was the finding of a pupa on December 27，1932，in a corn plot adjacent to the laboratory．Records for 1933 show a prepupa recovered on July 3 near Temple．This specimen pupated in the basement on July 10 and transformed to an adult on July 31．Of nine pupae taken in the same area on July 10 the first adult was obtained on July 21，and the remainder between July 26 and August 3 ．Though meager，these records indicate that pupation in the field begins early in July，the majority of pupations probably occurring during August and September，and the last about the middle of October．

DLRATEO OF THE PLPAL PERIOD INE SALYE CANS

The duration of the pupal period in salve cans during the years 1931 to 1934，inclusive，appears in table 19．These data are based on the same numbers of individuals shown for each week in table 18.

Table 19．－Duration of the pupal period of the sugn－bed wireuorm in salue cans， Alhambra，Calf．，1931－34

Pupnted during week－	1931		1639			1933		1934		1031－34 ［bupal ghetial	
			Pumal pertod	产	$\begin{array}{lll} 14 \\ \hline 10 \end{array}$		五	Pumal purina	吾豆		
			$\frac{\bar{E}}{\underline{E}}$	票至至			要要			吾 突	
		$\frac{8}{9}$	Duy Davs ${ }^{\circ} \mathrm{F}$ ．		Days indss		${ }^{\circ} \mathrm{F}$ ．	Dayx Days	${ }^{\circ} \mathrm{F}$ ．	Inays ${ }^{\text {aty }}$	
July th－Aug．${ }^{\text {c }}$			$\text { 䑝 } 190-24$		－			19.3 （x－28）	－${ }^{185}$	15．615－20	
Aug．Aug． 1212－1s	． $15.14+16$							$1 \mathrm{~m}=1 \times 20$	\％		
			15．${ }^{1}$	－4．2	$20.210-21$						
Atag ：9－25		79.3	20．7 7 \％	－	$21.921-3$		73.4 71.9				
Ang．Pb－Sept． 1			2i， $616-24$	23．4	24.0		\％1				
Sept．2－8		$\begin{gathered} 75.5 \\ 73.4 \end{gathered}$ $\frac{4.3 .7}{2 \cdot 3.3}$			24．$+33-25$		ה－1．	19.45	53．0		
Scpe 10－22	10．3 10.8 ［－39		23．${ }^{2} 9$	32．6．	21．9 ${ }^{2}$		\％		\％	${ }^{21} 5$	
Sept．23－20	$10.016-29$ 20.31803	72.1	24． 2178	$\frac{71.5}{70.7}$	$21,3149-23$22.120		\％ 3.9	23． 11×20	71.5	5 \％ $2.11 \mathrm{ff}-27$	
Scpt． 3 －Oct． 0	$21.110-25$			${ }_{6} 69.1$			23．114－33				
Oct．－13		70．0						22．921－28	70.1		
Oct． $\mathrm{F} 4-23$		\＄10．6			20．0	26		69.3			24.0 24
Oct．21－27			2s．0 8	CSH_{4}			24.63		69．4	36．7 7^{24-34}	
A verage or range．	15． 7 13－34	7． 9.	2.3 39－33	22． 2	22.61		2.3	20． $516-20$	73.8	21．4 13－34	

The abnormally high temperatures in the basement rearing room during the period of pupation in 1931 shortened the pupal stage to an average of 18.7 days and a minimum of 13 days．The groaps that pupated during the week of July $22-28$ and the $\dot{2}$－week pertiod between August 12 and 25 experienced the highest temperatures recorded during the 4 －year period of these studies，and the avemge length of the period was from 15.1 to 16.7 days．A maximum of 34 days for the pupal period was recorded during the week that endel October 27 when the temperature dropped to a low of $66.2^{\circ} \mathrm{F}$ ．

The seasonal average for the pupal period in 1932 was greater lby seven-tenths of a day than the average of 22.6 days obtained in 1933. This slight variation may be attributed to the one-tenth of \mathfrak{a} degree difference in temperature, which averaged 72.2° in 1932 and 72.3° in 1933. The range in 1932 was from 16 to 33 days as compared with a range of from 19 to 26 days in 1933.

Figune 21.- Duration of the pupal period of the sugar-beet wireworm as compared with mean basement temperatures of the laboratory at Ahambra, (alif., 1931-34.

The pupal period in 1934 averaged 20.5 days and ranged from an average of 16 days for pupations occurring during the week ended July 28 to 26 days for pupations in the week October 7 to 13 . Temsperatures over the entire 14 -weck period averaged $73.3^{\circ} \mathrm{F}$.

The summary shows that for all years the duration of the pupal period ranged from a munimum of 13 days to a maximum of 34 days and averaged 21.4 days. Figure 21 presents these data graphically for each year.

factors affectivg the deiptu of bupation

The depth at which larvac pupate is determined principally by the type of soil, its moisture content, the position of larval food prior to pupation, and soll temperature. Depth studies completed on Atugust 30, 1932, in a comfield near El Monte, Calfif., showed that over 64 percent of the pupae wore in the first 6 inches and the remander between the 6 -and to-inelt depths. The shallowness of these pupations was apparmatly due to the favorable temperature provided by the com foliage, by an optimum soil moisture of about 12 pereent at all depths, and by the presence of food near the soil surface. Siftings made on the following day in an adjoming fallowed fied showed that the majority of the pupations had occurred between the $12-$ and 15 inch depths. In this case, however, the soil was exeredingly dry, ranging from it moisture content of 3.6 percent (dry woight) in the first 3 inches to 9 pereent betwen the $12-$ and 1.5 -inch depths.

DEPTH OF PUPATION IN OUTJOOIR CAGES

The depth of pupation in outtoor cages was tetamined by confining 25 large lavae in each of 8 cages, eurly in March, so that there would be sufficient time for the larvete to feed and to orient themselvers prior to pupation late in the summer. Corn was udded at intervals of 6 weeks and the cages irrigated when necessary. A series of these cages wore set up each spring during the yeats 1929 to 1932 , inclusive. As the majority of pupations occur in September, the eages were removed and examined each vear flaring this month.

The procedure eonsisted of first breaking the tile cages in half ${ }^{13}$ and then forcing out and sifting each ineh of soil after it had bern slieed off with a harge knife. The results for the different years are shown in table 20.
Table $20 . \cdots$ hepth of pupation of the sugar-bed wirenorm in the cayes, . Whambra, (alif., 1929-3.3

[^10]Although considerable variation existed in the depths at which pupation occurred, there appeared to be only a slight difference in the mean depths in each of the 4 years.

The Adult
 EMERGENCE IN THE FIELD

Data on the first and last appearances and on the abundance of the beetles in the fiek were obtained by sweeping alfalfa with an insect

Figure 22.-Relative mumbers of adults of the sugar-beet wireworm collected by sweeping in alfalfa fields at given intervals, Temple, Calif., 1930-33.
net on alternate days, if weather and time permitted, for a period of 15 minutes betwern the hours of $11 \mathrm{n} . \mathrm{m}$. and I $\mathrm{p} . \mathrm{m}$. The results obtained during the seasons of 1930 to 1933 inclusive are shown graphically in figure 22.

In 1930 the firstadults were collected at Temple, Calif, on March 8 , and adults were active over a period of 82 days, until May 28 . They were most abundant during the 2 -week period ended Mareh 31 .

In 1931 emergence occurred earlier. Adults were taken on February 17 and in small numbers until March 1. The peak of collecting occurred between March 1 and 15, and the last adults were caught on May 26. On February 4, 1931, R. E. Barrett collected over 50 adults of Limonius califormicus under codling moth bands on walnut trees near Ventura, Calif. It is believed that plowing in or near the groves had brought these adults to or near the surface, where they were exposed to higher and more variable surface temperatures. This may have been responsible for some activity, and with a period of lower temperatures they had crawled under the bands for shelter.

In 1932, in the vicinity of El Monte, addults first appeared on February 20 and were active over a period of 85 days, until May 14. Males were taken at Ventura on February 23; at Smeltzer, on alfalifa, and near Buena Park, on rhaburb blossoms, on February 24. The numbers of adults collected per hour at Temple during the 2 weekly periods ended March 15 and 31 averaged 214 and 225, respectively. These were the highest records obtained cluring the time of these studies. In Orange and Ventura Counties the peak of emergence, based on experiments with malva traps, occurred during the week ended March 25.

In 1933 Mr . Barrett collected two females and one male under moth bands on Febriary 1 near Ventura. A number of males were swept from alfalfa near Tempic on February 17. Females were collected near Pomona on February 21, under malva traps near El Monte on February 22, and on alfalfa near Temple on March 30. In the vicinity of thambra the adults were active over a perion of 90 days, until May 17. Although the records for 1933 are incomplete, the peak of emergence probably occurred in the period March 16 to 31. Malva traps in Orange C'ountry yielded the greatest number of bectles during the week ended Marchi 25, and in Tenturn and Los Angeles Comaties, during the week ended April 1. These field studies were discontinued after that date.

The summary for the 4 years (table 21) was based on the collection, by sweeping, of 8,190 beetles during a total of $80^{\text {t. }}$ hours. Xearly G0 percent of these were collected in March. With the exception of 1931, the peak of adult collecting in the field occurred between Mareh 16 and 31 .

Table 21.—Summary of the dath on collections of odults of the whgar-bect wireworm in alfalfa fietds, $10.30 \cdot 33$

Mild temperatures during the winter of 1933-34 were responsible for an earlier incrense in soil temperatures and for an emergence in 1934 beginning from 2 to 3 weeks earlier than in previous years. Males were taken on alfalfa near Artesia and El Monte as early as February 5 and females on February 21. In the heavier soils near Huntington Beach, males did not appear until February 12. The few records obtained by sweeping indicated that the adults were just as abundant as in previous years, there being no noticeable reduction in their number as a result of the exceptionally heavy rainfall, which totaled 19 inches during the period from December 13, 1933, to February 6, 1934. Malva-trap collections in Orange Comity, in 1934, showed that the peak of emergence occurred in the week ending March is. In Ventura and Los Angeles Counties the largest numbers were collected between March 19 and 25.

