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Optimal Management of a Fishery with Bycatch 

 

Abstract 

Bycatch is often a concern in sustainable fisheries management due to its contribution to 

overfishing problems. This paper examines bycatch in a multi-sector fishery in which the gear of 

one sector is imperfectly selective while in the other it is perfectly selective. In the model, the 

two stocks are biologically independent so the fisheries are only linked through the nonselective 

harvest externality. We expand on prior work that addresses bycatch by examining this problem 

and its solution in a dynamic context. Using an application to a commercial-recreational fishery, 

we show that the two-sector harvest policy that maximizes social welfare may be cyclical rather 

than steady-state.  
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1. Introduction 

Bycatch is often a concern in sustainable fisheries management due to its contribution to 

overfishing problems. Bycatch occurs when fishing gear is nonselective, so that both targeted 

and non-targeted species are caught from the same effort. It is not uncommon for bycatch to be 

discarded, often with a substantial mortality rate, and it is estimated that over one-quarter of all 

globally harvested weight is lost in this manner (Alverson et al., 1994). Indeed, in some fisheries 

more biomass is discarded than kept (Harrington et al., 2005). The contribution of bycatch to 

overfishing is severe enough that it is considered one of the greatest threats to marine species 

(Kappel, 2005).   

 The global extent of the bycatch problem has attracted a substantial amount of economic 

research (Pascoe et al., 2010). Much of this work is motivated by problems in which the stock 

subjected to bycatch is itself valuable and targeted commercially (e.g. Anderson, 1994; Boyce; 

1996; Herrera, 2005) or caught recreationally (e.g. Ward, 1994) in multi-sector fisheries, or even 

enjoyed through existence values (e.g. Hoagland and Jin, 1997). In general, managing fisheries 

with bycatch using traditional harvest quota policies will be inefficient (Androkovich and 

Stollery, 1994; Abbott and Wilen, 2009; Holland, 2010).   

 The existing literature on multi-sector fisheries experiencing bycatch offers insights into 

the use of various regulatory instruments, including total allowable catches (TACs), individual 

quotas, taxes and bycatch reduction devices. However, only a few of these papers have examined 

these mechanisms using dynamic bioeconomic models (Ward, 1994; Androkovich and Stollery, 

1994; Herrera, 2005; Skonhoft et al., 2012). Otherwise, there is presently little research that 

accounts for the role that stock dynamics play in managing a fishery with bycatch. Prior work 

also assumes or suggests that the optimal equilibrium management regime will be a steady 
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state—that is, constant through time (e.g. Ward, 1994; Androkovich and Stollery, 1994; Reithe, 

2006).
1
 Outside the context of multi-sector bycatch problems, though, it is widely recognized 

that optimal fisheries management policies can be cyclical rather than steady-state, particularly 

for multispecies systems (Fenichel et al., 2010) and when harvesting is nonselective (Tahvonen, 

2009).  

 This paper presents a bioeconomic model of bycatch in a joint commercial-recreational 

fishery. That is, it analyzes a multispecies system in which the commercial and recreational 

sectors harvest from two biologically independent fish stocks. The commercial industry’s effort 

is nonselective and produces bycatch while the recreational harvest is selective. Managers use a 

quota system to regulate effort in the commercial and recreational sectors in order to maximize 

the net present value of the fisheries.  

 Our analysis offers several contributions to the economics of multispecies harvesting 

generally and bycatch management in particular. First, the solution to the dynamic multi-sector 

harvesting problem is derived analytically. Second, we build on the existing bycatch literature by 

numerically examining the transition path to the long-run equilibrium. Third, we find that the 

optimal equilibrium harvesting policy is cyclical, transitioning between states of intensive and 

relaxed exploitation on the parts of the two harvesting sectors. We relate this result to prior 

research on the role of physical and biological capital in renewable resource extraction problems 

(Wirl, 1992; Liski et al., 2001; Horan et al., 2008). During the cycle we find a corner solution 

may be reached, which could involve temporarily shutting down one harvesting sector. This 

characteristic is consistent with a pattern of pulse fishing although it has not yet been identified 

in a model of separate harvesting sectors exploiting a multispecies system.  

                                                        
1 Skonhoft et al. (2012) is an exception here in that they do analytically verify that the equilibrium is a steady state, 

although in their paper bycatch is associated with the exploitation of an age-structured population rather than two 

different species. 
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 Our investigation is motivated by a bycatch problem observed in the Great Lakes 

(Johnson et al., 2004a). Although smaller in scope—boat crews tend to include between one and 

three people—freshwater fisheries, like marine fisheries, are known to use nonselective gear, 

such as a gill or trap nets (Raby et al., 2011). In the Great Lakes, these methods are used by 

commercial fishers to harvest lake whitefish (Coregonus clupeaformis) but result in the 

incidental catch of lake trout (Salvelinus namaycush), a species targeted by an active and 

valuable recreational fishing sector. Thus, the nonselective harvesting gear of commercial fishers 

imposes a potentially significant technological externality on recreational anglers. 

 

2. Model 

We develop a model of harvesting from a two-species system. The following assumptions are 

consistent with numerous multispecies fishery problems although they are adopted specifically to 

fit the motivating case study. Ecologically, the biomass of these species, denoted s (lake trout) 

and w (lake whitefish), do not interact. The species s is susceptible to bycatch. There are two 

harvesting sectors: one is commercial and the other is recreational. The commercial sector uses a 

non-targeted technology to harvest w (such as with a gill or seine net) whereas the recreational 

sector uses a targeted technology to harvest s (a fishing line). We denote effort in the recreational 

fishery as a and effort in the commercial fishery as b. Fishery dynamics take the form 

(1)   sbqzsasksrs sss  1  

(2)   wbqwkwrw www  1 , 

where ri is the intrinsic growth rate and ki is the carrying capacity for stock i = s,w, qi is the 

catchability coefficient of stock i = s,w for commercial fishing and z is the catchability 

coefficient of stock s for recreational fishing. The first term in each of eq. (1) and eq. (2) is the 
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total growth in stock biomass prior to any harvesting mortality. The remaining terms in eq. (1) 

and eq. (2) measure recreational and commercial harvests.  

