

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

Refyerer watwinion

START

THE DISTRIBUTION OF INSECTS, SPIDERS, AND MITES IN THE AIR ${ }^{1}$

By P. A. Glick
Assistant entomologist, Division of Colton Insect Investigations, Bureav of Enlomology and Plant Quarantine ${ }^{3}$

CONTENTS

INTRODUCTION

Knowledge regarding the height to which insects may ascend has hitherto been obtained chiefly from observations made on mountains, where the insects, after all, wore near terra firma; and from lighthouses,

[^0]monuments, high buildings (20) ${ }^{3}$, and forest lookout stations (75). To collect insects thousands of fect abcve the earth's surface was quite a different problem to handle, and to accomplish this it was necessary to await the development of a method of observing or collecting them while in flight in some form of aircraft, and thus study, as it were, the "plankton" of the air.
The collection of insects in the upper air has been under consideration for many years. In the winter of 1424, at a mecting of the New York Entomological Society, there was a discussion of insect migration. At this mecting there were present L. O. Howard, then Chief of the Bureau of Entomology, the Iate W. J. Folland, E. P. Felt, Frank E. Lutz, Charles Leng, William T. Davis, W. T. M. Forbes, A. J. Mutchler, George P. Engelhardi, and others. In the course of the discussion the value of obtaining information on the dispersal and migration of insects and of determining the heights to which they fiew was emphasized, and everyonc present was urged to give some thought and attention to the problem of getting this information, and in contriving some device whereby insects could be collected in the air high above the earth's surface. The use of airplanes was naturally suggested for this work, but no suggestions were made as to what kind of colle tins device might be used on the airplanes.
The witer had not the remotest idea at that time that he would ever have the opportunity to work along this line. Late in the spring of 1925, lowever, he was tansferred from what was then the Federal Horticultaral Board to the Bureau of Entomology, and sent to Tallulah, La., where airphanes were being used in dusting experiments for the cositrol of the boll weevil and mosquitoes. This equipment being available, it was suggested by Dr. Howard that someone on the staff of the Tallulah latoratory should work out a means of using an airplane to colleet insects in the upper air. B. R. Coad, who was in charge of the laboratory at that time and the logical person for directing this work, asked the writer to present some plan wherehy

[^1]an airplane could be used for collecting insects. The following year, July 1926, the writer submitted diagrams and suggestions for an airplane insect trap. The drawings were accepted and the trap was made, as described later, and installed on an airplane.

On August 10, 1926, at Talluah, the first flight was made with this trap to collect insects, and, so far as is known by the writer, this was the first attempt to use an airplane in collecting insects. Several insects belonging to the orders Diptera and Hymenoptera were taken on this flight. Many insects were collected on several other flights made on August 23 and 27. The first published record of insects taken in a trap on an airplane was that of Felt (22,23). On August 30, 1926, or just 20 days after the first flight at Tallulah, Dr. Felt succeeded in taking three insects. Only a few flights were made under Dr. Felt's direction and on only the one flight were insects taken.

This new means of investigating the insect faun of the upper air is of both scientific interest and economic importance, for some of the most dangerous insect enemies of cultivated plants and the carriers of dreaded diseases of man and animals spread to distant places with the aid of air currents.

SCOPE OF THE WORK

The discussion of the airplane collection of insects which is given in the following pages is based on the data collected during the years from August 1926 to October 1931, inclusive. During the 5 years of the work more than 1,007 hours were spent in the exposures oi the collecting screens. The actual flying time, including the exposures of the screens, amounted to $1, \overline{5} 38$ hours, of which 150 hours were flown at night. A total of 1,358 separate flights were made, most of them in Louisiana, but 44 were made in Mexico.

In addition to the day collections at altitudes of from 200 to 5,000 feet, which netted 22,550 specimens, 2,204 insects were taken at other beights, from 20 to 100 feet and from 6,000 to 15,000 feet, inclusive, (tables I and 2). In the night collections, at from 500 to 5,000 feet, 3,955 insects were taken (table 3). In all the data covers the collection of 28,739 specimens in Lousiana and 1,294 in Mexico.
In general, in the discussions the spiders and mites are counted with the insects.

