

# This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. 

## Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

## S <br> T A RT




# THE EXTERNAL ANATOMY OF THE LARVA OF THE PACIFIC COAST WIREWORM ${ }^{1}$ 



## INTRODUCTION

The study of the external anatomy of the larva of the Pacific coast wireworm（Limomins（Pholetes）camus Leconte）${ }^{3}$ is a part of the gen－ aral program of investigation directed toward the economic control of wireworms in the Pacific Northwest．It is preliminary to compara－ tire studies of the several species of wireworms found in this section of the Cited States．These later studies will be primarily tax－ nomic，but based on this morphological study．

The necessity for such a series of studies arises because of the presence in each district of a number of species of wireworms of economic importance．These species differ ecologically and physio－ logically more than they do anatomically．Much of the effectiveness of past work on wireworm control has been handicapped，and in some cases invalidated，by the tack of knowledge of the species，or collection of species，of wireworms represented in the experiment．

[^0]
## PURPOSE OF THE WORK

The purpose of this study was to lay a foundation for the comparison of the morpholo dical structures of wireworms in order that the characters of taxononic rafue might be found and the various economic species determined from the larvae collected in the field. The determination of the species of wireworms by rearing them to adults has proved very unsatisfactory for either qualitative or quantitative records. This is due to the long life cycle and the unfavorable response of the larvae to laboratory rearing. At best, months elapse before any adults are obtained, and rearing records indicate that some larvae have lingered on for 12 years before pupating or dying. Certainly the internst in the experiment or the value of the recommendation wonld we lost before defnite information could be obtained by the rearing method.
The difficulties encountered in a taxonomic stucly of the larvae of the family Elater ciae hare not been overemphasized by past workers. Schiöतte (15), Gemriksen (7), Hyslop (9, 10), Roberts (14), Horst ( 8 ), Van Zwaluweuburg (20), McDougall (13), Subklew (19), Gueniat (5), Glen (4), and Hawhins ( 0 ) are some of the workers who have studied the family or a portion of it. In nearly every instance the approach has been economic, and the purpose has been to find a simple way to separate the species of larvae which may be found together in the local fields where lamage is occurring. Laboratory studies of the larrae of the four species of the genus Limonius of economic importance in the Pacific Northwest have shown the impracticality of expecting any person outside the technical staff to separate the species by any discription or key that has been made by normal taxonomic procedure.
Systematic experience readily illustrates the incompleteness of any taxonomic description. Any author in preparing a description has compared the new species with a written description or a mental picture of the most nearly related species with which he is acquainted at the time. The description is, therefore, made up of the variations in the characters found in the earlier descriptions or in the mental image. The taxonomist has developed a group of characters at which to look when examining specimens of a certain group, and even when eamining representatives side by side under the binocular he may overlook differences because they are characters which he has not been including in his mental image.

Since normal taxonomic procedure and the suggestions afforded by literature did nnt provide any means of ready separation of the larrae of the species of Limonius associated in the farm land of the Pacific Northwest, a different approach was deemed advisable. The external anatomy of the larma of Limonius canus has been studied and both descriptions and dramings have been made in some detail of all the parts of the body surface. This is to serve as a basig for the descriptions of the other species. It will be necessary to mention only those characters that differ, and if this study has achieved its aim, no character will be found on any nearly related wireworm those counterpart has not been described and illustrated for this species.

[^1]
## METHODS

The methods employed in this study have little to offer that may be new. The species selected was the one whose larrae were most readily available in large mumbers, and several hundred larvae were used during the study. The large number of larvae used has so added to the completeness of the study that individual variations might be noted and yet not receive the value of characters of the species. The uniformity of the larvae was remarkable, however, and little variation was noted except in the ninth abdominal segment, where very minor rariations in tergal proportions and in the size of certain "warts" were observed.
Drawings were made by two methods. Most of them were made by the aid of an eyepiece micrometer and cross-section paper. All measurements were carefully transferred to the paper and the completed sketch bearing the location of all the features transferred by carbon paper to the bristol board where the drawing was completed and inked, with continual reference to the specimens being used as models. Neally transparent structures, or smali ones that needed considerable detail, were drawn by means of a microprojector. This consisted of littie more than a strong light focused up through a compound microscope equipped with a right-angle prism attached to the eyepiece. This latter only changes the direction of the light beam and directs it upon the paper used for the drawing. The microprojector is of value only when the material is thin, nearly transparent, in a single plane, and mounted on a microscope slide so that it can be held on the stage of the microscope; otherwise the measurement of the object and the making of the sketch upon the cross-section paper yielded the more satisfactory results.

The method practiced was to make the shetch of the part being studied, then write a description as detailed as possible, complete the draving using other specimens as models, and then rewrite the description in the form desired for the completed study. The preliminary stadies were all completed prior to any of the rewriting. The final work was checked so that the relationship of external features to inner structures might be learmed. This was made possible through the use of the very excellent microscope slides made in this laboratory by improved methods of histological technique.

Living larvae, larvae killed in hot water, larvae killed by drowning, larval casts, and larral skins macerated in boiling alkaline solutions were used. The various parts were dissected out, and in many of these instance., : saturated solution of chloral hydrate in glycerine was used as a mecium. This made it possible to keep the minute mouth parts, for example, on an uncovered microscope slide and examine them from every angle with a compound microscope and the aid of a fine dissecting needle. Material so prepared was stored away fyom dust for several days at a time, and was very valuable for comparison with permanent mounts. Mounts made of the macerated larval skin flattened out to show all surfaces were of considerable value in the study of the thoracic and abdominal segments.

## SYMBOLS USED IN ILLUSTRATIONS

a, anus.
$a d s$, distal segmont of antenna.
ais, intermediate segment of antenna.
amg, anterior marginal groove.
ant, antenna.
$a p s$, proximal segment of antenna.
as, sntennal socket.
asj, supplementary joint of antenar.
$a t$, abdominal tergum.
$c$, cardo.
ca, alacardo.
cc, cavity in cuticula.
cos, coronal suture.
$c p$, closing plate.
cs, subcardo.
csu, cardinal suture.
cx, cosn.
cxa, coxal articulation.
$c x p$, posterior cosal suture.
cuss, anterior coxal suture.
$d l s$, corsolateral suture of head.
eph, epipharyns.
epm, epimeron.
eps, episternum.
$f$, fcmur.
$f n$, "frons with nasale."
is, frontal suture.
g, galea.
oen, gena.
gso, supra-ocsophageal gangion.
gu, gula.
$h$, hypostoma.
$h p h$, hypopharynx.
hs, hypostomal suture.
$i m$, interscgmental membrane.
lac, lacinia.
$l b$, labial brush.
li, "lower jaw".
lp, labial palpus.
lpe, prelabium.
lpo, post labium.
lig, laterotergite.
man, mandible.
$m b$, mandibular brush.
mda, dersal articulation of mandible. $m d c$, dorsal condyle of mandible.
mdl, distal lobe of mandible.
mia, lateral apodeme of mandible.
$m i p$, lateral projection of mandtble.
mma, mesal apodeme of mandible.
$m p t$, proximal lobe of mandible.
mps, maxillary palpus.
$m s$, median suture.
$m s n$, mesonotum.
$m t n$, metanotum.
$m 2 a$, ventral articulation of mandible.
muc, ventral condyle of maudible.
$n$, nasale.
rd, nasal depression.
nlw, lateral wing of nasale.
$n m p$, median projection of nasale.
ns, subnasale.
nso, nasal sensory organs.
$o$, oesophagus.
$p$, pleuran.
par prosternal anophysis.
pam, anterior mesopleurite or metspheurite.
par, parietal.
pes, postoccipital suture.
$p \in s$, presternum.
pn, pronotum.
pos, prosternum.
ppm, posterior mesopleurite or metspleurite.
pr, postoccipilal ridge.
prb, precoxal bridge.
$p s$, pleural suture.
pia, presarsus.
s, stipes.
sd, dististipes.
spi, spiracic.
st, sternum.
$t$ tibia.
ta, tarsue.
tel, telson.
fp, posterior tentorium.

## THE LARVA

The larvae of Limonize canus are among the most destructive wirewoms of the Pacific Northwest. They are adapted to move about through the soil and fiut their foot in the roots and seeds in the ground. Only an active larya could subsist on the relatively small food soures so widely dismbuted thronghout the soil. The high resistance to movement offered by the soil makes the form and the hardened covering of the wireworm important factors in its ability to move though the soil. Thus the hra under consideration has a sketuder body, tourh covering, tapered head, small and short legs adapted to work close to the body, and an anal structure that assists in the novement of the boxly. The segaration of head, thoras. and abdemen is not so apprent in in some of the lees miformly slender colempterons larvae, yer their functions are as distinct, and the three portions of the larval body will be described separately.

## THE HEAD

The head is of the prognathous form with the preoral cavity (mouth) at the anterior extremity and directly opposite the foramen magnum on the posterior surface of the headi. This modification of the larral head from the perhaps more primitive lyypognathous form with the preoral carity on the rentral surface of the head appears to be quite common among the more active of the coleopterous larvae, especially anong the predacious forms.

The main framework of the head may be considered the head capsule, while other features of importance would be the preoral cavity, the antemae, and the rarious moving parts associated with the mouth.

## THE HEAD CAPSULE

The head capsule consists of the immovable selerotized areas of the head. In the larva of Limonine canus the head capsule is so modified as to be somewhat wedgelike. This wedge is pointed anteriorly, with the opening of the preoral carity, guarded by the mandibles, at the tip. The flattened surfaces of the wedge are dorsal and rentral, with much of the rentral surface occupied by the various parts of the maxillae and labium which are rather intimately united to form a large movable plate termed the "lower jaw:" The fusion of frons, clypeus, and labrum has resulted in an immorable and highly sclerotized plate termed the "nasale," a portion of which projects anteriorly betrien the mandibles and forms the most noterorthy feature of the dorsal surface of the head capsule. Since the larva is entirely blind and the antemme are sitnated yery close to the base of the mandibles and immediately laterad of them. the antennae, mandibles, and "lower jaw," together with the preoral opening, occupy the single opening in the visible part of the head capsule. The only other opening in this sclerotized capsule is the occipital foramen found in the posterior wall. Instead of the comparatively small size of the occipital foramen, or foramen magnum, as sometimes seen in insects, the opening is large, as was noted by Stickney (18, p.27) in the adult of -17aus oculatus (L.). This large foramen magnum occupses nearly the entire posterior surface of the head capsule, and its size mar. in part, be the result of the heary musculature present in the reduced head and the probably related migration of the ganglia of the brain into the prothorax.

The head capsule of the larra of Limonius canus is thus seen to consist of little more than a flattened dorsal plate sloping anteriorly, and rounding lateral walls which narrow anteriorly and curve onto the rentral surface for a comparatively short distance except at the posterior end. whare a gular aret unites the sides of the head capsulo posterior to the "Jower jaw."

Segmentation lines may be considered as absent in the head capsule, and the rarious irregularities, sutures, and indentations are largely due to the invaginations of the hody wall which supply the necessary supports and points of attachment for the internal organs and muscles. The hypothesis that the wedge shape of the head is of value to the larra in its movement through the soil is further supported by the smoothmess of the surfice of the capsule the roundness of corners, and the location of all sensory spines in depressions of the wall.

