

The World's Largest Open Access Agricultural & Applied Economics Digital Library

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
<a href="http://ageconsearch.umn.edu">http://ageconsearch.umn.edu</a>
<a href="mailto:aesearch@umn.edu">aesearch@umn.edu</a>

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

...

F-7

# START





MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A



### UNITED STATES DEPARTMENT OF AGRICULTU

# WASHINGTON, D.

## Relative Infiltration and Related Physical Characteristics of Certain Soils

By G. R. Free, associate soil conservationist, G. M. Browning, soil conservationist, Conservation Experiment Stations Division, and G. W. Musgrave, principal soil conservationist, Office of Research, Soil Conservation Service?

#### CONTENTS

| Pa                                                                                                                                                                                                                              | re           |                                                                                                                                                                                                                                   | Page                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|
| Introduction Review of related investigations. Experimental material. Procedure. Field. Lab*ratory. Related studies. Rainfall-simulator method. Lateral movement of water. Results. Relative infiltration for 68 soil profiles. | 0134461-1-02 | Results—Continued.  General equation of infiltration Factors affecting infiltration Prediction of infiltration rates Discussion Size and permanency of pures Practical applications of findings Sunmary Literature cited Appendix | . 15<br>20<br>. 30<br>. 30<br>. 31<br>. 31 |

#### INTRODUCTION

Infiltration, as used in this bulletin, refers to the entrance of water into soils under field conditions. Infiltration rate, as used herein, presupposes an excess of water on the soil surface that tends to produce run-off or, if confined on an area so that run-off cannot occur, a head of water on the soil surface. The rate of infiltration has been observed to differ in different soils. The factors that govern the entrance of water into soil are doubtless complex and have been little studied. However, numerous studies have been made of the flow of liquids through various other porous media, particularly sands of various sizes and assortments. The factors governing the entrance of water into material as complex as soil are clearly more involved. The rate of infiltration is a variable rather than a constant factor, changing with changes in soil structure, the temperature of air, water, and soil, the moisture content of soil, and the degree of biological activity within the soil profile. Some of these factors vary seasonally, and others vary during the course of a single storm. Despite these facts it is recognized that the relative amount of infiltration of water into different soils is associated with their physical characteristics.

¹ Submitted for publication July 21, 1939.
¹ Many members of the staff, both in the Washington office and in the field, assisted materially in the development of the study. Acknowledgment for tangit le assistance is due particularly to V. J. Palmer, assistant agricultural engiaeer; C. C. Butler, junior soil technologist; G. D. Brill, encineering alde: H. N. Holten, assistant scientific aide; and Leo Wheeler, junior laborer, who did much of the field work; also to staff members of several State agricultural experiment stations and soil technologists of the rectonal affices of the Soil Conservation Service, who rendered material assistance in the selection of profiles for study and provided laboratory lacilities in several instances. A. E. Brandt and K. W. Babecck directed much of the statistical work. For the assistance of these and many others the authors wish to express their gratitude.

Infiltration is the only process by which precipitation enters the earth's surface and becomes potentially available to plant and animal Whenever the rate of rainfall exceeds the rate of infiltration, surface run-off occurs. Comparatively small differences in infiltration rates may greatly affect the total annual run-off of surface water because rains of high intensity occur less frequently than those of low intensity. A relatively small increase in infiltration rate may eliminate run-off from a large number of storms.

The chief purposes of this study were: (1) To determine the relative rate of infiltration for important soils; (2) to ascertain what relations may exist between infiltration and certain physical properties of these soils; and (3) to explore the problem as a whole, searching for evidences of underlying basic principles and ascertaining directions

future studies may take most profitably.

#### REVIEW OF RELATED INVESTIGATIONS

Investigations dealing with factors that directly affect the infiltration of water into soil have been for the most part restricted to the amount, discribution, and intensity of precipitation. There are, however, considerably more data relating to factors that determine the permeability of porous media and also to physical properties of the soil, which are generally regarded as affecting its permeability.

King (8) and Slichter (21), as well as Mavis and Wilsey (11), have shown the effect of grain size and particle arrangement on the permeability of sands. Muskat (15) has dealt in some detail with the factors that govern the permeability of various natural media, showing the complexities of this problem in contrast to the more simple one found in studying the permeability of graded sands of known physical properties.

In a discussion of methods of determining infiltration rate, Horton (7) includes among the characteristics that influence it, soil structure.

texture, initial moisture content, temperature, and porosity.

Baver,4 in reviewing data from the Marshall silt loam and Shelby loam soils, states: "The type, rate, and amount of movement will be related to the properties affecting the nature of the pore space." He shows that the most impermeable layer of the Shelby loam contains 5 percent of noncapillary porosity, whereas the minimum noncapillary porosity of the Marshall is 25 percent. Data by Musgrave (18) show the infiltration rate of the Marshall to be much above that

of the Shelby.

Slater and Byers (20) determined the rate of percolation through cores from six soils obtained in the field and transported to the laboratory and compared the rates with certain physical determinations of the cores, including the mechanical analysis, volume weight, moisture equivalent, water-holding capacity, suspension percentage, and dispersion ratio. They found correlations between rate of percolation and silt content, suspension percentage, and percentage of sand, but no definite relationship between rate of percolation and volume weight, percent colloid, or moisture equivalent.

Auten 5 has shown that the organic matter in soil beneath natural

I Italic numbers in parentheses refer to Literature Cited, p. 32.

BAYER, L. D. SOIL CHARACTERISTICS INFLUENTING THE MOVIMENT AND BALANCE OF SOIL MOISTURE
SOIL Sol. Soc. Amer. Proc. 1331-437. 1936. [Processed.]

AUTEN, J. T. THE EFFECT OF FOREST BURNING AND PASTURING IN THE OZAKSA ON THE WATER ABSORPTION OF FOREST SOILS. U. S. Forest Expt. Sta., Cent. States, Note 16, 5 pp., illus. 1034. [Minnegraphed.]

forest vegetation is associated with a markedly higher amount of

infiltration than occurs under burned woods or open pasture.

Greene and Ampt (3) and others have formulated infiltration equations of more general application, but these have been shown by Hardy (5) to be inapplicable to colloidal soils. It appears, therefore, that the physical characteristics of the soil will have to be taken into consideration in the development of any equation to represent the rate of movement of water into a system as complex as that of a soil.

Middleton (12) found the dispersion ratio and erosion ratio to be among the best indices of the erosional behavior of soils. determinations are measures of the ease with which a soil goes into suspension to be carried away in the run-off water or to clog the pores and reduce infiltration, as shown by Lowdermilk (9) and other workers.

European investigations of the relation of soil structure to water movement in soils as measured by noncapillary porosity and infiltration rate are reviewed by Sokolovsky (22) and Williams (25). In general the data show that treatments that increase the number of large stable aggregates increase the noncapillary porosity and the infiltration rates.

Lutz 6 found 45.4 percent and 83.3 percent of the aggregates in the subsoil of the Iredell and Davidson, respectively, to be larger than 0.10 mm, and concluded that the high percentage of large aggregates in the Davidson soil was probably the most important factor

in producing greater percolation through this profile.

Bradfield's (1) theoretical discussion dealing with structural relationship in soils emphasizes the importance of large stable aggregates in the formation of relatively large pores, which act as a continuous series of connecting chambers through which air and water can readily pass.

Aggregation has been shown to be affected by numerous factors. As shown by Baver 7 and others, the percentage of stable aggregates is correlated with the organic matter and the amount of silt and clay.

From these investigations it is clear that there are many data on the physical properties of soils that portray their structural characteristics. The relation of these properties to infiltration is recognized, but there is little specific information that deals with the movement of water into and through undisturbed soil profiles.

#### EXPERIMENTAL MATERIAL

The 68 sites included in this study were selected by soils specialists as representative of important contrasting soils. Brief descriptions of the profiles and other information, such as location of site and date of study, are given in the appendix (table 11). Several of the profile , amed and described in this table have not as yet been correlated by the Department Committee on Soil and Erosion Surveys. The series designation of these profiles is tentative. These 68 sites represent 39 soil series and 6 of the great soil groups, Gray-brown Podzolic soils, Red and Yellow soils, soils of the northern prairies, northern Chernozem soils, soils of the southern prairies, and Brown

<sup>&</sup>lt;sup>5</sup> Lutz, J. F. the structure of soils as affecting soil erosion. After Soil Survey Assoc. Bul. 15:98-100. 1931. [Mimrographed.]

<sup>7</sup> BAYER, L. D. AGGREGATION OF SOILS AND CALIFFE 108 SATURATION. Amer. Soil Survey Assoc. Bul. 17:28-20. 1936. [Mimrographed.]

soils (10). They also represent the 9 following groups of parent material: Glacial accumulations (calcareous), glacial accumulations (slightly calcareous or noncalcareous), Great Plains material, marine deposits (marl and chalk), marine deposits (sands, clays, and limestones), wind-laid deposits (loess), residual accumulations, crystalline rocks, and sandstones and shales. These soils include 16 that are properly classified as sandy clays and sandy loams, or sands, and 52 of finer texture, including loams, silt loams, clay loams, silty clay loams, and clays.

The soils are distributed in all the humidity provinces from wet to arid, all the seasonal distribution of precipitation provinces, and two of the temperature provinces (23). Thus, of the climatic provinces occurring within the continental limits of the United States, all are represented except two temperature provinces, the tropical and taiga.

It is to be expected that the field volume weight, organic-matter content, degree of aggregation, moisture equivalent, and other physical

properties of soils so distributed would differ widely.

For the purposes of this study, this wide difference in the physical characteristics of the soils selected has, on the one hand many advantages, and, on the other hand, decided disadvantages. The advantages of such diversity lie primarily in the fact that relationships found for this group of soils may reasonably be expected to be found generally for other soils. The disadvantage rests principally in the difficulty of ascertaining minor relationships most probably existing in subgroups of soils of more homogeneous characteristics.

#### PROCEDURE

#### Field

Various kinds of equipment have been used for determining infiltration rates, including rings, tubes, and rainfall simulators. At the time this study was begun the tube method appeared to be the best adapted to field use, since portability of equipment and water supply

must be considered.

A brief discussion of the technique of obtaining infiltration data with tubes should suffice since descriptions and photographs have been published elsewhere (14). Galvanized-steel tubes, 9 inches in diameter, 10 or 14 gage, were jacked into the soil from the rear of a weighted truck. The tubes were 18 or 24 inches long, depending on the length of tube required to penetrate the subsoil. After the tubes were sunk until only about 2 to 3 inches of each protruded above the surface, a head of water about one-fourth of an inch deep was maintained on the soil surface enclosed by each tube by means of a self-dispensing calibrated burette. A typical installation of a single burette and steel tube is shown in figure 1. At 15, 30, 60, 120, and 180 minutes from the beginning of a run the amount of water that had been drawn from the burette was read and later converted to surface inches.

The water used for these studies was obtained either from municipal water supplies or from wells or cisterns near the site. Some control of quality was gained by determining the pH value of water that might be available and using water that had a pH value nearest 7.0. Obviously, water having any appreciable degree of turbidity could not be used. Salt concentration was not determined, but, since

amounts of water applied were relatively small and duration of tests

relatively short, this was not considered an important factor.

Statistical studies s made early in the course of the work to ascertain the minimum number of replicates that could be used successfully indicated that on certain soils 6 replicates might be enough; on others as many as 22 were required for the same degree of precision. On the basis of these findings, the use of 24 replicates for the main phase of the field work was adopted as standard for all sites. The 24 tubes were generally placed in 2 rows about 6 feet apart and spaced 18 inches center to center in each row. An initial determination of

infiltration rates was made at whatever field-moisture content prevailed at the time, and a succeeding determination was made on the same units 24 hours later. These will be referred to as initial and we truns,

respectively.

Obviously it was impossible to select sites on which plant cover and past cropping history were the same. ever feasible, the sites were in fields on which row crops were growing. These fields were not recently cultivated, and the ground was in a settled condition. If such areas were not available, the sites selected were on fields of small grain or similar crops. It was necessary that a few of the sites be on areas having a permanent grass cover. Most of these sites were in the Southwest, and there the vegetal cover was for the most part relatively sparse even though the areas were designated as range land. The standard procedure was to remove all vegetal cover and



Figure 1.—Typical installation of a single burette and steel tube.

ground litter on the soil surface confined by the tubes, with no disturbance of the soil itself. Musgrave and Free (14), however, have shown that the effects on infiltration rates of cultivating to different depths are transitory, and the effect on rates during the wet run are nonsignificant when the tube method is used.

Temperatures of soil at depths of 4 and 15 inches and of water were taken, and the initial moisture content of the soil was determined from samples obtained from locations near the tubes. The moisture content at the beginning of the wet run was determined from samples from two extra tubes sunk for this purpose and given the usual initial applications of water. The infiltration data from these two tubes were not recorded. Obviously because of the inherent variability

<sup>·</sup> Persenal communication from A. E. Brandt,

of soil, particularly in volume weight, the moisture data should be

used only as an index of general moisture level.

After the completion of the runs, six tubes from the set were taken at random and necessary data obtained for calculation of volume weights of the horizons or portions of horizons within them. Two composite soil samples for laboratory analyses were obtained, one from the surface soil and one from the subsoil.

#### LABORATORY

Mechanical analyses were made by the method outlined by Olmstead and others (16), except that to conform with the classes recently set up in the Bureau of Chemistry and Soils additional separations were made to include the 0.20-mm. and 0.02-mm. classes. Some of the soils were flocculated by sodium oxalate. In these soils a mixture of sodium hydroxide and sodium oxalate maintained the dispersion effectively. Moisture equivalent was determined by the method of Briggs and McLane (2). The dispersion ratios and suspension percentages were determined by the method of Middleton (12). The pH determinations were made electrometrically by means of a glass electrode. Specific-gravity determinations were made by the method outlined by Hillebrand (6). The field-volume weights were calculated from weights and measurements taken from 6 of the 24 infiltration tubes at each site. Infiltration tubes of known volume were A thin rubber bag was inserted in each tube to prevent penetration of water and also to allow water to fill the small irregularities on the surface of the soil. A known volume of water was added, the tube leveled, and the distance from the water level to the top of the tube measured. The soil from the surface horizon was then removed, weighed, and sampled for moisture determinations. This procedure was repeated to obtain field-volume weights of the subsoil. The organic-matter determinations were made by a modification of the Schollenberger rapid-titration method (18, 19), essentially that described by Walkley and Black (24). The average ratio of recovery by the dry-combustion and the rapid-titration method was used as the approximate factor for correcting the values obtained for organic matter by the rapid-titration method. Distribution of aggregates was determined by the method described by Yoder (26). dried samples were passed through a screen having openings of approximately 7 mm, and allowed to slack in water before fractionation on the sieves.

The porosity of the soil was calculated from the data on the field-

volume weight and the specific gravity by the formula

$$\frac{S-A}{S} \times 100 = \text{porosity},$$

where S=specific gravity and A=volume weight (apparent specific gravity).

Three different methods of calculating indices of noncapillary porosity were used. The first method consisted of subtracting from total porosity the moisture equivalent converted to a volume basis.

<sup>&</sup>lt;sup>2</sup> Browning, G. M. A comparison of dry combustion and bapid dichromatic titration methods for determining organic matter in boll. Soil Soi. Soc. Amer. Proc. 3: 158–161. 1938. [Processed.]

The second method differed from the first only in that the moisture-equivalent value was corrected for texture by using average values of the ratio of field capacity to moisture equivalent observed by Harding (4). The third method of arriving at an index of noncapillary porosity was to calculate the volume of pores not occupied by water 24 hours after the initial run. Soil-moisture data were used for this purpose. All values of noncapillary porosity were expressed in percentage of total volume. A further discussion and a comparison of these three methods is presented on page 20.

#### RELATED STUDIES

#### RAINFALL-SIMULATOR METHOD

During the course of the main study one of the field parties was equipped with a rainfall simulator developed in the hydraulic laboratory of the National Bureau of Standards, Washington, D. C., by the Soil Conservation Service. The few data obtained with this were used in comparisons between the sprinkling or rainfall-simulator method of studying infiltration and the tube method used in this study.

The rainfall simulator produced a rainfall intensity of approximately 2.5 inches per hour. To control the effect of air currents on distribution and intensity of rainfall the plot and sprinkling apparatus were enclosed on the top and four sides by tarpaulins supported by a pipe

frame. The plots were 6 feet long and 4 feet wide.

All rainfall-simulator sites were on areas having natural land slopes of approximately 6 percent. The antecedent cultural treatment and other pertinent data for each of the areas are given in the appendix (table 11). Before the initial runs the vegetation was pulled from the plots and bordering areas with as little disturbance of the soil as possible. The maximum depth of disturbance in the plot probably did not exceed 3 inches. The soil was then cultivated uniformly to a depth of about 1½ inches and the slope of the plot adjusted to the required 6 percent. At this time many of the roots in the cultivated depth were removed. The plot boundaries were steel sheets 3 inches wide forced into the soil to a depth of about 2 inches. These were joined to a concentrating trough at the lower end of the plot.

The standard manner of applying water to the plots was to make initial and wet runs of 3-hour duration with about 24 hours between the runs. The application of water extended about 18 inches outside the boundaries of the plot. Immediately after the wet run a metal pan was placed on the plot and a run of 30 to 60 minutes duration was made. The rate of run-off from the metal pan was used as the rate

of rainfall for both initial and wet runs.

Excellent control of starting and stopping the rainfall was had by an interceptor over the nozzles that permitted the water to waste into troughs under the sprinkling lines until the pressure in the sprinkler was brought to the desired value. The nozzles could then be cleared in unison, which permitted an instantaneous application of water to the plots at the desired intensity. Stop watches synchronized all measurements.

When rate of rainfall is held nearly constant and when rate of run-off is precisely measured at frequent intervals, it is possible to obtain

satisfactory infiltration data. The technique employed in this study made possible the elimination of the volume of soil from the volume of run-off and permitted the direct comparison of the amount

of water that was applied as rain with that lost as run-off.

Infiltration data for 13 sites secured by the rainfall-simulator method and the tube method are presented in table 1. The rates determined by the former method range from 0 to 0.98 inch per hour, with a mean rate of 0.38, and by the latter method from 0 to 3.08 inches per hour, with a mean of 0.88. However, a highly significant degree of association between these 2 sets of rates is evidenced by a correlation coefficient of 0.76 (the value of r at the 1-percent point is 0.68).

Table 1.—Rates of infiltration of various soils from tubes and from rainfall-simulator sites

| Soil type                                                                                                                                                                                                           | Rainfall-<br>simulator                                    | Tube sita<br>No.                                                           | Observed<br>filtration<br>during th<br>wet run                         | Rates of<br>infiltration<br>per hour                       |                                    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------|--|
|                                                                                                                                                                                                                     | site No.                                                  |                                                                            | Rainfall-<br>simulator<br>sites                                        | Tube sites                                                 | for tube                           |  |
| Cecil clay loam Cecil sandy loam Davidson clay loam Dunkirk silty clay loam Honcoye gravelly silt loam fredel loam Muskingum silt loam Orangeburg sandy loam Red Bay loam Ruston sandy loam Volusia stony silt loam | 11, 12<br>42, 43<br>2<br>3<br>40<br>7<br>44, 45<br>19, 20 | 27<br>31<br>30<br>36<br>22<br>23<br>35<br>26<br>37<br>33<br>34<br>32<br>25 | Inch 0. 22 , 40 , 33 , 02 , 80 , 98 , 14 , 00 , 18 , 82 , 22 , 98 , 03 | Inches 0.06 40 52 -02 3.08 1.58 1.52 -00 1.38 3.38 1.77 55 | . 26<br>. 36<br>. 02<br>. 1.28<br> |  |

<sup>1</sup> Corrected for reduction because of applications of furbid water.

A study of these two methods might lead one to expect difference in magnitude of the rates obtained because the method of applying the water, the turbidity of the water available for infiltration, and the size of the areas are all different.

It has been shown 10 that an application of turbid water markedly reduced rates determined by the tube method, which normally includes the application of clear water only. Corrections to the data from these 13 sites for an application of turbid water were made in

the following manner.

A few tubes from the set of 24 were selected for a further run of 2 hours' duration, following shortly after the completion of the standard wet run, in which turbid water rather than clear was used. The turbid water was obtained by mixing 1 volume of the surface sell with 4 volumes of water, stirring thoroughly, and then allowing the suspension to stand for 15 minutes. The supernatant liquid was then decanted and used as the turbid water. The degree of turbidity obtained should, therefore, be a function of the characteristics of the soil under study. In all tests the application of turbid water reduced

<sup>&</sup>lt;sup>16</sup> Musgrave, G. W., and Free, G. R. preliminary report on determination of comparative inviltration rates on fome major soil types. Natl. Res. Council, Amer. Geophys. Union Trans. 18 (pt. 2): 345-349, illus. 1937. [Processed.]

the rate, and the percentage reduction thus obtained for the few tubes was applied to the mean of the rates of infiltration of the 24 tubes during the third hour of the standard wet run. This correction because of the application of turbid water was not made to the rates used for the major portion of the work, but only to those used in making comparisons of the two methods.

These corrected rates are given in table 1. They range from 0 to 1.28 inches per hour, with a mean of 0.47. Seven of these corrected rates are higher than the corresponding rates determined by the rainfall-simulator method, four are lower, and two are the same. The difference between the means, which amounts to 0.09 inch per

hour, is not significant for these 13 sites.

The greatest differences in rates determined by the two methods (table 1) are for two of the sites on Honeove and the one on Volusia. These differences and field observational data suggest that forcing tubes into these gravelly and stony soils may have caused disturbance

of the field structure.

The soil may be disturbed and its structure modified by the tubes in three ways: (1) When the tubes are jacked into a profile containing considerable gravel or stones, pieces of this material may be forced either into or away from the core of soil by the sharpened end of the tube or they may be forced deeper into the soil ahead of the tube. is possible that disturbances of this type affect the infiltration data for all profiles in which there is much gravel or stone. (2) Disturbance of soil may result from the compaction caused by introducing the volume of metal into the soil. Such disturbance in soil cores within tubes is probably not great because the walls of the tubes are relatively thin and are sharpened with a bevel on the outside, which leaves the inner walls straight. (3) A disturbance may be caused by the friction and adhesive forces between the soil and the tube. forces are greater than the forces holding the soil in an undisturbed state, compression of the soil takes place as the tube sinks. Forces built up by the compression soon reach a point at which they are greater than the frictional forces, and the tube can then slip past that part of the soil, though this leaves a narrow band of compressed soil adjacent to the tube. Early in the development of the tube methodology it was determined that tubes with a diameter of 3 inches could not be generally used because the soil became compacted vertically throughout the whole tube. Similar difficulties were encountered, though to a lesser extent, on one or two occasions during the early work on Marshall soil when 6-inch diameter tubes were used. In these tests, however, the moisture content of the soil seemed to determine the degree of compaction. Tests were then made with tubes of different diameters. The 9-inch diameter appeared to be satisfactory because there was no noticeable vertical compaction of the soil core and no difference in the infiltration rates secured with 9- and 12-inch It cannot be assumed, however, that there is no disturbance of soil where there is no noticeable compaction of the whole columns.

#### LATERAL MOVEMENT OF WATER

Soil-moisture data showing lateral movement of subsurface water at seven rainfall-simulator sites are given in table 2. Analysis of variance of these data indicates that there was a highly significant

lateral movement of subsurface water as far as 30 inches from the sides of the plots, although the border application of water extended The extent and depth to which the greatest movement only 18 inches. of water occurred were associated with the profile under study. example, the data for both highly permeable Ruston profiles indicate significant movement in the 25- to 36-inch depth only, whereas the data from both of the less permeable Cecil profiles and also from the Orangeburg profile indicate significant movement above this depth. Significant lateral movement was found at only one depth in one of the Davidson profiles. These differences in lateral movement are probably associated with the relative permeabilities of the surface soils and subsoils.

Table 2.—Lateral movement of water on seven soil sites

|                       |                            | Rate of   | i i                                                  | Soil moisture determined— |                                                                 |                                                                 |  |  |  |  |
|-----------------------|----------------------------|-----------|------------------------------------------------------|---------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--|--|--|--|
| Soll type             | Site No. infiltration pour |           | Depth of<br>determi-<br>nation                       | Veerblot                  | 30 inches<br>from side of<br>plot after<br>wet run <sup>3</sup> | 54 inches<br>from side of<br>plot after<br>wet run <sup>1</sup> |  |  |  |  |
| :                     |                            | Inches    | Inches                                               | Percent                   | Percent                                                         | Percent                                                         |  |  |  |  |
| Ruston loamy sand     | 23                         | 1.86      | 7-15<br>15-25<br>25-36                               | , 7.8 i<br>9.2<br>8.8     | 8.3<br>10.2<br>13.6                                             | 7. 1<br>9.<br>9. 6                                              |  |  |  |  |
| Ruston sandy loam     | 16                         | 1. 07     | 7-15<br>15-25<br>25-36                               | 14. 8<br>15. 8<br>19. 7   |                                                                 | 13. 8<br>19. 8<br>21. 8                                         |  |  |  |  |
| Orangeburg sandy leam | 19                         | . 79      | $ \begin{cases} 7.15 \\ 15-25 \\ 25-36 \end{cases} $ | 10.9<br>21.4<br>19.8      | <sup>3</sup> 13, 2<br>21, 8<br>20, 8                            | 11. t<br>21. 4<br>21. 8                                         |  |  |  |  |
| Cecil sandy loam      | 34                         | .34       | 7-15<br>15-25<br>25-36                               | 15.7<br>22.2<br>23.6      | 18.5<br>26.4<br>26.2                                            | 17. (<br>25. 4<br>25. (                                         |  |  |  |  |
| Davidson elay loam    | 11                         | . 34      | 7-15<br>15-25<br>25-36                               | 24. 6                     | 26. 2<br>24. 6<br>24. 7                                         | 24. 8<br>24. 8<br>24. 6                                         |  |  |  |  |
| Davidson clay loam    | 12                         | . 32      | 7-15<br>15-25<br>25-36                               | 24. 6<br>25. 7<br>25. 3   | 24, 6<br>27, 0<br>29, 6                                         | 23. 1<br>25. 0<br>28. 0                                         |  |  |  |  |
| Cecli sandy loam      | 15                         | . 28      | 7-15<br>15-25                                        | 16. 4<br>24. 1            | 19. 2<br>127. 3                                                 | 14. 4<br>23. 8                                                  |  |  |  |  |
| Mean.                 |                            | <b></b> l | 25 36                                                | 25.9<br>10.6              | 27.8<br>121.1                                                   | 22. 9<br>19. 8                                                  |  |  |  |  |

1 Obtained 90 minutes after start of wet run by rainfall-simulator method.

Each percentage is mean of 2 determinations.
 Each percentage is mean of 2 determinations.
 Difference from corresponding percentages obtained before initial run is highly significant.
 Difference from corresponding percentages obtained before initial run is significant.