 The commercial sector generates profits  

(3)    bcbsqpwqp bssww  , 

where pi is the dockside or wholesale price of harvests from i = s,w and cb is the marginal cost of 

effort. The term in parentheses in eq. (3) is total revenue from a given unit of effort, although in 

general the revenue from stock s is expected to be minimal; ps is frequently zero in fisheries with 

bycatch.  

 The effort from recreational fishing generates social benefits U = u(a,s), where u is 

increasing in a and s. Following the standard approach in the recreation demand literature we 

assume u(∙) is linear in arguments; note that this assumption is also convenient because it yields a 

net benefits function  analogous to commercial profits and thus our results extend to the situation 

of a joint commercial-commercial, two-species fishery. Specifically, net benefits from 

recreational fishing are 

(4)  acuzsaV a , 

where ca is the marginal cost of effort.  

 

3. Optimal Fisheries Management 

We now turn to the problem of optimal fisheries management. Deriving the solution for 

multispecies systems can be difficult (Clark, 1976), so to facilitate an answer we continue to treat 

each sector as a homogenous group of participants and assume that management is costless and 

capital is perfectly malleable (Clark et al., 1979). The fisheries management agency’s problem is 
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to maximize the discounted net benefits from the commercial and recreational sectors. Assuming 

a discount rate of ρ, this is stated as 

 (8) 
    

    00maxmax

0
,

0 ,0 ,0 ,0 (2), (1), subject to

max

wwssbbaa

eacuzsbcsqpwqp t

abssww
ba



 



  

We use the maximum principle to solve this problem (Clark, 1976), where the Hamiltonian 

expression is used to derive the necessary conditions for the optimal controls a,b. The 

Hamiltonian for (8) is  

(9)     wsbcsqpwqpacuzsH wsbsswwd
  , 

where λi is the adjoint variable or shadow value for stock i = s,w. This is a linear control 

problem, so the optimal choice of a and b is determined by a pair of switching functions,  

(10) asa zscuzs
a

H





, 

(11) bwwssbssww wqsqcsqpwqp
b

H





. 

The right-hand-side (RHS) of eq. (10) is the marginal net benefits from recreational fishing 

effort. When σa > 0 recreational effort should be set to its maximum limit and when σa < 0 

recreational effort should be set to zero (or, alternatively, some minimum feasible amount). 

When σa = 0, a should be set at its singular value, aSV, which is determined by the combinations 

of s and w that satisfy σa = 0. Similarly, the RHS of eq. (11) is the marginal net benefits from 

commercial effort. When σb > 0 commercial effort should be set to its maximum limit and when 

σb < 0 commercial effort should be set to zero. When σb vanishes, b should be set at its singular 

value bSV, which is determined by the combinations of s and w that satisfy σb = 0. 
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 Two more equations complete the set of conditions required for a solution. These are the 

adjoint equations, )/( iHii   for i = s,w, which can be re-expressed as a pair of golden-

rule conditions. For stock s, the golden rule condition is 

(12)   bqzaksr
bqpuza

sss

s

ss

ss

s 









 21


, 

where the opportunity cost of investing resources elsewhere in the economy, i.e. ρ, is equated 

with the rate of return from managing s. The first three RHS terms, respectively, are the capital 

gain or loss from changes in s, the marginal recreational value of s harvests and the marginal 

commercial value of s bycatch, all normalized by the shadow value of s, λs. The second and third 

terms are positive and imply that an increase in the value of harvesting s raises the return from s. 

The final three terms, in brackets, express the marginal growth in s. Note that whether the 

controls a or b raise or lower the rate of return from s will be determined by the normalized 

prices u/λs and ps/λs. Greater recreational (commercial) effort will lower the return from s when 

the recreational (commercial) value of s is less than its shadow value. Eq. (10) can be rearranged 

to show that recreational effort should only be allowed when it raises the rate of return on s. 

However, there is no such guarantee for commercial effort and for values of λs that lie between u 

and ps harvests by the recreational industry will raise the rate of return on the stock but harvests 

by the commercial industry will lower it. Thus, it is unclear if the two harvest activities should be 

used as substitutes or compliments in optimally managing s. 

 The golden rule condition for w is 

(13)   bqkwr
bqp

www

w

ww

w

w 






 21


, 

where the rate of return on investing is equated with the rate of return from managing w. The 

first two RHS terms, respectively, are the capital gain or loss from changes in w and the marginal 
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commercial value of w harvests, normalized by λw. The term in brackets is the marginal growth 

in w. Note that whether the control b raises or lowers the rate of return from stock w will be 

determined by the relative price pw/λw. Eq. (13) says that an increase in commercial effort will 

raise the rate of return on w when the price of the harvest exceeds the shadow value and vice 

versa. As suggested by eq. (11), commercial effort will tend to be applied when it raises the 

return from w. 

 The complete solution to problem (8) will generally consist of a series of corner and 

interior control values. To start, consider the choice of a. There are two corner solutions, a = 0 

and a = amax. To simplify the analysis, assume that amax is large enough to never be binding. 

Thus, if recreational fishing is going to be optimal for an extended period of time it requires the 

switching function in eq. (10) to vanish, i.e. σa = 0. This means that λs must obey 

(14)  
zs

cuzs
s a

s


 , 

which implicitly defines the singular (i.e. interior) solution for a. Eq. (14) says the optimal 

amount of recreational fishing occurs when the shadow value of s equals the net marginal 

benefits from recreational fishing normalized by the technical returns to effort. This means that if 

a > 0 is optimal then s must move in the same direction as its user cost. 