Table 1．－Insects，spiders，and mites，collected in the daytime by airplane according to orders and altitudes，Tallulah，La．，1926－91

Altitude（feet）		要		$\begin{aligned} & \frac{E}{0} \\ & \frac{0}{E} \\ & \frac{0}{3} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ⿷. } \\ & \stackrel{0}{0} \\ & \stackrel{0}{5} \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\begin{aligned} & \text { 䔍 } \\ & \text { 芯 } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$			$\begin{aligned} & \text { 志 } \\ & \text { 茄 } \\ & 0 \end{aligned}$				$\begin{aligned} & \stackrel{4}{4} \\ & \stackrel{0}{E} \\ & \frac{0}{0} \\ & 0 \end{aligned}$						$\begin{gathered} \text { 蛓 } \\ \stackrel{\circ}{\square} \end{gathered}$					
	$\left\|\begin{array}{c} \text { Num- } \\ \text { ber } \\ 2 S \end{array}\right\|$	$\left\|\begin{array}{c} \text { Num- } \\ \text { ber } \\ 1 \end{array}\right\|$	$\left\|\begin{array}{c} \text { Num- } \\ \text { ber } \end{array}\right\|$	$\begin{gathered} \text { Num } \\ \text { ber } \\ -\quad \ldots . . \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 1 \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 2 \end{gathered}$	$\left\lvert\, \begin{gathered} N u m-1 \\ \text { ber } \\ 3 \end{gathered}\right.$	$\underset{\text { ber }}{N u m-1}$	$\left.\begin{gathered} \text { Num- } \\ \text { ber } \\ 2 \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} N u m- \\ \text { ber } \\ 3 \end{array}\right\|$	$\left.\begin{gathered} \text { Num- } \\ \text { ber } \\ 83 \end{gathered} \right\rvert\,$	$\begin{gathered} \text { Nun- } \\ \text { bar } \\ 191 \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 4(01 \end{gathered}$	$\begin{array}{r} \text { Num- } \\ \text { ber } \\ 5 \end{array}$		N＇um－ ber －．．－－	$\left.\begin{array}{\|r\|} \text { Num- } \\ \text { ber } \\ 5 \end{array} \right\rvert\,$	$\begin{gathered} \text { Num } \\ \text { ber } \\ 101 \end{gathered}$	$\begin{gathered} \text { Nurn- } \\ \text { ber } \\ 773 \end{gathered}$	$\begin{gathered} N_{\text {rum }}^{\text {rum- }} \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 207 \end{gathered}$	Num－ ber 1,885	Min－ utes 721	Num－ ber 25.87
	2										6	10	18			．．－		4	21			61	79	
100	3										20	3	${ }^{6}$					1	18			51	63	
201.	629	24	11	6	4	8	31	$\underline{2}$	12	44	555	1，407	2， 207		2		36	1，646	5，170	1	1，444	13， 389	10，277	13.03
300	3																		10			34	92	－－－－－
400												4	2						6	－－．．－－	1	14	40	－－－－－－
1000											1	1	1						1		1	7	23	
1.000	302	13	15	5	5	6	15	1	6	21	210	573	518	2	－－－－．	．．．		508	1，979	－－－－－	494	4， 751	10， 101	4.70
2,0000	224	4	4		3		4	2		10	107	363	161			－－－－－．		285	1，021		106	2，355	9，767	2.41
3，000	97	2	3	4		1	8		1	8	57	284	06	3	－．．－－	－－．－－－	6	113	580	．．．．．．．－	95	I，36． 4	10， 102	1.35
\＄，000．	3										3	14	6				－	0	17	\cdots	5	54	${ }^{2} 91$	
5.000	36			5			6			3	23	100	52	－	1			62	279	－－－－－－－	41	612	9， 822	． 64
6.000.	1									－－．．－	1	3	5					6	9	－－．．．	5	30	－ 321	
7.000				1							2	8	4				－．．－－	3	25		2	46	385	－
8.000	＋		1				2				2	2	2					3	9	－－－－－	3	25	338	－．．．．．．
4，000	4							－			1		11					2	4			12	270	－－－－－
10，000）．．．．．．．．．．．－	2					－	1			1	1		11					8	18	－－．－－－	2	50	399	－－－－－－
11，000．．．．．．．	3		－	1						1	1	1	\pm			－	－－．．－－	3	7	－－．．－－	1	22	224	－－－－－
12,000	1											4	5					2	2	－．．－－	1	15	204	
13，000												5						4	6		1	16	171	
14，000												5						2	3			10	118	
15，000																						1	20	
16，000．																							5	
20 to 16，000 feet．	401	44	34	26	13	19	70	5	21	01	1，080	3，079	3，566	10	3	3	75	2，770	9，973	1	2，500	24，784	53，633	4． 62
200through 5,000	1，354	43	33	24	12	17	64	5	19	86	963	2， 8.41	3，112	5	3	3	69	2，571	9，078	1	2，277	22，582	50，315	4.48