This analysis includes only the data on lateral movement from profiles with relatively high infiltration rates. The fact that data from all profiles have not been presented does not mean that water was not found to be moving laterally on some of these profiles omitted. A very marked movement was found on some of the Honeoye profiles, but the data were not complete enough to include in the analysis or were observational only. Obviously, however, in such soils as the Iredell, for which the rate of infiltration as measured by either the tube or rainfall-simulator method was very low, lateral movement of water, if it occurred at all, had little effect on final infiltration rates.

Few data on lateral movement of water were collected for the tube sites. When tubes were being dug for volume-weight determination on site 24, a highly permeable Honeoye sod, water about 8 inches below the tube was found to have spread laterally about 40 inches.

In order to study lateral movement further, tensiometers were

introduced at various positions both inside and outside the rainfall-simulator plots and at various depths and distances from the water source. Table 3 shows data on the lateral movement of water for the highly permeable Lordstown stony silt loam. In these data a decrease in recorded tension indicates that water reached the soil around the porous clay cups. It is therefore apparent that subsurface water moved out to a distance of at least 30 inches from the plot. Lateral movement occurred during the wet run as well as during the initial run in this well-drained soil.

Table 3.—Lateral movement of water at site AR-B of Lordstown stony silt loam 1

| Location of porous clay cup                                                                   |                |                           | Location of porous clay cup                                                                    | Time from start of<br>run until tension<br>decreased most<br>rapidly |                           |  |  |
|-----------------------------------------------------------------------------------------------|----------------|---------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|--|--|
|                                                                                               | Initial<br>run | Wet run                   |                                                                                                | Initial<br>run                                                       | Wet run                   |  |  |
| 7-inch depth:<br>Center of plot<br>A inches from side of plot<br>30 inches from side of plot. |                | Minutes<br>13<br>15<br>30 | 13-inch depth:<br>Center of plot<br>6 inches from side of plot<br>30 inches from side of plot. |                                                                      | Minutes<br>21<br>30<br>65 |  |  |

Data obtained by use of tensiometers.

The lateral movement of subsurface water that was observed may seem at first thought to be at variance with the generally accepted idea that there is relatively little lateral movement under field conditions. It should be kept in mind that it was probably a movement of gravitational water and also that the surrounding area was dryer than the plot area. It is not meant, nor is it the intention even to suggest, that lateral movement would have occurred in these soils under conditions of natural rainfall where a large area would be wetted.

However, some lateral movement of subsurface water possibly occurs on small experimental plots even under natural rains where diverse surface treatments such as fallow and sod are adjacent to each other. This variable of experimentation may be controlled to some extent, of course, by the use of adequate buffer areas around plots and the replication of treatments. Such procedures, however, are attended by some practical difficulties and have not been commonly used.

In the present study, where the natural soil is encased by tubes of 9-inch diameter and 18-inch length and remains in place on the sub-layer, lateral movement of water probably occurs only in unusually permeable profiles. The effect of this may be to give in such instances

infiltration rates higher than the true rates.

No definite conclusions regarding the relative merits of the tube and rainfall-simulator methods should be drawn from a comparison of these data from 13 sites. The data do, however, indicate rather definitely that turbidity is the principal factor tending to make rates determined by the rainfall-simulator method lower than those determined by the tube method, in which an effort is made to minimize the effect of turbidity. It is probably true that in general a large percentage of the soil moisture used for crop production is derived from rain that enters the soil without becoming very turbid. One of the objectives of recommending changes in land use practices in order to conserve soil and water is to increase the quantity of nonturbid

water to a maximum. It would seem then that this phase of the problem should receive some consideration when the worth of various methods is being determined.

#### RESULTS

#### RELATIVE INFILTRATION FOR 68 SOIL PROFILES

The cumulative amounts of infiltration with standard errors at 5 time intervals, the soil-moisture data, and the soil and water temperatures for the initial and wet runs on the 68 sites, comprising 39 soil series, are given in the appendix (table 12). Since the initial run necessarily was made at whatever soil-moisture content prevailed in the field at the time, it is to be expected that the data from the initial runs, particularly at the start, would be somewhat more variable than the data from the wet runs. The field-moisture content at the beginning of the initial run might be considered wholly uncontrolled and dependent, to some extent at least, on past climatic conditions. During the wet run, however, the amount of soil moisture should be more dependent on the characteristics of the soil and less affected by past climatic conditions.

Correlations between various periods of the two runs, however, have shown a high degree of relationship. The correlations shown in the following tabulation are all highly significant.

Time intervals for which infiltration rates during the indicated runs are

| correlated: Value                        | 661 |
|------------------------------------------|-----|
| 0- 15 minutes initial run)               |     |
| 120-180 minutes wet run}                 | 854 |
| 0- 60 minutes initial run\(\)            | 01- |
| 0- 60 minutes wet run }                  | 915 |
| 0-120 minutes initial run\               | 567 |
| 0-120 minutes wet run{                   | 188 |
| 0–180 minutes initial run\(\frac{1}{2}\) | 000 |
| 0-180 minutes wet run {                  | 892 |
| 60-120 minutes initial runi              | 054 |
| 60-120 minutes wet run (                 | 854 |
| 120-180 minutes initial run)             |     |
| 120–180 minutes wet run-                 | 859 |
| 0- 60 minutes wet run)                   |     |
| 0-180 minutes wet run                    | 996 |
| 60-120 minutes wet run)                  |     |
| 0-180 minutes wet run                    | 996 |
| 120-180 minutes wet run)                 |     |
| 0-180 minutes wet run                    | 997 |

Value of r at the 1-percent point (odds 00 to 1) is 0.31.

These high correlation coefficients between amounts of infiltration during various time intervals of both the wet run and the initial and wet runs indicate that all time intervals are samples of the same population. This fact means that the amount of infiltration for the entire 68 sites during any particular time interval may be estimated from the amount of infiltration during any other time interval. It should be kept in mind, however, that this would not necessarily be true for a single soil.

As a matter of convenience only the rates during the third hour of

the wet run were used for all correlations and comparisons.

The relative infiltration data for all the 68 sites is presented graphically in figure 2. Here the sites are arranged in order of magnitude of the infiltration rate during the third hour of the wet run. The data pertaining to separate sites will not be discussed in detail. It is



ľ

FIGURE 2.-- Relative infiltration rates for 68 soils during third hour of the wet run.

apparent from these data, however, that texture of the surface soil is not the principal factor in determining the rank of each of these 68 sites according to their relative infiltration. The rates for those profiles having heavy clay surface soils are generally low. On the other hand the rate for Parsons fine sandy loam was one of the lowest measured. It will be noted also that rates for different sites on the same soil type are not always the same, though there is a tendency for them to be so. As stated later, many of these differences can be explained by differences in the physical characteristics of the profiles.

The mean infiltration data for the 68 profiles are presented in table 4. The relationship of relative infiltration rate and time is presented graphically for 2 soil profiles in figure 3. It is apparent from all the data that the relation between time and infiltration, either on a cumulative or rate basis, is generally curvilinear. The slope of the typical infiltration curve indicates a rapidly changing rate at the start, particularly during the initial run, but soon indicates a nearly constant and slightly declining rate of infiltration.



FIGURE 3.—Infiltration rates during initial and wet runs for Cecil sandy loam and Houston black clay. The initial run is higher on the chart than the corresponding wet run.

Table 4 .- Summary of mean infiltration data for 68 soil profiles

|               | Initia     | il run     | Wat       | run       |               | Initial run     | Wet run                                 |
|---------------|------------|------------|-----------|-----------|---------------|-----------------|-----------------------------------------|
|               | - Lilli 14 |            | 7, 6,     |           | 1             |                 |                                         |
|               |            | Aver-      | 1         | Aver-     | ì             | Aver-           | A ver                                   |
| Time interval | Amount     | are rate   | Amount    | age rate  | Time interval | Amount age rate | Amount age rate                         |
| (minutes)     | of infil-  | [ O1 10111 | of infli- | of infil- |               |                 |                                         |
| (mmmees)      | tration    | tration    | tration   | tration   | (mmacca)      | tration tration | tration tration                         |
|               | i          | рег        | i ation   | per       | 1             |                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|               | •          | pour       | i i       | hour      | ŧ             | hour            | hour                                    |
|               | Surface    | !          | Surface   |           | }             | Surface .       | Surface                                 |
|               | inches     | Inches     | inches    | Inches    | 1             | inches Inches   | inches Inches                           |
| 6-15          | 1. 27      | 5.08       | 0.45      | 1.80      | 120-180       | 1.35 1.35       | 0.88 0.88                               |
| 15-30         | .57        | 2.28       | . 27      | 1.08      | •             |                 | ]——                                     |
| 30-60         | .90        | 1.80       | . 49      | . 98      | Total !       | 5. 58           | 3.02                                    |
| 60-120        | 1.49       | 1.49       | . 93      | . 93      | l <u></u>     | l               | · ·                                     |

<sup>1</sup> For 3 hours.

#### GENERAL EQUATION OF INFILTRATION

The infiltration data for any of the 68 profiles may be represented by a general equation of the form

 $I=bt^a$ 

where I=cumulative infiltration inches, t=time of infiltration in minutes, b a coefficient varying for the initial runs on the 68 sites from unity to 0.0087, and a an exponent ranging for the initial runs from 0.04 to 0.82. The form of this equation is the same as that given by Lewis. It does not provide for a constant rate of infiltration even after the lapse of considerable time, except when a=1.0. Practically, however, the rate does become almost constant with large values of t. That data obtained from such a varied group of soils under diverse field conditions may be represented by a general equation is undoubtedly of interest.

#### FACTORS AFFECTING INFILTRATION

The physical and chemical characteristics ascertained for each of these soils and the amount of infiltration occurring during the third hour of the wet run are given in tables 5 and 6. The detailed data from the mechanical and aggregate analyses are in the appendix (tables 13, 14, 15, and 16). The data in these tables have been grouped on the basis of field classification. It will be noted also that in tables 5 and 6 the degree of aggregation in the soil studied has been represented by the percentage of the total weight of the soil in aggregates greater than 0.20 mm. Similarly, the data from the mechanical analyses include only two classifications, namely, the particles less than 0.05 mm. in size and those less than 0.002 mm.

It should probably be stated in connection with tables 5 and 6 that all values pertaining to porosity are on a volume basis. Porosity values are given for surface soil and subsoil separately. These values may be combined—for example, to a depth of 16 inches representing a composite of surface soil and subsoil—by weighting the characteristics of the former in proportion to the depth of surface soil observed in the field. Enough of the subsoil should be included to bring the total height of the column to 16 inches, and the characteristics of the subsoil should be weighted accordingly in arriving at the composite figure.

It will be seen that some of the soils listed in table 5 are erroneously classified as to texture. For example, under clay and clay loams are included four soils that have less than 50 percent of silt and clay. The textural classification is that of soil specialists made without benefit of laboratory analysis. The errors of classification accordingly are in part the result of the recognized difficulty in determining texture precisely by the "feel" of soil, as has been shown by Shaw and Thorp. The errors in classification may also be accounted for in part by the fact that certain of the sites were selected as representative of divergent subgroups within broad, widely recognized groups, such as an eroded phase of a sandy loam, the eroded phase being actually a clay loam. The table accordingly shows both the textural classification made in the field and the quantity of silt and clay determined by mechanical analysis.

U.Lewis, M. R. The Bate of infiltration of water in irrigation gractice. Natl. Res. Council,
 Amer. Geophys. Union Trans. 16 (pt. 2): 391-398, illus. 1937. [Processed.]
 Unpublished paper presented before the Soil Science Society of America.

Table 5.—Rate of infiltration and some physical characteristics of 68 surface soils
SILT LOAMS!

| SILT LOAMS                                                                                                       |                                                                                                          |                                                                                                                                                   |                                                                                          |                                                                                                                     |                                                                                                                                      |                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        |                                                                                                                                     |                                                                                        |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| Site No.?                                                                                                        | Rate of<br>infiltra-<br>tion <sup>‡</sup>                                                                | Total soil in aggregates >0.20 num.                                                                                                               | Silt<br>and<br>clay<br><0.05<br>mm.                                                      | < 0.002                                                                                                             | Volume<br>weight<br>ratio                                                                                                            | peros- :                                                                                          | Non-<br>capil-<br>lary<br>porosity<br>index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Or-<br>ganic<br>mut-<br>ter                                             | Mois-<br>ture<br>equiv-<br>nient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sus-<br>pen-<br>sion                                                                                                   | Dis-<br>per-<br>sion<br>ratio                                                                                                       | pH<br>value                                                                            |
| 19                                                                                                               | In. 0.72 62 62 64 64 64 64 64 64 64 64 64 64 64 64 64                                                    | PC. 1 4 9 7 8 8 7 9 7 8 2 5 2 10 5 7 11 16 2 2 10 5 7 1 11 12 2 10 5 7 1 11 12 2 10 5 7 1 11 12 10 10 5 7 1 10 10 10 10 10 10 10 10 10 10 10 10 1 | 86.3<br>97.4<br>85.5                                                                     | 10. 1                                                                                                               | 1. 14<br>L. 19<br>L. 14<br>L. 31<br>L. 31<br>1. 17<br>1. 19<br>L. 31<br>1. 17                                                        | 54. 8<br>56. 0<br>54. 8<br>50. 0<br>55. 0<br>55. 4<br>50. 8                                       | Pd. 3 21.6 2 27.8 23.7 5 1 2 25.5 5 25.6 2 22.5 5 25.6 2 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.8 32.5 7 21.5 7 21.5 7 21.5 7 21.5 7 21.5 7 21.5 7 21.5 7 21.5 7 21.5 7 21.5 7 21.5 7 21.5 7 21.5 7 21 | Pd. 9 2 1 1 9 4 2 1 1 9 2 2 1 1 9 4 2 2 3 1 1 4 6 2 3 3 1 4 7 7 5 5 6 0 | 19. 4<br>19. 4<br>22. 7<br>21. 9<br>20. 5<br>21. 9<br>21. 9<br>22. 7<br>23. 5<br>21. 7<br>23. 5<br>21. 7<br>22. 7<br>23. 5<br>21. 7<br>22. 8<br>22. 8<br>22. 8<br>22. 8<br>23. 3<br>24. 3<br>25. 3<br>26. 4<br>27. 3<br>27. 3 | Pct. 1 24. 1 11. 6 22. 9 33. 9 31. 3 20. 3 19. 4 23. 9 23. 6 17. 8 20. 17. 8 20. 17. 8 20. 17. 8 41. 6 20. 17. 6 14. 6 | 30. 6<br>20. 0<br>39. 9<br>40. 4<br>33. 8<br>30. 9<br>25. 4<br>30. 9<br>25. 4<br>30. 9<br>21. 9<br>24. 5<br>50. 8<br>48. 8<br>37. 7 | 5. 66<br>5. 71<br>5. 71<br>5. 53<br>6. 26                                              |
|                                                                                                                  |                                                                                                          | •                                                                                                                                                 |                                                                                          | LAY A                                                                                                               | ND CL                                                                                                                                | AY LO                                                                                             | AMS+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        |                                                                                                                                     |                                                                                        |
| 27<br>28<br>30<br>412<br>113<br>118<br>119<br>120<br>121<br>122<br>122<br>124<br>125<br>131<br>132<br>133<br>134 | ( 66<br>.01<br>.52<br>.00<br>.00<br>.01<br>.69<br>.04<br>.04<br>.01<br>1.78<br>.178<br>.05<br>.00<br>.02 | 6.077.7<br>34.577.0<br>34.577.0<br>53.0<br>53.0<br>53.0<br>19.3<br>19.3<br>11.8<br>32.0<br>11.7                                                   | 33.6 \$ 45.5 4 45.6 45.5 4 45.5 93.4 \$ 87.3 95.3 9 92.2 1 9 82.2 1 9 82.5 1.5 52.9 41.4 | 18. 0<br>34. 8<br>24. 7<br>24. 7<br>34. 4<br>44. 9<br>61. 1<br>59. 0<br>41. 2<br>51. 0<br>7 26. 9<br>16. 3<br>23. 7 | 1.54<br>1.31<br>1.30<br>1.36<br>1.36<br>1.50<br>1.16<br>1.05<br>1.12<br>1.16<br>1.12<br>1.16<br>1.12<br>1.16<br>1.13<br>1.13<br>1.33 | 41. 4 3 51. 1 4 9 5 5 5 4 8 9 5 5 5 6 4 8 9 5 5 5 6 4 8 9 6 4 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | 14.23.7 - 6.5 25.7 - 7.5 27.4 - 7.5 27.4 - 7.5 28.4 - 7.5 28.2 26.6 8.2 25.3 25.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.4<br>2.6<br>2.6<br>2.6<br>3.2                                         | 14. 7<br>21. 3<br>18. 5<br>26. 5<br>27. 1<br>27. 1<br>26. 3<br>24. 3<br>23. 7<br>32. 6<br>23. 7<br>34. 5<br>20. 1<br>34. 5<br>34. 5 | 17. 2<br>15. 0<br>12. 3<br>11. 6<br>13. 6<br>8. 7                                                                      |                                                                                                                                     | 5, 26<br>6, 29<br>5, 44<br>5, 14<br>8, 28<br>8, 27                                     |
|                                                                                                                  | ·                                                                                                        |                                                                                                                                                   |                                                                                          | 8/                                                                                                                  | NDY L                                                                                                                                | OAMS                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        |                                                                                                                                     |                                                                                        |
| 31<br>32<br>33<br>33<br>116<br>117<br>128<br>129<br>129<br>129<br>130<br>135<br>136<br>137                       | 0. 40<br>1. 77<br>1. 38<br>.63<br>.46<br>.38<br>.00<br>.55<br>.51<br>1. 60<br>1. 42<br>1. 93             | 14.1<br>10.0<br>1.4<br>4.0<br>24.0<br>20.4<br>20.3<br>21.1<br>4.4<br>33.1<br>9.0<br>11.0                                                          | 23, 7<br>11, 9<br>12, 1<br>30, 4<br>42, 8<br>36, 1<br>67, 1<br>76, 2<br>31, 2<br>41, 6   | 5.9<br>3.5<br>3.0<br>24.4<br>17.7<br>22.9<br>18.6<br>16.2<br>17.4                                                   | 1.55                                                                                                                                 | 36. 4<br>44. 5<br>43. 8<br>40. 8<br>43. 5<br>49. 6<br>46. 4<br>49. 6<br>52. 8<br>49. 6            | 17. 7<br>35. 5<br>32. 7<br>20. 6<br>12. 0<br>19. 5<br>21. 3<br>22. 4<br>22. 4<br>27. 7<br>26. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.8<br>1.1<br>1.0<br>9<br>1.3<br>2.4<br>1.2<br>1.3<br>1.3               | 7, 5<br>3, 9<br>12, 1<br>16, 5<br>12, 6<br>19, 7<br>14, 7<br>7, 7<br>11, 9<br>12, 9<br>12, 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13, 3<br>5, 8<br>7, 7<br>14, 3<br>5, 8<br>9, 5<br>23, 9<br>14, 2<br>27, 3<br>9, 2<br>14, 2                             | 55, 7<br>47, 5<br>62, 9<br>46, 5<br>20, 4<br>37, 2<br>37, 2<br>31, 2<br>30, 8<br>32, 7<br>4<br>34, 2                                | 5.63<br>5.75                                                                           |
|                                                                                                                  |                                                                                                          |                                                                                                                                                   | G                                                                                        | RAVE                                                                                                                | LLY SI                                                                                                                               | LT LO                                                                                             | AMS !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                        |                                                                                                                                     |                                                                                        |
| 15<br>16<br>17<br>18<br>20<br>21<br>22<br>23<br>24<br>25<br>35                                                   | 1 33                                                                                                     | 55. I                                                                                                                                             | 65. 1<br>61. 0<br>69. 3<br>76. 0<br>52. 4<br>56. 7<br>63. 5<br>65. 1<br>71. 4            | 17. 3<br>16. 3<br>23. 0<br>23. 3<br>8. 5<br>12. 6<br>16. 5<br>16. 6<br>16. 6                                        | 1, 19<br>1, 02<br>1, 24<br>1, 25                                                                                                     | 53. 7<br>51. 7<br>54. 9<br>60. 9<br>52. 1<br>48. 3<br>52. 5<br>58. 8<br>59. 7                     | 26, 9<br>25, 5<br>28, 1<br>35, 0<br>25, 0<br>22, 7<br>19, 1<br>25, 4<br>34, 5<br>32, 6<br>15, 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.75<br>4.75<br>4.09<br>4.09<br>4.03<br>5.38<br>6.38                    | 23. 5<br>20. 4<br>25. 0<br>30. 6<br>20. 8<br>22. 2<br>23. 5<br>25. 4<br>31. 9<br>22. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.6<br>10.9<br>9.7<br>11,1<br>22,2<br>19,2<br>14,2<br>9,4<br>19,0                                                     | 15. 7<br>16. 9<br>13. 3<br>14. 3<br>31. 3<br>27. 2<br>21. 4<br>13. 9<br>34. 2<br>30. 6                                              | 7, 49<br>7, 80<br>7, 52<br>7, 70<br>5, 52<br>7, 56<br>7, 52<br>7, 14<br>5, 61<br>7, 71 |

See footnotes ar end of table,

Table 5 .- Rate of infiltration and some physical characteristics of 68 surface soils Continued

#### LOAMS 1

| Site No. | Rate of<br>infiltra-<br>tion            |                                             |                                                   | 0.002                                             | Volume<br>weight<br>ratio                 |                                                  |                                              | trat-                    | Mois-<br>ture<br>equi v-<br>alent |                                              | Dis-<br>per- pH<br>sion value<br>ratio                                    |
|----------|-----------------------------------------|---------------------------------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------|--------------------------------------------------|----------------------------------------------|--------------------------|-----------------------------------|----------------------------------------------|---------------------------------------------------------------------------|
| 26       | In.<br>0.00<br>.38<br>.11<br>.13<br>.50 | Pct.<br>5.9<br>10.1<br>10.2<br>12.1<br>12.7 | Prt.<br>46, 2<br>33, 8<br>57, 8<br>62, 5<br>57, 4 | Pct.<br>17. 1<br>18. 0<br>10. 3<br>10. 8<br>16. 5 | 1, 49<br>1, 44<br>1, 27<br>1, 16<br>1, 44 | Pct<br>47, 2<br>46, 1<br>50, 0<br>54, 9<br>45, 7 | Pet.<br>19.3<br>23.7<br>22.0<br>30.4<br>17.2 | Pcf. 1.3 2.3 2.5 2.3 2.9 | 23.6                              | Pct.<br>17.0<br>14.2<br>17.0<br>33.4<br>29.3 | 35. \$ 5. 49<br>41. 0 5. 51<br>29. 2 7. 34<br>53. 3 6. 62<br>50. \$ 5. 62 |

Table 6.—Rate of infiltration and some physical characteristics of 68 subsoils SILT LOAMS 1

|                                                                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S1441 351                        |                                                                                                                  |                                                                                     |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Site No. 1                                                                                                | Rate of<br>infil-<br>tra-<br>tion 1 | Total soil in aggregates >0.20 mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Silt<br>and<br>clay<br><0.05<br>min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Volume<br>weight<br>ratio        |                                                                                                                  | Non-<br>enpil-<br>lary<br>pores-<br>ity<br>index                                    | Or-<br>ganic<br>mat-<br>ter                                                         | Mois-<br>ture<br>equiv-<br>alent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sus-<br>pen-<br>sion                                                    | Dis-<br>per-<br>sion<br>ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pH<br>value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 19                                                                                                        | . 06<br>2, 09<br>47                 | Prt. 14. 2 20. 5 25. 5 12. 3 28. 7 0 14. 3 15. 4 1 16. 3 3 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. 6 1 17. | P.(.0 5 4 5 8 5 5 6 9 5 5 5 6 9 5 5 5 6 9 5 5 5 7 5 6 5 7 5 6 5 7 5 5 6 5 7 5 5 6 5 7 5 5 6 5 7 5 5 6 7 5 5 6 7 5 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 | Pct. 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22.0 0 22 | 1, 59<br>1, 59<br>1, 38          | Pat. 39. 0 36. 4 36. 4 14. 9 42. 9 48. 6 44. 6 44. 3 46. 1 42. 0 41. 3 50. 4 60. 7 52. 9 54. 6 55. 6 55. 6 41. 5 | 9, 2<br>18, 9<br>22, 3<br>17, 3<br>12, 8<br>14, 3<br>11, 8<br>13, 3<br>6, 3<br>5, 6 | 1.77<br>1.20<br>1.6<br>1.75<br>1.75<br>1.00<br>1.00<br>1.23<br>1.77<br>1.85<br>2.10 | 21. 1 1 21. 1 22. 1 24. 1 22. 9 26. 3 4 24. 3 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8 2 24. 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 25. 4<br>40. 7<br>21. 4<br>29. 6<br>28. 5<br>19. 1<br>22. 7             | 45.3 7 5.6 6 5 2 2 5.5 7 6 9 9 12.5 7 6 9 12.5 7 6 9 14.6 0 1 2 2 5.5 5 16.6 0 1 2 2 5.5 5 16.6 0 1 2 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 7, 098<br>7, 098<br>4, 05<br>5, 33<br>5, 40<br>6, 67<br>6, 67<br>6, 68<br>6, 68<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6<br>6 |
|                                                                                                           |                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LAY.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AND CI                           | LAY LO                                                                                                           | DAMS                                                                                |                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 27<br>28<br>30<br>112<br>113<br>118<br>118<br>120<br>121<br>121<br>122<br>123<br>124<br>124<br>133<br>134 | 1.78                                | 35. 3<br>26. 5<br>39. 44. 2<br>83. 5<br>75. 9<br>82. 5<br>75. 9<br>80. 4<br>46. 8<br>27. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 66. 4<br>70. 6<br>74. 1<br>93. 8<br>90. 0<br>98. 1<br>96. 5<br>93. 6<br>87. 1<br>65. 7<br>94. 5<br>54. 9<br>48. 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 49.5<br>52.0<br>47.5<br>47.5<br>34.2<br>45.3<br>63.2<br>64.5<br>54.5<br>54.5<br>63.5<br>14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1. 58<br>1. 54<br>1. 24<br>1. 25 | 49.3<br>44.8<br>46.3<br>46.4<br>40.4<br>40.4<br>41.4<br>52.5<br>52.8<br>45.2<br>42.6<br>44.9<br>44.9<br>46.3     | 7.3<br>12.6<br>8.7<br>7.3<br>7.3<br>15.9<br>16.9<br>9.5                             | 1.5.8.2.2.7.0.7.2.2.8.4.5.                                                          | 29. 9<br>29. 9<br>20. 6<br>20. 7<br>24. 27<br>24. 27<br>29. 5<br>29. 5<br>20. 7<br>29. 5<br>20. 7<br>20. | 12.0<br>11.6<br>13.4<br>4.3<br>4.3<br>5.2<br>5.7<br>6.2<br>16.4<br>15.7 | 71.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2<br>19.6.2 | 5. 100<br>5. 200<br>6. 21<br>4. 97<br>7. 89<br>7. 89<br>8. 107<br>8. 108<br>7. 200<br>8. 41<br>8. 44<br>8. 44<br>8. 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

See footnotes at end of table.