The epicranial suture and the before-mentioned nasale are the principal features on the dorsal surface. The epicranial suture is so modified that the hypothetical $Y$-form is not apparent. The frontal sutures (fig. $1, A, f s$ ), the branches of the inverted $Y$, alone are readily seen. If the head of the hypothetical hypognathous insect were bent upward into the prognathous position with the mouth raised into the plane of the body, the stem of the $Y$ and the sclerites which it is supposed to separate would be shoved under the anterior margin of the first thoracic tergite, the pronotum. When the larva of Limonius canus is greatly distended or when the head is mechanically bent ventrally, an area of semimembranous tissue with a plainly discernible dorsal suture is exposed. This may be the parietals, the sclerites in question, separated by the lost stem of the $Y$.
The frontal sutures depart from the hypothetical straight lines and enclose an area resembling in shape a bulbous vase with flaring top. These sutures arise from the dorsoposterior margin of the sclerotized head capsule and adjacent to the semimembranous area. Their points of origin are separated by a distance as great as the width of one of the stipites in the "lower jaw." The sutures arch laterally and approach again when slightly more than halfway to the anterior limits of the head capsule. Here the sutures are nearly parallel for a very short distance and are about as widely separated as at the point of origin. From here the sutures bend laterally and extend at right angles to the median plane to where gradual and uniform curves will take them around the outer margins of the bases of the mandibles. Each would appear to pass between the base of the mandible and that of the ale tenna.
The scierite which is set off by these two sutures from the remainder of the head capsule is the "frons with nasale" of Hyslop (10). It is a fused plate containing the frons, clypeus, and nasal lobe without indication of points of separation. The nasal lobe or nasale owes its origin to the fusion of the plates and to the apparent disappearance of the labrum. The nasale (6g. 1, $A, n$ ) is of taxonomic importance both in placing the larva in the family Elateridae and in determining the division of the family to which it belongs. Its importance, however, is much more limited that is realized by many authors owing to the changes wrought by wear during the period between molts. The amount of wear is influenced by different types of foods. The special structures of the nasale will be discussed more fully under a separate heading.
The frons bears three pairs of bristles which are particularly noticed. Other sctiferous punctures are often found nearer the nasale, but are not so outstanding. The pair situated within the neck of the vase are noticed for their location rather than their size. They are found, one on each side, near the frontal sutures and where these sutures first approach one another. Two large spines are situated on the wings of the sclerite not far from the ends and about midway between the base of the mandible and the frontal suture. These spines, one on cach side, are similar in size and length to the larger of those found on the stipites. The third, and last of the pairs mentioned, are found one on each side near the frontal suture and both postcrior to and outside of the longer spines just described. These latter spines are greatly reduced, and in size are approximately


Fioure 1.-Eead capsule of latwa of Limonitus canus: A, With mandibles and antennae, dorsal view; $B$, without madibles or antemae, ventral view. Both $\times 60$.
midway between the first and second pairs. A similar comparison may be made of the alveoli from which the spines arise. The alveoli of the third pair of spines have about half the diameter of those of the second pair, but are nearly twice the diameter of the alscoli of the first pair. Spines similar in size to those of the first pair are to be found in the front center of the sclerite. and when several are present they are often arranged in an arc. Other setaceous growths appear around the nasale. These latter will be xliscussed in comection with that organ.

The areas of the head capsule outside the frons and nasale are very generally fused from the postoccipital suture, from which arise the frontal sutures, to the surfaces of mandibular articulation. The antemal sclerites, the less selerotized areas suroumbing the base of the antemac, are distinctly market, while setae-bearing grooves, one on each side, extend from the rentrolateral base of the mandible to near the posterior margin of the capsule. The area thus formed surromend the "lower jaw." Its tyee lateral margins are very greatly infolded and are comnected to the infolded lateral margins of the stipites by a flexible membrane The slender sclerites laterad of the "lower jaw," the hypotomata (fig. I $B, h$ ), bend mesally at their posterior mod, where they are joined by the anteriondy-bent rentral encls of the postoccipital ridges (fig. 1, $B, p m$ ).

The lateral walls of the hemal cansule extend much farther posterionly tham the posterior margin of the epicranium, the dorsal part of the head. These lateral posterior extensions appear to be more important in the articulation with the thomecic segments than does the dorsal margin. Posterior to the postoceipital suture is a sclerite, or series of sclerites. which may be more cerrical than eephalic. Dorsally the sclerotized part is vers narrow, inchuding little more than the posterior wall of the suture, and fades into the intersegmental membrane connecting the head to the prothoms. As the arch of the head capsule is followed laterally, and posteriorly. the width of the sclerite appears to inerease until at the dorsolateral extremities it forms a tiangular plate whose acute angle exiends posteriorly under the exoskeleton of the prothorax. This extension of the sclerotized area is an invagination of the suture, however, for it lies under the transparent intersegmental membrane and is a part of the endoskeleton.

Between the anteriorly bont ends of the pustoccipital ridges is an area, the gula (fig. 1. $B, g w$ ). whose anterior portion is very slightly colored and morges into the nonsclerotized membrane surrounding the cardines of the "Iower jaw." Its posterior margin, howerer, is a structure usually hidden within the prothorn. In the fully expanded harva it appears as a narow cuphets bow extending across the median part of the rentral surface and similat in color to the longituderal sutures of the cardines. It is brown in comparison to the yellow of the part of the sclexite which is anterior to it and to the white of the intersegmental membane ly which it is: usually corered.

This bow-shaped posterion margin of the aula appears to extend behind the postocepital ridues and to strengthen the posterior margin of the head capsule. The posterion (entorial arms (fig. 2, A. $t p$ ) arise on the imer surface of the postoccipital ridges without any external indication of posterior tentorial pits. One prong of each extends
dorsoposteriorly a shors distance, but the longer pare extends dorsoanceriorly: It passes clirectly over the articulation of the posterior tip of the carclo to the mesal eml of the margin of the hypostoma and serves as a support for the stomotaeum, the foregut.


The Ninhe:
 an anterior and median projertion from frome, formed either bs a fuston of


A frue fabrum in the seme of a movable upere lip has not been fomd in the larrat of Limonime cran w

The above defmition of the nasale is subject to question in its reference to the larva of this species. It has a marrow median projection, while in certain subfamilies of elaterid larme the term "anterior and median projection" would apply to much more of the anterior margin than in this larva. For example, in the larva of Pyrophorus luminosus Illig. ( $10, p .248, f i g .2 e$ ) the defnition of the masale would apply to an area which would inchude the indentations on both sides of the "anterior and median projection" in larrae of Limonius canus.
While the narrow medion projection of this species is the most highly sclerotized area and is the portion which is in direct apposition to the imner tooth of each mandible, the base and lateral wall of the deep indentations on each side of the median projection is obseryed to assist in crushing food bodies. Thus, much of the work is divided over the anterior margin. Moreover the sensory areas, which form a part of many labra, are largely situated on the lateral wings, the mandibular sclerites of Gućniat (5, p. 108). Further, these duties are not normally those of the clypeus. For these reasons it is best to include in the discussion of the masale all the areas on the anterior margin of the fronto-clypenl sclerite which assist in the masticatory processes and also the adjacent sensory areas.
As stated in the discussion of the head capsule, the nasale has been considered of primary importance in the taxonomy of elaterid larvae. This plate has considerable value in the separation of groups and is jerhaps as variable between species as any structure on the larvae. In the case of the various species of Limonius larvae reared, it has been repeatedly observed that the nasal projection, as well as the tips of the mandibles, is very subject to wear, the amount of wear being in part dependent on the type of food. The larvae of Limonius canus have been observed to be especially subject to variation in the form of these wearing surfaces during the period between molts. Because of the variation in the form of the nasal projection and the mandibles their value as a specific character is very questionable.

The median projection (fig. 1. $A, n m p$ ) appears when viewed from above as a nearly square extension into the space between the mandibles. It is situated much farther ventrally than can be shown in a dorsal view; it is in apposition to the mandibles, in that the inner tooth, the proximal lobe of the mandible, grinds against the under surface of the nasal projection; and it is situated almost between the mandibles as viewed from in front (fig. 3, A). In freshly molted specimens the anterior end of the projection is trilohed and somewhat expanded. This effect may soon disappear in larvae that feed on comparatively hard food, as wheat or corn kemels.
On each side of the median projection is the depression in the margin of the sclerite. These depressions (fig. 1, $A, n d$ ) are each nearly as wide as the projection. Their walls are nearly vertical, and in the basal wall of each is a cavity which contains two setal alveoli. From each of these alveoli arises a strong bristle which extends anteriorly over the cavity between the mandibles for a distance fully twice the length of the merlian projection, and these bristles attain the tips of the closed mandibles. While the mesal walls of the depressions are nearly straight and parallel, the hateral walls extend anteriorly in a smooth arc to a point nenr the base of the proximal lobe of the closed mandible. A farther extension of this sclerite bends
laterally over the mandible. The outer half of the lateral margin, and most of the portion above the mandible, is provided with a dense growth of bristles. This heavy brush of hairs is cirected mesally and somewhat anteriorly. It brushes the upper surface of the mandible and probably sweeps back any food particles that might cling to the mandible as it is being opened.

The lateral wings (fig. $1, A, n l w$ ), the mandibular sclerites of Guéniat, in addition to the dorsal mandibular brushes on their mar-


Figure 3.-Head capsule of larra of Limonius canus: A, Anterior view, with mandibles and antennae; $B$, Jateral view of left side. Both $\times \stackrel{\rightharpoonup}{5}$.
gins, each bear two short but comparatively heavy spines. These are similar in diameter to the largest ones on the fronto-clypeal sclerite, but appear to be both shorter and more stifly fixed in their sockets. With the more lateral one of ench pair of spines in the nasale depressions they form lines extending diagonally forward and over half the distance across the lateral wings. Near the base of the nasal area and extending from the buse of each depression laterally,
fully as far as the terminal spine in each row, is a narrow area quite uniformly supplied with sensory organs which appear to be different from any others found on the larra.
Superficially these sensory organs (fig. 1, $A$, nso) appear similar to setal alveoli of average size, but without setae except for a minute dark speck in the center. Sections through the nasal area, however, show them to be globular bodies nearly flush with the surface of the plate. They completely fill their cavities in the sclerotized plate. Each organ is nearly spherical, slightly flattened on top and with a minute elevation, a little point, in the center of this flattened exterior surface. The farther from the nasal depressions the organs are situated the deeper they are in their sockets and the longer the median spike. Within, the organs each show a chamel leading through the sclerotized portions of the cuticula. The channel is bent posteriorly and disappears in the tissue on the imer surface of the cuticula.
The walls of the individual sensory organs are thin while the interior appears to be hollow. The stains being used on the prepared slides do not differentiate nerve tissue, and further studies will be necessary to determine the type and amount of inuervation. The general appearpnce of the organs is similar to that described for the sensilla campaniformia of Snodgrass ( $17, p .521$ ) and Eltringham ( $3, p, \mathscr{S}$ ).
Laterally from these sensory arens and comecting the brushbearing margin of the lateral wing with the fronto-clypeal sclerite is a nearly transparent, uncolored aren which further covers the dorsal surface of the mandible.
These regions described collectively under the name "nasale" are a part of the head capsule in that they aro immovable, and with the other areas described under: the head capsule form the ouly immorable portions of the exoskeleton of the head. The endoskeleton will be mentioned only as it influences the external portions.

