

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

DEPARTMENT OF AGRICULTURE WASEINETON, D. C.

Methods of Distinguishing Between the Shipmast and Common Forms of Black Locust on Long Island, N. Y. ${ }^{1}$

By Henry Hopp, associate botanist, Hilleulture Division, Soil Conservation Service ${ }^{2}$

COMTENTS

INTRODUCTION

On millions of acres of privately owned farm land, a permanent soil-conserving plant cover is the most effective menns of combating the soil-erosion hazard. In order to establish a protective cover on crodible land, large numbers of native trees are being planted. Black locust (Robinia pseudoacacia L.) is one of the trees widely used for this purpose because it possesses outstanding soil-building qualities $(1, \tilde{5}, 9,10)^{3}$ and its uschuness on the farm is well recognized. Since farm land on which trees are planted for the control of erosion is frequently diverted from profitable use, it is essential to use forms that yield the highest possible finamiml return. The most likely method now available for producing improved kinds of black locust is field selection of superior clones and strains.

A number of promising forms of black locust have recently been selected. These selections are being studied to determine whether their desirable qualities are retained under proparation, where they can be grown successfully, and how they can be cultured economically.

[^0]One of the promising forms under test was found growing on Long Island, N. X., where it was introduced over two centuries ago. In 1936 Raber (11) described this form as a separate botanical variets under the name slipmast locust, Robinia pseudoaracia var, rectissima.

The origin of shipmast locust is not anthoritatively known, but this form has been recognized locally on Long Island for generations as a cistinct variant from the usual or common form of black locust $(3,7)$, such as is found ordinarily in other parts of the country. ${ }^{4}$ Only fecently, however, has this knowledge become general.

Shipmast locust posaesses sereral outstanding qualities of economic value. The shape of the shipmast locust stem is strongly excurrent and relatively straight in contrast to the stem of common locust, which is often forked and crooked. The effect of sterm shape on yield is illustrated by a cutting operation conducted by the writer on is shipmast locust trees and an equal number of common locust trees of comparable d. b. h. ${ }^{5}$ growing in 10 stands on Long litand. ${ }^{6}$ The yich was determined by splitting these trees into S -foot fence posts. The nuinber of first-grade posts obtained from the shipmast locust trees was approximately 50 pereent greater than that obtained from the common locust trees.

The wood of shipmast locust is reported to be much superior to that of common locust. The prewalent belief on Long Island, tereloped through more than a century a experience with the two kinds of wood in use as fence posts, is that shipmast locust wood is much more resistant to decay than common locust wood. This opinion seems to be well-founded and is borne out by authentic observations on old posts (3, 11). Because of their durability, shipmast locust posts are regularly sold at much better prices than are obtained for common locust posts. For the purpose of obtaining a direct comparison between the two kinds of wood under controlled conditions, a log each of shipmast locust and common locust were collected from frestily cut trees of similar size. The results obtained by exposing small blocks from these logs to pure cultures of four wood-rotting fungi indicate. nlso, that shipmast loctist wood is considerably more durable thin tiawood of common locust (8). This conclusion has since been corroborated by tests on a wider selection of trees. ${ }^{\text {. }}$

Another important consideration in determining the value of shipmast locust is its resistance to the locust borer (Cyll haf robinine Forst.). According to Hall (b), injury by the tocust borer is closelyassociated with growth rate and rigor of the tree. Although these' site effects tend to mask genetic difierenees, Wall reached the conclusion that shipmast locust is much more resistant to injury be the locust borer than the common locust either on Long Island or in the Central States. Ife states ($6, p, 727$) that of the various forms studiecl, "* * * shipmast locust stands out as bring one of the most desirable yet encountered."

These studies clemrly indicate that shipmonst locust is muen superior to the eommon locust on Long Filand. It is therefore (desirathe tu

[^1]test shipmast locust in other parts of the country where common locust is now gencrally used for farm planting. As an aid to teelinicians engaged in studying and using this desirable form, accurate, standardized means of recognizing shipmast locust are necessary. Reliable methods of identifying shipmast locust are needed also in selecting locations suitable for the collection of propagating stock. Since shipmast locust does not produce seed in practical amount it can be propagated only by vegetative methods (12). Propagating stock can be collected by digging sprouts that are present in ficlds or by making root cuttings from older trees, provided mothods are arailable for distinguishing betwees the shipmast and common forms. Methods of identification are required also in detemmining the geographic distribution of shipmast locust in other parts of the country and in studying its growth requirements and reactions where its tendency to derelop the typical shape is modified by site conditions.