<sup>Textural classification based on identification in the field by soil specialist.
Site numbers as shown in table 11.
Rate of infiltration as measured for the third hour of the wet run by the tube method.</sup> 

<sup>205859°-40-3</sup> 

Table 6.—Rate of infiltration and some physical characteristics of 68 subsoils— Continued

#### SANDY LOAMS!

|                                                           | ,                                                                           |                                                                                                 |                                                                               | <del></del>                                                                          | <del>-</del>                                                                                    |                                                                                                                |                                                                                          |                                                             |                                                                                                 |                                                                                     |                                                                                                          |                                                                                                          |
|-----------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| Site No.                                                  |                                                                             | Total<br>soll in<br>aggre-<br>gates<br>0.20<br>mm.                                              | Silt<br>and<br>clay<br>0.05<br>mm.                                            | Clay<br>0.002<br>nim.                                                                | Volume<br>weight<br>ratio                                                                       |                                                                                                                | Non-<br>enpil-<br>lary<br>poros-<br>ity<br>index                                         | Or-<br>ganic                                                | Mois-<br>ture<br>equiv-<br>alent                                                                | Sus-<br>pen-<br>sion                                                                | Dis-<br>per-<br>sion<br>ratio                                                                            | pH<br>value                                                                                              |
| 31. 32 33 33 116 117 1196 117 1196 117 1196 117 1199 1199 | /a. 0. 40 1.77 1.38 .03 .04 .46 .38 .00 .55 .51 1.69 1.42 1.03              | Pct                                                                                             | Pct. 41. 7 29. 3 17. 7 34. 1 42. 8 71. 0 52. 2 30. 7 74. 4 9 57. 9 53. 9      | Pcl. 20.6 14.4 6.6 27.6 27.1 1 28.8 27.2 43.7 16.7 13.0 15.4 3 19.8                  | 1. 58<br>1. 65<br>1. 62<br>1. 62<br>1. 65<br>1. 65<br>1. 56<br>1. 54<br>1. 35<br>1. 32          | Pet., 40, 4<br>40, 4<br>37, 7<br>30, 3<br>39, 3<br>38, 0<br>38, 8<br>42, 3<br>40, 7<br>43, 4<br>49, 1<br>49, 6 | Pct.<br>13. 5 3<br>24. 2 2<br>8. 3 5<br>6. 8<br>11. 9<br>2. 6<br>12. 5<br>16. 3<br>22. 6 | 9                                                           | 13. 5<br>9. 0<br>6. 1<br>16. 9<br>14. 9<br>18. 6<br>21. 3<br>21. 1<br>19. 0<br>15. 8<br>19. 0   | 8.5<br>8.1<br>7.7<br>9.5<br>11.5<br>8.0<br>12.5<br>13.7<br>8.0                      | 21. 7<br>29. 1<br>45. 0<br>20. 0<br>27. 6<br>26. 4<br>10. 8<br>31. 2<br>40. 2<br>17. 5<br>24. 8<br>36. 6 | 5. 10<br>5. 27<br>5. 14<br>6. 00<br>6. 70<br>6. 03<br>6. 03<br>6. 03<br>8. 89<br>9. 12<br>8. 82<br>8. 83 |
|                                                           |                                                                             |                                                                                                 | G                                                                             | RAVE                                                                                 | ELLY S                                                                                          | LT L                                                                                                           | SMAC                                                                                     |                                                             | _                                                                                               |                                                                                     |                                                                                                          |                                                                                                          |
| 15 16 17 18 20 21 22 23 24 25 35                          | 2.36<br>3.67<br>4.96<br>1.33<br>3.75<br>-86<br>3.68<br>1.58<br>4.76<br>1.32 | 55, 1<br>53, 1<br>56, 4<br>11, 9<br>13, 7<br>27, 5<br>34, 7<br>58, 2<br>53, 1<br>34, 2<br>39, 1 | 61. 4<br>63. 8<br>53. 8<br>59. 5<br>63. 9<br>63. 9<br>63. 4<br>76. 2<br>51. 6 | 19, 9<br>7, 9<br>20, 9<br>10, 2<br>7, 5<br>12, 8<br>19, 3<br>14, 5<br>16, 0<br>19, 1 | 1. 38<br>1. 42<br>1. 33<br>1. 38<br>1. 46<br>1. 56<br>1. 37<br>1. 41<br>1. 22<br>1. 26<br>1. 51 | 48. 7<br>46. 8<br>52. 2<br>48. 9<br>45. 3<br>41. 6<br>49. 1<br>47. 0<br>53. 8<br>52. 8<br>43. 9                | 20. 2<br>17. 9<br>25. 2<br>24. 3<br>15. 9<br>8. 2<br>21. 8<br>18. 4<br>27. 5<br>15. 1    | 2.4<br>2.2<br>1.0<br>1.3<br>2.2<br>1.1<br>1.9<br>2.0<br>1.3 | 20, 5<br>19, 9<br>19, 6<br>14, 6<br>19, 3<br>22, 1<br>18, 6<br>19, 6<br>22, 3<br>28, 9<br>16, 8 | 8. 7<br>8. 4<br>10. 2<br>34. 4<br>31, 3<br>29, 3<br>15. 8<br>9, 0<br>19, 9<br>23, 1 | 13, 2<br>16, 7<br>14, 2<br>57, 0<br>45, 3<br>30, 8<br>23, 4<br>15, 8<br>13, 3<br>23, 5                   | 7.61<br>7.45<br>7.57<br>8.26<br>8.26<br>8.26<br>8.20<br>8.00                                             |
|                                                           |                                                                             |                                                                                                 |                                                                               |                                                                                      | LOA                                                                                             | MSI                                                                                                            |                                                                                          |                                                             |                                                                                                 |                                                                                     |                                                                                                          |                                                                                                          |
| 26<br>34<br>138<br>139<br>141                             | 0.00<br>.38<br>.11<br>.13<br>.50                                            | 28, 8<br>- 31, 4<br>- 25, 9<br>- 21, 2<br>- 25, 1                                               | 62, 4<br>45, 6<br>61, 2<br>68, 8<br>63, 7                                     | 33. 4<br>31. 8<br>17. 9<br>7. 0<br>25. 7                                             | 1. 34<br>1. 62<br>1. 37<br>1. 31<br>1. 58                                                       | 52.0<br>39.6<br>47.7<br>49.4<br>40.2                                                                           | 22. 1<br>10. 1<br>18. 3<br>22. 3<br>8. 1                                                 | 0.8<br>1.0<br>1.1<br>1.4                                    | 24. 3<br>15. 3<br>22. 2<br>20. 6<br>19. 7                                                       | 7. 5<br>6. 8<br>23. 2<br>35. 2<br>16. 8                                             | 11. 5<br>14. 4<br>38. 0<br>46. 9<br>20. 1                                                                | 5. 92<br>5. 90<br>7. 40<br>7. 15<br>5. 85                                                                |

<sup>!</sup> Textural classification based on identification in the field by soil specialist.
! Site number as shown in table 11.

2 Rate of infiltration as measured for the third hour of the wet run by the tube method,

Simple correlation coefficients between variates, such as organic matter and aggregation and volume weight and suspension percentage, are presented in tables 7 and 8. From these statistical data it can be seen, for example, that there is a highly significant degree of association between organic matter and aggregation in the surface soils of this group of 68 profiles since a correlation coefficient of 0.31 is highly significant and the correlation between these two physical characteristics is 0.55. It should be kept clearly in mind also that simple correlation coefficients can accurately express the degree of association between variates only when the relation is linear.

TABLE 7.- Correlation coefficients 1 of certain characteristics of surface soils

|                                                                                                                                                                        | :<br>                                                              | Correlations of designated characteristics with-       |                                                              |                    |                                              |                            |                                         |                                                                |                                                            |                       |                                         |                            |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------|--------------------|----------------------------------------------|----------------------------|-----------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|-----------------------|-----------------------------------------|----------------------------|--|
| Characteristics con-<br>sidered                                                                                                                                        | Infil-<br>tra-<br>tion                                             | Ag-<br>grega-<br>tion<br>>0. 20                        | Silt<br>and<br>clay                                          | Clay               | Vol-<br>ume<br>weight                        | Total<br>poros-<br>ity     | Non-<br>capil-<br>lary<br>poros-<br>ity | Or-<br>ganie<br>nut-<br>ter                                    | Mois-<br>ture<br>equiv-<br>alent                           | Sus-<br>pen-<br>sion  | Dis-<br>per-<br>sion                    | pH<br>value                |  |
| Infiltration Aggregation >0.20 Silt and clay Ciay Volume weight Total porosity Noncapillary porosity Organic matter Moisture equivalent Suspension Dispersion pH value | 0,30<br>-,11<br>-,16<br>-,24<br>.36<br>.50<br>-,29<br>-,29<br>-,16 | . 46<br>. 48<br>56<br>. 57<br>. 55<br>. 61<br>30<br>74 | -0.11<br>.46<br>.35<br>69<br>.70<br>.25<br>.40<br>.80<br>.50 | . 48<br>. 35<br>36 | 56<br>69<br>36<br>90<br>75<br>63<br>51<br>11 | . 70<br>. 36<br>90<br>. 76 | .30<br>.25<br>.10<br>75<br>.76          | .55<br>.40<br>.12<br>-,63<br>.62<br>.38<br>.62<br>-,66<br>-,46 | .61<br>.59<br>.59<br>.51<br>.82<br>.30<br>.62<br>.18<br>59 | 30<br>.50<br>24<br>11 | (1) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | . 28<br>. 06<br>. 43<br>31 |  |

Walue of r at the 1-percent point (adds 99 to 1) is 0.31; at the 5-percent point (adds 19 to 1), 0.24.

Table 8.—Correlation coefficients of certain characteristics of subsoils

|                                                                                                                                                                          | Correlations of designated characteristics with—        |                                                      |                                                                              |                                  |                                                      |                                                                           |                                                             |                                            |                                                      |                                              |                       |                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------|------------------------------------------------------|----------------------------------------------|-----------------------|----------------------|
| Characteristics con-<br>sidered                                                                                                                                          | Infil-<br>tra-<br>tion                                  | Ag-<br>grega-<br>tion<br>>0.20                       | Silt<br>and<br>clay                                                          | Clay                             | Vol-<br>time<br>weight                               | Total<br>poros-<br>ity                                                    | Non-<br>capil-<br>lary<br>poros-<br>ity                     | Baund                                      | Mois-<br>ture<br>equiv-<br>alont                     | Sus-<br>pen-<br>sion                         | Dîs-<br>per-<br>sion  | p <b>II</b><br>value |
| Infiltration Aggregation >0.20 Silt and clay Clay Volume weight. Total porosity Nomapillary porosity Organic matter. Moisture equivalent. Suspension Dispersion pH value | 9.07<br>24<br>33<br>.36<br>.54<br>.40<br>30<br>13<br>03 | - 24<br>- 24<br>- 22<br>- 07<br>- 54<br>- 50<br>- 73 | -0. 24<br>. 44<br>43<br>30<br>. 33<br>17<br>. 21<br>. 75<br>. 28<br>31<br>08 | 04<br>03<br>39<br>15<br>41<br>61 | - 25<br>- 27<br>- 28<br>- 29<br>- 29<br>- 29<br>- 20 | 0. 36<br>. 22<br>. 33<br>. 03<br>97<br>. 50<br>. 55<br>. 36<br>. 01<br>19 | 0. 54<br>07<br>17<br>39<br>79<br>80<br>21<br>95<br>03<br>16 | . 51<br>. 24<br>. 15<br>59<br>. 55<br>. 39 | - 49<br>- 75<br>- 74<br>- 37<br>- 36<br>- 24<br>- 32 | - 41<br>- 04<br>- 05<br>- 05<br>- 16<br>- 03 | 73<br>31<br>61;<br>19 | 34<br>08<br>15<br>27 |

<sup>&</sup>lt;sup>1</sup> Value of r at the 1-percent point (adds 90 to 11 is 0.31; at the 5-percent point (odds 19 to 1), 0.24.

#### TOTAL POROSITY

The pore spaces in soil have commonly been said to consist of (1) pores of capillary dimension, through which water can pass only under tension, and (2) noncapillary pores, which are larger and through which water can move more or less freely under gravitational forces. Accordingly, studies were made of the effect on infiltration rates of the total amount of porosity as well as the amount of large pores. The total porosity of a soil may be expected to determine to some extent the total amount of water that may filter into it.

Correlation of the infiltration rates and total porosities for both the surface soil and subsoil are significant. While this association of infiltration and total porosity is observable in the data, it is somewhat surprising that the amount of pore space without regard to the size of pore shows this effect on the rate of infiltration. An explanation is suggested, however, by the highly significant correlation between total porosity and noncapillary capacity.

#### NONCAPILLARY POROSITY

Since an exact method of determining the noncapillary porosity has not been devised, a comparison was made of three different methods of arriving at an index of noncapillary porosity. The correlation between infiltration and noncapillary porosity as determined by the three methods is shown in table 9.

Table 9.—Correlation between infiltration and noncapillary porosity obtained by three methods of measurement

|                                                                                                                                                                   |                                                                                  | - <del></del>      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------|
| Method of measurement                                                                                                                                             | Correlation coefficient<br>between infiltration and<br>noncapillary porosity in— |                    |
|                                                                                                                                                                   | Surface soil                                                                     | Subsail            |
| Volume drained pores beginning wet run Total porosity minus moisture equivalent (volume) Total porosity minus moisture equivalent (volume) corrected for texture. | 0.47<br>.32<br>.36                                                               | 0.39<br>.51<br>.54 |

These correlation coefficients are all highly significant and not greatly different one from another. Considering the relative merits of the three methods, it should be remembered that the volume of drained pores was obtained by subtracting from the total porosity the volume of water in the soil at the beginning of the wet run, 24 hours after the initial run. It is generally recognized by investigators reporting on the determination of field capacity that the moisture content of some soils, particularly the heavy ones, does not come to equilibrium in a 24-hour period. In fact, some soils in this study were found to have water on the surface at the beginning of the wet run. Obviously, under these conditions noncapillary porosity values are erroneous. There were also a few sites on which enough water did not enter the soil during the initial run to bring the soil up to the field capacity. It appears, therefore, that this method of determining noncapillary porosity may entail a great deal of error unless sufficient time is allowed for the excess gravitational water to drain out before the moisture content is determined.

The second procedure is based on the fact that the moisture equivalent is a reasonably good measure of field capacity, particularly in soils that are texturally silt loams. However, it has been shown by Harding (4), that the ratio of field capacity to the moisture equivalent is not unity throughout the entire range of soil texture. Instead, the ratio increases as the soils become lighter in texture and decreases slightly as they become heavier in texture. The third method differs from the second only in that an attempt has been made to correct the moisture equivalent and bring it more nearly in line with field-capacity data. It was, therefore, decided to use the data in which this correction has been made as a measure of noncapillary porosity. lation between the amount of large pores and infiltration is highly significant in both the surface soils and subsoils (r=0.36 and 0.54, respectively). More precise methods for evaluating the amount of effective pores of noncapillary dimensions and size distribution of pores may be expected to reveal a higher correlation between infiltration and noncapillary porosity.

Comparisons were also made between the noncapillary porosity to a 16-inch depth and infiltration during the first, second, and third

hours, and the total 3-hour period of the initial run and during the corresponding periods of the wet run. All these relations were found to be highly significant. The correlation coefficients are shown in the following tabulation:

Correlation between noncapillary porosity to a 16-inch depth and infiltration

| during initial and wet runs: |               |
|------------------------------|---------------|
| Initial run:                 | Correlation   |
| TO:                          | coefficient ! |
| First hour                   | 0.48          |
| Second hour                  | 51            |
| Third hour                   |               |
| m +10)                       |               |
| Total 3-hour period          | . 55          |
| Wet run:                     |               |
| First hour                   |               |
| THE HOME                     | 32            |
| Second hour                  |               |
| Third hour                   |               |
| Tatal 9 have                 | 52            |
| Tetal 3-hour                 |               |
|                              |               |

Value of r at the 1-percent point is 0.31.

In the same manner correlations were calculated between infiltration and the volume of drained pores, and again a high correlation was found. These correlation coefficients are given in the following tabulation:

| Correlation between volume of drained pores to a 16-inch depth and infiltration during periods of the wet run: | n<br>h-<br>uf |
|----------------------------------------------------------------------------------------------------------------|---------------|
| First hour                                                                                                     | 51            |
| 3-hour period                                                                                                  | žī.           |
|                                                                                                                | 51            |

Value of r at the 1-percent point is 0.31.

For the entire 68 sites an increase in noncapillary porosity amounting to approximately 6 percent in a depth of 16 inches was accompanied by an increase in rate of infiltration of about 0.6 inch per hour. The relationship of noncapillary porosity and infiltration in surface soil and subsoil are shown by the regression lines in figures 4 and 5, repectively.

#### AGGREGATION OF SOIL PARTICLES

In an ideal porous medium such as sand of uniform size, the average diameter of individual pores is larger when the mean diameter of the grain is larger. In a soil with a high degree of aggregation the pore size, other things being equal, would be larger than in a soil non-aggregated, in which single-grain structure predominates. This, however, is not universally true in practice since the arrangement of aggregates and the degree of intermingling of single grains may

actually develop a more dense medium.

An analysis of the relationship between aggregation and uoncapillary porosity of the 68 surface soils (fig. 6) shows that the degree of aggregation is in fact correlated with the amount of large pores (r=0.30). The degree of aggregation of these soils is also correlated with infiltration (r=0.30). In the subsoils, however, there are no such associations. Since the arrangement of particles and aggregates in an intermingling may be such as to increase or decrease noncapillary porosity it is not to be expected that a high degree of aggregation will invariably be associated with high rates of infiltration.

#### ORGANIC MATTER

Increase in organic matter in the surface soil and in the subsoil is accompanied by increase in the infiltration rate (figs. 7 and 8).



FIGURE 4.—Relation between noncapillary porosity of the surface soil and infiltration rate during the third hour of the wet run.



FIGURE 5.—Relation between noncapillary porosity of the subsoil and infiltration rate during the third hour of the wet run.

In both surface soil and subsoil the correlation is highly significant (r=0.50 and 0.40, respectively). The organic-matter content is also highly correlated with degree of aggregation of both the surface soil and subsoil (figs. 9 and 10). This substantiates the generally ac-

cepted idea that organic matter is one of the factors contributing to the formation of aggregates. Organic matter is also correlated with noncapillary porosity in both the surface soil and subsoil to a highly significant degree (r=0.38 and 0.39, respectively).



FIGURE 6.—Relation between aggregation of the surface soil and noncapillary porosity.



FIGURE 7.—Relation between organic matter in the surface soil and infiltration during the third hour of the wet run.

#### SILT AND CLAY

Silt and clay, or particles of less than 0.05 mm., includes that part of the soil in which such phenomena as swelling and shrinking, cohesion, plasticity, and cementing of particles principally occur. It includes the colloidal fraction as one of the most active constituents. In these soils silt and clay is found to be correlated to a highly significant degree with aggregation in both the surface soils and subsoils (r=0.46 and 0.44, respectively). It is also correlated negatively to a

significant degree with volume weight (r=-0.69 and -0.30 in the surface soil and subsoil, respectively). The soils that are higher in silt and clay also are higher in organic matter (correlations for the surface soil and subsoil are 0.40 and 0.24, respectively). In the surface samples the correlation of silt and clay with infiltration is not



FIGURE S.- Relation between organic matter in the subsoil and infiltration during the third hour of the wet run.



FIGURE 9.—Relation between organic matter of the surface soil and aggregation.

significant. In the subsoils, however, an increase of these fine particles, with their associated properties such as swelling with moisture, is accompanied by a decrease in infiltration (r=-0.24).

#### CLAY

The clay fraction, comprising particles less than 0.002 mm., behaves in much the same way as the combined silt and clay. There is, how-

ever, no particular association with the organic-matter content of the soil, and in the subsoil there is no association with volume weight. In both the surface soil and subsoil clay is correlated to a highly



Figure 10.- Relation between organic matter of the subsoil and aggregation.



FIGURE 11.—Relation between clay content of the subsoil and infiltration during the third hour of the wet run.

significant degree with aggregation (r=0.48 and 0.56, respectively) and also with silt and clay (r=0.35 and 0.43, respectively). A striking feature of this part of the study is the highly significant negative correlation (r=-0.42) between clay content of the subsoil and infiltration rate. This relationship is shown in figure 11.

#### DISPERSION RATIO

The dispersion ratio is obtained by dividing the suspension percentage by the percentage of silt and clay. Therefore the dispersion ratio, as well as the suspension percentage, is a measure of the ease with which a large proportion of the particles is brought into suspension. The correlations with infiltration are essentially the same as with suspension percentage. Suspension percentage and dispersion ratio were both found to be highly correlated with aggregation, both decreasing with an increase in aggregation. Such a correlation is expected since a high degree of aggregation indicates that a large number of the smaller particles have been grouped together. This grouping decreases the tendency for particles to go into suspension. Organic matter has contributed to aggregation, and the relation of dispersion



FIGURE 12.—Relation between organic matter of the surface soil and dispersion ratio.

ratio to organic matter is shown in figure 12. The infiltration data in the study were obtained with a minimum of agitation from application of water to the surface of the soil inside the tubes. Therefore there would not be so great a tendency under these conditions for a reduction in infiltration caused by clogging of the soil pores as under natural field conditions, under which the impact of the raindrop and the velocity of run-off may cause considerable disturbance of the surface, particularly in the absence of vegetal cover.

The highly significant correlation between suspension and pH value seems logical because of the flocculation commonly found at the

higher pH values.

#### MOISTURE EQUIVALENT

Infiltration is not significantly correlated with the moisture equivalent in the surface soil (r=0.02); in the subsoil r is -0.30, which is significant but less than the value necessary for a highly significant correlation. Moisture equivalent is dependent to a very large extent on the colloidal properties, organic and inorganic, of the soil. This is

shown by the highly significant correlations of 0.62 and 0.32 between moisture equivalent and organic matter in the surface soil and subsoil, respectively, and 0.50 and 0.74 between moisture equivalent and clay in the surface soil and subsoil, respectively. Its association appears to be primarily with the clay and organic-matter content rather than with infiltration.

Since the moisture equivalent increases as the amount of colloid increases the infiltration rate might be expected to decrease. That it does not is apparently due to the fact that the moisture equivalent is affected only slightly by aggregation, whereas it is conceivable that a clay soil well aggregated would be similar to a sand in its permeability to water. As noted elsewhere, the moisture equivalent has been shown to be a reasonably good measure of the field capacity, which in turn is a measure of the water that moves only against capillary forces. Its value, then, lies in the fact that when it is subtracted from the total porosity, a figure that is an index of noncapillary porosity is obtained, and this has been shown to be significantly correlated with the infiltration rate.

SOIL REACTION (PH)

The absolute pH value, or hydrogen-ion concentration, is not directly associated with the infiltration rates. Correlations between departure from neutrality (pH value =7.0) and infiltration rates were calculated and found significant but not highly so for the surface soils, and not significant for the subsoils (r=-0.27 and -0.17, respective-ly). There is, however, no particular reason for using departures from neutrality (pH value=7.0) rather than departures from a pH value of 7.5, for example. It might be expected that the optimum pH value from the standpoint of infiltration would correspond with the pH value at which maximum flocculation occurs. The correlation of pH values with dispersion and aggregation suggests that the pH value under certain conditions is associated with factors that apparently affect infiltration. Certainly there may also be an indirect effect of pH value on infiltration rates since the pH value affects the amount and kind of plant growth.

#### TEMPERATURE

The design of this experiment did not permit a study of the effects of temperature on infiltration at the time of the run. However, as mentioned previously, temperatures of both soil and water were observed and an effort was made to determine whether temperature might be one of the dominant variables affecting the data and the conclusions that might be drawn from them. Temperature at the time of any study of infiltration might be expected to have some effect on infiltration through its effect on the general level of biotic activities, viscosity of water, viscosity and permeability of soil colloids, and perhaps to some degree through its effect on the viscosity and volume of soil air. The effect of temperature on infiltration is therefore undoubtedly complex.

The temperatures of water for the 68 sites or 136 runs varied from 37° to 96° F., with a mean of 62.2°. The median temperature was approximately the same as the mean. The temperatures of the soil at depths of 4 inches and 15 inches ranged from 36° to 83° and from 42° to 78°, respectively. The corresponding means were both 57.5°.

There is a tendency toward an increase in rate of infiltration with an increase in soil temperature, and the correlation becomes significant but not highly so for the wet run (r=0.28). Temperatures of the water on the soil surface are found to be similarly associated with infiltration rates.

However, when temperature is included in a multiple correlation with other factors that have been demonstrated to be highly correlated with infiltration, such as noncapillary porosity, organic matter, and clay in the subsoil, the contribution of temperature is seen to be negligible. It can, therefore, be stated with a considerable degree of assurance that while temperature at the time of the run may have affected infiltration to some degree it was not a dominant factor.