Table 2.-Spiders and insects of the importont orders taken al selected altitudes per 10 minutes of exposure of the collecting screens by daylight, Tallulah, La, 19:6-31

Altitude (feet)	Total Gying time	Araneida	Feter. opters	$\underset{\text { Herasp- }}{\text { ters }}$	Coleoptera	Hymeraptera	Dipters	$\begin{gathered} \text { Tots] } \\ \text { fusects: } \end{gathered}$
	Minutes	Number 25.87						
200	16. 27 \%	0.61	0.54	1.492	2. 20	1.60	5.03	13. 03
1,000	10, 101	. 38	. 21	. 57	. 51	. 50	1.96	4.70
2,000	9,767	. 23	. 11	. 37	. 16	. 24	1.05	2.41
8,000	10, 102	. 09	. 06	. 28	. 09	. 11	. 58	1.35
8,000-30,	9,622	. 01	. 02	. 10	. 05	. 08	. 29	. 64
200- 50002 All altitudes;	50, 315	. 27	- 19	. 56	. 62	. 51	1.80	3. 49
All altitudes	53,633	. 25	. 20	. 5 r	. 66	. 52	1.85	4.82

${ }^{2}$ Includes other orders in addition to those sbown.
I Includes other altitudes in addition to those shown ghove.
Table 3.-Insects, spiders, and mites collected at night by airplane according to allitudes from 500 to 5,000 feet, with the number per 10 minutes' flying time in the important orders, Tallulah, La., 1926-81

Order	500 feet		1,000 feel		2,000 feet		3,000 feet		5,000 feet		Totalinsects	
	$\begin{gathered} \text { Total } \\ \text { in- } \\ \text { sects } \end{gathered}$		$\left.\begin{gathered} \text { Total } \\ \text { in } \\ \text { sects } \end{gathered} \right\rvert\,$	$\ln -$ sects per 10 min- ntes gys ing time	$\left\|\begin{array}{c} \text { Total } \\ \text { sen-ts } \end{array}\right\|$	In- sects per 10 min- utes ny- ing tine	$\begin{gathered} \text { Total } \\ \text { in- } \\ \text { sects } \end{gathered}$	In- sects jer min min- ntes fys ing tme	$\left\{\begin{array}{c} \text { Total } \\ \text { in- } \\ \text { sects } \end{array}\right.$	In- sects jer Io nin- utes Sy- sing time	Total in- sects	In-
Aranelda	$\begin{gathered} \text { Nam- } \\ \Delta e r \\ 28 \end{gathered}$	$\begin{gathered} \text { Num } \\ \text { ber } \\ 0.18 \end{gathered}$	$\left.\begin{gathered} N u m \\ \text { Nuct } \\ 18 \end{gathered} \right\rvert\,$	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	$\begin{gathered} \text { Num- } \\ { }_{7} \\ \hline \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 0.08 \end{gathered}$	${\underset{0}{\mathrm{Num}}}_{\mathrm{Num}}$	$\begin{gathered} \text { Num } \\ \text { bt } \\ 0.05 \end{gathered}$	$\begin{gathered} \text { Num- } \\ b e r \\ \hline \end{gathered}$	$\left\{\begin{array}{l} \text { Num } \\ 0.6 e r \\ 0: 008 \end{array}\right.$	$\left\lvert\, \begin{gathered} N u m- \\ \text { ber } \\ 60 \end{gathered}\right.$	$\begin{aligned} & \text { Num- } \\ & 0.0 \mathrm{ct} \\ & 0.09 \end{aligned}$
Thysanuta	$\stackrel{3}{4}$. 003
Otubopters.			1		2	----					3	. 004
Corrodentia.	7				1						8	. 01
bpbomertptera	2		2				1				5	. 007
Thysazoptert	${ }^{6}$								1		7	. 01
Eeteroptera	115		45	, 30	12	. 10		. 02	5		178	. 26
Fiomoptera	${ }_{680}^{521}$	3.13 4.09	198	1.33	88 28	. 70	34 12	. 28	14	- 12	855	1.28
Coleoptera	680 8	4.09 .05	320 3	. 81	26 5	. 21	12 3	. 102	16	${ }_{\text {- }}^{\text {. } 14}$	854 36	1.20 -
Lepidoptera	105	. 63	31	. 21	5	. 0 í	2	. 02	7	. 00	150	. 22
Hymenopt	101	+ 61	4	.3)	10	. 13	4	. 03		. 08	177	. 26
Diptera.	768	4.74	314	2.11	130	1.04	12	. 51	37	. 32	1,331	1.88
Unrecognizable	181		68		20		10		13		292	
Totni.	2,548	15.31	853	5.73	314	2.52	130	1.11	102	. 89	3,835	3.83
Total collecting minutes	1,664		1. 488		, 248		1,225		1, 165		6,700	

From the number of minutes flown and the average speed of the several planes used, it is estimated that approximately 88,827 miles were flown in the actual exposure of the screens in Louisiana. If the flights are reckoned from taking off on a collecting trip until landing, a distance of six times the circumference of the earth, or more than 150,000 miles, was flown in collecting insects.