 An explicit optimal value for a can be derived by using eqs (1), (12) and (14). First, take 

the time derivative of λs(s) to get     sszscs ds
  . Second, substitute the expressions for λs(s), 

 ss
  and s  into eq. (12). We can then derive the following: 

(15)           bqupksrzsczusksurbs ssssass  1, . 

The singular solution for a implies Ω(s,b) = 0. A “partial singular” solution arises when Ω(s,0) = 

0. In this latter case, we can use Ω(s,0) = 0 to express s as a function of the parameters. This 
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means that the partial singular solution for a, which we denote as aPS, is a steady state 

equilibrium. To reach aPS, the system should proceed along a most-rapid-approach-path (MRAP) 

using bang-bang controls—that is, using a = 0 or a = amax. 

 A partial singular solution in b can also arise, when σa < 0 and σb = 0. When the 

switching function for b vanishes we can derive an expression for λw  

(16)  
wq

sqcsqpwqp
ws

w

ssbssww
sw


 ,, . 

The first three terms in the numerator of eq. (16) measure the marginal profits of commercial 

fishing effort. The last term is the shadow value of s weighted by the technical returns to 

commercial effort in the fishery for s and is a value of the bycatch externality. We can solve for 

the partial singular solution for b using eq. (16) along with eqs (1), (2), (12) and (13). First, take 

the time derivative of λw(s,w,λs)  to get  baws sw ,,,,  . Second, substitute these expressions 

into eq. (13) and fix a = 0 to derive λs(s,w). Third, take the time derivative of λs(∙) to get 

 bwss ,, . Fourth, substitute λs(∙) and   s
  into eq. (12) and solve for b to obtain bPS(s,w). The 

partial singular solution for b is therefore a feedback rule that defines a number of potentially 

optimal paths in s-w space. Intuitively, it is optimal to use such a path because b affects both 

states and achieving the right balance requires small, constant adjustments in the control.  

 An interior or “double singular” solution arises when eqs (14) and (16) are satisfied. In 

this case, we can use Ω(s,b) = 0 to derive a feedback rule for b  

(17)  
     

  ss

ssssa
DS

qup

ksurksrzsczus
sb






1
. 

where the DS signifies that the expression is only optimal in the double singular case. In eq. (17), 

the bracketed term in the RHS numerator is the shadow value of s, so the optimal choice of 

bDS(s) explicitly depends on the marginal value of the bycatch stock. In fact, bDS(s) depends only 
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on the value of s, rather than w and s, implying that the choice of b is determined by the 

conservation status of the bycatch stock, which is consistent with some historical management 

policies.
2
 Implicitly, however, bDS(s) depends on w through changes in s and therefore the double 

singular solution for a. 

 We derive the double singular solution for a by rewriting eq. (16) as 

(18)  
  

wq

sqzsczuscsqpwqp
ws

w

sabssww
w


 , , 

substituting λw(s,w) and  wsw ,  into eq. (12) and rearranging: 

(17)

 
 

 

      
 zup

kwrpkwrwqzscusqcsqpwqp

sq

wq

sb
z

q

z

ksr
wsa

s

wwwwwwasassww

s

w

DS
sss

DS











1

1
,

The first term is a measure of the biotechnical productivity (BTP) of stock s in the recreational 

fishing industry (Clark, 1976). This term suggests that recreational effort should increase with 

higher BTP. The second term accounts for the commercial sector and says that as commercial 

effort increases recreational effort should decrease, although the size of this response depends on 

the relative catchability of s in the two industries. The final term accounts for changes in w and 

says, among other things, that recreational effort should fall as the returns to commercial fishing 

rise. 

 The double singular solution therefore consists of a pair of feedback rules for the 

controls. This candidate optimal management strategy yields the system (1) and (2) with 

substitutions b = bDS(s) and a = aDS(s,w). The dynamics of the double singular solution are 

illustrated for several different systems in phase plane diagrams in Figure 1. The model is 

                                                        
2
 Ebener et al. (2008) discuss the management of lake whitefish in the Great Lakes and the role of the whitefish 

fisheries’ bycatch of lake trout. They report that in much of the Great Lakes “the focus of management is directed at 

lake trout so lake whitefish populations are basically managed as a by-product of lake trout rehabilitation.” 
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parameterized using hypothetical values similar to those in our numerical example. The 0s

isocline is the threshold for changes in s: 0s  for combinations of s and w to the right of the 

isocline and 0s  for combinations of s and w to the left of the isocline. A similar interpretation 

holds for the 0w  isocline and w: 0w  for combinations of s and w to the right of the isocline 

and 0w  for combinations of s and w to the left of the isocline. A steady state forms at the 

intersection of these isoclines.  

 The phase planes in Figure 1 suggest that the optimal harvest policy will be sensitive to 

the severity of the bycatch problem and that only in certain cases could the double singular 

solution be long run optimal. Figure 1(a) assumes the catchability of s for commercial fishing is 

one-eighth the catchability of w. The various paths defined by the double singular solution, 

marked by phase arrows in the figure, cycle around an unstable node. Figure 1(b) assumes the 

catchability of s for commercial fishing is one-half the catchability of w, and in this case there is 

no equilibrium node. All paths in these two figures spiral toward extreme values, suggesting that 

the system will eventually crash if commercial and recreational fishing are pursued 

simultaneously in the long run. Figure 1(c) assumes the catchability of s for commercial fishing 

is equivalent to the catchability of w. This system is characterized by a saddle point equilibrium 

that suggests one commercial-recreational fishing strategy may be long-run optimal: move the 

system to the saddle path and then proceed along this path to equilibrium (in fact, we find this is 

actually a suboptimal strategy in the sensitivity analysis to our numerical example). 