#### OTHER VARIABLES

Another factor that affects the permeability of water through soils is the state of hydration of its colloids. If part of the water entering the soil pores is held on the surface of the particles forming the pores and causes swelling, the effective pore size will decrease. Thus pores of noncapillary dimension may be reduced to capillary pores, and capillary pores may become essentially sealed to water movement. On the other hand, soils that are capable of holding water by capillarity without swelling may permit rapid downward movement of water. A large difference is to be expected in the swelling of the soils in this study since the amount and type of colloidal material differs widely. Volume changes that occurred when undisturbed samples at field capacity were air dried were studied for certain of the soils. Detailed data are not shown here. Extreme values in volume changes of 0.0 and 53.8 percent were found for the subsoil of the Vernon sandy loam and Houston clay, respectively. In general, the soils high in clay gave greater volume changes than the lighter-textured soils. The numerous exceptions noted, however, indicate that type as well as amount of colloidal material affects swelling. While swelling and hydration undoubtedly influenced the infiltration rates found in this study, it is impossible to evaluate their effect on individual soils.

The moisture content at the time an infiltration determination starts may materially affect not only the rate of infiltration but also the total amount of water a soil will absorb. In other words, of the total porosity in a soil the part that is not filled with water is potential storage space for water. In this study the initial runs were conducted at whatever moisture content prevailed at the time of the test. It appears from the data that the rapidity and the extent of the rise in the initial part of the infiltration curve is influenced to some extent by the moisture content of the soil. This is a very important consideration under field conditions since the moisture content of the soil varies widely from time to time. In this study the infiltration rate for the third hour of the wet run was correlated with the physical properties of the soil, and at the beginning of this period, presumably, the effect of the initial moisture content had largely disappeared since changes resulting from hydration and swelling would become more or less constant within 24 hours after the initial

run.

It has been suggested by other workers, including Horton (7) and Powers (17), that the movement and escape of soil air displaced by the water entering the soil as infiltration may affect the rate of in-

filtration. The hypothesis is that water can, in general, enter the soil only so fast as air escapes. As the depth of penetration increases, the resistance to outflow of air increases, owing to the greater length of upward flow. It is conceivable that under these circumstances there could be some slight compression of soil air that would tend to produce a back pressure. This pressure would tend to lower the rate of infiltration, along with other factors such as swelling of colloid, plugging of pores, and increase in amount of space occupied by the water. This is undoubtedly a phase of the problem that should receive attention since specific data demonstrating its practical importance are It would seem, however, that in spite of the effect of this factor, or possibly because of it, the amount of large pores would still have a dominating influence on the rate of infiltration. In this study no direct measurements of air movement were made, although at some sites bubbles of air were seen escaping through the water on the soil surface.

#### PREDICTION OF INFILTRATION RATES

A summary of those characteristics of soils that are significantly correlated with infiltration during the third hour of the wet run is given in table 10.

Table 10.—Characteristics of soil that are significantly correlated with infiltration during the third hour of the wet run

| Correlation with infiltration | Characteristics of—     |                                                          |  |
|-------------------------------|-------------------------|----------------------------------------------------------|--|
|                               | Surface soil            | Subsoil                                                  |  |
|                               | Total perosity          | Total peresity.                                          |  |
| Positive                      | Noncapillary porosity t | Organic matter.2 Noncapillary porosity.2 Volume weight.2 |  |
| Vegative                      | Dispersion !            | Moisture equivalent.! Sift and clay.! Clay.?             |  |

Significant (5-percent point).
 Highly significant (1-percent point).

The correlations obtained in this study are in accord with basic principles of soil physics. The effect of organic matter on aggregation and of aggregation on noncapillary porosity; the value of suspension percentage and dispersion ratio as indicators of the ease with which aggregates may be broken down and pores clogged by soil particles; the reduction of the size of pores or the total porosity by the amount of clay in the subsoil or the swelling of colloids in the presence of water—all these are in accord with our general knowledge of the be-

havior of the soil complex.

Approximately 40 combinations of the most promising soil characteristics, as indicated by the simple correlation coefficients, were studied in the form of multiple regressions in an effort to ascertain what combination of characteristics would yield the most significant regression on infiltration. Since the 68 soils in this group have highly divergent characteristics and since several of the characteristics themselves are only indices of actual physical properties (noncapillary porosity, for example, is an index of the size of pores), it was expected merely that major trends of association of infiltration and certain physical properties would be disclosed.

Sixteen of the forty combinations proved to have highly significant multiple regressions. Thus there was a high degree of success in demonstrating statistically the interplay of certain characteristics with infiltration. It is to be remembered that these associations are for the entire group of 68 sites rather than for individual sites.

The highest multiple correlation coefficient obtained was 0.71, and the corresponding standard error of estimate for a mean infiltration rate of 0.88 inch per hour for the 68 sites was 0.10. These were obtained from a combination of soil characteristics that included noncapillary porosity and organic matter in both surface soil and subsoil and clay in the subsoil. It is apparent that such a multiple regression would not be very satisfactory in predicting the infiltration rate for a single site since the standard error of a predicted value for a single site is 0.85 inch.

#### DISCUSSION

#### SIZE AND PERMANENCY OF PORES

The relation of soil-porosity factors to the infiltration of surface waters is deserving of further study. Long-established principles in the field of hydraulics are not entirely unrelated to the infiltration problem. The evidence of the probable effect of size of pore or channel on the rate of movement of water is in harmony with hydraulic principles.

Preponderance of large pores in soil is in part the result of natural forces active in the development of a soil profile, such as degree of weathering and kind of parent material and the combined effects of the biologic forces at play on it, and in part the result of man's modifica-

tion of these processes of nature.

Large pores in soil—the proportionate amount of which in this study is indicated by noncapillary porosity calculations of two different kinds, each of which gives essentially similar values—are due primarily to the amount of large soil particles or aggregates and their arrangement. The intermingling of large and small particles may provide either a less dense or more dense soil horizon (as shown by Schlicter and others), but it appears from data relating to these soils that usually an increase in aggregation is accompanied by an increase in noncapillary porosity. In this group of soils organic-matter content, silt and clay, clay, and dispersion ratio are significantly associated with aggregation.

The rate of water intake varies with the amount of effective non-capillary porosity of a soil, which differs under different conditions. When the pores of a soil are already partly or wholly filled by water of a preceding rain or when elogged at points of constriction by dispersed soil particles that have been washed into them, water intake is impeded. If aggregates are relatively unstable, continued application

of water may reduce noncapillary porosity.

The fact that the rate of infiltration during the wet run, which succeeded the initial run by 24 hours, was usually lower than the rate at the close of the initial run indicates that something of this kind has occurred. It is reasonable to suppose that during this 24-hour period some changes in soil structure have taken place. Colloids may continue to swell through the slow imbibition of water, some aggregates may continue to slake and disintegrate, and dispersed particles that

have recently moved downward to points of constriction may become cemented in place. The degree to which these various actions take place varies, of course, with the physical properties of different soils

This study is an exploratory one, the ramifications of which will not be fully understood without much additional work. It is believed that it serves to point the way toward future investigations that may be productive. We need a development of several techniques, particularly one for the precise measurement of the size distribution of soil pores. The causes of their formation and permanence is a matter of the utmost importance. In future work the study of soil texture alone and of the genetic origin of soils as criteria of infiltration may well be subordinated to other directions of effort.

#### PRACTICAL APPLICATION OF FINDINGS

The possibilities of modifying infiltration rates in farming practice deserve attention. Either destructive or constructive practices may be in operation on a given land surface. Among the destructive practices are: (1) Intensive cultivation, which results in destruction of aggregates as well as the organic matter that is effective in their formation; (2) undue compaction of the soil such as may be caused by excessive grazing, particularly when the soil is wet, or by inopportune plowing or tillage, which puddles the soil; and (3) practices that permit the loss of the surface soil, which is usually more highly aggregated than the subsoil and of higher organic-matter content and is often of coarser texture.

Among the constructive practices are most of the items commonly recommended for wise soil management, particularly: (1) The incorporation and maintenance of organic matter through such practices as the use of good rotations, the return of crop residues, and the application of manure; (2) the use of cover on the land—particularly close-growing vegetation, such as grass, which is notable for its effect on aggregation, and forest, and winter cover crops, also straw, stubble, or even stones—which serve as a protection from the impact of rain and reduce the turbidity of surface water; (3) wise culture and tillage, such as the breaking of the surface crust after rains, fall plowing of heavy dense soils where conditions warrant, and manipulation of the soil under favorable moisture conditions and in a manner to improve tilth; and (4) practices that retard the rate of run-off and thereby reduce its velocity and turbidity and provide more time for the infiltration of surface waters.

#### SUMMARY

This study was designed to determine the relative infiltration of

68 soils and related soil characteristics.

The relative infiltration of soil in situ was determined by the tube method. The data are from 68 sites scattered from Georgia to Oregon and from New York to New Mexico. These sites include soils having a wide range of texture and representative of most of the great soil and parent-material groups. They are representative also of most of the climatic provinces of the United States.

Samples from each site were forwarded to a central laboratory,

where certain important soil characteristics were determined.

Definite association of infiltration with all indices of large pores or with those factors affecting pore size was found for the 68 soil sites. Particularly, noncapillary porosity, degree of aggregation, organic matter, and amount of clay in the subsoil may be regarded as determinants of infiltration. Similarly, those factors that determine the permanency of large pores, such as suspension percentage and dispersion ratio, are associated with infiltration rates.

Correlations between soil properties that do not so directly affect infiltration were found at many points in the data. Among these are the positive correlation between organic matter and moisture equivalent and between clay and moisture equivalent, the significant negative correlation between suspension percentage and pH value, and the negative correlation between content of silt and clay and volume These correlations are in accord with the findings of numerous other workers and with well-recognized principles of soil physics.

For maintaining or increasing the infiltration rate of field soils the study indicates the value of the commonly recommended soil-management practices, which include the incorporation of organic matter and its maintenance at a reasonably high level, proper tillage practices, and a good cropping program. Conversely it is indicated that those practices tending to reduce the degree of aggregation, decrease the stability of aggregates, and increase the turbidity of water available for infiltration are usually conducive to a reduction in the rate of intuke of natural rains.

Related studies conducted on 13 sites during the course of the main investigation covered by this report indicated rather definitely that differences in turbidity of water available for infiltration was one of the most important factors tending to make infiltration rates determined by the rainfall-simulator method lower than those determined by the tube method. This and the fact that some lateral movement of subsurface water was observed for both these methods of determining infiltration rates, which involve the artificial application of water, lend support to the idea that probably these rates and others that are found when water is artificially applied should be considered as relative rather than absolute; and these values should always be considered as relative if used in the design of control measures.

#### LITERATURE CITED

(i) BRADFIELD, R.

1937. SOIL CONSERVATION FROM THE VIEWPOINT OF SOIL PHYSICS.

Soc. Agron. Jour. 29: 85-92. (2) Briggs, Lyman J., and McLane, J. W.

1911. MOISTURE EQUIVALENT DETERMINATIONS AND THEIR APPLICATION.
Amer. Soc. Agron. Proc. (1910) 2; 138-147, illus.
(3) Greene, W. Heber, and Amer. G. A.

1911. STUDIES ON SOIL PHYSICS. PART 1.—THE FLOW OF AIR AND WATER THROCOH SOILS. Jour. Agr. Sci. [England] 4: 1-24, illus.

(4) HARDING, S. T.

1919. RELATION OF THE MOISTURE EQUIVALENT OF SOILS TO THE MOISTURE PROPERTIES UNDER FIELD CONDITIONS OF IRRIGATION. Soil Sci. 8: 303-312, illus.

(5) HARDY, F.

1934. STUDIES IN TROPICAL SOILS. III. THE SHRINKAGE BEHAVIOUR OF LATERITIC AND KAOLINITIC SOILS. Jour. Agr. Sci. [England] 24: [59]-71. (6) HILLEBRAND, W. F.

1919. THE ANALYSIS OF SILICATE AND CARBONATE BOCKS. U. S. Geol. Survey Bul. 700, 285 pp., illus.

(7) HORTON, ROBERT E. Soil Sci. Sec. 1937. HYDROLOGIC INTERRELATIONS OF WATER AND SOILS. Amer. Proc. (1936) v. 1, pp. 401-429, illus. [Lithoprinted.] [Processed?]

(8) King, F. H. 1899. PRINCIPLES AND CONDITIONS OF THE MOVEMENTS OF GROUND WATER. U. S. Geol. Survey Ann. Rpt. (1897-98) 19 (pt. 2); 59-294, illus.

(9) LOWDERMILK, W. C. 1930. INFLUENCE OF FOREST LITTER ON RUN-OFF, PERCOLATION, AND EROSION. Jour. Forestry 28: 474-491, illus.

(10) MARBUT, C. F. 1935. SOILS OF THE UNITED STATES. U. S. Dept. Agr., Atlas of American Agriculture, pt. 3, 98 pp., illus.
(11) Mavis, Frederic Theodore, and Wilsey, Edward Franklin.

1936. A STUDY OF THE PERMEABILITY OF SAND. IOWA Univ., Studies Engin. Bul. 7, 29 pp., illus.

(12) MIDDLETON, H. E. 1930. PROPERTIES OF SOILS WHICH INFLUENCE SOIL EROSION. U. S. Dept. Agr. Tech. Bul. 178, 16 pp., illus.

(13) MUSGRAVE, G. W. 1935. THE INFILTRATION CAPACITY OF SOILS IN RELATION TO THE CONTROL OF SURFACE RUNOFF AND EROSION. Amer. Soc. Agron. Jour. 27: 336-345, ilius.

- and FREE, G. R. (14) -1936, SOME FACTORS WHICH MODIFY THE RATE AND TOTAL AMOUNT OF INFILTRATION OF FIELD SOILS. Amer. Soc. Agron. Jour. 28: 727-739, illus.

(15) MUSKAT, M. 1937. THE FLOW OF HOMOGENEOUS FLUIDS THROUGH POROUS MEDIA. With an introductory chapter by R. D. Wycoff. 763 pp., illus. New York and London.

(16) OLMSTEAD, L. B., ALEXANDER, LYLE T., and MIDDLETON, H. E. 1930. A PIPETTE METHOD OF MECHANICAL ANALYSIS OF SOILS BASED ON IMPROVED DISPERSION PROCEDURE. U. S. Dept. Agr. Tech. Bul. 170, 23 pp., illus.

(17) Powers, W. L. 1934. SOIL-WATER MOVEMENT AS AFFECTED BY CONFINED AIR. Jour. Agr. Res. 49: 1125-1133, illus. (18) Schollenberger, C. J.

1927. A RAPID APPROXIMATE METHOD FOR DETERMINING SOIL ORGANIC MATTER. Soil Sci. 24: 65-68, illus.

 $\{19\}$  -1931. DETERMINATION OF SOIL ORGANIC MATTER. Soil Sci. 31: 483-486.

(20) SLATER, C. S., and BYERS, H. G. 1931. A LABORATORY STUDY OF THE FIELD PERCOLATION BATES OF SOILS. U. S. Dept. Agr. Tech. Bul. 232, 24 pp., illus.

(21) SLICHTER, CHARLES S. 1899. THEORETICAL INVESTIGATIONS OF THE MOTION OF GROUND WATERS. U. S. Geol, Survey Ann. Rpt. (1897-98) 19 (pt. 2): 295-384, illus.

(22) Sokolovsky, A. N. 1933. THE PROBLEM OF SOIL STRUCTURE. Internatl. Soc. Soil Sei., Trans. 1st Comn. Soviet Sect. A-1: 34-110.

(23) THORNTHWAITE, C. WARREN. 1931. THE CLIMATES OF NORTH AMERICA ACCORDING TO A NEW CLASSI-FICATION. Geog. Rev. 21: 633-655, illus.

(24) WAKLEY, A., and BLACK, J. ARMSTRONG. 1934. AN EXAMINATION OF THE DEGTJAREFF METEOD FOR DETERMINING SOIL ORGANIC MATTER, AND A PROPOSED MODIFICATION OF THE CHROMIC ACID TITRATION METHOD. Soil Sci. 37: 29-38, illus.

(25) WILLIAMS, W. R. 1935. THESES OF TENACITY AND COMESION IN SOIL STRUCTURE. Pedology 1935 (5-6): 755-762.

(26) YODER, ROBERT E. 1936. A DIRECT METHOD OF AGGREGATE ANALYSIS OF SOILS AND A STUDY OF THE PHYSICAL NATURE OF EROSION LOSSES. Amer. Soc. Agron. Jour. 28: 337-351, illus.

## APPENDIX

Table 11. Description of the soils of sites on which rates of infiltration were measured

|                                     |                                                                                | 1 -         | 1      |                 |                                                                                                                                                                                                                          | and the same of th | <del></del>                  |
|-------------------------------------|--------------------------------------------------------------------------------|-------------|--------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Soil type t                         | Locating of site                                                               | Site<br>No. | Method | Date of initial | Description of profile                                                                                                                                                                                                   | Cultural treatment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depth<br>of sam-<br>pling    |
|                                     |                                                                                |             |        |                 |                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for lab-<br>oratory<br>study |
|                                     |                                                                                |             |        |                 | ## 5 Inches. Dark reddish-brown clay loam with crumb structure.                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Aiken clay bonm                     | Farm of Hudson Duncan<br>Fruit Co., Newberg, Oreg.                             | 140         | Tube   | May 23, 1938    | 5 10 beches. Dark reddish-brown clay loam<br>with compact granular structure.<br>10-24 inches. Red clay loam, fairly plastic.<br>Plasticity increases with increase in depth,<br>becoming plastic red clay at 24 inches. | Fruit orchard with small<br>grain and vetch as win-<br>ter cover crop on site at<br>time of run. Past win-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Inches 0-6 6-16              |
| Austin clay (slightly               | MILE DO AGO AND                            |             |        |                 | Fragments of decomposed basalt occur<br>throughout profile and become more fre-<br>quent with increase in depth.<br>10 7 inches, Black or dark-gray heavy cal-                                                           | ter cover crop, cowpens.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | )                            |
| eroded),                            | Field R. S. Tof soil and water conservation experiment station, Temple, Tex,   | 118         | do     | Feb, 24, 1938   | carrous clay,<br>7-36 inches. Brownish-gray heavy clay be-<br>coming lighter in color with increase in<br>depth. White shell fragments throughout<br>profile.                                                            | Oats 3 inches high on site<br>at time of run. Recent<br>crops: Cotton and corn.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-7<br>7-16                  |
|                                     | (Field R of soil and water<br>conservation experiment<br>station, Temple, Tex. | 119         | -do    | Feb. 28, 1938   | 0-6 inches. Grayish-black heavy calcareous-<br>clay.<br>6-36 inches. Brownish-gray heavy clay be-<br>coming fighter gray with increase in death.                                                                         | Outs 1 inches high on site<br>at time of run, Corn<br>for last 2 years,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0-6<br>6-16                  |
| Austin clay (severe-<br>ly eroded). | South of office of soil and wa-                                                | ,           |        |                 | White shell fragments throughout profile,<br>6-7 inches. Grayish-black crumbly calcare-<br>ous clay.<br>7-20 inches, Light grayish-brown heavy                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
|                                     | ter conscryution experi-<br>ment station, Temple,<br>Tex.                      | 123         | do     | Mar. 14, 1938   | clay,<br>20-36 inches, Orades from light grayish-<br>brown to light-brown, almost yellow, cal-                                                                                                                           | Seeded to oats for last 3 years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | { 0-7<br>7-16                |
|                                     |                                                                                |             |        |                 | careous clay. White shell fragments<br>throughout profile.<br>0-8 inches, Light-brown loam with appre-<br>ciable quantity of fine sand.                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |
| Badger loam 2                       | Farm of John A. McCune,<br>Ellensburg, Wash.                                   | 139         | -do    | May 18, 1938    | 8–13 inches, Light-brown loam with granu-<br>lar structure,<br>13–24 inches, Yellowish-brown silty clay<br>loam,                                                                                                         | Peas 3 inches high on site. Recent crops: Pointoes and peas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 8<br>8 18                  |
|                                     |                                                                                |             |        |                 | 24-36 inches. A little lighter in color than 13-24-inch layer and more mellow; contains more fine sand.                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                              |

|                                                                                                                                                                                                                                                                                             | RELATED                                                                                                                                                                                                                               | PELLS                                                                                                                                                        | ICAL (                                                                                                                                                                                 | HAR                                                                                                                               | actemat                                                                                                                                                                                                                                      | 103 01 30                                                                                                                                                                                                                                                                                            | 1172                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7-12-4-12-4-13-13-13-13-13-13-13-13-13-13-13-13-13-                                                                                                                                                                                                                                         | 9-0-6                                                                                                                                                                                                                                 | 0-6<br>8-16                                                                                                                                                  | 트립 =<br>                                                                                                                                                                               | # 경<br># 경                                                                                                                        | <u>1</u>                                                                                                                                                                                                                                     | 5 &<br>                                                                                                                                                                                                                                                                                              | 0-23%                                                                                                                                                                                                  |
| Winter wheat on site. Recent crops: Cowpens and onts.                                                                                                                                                                                                                                       | soybeans and rather about<br>6 thebes ligh on site.<br>Record craps: Outs and<br>clover.                                                                                                                                              | Corn on site for last 2 years.                                                                                                                               |                                                                                                                                                                                        | years.                                                                                                                            | Plowed 4 inches deep and seeded to 1ye 1 month before site was made. Recent crops: Corn and cotton.                                                                                                                                          | Plawed to a depth of 5 lichts a month before run and sweled to ryo. Recent grops: Corn and collon.                                                                                                                                                                                                   | Weeds in 1937. Recent<br>ereps: Pens, oats, und<br>colton.                                                                                                                                             |
| thes. Dark gravish-trown very fine boars. Light gravish-brown very fine chem containing small particles of chem containing small particles of the containing small particles of the containing small particles. It inches reduish-yellow southy chay hes, treduish-brown very frintle sill. | 9 20 mm. Selbowish-brown silt hum samewhat nore compact than surface. Follows is a factor. Yellows is a fattly compact silt beam. The whole profile contains beene of sundstane, which in crease in size and mu ther with increase in | 10 Studies, Oraș fst-brown silt Ionn<br>N Sil Inches, Yeliowisi-brown silvy chry<br>Nearl, sourewhat plaste when wet, Soure<br>sand mixed with tower parkin. | 6 8 Inches, Jayou and Sumills, St. Brewn, and St. Below, 28 Inches, Purily decomposed Sumillations, State (19 Inches, Parily decomposed Sumillations, Dark-brown to nearly bluck silt. | John. 10-24. Inches, Yellowish-brown slitty clay Ramicontains emstirenthe rack and gravel. 10-4 faches, Reddish-thown clay foath. | 1.22 Inclus, Red clay containing small automits of rakes and distributions repelled hower methods. Bedown 22 inclusions after many red, a more compact clay than the 4-22-largh layer and contains greater amounts of disintegraled rock and | 10.5 lineas. Reddish-brown chry bann.  More chry and less sand than on site 27.  5.21 linelies. Red chry mixed with small amounts of infer and distingented rock.  Less rates and rock than on site 27.  Inches 21 linelies. A darker red, henver chry han the 42-linely hyper with greater than 21. | amments of inlea and distributed fock.  10. 22g inches, Redelstelenous elity lann.  Relaw. 22g, inches, Heavy dark-red left) elity.  Relay. Below 6 inches a great deal of nifer and distributed rick. |
| 55                                                                                                                                                                                                                                                                                          | 0, 1937                                                                                                                                                                                                                               | , kg<br>(1011)                                                                                                                                               |                                                                                                                                                                                        | ig.                                                                                                                               | 75311                                                                                                                                                                                                                                        | 1937                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                        |
| ਡ਼ੀ<br>ਹ                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                       |                                                                                                                                                              | Apr. 21, 1638                                                                                                                                                                          | Sept. 17, 1937                                                                                                                    | Nov. 22, 1037                                                                                                                                                                                                                                | Nov. 96, 1837                                                                                                                                                                                                                                                                                        | May 3,                                                                                                                                                                                                 |
| <u> </u>                                                                                                                                                                                                                                                                                    | - Vug.                                                                                                                                                                                                                                | ್<br>ಶ<br>                                                                                                                                                   | <del></del>                                                                                                                                                                            | <u> </u>                                                                                                                          | <u>*</u>                                                                                                                                                                                                                                     | ž                                                                                                                                                                                                                                                                                                    | _ ž                                                                                                                                                                                                    |
| tlu.                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                       | do                                                                                                                                                           | ф<br>                                                                                                                                                                                  |                                                                                                                                   | do<br>Rahifall simithitor                                                                                                                                                                                                                    | Tuba                                                                                                                                                                                                                                                                                                 | Refußill slouilator                                                                                                                                                                                    |
| . %                                                                                                                                                                                                                                                                                         | क्ष                                                                                                                                                                                                                                   | ZI)T                                                                                                                                                         | E                                                                                                                                                                                      | 2                                                                                                                                 | F 20                                                                                                                                                                                                                                         | Ā                                                                                                                                                                                                                                                                                                    | 喜                                                                                                                                                                                                      |
| Farm of J. F. Duchy, Broken<br>Arrow, Oklu.                                                                                                                                                                                                                                                 | Furm of Frank French, Wal-<br>lace, N. Y.                                                                                                                                                                                             | Farm of Paul Renbuskl, In-<br>dependeper, Wis.                                                                                                               | Just morth of houndary of<br>Navajo Soil and Witter<br>Conservation Experiment<br>Station, (Juliup, N. Mox.                                                                            | Carrington silt boam   Doten farm, Spring Valley, (Lypical). Alling.                                                              | Spudding form near north-<br>cust corner of soil and wa-<br>ter conservation exper-<br>ment studion, Walkins-<br>ville, Ga,                                                                                                                  | Perey farm of soll and water a conservation, watklusy Re, Ga.                                                                                                                                                                                                                                        | North of plue grave on<br>Vaugho farm at sell and<br>water conservation experi-<br>ment station, Walkins-<br>ville, (1a,                                                                               |
| Bates very fine<br>sindy loan (shel-<br>low pinse).                                                                                                                                                                                                                                         | Bath gravelly sltt : Furm of Frank<br>louin                                                                                                                                                                                           | Boone sfit brain (Rypteul).                                                                                                                                  | Buell chy lann 1                                                                                                                                                                       | Carrington silt loam (Cypical).                                                                                                   |                                                                                                                                                                                                                                              | Ceeff chay beam                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                        |

Representative sites were weleafed by solls spreadeds.

a Local many, soil not correlated.