THE COLLECTING GROUND

Tallulah, La., where most of the fying was done, is located in the lower Mississippi Valley and is from 80 to 85 feet above sea level.

The terrain in the vicinity of Tallulah is almost ideal for collecting insects. In Madison Parish alone there are approximately 80,000 acres of land in clearings and in cultivation, with nearly four times as much, or over 300,000 acres, covered with swamps and forests. Viewing the country from an airplane at a high altitude, one notices little of the cultivated areas, but the eye follows extensive forests. They extend for 150 miles in a contiuuous line north and south, and run part way across the State enst and west. Much of the swamp country is almost impenetrable, with great forests bordering many hundreds of small lakes, bayous, and rivers, lined with enormous cypress trees from which great festoons of Spanish moss hang down to the water's edge (pl. 1, A). The entire section is intertwined with bayous, which serve as the natural drainage canals of the region (fig. 1). The many lakes and swamps (pl. 1, B) are mostly connected with bayous, which finally empty into small rivers and thence into the Mississippi. In Madison Parish alone there are more than 60 lakes. This section is still an important logging center. Onc reservation, part of which is in Madison Parish, covers over 80,000 acres of forests and contains cypress, gum, ash, and oak.

Following the main highways through Madison and adjoining parishes, are located the clearings, and the land planted in cotton. The soil is rich and crops grow luxuriantly.

AIRPLANE INSECT TRAPS

Several types of insect traps were devised and used in making the collections of insects in the upper air. The original trap, as designed by the writer for use on a JN6H army primary training ship, was constructed on the principles of a plate bolder for a camera. It consisted of five screen-covered frames for catching the insects, with two suitable compartments or magazines for protecting the screens before and after exposure. The compartments were made of aluminum, covered with tin, and reinforced with wood. The trap was smaller in size, although heavier than those developed later. Refinements in construction, manipulation, and adaptation for use on different types of airplanes were made from time to time, but the basic principles remained uncbanged throughout the work. In order to increase the strength to resist the tremendous air pressure and to reduce the weight, the compartments in later models were made of steel tubing, welded together and covered with airplane fabric. The later models were further simplified so that only one compartment was needed.

Only one trap was used on the nirplane during 1926 and 1927. Later two improved traps were installed between the wings of a biplane. These traps were used on four differont DoHfaviland H1 army biplanes. The two insect traps were placed either between the wings of a biplane or under the wing of a monoplane (pl. 2, A), one on each side of the fuselage (pl. 2, B). The wing structure, as well as the supporting struts, had to be made stronger than is customary for ordinary flying to compensate for the added wind pressure. When it became possible for the Bureau of Entomology to purchase a specially designed airplane for insect collecting, the late Eddy Stinson came to Tallulah
and studied the insect trap construction. He then returned to his factory at Detroit and built a Stinson Detroiter SM1 monoplane (pl. 2, $B)$, in which special attention was given to the wing structure and the supporting struts. In 1930 a T'ravelair 4,000 biplane (pl. 3, B) was secured on which two of the last-model single compartment traps

Figore 1.-Map of the country around Tallulah, lau., showing the refation between the cultivated areas and the swamps and matural drainage elmanels.
(pl. 3, A) were used. This type of trap was adapted for use on the leading edge of the lower wing by Pilot G. C. McGinley. It differed from the ones previously used in that the exposed trays were pulled back to the original compartment by a mechanism controlled by a single wire to the cockpit. The screen truys, or traps proper, are steel tubing frames fitted with a fine-mesh copper screen. In all of the types of airplane insect traps used, five screens, each 1 square foot in size, were used.