 The solution is determined by considering several different harvest strategies. In general, 

there are four such strategies: no fishing, recreational fishing-only, commercial fishing-only and 

simultaneous commercial-recreational fishing. We can rule out the first, but the other three are 

candidate long-run strategies that must be compared numerically. As Figure 1 suggests, the joint 
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commercial-recreational strategy alone is unlikely to be long-run feasible. However, it could be 

used in a solution that combines different strategies in a piece-wise fashion. 

 A switch from commercial-recreational fishing to an alternative strategy may naturally 

arise due to the nature of the feedback rules. In general, the double singular strategy cannot be 

pursued when a feedback rule yields a value outside the bounds of a control (e.g. a < 0). Clark 

(1976), following Arrow (1964), refers to this as a blocked interval problem. We can formulate 

the set of (w, s) that produce blocked intervals by examining the boundaries aDS(s,w) = 0 and 

bDS(s) = 0.
3
 A blocked interval for commercial effort occurs at  

(18) 
     

 
0

1






ss

ssssa

qup

ksurksrzsczus
, 

which implicitly defines a boundary along s, sT. Assuming ps < u, if s exceeds sT then operating 

both commercial and recreational fishing cannot be an optimal strategy. Similarly, we can 

identify a boundary for recreational effort, wT(s). When w lies beyond  

wT(s) the commercial-recreational fishing strategy cannot be optimal. 

  

4. Numerical example 

We consider a numerical example to illustrate the characteristics of a solution. The parameters 

for the numerical example are listed in Table 1. These values are based on a bycatch problem in 

the Laurentian Great Lakes, although the example is better viewed as a guide to formulating a 

bycatch management strategy. The fisheries management agency can be thought of as a state, 

provincial or tribal resource authority.
 4

 The agency is responsible for a region of a lake that 

                                                        
3
 Blocked intervals would also form at the upper limits aDS(s,w)  = amax and bDS(s)  = bmax. For simplicity, our 

analysis supposes that the solution is never constrained in this manner, i.e. the upper limits are infinite. This 

restriction does not significantly affect our results. 
4
 For the sake of brevity this paper omits a discussion of Great Lakes fisheries policy, which involves over a dozen 

state, provincial, tribal and federal natural resource agencies in the United States and Canada. The responsibility for 
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contains the stocks and spawning grounds for two species, lake trout and lake whitefish, which 

are important to Great Lakes anglers and several Great Lakes coastal communities (Taylor and 

Ferreri, 2002). Historically, both lake trout and lake whitefish were harvested commercially but 

due to a combination of intensive harvesting and invasive species the two fisheries collapsed in 

the mid-20
th

 century. Commercial fishing for these species was strictly regulated thereafter, 

allowing lake whitefish to make an extensive recovery in the upper Great Lakes (Huron, 

Michigan and Superior). Lake whitefish is now the top commercial fish in the Great Lakes, both 

by weight and by value. Despite careful management, naturally-reproducing lake trout stocks 

remain small in Lakes Michigan and Huron, although the species is considered rehabilitated in 

Lake Superior (Taylor and Ferreri, 2002).  

 Management of lake trout and lake whitefish harvests by state, provincial and tribal 

resource agencies is significantly influenced by concerns over lake trout rehabilitation. The lakes 

are divided into management zones in which total harvest is regulated through TACs that are 

divided into individual quotas for commercial harvesters (Ebener et al., 2008). At present, 

commercial harvesters primarily target lake whitefish but harvesting gear is not perfectly 

selective and lake trout are the principal bycatch species from this harvest.
5
 Due to restrictive 

fisheries regulations nearly all commercial harvest of lake trout is bycatch. Nevertheless, targeted 

                                                                                                                                                                                   
managing areas of the Great Lakes varies among these authorities, although over time binational agreements 

(particularly through the Convention on Great Lakes Fisheries) have helped to develop and coordinate a common 

fisheries management strategy. See Taylor and Ferreri (2002), pp. 305-338, for a detailed history. It should also be 

noted that these agencies contend with problems other than bycatch (e.g. invasive species, disease, native and non-

native stocking) that can play an important role in optimal fisheries management. However, incorporating these 

matters into the model would cloud the analysis and diminish the relevance of the solution to fisheries where the 

bycatch problem predominates. 
5
 Two types of gear are primarily used to harvest whitefish: gill nets and trap nets. In the numerical example we 

assume commercial harvesting is done by gill nets, which are less selective than trap nets. Several state natural 

resource agencies now mandate traps nets but gill nets were used historically and continue to be used extensively by 

tribal fishing operations. 
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recreational harvest of lake trout is permitted, with yields regulated through angler-day harvest 

quotas.  

 We begin by investigating the solution when the system is defined by the benchmark 

parameters in Table 1. The model was implemented in Mathematica 9.0. The initial stock levels 

are the open access equilibrium values (i.e. relatively low compared with the optimal equilibrium 

values) to gain insights into the dynamics of recovering depleted stocks. Following the 

benchmark problem, we consider several alternative parameter arrangements as a sensitivity 

analysis. 

 

4.1. Benchmark scenario 

The solution to the bioeconomic problem is found by comparing the three candidate harvest 

strategies. Based on our analytical analysis we can expect that: (1) the recreational fishing-only 

strategy will use a MRAP to reach equilibrium, (2) the commercial fishing-only strategy will 

proceed along a trajectory defined by its partial singular feedback rule and (3) the commercial-

recreational fishing strategy is not likely to be long-run feasible by itself but, due to blocked 

intervals, it could form part of a piece-wise-defined solution.  