Table 11. Description of the soils of sites on which rates of infiltration were measured - Continued

| Soil type        | Location of site                                                                                                       | Site<br>No.                | Method                           | Date of Initial                                | Description of profile                                                                                                                                                                                                                                                                                      | Cultural treatment                                                   | Depth<br>of sam-<br>pling<br>for lab-<br>oratory<br>study |
|------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------|----------------------------------|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------|
|                  | Vaughn farm of soil and water conservation experiment station, Watkinsville, Ga.                                       | 31<br>10<br>13<br>14<br>15 | Tube<br>Ruinfall simulator<br>do | Dec. 2, 1937<br>Jan. 12, 1938                  | clay.<br>16-32 inches. Heavy red clay containing no                                                                                                                                                                                                                                                         | 1937 crop sorghum. Recent crops: Peas, oats, cotton, and corn.       | Inches 0-8 8-16 16-32                                     |
|                  | In pine grove on Vaughn                                                                                                | 1                          |                                  |                                                | pine needles.  12-5 Inches, Grayish-brown sandy loam  5-12 Inches, Yellowish-brown to orange sandy clay.  Below 12 Inches, Heavy red friable clay.                                                                                                                                                          |                                                                      |                                                           |
|                  | farm of soil and water con-<br>servation experiment sta-<br>tion; Watkinsville, Ga.                                    | 20 27                      | do do                            | Apr. 5, 1938)<br>Apr. 7, 1938)                 | Both profiles contain a considerable num-                                                                                                                                                                                                                                                                   | Pine grove for last 40<br>years. Under cultiva-<br>tion at one time. | 15-5<br>5-12<br>12-17                                     |
| Cecil sandy loam | South of pine grove on<br>Vaughn farm at soil and<br>water conservation exper-<br>iment station, Watkins-<br>ville, Oa | 28<br>34                   | dodo                             | Apr. 13 1938<br>May 6, 1938                    | 0-6 Inches. Grayish-brown sandy loam<br>6-13 inches. Yellowish-brown to orange<br>sandy clay.<br>Below 13 inches. Heavy red clay containing<br>no mica or parent material.<br>0-5 inches. Grayish-brown sandy loam<br>5-15 inches. Grades from yellow sandy loam<br>through orange sandy clay to heavy red. | Weeds in 1937. Recent<br>crops: Peas, oats, and<br>cotton.           | 0-6<br>6-13<br>13-20                                      |
|                  | Vaughn farm of soll and water conservation experiment station, Watkinsville, Ga.                                       | 29<br>30<br>32             | dododo                           | Apr. 9, 1938<br>Apr. 21, 1938<br>Apr. 27, 1938 | clay.  Below 15 inches, Henvy red clay containing no mica or parent material. On site 32 there is evidence of considerable difference in the compactness of the soil in very localized areas; this appears to be due to old root locations.                                                                 | Sorghum in 1937. Recent<br>crops: Peas, oats, cot-<br>ton, and corn. | 0-5<br>5-15<br>15-22                                      |
|                  | Vaughn farm of soil and wa-<br>ter conservation experi-<br>ment station, Watkins-<br>ville, Ga.                        | 31                         | do                               | Apr. 25, 1038                                  | (0-6) inches. Graylsh-brown sandy loam<br>6-12 inches. Grades from yellow sandy loam<br>through orange sandy clay to heavy red<br>clay.<br>Below 12 Inches. Heavy red clay containing<br>no mica or parent material. Old root lo-<br>cations, as on site 32.                                                | Sorghum in 1937. Recent<br>crops: Peas, oats, cot-<br>ton, and corn. | 0-6<br>6-12<br>12-22                                      |

| RELATED I       |  |
|-----------------|--|
| PHYSICAL (      |  |
| CHARACTERISTICS |  |
| OF SOILS        |  |
|                 |  |

|                                    | at the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | 10-7 inches. Reddish-brown sandy loam                                                | )                                           |      |             |
|------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|--------------------------------------------------------------------------------------|---------------------------------------------|------|-------------|
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | Below 7 inches. Brownish-red heavy sandy                                             | Wheat in 1937, Recent                       | 1    |             |
|                                    | Farm of J. H. Gray, High                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | 16, 1938    | clay grading into brownish-red clay. Con-                                            | crops: Lespedeza, wheat,                    |      | 0-7<br>7-20 |
|                                    | Point, N. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 36     | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Miny  | 10, 1995    | siderable amounts of mica below 7 inches.                                            | and corn.                                   | J '  | 1-20        |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | This profile also seems to be a mixed phase                                          |                                             |      |             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -      | to a solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |             | of Cecil.                                                                            | Cotton in 1938. Recent                      | ,    |             |
| Cecil sandy clay                   | Field M of soil and water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | )      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | e i kalua s | 0-7 inches. Reddish-brown sandy clay loam                                            | crops: Oats, cotton, and                    |      | 0-7         |
| loam.                              | conservation experiment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39     | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | June  | 1, 1938     | Below 7 inches. Heavy red friable clay that                                          | lespedeza.                                  | [    | 7~20        |
|                                    | station, Statesville, N. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ()     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | becomes heavier with increase in depth,                                              | i iesperieza.                               | ,    |             |
| the second second second           | (Near control plots at soil and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | h .    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | 0-7 inches. Dark-brown heavy silt loam<br>7-20 inches. Yellowish-brown granular      |                                             |      |             |
|                                    | water conservation experi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | heavy silt loam.                                                                     | Second-year corn in 1937                    |      | 0-7         |
| Clinton silt loam                  | ment station, La Crosse,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 101    | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aug.  | 31, 1937    | 20 32 inches. Dark grayish-yellow friable                                            | Tak taking your train and taking            | 1. 4 | 7-16        |
|                                    | Wis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        | The first of the state of the s |       |             | silt loam.                                                                           |                                             |      |             |
|                                    | , ,, ,,,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | 10-8 inches. Brown heavy silt loam, mixture                                          | ì                                           |      |             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i     |             | of surface soil and subsoil.                                                         |                                             |      |             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | l      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ·     |             | 8 16 inches. Yellowish-brown heavy silt                                              | Corn in 1937                                |      | 0-8         |
| Clinton silt loam                  | (Soil and water conservation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 102    | .do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sopt. | 3, 1937     | l loam.                                                                              | Corn in 1997 5                              | 1 8  | 8-16        |
| (eroded).                          | axperiment station. La                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l     |             | Below 16 inches. Dark grayish-yellow fri-                                            |                                             |      |             |
| (erenen).                          | Crosse, Wis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | able silt loam.                                                                      | ļ                                           | Ì    |             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | 0-8 inches. Medium dark-brown silt loam                                              |                                             |      | 0.0         |
|                                    | len                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1000   | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Oct.  | 1, 1937     | 8-14 inches. Light grayish-brown silt loam                                           | Second-year corn in 1937                    |      | 0-8<br>8-16 |
| Colby silt loam                    | Farm of A. Ruffing, Marsh-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 108    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | vei.  | 1, 1001     | 114-36 inches. Mottled grayish-brown chang-                                          |                                             |      | 0-10        |
|                                    | 1 field, Wis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | ing to sticky heavy clay.                                                            | <b>{</b>                                    | 1    | 0~3         |
| Crown light clay                   | Navajo Soil and Water Con-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | 10-3 inches. Fine, yellowish, loose mulch<br>Below 3 inches. Compact brownish-yellow | Range land                                  |      | 3-9         |
| (colluvial phase).                 | servation Experiment Sta-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | \$ 131 | _do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Apr.  | 15, 1938    | Helow 3 menes. Compact prowing tyenow                                                | fithinge mad                                |      | 9-15        |
|                                    | tion, Gallup, N. Mex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (I     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     |             | clay.<br>10-3 inches. Fine, yellowish, loose mulch                                   | <b>{</b>                                    | ' '  |             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | 3-7 inches. Rather loose grayish-brown clay                                          |                                             | ,    | Λ =         |
|                                    | La contraction of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | a s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4     | 18, 1938    | Below 7 inches. Heavy grayish-brown clay                                             | do                                          |      | 0-7<br>7-15 |
| Crown beavy clay 2                 | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 132    | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Apr.  | TO INOU     | underlaid by stratified sands and sandy                                              |                                             | t. ( | 7-10        |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | loams at about 20 inches.                                                            |                                             |      |             |
| Manian manager along               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ł     |             | 10-3 inches, Light-brown mulch                                                       |                                             | ٠.   | 0-8         |
| Crown sandy clay loam 2 (collevial | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 136    | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | May   | 2. 1938     | 3-8 inches. Light-brown sandy clay loam                                              | do                                          |      | 8~16        |
| phase),                            | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 100    | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | 2           | 8-22 inches, Light-brown friable clay                                                |                                             | ٠.,٠ | 0 10        |
| prinser,                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1     |             | 0-18 inches. Light-brown sandy loam                                                  |                                             | (    | 0-7         |
| Crown sandy loam 2                 | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 137    | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | May   | 4, 1938     | 18-36 inches. Same as 0-18-inch layer but                                            | }do                                         | 1 7  | 7-16        |
| 21,171,301,112,1,111               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | contains more sand.                                                                  |                                             |      |             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ŧ      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | 10-7 inches. Very dark reddish-brown clay                                            | }                                           |      |             |
|                                    | 集らな あいしょう いっこう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | loam.                                                                                | Corn in 1937, Recent                        | , .  |             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 30     | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |             | 7-22 Inches. Dark-red clay, heavy, smooth,                                           | Corn in 1937, Recent treatment: Idle and in |      | 0-7         |
| Davidson clay loam                 | : f Wood farm near Monticello,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 311    | , Rainfall simulator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       | 14, 1937    | firm, and sticky but not tenacious.                                                  | corn.                                       | f    | 7-15        |
| Davidson cay toam                  | ) Ga.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12     | do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Dec.  | 16, 1937    | 22-36 inches. Same material as 7-22-inch                                             | corn.                                       | '    |             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | layer, but it becomes heavier with increase in depth.                                | <b>]</b>                                    |      |             |
|                                    | Tarana a sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | 10-6 inches, Light yellowish-brown friable                                           | <b>\</b>                                    | ١    |             |
|                                    | Experience of the control of the |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [     |             | silt loam.                                                                           |                                             |      |             |
|                                    | (Farm of Ed Quinn, Cash-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | Below 6 inches, Brownish-red gritty clay                                             | (training to the same in 1007               | ſ    | 0-6         |
| Dubuque silt loam                  | ton, Wis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103    | Tube                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Sept. | 9, 1937     | containing considerable cherty material at                                           | Second-year corn in 1937                    | 1 (  | 6-15        |
|                                    | 1 1741) 11 45.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ,      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |             | 12 inches and deeper.                                                                | )                                           |      |             |
|                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | f      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •     |             |                                                                                      |                                             |      |             |

<sup>&</sup>lt;sup>2</sup> Local name soil not correlated.

Table 11. - Description of the soils of sites on which rates of infiltration were measured-Continued

| Soil type                   | Location of site                                                                                                                                                       | Site<br>No. | Method              | Date of i            |        | Description of profile                                                                                                                                                                                                                                                                                | Cultural treatment                                                                             | Depth<br>of sam-<br>pling<br>for lab-<br>oratory<br>study |
|-----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------------|----------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| Dunkirk silty clay loam,    | Border of soll and water con-<br>servation experiment sta-<br>tion plots on canning crops<br>farm of New York Agri-<br>cultural Experiment Sta-<br>tion, Geneva, N. Y. | 19          | Tube                | Aug. 4,<br>June 16,  |        | 0-7 inches. Light-brown silty clay loam 7-15 inches. Brownish-yellow silty clay, more compact than 0-7-inch layer. Below 15 inches. Grayish-yellow compact material. A line of tile was later found under this site. 6-8 inches. Medium-brown silty clay loam containing more clay than previous Dun- | Fallow. Last cultivated 2 weeks before run.                                                    | Inches ( 0-7 7-15 7-15                                    |
|                             | Canning crops farm of New<br>York experiment station,<br>Geneva, N. Y.                                                                                                 | 42<br>43    | Itainfall simulator | June 15,<br>June 17, |        | kirk site; also more compact,<br>(8-20 inches, Light brownish-yellow more<br>compact silty clay,<br>Below 20 inches, Grayish-yellow compact<br>(material,<br>0-6 inches, Light grayish-brown silt loam                                                                                                | Oats in 1938. Recent crops:<br>Corn, soybeans, and<br>sweetclover.                             | 0-8<br>S-20                                               |
| Fayette silt loam           | Farm of Albert Gaustad,<br>Houston, Minn.                                                                                                                              | } 106       | Tube                | Sept. 22,            |        | 0-16 inches. Yellowish-brown silt loam,<br>slightly heavier and more compact than<br>0-6-inch layer.<br>Below 16 inches. Yellow moderately com-<br>pact silt loam.<br>0-7 inches. Gray friable silt loam                                                                                              | Third-year corn in 1937                                                                        | { 0-6 0<br>6-16 0                                         |
| Fremont gravelly silt loam. | Edwards farm, Cohocton, N. Y.                                                                                                                                          | } 21        | do                  | Aug. 12,             | 1937   | 7-12 inches. Gray silt loam moderately mot-<br>tled with rust brown,<br>12-24 inches. Yellowish-gray very compact<br>gritty silt loam, highly mottled. Numer-<br>ous sandstone rocks throughout profile.<br>0-10 inches. Light-brown granular silt loam                                               | Buckwheat in 1937                                                                              | { 0-7 5<br>7-12 5                                         |
| Athem silt loam             | {Farm of C. J. Broughton,<br>Dayton, Wash.                                                                                                                             | 142         | do                  | June 2,              | 1938   | 10-25 inches. Light-brown silty clay loam, granular, and with a slight yellowish color. Below 25 inches. Yellowish-brown heavy silt loam containing appreciable amounts of very fine sand.  07 very fine sand. 7-14 inches. Yellowish-brown silt loam heav-                                           | Spring wheat in 1938. Recent crops: Peas and wheat. Subsoiled 16 to 18 inches in fall of 1935. | 0.2                                                       |
| Honeoye gravelly silt foam. | Field 17 of soil and water<br>conservation experiment<br>station, Marcellus, N. Y.                                                                                     | 15          | do                  | July 2,              | 1937 ( | 11-14 inches. Tenowish-frown six found neav-<br>ier than surface soil.<br>11-22 inches. Transition material, calcareous<br>below 18 inches. Gravel and stones found<br>throughout profile but increase in number<br>and size with increase in depth.                                                  | Outs and barley in 1937.<br>Plowed May 15, 1937.                                               | 7-16 A                                                    |

| Honeoye gravelly silt loam (eroded).            | Field 19 of soil and water conservation experiment station, Marcellus, N. Y.                               | ] 16            | do July                                                    | 9, 1937                                                            | Profile differs from that of site 15 in that the upper subsoil contains more sand and fine gravel.                                                                                                                                                                                                          | Oats and barley in 1937.<br>Plowed May 10, 1937.                                    | { 0-7<br>7-14 |
|-------------------------------------------------|------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------|
|                                                 | do                                                                                                         | 17              | , do July                                                  | 15, 1937                                                           | Profile different from that of site 15 in that<br>it has more surface soil because of deposi-<br>tion.                                                                                                                                                                                                      | Oats and barley in 1937.<br>Plowed about May 10,<br>1937                            | 0-8<br>8-15   |
| Honeoye gravelly silt loam.                     | do.                                                                                                        | 18              |                                                            | 22, 1937                                                           | Profile considerably different from that of<br>site 15 in that the surface soil is much<br>darker than that of typical Honeoye and<br>the subsoil has considerable gray mottling.<br>Might be called Lyons rather than Hone-<br>oye. A localized area that is wet and seepy<br>part of the time.            | Oats and barley in 1937.<br>Plowed about May 6,<br>1937.                            | 0-8<br>8-15   |
|                                                 | l'ield 17 near site 15 tube of<br>soil and water conserva-<br>tion experiment station,<br>Marcellus, N. Y. | 223<br>1 23 3 4 | do Oct.<br>Rainfall simulator Sept.<br>do Sept.<br>do Oct. | 23, 1937<br>1, 1937<br>20, 1937<br>23, 1937<br>1, 1937<br>10, 1938 | Profiles are the same as those of site 15 except that on sites 23, 3, and 41 the subsoil is slightly mottled.                                                                                                                                                                                               | Outs and barley in 1937.<br>Plowed about May 15,<br>1937.                           | 0-7<br>7-14   |
| Honeoye gravelly silt loam (sod).               | Field 2 of soil and water con-<br>servation experiment sta-<br>tion, Marcellus, N. Y.                      | 37              | Tube Oct.<br>Rainfall simulator                            | 8, 1937                                                            | 0-8 inches. Dark-brown gravelly silt loam<br>8-24 inches. Grades from brown to lighter<br>brown mottled with yellow gravelle silt<br>loam; more compact than surface layer.<br>Below 24 inches. About the same material<br>as that of the 8-24-inch layer but contains<br>much more sand, gravel, and rock. | Dense bluegrass sod,<br>which probably had not<br>been disturbed for many<br>years. | 0-8<br>8-15   |
| Honeoye gravelly silt loam                      | Field 5 of soil and water conservation experiment station, Marcellus, N. Y.                                | 35<br>10        | Tube June Rainfull simulator June                          | 8, 1938<br>7, 1938                                                 | 0-7 inches. Dark grayish-brown silt loam<br>Below 7 Inches. Mottled grayish-yellow<br>heavy silt loam with the gray becoming<br>more prominent with increase in depth.<br>Many rocks of various sizes appear through-<br>out profile. The B horizon is not very<br>definite.                                | Timothy and weeds in<br>1938. Recent crops:<br>Onts and buckwheat.                  | 0-7<br>7-18   |
| Hopi sandy loam <sup>1</sup>                    | Navajo Soil and Water Con-<br>servation Experiment Sta-<br>tion, Gallup, N. Mex                            | 135             | Tube                                                       | 28, 1938                                                           | 0-3 inches, Very light-brown loose sandy loam. 3-18 inches, Light-brown sandy loam. Below 18 inches, Graylsh-brown clay loam containing nodules of lime. Disintegrated yellow sandstone encountered at 24 inches. 10-12 inches, Dark-gray to black calcareous                                               | Range land, Covered with sparse stand of gruss.                                     | 0-3<br>3-15   |
| Houston black clay (slightly eroded).           | Field O of soil and water<br>conservation experiment<br>station, Temple, Tex.                              | 120             | doMar.                                                     | 3, 1938                                                            | heavy clay.  12-36 inches. Grades into a brownish-gray heavy, waxy calcareous clay, which be- comes lighter in color with depth.  (0-71nches. Dark-gray to black calcareous heavy clay.                                                                                                                     | Oats in 1938. Recent<br>crops. Corn and cot-<br>ton.                                | 0-12<br>12-21 |
| Houston black clay<br>(moderately crod-<br>ed). | do                                                                                                         | 122             | doMar.                                                     | 10, 1938                                                           | 7-36 inches. Grades into a light brownish-<br>gray waxy clay, which becomes lighter<br>in color with depth.                                                                                                                                                                                                 | do                                                                                  | { 0−7<br>7−16 |

Local name, soil not correlated.

TABLE 11.—Description of the soils of sites on which rates of infiltration were measured—Continued

| Soil type                         | Location of site                                                              | Site<br>No. | Method                   | Date of initial     | Description of profile                                                                                                                                                                                                                                                               | Cultural treatment                                                     | Depth<br>of sam-<br>pling<br>for lab-<br>oratory<br>study |
|-----------------------------------|-------------------------------------------------------------------------------|-------------|--------------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------------------------------|
| Houston clay (moderately eroded). | Field R of soil and water<br>conservation experiment<br>station, Temple, Tex. | 121         | Tube.                    | Mar. 7, 1938        | (0-7 inches. Dark-brown calcareous clay<br>7-20 inches. Brownish-black crumbly cal-<br>carcous clay.<br>20-36 inches. Becomes lighter brown with<br>increase in depth and grades into a yellow-<br>ish-brown calcareous clay.<br>(0-7 inches. Dark-brown crumbly calcareous<br>clay. | Onts in 1938, Recent<br>crops; Cane and cot-<br>ton.                   | Inches 0-7 7-16                                           |
| Wouston clay (shallow phase).     | Curtis farm near Troy, Tex                                                    | 124         | do                       | Mar. 16, 1938       | 7-18 inches. Yellowish-brown crumbly cal-<br>careous clay.<br>Below 18 inches. Grades into a yellowish-<br>white crumbly chalky marl, which be-<br>comes simost solid at 33 inches.                                                                                                  | Oats and vetch in 1938. Recent crops: Oats following oats.             | 0-7<br>7-16                                               |
| Iredell lonn.                     | Mathewson farm, Lexington.<br>Ga.                                             | 1 26<br>1 7 | do<br>Rainfall simulator | Nov. 15, 1937<br>do | 0-6 inches. Yellowish-brown heavy loam. Below 6 inches. Plastic brownish-yellow clay. Parent material began to show below 30 inches.                                                                                                                                                 | Millet and vetch in 1937.<br>Recent crops: Millet, corn,<br>and vetch. | 0-6<br>6-15                                               |
| Kirkland sandy clay               | Soil and water conservation<br>experiment station,<br>Guthrie, Okla.          | 125         | Tube                     | Mar. 22, 1938       | 10-5 inches. Dark reddish-brown sandy clay<br>(5-28 inches. Grades from light-red sandy<br>clay to rather plastic red clay.<br>10-10 inches. Dark reddish-brown sandy                                                                                                                | Wheat in 1937, Recent crops: Cotton and oats.                          | { 0−5<br>5−16                                             |
| Cirkland fine saudy loam.         | Gaifney farm, Guthrie,<br>Okla.                                               | 126         | do                       | Mar, 24, 1938       | loam containing a few small sandstone<br>fragments in lower depths.<br>Below 10 inches, Grades from reddish sandy<br>clay to rather plastic clay.<br>10-7 inches. Dark-brown silt loam                                                                                               | Winter wheat in 1938. Recent crops: Cotton and oats.                   | { 0−10<br>10−16                                           |
| Lordstownstonys.lt<br>loam,       | Arnot soil and water con-<br>servation experiment sta-<br>tion, Ithaca, N. Y. | } 0         | Rainfallsimulator        | Oct. 26, 1938       | 7-20 inches. Yellowish-brown silty clay<br>Below 20 inches. Almostsoild rock. A large<br>amount of shale rock, varying in size to<br>about 10 inches in dinmeter, scattered over<br>surface and throughout profile.                                                                  | Smallgrain in 1937                                                     | { 0−7<br>7−20                                             |
| Melbourne loara                   | Farm of B. F. Yergen, Newberg, Oreg.                                          | 141         | Tube                     | May 25, 1938        | 0-10 inches. Brown loam, high in sand. Practically structureless. 10-20 inches. Yellow sandy clay; structure poorly developed, somewhat prismutic. 20-28 inches. Heavy yellow clay, some mottling.                                                                                   | Pear or chard, with crop of vetch and barley plowed under.             | 0-7<br>7-21                                               |

| Miami silty clay loam.          | Sells farm, property of Ohio<br>State University, Colum-<br>bus, Ohio.                                | 115               | do                             | Oct.  | 11, 1937                         | Below 20 inches. Heavy material containing considerable gravel and stone.                                                                                                                                                                                       | Corn in 1937. Recent crops: Soybeans and corn.                               | {        | 0-7<br>7-15   |
|---------------------------------|-------------------------------------------------------------------------------------------------------|-------------------|--------------------------------|-------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|----------|---------------|
|                                 | Near rotation plot 2 of soil<br>and water conservation<br>experiment station,<br>Zanesville, Ohio.    | 109               | do                             | Aug.  | 8, 1937                          | (0-7 inches. Light-brown silty loam<br>7-22 inches. Considerably more clay and<br>more reddish than above layer.<br>Below 22 inches. Same material as above<br>but contains a great deal of light-colored<br>shale.                                             | Corn in 1937. Mendow<br>year before.                                         | {        | 0-7<br>7-16   |
|                                 | Field J of soil and water conservation experiment station, Zanesville, Ohio.                          | 37<br>44<br>45    | do<br>Rainfall simulator<br>do | June  | 28, 1938<br>24, 1938<br>27, 1938 | 10-7 inches, Grayish-brown heavy silt loam<br>7-20 inches, Yellovish-brown heavy clay<br>with numerous small pieces of shale and<br>sandstone.<br>20-24 inches, Same material as 7- to 20-inch<br>layer but contains much more sandstone<br>and shale.          | Timothy and weeds in 1938.                                                   | {        | 0-7<br>7-20   |
| Muskingum silt-<br>loam.        | Above terrace C-2 of soil<br>and waterconservation ex-<br>permiment station, Zanes-<br>ville, Ohio.   | 110               | Tube                           | Aug.  | 14, 1937                         | (Below 24 inches. Almost solid rock<br>(0-5 inches. Brown heavy sitt loam<br>5-24 inches. Reddish-brown silt with layers<br>of shale.<br>Below 24 inches. Almost solid shale and<br>sandstone.                                                                  | Clover seeded after wheat<br>in 1937. Recent crops:<br>Corn, wheat, and hay. | \{<br>\{ | 0-5<br>5-15   |
|                                 | Farm of Floyd Lapp near<br>Adamsville, Ohio.                                                          | 111               | .do                            | Oct.  | 25, 1937                         | 0-8 inches. Dark-brown silt loam<br>8-20 inches. Lighter brown and more com-<br>pact silt loam mixed with particles of light-<br>colored shale. More sand throughout<br>profile than is found in Muskingum pro-<br>files on soil and water conservation experi- | Winter wheat in 1937.  Recent crops: Corn, hay and wheat.                    | \<br>\{  | 0-8<br>8-16   |
|                                 | Near southwest corner of<br>soil and water conserva-<br>tion experiment station,<br>Zanesville, Ohio. | 114               | do                             | Sept. | 8, 1937                          | ment station, Zanesville, Ohio.<br>  O-7 inches. Dark-brown silt loam<br>  7-18 inches. Light-brown silt mixed with<br>  some shale.<br>  18-36 inches. Very little change in color from<br>  that of 7- to 18-inch layer but material                          | Corn in 1937. Recent<br>crops: Wheat, hay, and<br>corn.                      | <b> </b> | 0-7<br>7-15   |
| Orangeburg sandy                | Farm of Mrs. S. M. Jones                                                                              | )<br>  33<br>  19 | do<br>Ruinfall simulator       | Feb.  | 25, 1938<br>24, 1938             | becomes heavier and mixed with considerable more shale.  (0-7 inches. Grayish-brown sandy loann 7-12 inches. Brownish-yellow sandy loann a little heavier than 0- to 7-inch layer.  12-20 inches. Light-red sandy loan grading                                  | Corn, peas, and beans in<br>1937. Recent crops:                              | ,<br>[   | 0-7           |
| Palouse silt loam (deep phase), | near Ellaville, (ia.  Field 7 between terraces 5 and 6 on soil and water                              | 20                | do                             | Feb.  | 28, 1938                         | into a bright-red friable sandy clay, which<br>becomes heavier with depth.<br>Below 20 inches. Red crumbly heavy sandy<br>clay.<br>0-14 inches. Dark-brown friable silt loam<br>with the surface showing a play structure                                       | Chufa, corn, beans, and and peas.                                            |          | 7-12<br>12-20 |
|                                 | conservation experiment<br>station Pullman, Wash.                                                     | 144               | Tube                           | June  | 7, 1938                          | 14-36 inches, Dark-brown heavy silt loam,<br>a shade lighter in color than the surface<br>soll.                                                                                                                                                                 | Winter wheat in 1938.<br>Summer fallow in 1937.                              | {        | 0-6<br>6-21   |