OPERATION AND EFFICIENCY OF THE TRAPS

The manipulation of the two-compartment trap is as follows: The unexposed screens are placed in compartment a (pl. 2, A). A steel wire runs from each screen, through guides, to the rear cockpit. When a desired altitude is reached, screen No. I is pulled into the open portion of the trap (b) and exposed for the desired length of time, then pulled into compartment c, where it is protected from further exposure. The remaining four screens are cach exposed in the same manner. In the single-compartment traps (p). 3. A) the screens are pulled back to the original ompartment. The ends of the frames of the sereens are

Figure 2.-Record chart, showing the data recorded for one of the fights made on May 26. 1930. Records such as these were kept of each fight on which insect collections were made by airplane in the upper air. The insects collected at each altitude were kept separate nfter removal from the sereens, and identified later.
made to fit snugly, and they completely close the opening to the compartment. In this way insects were prevented from entering until the desired elevation had been reached, and this eliminated the possibility of picking up insects as the airplane was ta: ng off or landing.
The screcns were covered with a thin coating of adhesive to retain the insects that came into contract with them. This adhesive is made of a saturated solution of castor oil and resin. If the adhesive is not thin enough and is not spread over the surface properly, the air will not pass through the mesh, and thus will couse many of the insects to be carried over or under the exposed tray. The period of exposure and rate of speed were standardized, and all records are based on the catch of one screen exposed for 10 minutes at a known speed. The insects were removed immediately after each flight, and placed in small vials, properly labeled according to time of collection and altitude (pl. 4, A and B). Special flight record sheets (fig. 2) were used on which to enter all the dato for each fight.

 - "

Tech Bull. 673, U. S. Dept. of Agrieulure

A, A single-compartment insel trap ablapted for use on the leating efore of the
 insect lonjas.

A, Removing insects from the sereens after the hatding of the airplane. On account of the low temperatures experienced at high altitudes heavy fying suits are neeessary. B, lemoving insects from the traps after a night fight. Certaits insects are found in the air only at night.

None of the specimens collected could have been carried up by suction caused by the ascent of the airplane, for the effect of the air blast from the propeller is to blow through the airplane and dowaward during ascent, as is evidenced during airplane dusting. The air is forced downward behind the airplune, and when the airplane is "chocked" and stationary, with the engine runving, the force of the air blast is as great as the driving speed of the propeller.

Unquestionably some insects were carrie nway from the screens by swirl currents set up by the resistance of the screen in its passage through the air. It is probable that the weight and bulk of the insect affected this factor considerably, those insects of light weight (with a high aerostatic coefficient) probably being carried past the screen in a greater proportion to their total numbers than was the case with the heavier species. So far as is known there is no way of even approximately evaluating actual conditions.

Most of the insects were completely smashed by coming into contact with the screens at high speeds, and in most cases it nould not be deternined whether they were alive or dead when caught. Yet, surprisingly enough, some of the delicate, soft-bodied insects (such as Diptera and aptids) were alive and in fair condition when removed. These battered specimens, often covered with adhesive, were difficult to determine and only the taxonomists' keen interest in the work enabled deternunations to be made as to species in many cases.

The skill of the pilots who flew the collecting airplanes is evidenced by the fact that no fatalities occurred. For 5 years flights were made in all kinds of weather, and many of the night landings were made on an improperly lighted airficld by the aid of automobile lights. During 1930 and 1931, however, the airfield was equipped with standard lighting equipment, including a beacon, a powerful floodlight, and border lights. The airplanes were also equipped with landing lights as shown in plate 4. There were many forced landings, and several airplanes were "washed out." Only one major accident occurred, when a forced landing resulted in the destruction of the craft and injury to both the pilot (McGinley) and the writer. Such mishaps must be expected in a more or less hazardous undertaking.

SEASONAL DISTRIBUTION OF INSECTS

In order that insects could be rollected in every month, it was most important that the flights be made in a recion where they were active throughout the year. As far as 100 miles or more north of Tallulab many species of insects are more or less active during every month of the year. Accordingly, every month was represcnted in one or more years during the $\overline{5}$ ycars of Ijying to collect insects.

There is an abundance of data on the sensonal distribution of insects as they occur on the surface, but as to the height to which they fly, or at which they may be found from month to month, very little has been known, It is ot interest as well as of economic and scientific importance to know at what heights insects may be found throughout the year'. These altitudes depend to a great extent on weather conditions, which are considered under a later hending.
Including all altitudes, in the daytime the greatest numbers of insects per 10 minutes of collecting were taken in May, with November and September following. The fewcst insects were taken in Junuary and December (tables 4 and 5). In the night flights the greatest
numbers were taken in October, followed by May. No night flights were made in January, February, or March (table 6).