## THE PREORAL CAVITY

The preoral cavity of the larva of Limonius comus presents some interesting adaptations from the hypothetical primitive col:"pterous larva. A development of considerable importance in the feeding habits of the larra is the presence of extensive hair brushes and sieves in and around the preoral cavity. The amount of hair appears to be much greater in this species than in many of those that have been studied at the laboratory at Walla Walla. Wash., and is much greater than that figured by Guéniat (5, fig. 16. B, p. 112) for Algrotes obsectus (L).
Mention is made under other headings of the hair growth on the laciniae, at the base of the mandibles, on the inner anterior angles of the lateral wings of the nasale. on the tips of the labial paips and the galeae, and on the dorsal surface of the labium. In addition to these, other dense grou ths of hair are to be found on the hypopharyns and the "closing plate" (fig. 4, B).
The hair growth within the preoral cavity and along the lateral margins of the hypopharyux is a continuation of the rows of hatirs formed by the brushes on the laciniae. These rows along the margins of the hypopharynx are composect of very many hairs mox nearly fill the preoral carity, while the individual hars appar to be longer
than those of the laciniae. Like those of tine laciniae these hypopharangeal hairs point forward and inward. These hairs of the two organs form long lines which assume much the form of a funnel for the passage of food. The direction of the hairs. howerer, would very efficiently prevent the passage of any large particles of food.

A further obstruction to the fumnelike fool passage is the tuft of hair, the labial brush (fig. $4, B, l b$ ), described as on the dorsal


Fhgure 4.-Tlead parts of larva of Limonius camus: A, Preoral cavily, dorsal surface. $\times 37 ; B$, peoral eavity, rentral surface, $\times 37 ; C$, mandible, with
apodes, $\times 00$.
surface of the labium, specifically the prelabium. These hairs aro crect in growth and form an obstruction across the food passago about one-third of the distruce from the anterior tip of the hatium to the chosing phate when the parts are in an extended condition. Since these hairs closely brush the upper surface of the preoral cavity, the epipharynx, they divide the passige into two parts.

These two parts of the preomal cavity are evidently divisions of the cibarium. There is no indieation of a salivatium, nor has any structure been found which might be considered as either salivary
gland or salivary meatus, and while digestive fluids are commonly found in the preoral cavity they have been seen to be discharged from the stomodaeum.

The anterior portion of the cavity is widely open in front and affords a ready passage for food. The palpi and mandibles bring the food into position while the hairs of the many brushes prevent its escape laterally. The secondary or posterior portion is more heavily clothed with hairs; even the ventral surface, the upper surface of the hypopharynx, is clothed with short, anteriorly diracied hairs. Microscopic sections through this region show small, anteriorly directed hairs on the ventral surface of the epipharynx, the roof of this portion of the cavity, which gross dissections had failed to show. The hypopharynx is restricted to this secondary portion of the cavity; for the floor of the anterior portion is the labium and the lateral margins of the lacinne, the mandibles are its walls, while the roof is formed by the subnasale and the space anterior to the nasale in which the proximal lobes of the mandibles move.

The hypopharynx (fig. $4, B, h p h)$ ), understood to be the ventral surface of the portion of the preoral cavity posterior to the labiumborns tuft of hairs, extends posteriorly to the closing plate, the structural mouth. The hypopharynx is very subject to being extended until the surface is smooth, or shortened until it forms one or more extensive pockets or folds. Longitudinal muscles are so attached to its under surface as to make the primary pocket immediately behind the labial tuft and the secondary pocket just anterior to the closing plate. Its form is subject to the movements of the sundry parts of the "loser jaw" and somewhat to the morement of the closing plate. Observations of the feeding larva and of the larya when dissected in Ringer's solution and electrically stimulated indicate that every possible movement of these areas appears to be participated in quite frequently. The sundry palpi, the labium, and the "lower jaw" as a mit are thrust forward and withdrawn; the anterior end, or the posterior end, of the "lower jaw" is raised or lowered, while a similar motion may be noted between the two sides of the same area which gives to it a lateral rocking motion in addition to the linear one.
The transverse sclerotized plate (fig. $4, B, o p$ ) at the posterior end of the lypopharymx is termed the "closing plate," since it provides a means of closing the opening into the alimentary canal. Properly it is a portion of the digestive tract, of the mouth proper, and not of the preoral cavity. It does, however, bear brushes of hairs and affords a posterior limit to the cavity. The posterior margin of the hypopharynx is attached to the plate, while the ventral portion of the anterior end of the stomodaeum is likewise attached to it. The lateral wings are attached to the anterior portion of the head capsule by strong muscles, and in gross dissections the plate has been found tightly pressed against the roof of the food meatus just posterior to the thickened plate which is the subnasale and epipharynx. The plate is readily detached from the ventral portion of the head and it is moderately difficult to dissect open the preoral cavity so as to retain the structure in the ventral halt.
The closing plate is twice as wide as long and the anterior and posterior faces are approximately parallel, though the latter is rounded
posteriorly in the middle. The four comers of the plate are extended laterally and provide attachments for muscles. The hair grouths are attached to the yellowish plate by a brief, but transparent, membrane. They extend in a continuous ror from near the posterior angles, along the lateral ends, and across the anterior face of the plate. The hairs are greatly reduced in length and in number for approsimately the middle one-third of the anterior margm. The remainder of the hair growth supplements the lateral rows of the hypopharyngeal brushes. Under certain conditions the brushes of the posterior portion of the preoral cavity are pushed forward and fill the space between the nasale and the bases of the mandibles and extend as far as the tip of the nasal projection.

The subnasale (fig. 3. A. ns), the posterior surface of the masal projection, is difficult to study sutisfactorily. It seen with transmitted light it may show little more than the pattem of the less densely sclerotized areas of the masale. In this instance it would be a bluntly three-lobed figure somewhat similar in shape to the masal projection but considerably reduced. When viewed from the anterior end of the nasal projection it is seen that the submasale slopes rentro-posteriorly and an impression is obtamed of a serrate margin. In well cleared specimens, or when viewed by reffected light. and under magnifications of at least 80 diampters, the submasale is seen to be provided with conical projections or points over mueh ot its surface. The arrangement is more comparable to that of the cells in a honeycomb than to a system of rows. The length of the points appears to increase posteriorly though their bases are not greatly increased in size. This condition continues posterior to the bases of the depressions on each side of the nasal projection. These points have been noted to be sharper in recently molted larwe than in those which have fed for a time. This would indicate that the projections are subject to considerable wear. The posterior margin of the subnasale is abrupt, the edge appearing rightangled with the posterior surface extending dorsally. Transversely the postexior margin is smooth and arcuately bent anteriorly near the ends. Flexible tissue forming the remainder of the root of the preoral cavity and of the anterior portion of the stomodaum is attached to this margin of the subnasale.

## THE ANTENAE

The morable parts of the head are the antemae, the mandibles, and the "lower jaw." The last is the plate combining the naxillae and labium. The antmad are the least of the organs in size, but are morphologically considered to be the most anterior in point of origin, and will be descrihed first.
The larval antemae are situated laterad of the mandibles. The antemal socket (fig. 3, $B, \omega^{\circ}$ ), from which the antenna arises. occupies the space provided by the lateral end of the anterior tip of the dorsoventrally flattened head capsule and the concavity on the lateral margin of the mandible. The antema as it arises from the antemal socket is partally protected by the lateral surface of the mandible. It is attached to the antemal socket by a flexible transparent membrane which permits of considerable retraction of the antema, as well as free movement in any direction. This membrane may include an
antemal sclerite. No articulatory point has been obserred on the larval antema,

The antemm contains three sclerotized segments. The basal or proximal segment (fig. 3, $B$ : aps) is one-half the length of the entire antenna, while it is correspondingly greater in diameter than either of the more distal segments. This segment is larger than any of those to be found in the maxillary palpus and is longer than either of the segments of the galea of the same larra. Its form is cylindrical, but a slight lateral bend in the segment is accentuated ly an enfargement at the distal end on the side away from the mandible. A fow minate spines are near the distal end of the segment.

The intermediate segment (fig. 3, B, ais) is also intermediate in size. It is slightly more than half as long. or as wide, as the proximal one. On the other hand, it is Ionger than the distal segment and much greater in diameter. Cylindrical in form, the segment increases slightly and uniformly in diaméter toward the distal end, where it bears a few small epines. It is attached to the truncate distal end of the proximal segment by a transparent membrane.

The distal segment (fig. 3, B. ads) is a slender sclerotized cylinder. Its distal end is rounded and membranous. This tip bears thren, perha,s four, short but comparatively heavy spines with very thin walls. Very mimute papillae are alko present on the membranous tip. Sections through these delicate parts have not been studied.

A transparent. unsclerotized. cone-shaped structure is associated with the distal segment on tie truncate tip of the intermediate segment. This is termed the "supplementary joint of antema" by Böring and Craighead ( $1, p .85$ ), the "tactile papilla" in reforring to the drawings made by Hyslop in the same publication (pl. SO), the "emse process" which Hyslop (10. p, 25\%) refers to Böring (1910), and the "accessory process of the antemme" by Whitehead ( $22, p$. 220 ) in his list of abbreviations used on the plates. It is generally found on the antemae of the larac of the family Elateridac. and in certain genera the nomber of tactile papillae acquires importance as a taxonomic character. Similar structures were noted in the illustrations of the larve of 45 coleopterous families. Its purpose is sensory, but further study will be necessary to make certain as to the type of colls present. In this species (he supplementary joint (fig. 3. $B$. (tw $j$ ) arises from the end of the imfermediafe segment. and is mesad of the distal segment.

## ThE MANDIBLES

The mandibles are the ontstanding feature of the larval head of Limonius camus (fig. 1. A. mon). They are rugged, hearily selerotized, and brown becoming back toward the tijs. To jutge from their appearance their fumetions are those of erasping, pieceing. and tearing rather than of grinding and pulverizing.

Each mandible bears wo tedth. The ristal lobe (fig. 4. C. mall) is the primary portion of the mandible. It is hent mesally. and in the newly molted larva the distal lobe mets and oveluys that of the other mandible when the inur or mesal margin of the mandible approaches the phane paraliel to the median line of the larval body. This overlapping of the distal holes is characteristic of the closed position of the mandibles. These lober are sabject to wear, however, and specimens of this speries are frecuently foond in reared material the
lobes of whose mandibles will not meet. Nomally the closed mandibles provide the larva with a highly sclerotized edge to the wedge formed by the anterior portion of is body. The marrowing of the mandible inwardy is partially compensated for by the overlapping of the tips, and a nearly transerse edge is provided this anterion tip of the wireworm.

Approximately three-fifths of the distance from the base to the anterror surface of the mandible, wad on its imer surface, is the proxinnal lobe (fig. $4, l^{\prime}, m_{j} l^{l}$ ). This is variously termed the retintculum, the proxidentis, and, perhaps, eren the mohar lube. It is somewhat similar in shape and duection to the distal lobe, but is smaller, is not orer half as long, and is directed positerorly motend of slighty anteriorly as is the distal lobe. It appears subject to heavy wear and is as apt to be worn down or broken as the more prominent distal lobe. Evidently it has more of a molar duty tham its pointed shape would indicate. It is apposed to the nasal projection and to the surface of the subnasal.
Eack mandible consists of the highly modified stub of a segmental appendage. It hats developed an articulatory union with the dorsal surface of the head in addition to the one on the ventral surface, has modified its musculature to permit of the opening and the powerful closing action in a single plane, and has developed the rigidity of structure to withstand nomal weat.