The problem of identifying tree species is in most cascs a simple one. Variants within a species usually present a more coniplex taxonomic problem: First, because the morphological differences between variants of subspecies rank are often in characters that have little taxonomic value; second, because specific differentiating characters olten show considerable overlap for individual trees. This is true in the ense of the shipmast and conmon forms of black locust on Long Islamd. The accurate identifection of shipmast locust br means of the type character, tree shape, is impracticuble. Although the superiority in tree shape of shipmast locust is in generai cteariy apparent, this chamater has not proved susceptible of objective description or measurement. Hence, the utility of tree shape for recognizing shipmast locust depends hargely on the expetience of the observer. Furthermore, benase enviroment is known to have considerable influence on the shape of trees, ewn an well-trained observer could not identify shipmast locust on all sites by its general appearance. Therefore, aceurate methods for the identification of shipmast locust shoukd be based on morphological eharacters associated with tree shape.

Some of the morphological characers that differntiate the two foms have bem mentioned by Raber (II), but herutofore no standardized procedure has been developed for distinguishing these forms objecticely. The aim of this bulletin is to diselus the prineipal external characters by which shipmast locust differs from the common locust on Long Istand and to describe how these characters can be used in the field to distinguish both mature and young trees of the two groups. Also, the measurements of these chatacters are amatyzed to determine whether the shipmast form of black locust should be considered a taxonomic carmat of the species or only an environmental yariation.

SELECTION OE TREES

In order to selent trees for study of their momhological characteristics, methods were established for chassifying the bhack locust forms on Long Istand into shipmast ame common groups. The classificintion was based on tri -nape, the type character of shipmast locust. These standards wert developerl from Raber's descriptions (il) and from a preliminary examination of the locust forms on Long Island.

Figure 1.-- I, Shipmast loenst tree at Centerport, N. Y. Tho erect shape and narrow crown are typical of shipmast locust. This tree contains usab)(e wood ahost to the top of the stem. B. Common locast treeat Jerieho, N. Y. The low forks and wide erown are typical of eommon locust, Such trees have usable wood only in their butt log, and the wood is of inferior quality in contact with the soilas compared with the wood of shipmastlocust. (C, Interior of a shipmast locust stand. D, Interior of a common locust stand. The usable part of the shipmast locust trees is unforked, straight, and free of side branches. Common locust trees, even in closed growth, are usually forked and branchy. The fence-post yield of mature shipmast locust trees was fond to beapproximately 50 percent greater than that of common locust trees with the same d. b. h.

Abstract

Shipmast Locost.-In open growth (fig. 1, A) the trees have an eveurrent stem, which is mostly untorked throughont its usable leugth. The main stems are relatively straight, with only one or two slight erooks in the usable part. The crowus are narrow, their dameter being 25 to 40 percent of the tree height. The lower branches are straight and form an angle of approximately 45° with the stem axis. The upper branches are short and almost horizontal. In closed stands (fig. 1, C) the main stems show the same general form as in the open-grown trees, but the crown development is confmed to short, hocizontal branches in the upper part of the tree.

Common Locest--Mature trees in the open (fig. 1, B) typically fork two or more times in the usable part of the stem. The main stems are fainly straight near the base, but generally have two or more prominent crooks in the ustbie length. The crowns are relatively wide, their diameter in open growth being 40 to 80 percent of the tree height. The branches are usually long and curved in both the upper and lower parts of the crown. The long upper branches make the crown appear heavier and fulter and give a higher form point than in the shipmast locust trees. In closed stands (fig. I, D) the size of the crown is much smaller, but the branch pruning is not so satisfactory as in shipmast tocust. Although the restricted crown somewhat improves the tree form, the characteristically poor shape is readily apparent.

Besides these differences in shape, none of the shipmast locust trees selected bore seed pods, whereas no common locust trees were selected that did not bear seed pols.

In selecting trees for study, an attempt was made to minimize differences between the two groups that were associated with environmental influences. The surest why of doing this would have been to select trees for study only in places where the two forms were growing side by side, had this been possible. It happens, however, that only three such areas were found, so that for the most part the stands used in the study were not paired. Inasmuch as it was impossible to secure a sufficiently large number of paired stands, a somewhat less eflective procedure was resorted to. Measurements were made over the entire shipmast locust range on Long Ishand (lig. 2) in order to get as complete an expression of envirommental effects as possible. Within this aren a reasonably similar distribution of shipmast locust and common locust samples was obtained. Care was also taken to obtain approximately corresponding proportions of stands of each form on the four principal soil types represented in the area. This procedure assured insofar as it was possible that the factors of environment would affect the two groups of samples in a simifar mamer.

A total of 99 shipmast locust trees in 21 stands and 93 common locust trees in 18 stands in Aissau and Western Suffolk Counties, Long Island, N . Y. were seltetel for this study (fig. 2).

DIFFERENTATHN OF MATCRE TREES

Ванк

The configuration of the bark was found to be the most generally useful character in mature trees for distinguishing the two forms. This is the general beljef among Long Islanders and is mentioned by both Hicks (7) and Raber (1). Raber made a few metwurements of the bark furrows of sample trees. This procedure was developed in

Figere 2.-Location of sample plots, Long Ishand, N. Y.
the present study to give a standardized practical mothod of differentinting the two types of bark.