In 1935, as a result of an exceptionally mild winter, males appeared on alfalfa in the sandy soil sections near El Monte in Los Angeles County on January 25. This was the earliest date of emergence to be recorded. At Huntington Beath, Orange County, males first appeared on February 1. No records are available for the females in either of these localities.

MONTHLY DEPTE RECORDS OF OVERWINTEHING ADULTS

To ascertain the position of the overwintering adults in the soil each month prior to emergence, in group of tile cages (fig. 23) containing 25 large larvae each were set up in the springs of 1930 , 1931, and 1932. The corn used as food was replenished at intervals of 6 weeks, and the moisture content of the soil was kept as near optimum as possible by frequent irrigations. Air temperatures and the temperatures in the soil at the $4-, 8$-, and 12 -inch depths were recorded during the experiment. Csually 4 to 6 tile cages, depending on the number of adults recovered, were removed and examined on the last day of each month begiming with August and continuing to February. To avoid the possibility of adults emerging prior to examimation, the February group of cages was examined on February 20 . The procedure was to break each cage in half on the cemented line and then force out an inch of soil at a time to be sliced of with a knife. The beetles and any larvue remaining were recovered by sifting each slice through a screen having 16 meshes per linear inch. Data on the depth of pupation were also obtained by these studies. The numbers of adults recovered at the various depths during the different months and years are shown in figure 24, and these data, together with the soil and air temperatures, appear in table 22.

Figure 24.-Depths of adnits of the sugar-beet wireworm in tile cages from time of transformation in the fall to emergence in the spring, Alhambra, Calif., 1930-33.

Tabee 22.-Monthly records, showing depth of occurrence in the soil of overwintering adulls of the sugar-bect wireworm in tile cages, Alhambra, Calif., 19sio-38, inchusive

FALL AND WINTER OF 1030-31

Date of examina-	Adults recor. cred	Depth of gaults in soil			Mean temperatures at-			$\begin{gathered} \text { Air } \\ \text { tempers- } \\ \text { fure } \end{gathered}$
		Minimum	Maximum	Mern	4 inches	8 inches	12 inches	
Aug. 31	Number 46	${ }^{\text {liches }}$	Iuches 18	Inches 10.2	${ }^{\circ}{ }_{78.5}$	${ }^{\circ}{ }^{\text {F }}$ 75.	${ }^{-}{ }_{78 .}$	
Sept. 30	57	-	20	10.1	73.2	71.5	74.8	66.8
Oct. 31.	78	6	19	11.9	68.8	64.7	8i, 6	6.0
Nov. 30	64	7	18	11.7	59.5	57.8	59.3	50.7
Dec. 31.	81	4	19	10.8	49.9	48.9	47.4	51.4
Jan. 31.	73	3	12	0.9	50.6	47.5	46.9	53.8
Feb. 20	51	1	6	1.8	56.3	52.3	54.0	56.2
Total or aver 8se.........	450				62.4	30.8	60.9	50.8

FALL AND WINTER OF 1931-32

Alugr 31....-.--------	45	7	15	9.8	86.0	82.5	83.1		74,3
Sept. 30-..............	32	4	11	7.9	78.0	75.8	77.8		68.0
Oct. 31.....---------1	45	6	12	\%. 1	69.3	67.9	48.9		62.6
Nov. 30	73	6	H	3.8	5 fi 1	52.8	$3+6$		53.1
Dec. 31.	88	4	12	7.8	47.3	44.5	44.7		48. 6
Jsn. 31	0	4	12	8.0	46.0	43.3	45.6		47.1
Feb. 20.	45	1	9	5.0	50.9	49.8	56.0		22.
Total or average.	398				01.6	59.5	61.5		58.1

FAEL AND WINTER OF 1932-33

Aug. 3 S	32	5	16	10.2	28.7	78.3	78.8	73.0
Sept. 30	38	6	22	13.2	75.9	74.7	75.4	08.3
Oct. 31.	33 :	6	17	10.7	650.9	6t. 4	6i7. 2	62.2
Nov. 30.	27	7	18	11. 6	62.7	61.5	63.3	60.7
Dee 31.	29	3	17	\%. 6	49.1	47.7	53.2	48.4
Jrn. 31	381	3	12	: ${ }_{6}$	48.0	\$5.8	50.4	\$7.2
Feb. 20.	29	1	11	6.3	55.4	54.8	64.7	50.0
Total or avergre. \qquad	226				$\underline{92.4}$	61.3	f3. 3	58. 2

SUMMMARY OF $7030-33$, INCLUSIVE

The beginning and rate of movement of the adults to the surface depend entirely on soil temperature. Significant changes in air temperature usually affect the soil temperature at the 4 -inch depth in from 1 to 2 hours." At the 8 - and 12 -inch depths, however, the response may not be felt until late in the evening, or on the following day, depeading on the degree of the air-temperature changes.
The deffe obtained in 1930 showed that there was but slight variation in the mean depths of occurrence of the adults between August and December, inclusive. It is observed also that the minimum and maximum depths are fairly consistent each month. The fact that
many of the adults were found intact in their pupal cells would indicate that but little movement surfaceward had taken place even as late as December. Therefore, the depth at which the adults were recovered in this period coukd be considered as their normal depth of pupation. Although mean soil temperatures for January at the Sand 12 -inch depths were lower than in the preceding month, air temperatures advanced sharply beginning on January 24 , causing an increase in soil temperatures at all depths. Undoubtedly this sudden change was responsible for the morement of the adults from a maximum depth of 19 inches to within 12 inches of the surface. The average depth on Jantary 31 was 6.9 inches. Air temperatures continued to rise during February, resulting in a substantial increase in soil temperatures at all depths, which accounted for the presence of all the adults in the upper 6 inches, and at an average depth of 1.8 inches on February 20. The first emergence of the adults occurred on February 24.

In 1931 both the mean and maximum depths of the adults were less in comparison with the previous and later years. This is difficult to understand, considering the fact that soil temperatures for August and September averaged considerably higher than for the same months in either of the other years, and that under such conditions pupation should occur at even lower depths. In this case probably the soil temperatures were not high enough to have had any effect on the larvae prior to pupation, or else, owing to the extremely warm summer, the larrae had become accustomed to the high temperatures that prevailed. A sharp drop in air and soil temperatures during November was followed by even cooler weather and subseguently lower soil temperatures during December and Jantary. Although the results for the latter months showed the occurrence of the adults higher in the soil, it is believed that no movement surfaceward of these individuals had occurred. With a rapid rise of air and soil temperatures during February, the examination on February 20 showed that all beetles had moved from at maximum depth of 12 inches to within 9 inches of the surface, and that the average depth was 5 inches. Emergence in 1932 began on March 1.

In 1932, except for September 30, the records of the occurrence of the adults in the soil during the months of August to November, incIusive, were very similar to those for the same montlis in 1930. The soil and air temperatures were also about the same. The results show that the beetles were nearer the starface on December 31, even though soil temperatures at all depths were on a decline. This movement contintued during January, when temperatures were even lower. On several occasions daily maximum air temperatures in December and January reached $\overline{7} 8^{\circ}$ and $83^{\circ} \mathrm{F}$. This was responsible for a slight rise in soil temperatures and subsequent movement on the part of the adults, as shown.

As in previotis years, air and soil temperatures at all depths during Februars 1933 increased rapidly, bringing some of the beetles to within I inch of the surface and giving an average depth of 6.5 inches on February 20. In the emorgence cages aditis appeared on the surface on that date.

These data indieate that adults generally remain in their pupal cells at an average depth of 10.5 inches until November 30. Duriner December movement surfaceward begins even though the air and soil
temperatures at all depths are on the decline. In spite of still lower temperatures during January the adults continued to move surfaceward from an average depth of 9.1 inches at the first of the month to an average of 7.5 inches on January 31 . A considerable increase in soil temperatures daring February hastened their rate of movement and brought all adults to within 11 inches of the surface on February 20 , when the average depth was 4 inches.

A check on the sex of the adults remored from the tile cages at various depths on Jamary 30. 1933, showed that the average depth of the males in the soil was 5.4 inches as compared with 9.3 inches for the females (table 23). Examinations made on February 22 in both 1932 and in 1933 showed the mean depth of oecurrence of the males to be 4 and 3.5 inches, whereas the females were 6.1 and 7.6 inclies below the sufface. respectively. An average of both years also shows that the female minimum. maximum. and modal depths of occurrence in the soil were greater than for the males. It is beliesed that the females require a higher temperature to stimulate activity and movement surfacewayd. The results of these studies explain the earlier appearance of the males in the field, in tile cages, and under matra traps.

Table 23.- Deph of accurrence of male and female adults of the sugar-beft wireworm in tile cages on $J a n .30$ and Ftb. 2. . . Thembra, Calif., 19.3 .3 and 19,33

Deph when exazsimatimn ockurred

EMEAGENCE FHOM TIDE CAGES
Early in the summer of 1930 preparations were made for obtaining data on the emergence of adults during the next season. A group of the tile cages (fig. 19) used for outdonr rearing studies (p. 41) were used. Each tile was filled with sterilized sifted soil, and a smatl quantity of corn and 25 larye larvac of Limomius calfornicus were buried between 6 and 12 inches deep. Larvae confined in this manner had sufficient time to feed and to orient themselves normally before entering the prepupal stage. Except for occasional irrigations and the attachment of 18 -mesh, cylindrical, removable screen tops (fig. 19), no further care was required. During the emergence period the beetles were removed twice daily, usually at 12 m . and $5 \mathrm{p} . \mathrm{m}$. Instruments enclosed in a standard Weather Bureau shelter were used to recorl the temperature of the air and of the soil at the 4 -, s -, and 12 -inch depths. The results obtained in 1931 proved so satisfactory that larger series of cages were set up in the 4 succeeding vears. A record of the number of larvae introduced and of the adults recovered each year appears in table 24.