The base of the manduble is roughy tringulat with the angles at the two points of irticulation and at the bere of the jmer or blade edge. The dorsal articulation surface, dorsal condyle, preartis, or ephcondyle, is a distinct socket (fig. 2,2 , mide). This socket is rather deeply sumken moto dhe basal angle of the mandible and athendates on an arched thickening of the anterior margin of the frons (fig. $1, A$, mda). The appeazance of this articulatory surface precludes any movement of her than in the one phane-any other wouk be over irregulat surfaces. It is a heavily sclerotzed projection of the cranal margin which is rounded only in the line of the phat through whet the namdible moves. The unon is wery deffitely a ginglymondal joint.
The ventat artioulatom, on the combary, comists of a bath-shaper projection of the rental hat aral angle of the base of he mandible (fig. $1,13, m a d$ ). This rental condyle (postartis) articulates in a socket in the anterior margin of the pleurostoma jast outside the hypostomal sulure (fig. 4, $\prime^{\prime}$, mer). These ventral art icatation surfaces are of a type that would permit movenme in why piane. This is to be expectect, sine the prinitive msect lombshow the ventat condyle as the only artichatary surface and shate the primitive nandible is provided with a wider range of morement.

On the hatema base of the mamblibe appass a lateral projection which is strengthencd by a didge extemmag anteriorly along the lateral surface of the organ (ifg. $\pm, e^{\prime}, m / p$ ). This projection arises from near the vental condyle, and its lateral end serves as the point of attachmem for the smatler of the two apodemes which extend postronty imo the comatal cavity (lig. $4,(c, m / a)$. This apoteme is tramparm in stong contrast to the darkly colored mandbubar structure. The abductor materes are atached to its margins.

The angle at the base of the cutting edge of the mandible is quite acute. The mesal apodeme (fig. 4, (', mma) arises from this basal angle. This apodeme is larger than the lateral one but is, like it, a thin, clitinous. nearly transparent plate. The greater part of this plate lies in nearly the same plane as the ventral surface of the mandible, but the mesal linear margin is bent dorsaliy. This provides a small dorsoventral plane and greatly strengthens the apodeme.
The muscles which are attached to these apodemes arise from invaginations along the hypostomal suture (fig. 1, $B, h s$ ) where it parallels the cartines and from a similar invagination (fig. $1, A, d l s$ ) shown extermally by the groove and series of spines on the dorsal surface of the head and almost directly dorsad of the hypostomal suture. All the head capsule. with the exception of a median band narrower than the distance berween the bases of the mandibles: is devoted to the musculature of the mandibles. The location of ganglia of the brain in the prothorax has been mentioned (p.5). The food meatus is to be foum passing throngh the head capsule, the anterior panglia of the sympathetic nervons system is there, and at times the anterior tips of the superoesophageal ganglia; the remainder is almost entirely the musculature clevoted to the feeding process. amd most of it has to clo with the opening and closing of the mandibles. These mandibular muscles arise from the head caysule considerably posterior to their points of attachment to the apoolemes. Thus the spontaneous and equal contraction of dorsal and ventral muscles will exert a posterior pall, and since these muscles arise from points in a plane between the two apodemes their action will also exert a lateral force. The force the adductor muscles apply to the mesal apodeme will draw the tip of that argan backward and to the side and in this mamer canse the mandible to rotate on its axis and the tip of the mandible to describe an are ending in the closed position. Similarly the foree exerted by the aboluctor muscles upon the lateral apodeme will cause the madible to siring outward into the open josition. The relative power needed in the two movements of the mandible is well illustrated by the comparison of the distances of the respective points of attachment of the two apodemes from the plane of the axis and also the respective amounts of musculature. It is very evident that many times as much power can be applied in closing the mandibles as is necessary to open them.

The inner base of the mandible is provided with a brush of hairs, termen ly some authors the penicillus (fig. 4. (. mb ), which points anferiorly into the preoral cavity. Nearly a fourth of the inncr edge of the mandible is sheathed by these hairs. The hair-bearing surface extends posteriorly past the base of the mandible as though to protect the connective membrane of the mandible at this point.

Much of the dersal and ventral surfaces of the mandibles is cleaned by scrubbing hair growths on the lateral wings of the masal region and the rarious organs of the "Jower jaw." The latemal margin of the mandible serves as a protection for the antenatand its surface appeats smooth. The anterior surface howerer, except the highly sclerotized distal lobe. is sparsely clothed with extremely fine hairs which arise from minute but distinct, alveoli. These hairs are probably spasory. those of the brushes having other primary purposes.

The movable plate on the rentral surface of the head of a wireworm consists of a mion of the various parts of the maxillae and the labium to provide a mit for movement. The various movements in which this plate acts as a unit, together with its unified appearance and taxonomic importance, lead to the need of some term which can be used for the unit. Böring and Craighead ( $1, p / s .84,85$ ) illustrate the "ventral mouthparts," Hyslop (10) repeatedly speaks of "labium and maxilhae," Gucniat ( $\bar{\delta}, p, 112$ ) terms this plate the maxillolabial apparatus (appareil maxillo-labial), Horst ( 8, pl. I, fig. 4: and in text) uses the term "lower jaw," while Glen (4: p. 2.3.3) calls it the "hypostome." The first two terms are not specific enough to describe a plate as mified in action and appearance as that fond in the wireworm. The use of the term "hypostome" may be a misinterpeatation. The ferm is applied to the labrum of tribobites and other Crustacea (Vebster:s dictionary). and to the lower portion of the tace of Diptera amd Hemiptera by Smith (16). Snodgrass (17, p. 13\%"), however. defines the term as applying to a portion of the lateroventral surface of the head capsule, and in this description the hypostomata are considered the marow sclerites of the head capsule bordering the opening on the ventral surfice of the head capsule. Of the terms "maxillobabial apparatus" and "lower jaw" the latter has the advantage of both brevity and an indication of unity, and the part callec "lower jaw" is to be understood as the unified movable phate on the ventral sumface of the larval head which is made up of the parts of the maxilae and the labium. This is the plate Mr.Dougall (12) used for measumemes instead of the head capsule when studying instars and larval growth.

The "lower jaw" (fig. $2, B, 7 j$ ) is a nomy spuare area, its length doubled by the addinom of the palpuslike structures at the anterior end and the two small and roughly tringular sclerites at the posterior end. The plate ifself is made up of thre linear and parallel sclerites. The form of the lateroposterior angles of the lateral selerites and the width of the posterior end of the midde sclerite are factors influencing the form of the "lower jaw" and are of taxonomic importance. In the "lower jaw" of the larya of Limonins camus the posterior angles of the lateral selerites are nearly $90^{\circ}$ angles, and the medial sclenite is very slightly narrowed posteriorly. The middle selerite, with its anterior appendages, is the labium. The lateral ones, with their anterior attachments, and the smaller posterior phates are the maxilace.

The Maxhia
The individual maxilla represents the least modified of the segmented apperdates serving the insect monh. In the wireworm of this species the posterior, or proxinal, selerite the cardo (fir. 1, $B, C$ ), is small and roughly thangular in shape. The hare lateml sclerite distal to the cardo is the stipes (s). At its anterior or distal emt are the two embite totes momally found in the maxila. 'the messit tolle is the lacinia (lar). while the lateral lobe is the gallea (g). Shighty posterior to these terminal orgats and at the hateral ande of the stipes is the maxilary palpus ( $m p s$ s). Each structure will be described under a separate heading.

## the cardo

The cardo (fig. $1, B . c$ ) is the proximal segment of the maxilla and is nearly right triangular in shape. The distal ent, the hase of tho triangle, fits directly against the proximal ond of the sitpes aid is comected to it by i brief but very fexible membrane. The mesal margin, the perpendicular of the triangle. is somewhat irregular and merges into the membranous tissue comecting the wo cardines. The lateral matgin, the hypotemse, is more regular and, because of its infolding. much darker in color. This infolded margin greaty inmeases the rigidity of the cardo. which is further shenghened by the invagination of the sutme wheh passes longitulimaly thengh the sclerite. The cardinal suture ( $r \times n$ ) approximately hisects the distal magin of the cardo and passes longitudinaty throngh the sclente in an undulatory conser to near the proximal ond of the lateral margin. The suture firmly mites the two parts of the cardo, the mesal or subcardo (es) and the lateral or alacambo (ou).

The proximal end of the cardo is strengthened be the fusion of the infoded hateral margin and the earlinal suture. This ond aticulates with the posterion end of the margin of the hepostma. The jaints at the two emes of the earko. permit the backwarl and forwayl mevement of the "lower jaw." When the "lower jaw" is retracted the cardo is in a nearly perpembicular poition. hat when the muscles that arise from the under surfaer of the tentorim and are atached to the imer surface of the earbo nate its distal end contrat, the cardo is puled into a horizontal pusition and the "lower jaw" is shored anteriorly the length of the carlinat selerites. This illantates the limits of movement of the "fower jaw" ant the importane of the cardines in its movements.

A single seta is located in the ahacto midway between it lateral margins and toward the distal emb. This efta is similar in cize io the smaller ones of the gromp of four at the llistal emb of the stipes. The alveshas shows white in contrast to the hownish pellow of tho stmonaling plate.

THF STMPES
The stipe (fig. 1, B. s) is the larest prat of the maxilat, and the two slipites. together with the postlabitum which is betwen them. form the harger bart of the "ower jaw." Each stipes is a neats rectangular plate. The imer. or mesah. margin is staight and eonnected to the post habum be a marn membrane. The imer proximal angle is practically a right angle or wery slighty obtuse, wherme the outer proximal one chody approches a ripht angle but iffers from the inner in being rounded. The lateral margin of the selerite is rery noarly straight and rey nearly parallel to the inner margin. The distal end of the stipes is not so imothly rectangular. It serves as the base for the attachment of the maxillary palpus the galea, and the lacinia in that order foom the lateral to the mesal angles.

The mesal margin of the stipes is slightly bent inward. The amount of the inward head gradually increass distally. The onter margin, horerer, is bent inward a distance appoxmately one-half the breadth of the rentral surface of the sclerite. This infolded lateral margin of the stipes is again bent. this time mesally. The result is a flange of the sclerite which is parallel to the ventral surface. Similarly the
infolded margin of the lirpostoma (p. 8) is doubly bent, but the flange thus formed extends under the stipes rather than back under the hypostoma. Thus the inward, or mesal. bent flange of the stipes rects upon the exrended. or mesally hent. Hange of the hiypostoma. The width of the flange of the stipes is reducest distally. While the depth of the deprespinit in. ant the with of the onning herwen. the hypostomae is reduced priximally. The rery flexible meutrane conwecting the stipes to the hypotoma arives from the ellges of these flange-like margins.