 First, consider commercial fishing-only (a = 0, b = bPS(s,w)) as the long run solution. We 

find that the dynamics defined by this strategy yield a system that is characterized by a saddle 

point equilibrium.
6
 All paths not leading to the saddle point yield outcomes that imply the 

eventual eradication of lake whitefish or abandoning commercial fishing, so the only feasible 

strategy is to follow the saddle path to equilibrium. Movement to the saddle path as performed 

using bang-bang controls. Initially, the two stocks are low (s0 = 166663, w0 = 389009) so it is 

optimal to cease all commercial harvests. Once the stocks have recovered to the point that the 

                                                        
6
 In addition to the saddle point the system dynamics are shaped by a critical but unstable point.  
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system lies on a part of the saddle path commercial fishing is initiated in accordance with the 

feedback rule bPS(s,w). Thereafter, the system is guided to the equilibrium at s* = 436106, w* = 

1139617. We find that this solution yields $5 million in present value net benefits. 

 Next, consider the solution using the recreational fishing-only (a = aPS, b = 0) strategy. 

The MRAP to equilibrium requires an initial moratorium on lake trout fishing until the stock 

reaches s* = 324642 and thereafter further stock recruitment is offset by recreational harvesting. 

Lake whitefish is unaffected by this harvest strategy and recovers to its carrying capacity. This 

solution yields $17 million in present value net benefits. 

 Finally, we examine the solution that involves both commercial and recreational fishing 

(a = aDS(s,w), b = bDS(s)). A diagram of the solution is presented in Figure 2. The boundaries 

defining the regions in which the feedback rules for the controls take on feasible values are 

marked by dashed lines. Within the shaded regions either aDS(s,w) < 0 or bDS(s) < 0; only when 

the system occupies a point in the unshaded region should commercial-recreational harvesting be 

pursued. An equilibrium is formed at the intersection of the zero isoclines in this unconstrained 

region. However, as demonstrated by the phase arrows, there is no trajectory that can move the 

system to this equilibrium. 

 The constrained regions and stability properties in Figure 2 suggest that a solution is 

formed by a cyclical combination of harvest strategies. Beginning at the open access equilibrium 

point, which lies in the constrained region for a, we find it is optimal to forgo any harvesting to 

allow the system to recover (trajectory A).
7
 Once the system reaches threshold b, the recreational 

                                                        
7
 That the system lies in this constrained region suggests pursuing the commercial fishing-only strategy might be 

optimal. However, the partial singular path defined by this strategy moves away from equilibrium and leads to 

eradication of lake whitefish, so it cannot be optimal. The only other candidate optimal strategy is to cease all 

fishing and allow both lake whitefish and lake trout to recover, which is consistent with the concept of a most-rapid-

approach-path to equilibrium. 
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fishing-only strategy is used to balance the growth in the lake trout stock.
8
 The system then 

moves up the b = 0 boundary (trajectory B) as the whitefish stock continues to increase. This 

completes the part of the solution that defines the recovery of the two stocks. The next phase 

involves a piece-wise continuous cycle combining the commercial-recreational fishing strategy 

(trajectory C) and the recreational fishing-only strategy. The double singular feedback rule 

should be applied once the recovered system crosses the zero isocline for s. Initially, the stock of 

whitefish improves as lake trout decline, leading to a rapid increase in commercial harvests but a 

modest change in recreational harvests (Figure 3). As the two stocks start to contract, the 

reduction in recreational harvests is tracked by commercial harvests, which peaked later owing to 

the longer whitefish recovery. Now with underharvesting, whitefish and lake trout begin to 

recover. Prior to the system reaching the b = 0 boundary it is optimal to cease commercial fishing 

and increase recreational fishing due to the premature switching principle (Horan and Wolf, 

2005). Eventually, the system reaches the b = 0 boundary and recreational effort is maintained so 

that the lake trout stock is stabilized, until it is optimal to allow commercial fishing again and 

renew the piece-wise cycle just described. This solution yields $19 million in present value net 

benefits, which makes the management program utilizing commercial-recreational fishing first-

best. 

 The use of a piece-wise cycle in the joint commercial-recreational harvesting equilibrium 

is somewhat surprising, due to the availability of a selective harvest technology.
9
 However, this 

result is explained by a combination of the harvest technologies and the nature of the two stocks 

as biological capital. Commercial fishing is imperfectly targeted and imposes significant costs on 

                                                        
8
 This is actually the equilibrium level as defined in recreational fishing-only strategy, where the partial singular 

control aPS is applied. 
9
 Past research on the joint use of selective and nonselective controls has found steady state harvesting to be long-

run optimal (e.g. Melstrom and Horan, 2014). 
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recreational fishing. A manager ignorant of the externality in question could do better by cutting 

back on commercial effort. However, the solution is not quite as simple as correcting an 

externality because reductions in commercial harvesting act as an investment into the stock of 

whitefish. Temporarily, the manager should allow the commercial sector to overharvest (and to 

protect lake trout the recreational sector should underharvest). After heavily exploiting whitefish 

the manager should wind down and briefly pause commercial harvests to re-invest. Eventually, 

the growing opportunity costs of a small commercial sector exceed the benefits and whitefish 

harvests can continue. Ultimately, because the manager can never directly target whitefish and 

stock adjustment is slow, it is best to dynamically balance the returns of the two sectors.  

 The solution we identify is akin to that of several papers. Wirl (1992) also looks at a two-

state problem that involves a nontargeted control and demonstrates the potential optimality of 

cyclical control policies. Liski et al. (2001) analyze increasing returns in the management of a 

single-stock fishery to show that cyclical harvest strategies can become optimal in the presence 

of harvest adjustment costs. Similar to Liski et al., we find cyclical harvesting is linked to 

adjustment costs, although in our case these costs are due to a technological externality and 

ecological feedbacks. Horan and Wolf (2005) and Horan et al. (2008) examine wildlife 

management problems that involve interacting populations and feeding, a non-targeted control. 

Both Horan and Wolf and Horan et al. find that the nature of feeding makes it difficult to control 

the system, making cyclical feeding and harvesting generally optimal. Similarly, we find that the 

optimal equilibrium strategy must be cyclical if lake whitefish harvests, which are non-targeted, 

and lake trout harvests are to be used simultaneously. 