Table 4.-Insects, spiders, and mites collected by airplane in the daytime according to the arders and months of year at all altifudes, Tallulah, La., 1926-81

Order	$\begin{gathered} \text { Jamut } \\ \text { ary } \end{gathered}$	$\begin{aligned} & \text { seb- } \\ & \text { ra- } \\ & \text { nry } \end{aligned}$	Maxe	${ }_{\text {Al }}$	May	Yune	Juy	$\underset{\text { gust }}{\mathrm{Au}}$	$\begin{aligned} & \text { Sep- } \\ & \text { tem- } \\ & \text { ber } \end{aligned}$	Octo ber	Nober	Decem: ber	Total
Arameicha	$\left.\begin{gathered} \mathrm{N}_{1} \mathrm{bm}- \\ \text { ber } \\ 126 \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{gathered} N u m \\ \hline \\ \hline 77 \\ \hline \end{gathered}\right.$	$\begin{gathered} \text { Num- } \\ \text { ber } \\ 80 \end{gathered}$	$\begin{gathered} N u m- \\ b e r \\ 144 \end{gathered}$	Num. ber 132	$\begin{gathered} \mathrm{Num-} \\ \text { ber } \\ 147 \end{gathered}$	Number	$\begin{gathered} \text { Numl- } \\ b e r \end{gathered}$	$\begin{gathered} \mathrm{Num} \\ \mathrm{bef} \\ 132 \end{gathered}$	$\begin{gathered} \text { Num } \\ b e r \\ 184 \end{gathered}$	Number 119	$\begin{gathered} N u m s- \\ b e r \\ 10 \end{gathered}$	Number 1, 401
Acarina..		8	16	16		,	2				19		
Thysanara	2		10	6		3		2	1	2	3		34
Ortemboia		1	2	5		4	1	1		2	1	1	28
Orthopter						2	1	2	2		1		13
Corrodentia	1	3	5	11	16	6	0	2	1	5	8	6	70
Ephemeropt				1		2	1		1				
Tiysemopter			1	1	9	5	3			2			21
Homoptera	20	74	2\%2	322	425	-34	117	245	578	482	270	65	3,078
Heteroptera.	44	30	73	89	138	150	97	${ }_{4}$	130	143	4 4	46	1,080
Colcoptera	85	200	182	484	377	374	296	336	422	256	196	78	3,568
Neuroptera-				1	2	1		3	2	$\stackrel{1}{1}$			10
Mecoptera										2			3
Eepidoptera	1	1	1	3		5	6	0	28	20	5		35
Hymenopte		10	123	262	447	368	427	326	398	288	01	25	2,770
Diptera	248	407	658	1,104	1,493	1,420	881	959	1,239	933	325	206	8,973
Unrecognizable	66	65	112	250	389	342	251	298	410	20	115	39	2,500
Tota	609	876	1.809	2, 727	3, 4, 4	3.099	2,208	2,358	3,347	2,488	1, 183	008	24,784
Tolal nying time, minutes.	2, 897	3, 0.42	$4{ }_{4} 305$	0,025	5,209	5,973	5,022	5,649	6, 286	4, 732	1,984	14	293

Tabee 5.-Spiders and insects of the important orders taken per 10 minules of flying time by daylight in the difforent months of the year, Tallulah, La., 1926-31

Month	Araneida	Momop- Lera	Heteroptera	Coleontera	Liymenoptera	Digtera	Total insects, including other orders	Total flylng time
	Number	Number	Number	Number	Number	Nramber	Number	Minutes
Innuery	0.42	0.07	0.15	0.32	0.62	0.83	2.03	2,962
February	. 25	. 24	. 10	. 06	. 03	1.34	2.88	3,042
March.	. 18	. 56	.17	1. 12	. 28	1.58	4.20	4,305
April.	. 24	. 53	.15	. 80	. 43	1.83	4.53	6,025
May	. 25	. 82	. 27	. 72	. 86	2.87	0. 55	5,209
June.	. 25	$+40$. 25	. 63	. 61	2.38	5.19	5,973
July.-	. 18	. 23	. 18	. 53	. 85	1.65	4.52	5,022
August.	. 14	. 43	- 18	. 50	. 58	1.70	4.17	5,649
September	. 21	. 82	. 21	. 67	. 63	1.97	5. 33	0,288
Oetober.	+28	1. 02	. 30	. 54	. 61	1.97	5. 20	4,732
Novenher	- 60	1.36	. 24	, क	. 48	1.64	5. 06	1,984
December.	+68	. 27	. 18	. 32	11	.85	2.52	2,414
Total.	. 20	. 67	. 20	+ 66	. 52	1.86	4.62	53,633

At the altitude of 200 feet the greatest numbers were taken in May and the next greatest in November. The smallest numbers were collected in January and the next smallest in December.