RELATED PHYSICAL CHARACTERISTICS OF SOILS

Table 11.—Description of the soils of sites on which rates of infiltration were measured—Continued

| Soil type                                      | Location of site                                                                 | Site<br>No.                                                 | Method                          | Date of initial<br>run                                          | Description of profile                                                                                                                                                                                                                                                                                                                     | Cultural treatment                                                | Depth<br>of sam-<br>pling<br>for lab-<br>oratory<br>study |
|------------------------------------------------|----------------------------------------------------------------------------------|-------------------------------------------------------------|---------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------|
| Palouse silt loam<br>(shallow phase).          | Field 4 of soil and water<br>conservation experiment<br>station, Pullman, Wash.  | } 146                                                       | Tube                            | June 13, 1938                                                   | 0-12 inches. Dark-brown heavy silt loam, granular and friable.  12-18 inches. Tawny-brown silty clay loam, which becomes slightly heavier with depth.  Below 18 inches. Yellowish-brown clay loam to silty clay loam.  10-8 inches. Grayish-brown silty clay loam,                                                                         | Spring wheat in 1938. Recent crops: Peas, wheat, and sweetclover. | Inches 0-8 8-21                                           |
| Palouse silty clay<br>loam (shallow<br>phase). | Field 7 of soil and water<br>conservation experiment<br>station, Pullman, Wash.  | 145                                                         | do                              | June 9, 1938                                                    | fairly friable.  8-20 inches. Tawny-brown silty clay loam to clay loam.  Below 20 inches. 4, Yellowish-brown silty clay loam.                                                                                                                                                                                                              | Winter wheat in 1938.<br>Summer fallow in 1937.                   | { 0−8<br>8−16                                             |
| Parsons fine sandy loam.                       | Broken Arrow, Okla.                                                              | 128                                                         | do                              | Apr. 1, 1938                                                    | 0-12 inches. Grayish-brown fine sandy loam. Below 12 inches. Dense, tough, reddish- yellow clay mottled with gray. 0-2 inches. Fine granular mulch.                                                                                                                                                                                        | Cane in 1937. Recent<br>crops: Oats and lespe-<br>deza,           | 0-12                                                      |
| Pinedale clay loam 2.                          | Navajo Soil and Water<br>  Conservation Experiment<br>  Station, Gallup, N. Mex. |                                                             | do                              | Apr. 25, 1938                                                   | 2-7 inches. Brown clay loam.<br>  Below 7 inches. Brown sandy clay changing<br>  to an olive-brown clay, which covers par-<br>  ent sandstone material at 36 inches.<br>  0-6 inches. Gray loamy sand                                                                                                                                      | Range land, Sparse cover of grass.                                | { 0-7<br>7-15                                             |
| Ruston loamy sand                              | Farm of Mrs. H. G. Adams<br>near Americus, Ga.                                   | 23                                                          | Rainfall simulator,             | Mar, 19, 1938                                                   | 6-12 inches. Light brownish-gray loamy sand. 12-23 inches. Reddish-brown loamy sand. 23-36 inches. Reddish-orange loamy sand. Below 36 inches. Brownish-red sand; clay.                                                                                                                                                                    | Oats in 1935. Idle since that date.                               | 6-12<br>12-23<br>23-36<br>36-42                           |
| Red Bay loam                                   | Farm of T. M. Merritt,<br>Americus, Ga.                                          | $\left\{\begin{array}{c} 34 \\ 22 \\ 25 \end{array}\right.$ | Tube<br>Rainfall simulatordo    | Mar. 15, 1938<br>Mar. 11, 1038<br>Mar. 24, 1938                 | iò-5 inches. Brownish-red loam. 5-15 inches. Dark-red heavy sandy clay. Below 15 inches. Dark-red heavy clay, which becomes heavier with increase in depth.                                                                                                                                                                                | Cotton in 1937. Recent crops: Corn, oats, and cotton.             | { 0-5<br>5-15                                             |
| Ruston sandy loam.                             | Farm of J. D. Moore, near<br>Americus. Ga.                                       | [17]                                                        | Tube. Rainfall simulator. do do | Feb. 10, 1938<br>Feb. 8, 1938<br>Feb. 14, 1938<br>Feb. 16, 1938 | 0-7 inches. Grayish-brown sandy loam 7-11 inches. Brownish-yellow sandy loam, which becomes a little heavier with in- crease in depth. Below 11 inches. Yellowish-red sandy clay, which becomes heavier with increase in                                                                                                                   | Cotton in 1937. Cotton<br>and corn rotation for<br>years.         | $ \begin{cases} 0-7 \\ 7-11 \\ 11-20 \end{cases} $        |
| Selah loam 2                                   | Farm of Dan McKenze,<br>Ellensburg, Wash.                                        | 138                                                         | Tube.                           | May 16, 1938                                                    | depth.<br>0-12 inches. Grayish-brown loam becoming<br>slightly heavier in lower 6 inches.<br> 12-18 inches. Grayish-brown slity clay loam<br>with granular structure.<br> 18-27 inches. Slightly reddish-brown clay<br>loam. Slightly prismatic in structure.<br>  Below 27 inches. Gliche layer, apparently<br>impervious to plant roots. | Fallow in 1938. Recent<br>crops Peas and pota-<br>toes.           | \begin{cases} 0-12 \\ 12-20 \end{cases}                   |

|                              |                                                                                                                |      |                          |        |                      | 0-9 inches. Dark-brown to almost black, smooth, friable silt loam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ſ   |               |    |
|------------------------------|----------------------------------------------------------------------------------------------------------------|------|--------------------------|--------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------|----|
| Tama silt loam.              | Farm of H. T. Hanson,                                                                                          | 104  |                          |        |                      | 19-22 inches. Deep-brown silt loam that                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |               |    |
| - mine site mante.           | Westby, Wis.                                                                                                   | 104  | do                       | . Sepi | . 14, 1937           | grades with depth into brownish-yellow silt loam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Second-year corn in 1937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . { | 0-9<br>9-22   |    |
|                              |                                                                                                                |      |                          |        |                      | Below 22 inches. Brownish-yellow heavy silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1   |               |    |
|                              |                                                                                                                |      |                          |        |                      | loam or silty clay loam.<br>(0-512 inches. Dark-red clay loam showing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |               |    |
|                              |                                                                                                                |      |                          |        |                      | traces of organic matter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -   |               |    |
| Upshur clay loam             |                                                                                                                | 113  | do                       | Nov    | . 2, 1937            | 514-20 inches. Dark-red clay with no organic matter apparent.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Corn in 1937. Recent                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ľ   | ()-514        | ٠. |
| 2000                         | Ohio.                                                                                                          |      |                          |        | ,                    | Below 20 inches. Same material as 514-20-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | crops: Oats and clover.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1   | 7-15          |    |
|                              |                                                                                                                |      |                          |        |                      | inch layer but becomes more crumbly with increase in depth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |               |    |
|                              | (West of control plots on soil                                                                                 | 116  | do                       | Nov    | . 29, 1937           | 0-8 inches. Dark brownish-red fine sandy loam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Onts with cowpens turned                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |    |
|                              | and water conservation                                                                                         | **** |                          | 1404   | . 20, 1957           | 18-16 inches. Bright-red sandy clay                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | under in 1937. Fallow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1   | 0-8<br>8-15   |    |
|                              | experiment station, Guth-<br>rie, Okla.                                                                        |      |                          |        |                      | Below 16 Inches. Weathered sandstone<br>[0-13 inches. Dark reddish-brown fine sandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | at time of run.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | L.  | 0-10          |    |
|                              | Field B of soil and water conservation experiment                                                              | 117  | . do                     | Dec    | 4, 1937              | ( loan.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Winter wheat at time of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ١.  | 1             |    |
| Vernon fine sandy loam.      | station, Guthrie, Okla,                                                                                        |      |                          |        | 1, 1501              | 13-20 inches. Light-yellow and deep-red sandy clay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | run. Recent crops:<br>Cotton, oats, and sor-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | K   | 0-13<br>13-20 |    |
| .0                           |                                                                                                                |      | -                        |        |                      | Below 20 inches. Weathered sandstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ghum.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |               |    |
|                              |                                                                                                                |      |                          |        |                      | 0-8 inches. Dark reddish-brown fine sandy loam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |               |    |
|                              | Plot K3 of soil and water<br>conservation experiment                                                           | 129  | do                       | Apr.   | 4, 1938              | 8-20 inches. Bright red fine sand to sandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wheat cover crop at time of run. Continuous cot-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ľ   | 0~8           |    |
|                              | station, Guthrie, Okla.                                                                                        |      |                          |        |                      | clay.<br>  Below 20 inches. Friable red clay to sandy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ton since 1932,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Ĭ.  | 8-21          |    |
|                              |                                                                                                                |      | -                        |        |                      | It clay.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     |               |    |
| Vernon very fine             |                                                                                                                |      |                          |        |                      | 0-10 Inches. Reddish-brown to red very fine sandy loam. Reddish color increases with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>l</b> ight of the second of the |     |               |    |
| Vernon very fine sandy loam. | Farm of K. E. Driskell, Elk<br>City, Okla,                                                                     | 130  | .do                      | Apr.   | 10, 1938             | depth; no structural development.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Grain sorghum since 1936                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ſ   | 0-9           |    |
|                              |                                                                                                                |      |                          |        |                      | 10-14 inches. Weathered shale, highly cal-<br>careous.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | British India                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | լ   | 9-16          |    |
|                              |                                                                                                                | .    |                          |        |                      | Below 14 inches. Parent material   10-6 inches. Brownish-gray quite friable silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |               |    |
| Volusia stony silt           | Farm of Jerry A. Rosak,<br>near Arnot soil and water                                                           | ]    |                          |        |                      | l loam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |               |    |
| .0                           | conservation experiment                                                                                        | 25   | do<br>Rainfall simulator | Oct.   | 19, 1937<br>18, 1937 | 6-11 inches. Lighter brown than 0 to 6-inch layer and increases in compactness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Timothy, orchard grass,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ı   | 0-6           |    |
|                              | station, near Ithaca, N. Y.                                                                                    | 1    |                          |        | 104 1001             | Below 11 Inches. Dark-gray very compact                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | and clover pasture for last 2 years.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     | 6-11<br>11-15 |    |
|                              |                                                                                                                |      |                          |        |                      | shale The profile is quite registle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |               |    |
|                              |                                                                                                                | - 1  |                          |        |                      | 170-16 inches. Brown friable and grapping silt i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ί .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |               |    |
| Walla Walla silt             | Farm of C. J. Broghton,                                                                                        | 143  | Tube                     | Livera | 3, 1938              | loam, which becomes lighter in color with increase in depth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Spring wheat in 1938.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |               |    |
| matt.                        | Dayton, Wash,                                                                                                  |      |                          | June   | 9, 1090              | 16-30 inches. Light-brown heavy silt loam,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Summer fallow and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | {   | 0-7<br>7-16   |    |
|                              |                                                                                                                |      |                          |        |                      | somewhat compact. Below 30 inches. Yellowish-brown heavy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | wheat 2 years before.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | 10            |    |
| Westmoreland                 |                                                                                                                |      |                          |        |                      | 1 Silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |               |    |
| clayey silt loam.            | Concord, Oldo,                                                                                                 | 112  | do                       | Oct    | 28, 1937             | 0-5 inches. Dark-brown clayey silt loam<br>5-36 inches. Gradual change in color from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Corn in 1937                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ſ   | 0-5           |    |
|                              |                                                                                                                |      |                          |        | -0, 1001             | dark brown to almost light gray. The whole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ŧ   | 5-15          |    |
| <u> </u>                     |                                                                                                                |      |                          |        |                      | profile is very sticky and quite variable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |               |    |
| 11 noul name nott            | are a constant and a |      |                          |        | an man and y pieces  | The same of the sa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |               |    |

<sup>&</sup>lt;sup>1</sup> Local name, soil not correlated

Table 12.— Rates of infiltration of soils as obtained on sites with recorded soil moisture and soil and water temperatures
[Tube method]

| Soll type                                                                                                                                                                                                                                                                                                                                                                     | Location of site                                                                                                                                                                                                           | Site                                                               | Kind of                                                                                                                                                 | Soil m                                                                        | oisture ²<br>at depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | before<br>of                                                                                                                                | Soil ter<br>ture l<br>run at<br>of              | efore<br>depth                                                                                                 | Tem-<br>pera-<br>ture of<br>water                                                                                                                | Cumulat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ive amoun<br>errors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ts of infiltr<br>, during per                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ntion, with<br>iod of—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | standard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |        |                 |                 |                 |                  |                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------|-----------------|-----------------|------------------|------------------|
|                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                            |                                                                    |                                                                                                                                                         |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |                                                 |                                                                                                                | •••                                                                                                                                              | 0-7<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 7–15<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15-25<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | of run | 0-15<br>minutes | 0-30<br>minutes | 0-60<br>minutes | 0-120<br>minutes | 0-180<br>minutes |
| Aiken clay loam  Austin clay (slightly croded)  Austin clay (severely croded)  Badger loam <sup>3</sup> Bates very fine sandy loam  Bath gravelly slit loam  Boone silt loam (typical)  Buell clay loam <sup>3</sup> Carrington silt loam (typical)  Cecil clay loam  Cecil sandy loam  Clinton silt loam (typical)  Clinton silt loam (typical)  Clinton silt loam (typical) | Newberg, Oreg Temple, Tex  do Ellensburg, Wash Broken Arrow, Okla Wallace, N. Y Independence, Wis Mexican Springs, N. Mex. Spring Valley, Minn. Watkinsville, Ga  do La Crosse, Wis do Marshfield, Wis Mexican Springs, N. | 1400 118  { 1193 123 139 127 20 107 133 105 { 22 28 31 101 102 108 | Initial Wet Initial | Percent 21.0 36.7 25.4 30.6 34.2 35.2 36.5 36.5 36.5 36.5 36.5 36.5 36.5 36.5 | 25. 8<br>30. 6<br>21. 4<br>22. 2<br>26. 8<br>27. 7<br>22. 7<br>25. 6<br>20. 4<br>25. 6<br>21. 8<br>21. 7<br>22. 1<br>25. 6<br>21. 8<br>25. 6<br>21. 8<br>25. 7<br>26. 7<br>26. 7<br>27. 4<br>26. 7<br>27. 4<br>28. 8<br>29. 4<br>20. 4<br>21. 8<br>21. 8<br>21. 8<br>21. 8<br>22. 2<br>23. 9<br>24. 4<br>25. 6<br>26. 7<br>27. 7<br>28. 7<br>29. 7<br>20. 7<br>20. 8<br>20. 8<br>20 | 18. 4 21. 2 21. 7 23. 0 22. 2 23. 1 15. 8 23. 2 12. 3 11. 5. 8 23. 2 24. 1 25. 9 25. 9 26. 4 26. 4 26. 4 26. 8 15. 3 10. 5 11. 8 8. 6 15. 8 | 488 488 566 666 666 666 666 667 667 667 667 667 | 75<br>55<br>55<br>45<br>45<br>46<br>61<br>61<br>42<br>49<br>49<br>42<br>72<br>78<br>75<br>78<br>74<br>44<br>44 | 684<br>441<br>525<br>686<br>586<br>744<br>68<br>68<br>77-7-6<br>62<br>60<br>60<br>60<br>54<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44<br>44 | 1.32± 19<br>  1.32± 10± 05<br>  1.12± 02<br>  1.78± 00<br>  1.78± 00<br>  1.76± 22<br>  1.31± 22<br>  1.48± 10<br>  1.48± 10<br>  1.70± 22<br>  20± 05<br>  1.48± 10<br>  1.70± 22<br>  20± 05<br>  1.48± 10<br>  1.70± 22<br>  20± 05<br>  1.48± 10<br>  1.70± 20<br>  1.70± 20<br>  1.70± 20<br>  1.70± 20<br>  1.70± 00<br>  1.70± 00<br>  1.70± 00<br>  1.32± 05<br>  1.40± 00<br>  1.40± | 3.35±.35<br>.18±.02<br>.90±.06<br>.24±.04<br>2.80±.35<br>1.70±.35<br>1.36±.07<br>.16±.02<br>.12±±.10<br>.44±.03<br>6.13±.63<br>.325±.42<br>1.14±.03<br>.325±.42<br>1.12±.11<br>.35±.04<br>.2.95±.22<br>11.18±.27<br>.02±.11<br>.1.18±.07<br>.02±.11<br>.1.2±.07<br>.1.2±.07<br>.1.37±.07<br>.1.37±.07<br>.1.47±.07<br>.1.47±.07<br>.1.47±.07<br>.1.47±.07<br>.1.47±.07<br>.1.47±.07<br>.1.47±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41±.07<br>.1.41± | 5.75±. 02<br>.10±. 03<br>.10±. 03<br>.10±. 03<br>.30±. 09<br>.30±. 09<br>.30±. 09<br>.4.25±. 54<br>.2.17±. 55<br>.65±. 04<br>.2.19±. 18<br>.65±. 04<br>.2.15±. 11<br>.2.35±. 11<br>.2.35±. 11<br>.2.35±. 11<br>.2.35±. 10<br>.01±. 00<br>.01±. 01<br>.01±. 01 | 02± 03<br>1. 28± .15<br>.38± .06<br>6. 74±1. 10<br>4. 43±1. 03<br>2. 12± .17<br>.37± .03<br>.39± .33<br>1. 06± .06<br>017. 15±2. 28<br>9. 57±1. 42<br>2. 01± .17<br>2. 82± .17<br>2. 82± .17<br>2. 82± .17<br>2. 82± .17<br>2. 82± .17<br>2. 82± .10<br>1. 05± .06<br>0. 62± .71<br>1. 51± .05<br>0. 02± .01<br>1. 09± .09<br>1. 33± .11<br>.33± .11 | $\begin{array}{c} 44. \ (1\pm 1.50) \\ .24\pm .03 \\ .03\pm .04 \\ .1.55\pm .22 \\ .47\pm .08 \\ 9. \ (15\pm 1.61) \\ .2.54\pm .24 \\ .50\pm .06 \\ .5.62\pm .51 \\ .44\pm .51 \\ .50\pm .06 \\ .5.62\pm .51 \\ .44\pm .21 \\ .3.34\pm .321 \\ .3.32\pm .200 \\ .41\pm .23 \\ .3.42\pm .321 \\ .3.21\pm .18 \\ .69\pm .07 \\ .4.03\pm .07 \\ .4.03\pm .07 \\ .4.03\pm .07 \\ .4.04\pm .17 \\ .4.04\pm .11 \\ .1.55\pm .11 \\ .1.55\pm .11 \\ .1.55\pm .11 \\ .1.59\pm .06 \\ .2.19\pm .14 \\ .59\pm .06 \\ .2.19\pm .14 \\ .59\pm .06 \\ .2.19\pm .14 \\ .8.34 \\ .4.1\pm .14 \\ .4.$ |        |                 |                 |                 |                  |                  |
| phase), <sup>1</sup><br>Crown heavy clay <sup>1</sup>                                                                                                                                                                                                                                                                                                                         | Mex.                                                                                                                                                                                                                       | 132                                                                | fInitial                                                                                                                                                | 18. 2<br>47. 2                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             | 48<br>49                                        |                                                                                                                |                                                                                                                                                  | 3 1, 13±; .07<br>1 .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .01土                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .01士                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .02± .01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |                 |                 |                 |                  |                  |

| Crown sandy clay loam 1 do                            | 136   Initial       | 6, 7 13, 5 16, 6 19, 0           | 11. 3 55<br>18. 6 52                  | 53<br>53 | 52 1. 54± .03 2. 16± .04 3. 42± .07 6. 65± .16 8. 87± .26 56 .73± .02 1. 10± .03 1. 73± .04 3. 03± .07 4. 45± .11                        |
|-------------------------------------------------------|---------------------|----------------------------------|---------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------|
| Crown sandy loam 3 do do                              | 137 {Initial<br>Wet | 8. 8 12. 3<br>19. 9 20. 3        | 8. 6 49<br>18. 6 48                   | 51<br>50 | 55 1, 73 ± , 16 2, 69 ± , 25 4, 15 ± , 38 6, 93 ± , 59 9, 81 ± , 80 52 1, 15 ± , 14 1, 77 ± , 23 2, 81 ± , 41 4, 78 ± , 75 6, 71 ± 1, 09 |
| Davidson clay loam Monticello, Ga                     | 30   Initial        | 19. 6 24. 7<br>27. 8 30. 1       | 27. 0 45<br>34. 0 58                  | 49<br>54 | 46 1, 43±, 13 2, 05±, 21 3, 23±, 40 5, 16±, 73 7, 01±1, 04<br>53 , 33±, 06 , 50±, 09 , 78±, 13 1, 30±, 21 1, 82±, 29                     |
| Dubuque silt loam (typical) Cashton, Wis              | 103 {Initial -      | 5, 9 8, 0<br>37, 2 25, 3         | 10. 3 74<br>18. 8 67                  | 72<br>70 | 78 .92± .03 f. 22± .04 f. 77± .08 f. 2.68± .14 f. 3.43± .16 64 .14± .03 f24± .06 f46± .10 f87± .19 f31± .27                              |
|                                                       | 19 Initial Wet      | 15, 4 18, 8<br>28, 3 23, 1       | 18. 9 69<br>22. 3 76                  | 68<br>76 | 70 .68± .06 .91± .09 1.19± .14 1.57± .21 1.87± .28 78 .11± .07 .24± .12 .57± .24 1.22± .46 1.94± .66                                     |
| Dunkirk silty chay loam Geneva, N. Y                  | 36 (Initial -       | 13. 4 15. 1<br>24. 5 18. 0       | 16.8 73<br>18.9 76                    | 65<br>68 | 74 .34± .03 .48± .04 .66± .10 .74± .15 .92± .17 .76 .00 .00 .00 .01 .03± .02                                                             |
| Fayette silt loam (typical) Houston, Minn             | 106 (Initial        | 10. 0 10. 0<br>29. 7 23. 2       | 11.0 69<br>10.5 69                    | 63       | 83 1.37± .07 1.65± .06 1.91± .06 2.19± .07 2.42± .08 83 .18± .01 .25± .02 .36± .03 .59± .04 .81± .06                                     |
| Fremont gravelly silt loam Cohocton, N. Y             | 21 Initial          | 22. 7 15. 6<br>27. 1 24. 0       | 11.5 69<br>17.2 66                    | 65<br>67 | 66 1. 40± .09 2. 04± .11 2. 81± .15 3. 87± .21 4. 76± .27 60 .50± .07 .79± .00 1. 25± .13 2. 16± .23 3. 02± .33                          |
| Athena silt loam 3 Dayton, Wash                       | 142 Initial Wet     | 12.0 12.8<br>27.3 21.5           | 12. 8 60<br>22. 2 60                  | 60<br>60 | 70 1, 71± ,30 2, 33± ,25 3, 28± ,36 4, 88± ,57 6, 34± ,76 67 ,75± ,17 1, 18± ,30 1, 73± ,51 2, 63± ,84 3, 45±1, 13                       |
| Honeoye gravelly silt loam Marcellus, N. Y            | 15 Initial Wet      | 26. 3 22. 6<br>32. 7 30, 6       | 19, 5 70<br>24, 5 68                  | 62<br>63 | 78 1, 98±, 23 3, 12±, 42 5, 36±, 83 9, 75±1, 49 13, 76±2, 12 80 , 92±, 18 1, 57±, 34 2, 78±, 63 5, 03±1, 13 7, 39±1, 61                  |
| Honeoye gravelly silt loam do (eroded).               | 16 (Initial         | 16. 4 16. 1<br>26. 6 23. 0       | 15. 1 80<br>19. 3 74                  | 75<br>75 | 89 2, 25±, 14 3, 52±, 32 5, 71±, 53 9, 08±, 82 12, 24±1, 10 84 1, 52±, 19 2, 66±, 33 4, 90±, 58 9, 18±1, 00 12, 85±1, 34                 |
| Honeoye gravelly silt loam (deposition).              | 17 Initial Wet      | 20.7 15.8<br>29.8 23.8           | 16. 4 74<br>22. 1 79                  | 72<br>77 | 82 2. 93± . 35 4. 51± . 58 6. 92± . 97 11. 11±1. 60 14. 70±2. 15 86 1. 76± . 25 3. 19± . 42 5. 73± . 76 11. 02±1. 37 15. 98±1. 89        |
| Honeoye gravelly silt loam (seepy) do                 | 18 Initial Wet      | 39. 0 23. 8<br>41. 2 26. 1       | 20. 6 72<br>18. 5 71                  | 69<br>69 | 88 . 97± . 23 1, 60± . 40 2, 62± . 63 4, 42±1, 08 6, 08±1, 51 75 . 53± . 15 . 90± . 26 1, 71± . 46 3, 08± . 83 4, 41±1, 17               |
|                                                       | 22 Initial<br>Wet   | 19. 8<br>25. 4<br>17. 1<br>22. 7 | 14, 3 63<br>19, 2 67                  | 63<br>64 | 72 2, 23±, 25 3, 80±, 46  6, 71±, 88 11, 99±1, 63 16, 93±2, 24 73 1, 01±, 18 1, 77±, 32  3, 44±, 60  6, 72±1, 14  9, 80±1, 63            |
| Honeoye gravelly silt loam do                         | 23   Initial        | 17. 3 15. 4<br>29. 7 21. 4       | 12. 6 63<br>16. 1 62                  | 61       | 70 1, 73± , 19 2, 74± , 33 4, 40± , 59 7, 10± , 98 9, 72±1, 33 61 , 63± , 13 1, 16± , 24 2, 19± , 46 4, 00± , 84 5, 58±1, 13             |
| Honeoye gravelly sitt loam (sod) do                   | 24 Initial<br>Wet   | 14, 6 15, 4<br>32, 3 24, 3       | 14. 3 57<br>22. 5 40                  | 57<br>53 | 51 4, 70± . 41 7, 71± , 70 12, 11±1, 16 18, 82±1, 90 24, 58±2, 53 43 2, 26± . 25 4, 00± . 45 7, 22± , 86 12, 92±1, 56 17, 68±2, 30       |
| Honeoye gravelly slit form do                         | 35 (Initial Wet     | 22. 6 19. 8 24. 9 20. 8          | 16. 7 66<br>14. 3 65                  | 50<br>62 | 59 1, 12±, 10 1, 70±, 18 2, 57±, 32 4, 16±, 58 5, 77±, 83 59 , 80±, 28 1, 24±, 44 2, 00±, 67 3, 53±1, 16 4, 85±1, 47                     |
| Hopf sandy loam <sup>3</sup> Mexican Springs, N. Mex. | 135 {Initial Wet    | 10. 2 12. 4<br>17. 8 16. 2       | 7. 9 52<br>15. 0 53                   | 53<br>54 | 64 1.54± .04 2.35± .06 4.02± .10 7.46± .23 11.11± .39 68 .65± .02 1.04± .04 1.75± .06 3.31± .12 5.00± .20                                |
| Houston clay (shallow phase) Temple, Tex              | 124 {Initial Wet    | 30. 2 26. 6<br>40. 5 33. 4       | 23. 3 69<br>28. 7 62                  | 65<br>66 | 80 .75± .07 .89± .00 1.07± .14 1.35± .24 1.55± .35<br>70 .12± .02 .16± .04 .24± .07 .38± .13 .56± .21                                    |
| Houston black clay (slightly do eroded).              | 120 {Initial Wet    | 38. 5 39. 8<br>54. 6 43. 9       | 38. 4 60<br>40. 5 64                  | 60<br>62 | 67 .60± .03 .70± .03 .77± .04 .86± .07 .94± .10 72 .02± .01 .03± .01 .04± .02 .08± .05 .12± .08                                          |
| Houston black clay (moderately do-                    | 122 (Initial<br>Wet | 28. 0 27. 3<br>40. 7 29. 0       | 26. 1 56 58 58                        | 60<br>62 | 62 86± .02 .94± .03 1.02± .04 1.11± .04 1.17± .05 68 .02± .01 .03± .01 .04± .02 .06± .02 .07± .02                                        |
| Houston clay (moderately croded) do                   | 121 {Initial Wet    | 32. 4 34. 5<br>54. 9 43. 0       | 32. 2 58<br>35. 5 58                  | 62<br>62 | 60 1.04± .03 1.07± .05 1.11± .05 1.16± .05 1.19± .05 59 .04± .02 .04± .02 .05± .02 .07± .02 .09± .03                                     |
| Iredell loam Leyington, Ga                            | 26 Initial Wet      | 20. 4 39. 5<br>23. 2 37. 3       | 41. 2 52<br>40. 8 48                  | 55<br>52 | 58 0 10± ,02 0 12± ,02                                                                                                                   |
| Kirkland sandy clay Guthrie, Okla                     | 125 {Initial Wet    | 15. 0 21. 6<br>21. 9 17. 6       | 20. 8 64<br>27. 5 55                  | 62<br>60 | 60 82± .04 1.07± .05 1.36± .05 1.69± .06 1.92± .08 60 .07± .01 .09± .01 .13± .02 .19± .03 .24± .03                                       |
| Kirkland fine sandy loam do                           | 126 {Initial<br>Wet | 12. 7 16. 8<br>19. 2 20. 1       | 16. 1 58<br>18. 4 67                  | 58<br>61 | 66 74± .08 1.06± .12 1.53± .18 2.33± .20 3.08± .38 68 .26± .03 .41± .05 .64± .08 1.08± .14 1.54± .19                                     |
| See footnotes at end of table                         |                     |                                  | · · · · · · · · · · · · · · · · · · · |          |                                                                                                                                          |