 The results of this section are intended as a guide but the model can be adjusted to suit 

some practical matters we have thus far ignored. For example, the solution in the numerical 



19 
 

example suggests that management of bycatch in multi-sector fisheries may include periods of 

intense effort followed by moderate effort and moratoria. In practice it may be impractical to 

shut down a fishery, but the model can be amended to allow some minimum amount of 

commercial or recreational activity above zero. This would not affect the general form of the 

solution, although it would slow the time it takes for a fishery to recover to the desired level. 

 

4.2. Sensitivity analysis 

We examine the solutions to several alterative parameter arrangements to test the robustness of 

the cyclical equilibrium strategy. In the first scenario, the intrinsic growth rate of lake trout is 

halved. This adjustment is of interest because lake trout stocks have been slow to recover 

historically. In this case, because lake trout have no commercial value the present value net 

benefits of the optimal commercial fishing-only strategy remain unchanged from its benchmark 

counterpart at $5 million. The recreational fishing-only strategy is now worth $8 million, about 

half as much compared with the benchmark. Although it remains first-best, the solution utilizing 

both commercial and recreational fishing is also worth less, about $9 million. This solution is 

illustrated in Figure 4, which shows that the initial recovery trajectory is much longer (trajectory 

A) compared with the benchmark. Furthermore, although a cyclical equilibrium strategy remains 

optimal, the piece-wise cycle now involves a commercial fishing-only portion (trajectory D). 

This adjustment from the benchmark case is intuitive: with a lower lake trout growth rate it 

becomes optimal to divert effort away from recreational fishing and into commercial fishing. 

 In the second scenario, the price of lake whitefish and the bycatch rate are both doubled 

relative to the benchmark. This would represent a situation in which a commercial sector with 

considerable economic value imposes a severe technological externality on the other harvesting 
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sector. Pursuing the commercial fishing-only strategy leads to smaller equilibrium stock levels 

(s* = 355882, w* = 1029661) but a considerably higher return, with present value net benefits of 

$14 million, relative to the benchmark. The new parameters do not affect the optimal recreational 

fishing-only strategy, which yields $17 million. The optimal joint commercial-recreational 

fishing plan, which is illustrated in Figure 5, is worth $22 million. Qualitatively, the solution to 

the joint problem here is similar to the benchmark, although the piece-wise cycle in equilibrium 

is substantially larger and takes about twice as long to complete.  

 Further increases in the bycatch parameter will qualitatively alter the solution. We find 

that if this parameter were quadrupled relative to the benchmark case that a saddle point 

equilibrium would characterize the solution to the joint commercial-recreational fishing problem. 

However, this equilibrium lies in the region where a = 0, which suggests that moving to the 

steady state (i.e. along a saddle path) is not optimal. Any feasibly optimal piece-wise cycle must 

involve the commercial fishing-only strategy, but pursuing this strategy in the a = 0 region leads 

to eradication of both fish stocks, which cannot be optimal. This suggests that the joint 

commercial-recreational fishing strategy is suboptimal, in favor of either the commercial fishing-

only or recreational-fishing only strategy. In this case, the latter yields higher present value net 

benefits. 

 

4.3. Gear modification cost-benefit analysis 

The present value calculations from the model can be used to judge the efficiency of policies that 

would use gear modification to increase harvest selectivity and reduce bycatch in local fisheries. 

Substantial reductions in the amount of global bycatch could be achieved through gear 

modification, and in some fisheries gear modification can result in nearly the complete 
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elimination of bycatch (Hall and Mainprize, 2005; Johnson et al., 2004a). Gear modification 

remains an attractive regulatory option for fisheries management agencies, in part because the 

use of taxes and transferable quotas can be controversial in practice (McCay, 2004; Abayomi and 

Yandle, 2012) or impractical given regulatory costs, particularly for small fisheries (Squires et 

al., 1998).   

 As a simple example, consider a gear modification that would completely eliminate the 

bycatch in our benchmark scenario. This would effectively separate the two fishing sectors and 

result in $22 million in present value net benefits from both commercial and recreational fishing, 

respectively, or $3 million more than the joint commercial-recreational fishing strategy with 

bycatch. The fisheries could therefore be better off on the whole if this gear modification cost 

less than a few million dollars. 

 

5. Conclusion 

This paper shows that management of multi-stock fisheries exploited by imperfectly selective 

gear may involve cyclical harvesting policies. We develop a model of a two-species system in 

which bycatch is produced by one of two harvesting sectors. In the long run, optimal 

management balances the return from the fisheries by fluctuating the harvest levels in the two 

sectors: as one sector reduces exploitation of the resource, the other sector winds up its harvests. 

Furthermore, corner solutions can arise because a sector is limited to a minimum harvest of zero. 

Our results support several previous findings made outside of the bycatch literature that cyclical 

rather than steady-state management is optimal in the presence of capital adjustment costs. In 

this case, a technological externality in harvesting the resource creates ecological adjustment 
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costs. A cyclical harvest policy is optimal because it is difficult to separate the ecological 

spillover from the targeted-stock effect with changes in the harvest levels. 

 Incorporating the economic impacts of bycatch into decision making can increase the 

value of fisheries linked through harvest technologies. Furthermore, using economic models to 

determine optimal harvest policies can be useful in designing efficient regulations, particularly 

for small (e.g. freshwater or inland) fisheries where implementing alternative policies may be 

prohibitively expensive. As we showed, jointly managing different harvesting sectors is 

preferable to operating only one fishery unless the bycatch problem is severe. Gear modification 

may be practical if the alternative harvest technology is relatively inexpensive and will 

substantially reduce bycatch levels. An effective, flexible bycatch reduction policy could 

combine harvest quotas, gear subsidies and other incentives to encourage the adoption of more 

selective harvest technologies.  