As the rate of emergence is governed by temperature, the data covering the years 1931 to 1935 , inclusive, together with the mean soil temperature for each week at the 4 - and S-inch depths, are shown graphically in figure 25.

Emergence of the adults of the sugar-bect wireworm in 1931 began on February 24 and extended over a period of $3 S$ days, until April 2. The patio of emergence occurred during the week ended March 12. It is probable that the slight increase in soil temperatures between Fobruary 12 and 19 furnished the stimalus for the appearance of the adults, for during the following week, when emergence started, a decline in the mean temperature is noted.

Begining in 1932 a careful record was kept of the sex of all adults removed from the emergence cages (fig. 26). The first male emerged on March 1 and the first female on March 4. Males were more numerous during the first and second weeks but were surpassed by the females in the third week of the emergence period. The penk of emergence for both males and females occurred during the week ended March 19. Male emergence terminated on March 24 and female emergence on April 3. The bectles emerged over a period of 34 days.

In 1933, males first appeared on February 20 and females on February 28. The males again predominated during the first 2 weeks but were outnumbered by the females in the third and later weeks. The peak of emergence for the females was reached in the week ended March 19 and for the males the week following, March 20 to 26. Emergence extended over a period of 44 diass, until' April 4. The last female was collected on April 3 .

Emergence in 1934 was not only early but also differed from that of previous years in that both males and females were taken on February 13. As in the past, males continued to outnumber the females in the first, second, and in this cose even the third week. The peak of male emergence occurred between February 27 and March 5 , and for the females during the period March 6 to 12 . For both sexes together the peak of emergence was recorded during the week ended Marcl, 5 . With the recovery of the hast female on March $2 S$ and a male on April 2 , umergence in 1934 lasted over th period of 49 days.

In 1935 emergence of males and females began on Junury 30 , reached a seasonal peak during the week ended $\mathrm{Nam}_{\text {a }}$ 19, and terminated April 4. The total period of emergence was (6i) days. Both air and soil temperature means at all depths for December 1934 and January 1935 were the highest recorded during the 5 -vear period of these studies and apparently were responsible for this carliest appearance of the adults. Mean soil temperatures during the first 4 weeks

Figure 25.-Time and rate of emergence, by weeks, from tile cages of adults of the sugar-beet wireworm, Altambra, Culif., 193I-35.
of the emergence period, terminating February 26 , were in general similar to the temperatures obtained during the same weeks in previous years. Beginning on February 27, and continuing for the

Fiores 26.--Time and rate of emergence, by week, of maler and females of Limonius californicus from tile cages, Ahambra, (alif., 1932 35.
remaining weeks of the cmergence period, soil temperatures were unusunlly low, causing an extended emergence period, as shown.

Males were more abundant than females during the first 4 weeks, the situation being reversed during the fifth and rmaining weeks of the emergence period. Males terminated their emergence on March 25 and females on April 4.

EFFECT OF SOIL TEAPERATCRE ON BEGINNING OF EMERGENCE

A study of the mean soil temperatures for December and January at the 4－，8－，and 12 －inch depths during the period 1931－35（table 20） reveals the fact that the date of first emergence is entirely governed by the temperature during these 2 months．

Table 25．－Effect of soil temperatares in December and Jamary on time of atuht emergence of the sugar－beet wireworm in tile cages

Semsom	Mean soil temperatures al－：Date of fitse							
	4－inch depth		S－inch depth		12－irehtheth		Dater of fitstaprarane of	
	I）encem－ ber	Jarnt－ arg	$\begin{aligned} & \text { Decelil- } \\ & \text { ber } \end{aligned}$	Jamu 2ry	Decretir陙兵	Jathi－ ars	Males	Foruntes
1931－37	O\％	${ }^{0}{ }^{\text {F }}$	${ }^{\circ} \mathrm{F}$		${ }^{\circ} \mathrm{F}$	${ }^{\circ} \mathrm{F}$		
1922－33		48.0	4	43.8 ．	73．2	Stit	Feb，	Mar ${ }^{\text {a }}$
1983－34	33， 0	33.4	5\％3．8	63.7 ：	54.5	致 8	Feb． 13	Fich． 19
1934－35 ．	\＄5．9	53.6	5 Sa	33.4	51．3	\％3． 1	Jun． 3	Jan． 30

TIME OF DAY OF EMEIRGENCE
To determine the time of day that the adults emerge from the soil， collections were made daily at 2－hour intervals from 28 tile cages over a period of 36 days，from February 21 to March 28， 1934.

As shown in table 26，the henviest emergence for both sexes occurred between $11 \mathrm{at} . \mathrm{m}$ ．and $1 \mathrm{p} . \mathrm{m}$ ．and the lowest between the hours of 3 and $5 \mathrm{p} . \mathrm{m}$ ．Very few adults were found on the surface during rainy， cloudy，or cold days．Apparently a slight daily incrense in tempera－ ture in the first few inches of soif is essential for emergence to occur． No emergence was noted after $5 \mathrm{p} . \mathrm{m}$ ．or before $8 \mathrm{a} . \mathrm{m}$ ．

Table 26．－Recori of the taily emergence of adults of the sugar－hept wirevorm at 2－howr irterata fram tile cages，Ilhambra，（＇thly．， 1934

EMERGENCE BASED ON MALYA－TKAP COLLECTIONS

The results of the malva－trapping ${ }^{12}$ experiments in a 3 －acre infested field near El Monte，Calif．，in 1933 revealed additional facts on the beginning and rate of male and femate emergence in the field．These data，based on daily collections from 10 malva traps during the period from February 19 to A pril 30，are shown graphically in figure 27．The

[^11]daily mean air temperatures taken 3% feet above the soil surface are also shown.

As usual, males were taken earlier, on February 19, and the first female on February 22. Males outnumbered the females 16 to 1 during the period February 19 to 28, and over 3 to 1 between March 1 and 15 . From then on the females surpassed the males in numbers until trapping was terminated on April 30. The matiority of females were collected during the period from approximately Jifarch 21 to April 5 . The influence of temperature on the rate of emergence is well ithustrated in figure 27 . When high daily temperatures prevailed, the number of adults collected on the following days increased; and when temperatures declined, a decrease in their number is noted.

Figere $2 \bar{i}$.-Number of males and females of Limonits californicus eaptured daily in malva traps, with the daily meanair temperature, El Monte, Calif., 1933.

HIBERNATION OF ADULTS

Graf ($4, p .33$) states that after the akults appear on the surface, a secondary hibernation takes place. This begins about the middle of February and continues to the middle of Mareh. As his remarks are accompanied by the statement that the weather during the period was cold and cloudy with oceational showers, it is possible that this bibernation was only of one season's occurrence. During the period that these studies were conducted there were frequent rains and cold spells which lasted for several days. On these occasions the adults sought cover under clods and debris, but with warmer weather their activities were resumed. The cage-mergence records and field-collecting data reported herein show conclusively that a secondary hibernation does not exist. It shows that there is a gradual emergence of arlults and that their numbers increase as the season progresses.

PROPOHTION OF SEXES

SEX IIATIO BASED ON ADCLT EMEHGENCE FROM TIHE CAGES

The records of adult emergence from tile cages during the years 1932 to 1935, inclusive, showed that males outnumbered the females during the first 2 wecks in 1932 and 1933 and during the first 3 and 4 weeks in 1934 and 1935 , respectively. The situation was reversed in the remaning wecks of the emergence period, but for the entire season of each of the 4 years the females considerably outnumbered the males. This preponderance of females each year was apparently duc to the fact that only large (pesumably mature) larvae were selected for use in the emergence cages, as these would be the most certain to pupate. As shown later (table 35), the weight of larvae which transformed to females averaged 91 mg ., while those maturing as male adults averaged 57 mg., so most of the large larvae sulected woukd naturally mature as females.

SEN RATHO HAGED ON DESECTION OF BEETIES CODLECTED CNDER MAEVA TRAPS
The data on the sex ratio of the adults collected under malva traps in the years 1932 to 1934 , inclusive, were based on the daily dissection of from 25 to 100 beeties from collections mate in Los Angeles, Orange. and Ventura Counties.

In the Orange County fied there was in 1932 a gradual increase from 36.6 percent females at the begiming of the season to 78.2 pereent during the week ended April 8 . Collecting in the Ventura fied was begun 2 weeks hater than in Orimge County, during the week ended Darch 25. The female percentage was then 33.1 and be the end of the senson had increased to 6 .j perent. For the entire season, the Orange County and Venturn fedds averaged 70 and 54.2 perent females, respectively.

Adult trapping in 1933 began on February i9 in Los Angeles County and on March 5 in Orange and Yentura Counties. In Los Angeles County the pereconage of females ranged from 5.9 for the week ended February 2.5 to 86.7 for collections made from April 23 to 20. The arerage for the season was 50.4 percent femates. In both the Orange and Ventura County fields the percentage of females increased as the season progressed. Disanction of beetles from the former field showed an arerage of 74.2 pereent, and for the later field 48.9 pereent femates for the season.

In 1934 the traps were sel out too Iate to eatch the first males. and by the time trapping had begun females were already in the majority. the lowest percentage of females for the season being 55.2 in the Ventuma field. The highest recorded was 100 pereent in the week ended April 15 , in Orange County. For the three fields the a serage percentage of females ranged from 65.5 in Ventura County to 80.8 in Orange Countr.

Table 27 presents a summary of the sex ratio bated on the disection of 10,056 beetles from all fields during 1932, 1033, and 1034.