At the altitude of 1,000 feet the muximum numbers of insects were collected in November, with slightly fewer in May; the fewest were found in January and December.

At the altitude of 2,000 feet the greatest numbers of insects appeared in May with slightly smaller numbers in October, and the fewest in January and February.

Table 6.-Spiders and insecis of the important orders caught per to minules of fying time at night, arranged by months, Tallulah, La., 1926-91

Month	Aranetda	Ho moptera	Ineterojutera	Coleoptera	Lepidop. tera	Hy-menopters	Diptera	Total insects, including other orders	Total fiylng time
	Number	Numor	Number	Number	Number	Number	Number	Numbet	Minutee
April.	0.33	0.55	0.11	0.22	0.22	0.22	1.78	3.58	90
May.	. 10	1. 24	. 18	2.40	. 08	. 36	3.12	8.30	500
June.	. 09	. 51	. 16	. 97	. 66	. 12	1. 63	4.13	1,175
Juy.		. 24	. 17	. 84	. 10	. 12	. 93	284	805
Aumust.	. 05	. 73	. 23	1.14	, 10	. 21	1.55	4.53	3, 638
Septembe	. 11	2.02	. 80	1.29	. 32	. 27	1. 70	6.33	1.457
October	. 13	4.04	.74	2.16	. 77	. 68	5.32	14,92	700
November	. 22	. 51		. 91	. 08	. 11	. 09	2.94	275
December	0	0	0	0	0	0	0	. 13	150
Tho above 8 montbs.	. 09	1,26	. 26	1.26	. 22	. 26	1.96	5, 83	t, 780

At 3,000 feet the most insects were taken in October and September, and the fewest appeared in January, February, and December.

At the 5,000 -foot altitude the peak of abundance of insects appeared in September. Nearly twice as many insects were taken in this month as in June, in which the next highest numbers were collected. The smallest numbers of specimens were found in December; and next to the smallest in January and February, in which months approximately equal numbers were collected.

In every month of the year, for the day collections, the order Diptera led in numbers taken (table 5). The other orders represented in the collections varied considerably in numbers with altitude and season. Many species were found in every month of the year.
The months in which the maximum and minimum numbers of insects were taken varied somewhat from year to year during the 5 years. The peaks of abundance were usually at about the same time each year, as were also the low catches, but in 1929 the greatest numbers were collected in September with a minor peak in June, whereas in 1930 and 1931 the maximum numbers were taken in May. The variation in the monthly maximum and minimum occurrences of insects for each year may be assigned to differences in the weather. The meteorological factors are discussed later.

The numerical abundance of the orders as they occur in the day collections for the various months are shown in table 4, and the figures in table 5 give the number per 10 minutes of flying.

Araneida were most abundant in November and December, with slightly more in November (table 5). The fewest specimens were tolken in August. At the altitude of 1,000 feet most spiders were collected in November, and at 2,000 feet more were taken in December.

Homoptera appeared in greatest numbers in Novamber (table 5). Fewest were found in January. During the summer the fewest specimens were collected in July. At the altitude of 2,000 feet the maximum numbers were taken in October and the fewest in fanuary, and for the altitudes of 3,000 and 5,000 feet the most Homoptera were collected in September.

Heteroptera were found in greatest numbers in October, and fewest in February. At the altitude of 1,000 feet more specimens were collected in November and fewest in January. At altitudes above 1,000 feet the numbers taken varied considerably.

Coleoptera were at their maximum abundance in March, with a few less in November, and fewest in January and December. At the altitude of 2,000 feet the greatest numbers were collected in. May, June, September, and October, with about equal numbers for each; and the fewest were taken in January, February, August, and December. At 3,000 feet Coleoptera were most abundant in June and October, and at 5,000 feet in Junc and September, with more in September.

Hymenoptera appeared in maximum numbers in May and July, about equal numbers having been taken in each of those months. Fewest Hymenoptera were foum in January and February. At 1,000 feet Hymenoptera were most abundant in May and October, with a drop for the summer months in August. At 5,000 feet most specimens were taken in June, and no specimens in January, February, or November.
Diptera were most abundant in May and were fewest in January and December. At the ratitude of 3,000 feet they were most abundant in April, May, and June, with about equal numbers for each of those months. In July and August there was a decided drop in the numbers taken at 3,000 feet and the lowest number was taken in February. At 5,000 feet Diptera appeared in gratest numbers in September, with the next highest zumbers in June and the fewest in December.

Thysanoptera were collected mostly in June. Isoptera were taken only in the months of April and May, and too few specimens of the other orders were taken to justify comparative estimates.