The characteristic appearance of black locust bark results from separation of the tissues into elongated segments. Segmentation first becomes evident when the stem is about 4 inches in diameter. In common locust trees the outer bark contimues to split as the stem grows in diameter. As a consequence, the individual segments and intervening furrows of the bark increase in number but not in size as the stem diameter becomes greater. The segments of shipmast locust bark, on the contrary, show less tendency to split. Thas as the stem cliameter of the shipmast locust trees becomes greater the segments become wider and the iniervening furrows proportionately deeper.

This fundamental clifference in the process of bark accretion is the basis for the chanacters used in this study to distinguish between the bark of the two groups of samples. Since segmentation of the bark is not evident in stems up to 4 inches in diameter, the bark of conmon locust and shipmast locust trees in the juvenile stage is indistinguishable externally. After the segments have developed, the difference between the bark of the two groups of trees becomes increasingly apparent as the diameter of the stems becomes greater. This may be scen in figure 3. In the two 11 -inch stems, the segments and furrows in the bark of the shipmast locust tree are more prominent than those in the bark of the common locust tre. The difference is even greater in the specimens that are 17 inches in cliameter. This is plainly ascribable to the differences between the furows and segments in the shipmast locust specimens; for in the larger of these the segments are wider and the furrows are deceper and longer, whereas in the two common locust specimens they ate almost efually prominent.

The character of the bark of the trees in the two groups was analyzerl in terms of the following four linear measures (fig. 4): Length of furrows (A), wilth of scgments (B), depth of furrows (C), width of flat crests of segments (D). The recommended procedure in making these measurements is described on page 21. The differenee between
the shipmast locust and common locust groups of diata in cach of the Hour characters is shown graphicalle in figures $\overline{6}, 6,7$, and s.

Of the four charaches, there are pritively corrohad with stem diameler. $l ;$; the fourth, width of the flat segmenterests, is not sig-
 soblid lines indiente the aterage redation betwern the indieated bats
 dion for the $1-p$ ereme limit of probatility is shown by the hoken lines. In figure st the 1 -puremt limit of probzability is shown ber lines
 taned bey photing the measured values in each chat and moting the affinity of these pants to the moan wom lines and probability fimits For the two groupt of lata.

 with stem dianter into a matriph linere funtion that wise the

measure of bark character is designated as the bark index, Q. The multiple function for bark index is expressed by the equation:

$$
\begin{equation*}
Q=0.1572 A+0.0185 B+0.1161 C-0.1597 D-0.0096 E \tag{2}
\end{equation*}
$$

The utility of the bark index in comparison with each of the four constituent bark measures is indicated in table 1.

Table 1.-Percentage of o9 shipmast locust and 98 common locust trees differentiated by four individual bark measures and by the bark index, a compound function derived from these measures

Measure	Trees diflerentiated	
	Shipmast locust group	Common locust group
Indiydual menasures:	Percent	Petcent
dinth of rurtows.	79	
Width of segments	${ }^{66}$	42
Width of dat erests of segment	20	20
Compsund mensure: lurk index	88	83

The bark index calculated from the mean differences of the characters is 0.0836 . This difference between groups is highly significant, as indicated by an analysis of variance between and within groups, which yielded an F-value of 81 (table 2).

Table 2.-Analysis of variance of the mean bark index for a group of 39 shipmast locust trees and a group of 05 common locust trees

The bark index is determined by substituting the values for each sampled tree in equation (2). The mean Q-value is 0.1520 for the 99 shipmast locust trees and -0.0222 for the 93 common locust trecs. Since bark appearance is associated with stem diameter, the Q values for the 2 groups are correlated with strm dinmeter. The linear regression equations for the two groups of data are:

$$
\begin{align*}
& Q_{\text {atilunast }}=0.083-0.0050 \text { times stem diamneter, } S E== \pm 0.0452 \tag{3}\\
& Q_{\text {conmann }}=0.050-0.0058 \text { times stem diameter, } S E_{Q}=0.0315 \tag{4}
\end{align*}
$$

These equations show that, at small diameters, trees of the two groups are hardly distinguishable; but since the regression is positive in the shipmast locust group and negative in the common locust

$$
246962^{\circ}-10-2
$$

group the difference between the mean Q-values for the two groups becomes greater as the stem diameter increnses. The equations therefore are a mathematical expression of the field observation that the difference in the bark of the two groups of trees is more apparent in larger than in smaller trees.

Calculation of the bark index from equation (2) and comparison of the bark index with values computed from equations (3) and (4) are facilitated by use of the nomograph in figure 9 . This chart permits classification of the two bark types by graphic means directly from the field measurements. The procedure used to determine the identity of a bark sample is described on pages 21-22.