Tamle 27．－Summary of data pertaining to kex ratio of adults of Limonius califor－ nicus collected under madua traps，1932－3：4

1032

Week emderl－	1032				19%			
	－r．．．．．．．．．．							
	Mates	Funmits	T＇otal	Femmes	Nfutes	Frmates：	Total	Frimiles
Fibl 25	Nimber	Nithier	Numbei	percent	Number	Namber	Number	fercent
Mis．－					is	4	35	3.9 7.7
Mirs．it	19	11	39	36.7	327	32.5	85	$3 \% .1$
Mar． 15	0	0	0	0	285	$3+9$ ：	6 H	57.8
Mar． 3	973	317	55\％	33.7	251	415	$\cdots 11$	6.8
Ajor	105	242	100°	54.4	（2x）	344	575	90.0
Alrs，	352	745	1．	66．i	5irl	＋61	COS_{5}	6\％3．3
Alr，${ }_{\text {dis }}$	19	9	149	0\％． 1	36	109	14	75.2
Apr．${ }^{\text {a }}$		．	．．	－	118	－	S	83.0
－1．10	－－				2	13	15	86.7
Tata	Wh：	1， 413	2.301	形． 3	1．63）	2，145	3， 75	50.8

A summary of the data concerning the proportion of sexes based on the dissertion of 1,003 adults reared in salre－an and tile cuges dur－ ing the period from 1930 to 1934 ，inclusive，shous that the males greatly outmamber the females when development is completed in ： year（table 28 ．For these maturing in 2 years the propertion is more aren．Bat for those maturing in the 3－， 4 －，and 5 －yor cyeles a considerable inerease in the perentage of females is moted．Bxeept for the first year，for whirl no explamation can be offered，the figures showing the proportion of sexes in tile cages are comparable with those obtaned in the salve eans．

Tabie 28．Proportion of scxes of sugar－but wireuroms of diferent mathering age rared in sate cans and tile caprs，Ahambra，（calif．

frewios！in barcal state＇yearsi	Rexmy in shar rams				diearery in the exats			
	Mines		\checkmark	．．	．．．	．．	－．－	－．
		Fumbus		Trtal	Males	Fromatus		Tontil
－．．．．－－．．－－－	－－		－	－．	．			．．．
1．．．	Nu＇Wht 1：3	Numer	$\begin{array}{r} \text { Profert } \\ i .! \end{array}$	Suntier	$\begin{array}{r} \text { Nomtrr } \\ !\pi! \\ ! \end{array}$	Nutater	frocht 3．3． 2	N：cmicr
2	［12	3：12	5． 5	siti	175	3	碞会	近
1．．．	43	4	5） 1	SH	$\underline{\square}$	：3	（f） 19	5
I	${ }_{5}$	12	¢ 0^{3}	1,				
：1	$)^{1}$	λ	（0） 1	，				
＇Toder	H1	1：1	ib． y	45	3 B	$\text { : } 4$	－4i， 2	65
．．								
	$\overline{7}$							

MATING

In the fied mating usually takes place on the day of emergence between the hours of $9 \mathrm{a} . \mathrm{m}$. and $3 \mathrm{p} . \mathrm{m}$. Mating seldom occurs on cool, cloudy, or rainy days, or on days when strong winds prevail, but in favorable weather seves emerging simultaneously from tile cages were observed to mate immediately.

In the laboratory, with temperatures ranging from 75° to $85^{\circ} \mathrm{F}$., newly emerged or reared adults were taken in copulation at all hours of the day. Although males have been observed to mate several times with the same female, one mating is adequate to insure ferthity during the life of the female.

PMEOVIPOSITION PEHIOD

As determined from 6 tecords (table 29), the duration of the preoriposition period for temales reared in salve catrs and tile cayes, confined in the basement, during the years 1931 to 1933, inclusive, was found to average 5.7 days, with a maximum of 14 and a minimum of 3 days. The length of the period for the adults reared in salse cans areraged 5.2 days, or 0.9 of a day less than the average obtaned for the adults that hat been rared in tile cages ontdoms.

> Tabee 29.-․ I'regeiposition period of adults of the sugar-bet wirenorm reard in salve cans arad tile cages and leter confined cither in the basement or in ontdonr ociposition coges, . Ihambra, (alif., i9.3 3:

REARED IN ミ, NVE CANS IS HASEMENT

REARED N THE CAOES ouTMOMRS

Avenges obtained ontloors in the sun and in the shate daring the seasons of 1932 to 1934, inclusive, are fainly consistent and probably are indientive of the normal length of the period in the field from
year to year. Soil-surface temperntures in the sumny und shaded localities varied widely in 1932, but this did not seem to have affected the length of the period to any great extent. The results indicate that the more constant temperatures, such as prevail in the basement, are more effective in shortening the preoviposition period than the wider daily variations which oceurred outdoors.

An examination of all outcoor records in the sun showed that the length of the preoviposition period is governed by the date of adult emergence and becomes shorter as the season progresses. For instance, the length of the proviposition period for females emerging betwen February 14 and 28 averaged 14.4 days. For those emerging between March iand 15 and between March 10 and 30 the averages were 10.3 and 8.5 dars, respectively. Frequent dissections showed that earg development was more complete in the females emerging near the end of the season, thus substantiating the records shown.

On the basis of all outdoor studies the duration of the prociposition period would arerage 11 days, with a maximum of 20 and a minimum of s. This $^{\text {. }}$ of special significance when trapping measures against the adults are considered. It indicates that no deposition would be likely to occur during the first 5 days and but little thereafter up to the eleventh day after emergenes.

Oviposition

PECHNTQCE TFED IN OBTALNING OYLDOSITION UECOTDD

In obtaining oxiposition records, males and females that had been reared either in salve cams or in tile calges were confined immediately after mating in l-ounce salve cans filled two-thirds full of fime soil containing approximately 12 percent moisture by weight. The soil was removed each day and washed through a fiomesh sereen until the first eggs were recovered. Thereafter, the soil was washed and the egg removed at weekly intervals until oriposition ceased. This same procelure was followed when outdoor oriposition cages were used. The cage container was filled with (i0)-mesh soil to within three-eighths of on inch of the top and placed in moist earth so that the soil, adults, and eggs deposited would not be subjected to desiecation. A series of these cages was set up in 1932 in an alfalfa plot to determine the effects of shade. Another series was exposed directly to the sun in 1932, 1933, and 1934. By the use of weekly-recording thermometers soil-surface temperatures in both localities were obtaned ench seaton.

> OHBONITION IN THF HANEMENT

Oviposition records in 1931 were based on the activity of 18 femines that had been reared in salve cans and of 10 femakes reated in tife cages; in 1932, on 11 females reared in salue cans and 10 reared in tile eages; and in 1933, on in reared in salve cans and 13 in tile cheres.

The salve-can-roared females in 1931 were mated from Fobruary 14 to 19 , inclusive. The Jength of the preoriposition period hat ratiged from 4 to 8 days and areraged 4 . i days. Owing to comparatively low temperatures, which iveraged $61^{\circ} \mathrm{F}$., oviposition was extended over

79 days, from February 17 to May 0 , inclusive. The duration of the oviposition period of mdividual females ranged from 16 to 75 days and averaged 39 days. Over 61 percent of the eggs were faid during the first week and 12.0 percent in the second week. One femate oviposited over a period of 11 weeks; the remainder completed egg deposition by the end of the eighth weok. The number of eges deposited ranged from $\$ 9$ to 294 and averated 191 .2.

The females thed in 1932 were taken in copulation during the period March 2 to 18 , indusive, and began haying eges in from 3 to 9 days. The average length of the preoriposition perion was 5.5 days and the range for the oviposition period from 8 to $3 \overline{5}$ days, a feraging $2 \overline{5}$ days. Of the total eggs deposited, over 56 percent were hid during the first week and $2 \bar{j}$ percent more by the end of the second week. ladividual earg totals ranged from 122 to 372 , the avemge being 262.7 .

In the 1933 reamgs pairs 3, 4, and 5 were observed in copatation on Ararch 31,4 , and 17 . respectively, alter having already mated on Febraty 22. Whether this is of common occurrence is not known. The records show no appreciable differene in the number of eges deposited or in the length of the oriposition periot for observed secondmated pairs and those not so observed. The length of the preoviposition period tor this group averaged 6.8 days, with a maximum of 8 ame a miniman of u. (Owing to low initial temperatures only 34.7 pereent of the total ceggs were laid the first week, which was the lowest recorded for the first week during these studies. This was followed by the highest second and thir! week's productions for the bascment series, 27.4 and 17.2 percent, respertively. Individual records of eggs deposited ranged from 397 to $5+3$ and averaged 468.8 . The length of the oriposition period ranged from 42 to 63 days and averaged 52.

The tile-reared females that emerged between March 6 and 31,1931 , were mated on the day of their emergence. First egys were obtamed on March 11 and the last egges 52 dares later, on Miay 2. The preoriposition period had areraged 7.9 days with an individan wariation of from is to 14 . The oriposition period ranged in length from 14 to 42 dars and areaged 28.9. Indivitual egge totah ranged from 12.3 to 233 , with an areage of 177.3 . Over 62 percent of the eggs were ladd during the first week, 21 percent the second week, and the remander in the following 4 weeks.

The longerities of the males and femates in this group, living under a meth temperature of $133.5^{\circ} \mathrm{F}$., areraged 23.3 and 43 days, respertively. as compared with averares of 43.1 and 548 days for the satci-con-reared males and females living under a mean temperature of 11°.

The 10 pairs reared in tile cares and owipositing in 1932 amerged and mated between Stareh if and 29. For this group the lengh of the preoripesition period aremged 3.5 days and that of the oriposition period 26.8 . The rance for the former was from 3 to 6 days and of the later from $1+$ to 42 . In average of 22.4 geges were deposited; fie and 24 pereent of the total were baid in the first and second weoks. respectively. Temperatures in the basment daring the activities of these adulis avenged $6 S^{\circ}{ }^{\prime}$., which was shightly higher than manal.