 Our model presents a bycatch problem in a dynamic, albeit stylized, bioeconomic 

framework. This captures the essential features of many coastal and freshwater bycatch problems 

and may be generally adequate for fisheries, including marine fisheries, in which two harvesting 

sectors with fairly malleable capital investments find themselves competing for aquatic biomass 

due to the use of nonselective gear.  

 Extensions of the model could prove useful in understanding the economic nature of 

bycatch. Stocking is a common management device that would increase the controllability of a 

system like the one studied here. We expect that a steady state harvest policy would be more 

likely when combined with stocking. Consideration of nonuse values may be important, as many 

bycatch problems involve endangered, charismatic species with significant existence value. 

Finally, the failure of many collapsed fisheries to recover despite protective moratoria, such as 
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with lake trout, may suggest that the assumption of compensatory growth is inappropriate. 

Incorporating depensation into the model could add realism to our application and would at least 

add significant time to the recovery of the system. Further insight into these matters is left to 

future research.  

 

  



24 
 

6. References 

 

Abayomi, K. and T. Yandle. Using conditional Lorenz curves to examine consolidation in New 

Zealand commercial fishing. Marine Resource Economics 27, 303-321, 2012. 

 

Abbott, J.K. and J.E. Wilen. Regulation of fisheries bycatch with common-pool output quotas. 

Journal of Environmental Economics and Management 57, 195-204, 2009. 

 

Alverson, D.L., M.H. Freeberg, J.G. Pope and S.A. Murawski. A global assessment of fisheries 

bycatch and discards. FAO Fisheries Technical Paper 339, 1994. 

 

Anderson, L.G. An economic analysis of highgrading in ITQ fisheries regulation programs. 

Marine Resource Economics 9, 209-226, 1994. 

 

Androkovich, R.A. and K.R. Stollery. A stochastic dynamic programming model of bycatch 

control in fisheries. Marine Resource Economics 9, 19-30, 1994. 

 

Boyce, J.R. An economic analysis of the fisheries bycatch problem. Journal of Environmental 

Economics and Management 31, 314-336, 1996. 

 

Clark, C.W. Mathematical Bioeconomics. New York: John Wiley & Sons. 1976.  

 

Clark, C.W., F.H. Clarke and G.R. Munro. The optimal exploitation of renewable resource 

stocks: Problems of irreversible investment. Econometrica 47, 25-47, 1979. 

 

Ebener, M.P., R.E. Kinnunen, P.L. Schneeberg, L.C. Mohr, J.A. Hoyle and P. Peeters. 

Management of commercial fisheries for lake ehitefish in the Laurentian Great Lakes of 

North America. In: M.G. Schechter, W.W. Taylor, and N.J. Leonard, editors. 

International Governance of Fisheries Ecosystems: Learning from the Past, Finding 

Solutions for the Future. Bethesda, Maryland: American Fisheries Society, Symposium 

62, 2008. 

 

Fenichel, E.P., R.D. Horan and J.R. Bence. Indirect management of invasive species through bio-

controls: A bioeconomic model of salmon and alewife in Lake Michigan. Resource and 

Energy Economics 32, 500-518, 2010. 

 

Hall, S.J. and B.M. Mainprize. Managing by-catch and discards: How much progress are we 

making and how can we do better. Fish and Fisheries 6, 134-155, 2005. 

 



25 
 

Harrington, J.M., R.A. Myers and A.A. Rosenberg. Wasted fishery resources: Discarded by-

catch in the USA. Fish and Fisheries 6, 350-361, 2005. 

 

Herrera, G.E. Stochastic bycatch, information asymmetry, and discarding. Journal of 

Environmental Economics and Management 49, 463-483, 2005. 

 

Hoagland. P. and D. Jin. A model of bycatch involving a passive use stock. Marine Resource 

Economics 12, 11-28, 1997. 

 

Horan, R.D. and C.A. Wolf. The economics of managing infectious wildlife disease. American 

Journal of Agricultural Economics 87, 537-551, 2005. 

 

Horan, R.D., C.A. Wolf, E.P. Fenichel and K.H. Mathews. Joint management of wildlife and 

livestock disease. Environmental and Resource Economics 41, 47-70, 2008. 

 

Holland, D.S. A bioeconomic model of marine sanctuaries on George Bank. Canadian Journal 

of Fisheries and Aquatic Sciences 57, 1307-1319, 2000. 

 

Jensen, A.L. Multiple species fisheries with no ecological interaction: Two-species Schaefer 

model applied to lake trout and lake whitefish. ICES Journal of Marine Science 48, 167-

171, 1991. 

 

Johnson, J.E., J.L. Jonas and J.W. Peck. Management of commercial fisheries bycatch, with 

emphasis on lake trout fisheries of the upper Great Lakes. Michigan Department of 

Natural Resources Fisheries Research Report 2070, 2004a. 

 

Johnson, J.E., M.P. Ebenr, K. Gebhardt and R. Bergstedt. Comparison of catch and lake trout 

bycatch in commercial trap nets and gillnets targeting lake whitefish in northern Lake 

Huron. Michigan Department of Natural Resources Research Report 2071, 2004b. 

 

Kappel, C.V. Losing pieces of the puzzle: threats to marine, estuarine, and diadromous species. 

Frontiers in Ecology and the Environment 3, 275-282, 2005. 

 

Liski, M., P.M. Kort and A. Novak. Increasing returns and cycles in fishing. Resource and 

Energy Economics 23, 241-258, 2001. 

 

McCay, B. ITQs and community: an essay on environmental governance. Agricultural and 

Resource Economics Review 33, 162-170, 2004.  

 



26 
 

Melstrom, R.T. and R.D. Horan. Interspecies management and land use strategies to protect 

endangered species. Environmental and Resource Economics 58, 199-218, 2014. 

 

Melstrom, R.T. and F. Lupi. Valuing recreational fishing in the Great Lakes. North American 

Journal of Fisheries Management 33, 1184-1193, 2013. 