Owing to the similarity in the external appearance of the bark of young trees, the Q-values for the two groups orerlap at the smailer stem diameters. The range of overlap, which is delimited in the nomograph by the triangle $r y z$, includes approximately 50 pereent of the trees at 6 inches d. b. h., 16 pereent at 10 inches, and 1 percent at 16 inches. Bark samples falling within the range of overlap are not identifinble by means of the multiple bark mensure. Those falling outside the range of overlap and within the range of rariation for either group can be identified by this method.

Although bark is a character not ordinarily used for taxonomically differentit.ting variants of a species, it appears to offer a suitable bosis for distinguishing the shipmast and common forms of black locust. A

Figere 5.-Length of bark furrows in 90 shipmast locust (-) and 93 common loenst (C) trees. The solid lines represent the regresstons on stem diameter; the broken lines indieate the range of variation for the 1 -perecont limit of probability. The ploted value for each tree is the mean of 10 measuremente.

Figure 6-- Width of bark segments in 99 shipmast locast (+) and 93 common locust (O) trees. The solid lines represent the regressions on stem diameter; the broken lines indicate the range of variation for the l-peremt limit of probability. The ploted value for carh tree is the mean of 10 measurements.
character, to be used successfully for taxonomic purposes, must be susceptible of objective description and should not be influenced essentially by environment. As shown above, the bark index, Q, supplies a numerical method of expressing the bark difference between the two groups, a difference that camot be necurately described in qualitative terms. Furthermore, this diference between the two groups is not accounted for by entirommental variations. This was determined by an analysis of variance of Q elassified according to (1) stands, (2) soil types, (3) rate of diameter growth, and (4) rate of height growth. Significant differences reve found between stands within both groups, that neither this souree of varintion nor any of the three other sources of variation accounted for the difference in the average Q-value between the two groups. Hence, despite variations that may have been associated with enviromment, the bark index proved to be an effective means of distinguishing shipmast locust from the common locust on Long Island.

Pigore 7.-Depth of bark furrows in 99 shipmast locust (+) and 93 common locust (O) trees. The solid lines represent the regressions on stem diameter; the broken lines indiente the range of variation for the 1 -pereent limit of probability. The ploted value for cach tree is the mean of 10 measurements.

Figute 8.-Width of flat crests of bark secments in 90 stipmast locust and 93 common locust trees. Each block represents the mean of 10 measurements on a tree. For each group the range of variation for the l-pertent limit of probability is indicated by the line above the histogram.

Figure 9.-Nomograph for discriminating between shipmast locust and common locust types of bark. The solid trend lines in the perpendicular scales indicate the regressions of bark index, Q, on stem diameter in the two groups. The broken lines indicate the range of variation for the 1 -percent limit of probability. This chart has been developed from equations (2), (3), and (4).

Calyx Pigmentation

Raber (11) stated that the extent of calyx pigmentation is one of the distinetive characters of shipmast locust. This statement was confirmed in this study by examination of flowers in the same shipmast locust and common locust stands that had been selected for bark measurement. It was observed that the calyx of common locust fowers is tinged with red pigment over a considerahle part of its surface, whereas the calyx of shipmast locust flowers is greenish yellow, with only a few red blotches. Occasional individuai calyces on common locust trees are only slightly colored with red pigment, but the difference between the average pigmentation for individual trees of the two groups is pronounced.

Figure 10.-Variation in the extent of red color on the surface of 631 shipmast tocust calyces and 423 comnon locust calyces. The feld standards for the 7 pigmentation numbers are shown above the histograms.
A numerical estimate of this character was made by the use of a scale that permits classification of calyces according to the extent of red pigment on the calyx surface. The scale was established by arbitrarily designating seven degrees of pigmentation. The field standards for the seven pigmentation numbers are shown in figure 10.
Since black locust fowers, particularly those on shipmast locust trees, are ephemeral, remaining on the trees but 1 to 3 days in the mature stage, the calyces of only a relatively few trees have been
classified by means of the pigmentation scale. A total of 1,054 calyces have been so classified on 11 trees, 1 in each of 7 shipmast locust and 4 common locust stands (table 3). The data are subjected to analysis in table 4.

Table 3.-Pigmentation of the calyx in 7 shipmast locust and 4 common locust stands

Group and stand designation	Calcres counted.	Calyes in pirmentation class-							Mean pirmentation class
		11		3	4	5	6		
Shipmust:	Number	Num-	Number	Number	Nume:	Nunber	Num-	$\begin{aligned} & \text { Num } \\ & \text { hum } \end{aligned}$	Number
A 11.	85 !	15		27		0	0	0	2.1
D 28.	25:	${ }_{1}$	12 !	0	,	0	0	0	2. 1
A 18	113 ,	17	5t:	37		0	0	0	23
- 10.	1 taj	${ }_{8} 8$	$4{ }^{4}$	${ }_{6}^{61}$	${ }_{3}^{9}$	${ }_{0}$	${ }^{0}$	${ }_{0}$	3.4
A1.	112	6	4	\%	5	${ }_{0}$	0	0.	2.5
B 13	58	4	1.5	26	13	0	01	0	2.5
Total.	631	811 :	2ifi	24	3 fi	01	0	1	24
Common:									
A 51.	I28	0	2	$1!$	53	50	3	0	
${ }^{1} 53$.	113	0	0	8	8 fl	30 :	5	0	+
A^{555}	29	0	1	12	31.	40	5	0	+i
B 52.	901	0		1	12 !		27	1	${ }_{5}^{1}$.
Total.	$\ddagger 23$.	0	3	35	160	184	40	1	+. 5