The beethes of the the-sige-reared gromp in 19.33 were mated during the period March a to April 15 and began laging cerge from 3 to 10 dass after mating. Oxiposition continued over a periox of si days,
from March 12 until May 8. The average length of the oriposition period was 29.6 days and the range from 14 to 49 days. The rate of egg production was comparable to that of other years, with 61.7 percent laid during the first week and 18.6 percent during the second week. Individual egg records ranged from 213 to 359 , with an average of 273.7. The longevities of the tile-reared males and females living under a mean temperature of $64.8^{\circ} \mathrm{F}$. averaged 23.6 and 42.8 days, as compared with 53 -and 63.4 -day averages, respectively, for the group reared in salve cans under a mean of 63.9°.

SUMMARY OF OVIPOSITION RECORDS OBTAINED IN BASEMENT

The numbers and percentages of eggs deposited weekly by females reared in salve-can and tile cages during 1931, 1932, and 1933 are shown in table 30 and graphically in figure 28.

Table 30.-Summary of the mumbers and percentages of eggs deposited al weekly intervals in the basement by salvc-can and tile-reared adulls of the sugar-beet wireworm, Alhambra, Calif., 1981-39

Werk or oviposition period	Fggs deposited weekly in-						
	1931			1932			
	18 femates reared in salve cans		10 lemates reared in tile eages	11 femakes reared in salve emas		10 females reared in tile carcs	
First	Number $2!19$	Percent 61.6	Number percent 1,115: 62.0	Number	Percent	Numher	Percent 6 dit
Sucond	-434	12.6	${ }^{1} 379$; 21.4	'732	35.3	1,529	23.8
Third	204	7.7		415	14.4	190.	8.6
Fourth.	204	5.9	1.55 ! 8.2	82	2.8	7\%	3.6
Fifth.	250	7.5	32.1 .8	39	1.3	15.	. 8
Sixth.	49	1.1	+; \quad.			26	1.2
Efghth-......................	35	1.t					
Ninth.-.......................	11	. 3					
Tenth----.................	3	1					
Eleventh.	3	. 1					
Total.	3.441		1,7\%3	$2 \$ 90$	-	2,214	
A verage mean temger. ature \qquad	${ }^{\circ} F \cdot$	\cdots	${ }^{\circ} \mathrm{F}$. 83. 5			${ }^{\circ} \underset{6}{5 \cdot}$	

Week of oxipusitimo periou	Eges deposited weekly in-Continmed							
	1933				1031-33			
	5 (emandes rentet! in sulve eans		15 females reared in tile cages		3 females reares in stlve cins		35 femaks reared in tile cages	
First	Tinnber	Perceat	Sumber	Prectent	Stember	ferrent 52.5	Namber	Percent
Second.	$6{ }_{6} 13$	27.4	C 62	$1 \mathrm{l}, 0$	1.1204	(2) ${ }^{\text {a }}$		20.8
Third.	414	15.2	3.4	0.7	1,053	12.5	,032	8.4
Fourth.	153	$\mathrm{fi}_{5} 5$	1 x 2	5.1		3.0	$4{ }^{4}$	5.4
Fifh.	911	9.9	111	3.1	309	5.3	$1{ }^{\text {a }}$	$\because 1$
Sixth	3	1.6	54	1.5	¢	1.4	31	1.1
Seventh.	$3{ }^{3}$	21	11	. 3	35	1.1	11	6.1
Eighth.	29	1.1			si	. 0		
Ninth.	1				14			
Elevemath					3	. 2 -	\cdots
Average mantempera- (trec.a....	${ }^{\circ} \mathrm{F} . \mathrm{EB}_{6} .9$				\circ	- F. 6j. 4		

It is noted that the females reared in tile cages deposited more eggs during the first week than did those reared in salve cans. This may be accounted for by the fact that the former emerged and mated later and oviposited over a slightly warmer period as shown by the average tem-

Figure 28.-Oviposition by adults of the sugar-beet wireworm in salve cans in the laboratory basement: A, By individuals that had been reared in the basement; B, by indivituals that had been reared in tile eager outdoors. Alhatrbra, Calif., 1931-33.
peratures for the two groups during the different years. The decrease in the number of eggs deposited in 1933 during the first week in the salve-can-reared group was caused by a period of low temperatures which retarded ofiposition considerably.

The totals of the oviposition records for the 3 -year period show that 57 percent of the 16,220 eggs were laid during the first week, 20.8 percent the second week, and 10.6 pereent during the third week after oviposition began. The shortest period was 5 weeks in 1932, and the longest extended to 11 weeks in 1931. The parliest oviposition in the basement was on February 17, and in outdoor cages in the sun on March 3.

OYHOEITION IN CAGES EXPOSED TO THE SEN

Oviposition records outdoors in the sun in 1932 were based on the activities of three females reared in salve cans and mated on February 20 and of six tile-reared females which emerged and mated in the period March 4 to 21 , inclusive.

The agg-laying period was marked by unusually high maximum soil-surface temperatures ranging from 107° to $118^{\circ} \mathrm{F}$., which were responsible for the death of 3 males in the cages shortly after mating. The preoriposition period ranged from 6 to 17 days, with an average of 11.2 days. First and last eggs were obtained on March 3 and April 25 , respectively. This group deposited 1,684 eggs, the arerage per female being 157.1 and the maximum 559 , which was not exceeded outdoors during the period of these studies. Over 52 percent of the eggs were deposited the first week and 24 percent the second week. As a result of the high maximum temperatures the adult life was shortened, in comparison with the records obtamed in the following years, to an average of 37.9 days for the males and 39.1 days for the females. Although free adults in the field would disperse to shaded localities if temperatures such as shown in these studies prevailed, the results indicated that even under such adverse temperatures females will survive readily and deposit most or all of their eggs.

Oriposition records for 1933 outdoors in the sun were based on the performance of five females reared in salye-can cages and nine females reared in tile cages that mated in the period February 22 to March 30 . inclusive.

From it female taken in copulation on February 22 first egrgs were obtained on March 9 . Owing to the favorable temperatures oriposition continued later than usual, to May 18. The length of the preoviposition period decreased as the season adranced, from 15 days at the beginning to 5 days toward the end of the season, with an average of 10.4 days for the period. The 14 females deposited 3,962 eggs. The average was 283 eggs, the maximum 300 , and the minimum 90 eggs. Male and female longevity averaged 36 and 53.4 days, respectively, and the length of the oviposition period averaged 33.5 days. Apparently the lower temperatures on the soil surface were eflective in lengthening the various periods, as indicated, and in increasing the average eggy production over the records obtained in other years.

Outdoor oriposition records in 1934 were based on the activities of 13 [emales which were reared in tile cages and emerged in the period February 14 to March 23.

From a female mated on February 14 first eggs were obtained on March 4. Egg laying continued until April 28 . For this series the preoriposition period areraged 11.6 days, the minimum was 5 days, and the maximum 20 . The oviposition period ranged from 7 to 35 and avernged 24.2 days.

Individual egrg totals decreased considerably over the records obtained in previous years, the average being 142.5 egrs. Other factors than temperature, which showed a close similarity to averages obtained in former years, were apparently responsible for this decerease. Hiftysix perrent of the egge were laidid during the first week, which was the highest in this series; also, practically atil the egrs were produced during 4 weeks, as compared with 5 weeks in 1932 and 7 weeks in 1933.
The pairs used for oriposition studies were also observed for longevity. The average life period of the males was $2 \overline{5}, \overline{5}$ days and of the females 43.5 days.

OVIPOStRLON OCDDOORS IS TUE SHADE

Five of the eight females confined in the shate of alfalfa and included in the records in table 29 had been reared in salve cans and were taken in copulation on February 9 (i, 1932. The remaining thre which were reared in tile cages mated on Mareh 8,11 , and 29 , respectively. The length of the preoviposition period ranged from 5 to It days and averaged 10.9 days. Ferg laying continued over a period of 82 days, from Xarch 8 until May 28 , inelusive. Of the 1,552 egres deposited, 34.5 pereent were hid the first week, 28.5 the second, tand 17.3 percent more the third week. Individual oviposition records ranged from 95 to 362 and averaged 194 egss. Because of the favorable temperatures in this location, the oviposition periorl was lengethened to an a verage of $3 \overline{5} .9$ days; and also the adult life, which averiged 28.4 dass for the males and 45.9 days for the females, wis longer than usual. Oriposition continued over a period of 8 weels, whereas in the sun it was only 5 weeks.

Combining the 3 -year records of oviposition outhoors (table 31) it is immediately evisent that temperature is the important factor goserning the rate of oxiposition. This was especially noticeable in 1932 , where in the sun deposition continued for 5 weeks, over a period when the temperatures averaged $71.2{ }^{\circ} \mathrm{F}$. as compared with 8 weeks in the shade, where the mean was 64.3°. The number of egres deposited the first week in the shade was nlso less than in the smin during the different vears. Oviposition terminated in the sumy location on Mas 18, and in the shade on λ hay $2 S$. It is noted that the perentage of eggs deposited during weeks 1 to $\bar{\sigma}$ in the sum did mot rary grently during the 3 years, and that the pererntages for the 3 -rear period corresponded closely to those obtained for the groups of feinales that were reared and that oxiposited in salve cans in the basement. Figure 29 presents graphically the egy-deposition records in the sill and shade locations during weeks 1 to s , inclusive.

Figcae 29.-Percentages of eggs deposited weekly by fenmes of the sugar-ibeet wireworm ontdoors in sunns and shaded locations, Alhambra, (alif., 1932-34.

Table 31.-Summary of the numbers and percentages of eggs deposited weekly by adults of the sugar-beet wireworm reared in salue cans and tile cages in sun and shaded locations outdoors, Alhambra, ('alif, 1932.3 .1

OYHOSITION RECORDS OF ADCLTS OF KNOWN AGE

Additional oviposition studies were conducted in 1934, salve-canreared adults which had completed development after 2, 3, and 4 years being used. The females in the three groups were mated on March 2 and were confined in salve cans without foorl.