A group of spines nemally four in mabler. form an irmatur wow almig the margin near the distal tagle of the visible porthon of the stipes. The most proximal of these is perhaps hale as long as the selerite. it viewed from the wame angle and arises trom a compatratively larce, firmbar. nonsclerotized pit. The second spine of the series is nut over a them ats long as thin first and arive trom an mati alveolus situated near the margin of the stipes. The thirch spine is similar in size to the first. Its atreolus is oo far on tor tle who of che margin that from the mormal ciempuite it does ner appear ats latge as that of the first. The la-t sine in the row is simidar in size to the second. and its alsoohes is farther from the margin than that of the thirel.

The Interal margin of the stipes bends ifighty outwat from a point proximal to the first upine of the grome and the infolling of the mingin is greaty diminished from arprosimately this sane place. Directly atcress the plate from the serond :pine of the series and on the imer margin of the utpe is an atea which in cleared material is apt to appear to be a large abseshas. Tha stancture is not on the rentalal surface of the stipes howeser. and appears to have some relation to the proximal pat ot the antarior-nesal fare of the lacinia.

The distal end of the tipes shows one, and whetimes two. distinet suturen on the ventral surfare in wome speress of elaterid larvae. In

 off is termed the lististipes. Thee sutures are bet preent on the stipes of the time of Limonnm, romes. A rather distinct line is formed. however. by the limits of indentization. The nomelerotized anear may be tempet the dieristipes (tir. 1, B.wl).

## them miditary palete



 colodess, When thit mapms is artifirally exrembed. as in the illos-
 ing the base of the proximal segment which may andme mon the appearane of a disi inet serment. On the other hame the palpus: may be withrimon into the dictal ent of the stipes nearly the lourth

 the connetive mombene.

The thind, or unet to last serment of the palpas beas two spines
 ment frepurnty bears in ximilar spine. The tip of the distal esogment is provibed with short, minute, transparent sensory spites.

These are distinctly different from those on the tip of the galea. Ocasional circular areas similar in appearane to the alveoli of the spines are found on the solevtized surfaces, but are not seen to carry spines. These may also be semsory.

The galea (fig. 1, $B$, g) is a distinct, robust lobe consisting of two nearly equal segments. It is situated between the maxillary palpus and the lacmia at the mide portion of the distal end of the supes. The distal segment of the gatea bears a large nomber of short. coare spines at its tip. This dense clump of sensory spines canses the tip of the segment to appear reducel and drawn out. Several longer spines forma ring around the sensory tip and are large comarli to provide if will considerthe pretedion. Nomatly the ap of the graba is directed forwat and lowam the mentian hia. So paticular. adivity has been noted for the oman.

T1:8 1. M1N:
The lacinia (fig. 1, B. (ac) is nomally the mesal endite of the maxilla. In the undisturted har month-parts it is hideden by the immense growth of hairs with which it is clothed. This hair growth, the lachanastrat is located on the wentral mat mesal surfaces of the lacema. The hats form a dense buoh and :are divered slighty forward hut mostly toward the median line and read past the labial palpus when it is in its nomal position. This dense mass of hairs rery thoroughly closes the opening letween the maxilha and the fabimm.

When the lacinia is dissected out it proves to be a chitinoms plate whed is stromely concave to alow its close apperach to the mesal side of the qaien. Its mesal surface is a venteal wall set at right anges to the horizomtal phane of the stipes, and this elongated side is attached to the infolded surface of the imer margin of the stipes (see p. 2 ). Sy vitue of its rightange pesition the lacenta forms the wall of a chamel in which the thbatar labium is permitted a dersoventral movement.

The Laniym
The labium does not show any signs of the paired combition of the scond maxilac of primitive inser foms except the pared labial palpi. The slemer habing the midde portion of the "hower jaw" which sumates the wo maxiba, is reatily divided inte two parts. The distal porion. the prelabiom (fig. 1. B. (pe), is freety movable and bears the habial palpi ( 17 ), whereas the proximal portion of the orgm, the posthbian ( $l$ mo ) , is chosely athehed throurhout most of its length to the mesal mareine of the stipites. Considerable confusion hat develoged ower the tse of terms for the various parts of the insed labium, ant the termo need hew apmear least subjey to misimereretation.

The moximal portion of the labiom in insects is frequently divided into two puts or sclerites, the proximal sslerite bing termed tho
submentum and the distal one tix e mentum. Thesc terms are also used for the proximal and distal portions of the labium, respectively. The elongate, flattened, sclerotized, proximal plate of the labium of the larva of Limonius canus might be termed the submentum and the nonsclerotized portion at its distal end the mentum. There is no distinct division between the two parts except the rather gradual reduction in sclerotization. It seems umnecessary to treat the parts separately.

The postlabium (fig. 1, $B$, lpo) tapers proximally, and near the proximal end is suddenly reduced in widtl. The end is rounded. The reduction of the plate is formed by, or is to provide room for, the alveoli from which arise spines similar in size to the largest of those bome by the stipites. The spines are slightly distad of the proximal corners of the stipites, and the end of the sclerite extends slightly into the area between the carclines. The distal half of the sclerotized plate bears along the lateral margins occasional regularly spaced spines. These are ali small with the exception of the most distal one on each margin. This distal spine is approximately as long as the postlabium is wide at this point. The alveolus from which it arises is larger than the others in the row. The pits in which the alveoli of the distal pair of spines are found mark the distal end of the uniformly sclerotized piate.

The membraneous area at the distal part of the postlabium is less closely united to the mesal margins of the stipites and partakes more of the cylindrical form of the prelabium. The sides round in more gradually and the ventral surface is not so flat as that of the more hearily sclerotized proximal area. The distal end of the postlabium is littie more than an extensive connective membrane. It is possible for the prelabium to be retracted into the distal end of the organ until over hald of jts sclerotized plate is covered by the semitransparent membrane of the postiabium.

The distal portion of the labium, the prelabium (fig. $1, B, / p e$ ), forms the mesal part of the lower lip of the opening of the preoral cavity. It is not fixed like the masale alowe, but is subject to extensive movement backward and forward in the horizontal plane. This movement is due to two sonrees. The entire "lower jaw" moves as has been mentioned, and in addition the preablium may be retracted into the distal end of the postlibinm independently of the movement of other mouth parts. A dorsoventral movement is also apparent.
The prelabium as viewed from the ventral surface is a pear-shaped sclerotized structuse attached to the postlabimm by its smaller end and with the palpi attached to the ventrolateral angies near the distal end. The orgiun becomes less sclerotized distally and the tip from the bases of the pulpi is membranous.

The glossae and paragrossive of the gencralized insent labium have disappeared except for the sensory area of the prelatial tip. The Jabial palpigers and the labiostipes have fused without any indication: of the union.
Two spines arise near the distal tip and close to the median line. Six spines are on the ventral surface of the sclerotized area. The two largest are somewhat smaller than those at the proximal end of the postlabium. The pits which contain their alveoli are fatther from the
median line than are the irner margins of the bases of the palpi while they mark the approximate point where the organ increases in width. Near each of these large spines and toward the lateral margin arises a spine less than half as long. The last two of these six spines are near the proximal maryin and in the phane of the largest. The last two are much the smallest.
The membranous $\mathrm{iip}^{\text {p }}$ is prowided with short, blunt, transparent sensory organs which appear different from those on any of the other mouth parts. They are somewhat scattered orer the surfice surrombling the tip, especially on the corsal surface. Very little has been learmen of their cellular structure.

The prelabium, when disseeted out, proves to be cylindrical in form with the dorgal surface foming a portion of the floor of the anterior part of the preoral cavity. This surface is membranoms, but posterioe to it and on the more proximal part of the predabium is a selerotized area from which arises a large, dense tult of shender butu stift bristles, the labiat brush (fig. 4, $B, /(b)$. These bristles slant forward at the points of origin. but beod gradually upward until their tips are directed dorsally. They appear to be somewhat bent away from the mesal line further to outline the food meatus.
The sclerotized plate from whid the brush arises is readily separable from the remander of the labiun and is frequently left in tho preoral cavity when the "lower jaw" is dissected a way. The phate is the dorsal portion of the selerotized tube which forms the proximal part of the prelabium.
The labial brush separates the preoral cavity, as has been mentioned, into two parts. and the phate from which it arises serves for the attachment of the anterion margin of the hypopharym.

The labial palpi (ig. 1, $B,(p)$ arise from the distal end of the prelabium near the lateral edges, but on the ventral surface. Each consists of two segments. The seqments are similar in structure to those of the maxiliary palpi. The proximal segment is more slender than theser of the maxilary palp, but the distal segments are very similar in size. Each proximal in basal segment bears a spine on itg rentral surface. 'The spine is similar in size to those neat the distat tip) of the prelabinim.
The distal portion of pach segument, as with the other palpi and the antemate. is coverel with a semitransparemt membrane in shatp distinetion to the strongly sele ofized tubular walls of the body of the segment. The tip of the distal seguent bears mumerous sensory papilhe which are similar in appenmere to the smatler ones on the tips of the graleate.

## THE THORAX

When one of these wirewoms is killed with hot water, or examinch alive ater laving bern submeryed in water for a diay or two, the body back of the head is seen to le nearly cylindrical while the three thoracie spgments are earll provided with a pair of legs which are extended ventraty from this cydinder. The skin is seen to contain a definite number of harler brownish areas. These are seen in
cross section to be somewhat thimer than the intermediate membrane and prove to be relatively inflexible. Under normal conditions the greater part of the thick, flexible membrane is not visible, since it is folded wader the sclerites, which may even overlap when the larra is in extreme contraction. The larvae of Limonius canus are observed to maintain themselves in a nearly cylindrical form, somewhat flattened beneath, when crawling. The legs are held close to the flattened under surface.

## THE PROTHORAX

The sclerites of the prothorax differ markedly from those of the other two thoracic segments, the latter being much more like those of the abdomen, but all are alike in having a large tergite covering nearly the whole upper half. The sternite beneath is next in size, and there are two or three pleurites on each side that are much smaller and vary in the successive segments.

## The Pronotim

Since most of the dorsal muscles are attached to the posterior margin of the head capsule and to the antecosta of the mesonotum. they pass completely through the prothoras. For this reason the pronotum (fig. $5,4, p n$ ) bears folded ronnective membrane ( im ) :at the anterior as well as the posterior margin. This folded intersegmental membrane permits of the telescoping of the adjacent segments and is found on the posterior margin of the dorsal surface of the thoracic and first eight abdominal segments. The prothorax is the only segment which bens this type of membrane on the anterior margin. This is because the head capsule telescopes into the prothorax rather than over it.

The dorsal surface of the prothorax is a distinctly sclerotized, yellowish phate longitudimally divided by the medim suture. The eerm "notum" is used to distinguish more readily between this area of the thoracic segments and the similar areas, the terga, of the abdominal segments. This selerotized area is greater than in the other thoracic segments. The lenglh of the phate is as great as the greatest length of the head capsule and a half longer than the notum of either of the other thoracic segments. The eclerotization is intermediate between that of the head capsule and that of the other thoracic and the abdominal segments. The punctation is mimate, seatered, and irregular. The punctures are for the greater part nearly uniform in size, the distance between them averaging about 10 times their diameters.
Six sjines are on each side of the pronotum near the posterior margim. These arise two cach from depressions in a line parallel to this margin. The depressions are rounding and of greater diameter than their distance in from the edpe of the selerotized aren. Two alveoli, or spine sockets. are found in cach depression, one being directly thterior to the other. These alveli show as round white areas surrounding the bases of the spines. The spines are brown, normally frect. and rary somewhr in length, averaging about one-third the fength of the promom. They are comparable to the longer of the spines found on the stipites. A similar arrangement of spines is found on each of the succeeding segments to and including the eighth
abdominal.