Table 4.-Analysis of variance of calyx pigmentation for a group of seven shipmast locust siands and a group of four common locust stands

Source of raristion	Jegrees of \| freetom	Surn of scuares	Mean square
Between groups...	1	1,173	11.173
Between slands within groups.	9	69	
Within stands.................	1,643	591	. 505
Total.	1.063	1,833	

$$
{ }^{1} F=\frac{1,173}{7.7}=152 ; P=>0.01 .
$$

The utility of this character for distinguishing individual trees of each group is shown by the fact that the mean square between groups is significantly greater than the mean square between trees of each group.

The distribution of calyees on the pigmentation seale is shown in the frequency diagrams of figure 10 . Most of the calyces of the shipmast lecust group show only a slight amount of red color, and no calyces are more than moderately pigmenced. The largest proportion of the calyces in the common locust group are considerably pigmented, and only a very few are slightly pigmented.

Other Characters

Shipmast locust trees differ from the common locust trees growing on Long Island also in the width of the sapwood and of the inner burk. These characters are not very effective, however, for differentiating individual trees, because the variance between observations
within each group is large. Measurments of these characters are useful only as a further check on diagnoses made by other methods.

Since these characters are of minor value taxonomically, they will not be discussed at length. Measurements are conveniently made on fresh increment borings with a scale graduated in sixty-fourths of an inch. As the data are correlated with stem diameter, the mean values for the two forms of black locust may be expressed by the following regression equations:
Width of sapwood in sixty-fourths of an inch:
Shipmast locust $=9.52+0.174$ times stem diameter in inches.
Common locust $=0.53+1.146$ times stem diameter in inches.
Width of inner bark in sixty-fourths of an inch:
Shipmast locusi $=4.16+0.295$ times stem diameter in inches.
Common locust $=3.92+0.604$ times stem diameter in inches.
The mean values for trees of several stem diameters are given in table 5 , from which the affinity of any set of mensurements can be judged. Values for trees of intermediate stem diameter can be readily caleulated from the regression equations.

Tarie 5.-Mean sapuond widh and mean inner bark width based on mensuremente of 99 shipmast locust and 93 common locust trees

DIFFERENTIATION OF YOUNG TREES

Stipular Spines

Since the diagnostic characters mentioned above appear only in mature trees, they cannot be used to differentiate shipmast and common locust plants in the jurenile stage. Neither does the stem shape differentiate the two forms, because shipmast locust and common locust plants appear much alike when young. The typieally exeurent shape of shipmast locust does not plainly develop intil the trees are 10 to 20 fret tall.

The best external character for differentiating young trees of the two forms proved in the present study to be the shape of the stipular spines. Stipular spines can be observed only on young plants and on fast-growing shoots of mature treas, since slow-growing twigs in the crouns of mature trees are practically devoid of spines. Although the spines are annual and are produced on'y on the current yoar's growth, they usually remain on the stems several years before sloughing off.

The length of the stipular spines is not constant on a tree but is correlated with (1) position of the spine on the shoot, (2) length of the shoot, and (3) height of the shoot in the tree. The shape of the stipular spines, likewise, is related to the position of the spine on the

Piovere $11 .-V a r i a t i t n$ in the shape of stipular spines at fons intersials altang the Itength of the sear's growth: .I, Tip of shoot; $B, 18$ inches high on shoot; (', 9 inchers high on shoot; D, base of shout. The shoot on the left is from a shipmast locust tree, that on the right froma eotimon locust tree. A_{p} [roximately 0.5 natural size.
shoot. Figure 11 shows the spines on 1-year-old shoots of a silipmast locust and a common locust sprout, at the following four positions on the year's growth: The tip of the shoot, 18 inches high on the stoot, 9 inches high on the shoot, and the base of the shoot. These photographs illustrate the general ielationship between the shape of the spine and its position on the shoot. The spines at the basal and apical extremities of the year's growth are relatively short aikl blunt; those in the midpart of the year's growth are the longest amd marrowest. Despite differences in size and shape of the spines associnted with variations in the growth of the shoot, there is a definite uniformity in the appearance of the spines on a single tree.