See footnotes at end of table.

Table 12 .-- Rates of infiltration of soils, recorded soil moisture, and soil and water temperatures -- Continued

| Soil type                                                         | Location of site                                   | Site<br>No.      | Kind of                                                              | Soil moisture before<br>run at depth of -                     |                                                               |                                                                | of— t                                    |                                          | Tem-<br>pera-<br>ture of<br>water      |                                                                           |                                                                                                                  |                                                                                |                                                                     |                                                                                        |  |
|-------------------------------------------------------------------|----------------------------------------------------|------------------|----------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------|------------------------------------------|----------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|
|                                                                   |                                                    |                  |                                                                      | 0~7<br>Inches                                                 | 7–15<br>inches                                                | 15-25<br>inches                                                | inches i                                 | 15<br>inches                             | of run                                 | 0-15<br>minutes                                                           | 0-30<br>minutes                                                                                                  | 0-60<br>minutes                                                                | 0-120<br>minutes                                                    | 0-180<br>minutes                                                                       |  |
| Melbourne loam<br>Miami silty clay loam                           | Newberg, Oreg<br>Columbus, Ohio                    | 141<br>115<br>37 | {Initial<br>\Wet ,<br>{Initial<br>\Wet<br>{Initial<br>\Wet           | Percent<br>11, 7<br>25, 9<br>17, 5<br>27, 0<br>22, 6<br>27, 0 | Percent<br>16, 2<br>20, 4<br>22, 9<br>27, 4<br>20, 7<br>21, 0 | Percent<br>18, 9<br>21, 8<br>19, 0<br>26, 5<br>22, 94<br>19, 3 | 6 F.<br>70<br>68<br>45<br>42<br>62<br>75 | ° F.<br>65<br>66<br>47<br>47<br>64<br>66 | F.<br>80<br>74<br>41<br>43<br>66<br>71 | Inches<br>.05± .08<br>.16± .04<br>.25± .02<br>.00<br>.17± .04<br>.16± .04 |                                                                                                                  | Inches 1.52± .18 1.52± .15 1.51± .03 1.03± .01 1.47± .09 1.45± .12             | Inches<br>2.02± .26<br>.95± .28<br>.74± .05<br>.07± .02<br>.79± .14 | 1.45± .43<br>.90± .07<br>.11± .02<br>1.15± .21                                         |  |
| Muskingum silt loam                                               | Zanesville, Ohio Adamsville, Ohio Zanesville, Ohio | 1109             | {Initial<br> Wet<br> Initial<br> Wet<br> Initial<br> Wet<br> Initial | 17, 4<br>28, 7<br>15, 0<br>23, 6<br>24, 5<br>26, 8<br>26, 5   | 18. 0<br>26. 4<br>14. 3<br>21. 0<br>22. 3<br>23. 0<br>20. 9   | 18. 2<br>23. 3<br>17. 6<br>15. 6<br>19. 3<br>24. 4<br>17. 7    | 52<br>52<br>46<br>43<br>40<br>49         | 59<br>50<br>54<br>49<br>46<br>48<br>47   | 53<br>47<br>51<br>43<br>42<br>56<br>55 | 2.02± .10<br>.71± .05<br>.40± .05<br>.05± .01<br>1.86± .07<br>.72± .09    | $2.61\pm .08$<br>$.90\pm .06$<br>$.60\pm .05$<br>$.10\pm .02$<br>$2.52\pm .12$<br>$1.04\pm .18$<br>$2.62\pm .46$ | 3.06±.08<br>1.23±.09<br>.86±.06<br>.19±.04<br>3.49±.22<br>1.66±.37<br>3.80±.66 | 3.56± .14<br>1.81± .15                                              | 3.95± .20<br>2.32± .20<br>1.48± .08<br>.55± .08<br>6.64± .71<br>4.12±1.07<br>6.50± .83 |  |
| Orangeburg sandy loam                                             | Ellaville, Ga                                      | 33               | \Wet<br>{Initial<br>\Wet                                             | 35. 0<br>7. 2<br>9. 3                                         | 27. 1<br>9. 0<br>12. 9                                        | 24. 1<br>17. 7<br>19. 4                                        | 44<br>45<br>52                           | 48<br>50<br>48                           | 51<br>56<br>59                         | .36± .04<br>1.80± .24<br>.76± .06                                         | .54± .05<br>3.23± .42<br>1.23± .08                                                                               | . 86± . 09<br>5. 66± . 55<br>1, 98± . 12                                       | 1.48± .16<br>9.93± .79<br>3.47± .19                                 | 2.09±.25<br>13.77±.99<br>4.85±.23                                                      |  |
| Palouse silt loam (deep phase)  Palouse silt loam                 | Pullman, Wash                                      | 144<br>146       | {Initial<br>{Wet<br>{Initial<br>{Wet                                 | 11.0<br>33.3<br>7.0<br>35.2                                   | 13, 5<br>31, 2<br>13, 3<br>23, 5                              | 14. 7<br>28. 8<br>18. 2<br>22. 2                               | 62<br>54<br>62<br>60                     | 55<br>55<br>61<br>60                     |                                        | $1.08 \pm .21$                                                            | 3. 19± . 42<br>1. 77± . 36<br>1. 66± . 07<br>. 32± . 04                                                          | 4.61± .64<br>3.02± .64<br>2.41± .13<br>.56± .06                                | 6.92±1.04<br>5.18±1.14<br>3.62± .21<br>1.00± .09                    | 8.99±1.39<br>7.27±1.63<br>4.74± .27<br>1.43± .12                                       |  |
| Palouse clay silty loam (shallow phase).  Parsons fine sandy loam | do<br>Broken Arrow, Okla                           | 145<br>128       | {Initial<br> Wet<br> Initial                                         | 8. 8<br>32. 2<br>25. 8                                        | 14. 4<br>25. 7<br>26. 0                                       | 16. 8<br>22. 0<br>27. 0                                        | 52<br>58<br>50                           | 58<br>56<br>56                           | 52<br>52<br>50                         | ·96± ·09<br>·27± ·03                                                      | I. 44± . 11<br>. 42± . 04<br>. 13± . 01                                                                          | 2.30± .15<br>.68± .07<br>.15± .01                                              | 3.68± .20<br>1.15± .11<br>.16± .01                                  |                                                                                        |  |
| Pinedale clay loam                                                | Mexican Springs, N. Mex.                           | 134              | \Wet<br>{Initial<br> Wet                                             | 30. 0<br>13. 5.<br>23. 2                                      | 28. 9<br>17. 0<br>23. 2                                       | 26. 4<br>11. 9<br>19. 4                                        | 42<br>58<br>49                           | 49<br>54<br>54                           | 54                                     | .00<br>1.54±.06<br>.48±.02                                                | $.81 \pm .04$                                                                                                    | .00<br>4.17±.13<br>1.36±.05                                                    | .00<br>7.19± .22<br>2.36± .08                                       | .00<br>10.02± .29<br>3.36± .11                                                         |  |
| Red Bay loam  Ruston sandy loam                                   | Americus, Ga                                       | 34<br>32         | (Initial<br>(Wet<br>(Initial                                         | 11. 8<br>16. 5<br>6. 4                                        | 13, 6<br>18, 0<br>13, 7                                       | 14. 7<br>18. 0<br>18. 6                                        | 71<br>62<br>64                           | 64<br>61<br>56                           | 66                                     |                                                                           | 1.57± .10<br>.24± .02<br>4.77± .25                                                                               | 8.51土.52                                                                       |                                                                     | 4.55± .49<br>1.18± .06<br>21.75±1.67                                                   |  |
| Selah Joan *                                                      | Ellensburg, Wash                                   | 138              | Wet<br>  Initial<br>  Wet<br>  Initial                               | 10. 2<br>17. 5<br>32. 8<br>19. 5                              | 15, 5<br>24, 3<br>28, 8<br>15, 2                              | 20. 0<br>23. 9<br>28. 9                                        | 58<br>55<br>52                           | 57<br>54<br>53                           | 62<br>53                               | .83± .04<br>.04± .01                                                      | 1.01土,06                                                                                                         | 2.41±.13<br>1.24±.07<br>.13±.02                                                | 4.17± .24<br>1.58± .10<br>.21± .03                                  | 5.04± .36<br>1.83± .12<br>.32± .04                                                     |  |
| Tama silt loam (typical) Upshur clay loam                         | Westby, Wis<br>Rlx Mills, Ohio                     | 104<br>113       | Wet<br>Initial<br>Wet                                                | 30. 6<br>22. 7<br>30. 1                                       | 29 3<br>27, 4<br>30, 0                                        | 17. 7<br>29. 4<br>24. 4<br>• 26. 0                             | 63<br>56<br>50<br>43                     | 63<br>61<br>51<br>49                     | 70<br>59<br>55<br>41                   | 1.72± ,20<br>.48± ,07<br>.20± ,01<br>.00                                  | 2. 45± ,32<br>.73± ,11<br>.23± .01                                                                               | 3.58± .49<br>1.22± .20<br>.24± .01                                             | 5.45±.78<br>2.17±.38<br>.27±.01                                     | 7. 12±1. 02<br>3. 11± . 55<br>. 27± . 01                                               |  |

| ELATED   |  |
|----------|--|
| PHYSICAL |  |
| CHARAC   |  |
| PERISTI  |  |
| CS OF    |  |
| SOIL     |  |

| ing the second of the second o |                    | 116 (Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12.7  | 15.4   | 12.5  | 42       | 44  | 47 . 83 ± . 06 ] . 89 ± . 06 | $.98 \pm .07$  | $1,11\pm .08$  | $1.23 \pm .10$ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------|-------|----------|-----|------------------------------|----------------|----------------|----------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | ii iiwot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27. 7 | 20.3   | 18. 5 | 41       | 44  | 45 .00 .00                   | .01            | $.03 \pm .01$  | $.06 \pm .01$  |
| Vernon fine sandy loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Guthrie, Okla      | 117 (Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 16. 1 | 14. 4  | 11.1  | 46       | 47  | 43 .55± .02 .64± .03         | .74土 .04       | $.86 \pm .05$  | $.95 \pm .06$  |
| vorman intermedy rountages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Cititatic, Oniners | II THE THE TANK OF THE PARTY OF | 23, 1 | 19.8   | 11, 9 | 41       | 45  | 37 .02± .01 .03± .01         | $.05 \pm .01$  | $.09 \pm .02$  | $.13 \pm .03$  |
| the second second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                    | 120 [Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 10.6  | 13. 5  | 15.3  | 58       | 56! | 74 1.02 ± .10 1.46 ± .15     | 2.21士 .22      | $3.56 \pm .33$ | 4.83土.45       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    | [ [[ Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 16, 9 | 17, 1  | 17. 7 | . 60]    | 58  | 66 . 32± . 03 . 52± . 04     | . 83土 . 05     | $1.41 \pm .09$ | 1.96土 .12      |
| Vernon very fine sandy loam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Elk City, Okla     | 130 [Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15. 4 | 15. 1  | 12.7  | 60<br>42 | 46  | 491,43±,151,90±,20           | 2.71土,27       | $4.17 \pm .30$ | $5.50 \pm .48$ |
| vernou very min sainty main.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1216 C 103, Okia   | [ Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23. 9 | 19, 01 | 14, 3 | 48       | 49] | 52 . 29土 . 03 . 45土 . 04     | .74土.06        | $1.33 \pm .00$ | $1.84 \pm .11$ |
| Volusia stony silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cayuta, N. Y       | os[] Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.3  | 35. 5  | 28. 2 | 54       | 53  | 60 1.04 ± .12 1.57 ± .18     | $2.51 \pm .30$ | $3.91 \pm .49$ | $5.07 \pm .05$ |
| Totalia storig into rotate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | chymn, at 1        | 25 Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42.8  | 36, 4] | 24.6  | 52       | 51  | 53 . 38土 . 06 . 59土 . 10     | . 96土 . 16     | $1.56 \pm .27$ | $2.11 \pm .36$ |
| Walla Walla silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dayton, Wash       | 143 (Initial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9. 0  | 10.0   | 8.8   | 60)      | 62  | 70 、51 ± 、02 、59 ± 、02       | .71土.02        | $.89 \pm .03$  | $1.04 \pm .03$ |
| 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | izayton, wasn      | I Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23. 7 | 11.8   | 10.7  | 62       | 62  | 62 .01 .02± .01              | . 05土 . 01     | . 10土 . 01     | 16土 . 01       |
| Westmoreland clayey silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | New Concord, Ohlo  | 112   Initial<br>Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 30, 0 | 32. 2  | 31.8  | 46       | 40  | 45 .02± .01 .03± .01         | .04±± .01      | $.04 \pm .011$ | $.05\pm .01$   |
| ii comortana carjej die main                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tion Conton, Ono   | 112]\Wet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28. 5 | 29. 5  | 30.6  | 43       | 50  | 46 .00 .00                   | .00            | .00            | . 00           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1.  | 1      |       | j        |     |                              | * * *          |                |                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |       |          |     |                              |                |                |                |
| 1 All initial runs were made at field moisture content. All wet runs were midde 9t house ofter initial runs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |        |       |          |     |                              |                |                |                |

All initial runs were made at field moisture content. All wet runs were made 24 hours after initial runs.
 2 Soil-moisture content determined from 2 samples only used as index of moisture level.
 Local name, soil not correlated.

Table 13.- - Mechanical analysis of surface soil from the 68 infiltration sites

| Soil<br>No.                                                                                                                      | Soil type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depth                                            | >2.0<br>mm.                                                           | 2.0-<br>1.0<br>mm.                                          | 1,0-<br>0.50<br>hum.                                 | 0.50<br>-0.20<br>mm.                                                                                                                                 | 0.20-<br>0.10<br>mm.                                                  | 0.10-<br>0.05<br>nun.                                                                                      | 0.05-<br>0.005<br>mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <.005<br>mni.                                                                                                                    | <.002<br>mm.                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 19<br>36<br>36<br>102<br>102<br>103<br>105<br>106<br>109<br>111<br>114<br>114<br>114<br>114<br>114<br>114<br>114<br>114<br>11    | Dunkirk silty clay loamdodo Muskingum silt loamdodododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododododo |                                                  | .\$<br>3.2<br>.8<br>3.1<br>1.8<br>6.8                                 | 1.13.10.1.4                                                 | 1.9<br>2.3<br>1.2<br>1.9<br>1.5<br>2.3               | 3. 4. 10.81744456021-2                                                                                                                               | 4 5 2 4 5 5 4 0 6 2 0 4 6 1 5 5 5 5 4 1 1 1 1 5                       | 5.4<br>9.1<br>9.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1.3<br>1                                    | 52.55.0 9 3 0 0 1 9 5 3 4 2 9 3 0 5 5 5 1 60.62.5 5 6 65.7 60.62.5 6 65.7 60.62.5 6 65.7 6 60.62.5 6 65.7 6 60.62.5 6 65.7 6 60.62.5 6 65.7 6 60.62.5 6 65.7 6 60.62.5 6 65.7 6 60.62.5 6 65.7 6 60.62.5 6 65.7 6 60.62.5 6 65.7 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 60.62.5 6 | 25.0 + 0.3 + 1 - 5 + 1 - 3.0 8 S 0.3 + 4.6 6.6<br>28.25.17.28.27.25.91.71.26.31.91.15.29.26.26.26.26.26.26.26.26.26.26.26.26.26. | 11. 2<br>13. 3<br>12. 3<br>12. 3<br>12. 3<br>12. 3<br>12. 5<br>10. 3<br>16. 3<br>18. 9<br>19. 5<br>19. 5<br>19. 5 |
| 25 28 30 112 113 113 113 113 113 113 113 113 113                                                                                 | Cecil clay loam  do  do  Davitson clay loam Westmoreland clayey silt loam Upsbur clay loam Austin clay  do  flouston black clay Houston clay Houston black clay Austin clay Houston clay Kirkland sandy clay Crown light clay Crown heavy clay Buell clay loam Pinedule clay loam                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0-5<br>0-6<br>0-12<br>0-7<br>0-7<br>0-7          | 8.1<br>.9<br>1.0<br>1.0                                               | 1.1<br>.6<br>.7<br>1.1<br>1.5<br>.3<br>.6<br>1.4<br>1.0     | 8.01.08.00.00.00.00.00.00.00.00.00.00.00.00.         | 9.53777995555555555555555555555555555555                                                                                                             | 14.5<br>21.7<br>3.0<br>4.5<br>4.3<br>1.5<br>2.3<br>2.6<br>2.8<br>42.1 | 1.6<br>4.5<br>4.5<br>1.3<br>2.5<br>3.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1.6<br>1 | 69.54.04.64.85<br>69.54.02.42.06.55<br>69.53.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 37.6<br>30.6<br>31.7<br>63.9<br>68.3<br>70.4<br>66.3<br>68.3<br>62.3<br>32.9                                                     | 59. 0<br>49. 2<br>41. 2<br>51. 2<br>18. 7<br>26. 9<br>7. 9<br>18. 3                                               |
| 31<br>32<br>31<br>116<br>117<br>126<br>127<br>128<br>129<br>130<br>135<br>137                                                    | Cecil sandy loam Ruston sandy loam Ornageburg sandy loam Vernon fine sandy loam do Kirkland fine sandy loam Bates very fine sandy loam Parsons fine sandy loam Vernon fine sandy loam Vernon every fine sandy loam Toen sandy loam Grown sandy loam Crown sand; clay loam Crown sand; clay loam                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0-8<br>0-13<br>0-10<br>0-6<br>0-12<br>0-8<br>0-9 | 1. 2<br>. 9<br>. 4<br>3. 5<br>1. 7<br>1. 0                            | 3.7                                                         | .3                                                   | 315.3 5 5 3 9 7 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1                                                                                                | 9. 5<br>4. 6<br>51. 8<br>3. 4<br>50. 5<br>38. 3                       | 10.9                                                                                                       | 7.8<br>8.0<br>11.1<br>17.1<br>17.1<br>17.1<br>16.1<br>16.1<br>140.4<br>14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 9. 52<br>19. 17. 18. 330. 35<br>13. 5<br>14. 17. 6<br>17. 6<br>17. 6<br>17. 5                                                    | 3.5<br>3.3<br>16.9<br>24.4<br>17.7<br>10.8<br>8.9<br>18.6                                                         |
| 15<br>16<br>17<br>18<br>20<br>21<br>22<br>23<br>23<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25<br>25 | Honeoye gravelly silt loam. do do do Bath gravelly silt loam Fremont gravelly silt loam Honeoye gravelly silt loam do volusia stony silt loam Honeoye gravelly silt loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0-6<br>0-7<br>0-8<br>0-7<br>0-7<br>0-7<br>0-7    | 4.4<br>5.8<br>5.0<br>1.8<br>11.3<br>15.9<br>6.1<br>4.3<br>14.9<br>7.8 | 1.5<br>2.6<br>1.6<br>1.3<br>1.5<br>1.5<br>1.5<br>2.0<br>4.1 | 2.2<br>2.5<br>1.0<br>1.4<br>2.7<br>2.2<br>2.0<br>3.1 | 4.8<br>4.8<br>2.2<br>4.4<br>4.1<br>3.1<br>3.1<br>3.1<br>3.1<br>4.1<br>4.1<br>3.1<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1<br>4.1<br>4 | 15.1<br>14.8<br>2.2                                                   | 9.3<br>8.0<br>11.5<br>8.7<br>9.5<br>6.3                                                                    | 38.4<br>38.3<br>41.3<br>42.6<br>48.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 23. 6<br>22, 7<br>30. 5<br>10. 9<br>18. 3<br>24. 9<br>22. 5<br>23. 2<br>25. 9                                                    | 23.0<br>23.3<br>8.5                                                                                               |
| 26<br>34<br>134<br>139<br>141                                                                                                    | Iredeil loam<br>Red Bay loam<br>Selah loam<br>Badger loam<br>Melbourne loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0-6<br>0-5<br>0-10<br>0-6<br>0-6                 | 2.7<br>1.9<br>.5<br>.2<br>.5                                          | 3.0<br>2.5<br>.5<br>.2<br>.5                                | 7. 1<br>12. 1<br>1. 9<br>. 9<br>. 8                  | 9.0<br>24.3<br>5.7<br>4.6<br>1.6                                                                                                                     | 19.5<br>21.0<br>19.9<br>16.9<br>30.8                                  | 12.5<br>3.4<br>13.7<br>14.7<br>8.4                                                                         | 25. 0<br>13. 1<br>40. 2<br>46. 3<br>35. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21. 2<br>20. 8<br>17. 6<br>16. 2<br>22. 0                                                                                        | 17. I<br>18. 0<br>10. 3<br>10. 6<br>16. 5                                                                         |