According to the records obtained, little variation occurred in the average number of eggs deposited by the females from larvae completing development in 2 to 4 years, inclusive. The averages ranged from 494.3 for the 2 -year-cycle to 551.8 for the 3 -year-cycle females, with 539.0 for the 4 -year-cycle. It was unfortunate that 1 -year-cycle beetles were not arailable so that the comparison could have included all ages. Being small and less weighty, their total oviposition would undoubtediy be much less than recorded for the oder females. The smallest number. 382 , were had by a 2 -year-eycle beetle. The average number of eggs deposited by this group of 2-, 3 -, and 4 -yearcycle adults and the maximum of 704 eggs laid by at 3 -year-cycle female were the highest records obtained during the years in which oviposition studies were conducted.

OYIPOSITION AT COXSHANT AND AT BASEMENT TEMLERATCRES PRIOR TO TLAE OF NORMAE FIELD EMEAGENGE

By confining domant salve-can-renred adults in a constanttemperature cabinet for 1 week at $80^{\circ} \mathrm{F}$., two pairs were obtained in copulation on January $16,1932,5$ weeks before the appearance of the adults in the field and 7 weeks before the first femates emerged from tile cages. All the adults appeared very sluggish and displayed little inclination to attempt mating, but another pair was obtained in copulation on January 20, several on Jamary 23, and more throughout February. Attempts to obtain matings presions to these without artificial henting proved unsuccessful.
To determine the effects of rarious temperatures on the beginning and rate of oviposition, a number of pairs obtained in this manner were confined in constant-temperature cabinets at 80° and $90^{\circ} \mathrm{F}$. and in the basement. The results of these studies are shown in table 3 .

Table 32.- Oviposition records of salve-can-reared adults of the sugar-beet wireworm in 80° and 90° F. constant temperature cabinets and in the basement prior to iime of field emergence, Alhambra, Calif., 1939

In the 80° group the first eqgs were obtained on January 20 and the last on March 13. Rage deposition extended over a period of from 7 to 28 days, or over an aremge period of 20.6 days. The preoriposition period raged from 4 to 17 days and averaged $;$ days. An average of 265.2 eggs were deposited, it minimum of 83 , and a maximum of 447. Apparently this temperature was favomble for adult activity, as all the fenales laid their entire guota of eggs, none being obtained by dissection. Of the total egge deposited, 50.3, 30.2, and 16.3 percent were laid during the first, second, and third weeks, respectively. The first eggs were latid 6 weeks earlier than the normal oviposition in the outdoor cages. The longevity of the males in this group averaged 24 days and of the females 28 days.

The $\overline{5}$ females confined at $90^{\circ} \mathrm{F}$. were obtained in copulation betwen Junary 19 and 29 and haid eggs during the period Fmuary 25 to February 2s. Evidently this temperature was less favorable than 80°, as the oviposition period was shortened to an average of 15.4 dars, and the preoviposition period to 5 days with an individual variation of from 3 to 10 days. In addition, the lives of the male and female were shortened, a ceraging 16.6 and 21 days, respectively. The rate of oviposition was hastened, over 6S percent of the egrgs being hind during the first week, which was the greatest weekly percentage recorded during these studies, mad 30 percent during the second week. Individual exg totals were fow, ramging from 72 to 296 and averaging 150.8.

Only 3 pairs were asaitable for obtaining oripesition records at basment temperature. Although mergere these data showed that as a result of the lower temperatures oviposition oceured over a much longer period than was the case at higher temperatures. The average here was 37.3 days as compared with lit. dars at $90^{\circ} \mathrm{F}$. and 20.6 days at 50°. The lives of mates mad femates were also lengethened to 37.6 and $45 . f$ days, respertively. Apparently the artificial heating temded to stimulate adult activity for sevem days, as the preoriposition period averaged 7.3 days, which wats near the records obtained in the two higher-temperiture groups. The percentages of efogs deposited totaled $i+4.3$ and ib. during the first and second weeks, respectively, and the a corage number tor the group was 214.3 egges.

Additional studiess showed that it was also possible to delay mating and oriposition to nearly $\&$ months after all normal adult activity had ceased. In this experimentadults which emerged in March 1932 were confined in containers filled with soil and placed in a constant-temperature cabinet held at $40^{\circ} \mathrm{F}$. On September 3 these adults were removed to a jar in the besement. Where netivite was again resumed and several paiss were obtained in copulations. One female deposited 41 esges before deat ocented on sieptember 24 . The resulting larvae. normal in all respects, were not given the usalal care and died severnd weoks bater.

FECTNDTY
During the t-vear period in which oxiposition studies were ronducted both in satue cans and in outhor cages the arerage number of eggs deposited per lemale was 268.1 (table 33). The wal number of egges deposited per female during this perial runged from 51 to 704 ,
the latter mimber being deposited by a 3 -year-old, salve-can reared female in 1934. A summary of the yearly arerages shows that 1934 was the most favorable for wireworm reproduction, at least in regard to the number of eggs produced. In this yenr the average was 360.3 egrgs as compared with 308.2 in 1933, 219.5 in 1932 , and 186.2 in 1931.

Table 33.-Fecundity of sugar-beel wireworm adults reared in salve cans and tile cages when confincel in salve aans in the basement and in oviposilion cages cutdocrs in sun and shaded locations, 1 lhambra, Cahf., 1931-3,4

Indivictruls reared in--	Confined during ofichusition De od in-	Year	$\begin{gathered} \text { fird } \\ \text { tuales } \end{gathered}$	$\begin{gathered} \text { Eugs } \\ \text { pusited } \end{gathered}$	Eggs iuid ger fermale		
					Averaye	$\begin{gathered} \text { Maxi- } \\ \text { muan } \end{gathered}$	Min!
Sulve cans	Basen		Strmber	'unper	Number	Number	ber
		1932	11	3, 540	262	${ }^{297}$	
		1293	5	2344	$40.5 .6 \pm 20.0$	543	34.
				0.310	317.ti	: 01	3:
Total or arerage			52	17.69\%	$3{ }^{1}+0 \pm 7.1$	\% 0	99
Tille cages		$\substack{1931 \\ 1982}_{1}$	19	1.754	177, 4 ± 70	93	129
		11933	13	$3.5 \times$	20.	${ }_{3}^{109}$	-183
'Cotal or average	su	.	3	7.53	mas. $6 . \pm 8$	40 s	105
Solve cans and tile cages...		$\left\{\begin{array}{l}19832 \\ 1633\end{array}\right.$	$1+$		15i, 1 ± 33.6	539	
		1934	13	3, 1,85	$\underline{3}+2.0 \pm 13.5$	-	40
Total or averaye .-			36	T. 406	9118. 3 ± 11.6	539	31
Sslwy cans and dite cagrs .-	Shatp...	1032		1.352	194.6 ± 14	362	9
Grand total or aser-			129	34, 30	35. $1=3.0$	704	31

It is observed that the salve-con-reared females which were latger and heravier deposited on an arerage more egegs than the small females reared in tile cages. It is bolieved that the a verage of 228.6 egegs as obtained for the latter would be the approximate averuge eger production of adults which as larvae had inhabited soils cropped only a portion of the year, as in sugar-bert and liman-bean fiekls. Because of the more fitrorable conditions of soil and food in salve cans, the adults which as larvac were reared therein would, as shown, have a greater average cug-deposition record than lemales reared in tile cages where soil conditions were less favorable and keen competition for food existecl.

Owing to the high temperatures prevailing outdoors in the sun, several of the beethes died before their neman puota of egge were deposited, this being especially true in 1932. This assister considerably in lowering the ayerage femate eger meter! for ald years ondoors in the sun. The small size of the tiloreared females a madable for the oriposition studies of 1934 in this location probably aceomed for the low averace of 142.3 . In the shath of alfalfa, where optimum temperiatates prevaited, the itwerage was 194 egers per femalr.

In summarizing the oviposition records of females reared in satre fans and of those reared in tile cetyrs daring the 3-year period 1!31-33, it is observed that the oriposition period for the tilereared group
ayeraged 28.5 days, as compared with an average of 36 days for the group reared in salve cans (table 34). Apparently this varintion was due to the fact that most of the tile-reared females emerged, mated, and oviposited later in the setson when temperatures were much higher. In addition, the high soil temperature which they encountered in their migration surfaceward would undoubtedly also assist in shortening their period of activity. In the two groups the longest oviposition period, 75 days, and the shortest, 8 days, were for salve-can-feated females. In the sun the arenger ranged from 24.2 days in 1934 to 33.5 days in 1933. The average in the sunfor the 3 years was 28 , with a maximum of 56 and a minimum of 7 days. For females confined in the shade the duration of the oriposition period areraged 35.9 days, or an increase of 7.9 days over the average obtained in the sum.

Thbse 3t.-Duration of the oviposition period of adutts of the sugar-bect wireuorm reared in salve-can and Lile cages, when confined in ouiposition cages in the basement and in sunny and shated localities outdoors, .thambra, Calif. 1931-5.'

HARDINESS OF THE BEETIAS

The beelles are noted for their hardiness and for their ability to withstand excessive handing or unfavorable wenther conditions. Very little mortality oceured among the thousands of reared adults that had been earied through the winter in salve cans for use in these studies. Morcover, as shown by the oviposition and longevity records, these adults deposited, on the average, more eggs and remained alive as long as the aduts reared in the cages, that had not been subjected to handling.

Females that had oviposited in ovemoist soils in salve cans would oceasionally have partictes of moddy soil attached to their tarsi, which made movement difficult, but even this did net retard the rate and amount of oriposition.

Of 150 adults that hard been remored from their pupal eells in flowerpots and placed in tile rages 6 to 12 inehes below the surface on December $\bar{i}, 1930,100$ enserget in 1931 . This showed that the redis-
tribution of adults prior to emergence did not affect the time or rate of their appearance the following semson. Emergence in 1931 from the group of cages containing aduts that had not been disturbed began on Febrtary 24, and the peak was renched on Mareh 11. The disturbed aduits emerged and reached their peak on the same dates. This indieates that plowing during the winter monthe and the subsequent redistribution of the adults in the soil would not likely atter the time and rate of their emergence the following spring. "The experiment further demonstrates the hardiness of beetles in being able to withstand unfavorable conditions, such as prevailed after their transfer to the eages, and the ability of the majority to emprere when confined in this mmner.