The spine shape of the 2 groups was stulied on fast-growing sprouts. 2 to 4 feet long, collected from the base of 46 mature shipmast locust trees in 20 stands and 37 mature common locust trees in 15 stands. To cempare twig juecimens, the longest, best-dereloped spines were used. It was found that the spines of shipmast locust teres are characterized by an oge or doublerecurved ventrial margin. The dorsal margin is concave to straight. The spines of neary all shipmast locust specimens are slightly arcute and of nuxderate length, 0.2 to 0.6 inch. Sipines notably different from this twpe were found in only 1 stand, near Wramdanch, \therefore. Y. The spines on the trees in this stind posisess the typical dotble-recurved rentral margin of shipmast locust spines but are reffexed and 0.8 inch long. The variation in spine slapes among the shipmast locust trees is shewti in figure 12,4 .

The cummon locust trees on Long Tsland show a wide assortment of spine shapes. The spines are straight or curved ame vary from subulate to acicular. On different commom locnst trees they rary in length and width, in the shape of the apex, in the shape of both dorsal and ventral margins, and in the angles of axillary and tramsaxillary imsertion. Examples of spine variations among common locust trees are shown in figure $12, B$.

The spines from 3 of the 37 common locust trees are similar to those on the shipmast locust trees. Sinee noost common locust trees on Long Island possess spines of other shapes, however, this character distinguishes the greater number of these trees from shipmast locust trees.

 range of variation in shape: . 1, fithipmast lectust. The tpines uniformly hare a doable-recursed ventral marginambare $0.2 \mathrm{t}, 0.6 \mathrm{inch}$ long. Anexception was found in a group of shipmast locust trets prowing near Wyandanh, N. The spines frum these tress are reflexed and 0.8 inelh long. One of these xpines is siown at the extrence right in the lower row. D, Common lacust. Its contrast to the uniformity in spine characters among shipmast levenst trees, the spine shapes vary considerably among diferent common locest trees. Alt heoush
 mast locust trest, a few have beeplon fond that are findi-tinguishathe fram the shipmast locust type. One of these spines is shown at the exferme right inthe lower row. Appresimately 0.75 natural size.

I.EAFAS

 This characteristic can best be sem on leallets from the milifpart of the leat, since ordinmily those toward the extemitias are more variable. The apex of shipmast locust louflets is emarginate but not at all, or only slightly, mucronate. Stipds are usually lacking, but they may be present on large, fist-growitg heares. When present, the are always less than onesixtecothof an inch loner.

The leaflets of poung common lornst tren atre of various shapes. Although they mily be similar to those of shipmast loonst treses, in
roughly 50 percent of the common locust trees examined the leafets at the midpart of the leaf have other shapes. Figure 13, B shows the usual leafet shape found on common locust trees whose leaflets differ from the shipmast locust type. This leaflet is elliptical, with a mucroemarginate apex and a well-developed stipel. Although leaflet shape is not a constant diagnostic character, it has proved useful for distinguishing some of the common locust trees from the shipmast locust group.

Figcre 13.-A, A leafet from the midpart of the leaf of a young shipmast locust tree, showing ovate outline, emarginate apex, and small stipel. B, A leaflet from the corresponding part of a common locust tree, showing elliptical outline, mucroemarginate apex, and relatively longer stipel. Approximately 50 percent of the common locust trees examined bore leaflets similar to those on shipmast locust trees.

DISCUSSION

The data given in this bulletin indicate that the shipmast form of black locust has definite and constant botanical characters. These characters differentiate shipmast locust from the common form of black locust under a variety of site conditions throughout the range of shipmast locust on Long Island. Outside Long Island, black locust trees that are similar in shape to shipmast locust trees have been found over an extensive area in the Northeastern States. Measurement of the bark of these trees and examination of their spines and leaves reveal that they possess the same distinguishing botanical characters as the shipmast locust trees on Long Island. Since the differences between the two forms over a wide geographical range are apparently not associated with site, these differences seem to be hereditary and not environmental. This eridence, therefore, substantiates the proposition that shipmast locust is a distinet botanical variant of black locust. Shipmast locust can be identified by four associated characteristies (bark, calyx, Ienf, and stipular spine) in the manner described in this bulletin, regardless of variations in shape and growth rate that may be induced by environmental factors.

In ascertaining the phylogenetic relationship of the shipmast variant to the species of black locust ns a whole, the spine and leaf characters
described in this bulletin are significant. Spine and leaf shnpes have been found to be clonal characters for black locust. This was determined from experimental plantings established by the Soil Conservation Service in which shipmast locust and other selections of black locust were grown in adjoining rows. In these plantings, clones established by vegetative propagation from individual trees were found to possess uniform spine and leaf characters, wherens marked differences were found in the shape of spines and leaves between different clones and between trees grown from seed. This observation explains the diversity in these characters among the common locust trees on long Island, in which the production of seed permits the exchange of genctic factors. Shipmast locust trees, on the contrary, have been found to possess a uniform type of spine and leaf, except for the trees in the stand at Wyandanch, N. Y. Aside, therefore, from this one stand of treas, all the shipmast locust trees observed in this study appear to comprise a single clone.