 

Michigan Department of Natural Resources (MIDNR). 2012 State-Licensed Commercial Fishing 

Data for Michigan. Available online at: http://www.michigan.gov/ 

documents/dnr/2012_Commercial_Fishing_Data_for_Michigan_414185_7.pdf. 

 

Pascoe, S., J. Innes, D. Holland, M. Fina, O. Thébaud, R. Townsend, J. Sanchirico, R. Arnason, 

C.Wilcox and T. Hutton. Use of incentive-based management systems to limit bycatch 

and discarding. International Review of Environmental and Resource Economics 4, 123-

161, 2010. 

 

Raby, G.D., A.H. Colotelo, G. Blouin-Demers and S.J. Cooke. Freshwater commercial bycatch: 

An understated conservation problem. BioScience 61, 271-280, 2011. 

 

Reithe, S. Marine reserves as a measure to control bycatch problems: The importance of 

multispecies interactions. Natural Resource Modeling 19, 221-242, 2006. 

 

Skonhoft, A., N. Vestergaard and M. Quaas. Optimal harvesting in an age structured model with 

different fishing selectivity. Environmental and Resource Economics 51, 525-544, 2012. 

 

Squires, D., H. Campbell, S. Cunningham, C. Dewees, R.Q. Grafton, S.F. Herrick Jr, J. Kirkley, 

S. Pascoe, K. Salvanes, B. Shallard, B. Turris and N. Vestergaard. Individual transferable 

quotas in multispecies fisheries. Marine Policy 22, 135-159, 1998. 

 

Tahvonen, O. Economics of harvesting age-structured fish populations. Journal of 

Environmental Economics and Management 58, 281-299, 2009. 

 

Taylor, W.W. and C. P. Ferreri, editors. Great Lakes Fisheries Policy and Management: A 

Binational Perspective. Michigan State University Press, East Lansing, 2002. 

 

Ward, J.M. The bioeconomic implications of a bycatch reduction device as a stock conservation 

management measure. Marine Resource Economics 9, 227-240, 1994. 

 

Wirl, F. Cyclical strategies in two-dimensional optimal control models: Necessary conditions 

and existence. Annals of Operations Research 37, 345-356, 1992. 

 



27 
 

Woldt, A.P., S.P. Sitar, J.R. Bence and M.P. Ebener. Technical Fisheries Committee 

Administrative Report 2005: Status of lake trout and lake whitefish populations in the 

1836 treaty-ceded waters of Lakes Superior, Huron and Michigan in 2004, with 

recommended yield and effort levels for 2005. Modeling Subcommittee, Technical 

Fisheries Committee, 2006. 

  



28 
 

7. Tables and Figures 

 

Table 1. Parameters used in the numerical example 

Parameter Value Notes 

rs 0.70 Jensen (1991) uses this value for lake trout. 

rw 0.60 Jensen (1991) uses this value for whitefish. 

ks 500,000 Lake trout carrying capacity in hypothetical management zone. 

kw 2,000,000 Whitefish carrying capacity in hypothetical management zone. 

qs 0.0000166 Commercial effort is measured in units of fishing net lifts. 

Johnson et al. (2004b) report a bycatch of 28.9 lbs per lift (1000 

ft) in a part of Lake Huron. With a lake trout biomass of about 

1,732,000 lbs in the area (approximately management unit MH-

02; see Woldt et al. (2006)), this implies 28.9 = qs*1*1,732,000. 

qw 0.0000479 Johnson et al. (2004b) report a catch of 292.3 lbs per lift (1000 

ft) in a part of Lake Huron. With a whitefish biomass of about 

6,102,000 lbs in the area (about half of management units 

WFH-04 and WFH-05; see Woldt et al. (2006)) this implies 

292.3 = qw*1*6,102,000. 

z 0.0000126 Commercial effort is measured in units of angler days. Woldt et 

al. (2006) indicates that 20,000 lbs of lake trout were harvested 

in management unit MI-07 from 18,500 hours of effort and a 

stock of about 507,000 lbs. Assuming a day of fishing averages 

about four hours of effort, this implies 20,000 = z*(18,500/6 

hours per day)*507,000. 

cb 30 On the typical commercial boat a pair of workers can fish about 

six lifts per day. We assume the opportunity cost of fishing is 

$90/day/worker, and this implies that 2*90 = cb*6. 

ca 50 Suggests a trip cost of $50. 

ps 0 We assume bycatch has no value. In Michigan there was no 

commercial sale of lake trout in 2012 (MIDNR, 2012). 

pw 1.61 Average per-pound value of whitefish in 2012 (MIDNR, 2012). 

u 23.81 Assumes net benefits of $25 per day, which is similar to the 

day-trip values in Melstrom and Lupi (2013). This implies 

u*z*s – cd = 30, with z = 0.0000126, s = 250,000 and ca = 50. 



 

 

 

 

 

 

 

 

 

 

 

Figure 1. Phase planes of the double singular solution for various parameter combinations: (a) small bycatch parameter with unstable 

steady-state equilibrium, (b) moderate bycatch parameter with no steady-state equilibrium and (c) large bycatch parameter with saddle 

point steady-state equilibrium. Point OA is the open-access equilibrium. 
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Figure 2. State-space of the strategies that make up the solution to the multi-sector fishing 

problem. There is no fishing along path A, recreational fishing-only along path B, and 

both commercial and recreational fishing along path C. 
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Figure 3. Cyclical equilibrium harvesting. LWC is commercial lake whitefish harvest, 

LTR is recreational lake trout harvest and LTC is commercial lake trout harvest 

(bycatch). 
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Figure 4. State-space of the solution to the multi-sector fishing problem when the lake 

trout growth rate is lowered compared with the benchmark. 
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Figure 5. State-space of the solution to the multi-sector fishing problem when lake 

whitefish are more valuable and the bycatch externality is greater compared with the 

benchmark. 
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