VARLATHON IN THE WEHGHT OF ADLLTS

It was observed that considerable ratiation existed in the size of the whilts collected in the fied or reared at the laboratory. Males and femabes that had completed development in 1 year were very small, usually only half as large as those which matured after 2 or 3 years. A number of weighings made meh season on nowly transformed adults showed that the salw-ran-remed males that matured in 1 year areraged 28 mge. in wephet ats compared with 47 and 49 mg . for the 2 - and 3 -year-old maks, respectively. The males reared in the cayes were still smaller, areraging 21 and 2 a mg. after 1 and 2 years in the larval stage, A similar variation occured with the Iemales, exerpt that these were atil heavier increasing from an arerage of 38 to 82 mg . by the third year, after which no significant incerease in weight was noted. Where there is considerable competition for food, as in tile cages, it is natural to expect a lighter weight as compared with adults that as larvar had been confined individually in satre cans. Nso, larvae that complete their life cycle in 1 year would be expected to transform to small adults, considering the short duration of their teeding periol.

To obtain additional data on the efferes of various quantities of ford on the weights of laryat and adults, a number of weighings were made of individuals in the rearing series of 1933. consisting of 3 groups fed 10 and 20 kemels of wheat monthly, and 10 kernels monthly except from October 1 to March 1. The harvac were weighed on July 5, 1934, and the same when adults (2-year cyele) shomly after they emeryed in September and Ortober of the sume year. 'The results are given in table 3 .

TAbue 35.-Effect of parious quantities of ford on the length and weight of mature larvae of the sugar-bect wireworm reared in salue cans of the 1033, 2-yen-cycle group, and on the weight of the same individuals after cmergence as adults, Alhambra, Callif., 1938-34

G1ROTV 3, FED 10 KEKNELS OF WITFAT NONTHITY ENCEPT FROML OCT. 1 TO MARC! 1

2 Adults welibed durint september und Octaber j6it.

- A pr+ $\mathrm{E}=10$ inelusiver. 15%.
- Apro 23-2S, inclustue. 1093.

WIny 20 -June 3 , inclusive, 1833 ,
These data show eonchusively that the wright of the larvae prior to pupation and that of the adult are governed by the guantity of food accessible during the lamen period.

I.ONGEAITY OF ADLLTS

The data on bongevity cover only the lemerth of life of adults from time of mating until death, and do not inelude the undetermined time of adult life spent in the soil from transformation in the summer or find to emergence, whiph ranges from 5 to 6 nonths. Tmmerlintely after pairs had mated they were placed oither in salue cans and ronfined in the basement or in oviposition cuges which were set up ontdons. The containers were fillief twothiods fall with soil that hat been em thenger a. 60 -mesh sereen and which contained approximately 12 perent of mosture by wight. No food was provided in eiller kind of contaners during the life of the adults. The soil wats examined and changed daily limtil the first eggs were obtained and therenfor at wedly intervils until death of the adults.

The length of life of adults varied considerably, depending on the temperature in the location in which the pairs were confined (table 36). Basement temperatures during the sensons of 1931 and 1933 were especially favorable for lengthening their life period, whereas excessively high temperatures in 1932 caused considerable enty mortality. The comparison for the tile-cage-reared group was not so striking, but this will be explained later.

Table 30.-Longevity of adults of the sugar-beet wireuorm from mating to death, when reared under different conditions, Alhambra, Calif., 1931-3:

REARED OUTDOORS N ETX N SALNE (ANS AND TLDF CAGES

1932.		9	17.9	39	2	9	39.1	+4	21
1983		14	36.0	32	7	$1+$	53.4	8 i	35
153	12	25.5	39	12	$1: 3$	43.5	3)	15
	Total of averake	30	27.7	32	2	36	46.2	ti	?

REARED OTTOUORS IN SLADE IN EALCV CANS AND TULE CAGFA

Adults confined outcloors in the sum in 1932 appented also to have been affected by abnormally high maximum temperatures which prevailed during February and early in Marel. Mates espercially were less resistant to the heat, as is shown by the 2 -day record, the shortest in all groups during the 3 yars. During periods when high temperatures prevail it is natural to expect an adult migration to fiedds containing cover crops or alfalfa. To determine the longevity of addulis secking such shelter, oriposition cages were set up in an ilfalfa plot adjacent to the laboratory, the results of which are shown in table 36.

Most of the adults reared in salve cans were mated in February and early in March, whereas the greater number of the tile-reared ustults emerged and were mated from 2 to 3 werks hater and lived during a
period of slightly higher temperatures. In addition, the higher temperature of the soil in the tile cages, especially near or on the surface, which the adults would encounter as they migrated upward or after they had reached the surface, would assist in shortening the life of tile-reared adults.

SEASONAL HISTORY

The seasonal history (fig. 30) varies from year to year according to the temperature in the different localitics and the type of soil. In the more sandy soils, which respond quiclity to temperature changes, emergence of males has occurred as early as February 5 , followed by females on February 13. In the heavier soils males tave appeared

Figune 30.-Seasonal history of Limonius californicus in southern California.
on February 20 and fenales on March 1. The patak of emergenee in the field generally occured between March 16 and 31 and in the tile cages between March 5 and 19. Emergence in the cages terminated on April 4. Mating usually takes place immediately after issunnee from the soil
In the laboratory basement egg laying began on February 17 and in outdoor cages in the sun on March 3. The peak of oviposition occurred between Mareh is and 31 and terminated on May is in the sun, and on May 28 in the shade. Hateling continued over a period of 78 days, from March 23 until June 8.

A few of the earlier-hatched larvae completed devolopment the same season and the majority matured the sceond year, bat some of the individuals under observation required 3 , 4 , or 5 years. Outdoors in tile cages the percontage maturing the first year was considerably
higher than with those reared in the laboratory basement. with a correspondingly lower percentage of second- mad third-yen individuals.

The first pupa was recovered on July 22 and the last on October 27 , the peak occurring during the period from September 16 to 29 . Newly transformed adults were obtained from August 12 until November 21. If not disturbed br cultural practices, the adults remain in their pupat cells until December. During this month movement surfaceward begins, with the males slightly in adranee of the females.

Nateral control

Grat (f) lists numerous birds as enemies of adults of the sugar-beet wireworm. Among these the Califomia shrike (Lanius ladoricianus gambeli) was found to be the most important. The carabid Calosoma cancellatum Esch. was expecially valuable in destroving the beeties that had accumulated under old beets for protection. Frequently several of these carabids, with the remains of Limonius calfornicus adults, would be found underneath malva traps used in trapping the aluits. A number of these carabids were placed separately in batery jars mad supplied with a surplus of elaterid beetles. Over a period of 30 dars between Mareh 26 and May 14. 1934, the number of wirworm adults destroyed daily ranged from an individual average of 2.6 to 4 , with a minimum of 1 and a maximum of 19 . The greatest number of wireworm adult, killed was 302 per battery jar, and the least 130 . These same predators also destroyed an nerage of 20 host larvac per day per battere jar. These larvae had bern introduced near the com of the emergenee proxiok when beetles were searee. Cral (4) also found this species with the remains of injure wireworms in the field. The carabids were observed in the field throughont the entive emergence period.

Reared adults were frequently found attacked be fungus but nome of the thoustands collected in the fied nppeared to be affected. Meary rains are of little value ans a controlling factor. Adults that had been trapped under malva placed in shallow pits were demehed be a 2 -inch rainstorm orer a 24 -hour period, but these appeared normal and very artive when examined on the Sollowing dias.

The larvae, being maceessible and in addition, havily chitmized, semed to be entirely free from attacks be internal parates. Both Graf (f) and the workers at Ahambra. (Calif., have exmmed thonsands of harvo without finding a single parasitizel individual. Along the sea const gulls and crows lollowed the phass in large numbers apparently leeding on the wieworms brought th the surface.

Fungi and barteria desitroyed a small number of the latron and pupac confined in sulte cans. but the wew neser observed on liaddcollected material. Feges wre freguently nttarked by fungi in sulve cams, capecially when the latter and the soil had not been sterilized. The becteria or fungi were not identifed. Larrab ronfined in llowerpots and in tile cages ware often found heavils infested with mites Wamily Tyoglyphidact. but theso appeared not to have aftereed the laram in the least, as they fod and solted womatly.

Probably the most raluable preducions enemies of the surar-lyent wirewom are the larvace of Psiloefphate frontalis Cole ndipterous family Therevidac). These predators are longe, shoder, amd whisish and, being soll imhabing, they are frequently mistaken for wire-
worms. They picre the heavily chitinized integument, usually near the middle, and suck the body juices. Ten therevid larvac collected in the field between May 18 and 27, 1931, were confincd individually with wireworms in salve cans. Together they destroyed 33 wireworms between May 18 and the time the individuals began pupating on June 1. Twenty-one therevids collected in the field on March 16, 1933, killed 70 mature larvac of Limonius califormicus over a period of 50 days. One individual killed 9 wireworms. The therevids used in these studies were almost mature when collected. Judging from the number of wireworms killed during the short time the therevids were under observation, they are undoubtedly responsible for the death of a large number of wireworms in the field over their entire larval period. Further investigations are being conducted on the habits and biology of this insect.

SLMMARY

The sugar-bect wireworm is distributed throughout the irrigated areas of all the Pacific Const States and causes severe injury to sugar beets, lima beans, potatoes, and many other vegetable crops. Damage to most of the affected crops is caused by the feeding of the larvae on the germinating seed or on the young plant. Wireworm injury to potato tubers often causes them to be classified in a lower grade. Seed potatoes may be burrowed into or injured by the larvac to such an extent as to necessitate replanting.