Further evidence bearing on the phylogenctic status of shipmastlocust is provided by its cultaral history. According to available historical infommation, all the shipmast locust trees on Long Island have been grown from a single introluction (S). Shipmast locust trees fail to produce seed in any notable quantity; hence they could have been propagated only by vegetative methorls (12). It would seem very likely, therefore, that the many thousands of shipmast locust trees on Long Island are in fact but one clone.

Of the two principal characters by which matare shipmast and common locust trees can be distinguished, the bark is the more suitable for diagnostie purposes sinee it can be easily mensured in all seasons of the year, whereas the calyces con be examined during only a few days in the spring and are diffieult to observe on tall trees. None of the mature common locust trees observed in this study have the distinctive, heavily furrowed bark that is characteristic of shipmast locust. However, the bark index alone is not suffecient for the identification of shipmast locust, since black locust trees can be found, especially within the native range of the species, that have thick bark but belong to other clones. It is important to determine the cional identity of individual thick-barked black locust trees inasmuch as the superior economic qualitios of shipmast locust are not as ret known to be associated with any other clone. Whether or not black locust trees that have the shipmast locust bark index belong to tioe shipmast locust clone would be indicated by a comparison of their spine and leaf characters with those describerd in this bulletin for the shipmast locust trees on Long Tsland.

Although spine and leaf shape can be used to aretemine worther mature thick-barked locust trees belong to the shipmast lorust clone, their use for irlentifying young phants, for which the bark index cannot be determined, is not entirely satisfactory; for the spine and leaf shapes associated with shipmast locust are oecasionally found also on common locust trees. Hence, the character of neither the spines nor the leaves is genetically linked to tree shape. These chameters are uscful, however, in permitting one to recognize by rapid inspection any young trees that definitely are not shipmast locust. Furthor studies are being made to establish methorls, based on internal structurnl characters, for differentiating shipmast locust more accurately in the jurenile stage.

STANDARDIZED PROCEDURE FOR DETERMINING BARK TYPE

The identification of shipmast locust and common locust bark by the method described in this bulletin is a relatively simple procedure that can be followed without involved mathematical computation. The procedure consists in making 10 measurements of each of 4 bark characters on the sample tree and plotting the ayerage of these values on a ehart. The position of the derived point indicates whether the bark is characteristic of the shipmast or the 3ommon locust group.

When the bark is measured, care must be taken to obtain a representative sample of the bark characters. This is accomplished by measuring 10 consecutive segments and furrows around the circumference of the stem, beginning with any segment selected at random and breaking the sequence only to avoid branches and prominent bark wounds.
A diameter tape is placed around the tree at breast height, and only segments and furrows intercepted somewhere within their length by the tape are measured, in the following standardized manner (fig. 4):
Leveth of Frrrows. The mean of 10 measurements, made with a scale graduated in tenths of a foot, is obtained for each tree. The distance measured is the vertical extent of the furrows, which are formed by transverse separation of the bark tissues.

Width of Segme.ts.-The mean of 10 measurements, made with a scale graduated in tenths of an inch, is obtained for each tree. The distance measured is the horizontal, tangential extent of each segment, from the deepest point in one furrow to the deepest point in the adjoining furrow. Measurements are made at about the midpoint of the length of the furrows, not at the apices of the furrows, where adjoining scgments fuse.

Depth of Ferrows.-The mean of 10 measurements, made with a seale graduated in tenths of an inch, is obtained for each tree. A thin, marrow scale, which can be inserted to the deepest point of the furrow, is employed. The depth of each furrow is estimated by holding the srale in a horizontal, radial position with the zero mark of the seale in the deepest part of the furrow. The seale is read at the point where it is intercepted by a line extending across the furrow from the crests of the adjoining segments. The location of this line is facilitated by drawing the diameter tape tightly around the tree so that it touches the crest of each segment.

Tidth of Flat Crests of Segments.-The mem of 10 mensurements, made with a scale graduated in tenths of an inch, is obtained for each tree. The distance measured is the horizontal, tangential extent of the flat surface on the crest of earh segment. The mensurements are made at approximately the midpoint of the length of the furrows, not at the apices of the furrows, where segments ndjoin.

Stem Deneter.--Measuremonts are made in inches and tenths of an inch at breast height with a steel diameter tape.

The data obtained from the sample tree are plotect on the nomograph in figure 9 in the following manner:
(1) The value for length of furrows is loented on axis A, and a line is drawn from this point to the value for width of segments on axis β, thus locating Ω point αb on the reference axis $/$.
(2) A line is then drawn from point $a b$ in the value for septh of furrows on axis C, thus locating a point $a b c$ on reference axis $/ I$.
(3) In like manner, a line is crawn between abe and the value for width of fat crests of segments on axis D, thus lowating a point abod on reference axis $/ H /$.
(-1) From point abed a line is projected through the value for stem dianeter on axis E to intersect axis Q, thus tocating the valte for bark index.
(5) The computed value for the bark index is then projected morizontaly on the rectangular diagram to the intersection with the andependent ordinate for stem diameter. The position of the derived point in relation to the regression lines for shipmast locust and common looust inclicates the allinity af the bark specimen. The arrows indicate the variation for the 1 -pereent limit of probability.

