
John Fike, Virginia Tech
Crop and Soil Environmental Sciences
Agroforestry Practices

- Riparian buffers
- Wind breaks
- Forest farming
- Silvopastures
- Alley cropping
Outline

• Silvopastures: What are we talking about?
 – What silvopasture is – or isn’t
• Integrating Trees, Livestock, and Forages
 – Planting and thinning
 – Resources and relationships
• SP as a way to increase LEV – and Profits
 – A case study from Missouri
• “And more”
• Advancing SP - Challenges and opportunities
 – Knowledge Gaps
 – Cultural Hurdles
 – What we’ve seen in Virginia
Silvopasture isn’t new
Silvopasture is NOT
....turning cows loose in the woods
...nor is it a solo tree in a pasture
What Are & Why Do Silvopastures?

PRODUCTION FUNCTIONS
- Increased forage production
- Improved forage nutritive value
- Improved animal performance
- Production of additional products

ECOSYSTEM FUNCTIONS
- Increased biodiversity
- Greater soil fertility
- Reduced soil erosion
- Improved stream quality
Getting to Silvopasture: Planting

Photo courtesy of NAC
http://www.silvopasture.org/Gallery_photo2.html

Photo courtesy of James McAdam
Getting to Silvopasture: Thinning

Watkins Glen, NY. Photos courtesy B. Chedzoy

Creating valuable production systems from low quality forest stands – not vice versa.
Resources in silvopastures

- Light
- Moisture
- Soil nutrients
- Nutrient returns
Light

- **Cool season leaves**: saturation < than full sun
- **Diffuse light**: greater use efficiency
- **Quality, quantity and timing**: differ by tree species
Soil Temperature & Soil Moisture

- Variable response across the soil and site conditions and tree species
 - Deciduous trees: often no differences
 - Lower evapotranspiration
System output implications?
Forage nutritive value

Shaded plants (light or temp effects) can have -
• Greater mineral concentrations
• Greater CP
• Lower fiber (NDF)
• Reduced sugars, but
• Greater fiber digestibility – may offset sugar loss
Livestock production
Livestock production w/ shade and shelter

Shade can

- Reduce heat stress
- Increase daily gain
 - Cows: 1.28 vs. -0.04
 - Calves: 1.85 vs. 1.17
- Trees better than artificial shade

Winter exposure is expensive
- Greater feed demand
- Lower gain
U.Mo. Agroforestry Center
(Kallenbach et al., 2005)
Annual ryegrass in a pine-walnut system

- Reduced seasonal forage yield (20%)
- Forage of greater nutritive value
- No difference in animal gain
Managing relationships

Even if all relationships are “negative competitive”, silvopastures can be more productive than open pasture.
Profit – a case study from Missouri

The Tomazi Farm

- 210 acres divided into 31 paddocks
 - 6 - 9 acres each paddock
- 84 head cow/calf operation
- Rotational grazing system
- Reason for adopting silvopasture:
 - Improved weight gain in the heat of the summer,
 - Increased grass acreage without purchasing or renting (put non-productive land into production)

L. Godsey, U. Mo.
Profit – a case study from Missouri

Edge 3: Established in 2011, area cleared was approximately 84 ft x 723 ft

L. Godsey, U. Mo.
Economic Analysis

- From June 15 – Aug 15, 2010
 - ADG: 1.6 - 2.1 lbs/hd/day
 - (Typical ADG: 0 –(- 1) lb/hd/day)
 - ≈ 96 – 126 lbs/hd
 - $130 - $170/hd
 - $10,920 - $14,280 increase in profit
- The silvopasture edges are estimated to cost about $1200/acre ($3,500 total).
- B/C ratio: 3.12 – 4.08

L. Godsey, U. Mo.
And more!

• Aesthetic appeal
• Conservation benefits
 – Bird and wildlife habitat
 – Reduced stream use by livestock
Shade in pastures can keep cows out of streams

How should we advance silvopastures?
Bridging the gaps and bounding the hurdles

Thanks to Victor Harris, publisher
Minority Landowner Magazine
Getting to SP: **Knowledge gaps**