Theure 5.-Cutienla of body segments of Inrya of fimonius canus split and flattened out to show all parts on the same piene: $A$, phoracic segtuents; $B_{\text {, }}$ eighth, ninth, and tenth abotominal segments. Both $\times 1 \overline{\mathrm{v}}$.

The pronotum, however, bears on each side near the anterior margin six spines, very rarely more, which are not found on the dorsal surface of the other segments. This peculiarity may result from the fact that this is the only segment whose anterior margin is not at times telescoped into the segment ahead. These spines are like those just described in size and like them arise two from a depression, very rarely three. Each depression contains separate alveoli similarly placed, but the depressions are more irregular in arrangement. The lateral two are close together and equally near the anterior margin. They are located nearer the median suture than the middle one of the three on the posterior margin. The innermost of the group is approximately twice as far from the margin. This depression is nearer the median suture than the innermost of those near the posterior margin. A single smaller spine is sometimes found between this last pair and the more lateral two pairs.

The pronotum extends farther comn over the sides than does this sclerite on any of the other body segments. The sclerotization weakens laterally from a line just outside of the lateralmost pair of anterior spines, and gradually fades into the pleural membrane. The anterior and lateral margins are nearly straight, whereas the posterior margin is slightly arcuate, the phate being gradually lengthened posteriorly near the midule.

## The Propletra

A portion of the propleura may be fused to the pronotum. A comparison with the abdominal segments would indicate that the outermost pair of posterior spines should be borne by the pleurites, though it may be that these abdominal sclerites are Iaterotergites. On the other thoracic segments similar pleurites, or laterotergites, are found as in the abdominal segments. Their absence from the prothorax may be a result of the heavier sclerotization which may have spread across the membranes comecting the sclerites and fused them into $\mathfrak{a}$ common plate.

The pleural plates adjacent to the insertion of the legs are similar to those in the other thoracic sesments. The lateral margin of the coxa shows a definite articulation with the coxapleurite. The pleural suture (fig. $5,4, p s$ ), which gives strength to the coxapleurite, extends laterally a short distance, then bends forward into the episternum. The anterior extension of the suture is nearly as long as its basal pertion. The suture is a very distinct, dark-brown line. The internal pleural ridge is visible in cleared material.
The episternum (fig. $5, A, e p s$ ) extends anteriorly from the basal portion of the pleural suture and parallels the margin of the pronotum. Anteriorly it fuses with the prosternum (pos) by means of the precosal bridge ( $p r b$ ).

The epimeron (fig. $\overline{\mathrm{D}}, \mathrm{A}$, epm) is separated from the pleural suture by a very narrow semimembrimous area. It extends posteriorly along the margin of the pronotum and bends around behind the coxa to form the gradually less sclerotized postcoxal bridge. It bears a very small spine nearly in line with the posterior margin of the cosa.

The amount of pigment and the degree of opaqueness of these sclerites is difficalt to express. The epimeron blends into the sur-
rounding membrane on all its margins, least at the anterior end. The episternum is distinctly margined along the inner edge until it joins the precoxal bridge. Two large spines mark this edge, the anterior one marking the point where the episternum joins the precosal bridge. The fused area of episternum, precoxal bridge, and sternum fade out anteriorly, while the imer leg of the inverted $V$ formed by this fusion fades out along all its maxgins.

## THe Prosternum

The outstanding sclerite of the prosternal area is the presternum, the acrosternite of Horst ( $\delta, p, 34$ ). Korschelt (11, vol. 2, p. 533 and fig. 37) in describing the Dytiscus larva states that Berlese calls this plate the acrostemite and uses the term in his illustration, but in his discussion he terms it the "brustschild," while Weber (81, fig. 3) illustrates the presternum as a portion of the head capsule in elaterid larvae. This plate (fig. $5, A$, pes) appears as an isosceles triangle with its base forming the anterior margin of the yentral surface of the prothorax and closely attached to the posterior surface of the head. This sclerite is as intimately connected to the head as it is to the other parts of the prothorax. The slightly blunted apex of the triangle reaches two-thirds of the distance from the anterior margin of the segment to a line between the centers of the coxa. The rouglily diamond-shaped area with one corner at the posterior tip of the triangle and the opposite corner at the midpoint of its base is the most hearily sclerotized portion of the prostermm. The presternum. together with the pronotum. forms a strong sclerotized ring around the body as a support and shield for the head.
A sclerotized invagination of the body wall, the prosternal apophysis (fig. $5, \Lambda, p a$ ), which appears on the ventral surface as a small, dark-brown, elongate portion of the endoskeleton, is on the midline and about one-fourth of the distance from the base to the tip of the triangle. It is situated at the apex of a small isoscles triangle whose equal sides arise from the anterior margin of the presternum and are marked by rows of extremely fine bristles. Each side line is more distinct in the basal portion than near the tip, perhaps owing to the infolding of the surface to form the apophysis. Since the triangle is indistinct, the bristles and their alveoli minute, the apophysis is the only feature gencially noted.
Midway between the anterior margins of the coxae is a small sclerite lightly fused with those portions of the sternum which are united to the episternum by means of the precoaxa? hridge. A similar but less sclerotized plate is at the midpoint of the posterior margin.

The arrangement of the spines on the sternum is quite definite. In addition to the minute ones mentioned in comection with the apophysis there are two spines on the presternum. They mark the approximate lateral angles of the more leavily sclerotized diamondshaped area. Between the two spines which mark the margin of the episternum and the tip of the presternum and within the sclerotized area are found spines. One large and one smaller are urually found on each side, their arrangement paralleling the margin of the presternom. Associated with them are smaller. minute spires. A minute spine is found on each lateral margin of the plate between the coxae.

THE MESOTHORAX AND METATHORAX
The mesothorax and metathorax ate similar. A general description will be given with the variations noted as they are encountered. These segments are intermediate in form as well as in position between the prothorax and the abdominal segments. The mesothorax bears a spiracle (fig. $5, A, s p i$ ) on each hateral wall near the anterior margin, whereas the metathorax, like the prothorax, bears none. The middle thoracic segment also differs from the posterior one, the metathorax, in the anterior margin of the notum being arcuate to coincide with the posterior margin of the pronotum, which is gradwally bent posteriorly in the vicinity of the medial suture. The anterior margin of the metanotum, like the posterior margins of the nota of both segments, is straight.

## Tige 入ัota

These sclerotized plates cover the dorsal surface and extend at each side onto the lateral surfaces. While not occupying as much of the larval length as the pronotum, the mesonotum (fig. $5, \mathcal{A}$, msn) and the metanotum ( $m t n$ ) are each very similar to it. Like the pronotum, they do not show any differentiation into sclerites, the onty suture being the medial one ( ms ) marking the median line of the dorsal surface, which is the line of the splitting of the cuticula at ecdysis. The punctation is more variable in size than on the pronotum and with the larger punctures somewhat denser toward the anterior margin. The folded portion of the intersegmental membrane (im) is found only on the posterior margins of these segments.

The two inner pair of spines on each posterior corner are similar in location to those on the pronotum. The third and outer pair of spines has migrated anteriorly and is located ahmost mixway along the side of each notum. The three pairs of spines on the anterior corners of the pronotum have been replaced in each case by a single spine and a groove. The single spine rises from a smaller depression and is slightly farther from the medinn suture than is the middle pair of spines on the posterior margin of the same segment or the lateralmost pair of spines on the anterior margin of the pronotum. It is situated well back from the anterior margin, as far as the immermost of the anterior pairs on the pronotum. Inward from this spine a groove develops which extends mesally in a slight are nearly parallel to the anterior margin of the notum. It is as though made by a very small fingermail pushed into the chitin of the plate and toward the front. Thus the ends of the are bend posteriorly and the anterior materin is thickened as though the surface lad been shoved into itself, while the posterior nargin is gradually thimed toward the bottom of the proove.

Single small spines are sometimes fomm near each end of this groove. They arise, when present, from alveoli which are similar in apperance to many of the punctures of the notum. In the anterion comers of the nota usually are found two or more, freguently several, minute hairs arising from apparently normal punctwes. The mesonotum often shows more of these minute hairs than does the metmotam. Individual havae may show variation in armangment and number on the two sides of the body. While some of the hairs may le lost throngh handing of the larvae, even the arrangement of the punctures which contain the alveoli is not unform in the species or the individual.

## The Pretui

Two sclerites on each lateral surface nppear to be portions of the plenra. The anterior sclerite in the mesothorax bears the spiracle which in harvae is frequently a characteristic of the pleuron. The posterior sclerite is the larger and is right-triangular in form. It is separated from the notom and the anterior sclerite by a wide band of nonsclerotized tissue which extends from the posterior margin diagomnly forward and downward to the anterior margin of the segment. The anterior pleurite is separated from the notum by a narrow band of conective tissue. This band is directed downward and backward from the anterior margin to its interception with the other diagonal. Thus the hateral margin of the notum cxtends ventrally between the two pleurites. This condition is noted only in these two segments, for the lateral margins of the pronotum and of the terga of the abdominal segments aje nearly straight. The two pleurites ace separated from the sclerives beneath them by a line parallel to the body axis. The membrane along this line varies in width lout forms an open band of nonsclerotized tissue longitudinally across each segment and continuing the line formed by the pleural membrane of the prothorax.

These two lateral sclerites may be portions of the epistermum and epimeron, they may be Interotergites or they may be extrapleural plates, but for nurposes of distinction they can be termed the anterior and posterior mesopleurites and metapleurites (fig. 5, $A$, pam and ppm).

The episternum (fig. $5, A, c p^{8}$ ) and epimeron (epm) of these thoracic segments are similar to those of the propleura. The coxapleurite is on the lateral margin of the coxa and is cletermined by the pleural suture ( $p s$ ) and the pleural ridge. The pleural suture extends directly from the coxa to the pleural membrane; it does not bend anteriorly as in the prothorax.

The epistermum is shorfer than in the prothorax owing to the greatly reduced lengthe of these segments. It appears to be fused with the precosal briclge ( $p r d$ ) : but the sternal sclerites are so slightly colored as to be impossible to trace without special treatment. The sclerotized area, which is the epistermm and probably some portion of the sternum, very likely the precoxal bridge, is distinct from the area located on the ventral surface. Its inner margin throughout most of its length is marked by a row of conical projections. 'These projections are heavily sederodized. darkiy colored, quite rigidly attached to the chitinous tissue. These ehort, heary spines arise from alveoli which show as rery narow white rings around the bases of some of the spines. In prepared sections through the body wall of the larva the indiridual alreolus shows as a deep, close-fiting cup into which the tapering base of the spine fits rigidly. From six to eight spines are normaliy found along this diatronal margin of the epistemum. The arrangement is usually in a row, but may become somewhat inegular toward the front end. It arices mueh the appearance of a ctenidiom, On the episternum, especially toward the front margin, are a number of minute spines arising from similarly minute and rather evenly distributed punctures.

The epimeron is not separated from the plenral suture as in the proplena. The lateral margin is distinet, but the portion toward the coxae and the postcoxal bridge fade into the comective tissue with
little line of demarcation. The sclerite bears a spine in line with the coxae. Those oa the metathorax are somewhat farther back than the spine on each epimeron of the mesothorax.