To illustrate the procedure, the identification of a shipmast locust and a common locust tree is worked out on the chart. The mensurements are given in table 6. The data from tree No. A $3-2$ yided a Q-value of 0.183 , which, when projertes on the perpendicular seales to the stem clizmeter of the tree, 34.3 , proves to be within the probable range of shipmast locust and outside the probable range of common locust. The datil from tree No. A $54-5$ yield a Q-value of -0.019 , which is within the probable range of common locust and outside the probable range of shipmast locust at 8.5 inches d. b. h.

This procedure for the identification of the two trpes of bark is an objective method that can be used rendily after a little practice. By this menns it is possible to combine mensurements of four bark characters into one value that differentiates a greater percentare of trees than does the mestarement of ay one character when used by itself.

Tanle 6.- Fich mensurements of a shipmast locust and a common locust trer, and the bark index computed from these measurements on the nomograph in figur. 9

SLDMARY

External differences betwren the common form of black locust and an erect form known as shipmast locust are deseribed. Bectuse of its superior economic fualities, shipmast locust appenes to be a promising form for farm planting.

The data griven inslicate that shipmatst locust, which oceurs on Long Islanl, N. Y., is a distinct taxomonic variant of black locust. Shipmast locust possesses delinite morphological characters regardless of the site on which it grows.

In the jurenile stage, the character of the lenves atad stipular spines is the only extemal means of diferentiating trees of the two groups. Shipmast focust plants have uniformy a doublerocurved ventral margin on the stipular spines and ovate leaflets with emargimate apiess and poorly eleveloped stipels. Young trees camot always be identified with certainty, however, since some eommon locust plants have spine or leaf characters like those of shipmast locust. These charecters are variable in common locust trees. but the greater
number have spine or leat shapes dificrent from those of the shipmast locust group. A study now in progress promises to furnish a method, based on internal structural characters, for differentiating small trees of the two groups.

Individual trees of the two groups can be differentiated with greater certainty in the mature stage. Trees orer 4 inches d. b. h. are distinguishable by mons of the bark index, a compound numerieal expression that differentintes the heary, thick-ridged bark of shipmast locust from the thimer bark of common locust. Whereas it is often difficult, without considerable previous experience, to judge this difference qualitatively, the bark index permits objective determination of eren small differences between the bark of sampled trees. In order to facilitate classification of the bark type in the fied without mathematical computation, a simple Inear nomograph is used. This nomograph difierentiates approximately 50 percent of trees 6 inches d. b. h. and 99 pereent of trees 16 inches d. b. h.

Other characters for differentinting mature trese of the two groups in the ficld are culyx pigmentation, width of sapwood, and width of immer bark. The first character is classified necording to a pigmentation seale, and the other two characters are described by formulas.

LITFRATLRE GITED

(i) Cilapmax, A. J.
1935. The effects of hack bocisy on ansociated species with sperinh heference to fohest tress. Eeol. Monog, 5: 37-60. (2) Cox, G. M., band Martin, W. P.

 3or.r. Sci. 11: 323-331.
(3) Demwner, S. B.
1937. the mistohy of shimant fore'st. Jour. Forestry 35: 709-712, illus.
(4) Fishere, R. A.
1936. the tse of ncltiple measfmements in taxonomic phorlems. Ann. Fugenics 7: 179-18s, illus.
(5) Gamans, W. H., and Mebrbe, F. (!.
 ENTS OF The some Aher. Soc. Agron. Jour 30:122-124.
(6) Hable Rasipt ('.

 35: $721-727$, illus.
(7) Hicks, Joms S.

(8) Hamr, Ray h.

 jected wo certan wood necay foxil Jouf. Forestry 36 :

(9) Keliocic, I. F.

 catalds. dour. Forestry 30: 22 24, illus.
(11) Rabeir, Oran.

(12) SWINGLE, (GABLESF.
 35: 713-720, illus.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

This bulletin is a contribution from

Soil Conservation Sertice
H. H. Bennett, Chief.
Office of Research
M. L. N゙ichols, Asst. Chief of Service, in Charge.
Hillculture Dibision
S. B. Detwilen, (hief.

END

[^0]: 1 Nubmited for pubbitention Marel! 14. 1950 .

 of the District of Colimbin.

 3 Italic numbers in forentheses refer to Ifiteralare ('ited + p. on.

[^1]:

 rank.

 4 Cntathlislient repart.
 ; C"njublished reporis.