- **Trees**
 - Species
 - Site suitability
 - Spatial arrangement
 - Protection
 - Thinning/pruning needs
- **Forages**
 - Establishment
 - Nutrient inputs
 - Shade adaptation
- **Livestock**
 - Needs/suitability
- **Economics**
 - Establishment costs
 - Markets for products
 - Future tree value
 - Labor to implement/manage
 - Getting value from small acreages
- **Social drivers**
 - Aesthetic value
 - Land tenure
Getting to SP: Cultural hurdles

• Environmentalist /conservation communities
 – Complexity/diversity preferred
 • Regeneration impossible with large herbivores
 • Forest soil degradation
 • Tree productivity and wood quality impacts
 • Native species loss and wildlife habitat degradation

• Agriculturalist/productivist communities
 – Systems managed by reducing complexity
 • Trees compete with desired crop
 • No interest/ability to harvest trees/tree products
 • Trees impede equipment
 • Ready reliance on cheap non-renewable inputs
Integrated, team approach
Response to training in VA

- Training increased knowledge: 10 respondents (None), 5 (A little), 5 (Quite a bit), 10 (A lot)
- Silvopasture is possible: 5 respondents (None), 15 (A little), 10 (Quite a bit), 5 (A lot)
- Spoken with producers: 5 respondents (None), 10 (A little), 10 (Quite a bit), 5 (A lot)
- Now helping with new starts: 30 respondents (None), 5 (A little), 5 (Quite a bit), 5 (A lot)

Numbers out of 40 respondents
Silvopasture management

...requires shifting our thinking in both spatial and temporal domains and demands skills in managing [complexity] rather than reducing complexity...

Garrett et al., ’04
Replacing TF often not an option
Two crops competing for the same resources (light, water, nutrients) can more efficiently exploit those resources than a single species.

COMPETITIVE PARTITIONING

Temporal Partitioning

Exclusive Access

Separate Sources
Management considerations for establishing silvopastures

What are the existing resources?

– Environment/Climate
– Tree species: thinning or planting
– Forages and Livestock
– Markets
– Producer ability and management goals
– Social / economic constraints
Thinning vs. planting

Eastern Red Cedar: Challenge or Opportunity?

- Takes time to reach size
- Can choose species, configuration
- Larger trees (still require mgmt)
- Have to work with what you have

Pine Walnut Pine

Protection may be required
Doesn’t have to be fancy

Renovation opportunity
Tree selection, nutrient input ?s

Elec. fence, cages tubes
Thinning trees - selection criteria

1) market demand (both thinned/"leave" trees)
2) marketable size and timber quality
3) epicormic branching issues
4) invasive? (ailanthus, autumn olive)
5) level of shading (e.g., maples)
6) spatial constraints or infrastructural needs
7) soil compaction
8) labor required

Resource advisors – knowledgeable, collaborative
Companion forages

Grasses
- VA: The usual suspects
 - Arkansas pine data: orchardgrass > fescue
 - Va walnuts: fescue better adapted
- Deep South: W-S grasses okay with pine

Legumes
- Shade tolerance may be an issue
- Clovers, alfalfa sensitive to juglone (walnuts)
Planting trees - selection criteria

1) marketable timber
2) high-quality wood
3) rapid growth
4) deep-rooted morphology
5) drought tolerance
6) additional products (nuts, fodder) and livestock compatibility
7) provision of environmental conservation services
8) labor required
9) rotation length – fxn of:
 1) Producer goals
 2) Land tenure needs/constraints
Planting trees also allows control of spatial arrangement: Rows, spacing, orientation
Planting trees – a few possible species

- Fruit trees – apple, cherry, pear, etc.
- Nut trees – walnut*, pecan*, hickory*, American chestnut?
- Locusts*: black†, honey
- Yellow poplar (moderate shade)
- Oaks – white, northern red (high shade)
- Maple (high shade)
- Pines: Loblolly, Long-or Short-leaf, White

*”Warm-season” tree
†Biological N fixers
Match trees to conditions, needs

- Select for site suitability
- Rapid growth?
- Market value
- Multiple products: fruits, nuts, browse

Double row pine

Pine straw

Fruit/nut orchard

Honeylocust

Am. chestnut
Livestock-tree compatibility

Tender, palatable trees need protection
- Cows more likely to trample
- Small ruminants more likely to nibble
- Are wildlife a problem?
- Can site be hayed till trees big enough?

'Millwood' honeylocust
Protection methods
Eastern Red Cedar: Challenge?