## The Sterva

The sternal area (fig. $5, A$, st) is membranous in appearance and free from selerotized plates except for small and but slightly colored areas close to the intersegmental line at the anterior margin of each segment. There are three of these on each segment in a line across the body. The lateral ones are more distinct than the one on the midline of the ventral surface. The lateral ones, moreover, resemble in appearance, and in the presence of rather evenly distributed minute spines, the anterior portion of the episternum. Since these plates each hie anterior to the episternum and precoxal bridge they may be portions of this fused plate separated from it only by the transverse infolding of the ventral surface. The sclerite on the midine shows more of the structure of the stemal area.

The membranous-appearing areas are of varying intensity of structure. A wedge-shaped area, with its elongated fip extending backward bet ween the coxae and with its base including the three slightly sclerotized areas just described. is a stemal plate. It shows under magnification and in certain lights to have a roughened surface and to be connected with adjacent portions of the body surface by connective tissue. Lack of sclerotization, or more probably lack of pigmentation, has tended to make the plate indistinguishable. It bears eight moderately small spines arranged in an elongate oral paralleling the base of the wedge.

## THE SPIRACLES

The presence of a pair of spiracles on the mesothoracic segment has been noted. These are similar in appearance to the eight pairs to be found on the first eight abdominal segments. They give the appearance of each being two rather slender parallel openings in the cuticula. The slits are directed anteroposteriorly, and they increase slightly in size toward the anterior end. Closer examination indicates that the openings are only cross-striated grooves which increase in depth anterioriy, and that much of the spiracle is in the area immediately anterior to the grooves. The center of the anterior area is scarred, and in sections through the cuticula this scar is seen to close an opening into a chamber forming the onter end of the trachea. The parallel grooves serve to bring the air in contact with a wall of the tracheal chamber, and the gases diffuse through this wall.
The spiracles of the larva of Limonius canus (fig. 6) are very similar in form and function to those of Alaus oculatus described and illustrated by Snodgrass ( $1 \pi, p$. 445 . fig. $9.34, A, B . C, D)$. The grooves (the secondary atrial chambers of Snodyrass) are more nearly parallel in the spiracles of the larva of $L$. comus than in A. oculatus. The $V$ shaped form of the latter is similar to that observed in larrae of $A$. melanops Lec. The searred area is not so distinct in the larva of L. camus as it is shown in the illustration of $A$. oculatus or observed on the larva of A. melanops, and the color ot the spimacular selerite in L. cunus does not contrast so strongly with the rest of the body surface as in A. melanops. This is due to the heary pigmentation of most
of the sclerites of the larva of $L$. canus. In both instances the larval spiracles are brown, but the nearby sclerites of $L$. canus are brownish yellow wherens those of d. melunops are nearly white.

## THE LEGS

The six legs of the larva of Limonius canus are simple in structure, if not in appearance, and are little modified from the typical harval pattern. They each consist of coxa, trochanter, femur, tibia, a onesegmented tarsus, and pretarsus with a single claw. The pairs of the Hiree thoracic scgments show litile diflerence in size or structure, though they increase slightly in length


Figete G.-Amominal spiracie of Limonias conns, right side of larva. $x: 90$. from front to back. They are short, compactly folded against the sterma, and entirely hidden by the body when it is viewed froni above. Their appearance is made noteworthy by the large number of very heary spines with which the various segments of each leg are armed.

## The Cons

The coxa (fig. $\tilde{y}, A, a^{2}$ ) is much the largest segment of the leg. It is oval in form with its longer axis lying crosswise of the larval boty and protruding farther and fatther from the level of the sterna ats it appromehes the median line of the borly. The single external articulation (f.rib) is slighty in front of the midpoint of the end newrest the pleural line. The articulatory surface is dark and extends as a slender pointed projection into the body a a F 立:
From the base of this point of articulafion two sutures arise with the corresponding thickening and strengethening of the roxal wall. ( Gue, the anterior and perhaps the coxal suture (fig. I, A. cxis), contimues the line of the pleural suture and extends wer the top of the coxa arching slightly materionly and reaching nearly to the inner ent of the coxa and induding the articulation of the trochanter. This suture or ridge firms the ventral margin of the anterior face of the cosa. The posterior suture (fig. 5 , A. exp). Which has some of the characteristics of the basicostal suture, follows the posterior surfare around to the imer end and joins the anterior suture. The aren inclosed by the two sutures forms a depression in which the femur, tibin. and a portion of the farsus west when the leg is depressed.
The spines with which the cosa is armed are similar in color and structure to those of the epistermal margin in the mesothoras and metathorax, while in size they are as harge or larger, there being con-
siderable variation between those on the indiridual coxa. The more rounding procoxae carry a few more of these spines on the anterior surface than the more elongate mesoconae and metaconae. The number of spines ranges in the neighborhood of 20 to 24 . The posterior surfaces of the everal coxae are rery narrow, somewhat subject to the rubbing of the leg segments. and are generally free from spines of this kind.

## The Troomanter

The trochanter is a small sclerite fased to the proximal end of the femur and is trimgular in form when the leg is viewed from the side. In position, however, it is buried in the cosa, for the suture comecting it with the femur is tie line of comection with the coxa. The trochanter forms a heavily sclerotized prolongation of the femur extending into the coxia and providing atiachment for the varions muscles which move the trochater and the attached femur.

## The Femer

The upper surface of the femm (fig. $5, A, f$ ) is for the major portion not selerotized; even the distal part is very lightly constructed, as this surface is in contact with the surface of the coaral depression. The lateral aud ventral surfaces are similar in appearance to the sclerotized surfaces of the coxie. They bear spines like those of the coxae on the distal two-thirds. The portion nearest the trochanter is bare owing to its contact with the coxa when the leg is extended. The spines number about 8 or 10 on each side, leaving a strip lengthWise of the ventral surfuce of this and the following segments bare. The position of the spines serves to increase the width of the traction surface as well as provide against slipping. These spines on the anterior margin are the bearier, Jess pointed, and tend to be in two distinct and parallel rows. Those on the posterior margin, as the leg lies in its nomal transverse position, are less regularly placed. Two long hairs arise from the opposite ends and near the posterior margin of the open strip between the two groups of spines. They are several times as long as the spines.

Tibe Tibla
This intermediate serment (fig. 5. A, t) has lithe to distinguish it except that it is the first to provide a complete cylinder. The margins of the ventral surfare are similarly spined as in the femur. The mumber of spines is shighty redacel, six or seren being the usual number. Only one lone hair is noted and it is townerd the distal end of the segment.

## Tuc Thanc:s

This single segment (fig. 5, 4. ta) has the domsal portion nearly staight, whereat the rental surfice is remangly curvel upwad toward the distal ond to the comparatively small union wifh the pretarsus. The spines are armanged in single wows along the margins of the ventrat surface and the sides of the umion with the pretarsus. There are generally fie on each side. As in the other segments, the spines on the atherior margin are much the heavies.

This dactylopoditelike terminal segment (fg. 5, , pta) consists primarily of a more heavily selerotized stacture. The reduction in the size of the cylinder which formed the leg is rapidly continued and the tip is drawn out into a single, slighty curved, clawile point.

## THE ABDOMEN

The third boty section of the larva of Limonius canus, the abdomen, continues the form shown by the thoracic segments when the larva is killed in hot water or left in water for several hours. The body becomes clistended and cylindrical; the membranous areas between the various sclerites are exposed, and the relationships of the sclerites and conjunctivae are more apparent. In the contracted condition little, it any, of the connective membrane may be seen, and the relationships of the sclerites to one another are not entirely clear, for they may even overlap. The liring harva appears cylindrical above, widened and flattened beneath.

The abdomen of this wireworm consists of 10 visible segments. The first 8 are very uniform in size and structure. The ninth, the terminal segment, carries the terminal armature and is of considerable importance in the determination of species. The tenth segment forms a portion of the ventral surface of the ninth segment and contains the anal opening. Since the tenth segment is not generally noticed, the wirewom may be considered as consisting of 12 body segments in addition to the head, 3 thoracis and 9 abdommal segments.

FIRST TO EIGHTH SEGMENTS
Each of the first eight abdominal segments has the following six distinct sclerites: The tergum, sternum, two laterotergites, and two pleurites. A very limited area around each spiracle might be considered as a distinct sclerite. but since it consists primarily of the sclerotization of the spiracle walls it will be spoken of as the spiracle.

## The Iergum

The dorsal surface of each segment in Limonius canus is protected by a single sclerite, the tergum (fig. $5, B, a t$ ) which is divided longitudinally into two equal parts by the median suture (ms). The sclerotization of the terga is very similar to that of the nota of the two preceding thoracic segments. The principal difference is to be found in the greater length of the groose (fig. 5. $B . \alpha \mathrm{mg}$ ) found on each side and near the anterior margin. in comparison with those of the mesothomax and metathorax. Whereas in these thoracie segments the groove is compared to the print of a minute fingernail and appears to have developed from two depressions, each for a pair of spines, as seen in the prothorax, on the abdominal terga the groove parallels much of the anterior margin of the sclerite and latcrally bends posteriorly and roughly pamels the lateral margin for nearly half its length. On the first abdominal tergite the anterior portion of the groove is moderately short; it is longest on the second to fifth
tergites and somewhat shorter in the more posterior segments. It decreases in intensity mesally and does not attain the median suture. The inner margin gradually fades from the darker sclerotized surface to the nearly white bottom of the groove. The outside or anterion and hateral margins, respectively, of the groove are dark and sharply outlined. This margin is scaloped from one punctation of the tergite to the next. 'These punctations. like the most of those which are sparsely and somewhat irxegularly seattered over the surface of each tergum, are similar in appearance to those depressions which bear spines. Under magnification of over 100 diameters and in certain lights most of these depressions appear to contain spines, but under low powers the spines cannot be seen.

Certain spines are very readily seen. One arises in the angle made by each groove. Another is near the lateral margin of the tergum, opposite the midpoint of the spiracle, and slightly posterior to the spine just mentioned. Near the posterior margin and paralleling it are three depressions each of which bears two spines. These depressions are elongate, contain two alveoli. atd extend at right angles to the margin. The lateral depression bears the longest spines and is in line with the single spine near the spiracle. The contimuation of the lateral portion of the groove would pass between this lateral depression and the middle one, while the inner depression is about midway between the lateral margin and the median suture.

## The Sternuse

The sternum (fig. $\overline{5}, B, s t$ ) is the second largest sclerite of the abdominal segment. It covers most of the rentral side, and though it is made of several plates there is little indication of any division throughout the sclerite. The width of the plate is sharply reduced in the posterior half to provide space for the two pleurites. From a point about one-third of the way back along the side of the sternum the lateral margins bend from a line paraliel with that of the body and extend diagonally backward toward a point near the middle of the posterior margin of the sternum. At slightly more than threefourths the length of the plate the marginal line turns slightly outward and continues in that direction to the posterior end of the plate. The form of the pleurites is such as to fit into this indentation in the sternum. The measurements are rariable, since the size of the plenrites decreases from segment to segment posteriorly, until in the eighth segment the pleurite interferes but slightly with the parallel margins of the sternum.
The number and position of the spines raty from segment to segment. In general the segments farthest back have the most spines. The number along the fateral margin ranges from four to seven spines comparable to those of the tergum. Smaller hairs may be found in many of the punctures if the magnification is sufficiently high.