Injury to crops may begin early in February and continue throughout the spring, and even during the summer in fields under irrigation. With a decline in soil temperatures in the fall, larmal activity is resumed, with resultant domage to crops as late as into October.

Dissemination of this species is mainly by flight. Winds may assist in carrying the adults considerable distances.

In moist top soil 00 percent of the eggs were laid in the first inch, whereas when the surface soil was low in moisture most of the eggs were laid between the 2 ? and 4 -inch levels.

The incubation period for eggs deposited in February areraged 35.1 days, for March-deposited eggs 32.2 days, for April-deposited eggs 30.7 days, and for eggs deposited in May, 27.2 days. The range of the incubation period was from 23 days for egos deposited in May to 46 days for eggs deposited in Fobruary. Eggs hatched over a period of 77 days, from Darch 23 until June 8 .
The duration of the larval period in salve cans averaged 171.1, $502.8,857.8,1,233.8$, and $1,589.7$ flays for those maturing in $1,2,3,4$ and 5 years, respectively. Males had a slightly shorter larval period than the females.

A constant temperature of $80^{\circ} \mathrm{F}$. accelerated larval development and caused irregular pupation, wherens at a constant temperature of 70° development and pupation were in accord with the rearings conducted at basement temperature.

There was no difference in the rate of development of stesir-bect wireworms fed lima beans, cirn, or wheat. A group of harvae cxisted on a monthly diet of a kernel of wheat for a period of 4 years. When a portion of these larrae were fed 8 kernels of wheat in the spring, all pupated by fall, wherens in the group continued on 1 kernel per month a few pupations occurced, but the majority continued as larvae into the next year.

No significant relation existed between the length of larvae and the time of pupation, nor can the length of larva be used in estimating their age.
Larvac 3, 4, and months old consumed, on an average, more food during the months of July, August, and September than at any other time of their life period. Although small, they apparently are responsible for a farge share of the damage inflicted to fall-phated vegetable crops.
The number of instars ranged from 10 to 13 for wireworms supplied with an abundance of food and completing development in 2 years under favorable cage conditions. Linder adverse cage conditions, I larra died after completing 22 molts in the course of a 5 -year cycle. During the first year of latval life activity was greatest and the duration of the instars shortest. With less activity during the winter and in the following year, the a verage duration of the instars was increased.

Of larvar reared in salve cans and fed rarious kinds and quantities of food, 4.1 percent matured in the first year, 80.7 percent in the second, 13.8 percent in the third, 1.2 percent in the fourth, and 0.2 percent in the fifth. In outdoor cages 4.5 percent matured in a 1 -year cycle, 13.7 percent in a 2 -year cycle, adol 0.7 percent in a 3 -year cycle. A total of 81.1 pereent of the larvae reared in outdoor cages were either the victins of camibalism or died from natural causes or injuries received when handled. More of the carly-hatehed larvae matured the first year than of the late-hatched, in both salve cans and outloor cages.

The propupal period areraged 7.6 days. Females remainet in the prepupal stage for an average of 8.6 days and males 7.4 days. The carliest pupation in salve cans occurred on June 13, in 1934, and the last pupation on October 27 , in 1931 and 1933. The seasonal peak ranged in different years between September 1 and 22. The pupal period ranged from a minimum of 13 days to a maximum of 34, and averaged 21.4. In outdoor cages the average depth of pupation was 10.5 inches, the minimum depth 4 , and the maximum 24.

Emergence of adults in the field was observed as ealy as Jamary 25 in Los Angeles County and February 1 in Orange Countr. The peak of emergence, based on sweepings of alfolfa, occurred in the period March 16 to 31.
If not disturbed by cultural practices, the adults remained until December in their pupal cells in the soil at an average depth of 10.5 inches. During December a movement surfaceward began, and by Jonuary 31, adults were found at an average depth of 7.5 inches. On February 20 they were found at an arerage depth of 4 inches. In this movement upward mates precede the females br seremal inches, thas accounting for their earlier appearance in the feld and in outdoor cages.
The beginning of adult emergence is governed by the soil temperatures during Diember and Janary. Low temperatures delayed the appearance of the adults to March 1, whereas high temperature. caused the carliest margence (Jamary 25). Although the peak of emergenee cach year ritics with the temperature, all such peaks occured during the period from February 27 to March 19. Males were always more numerous during the first portion of the emergence period. Adult cmergence during all the years when the observations reported in this bulletin were under way termimated April 2, 3, or 4.

The proportion of females increased with the length of the larval life, from $\overline{\overline{6}} 1,48 . \overline{7}, 59.4$ and $66 . \overline{7}$, to 100 percent for individuals reared in salve cans and completing development in 1, 2, 3, 4, and 5 years, respectively. For those reared in outdoor cages, and completing development in 1, 2 , and 3 years, the percentages of females were $32.2,55.5$, and 60 respectively.

The duration of the preoviposition period outdoors areraged 11 days. In the basement the arerage for temales reared in salve cans was 5.2 days and for outdoor-cage-reared females 6.1 days.
Females reared in salve cans and outdoor cages and confined in the basement after emergence deposited 57.20 .8 , and 10.6 percent, or a total of 88.4 percent, of their eggs in the first, second, and third weeks, respectively, after oriposition began. Outdoors in the sum, the percentages of eggs deposited were $50.8,22.5$, and 11.5 respectively, or a total of 84.8 percent for the first 3 consecutive weeks.

Dormant adults reared in salve cans and exposed to a constant temperature of 50° F. for 1 week mated and laid eggs 6 weeks prerious to normal oriposition in outdoor cages. Adults emerging during March and held at a constant temperature of 40° mated immediately when removed on September 3, and deposited fertile cgrgs.

In the basement the earliest ego deposition was on February 17 and in outdoor cages in the sun on Slarch 3. Oviposition terminated on May 18 in the sun and on May 28 in the shade. The average number of eggs laid was 268.1, and the maximum of 704 eggs was laid by a 3 -year-cycle female reared in a salve-can cage. Adults reared in outdoor cages areraged 225.6 eggs as compared with 346 eggs for females reared in salse cans. Outdoors in the sun the average number of eggs laid was 208.3.

The average oviposition period in the basement for females reared in outdoor cages wris 28.5 days and for females reated in salve cans 36 days. In oriposition cages in the sun 28 days was the arerage and in the shade 35.9 days. The average for all years was 31.2 days, the maximum 75, and the minimum 7 days.

Male longerity areraged 29.8 days and female longerity 46.2. The maxima were 91 days for a male and 81 for a fomale. Adults reared in salve-can cages lived longer than those reared in outdoor cages.

Listed as important enemies of the sugar-beet wireworm are Calosoma bectles, birds, fungi, bacteria, and dipterous larrac of the family Therevidae.

LITERATLRE CITED

(1) Campaeli, Roy E.
1924. PRELIMNABY REPORT ON THE ESE OF CALCICMI CYANIDE AS A SOIL
(2) fUMIGANT FOR WIREWORMS. FOUR. Econ. Ent. 17: 562-067.
1926. TKE CONCENTRATION OF WIREWORMS BY BAITS BEFORE SOIL FUMIGation with calcich cramide. Jour. Econ. Ent. 19: 636-642.
(3) \qquad and StoNe, M. W.
1932. the effect of sulpher on wireworms. Jour. Econ. Ent. 25: 967-970.
(4) Graf, J. E.
1914. A PRELIMINARY REPORT ON THE SEGAR-BEEF WIREWORM. C. S. Dept. Agr., Bur. Ent. Bul. $123,68 \mathrm{pp}$., Hlus.
(5) MeDougale, W. A.
1934. The determination of larval instars and stadia of nome wire-
(6) worme (elateridae). Queenshand Agr. Jour. 42: 43-70, illus.
1934. THE WIREWORM PEST AND ITA CONTROE IN CENTRAL QUEENSLAND StGar-cane fields. Queensland Agr. Jour. 42: 690-726, illus.
(7) Mhnnerheim, C. G.
1843. BETTRAG zOR KAEFER-FACNA DER AEECTISCHEN INSELN, DER INEEL Sitkifl und neu-chliforeniens. Soc. Imp. des Nat., Moscow Bul. 16 ($)$: $[175]-314$.
(8) Stone, M. W.
1935. TECHNIGEE FOR EIFE-HISTORY STCDIES OF WIHEWORMS. JOUT. Econ Ent. 28: 817-824, illus.
(9) Van Drke, Edwin C.
1932. Miscellaneocs studies in the elateridae and related families of coleoptera. Calif. Acad. Sci. Proc. (1) 20: [291]-465.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS last PRINTED

This bulletin is a contribution from

[^0]: - Received for mablication January 18, 1040.
 ta The writer expresses his apprecintion to Roy E. Camplell, entomolortst in charge of the truck crop and garden insect laboratory of this Bureau at Almmbra, Calif., under whose immediate supervision these biologieal studfes were epntlueted, for helpful suggestions, criticisms, and assistance during the inversligation and in the preparation of the manuscript. Apprectation is aiso extended to J. C. Elmore or the same labormtory for the ascistance piven in photographing the various insect stages. The writer is atso greaty findebted to A. F. Eowlani, K. D. Bloop, and C. Henne for their vahuble gid in carrying out the lffe-history investl. gations. C.S. Guy contributed materially by drawing the eraphs and assistiag in the feld work. Thanks
 1932, 1933, and 1934.
 ${ }^{2}$ Order Coleoptera, fomily Elateridac.

[^1]:

[^2]:

[^3]: I Description of eqg. inrva, ant pupa nueted from Graf Ci, pp. Li-lft.

[^4]: - Determinatinos by E. T. Vnn Dyke.

[^5]: Fiblidisy 25 ware used.

[^6]:

[^7]: 1 Prepupat period inctuded in larval period,

[^8]: - Possibly 5 of the earlier molts were missets.

[^9]: 10 According to H. F. Eutigg, these mites are mfgratory nymphs of some specits of Tyroglyphldar, prob. ably not parasitic.

[^10]:

[^11]: in see foot bote it，f． 9.