Table 14. - Mechanical analysis of subsoil from the 68 infiltration sites

| Soil<br>No.                                                                                                                           | Soil type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | >2.0<br>mm.                                 | 2.0-<br>1.0<br>n.m.                           | 1.0-<br>0.50<br>mm.                                                | 0.50-<br>0.20<br>mm.             | 0.20-<br>0.10<br>nuu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.05                                                    | 0.05-<br>0.005<br>mm.                                                                                                     | <.005<br>mm.                                                                                                                            | <.002<br>mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------|--------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19<br>36<br>37<br>101<br>102<br>103<br>104<br>105<br>107<br>108<br>110<br>111<br>114<br>115<br>140<br>141<br>142<br>143<br>144<br>145 | Dunkirk silty clay loam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8-15<br>6-13<br>9-15<br>6-13<br>9-21<br>6-15<br>8-14<br>8-14<br>7-14<br>7-14<br>7-15<br>8-21<br>7-14<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21<br>8-21 | 5. 9<br>3. 6<br>3. 2                        | 1.7<br>2.2<br>.8                              | 1.4<br>1.3<br>1.3<br>2.6<br>1.6                                    | .9<br>.2<br>1.4<br>2.5<br>1.3    | 7.4<br>3.1<br>5.2<br>6.8<br>6.9<br>7.5<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.8<br>3.152<br>3.1250<br>4.524<br>5.88<br>10.38<br>8.8 | Pct. 4 39.0 64.7 7 1 55.2 9 66.6 7 7 66.4 8 65.2 7 7 66.4 46.8 3 62.7 7 64.4 65.2 57.5 59.5 59.5 59.5 59.5 59.5 59.5 59.5 | Pct. 31.6 3 30.4 27.2 8 31.4 1 27.3 31.4 1 27.3 32.1 32.1 32.1 43.7 43.7 43.7 43.7 43.7 22.1 43.7 9.7 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7 | Pct. 22.0 24.0 22.6 19.0 22.5 21.8 7 24.8 21.5 33.0 7 24.8 19.5 20.7 24.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19.5 20.8 19 |
| 27<br>28<br>30<br>112<br>113<br>114<br>120<br>121<br>122<br>123<br>124<br>125<br>132<br>133<br>134                                    | Cecil clay loam.  do Davidson clay loam. Westmoreland clayey silt loam. Upshur chy loam. Austin clay do Houston black clay Crown loay Houston clay Crown light clay Crown light clay Crown light clay Houston clay Buell clay loam | 4-15<br>5-15<br>7-16<br>4-14<br>5-15<br>6-10<br>12-21<br>7-16<br>7-16<br>7-16<br>7-15<br>7-15<br>9-22<br>7-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.9<br>2.8<br>1.2<br>1.7<br>-4<br>3.7<br>-7 | .3                                            | 4                                                                  | .6<br>.3<br>.7                   | 5.0<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>10.3<br>1 | 1.9<br>3.4<br>3.6<br>4.1<br>1.7                         | 10.3<br>11.8<br>16.4<br>18.3<br>22.8<br>22.3<br>23.5<br>22.3<br>23.5<br>22.0<br>25.9<br>25.9<br>25.9<br>25.9<br>25.9      | 68, 2<br>67, 4<br>65, 8<br>73, 1<br>69, 0<br>71, 0<br>65, 1<br>64, 1<br>45, 9<br>39, 9<br>78, 4<br>31, 5                                | 52.0<br>47.5<br>34.2<br>53.4<br>45.9<br>43.2<br>63.2<br>61.9<br>54.6<br>54.6<br>36.0<br>35.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 31<br>32<br>33<br>116<br>117<br>126<br>127<br>128<br>129<br>130<br>135<br>136                                                         | Cecil sandy loam Ruston sandy loam Orangeburg sandy loam Vernon fine sandy loam do Kirkland fine sandy loam Bates very fine sandy loam Parsons fine sandy loam Vernon fine sandy loam Vernon fine sandy loam (Town sandy loam Crown sandy loam Crown sandy loam                                                                                                                                                                                                                                                   | 5-13<br>7-10<br>7-12<br>8-16<br>13-20<br>10-16<br>6-15<br>12-22<br>8-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.2<br>.7<br>.5<br>.6<br>.8<br>3.9          | .3                                            | 8.0<br>22.5<br>.3<br>.1<br>1.0<br>.5                               | 22.9<br>15.6<br>1.6<br>1.4<br>.1 | 42.2<br>38.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 19.0<br>12.5<br>15.8<br>14.8<br>12.5                    | 12.0<br>8.8<br>9.2<br>11.2<br>11.4<br>38.8                                                                                | : 31. 4<br>32. 3<br>: 47. 5<br>! 18. 4<br>: 28. 3<br>: 18. 0                                                                            | 20, 6<br>14, 4<br>6, 6<br>27, 6<br>21, 1<br>28, 8<br>27, 2<br>45, 7<br>13, 0<br>15, 4<br>21, 3<br>19, 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 15<br>16<br>17<br>18<br>20<br>21<br>22<br>23<br>24<br>25<br>35                                                                        | Honeoye gravelly silt loam do. do. do. Bath gravelly silt loam Fremont gravelly silt loam Honeoye gravelly silt loam do. Volusia stony silt loam Honeoye gravelly silt loam                                                                                                                                                                                                                                                                                                                                       | 6-16<br>6-14<br>7-16<br>7-15<br>8-16<br>7-11<br>7-14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 5.5<br>6.7<br>10.3<br>13.6<br>14.9<br>6.5   | 2.7<br>1,9<br>3.5<br>4.0<br>2.3<br>3.4<br>1.8 | 2.2<br>3.0<br>2.4<br>3.5<br>2.1<br>3.5<br>2.1<br>3.5<br>2.1<br>3.4 | 6.0<br>4.3<br>5.4<br>2.6         | 15.4<br>18.4<br>14.3<br>14.9<br>5.8<br>12.0<br>15.3<br>15.3<br>1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6. 6<br>7. 3<br>8. 6                                    | 40. 3<br>39. 1<br>37. 5<br>40. 8<br>49. 8<br>40. 0<br>37. 0<br>40. 9<br>40. 0<br>49. 5<br>38. 0                           | 24. 0<br>17. 9<br>25. 6<br>13. 0<br>9. 8<br>16. 4<br>26. 0<br>22. 3<br>22. 4<br>26. 7<br>14. 5                                          | 19.9<br>7.9<br>20.9<br>10.2<br>7.5<br>12.8<br>19.3<br>14.5<br>16.0<br>19.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 26<br>34<br>138<br>139<br>141                                                                                                         | Iredell loam Red Bay loam Selah loam Badger loam Melbourne loam                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6-16<br>5-15<br>12-21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.0                                         | 2.2                                           | 8. 6<br>9. 5<br>1. 3<br>. 6                                        | 4.8<br>18.8<br>6.5<br>3.7<br>1.7 | 9. 4<br>19. 1<br>21. 2<br>13. 4<br>25. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3. 7<br>3. 4<br>9. 1<br>13. 3<br>7. 3                   | 23, 2<br>9, 4<br>37, 6<br>51, 5<br>32, 1                                                                                  | 39, 1<br>37, 3<br>23, 6<br>17, 3<br>31, 6                                                                                               | 33.4<br>31,8<br>17,9<br>7.0<br>25,7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 15.—Aggregate distribution of surface soil from the 68 infiltration sites

|                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                  |                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil<br>No.                                                                                                                                  | Soil type                                                                                                                                                                                                                                                                                                                                                    | Depth                                                                     | >2.0<br>nim.                                                                                                                                         | 2.0–<br>1.0<br>mm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.0-<br>0.50<br>mm,                                                                                                               | 0.50-<br>0.25<br>IBIN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.25-<br>9.10<br>mm.                                                                                                                                                                                          | 0,10-<br>0.05<br>mm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ~,0.00                                                                                     | >0.25<br>mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 19<br>36<br>37<br>101<br>102<br>103<br>104<br>105<br>107<br>108<br>109<br>110<br>111<br>114<br>115<br>140<br>142<br>143<br>144<br>145<br>148 | Dunkirk siity clay loam  do Muskingum silt loam Clinton siit loam do Dubuque silt loam Tama siit loam Carrington silt loam Carrington silt loam Fayette silt loam Boone silt loam Colby silt loam Colby silt loam do do do Miami silty clay loam Aiken clay loam Aiken clay loam Walla Walla silt loam Palouse silt loam Palouse silt loam Palouse silt loam | 0-8<br>0-8<br>0-7<br>0-4<br>0-5<br>0-7<br>0-7<br>0-7<br>0-7<br>0-7<br>0-8 | 1.1.2 1.5.89.04.5.87.7.9.5.8.9.9.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1                                                                                   | 30.45.3.2<br>10.23.3.2<br>13.4.4<br>13.4.5.64.8<br>14.3.4.2.2.2<br>2.3.2<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4.5.4<br>2.4. | 1.48129620653522316<br>14.329620653522316<br>14.25516                                                                             | 4.8.7.9.2.8.2.8.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.1.0.2.5.3.1.2.5.2.5.2.5.2.5.2.5.2.5.2.5.2.5.2.5.2 | Pct. 13.53<br>9.44<br>10.7.67<br>11.7.6<br>10.3.1<br>10.3.1<br>10.3.1<br>11.5.1<br>10.4<br>14.5<br>10.4<br>14.5<br>10.4<br>14.5<br>10.4<br>14.5<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16.6<br>16 | Pct. 32:27<br>416.5 5 9 8 7 0 8 19.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19.1 25.0 19 | Pct. 41.3 35.5 1 19.1 19.1 19.1 19.1 19.1 19.1 19.1                                        | Per. 13. 2<br>10. 2<br>10. 1<br>10. 1<br>12. 0<br>20. 5<br>21. 3<br>21. 4<br>23. 5<br>51. 8<br>50. 5<br>21. 6<br>14. 9<br>14. 9<br>14. 1<br>15. 9<br>14. 9<br>14. 1<br>15. 9<br>14. 9<br>14. 1<br>15. 9<br>16. 9<br>1 |
| 27<br>28<br>30<br>112<br>113<br>118<br>119<br>120<br>121<br>122<br>123<br>124<br>125<br>131<br>132                                           | Cecil clay loam                                                                                                                                                                                                                                                                                                                                              |                                                                           | 12,3<br>6,6<br>2,0<br>5,0<br>14,3<br>15,6<br>16,4<br>1,3<br>1,5<br>16,4<br>1,3<br>1,5<br>1,5<br>1,5<br>1,5<br>1,5<br>1,5<br>1,5<br>1,5<br>1,5<br>1,5 | 11. 2<br>6. 3<br>9. 3<br>12. 4<br>20. 9<br>21. 9<br>18. 1<br>15. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17. 1<br>15. 3<br>17. 9<br>12. 5<br>20. 5<br>17. 0<br>22. 4<br>22. 8<br>11. 6<br>22. 8<br>11. 6<br>19. 3<br>12. 6<br>1. 7<br>1. 9 | 11.2<br>14.2<br>9.7<br>12.0<br>9.5<br>9.2<br>13.0<br>14.3<br>21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 13.09<br>24.46<br>13.37<br>13.17<br>14.2<br>15.68<br>224.5<br>23.2                                                                                                                                            | 24.1<br>15.55<br>11.8<br>12.0<br>12.0<br>13.0<br>14.7<br>14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 23.3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                 | 40. 4<br>36. 5<br>52. 5<br>61, 7<br>63. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 31<br>32<br>33<br>116<br>117<br>126<br>127<br>128<br>129<br>130<br>135<br>136                                                                | Ceeil sandy loam Buston sandy loam Orangeburg sandy loam Vernon fine sandy loam do Kirkland fine sandy loam Bates very fine sandy loam Parsons fine sandy loam Parsons fine sandy loam Vernon the sandy loam Vernon the sandy loam Grown sandy loam Hopi sandy loam Crown sandy loam Crown sandy loam Crown sandy loam                                       | 0-7<br>0-8<br>0-8<br>0-13<br>0-10<br>0-6<br>0-12<br>0-8<br>0-9            | 2.7<br>4.0<br>2.7<br>6.4<br>4.6<br>1.7<br>4.5<br>2.3<br>4.6<br>2.3                                                                                   | 11.4<br>2.5<br>6.1<br>8.6<br>6.6<br>7.1<br>8.4<br>1.1<br>10.3<br>2.6<br>2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.0<br>8.2<br>7.0<br>6.9<br>1.1<br>11.4                                                                                           | 11.2<br>21.8<br>11.1<br>9.0<br>4.9<br>6.0<br>4.8<br>4.1<br>8.8<br>6.0<br>6.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.9<br>12.7<br>7.3                                                                                                                                                                                           | 10, 1<br>21, 19<br>38, 0<br>27, 2<br>36, 0<br>30, 6<br>40, 2<br>38, 9<br>48, 9<br>38, 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.6<br>9.3<br>6.8<br>18.3<br>15.2<br>14.0<br>27.2<br>37.4<br>16.3<br>29.1<br>12.6<br>20.3 | 55.4<br>45.7<br>45.7<br>6.9<br>26.5<br>24.9<br>24.1<br>8.0<br>35.3<br>12.3<br>15.7<br>12.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 15<br>16<br>17<br>18<br>20<br>21<br>22<br>23<br>24<br>25                                                                                     | Honcoye gravelly silt loamdodododododododododododododododododododododododododododododododododo                                                                                                                                                                                                                                                               | 0-6-7-7-7-7-7-6-6-6-6-6-6-6-6-6-6-6-6-6-                                  | 13. 1<br>22. 1<br>23. 0<br>19. 8<br>14. 2<br>19. 6<br>7. 7<br>6. 9<br>23. 6<br>28. 3                                                                 | 15.6<br>10.8<br>15.0<br>10.3<br>10.4<br>10.4<br>11.4<br>25.9<br>16.4<br>13.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 17.0<br>18.5<br>14.0<br>10.5<br>12.6<br>14.5<br>29.5                                                                              | 11.3<br>8.9<br>10.6<br>9.0<br>11.6<br>0.4<br>0.6<br>11.4<br>8.9<br>11.3<br>10.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.6<br>12.3<br>13.1<br>13.6<br>15.7<br>12.8<br>20.3<br>20.4<br>11.8<br>13.6<br>11.3                                                                                                                          | 10.7<br>12.3<br>4.0<br>13.8<br>14.9<br>15.3<br>12.7<br>5.1<br>5.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 12.0<br>7.6<br>14.6<br>15.7<br>21.3<br>22.4<br>25.6<br>22.7<br>8.4<br>11.6                 | 60.7<br>67.4<br>66.9<br>49.9<br>35.8<br>44.2<br>75.3<br>68.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 26<br>34<br>138<br>139<br>141                                                                                                                | Iredell loam Red Bay loam Selah loam Badger loam Melbourne loam                                                                                                                                                                                                                                                                                              | 0-6<br>0-5<br>0-12<br>0-6<br>0-6                                          | 3.0<br>7.2<br>1.1<br>2.3<br>1.5                                                                                                                      | 9.3<br>7.8<br>2.1<br>2.5<br>3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13. 2<br>17. 2<br>5. 5<br>3. 9<br>5. 3                                                                                            | 10. 8<br>15. 7<br>10. 1<br>9. 3<br>5. 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20. 9<br>24. 1<br>12. 1<br>13. 1<br>19. 8                                                                                                                                                                     | 23.7<br>18.4<br>35.7<br>30.5<br>28.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 19. 1<br>6. 6<br>33. 4<br>38. 4<br>35. 2                                                   | 36. 3<br>50. 9<br>18. 8<br>18. 0<br>16. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

Table 16 .- Aggregate distribution of subsoil from the 68 infiltration sites

|                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                              | ······································                        | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ···                                                                         | ·                                                                                                        |                                                                                              |                                                                                                         |                                                                                                                      | <del></del>                                                                                                                | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Soil<br>No.                                                                                                             | Soll type                                                                                                                                                                                                                                                                                                                                                                                                                    | Depth                                                         | >2.0<br>mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,0-<br>1.0<br>mm.                                                          | 1.0-<br>0.50<br>mm,                                                                                      | 0.5-<br>0.25<br>mm.                                                                          | 0.25-<br>0.10<br>1011.                                                                                  | 0.10-<br>0.05<br>mm,                                                                                                 |                                                                                                                            | >0. 25<br>mm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 19<br>36<br>37<br>101<br>102<br>103<br>104<br>105<br>106<br>107<br>108<br>110<br>111<br>114<br>142<br>143<br>144<br>145 | Dimerick silty clay loam do Muskingum silt loam Clinton silt loam do Dubuque silt loam Tama silt loam Carrington silt loam Carrington silt loam Boone silt loam Muskingum silt loam Muskingum silt loam do do do Miami silty clay kum Athena silt loam Walla Walla silt loam Palouse silt loam Palouse silt clay Palouse silt clay Palouse silt loam | 7-14<br>9-15<br>6-13<br>9-21<br>10-21<br>6-15<br>8-15<br>8-15 | .5<br>.6<br>.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 6.4<br>8.6<br>4.9<br>1.9<br>4.8<br>3.5<br>7.3<br>25.5                       | 7. 2<br>10. 2<br>16. 5<br>15. 4<br>25. 4<br>9 5<br>5. 7<br>18. 7<br>19. 3                                | Per-<br>cent 7. 3. 8 1. 7. 7. 6. 8. 8. 1. 7. 7. 6. 8. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. | 23. 9<br>23. 2<br>20. 5<br>4. 0<br>19. 1<br>18. 8<br>23. 6<br>22. 4<br>12. 8<br>8. 7                    | 7. 5<br>22. 3<br>15. 5<br>25. 3<br>1 26. 8<br>15. 5<br>14. 0<br>12. 0<br>19. 9<br>27. 0<br>15. 1                     | 21, 0<br>13, 1<br>41, 9<br>43, 7<br>44, 1<br>13, 0<br>21, 7<br>24, 9<br>17, 4<br>14, 4<br>10, 5<br>33, 7<br>35, 0<br>18, 1 | Per-<br>cent 17.6 22.8 34.5 20.7 5 30.9 44.1 9 30.0 1 30.0 21.3 32.7 7 24.7 58.8 32.3 55.5 57.5 30.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 27<br>28<br>30<br>112<br>113<br>115<br>120<br>121<br>122<br>123<br>124<br>125<br>131<br>132<br>133<br>134               | Houston clay Houston black clay Austin clay Houston clay Rivision clay Kirk land sandy clay Crown licht clay Crown heavy clay Buell clay loam Pinedale clay foam                                                                                                                                                                                                                                                             | 7-16<br>7-16<br>7-16<br>7-16<br>5-16<br>7-16                  | 8.0 ° 2.1 ° 10.1 ° 1.8 ° 27.3 ° 1.4 ° 27.3 ° 3.3 ° 3.3 ° 3.3 ° 3.3 ° 2.2 ° 5.0 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 ° 7.5 | 10. 1<br>17. 0<br>17. 7<br>18. 4<br>38. 4                                   | 20. 9 : 23. 5 : 22. 0 : 30. 1 : 18. 6 : 18. 5 : 33. 2                                                    | 13.8<br>12.1<br>10,1<br>13.1<br>4.1<br>5.8<br>9.8<br>10,1<br>6.5<br>5.0<br>9.6               | 4.6<br>11.7<br>16.6<br>13.9<br>12.0<br>5.8<br>0.7<br>10.1<br>6.9<br>6.9<br>11.8<br>21.9<br>14.6<br>25.1 | 13.1<br>15.6<br>12.6<br>2.8<br>3.0<br>3.5<br>6.3<br>11.5                                                             | 6, 3<br>5, 6<br>6, 5<br>6, 2<br>6, 2<br>15, 6                                                                              | 48.0<br>62.7<br>7.4<br>63.4<br>63.6<br>63.4<br>63.6<br>63.4<br>63.6<br>63.7<br>74.0<br>9.7<br>76.3<br>9.4<br>77.3<br>9.4<br>9.4<br>17.3<br>9.4<br>17.3<br>9.4<br>17.3<br>9.4<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17.3<br>17 |
| 136                                                                                                                     | Cecil sandy loam Ruston sandy loam Orangeburg sandy loam Vernon fine sandy loam do Kirkland fine sandy loam Bates very fine sandy loam Parsons fine sandy loam Vernon fine sandy loam Vernon very fine sandy loam Vernon very fine sandy loam Crown sandy loam Crown sandy loam Crown sandy loam Crown sandy loam                                                                                                            | 10-16<br>6-15<br>12-22<br>5-21<br>9-16<br>3-15                | 1,71<br>6,4<br>2,4<br>2,4<br>3,5<br>2,1<br>2,1<br>3,1<br>5,6<br>6,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 11.6<br>7.2<br>6.5<br>4.0<br>6.1<br>13.3<br>16.3<br>20.7<br>7<br>8.1<br>2.5 | 34. 1<br>26. 9<br>25. 6<br>0. 0<br>7. 5<br>14. 4<br>15. 6<br>10. 9<br>7. 1<br>13. 4<br>6. 8<br>5<br>3. 0 | 13.3<br>10.2<br>6.8<br>7.9<br>5.8<br>6.8<br>12.4<br>8<br>12.5<br>8                           | 20. 9<br>20. 6<br>21. 6<br>41. 4<br>33. 7<br>25. 8<br>7, 9<br>7, 9<br>7, 19<br>25. 8                    | 20.7 ]<br>14.5 §<br>19.9 §<br>24.6 §<br>18.5 §<br>11.0 §<br>13.2 §<br>14.8 §<br>24.2 §<br>24.2 §<br>24.2 §<br>24.4 § | 10.5<br>9.6<br>10.3<br>7.6<br>34.5<br>15.3<br>11.9<br>9.9                                                                  | 50. 7<br>54. 7<br>23. 5<br>24. 9<br>72. 8<br>45. 1<br>17. 8<br>29. 7<br>35. 6<br>13. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                         | Honeoye gravelly silt loam  do do Bath gravelly silt loam Fremont gravelly silt loam Honeoye gravelly silt loam do do de Honeoye gravelly silt loam Honeoye gravelly silt loam Honeoye gravelly silt loam Honeoye gravelly silt loam                                                                                                                                                                                         | 7-18<br>7-15<br>8-16<br>7-11<br>7-14<br>7-14<br>4-13          | 15.7 : 20, 4 : 26, 6 : 15.7 : 15.4 : 15.4 : 12, 6 : 21, 7 : 15.4 : 12, 6 : 21, 7 : 15.4 : 12, 6 : 21, 7 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 15.4 : 1 | 10, S<br>19, G<br>9, 1                                                      | 21, 2<br>19, 2<br>17, 2<br>9, 8<br>12, 3<br>10, 5<br>18, 0<br>20, 2<br>15, 1<br>15, 7                    | 10.8<br>9.6<br>8.1<br>6.2<br>12.0<br>14.1<br>12.3<br>14.3<br>14.3                            | 12.4<br>11.6<br>12.8<br>13.9<br>11.7<br>21.6<br>21.6<br>17.7<br>8.7                                     | 9.8<br>6.5<br>16.5<br>14.9<br>10.4<br>15.4<br>15.4                                                                   | 9, 5<br>10, 3<br>8, 9<br>35, 0<br>25, 1<br>28, 8<br>25, 0<br>13, 5<br>8, 1<br>19, 0<br>26, 0                               | 69.0<br>71.3<br>71.7<br>34.6<br>47.1<br>49.3<br>52.6<br>48.1<br>61.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 26<br>34<br>138<br>139<br>141                                                                                           | Iredell loam.<br>Red Bay loam.<br>Selab loam.<br>Badger loam<br>Melbourne loam                                                                                                                                                                                                                                                                                                                                               | 6-16<br>5-15<br>12-21<br>6-16<br>6-21                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21. 9<br>10. 5<br>6. 2<br>6. 0                                              | 13. 1 '<br>33. 9<br>11. 4<br>5. 9 .                                                                      | 10. 9<br>21. 2<br>13. 5<br>7. 6                                                              | 14. 4<br>21. 8                                                                                          | 23.9  <br>7.2<br>23.2<br>25.8<br>21.4                                                                                | S. 4<br>3.8<br>28. 4<br>38. 7<br>21. 3                                                                                     | 53.3<br>67.2<br>34.4<br>25.7<br>33.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

## ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

| Secretary of Agriculture                   | HENRY A. WALLACE.               |
|--------------------------------------------|---------------------------------|
| Under Secretary                            | CLAUDE R. WICKARD.              |
| Assistant Secretary                        | GROVER B. HILL.                 |
| Director of Information                    | M. S. EISENHOWER.               |
| Director of Extension Work                 | M. L. WILSON                    |
| Director of Finance                        | W. A. Jump.                     |
| Director of Personnel                      | ROY F. HENDRICKSON.             |
| Director of Research                       | JAMES T. JARDINE.               |
| Director of Marketing                      | MILO R. PERKINS.                |
| Solicitor                                  | MASTIN G. WHITE.                |
| Land Use Coordinator                       | M. S. Eisenhower.               |
| Office of Plant and Operations             | ARTHUR B. THATCHER, Chief.      |
| Office of C. C. C. Activities              | FRED W. MORRELL, Chief.         |
| Office of Experiment Stations              | JAMES T. JARDINE, Chief.        |
| Office of Foreign Agricultural Relations   | LESLIE A. WHEELER, Director.    |
| Agricultural Adjustment Administration     | R. M. Evans, Administrator.     |
| Bureau of Agricultural Chemistry and Engi- | HENRY G. KNIGHT, Chief.         |
| neering.                                   |                                 |
| Bureau of Agricultural Economics           | H. R. TOLLEY, Chief.            |
| Agricultural Marketing Service             | C. W. KITCHEN, Chief.           |
| Bureau of Animal Industry                  | JOHN R. MOHLER, Chief.          |
| Commodity Credit Corporation               | CARL B. ROBBINS, President.     |
| Commodity Exchange Administration          | J. W. T. Duvel, Chief.          |
| Bureau of Dairy Industry                   | O. E. REED, Chief.              |
| Bureau of Entomology and Plant Quarantine. |                                 |
| Farm Credit Administration                 | A. G. Black, Governor           |
| Farm Security Administration               | C. B. Baldwin, Administrator.   |
| Federal Crop Insurance Corporation         | LEROY K. SMPTH, Manager.        |
| Federal Surplus Commodities Corporation    | MILO R. PERKINS, President.     |
| Forest Service                             | EARLE. H. CLAPP, Acting Chief   |
| Bureau of Home Economics                   | Louise Stanley, Chief.          |
| Library                                    | CLARIBEL R. BARNETT, Librarian. |
| Division of Marketing and Marketing Agree- | MILO R. PERKINS, In Charge.     |
| ments                                      |                                 |
| Powers of Plant Industry                   | E. C. AUCHTER, Chief.           |
| Rural Electrification Administration       | HARRY SLATTERY, Administrator.  |
| Soil Conservation Service                  | H. H. BENNETT, Chief.           |
|                                            | _                               |
|                                            |                                 |

## This bulletin is a contribution from

| Soil Conservation Service    |               | H. H. BENNETT, Chief.               |
|------------------------------|---------------|-------------------------------------|
| Office of Research           |               | M. L. Nichols, Asst. Chief of Serv- |
| Office of Monomiconstitution |               | ice în Charge.                      |
| Conservation Experiment S    | Stations Divi | A. E. BRANDT, Acting Chief.         |

sion. **52** 

U. S. GOVERNMENT PRINTING OFFICE 1940

## BND