The: Latmotraities
Next largest in size are the laterotergites (fig. $5, B, 7 \mathrm{fg}$ ), the slender sclerites paralleling the latema magins of the tergum. These appear to have a narrow splinter of sclerotized plate split off from the ventral
margin. The separation is broad at the anterior end. but gradually narrows posteriorly and the splinter usually appears to fuse with the larger phate shortiy pocterior to the tip of the spiracle. In a few instances, howerer, it has been possible to mont sections of the body wall so as to show a complete separation between the splinter and the larger sclerite. When separated it is seen that the small sclerito is two-thirds the length of the largeir one. The anterior half of the smaller plate is mach widey than the posterior half: the change in width occurs rather suddenty and on the margin nest to the litrger plate, whose margin shows a corresponding bulge. At this point of the change of with a curious structure may be noted within the ruticula. What appears to be a hollow tube (hig. 5. $B .(c)$ extends from a darkened point on the margin of the farger sclerite across the sclerite to about its middle, the genera! direction being toward the posterior tip of the spirale. This may be sen in most cleared larval mounts unler the dissecting mieroscope, and with the compound microseope when the transuitted light is cut to a minimum. From the cross section of the larral boly the structure appears to be a sclerotized rod within a definite tubular cavity, and this is also the jaterpertation of the strume at riewed from the inner surface of the borly wall.

Each of the harge later, engites bears on its domal margin a pair of spines similar to the me fomel near the posterior margin of the tergum. This pair of phines is stated somewhat farther forward than the posterior tergal ones. seaterma pmetation is to be noted on


The margins are, exept for short distances near the ends. very distinet, and appear to turn inmad to serve as points of masele attarhment. Cross sections of the larval hoty show lateral miscles attarhed to these marrins. pperially the ventral.

## The Pretra

The small selerite intimately asoritited with the stomum, and beroming maller progresively from rement to eegment toward the posterion of the larra are the plema. The shape is ronghly that of a shoe with the flat of the sole diremed ohbigely forwath and torsard the stomum, the toe pointing forward. Tro pines are present on each pleuron. exept on the eighth scgment. The larger is found near the midpoint of t'te margin farthest from the sternum, the smaller spine being somewhat farther from the margin and presterior to the one just mentionet. Like the latrmergites these sclerites are sparsely punctate, more dencely toward the antrem emb. The margin nearest the sternum. the sha sole, i- the must distimetly outlined.

## NINTH AND TENTH SEGMENTS

The nimh aldominal exoment forms the posterion tip of the body: The segment is lomgor than these immediately preceding it, roundingly narow he brely wilh, and dow wot hear spiratles but carves the heavily sheroized reminal amature. On the ventmal surface letween the dermum of the umth abdoninal segment and the under surface of the teminal armature is the tenth abdominal segment.

## The Nintie Trrgem

The ninth tergum (fig. is. $B$, att ) has been expanded and modified to fit a special condition. The lateral portions of the grooves characteristic of the terga of the preceding abolominal segments have their outer margins raised and intensifief with increasing sclerotization posteriorly. The posterior ponion of the tergum is bent downward and under to enelose the terminal portion of the segment. The size



and sclerotization of the armature of the posterime emeds of the lateral grooves contima to increase matil portions extemb both dorsally and posterionty conside ably beyond the plate of the tergum.

Whis terminal amature the uregomphi (fig. $\bar{\sigma}$. $L$ and $B$ ), is of taxomomic impertane anomg the larme in hae portion of the daterid fanily termed the l'yrophominae. of which Iimonims is one of the
 each uroyomphus consist ing of a prolongration extemeling posieriorty and divided at the tip into two prongs. One of these prongs is bent
dorsally and narrowed to a blunt point. The mesal surface of this prong is nearly perpendicular. The other prong is bent inward toward the median line of the dorsal surface of the body. The tip of this horizontal prong points toward that of the horizontal prong of the other urogomphus and slightly posteriorly. The two horizontal prongs form at least two-thirds of the posterior wall that encloses the space whose anterior wall is the downward-bent surface of the tergum and whose lateral walls are the basal portions of the urogomphi. This enclosed space, the "keyhole," is to be found in those species of Limonius and Athous whose larvae have been examined. In larvae of Limonin, canus the tips of the horizontal prongs never approach close enough to arouse any question as to whether they touch. The plane of these prongs is higher than that of the ninth tergum, and the direction of the keyhole is backward as well as downward, enotgh so that when the point of a No. I insect pin is inserted gently into the keyhole from above and allowed to come to rest it will form an angle of approximately $45^{\circ}$ with the dorsal surface of the larval body-the larra being held straight.
The sclerotization of the ninth tergum is little if any heavier than that of the preceding terga. and the punctation is very similar. Many of the punctures of the ininth tergum, especially those of the lateral and posierior surfaces of the segment, bear single spines comparable in size with the paired ones of the preceding terga. The dorsal surface cloes not bear the median suture characteristic of the thoracic and first eight abdominal segments. It does bear, however, in the median area of the dorsal surface. two irregular longitudinal wrinkles which appear as thongh the surface had been folded in to accommodate an excess of materjal. These wrinkles are approximately half the length of the disk, slightly closer together posteriorly than anteriorly, and may be comected posteriorly. Two rows of heavy perpendicular mascles arise on the under surface of this plate and are attached to the tenth segment.
The laterotererites as distinct sclerites have disappeared, their lateral positions being taken by the margins of the tergum. The pleural suture has given place to a very ride comnective tissue which has much the appearance of a comective membrane.

## The Nintif Sternua

The sternum of the ninth segment (fig. $5, B, s t 9$ ) is a consolidated plate occupying the anterior and lateral portions of the ventral surface of the sement. It is more convex than the sterna of tho preceding abdominal segments, and when gross mounts are made is subject to splitting along the median line. The sclerotization is also heavier than that of the other stema, though little darker in color. The punctures are more distinct and many of them carry heavy spines; about 18 or 20 are of average size and tend to be gathered about the margins of the tenth segment. The outer posterior angles of the sterman are bent backward and nearly enfold the tenth segment, leaving only a very short space where the connective membrane of the tergum and the intersegmental membranc are in contact.

## THE TENTII SEQMEXT

The tenth segment (fir. $5, B$ ), which has migrated from a terminal position forward into the sternum of the ninth and turned the ninth tergum downward and under as it drew it along, consists of a small sclerotized plate, the telson (fig. $5 B$, tel), with a ring of intersegmental folded membrane around it and the anal opening, the anus, occupying the major portion of its area. The anus (fig. $\bar{o}, B, a$ ) is not only the posterior opening of the digestive tract, but in the wireworm has assumed considerable importance as an organ of locomotion. The opening appears to have somewhat the action of a vacum cup, and the organ may be moved a considerable distance along an anterior-posterior line without changing the direction of the face of the cup. Another direction of movement of this organ which is very apparent in the living larvae is its vertical movement. The purpose of the movement is not so apparent as that which pushes the larva ahead or assists it in withdrawing, but it may bring the prongs of the urogemphi into contact with the soil when burrowing. Horst ( $\delta$, p. 29) in discussing the larvac of Agriotes spp., refers to the work of Brass (2) and gives to the organ the name "Aachschieber," or back-pusher.

About 30 spines are distributed over the tenth segment and provide the surface with sensory structures.

The walls of the anus are another ring of folded membrane and the external valve as seen is a longitudinal slit.

## LITERATURE CITED

(1) Brimpg, Abam G.. and Craighead, F. C.

1930-B1. AN ILDUSTHATEH SYNOPSIS OF THE PRINCIPAL LARYAS, FOKMS OF THE ordert colboistelas. Eint. Amer. 11: 1-351, illus.
(2) Brabs, Patt.
1914. Das 10. Abdominat segment nfer kifehlahmen atg bewegungandgan. Zool. Jahrb. Alot. Ssstem., Geogr. u. Biol. Tlere 37: [6.j]-122,
illus. jllus.
(3) Eifmingifam, II.
1933. THE BENSES of jnsects. 120 pp., illus. London.
(4) GLEN, Toneitr.
1985. CONTRIBUTIONS TO THF: MORPFOLOGY OF TRE LARYAT. ETATLERDAE
 Comnd. Ent. 07 : [231]-23S, illus.
(5) Gu®esiat. Edmond.
 QLELQUES ELATGERDES (COLEOPTFRES) 133 DP., 11 lis. Flawil, (Jhèse. Ecole Folytech. Fed. Zïrich).
(6) Hawking, John H.
1936. The monomics and control, of vineworms in maine mfine Agr. Expt. Sto. Hull. 381, 146 np., illus.
(7) Henmiksen, Kai I.
1911. OVERSIGT OVGR DE DANSKE ELATEmDE-TATVER, Jint. Meddel. (2) 4: [295]-952, 热us.
(8) Horst, Atheur.

 onscrave L.). Areh. Naturgesch. 88 (Sect. $\Lambda_{1}$ No. 1): 1-90. illus.
(9) HYBLOP, I. A.
1010. Wimewohms attacking cereal ann forage crois. U. S. Dept agr. Buli. 15G, 34 pp., illus.
（10）Hxslor，J．A．
1917．the phylogeny of the elattridae babed on darval cizabactema． Ann．Ent．Soc．Amer． $10: 241-263$ ，illus．
（11）Korschezt，E．
1924．dell getbrand dytiscles marginalis l．v．2，illus．Leipzig．
（12）McDovoall，W．A．
1934．the determination of larval instars and stada of some wire－ worms（Blatyribae）．Queensland Agr．Jour．42（1）：43－70，inlus．
（13） $\qquad$
1934．The wineworm pest win its conthol in centhal qurensland sugar－Cane fields．Bur．Sugar Expt．Sta．Ent．Bull．22，LExtract from Queensland Agr．Jour，4；：600－720，illus．1934．］
（I4）Roberts，A．W．Rymer．
 mescio．Wimf gome notes on that of athous hasmoh－
 1！19）$S: 193.215$ illus．， $1921 ; 0: 300-324$ ，illus．， 1022 ； $1 \overline{0}: 90-$ 94，illus．， 1928.
（15）SCHIÖDTE，J．C．

 ＇ticlskr．（3）0：46T－9゙6．
（16）Saitir，Joins B．
 Brooklyn，N．Y．
（1i）Snodgrass，Ii．E．
 London．
（18）Stickney，Finnab Saptertiowate．
 $10 \pm$ ppl．illus．
（19）Sumblew，W゙とbser．
1934．aghotes hingatuts l．und agriotes onscuris in（Ein metmag zu
 $21:\lceil 06\}-1 \underline{9} 2$, illus．
（20）Vax \％walowentia，IS，H．

 ATtens．Ent．Soc．Wash，Proe． 24 ：12－29，mus．
（21）Weman，Hemanse．
 rellowe \％oot．Av\％（at：9－31．，ilfus．
（22）Whmbetma，W．E．
 datwat．（：mad．Jour Resetreh 6：［227］－252，illus．



[^0]:    
     worm investigations wader the direction of 3．P．Sana，rye writer wishes to thank
    
     the mannserpt ：uni adothana！susershions．
     discoidens Lee．）

[^1]:    - Italif numbers in parentheses refer to Literature rited, p. 39.