In the night collections the Homoptera appeared in greatest numbers in October. At the altitude of $\overline{5}, 000$ feet, Homoptera were taken only in the months of August, September, October, and November.

Heteroptera were collected at night mostly in October. At the altitude of 3,000 feet thry were found only in July and Augustand at 5,000 feet in August and September.

Coleoptera were taken at nipht in groatest numbers in May, with slightly fewer in October. They felli of considerably during July. At the altitude of 1,000 feet most specimens of Coleoptera were taken in May, August, and October, and at 2,000 feet, in May and October, with more in October.

Hymenoptera were collected at night mostly in October, with the next highest numbers in May.

Lepidoptera were most abundant in October at all altitudes.
Diptera were most abundant at night in October, with May second in the numbers taken. There was a decided drop in July. At 3,000 feet most specimens appeared in May, and at 5,000 feet most in October.

ALTITUDINAL DISTRIBUTION OF INSECTS

Twenty-four different altitudes, ranging from 20 to 16,000 feet, were flown. Six altitudes were used in the systematie studies, these being $200,1,000,2,000,3,000$, and 5,000 feet for the daytime, and 500 , $1,000,2,000,3,000$, and 5,000 feet for the night collections.

DAY COLLECTING

The numbers of insects collected in the daytime and arranged according to orders and altitudes are given in table 1. Eighteen orders of insects and the orders of spiders and mites were taken. Fourteen
thousand feet was the highest altitude at which insects were taken, there being five Homoptera and two Hymenoptera collected at this height. The highest altitude at which any specimen was taken was 15,000 feet, at which one spider was caught on the screen. Had more flights been made at these higher altitudes more specimens would

Figune 3.-Average numbers of insects of the important orders eollected by airphane in 10 minutes flying by day at the indicated altitudes.
doubtless have been taken, but because of the difficulty in climbing, the time and expense involved, the types of airplanes used, and the air resistance offered by the insect traps, high altitudes were difficult to attain, and only one flight of 5 minutes was accomplished at 16,000 feet.

The comparative abundance of various orders according to altitudes may be learned from figure 3 . Only the orders Homoptera, Heteropfera, Coleoptera, Hymenoptera, Diptera, and the order of spiders
(Araneida), are covered in the studies of these systematic collections, as too few specimens belonging to the other orders were collected upon which to base conclusions. In every flight made the screen was exposed for a period of 10 minutes, the comparative estimates being based on this period.
At the altitude of 200 feet the order Diptera led in numbers of specimens taken (5.03), with Coleoptera (2.20), Hymenoptera (1.60),

Figure 4.-The average mumbers of insects collected by airplane in 10 minates of flying at altitudes of from 200 to 3,000 feet by day, and from 500 to 5,000 feet by night. Talhulah, La.

Homoptera (1.46), Araneicla (0.61), and Heteroptera (0.54) following for the average period of 10 minutes of flying time.

At the 1,000 -foot altitude the orders appenred in the following sequence: Diptera (1.96), Homoptera (0.57), Coleoptera (0.51), Hymenoptera (0.50), Araneida (0.36), and Feteroptera (0.21).

For the altitude of 2,000 feet they were as follows: Diptera (1.05), Homoptera (0.37), Hymenoptera (0.24), Araneida (0.23), Coleoptera (0.16), and Heteroptera (0.11).

At the altitude of 3,000 feet Diptera led with 0.58 specimen taken, followed by Homoptera (0.28), Hymenoptera (0.11), Coleoptera (0.09), Araneida (0.09), and Heteroptera (0.06).

For the altitude of 5,000 feet the orders were Diptera (0.29), Homoptera (0.10), Hymenoptera (0.06), Coleoptera (0.05), Araneida (0.04), and Heteroptera (0.02).

The average number of Diptera taken was 1.80 , with Coleoptera following with 0.62 specimen taken in a period of 10 minutes flying. The other orders came in the following sequence: Homoptera (0.56),

Hymenoptera (0.51), spiders or Araneida (0.27), and Heteroptera (0.19). These estimates are for day collections only, at the altitudes of $200,1,000,2,000,3,000$, and 5,000 feet.

When the total numbers of insects at the altitudes of from 200 to 5,000 feet, inclusive, for daytime collecting are considered, there is found a regular decrease in the numbers taken for cach ascending altitude. The comparative numbers taken in 10 minutes of collecting, according to the altitudes are as follows: At 200 feet, $13.03 ; 1,000$ feet, $4.70 ; 2,000$ feet, $2.41 ; 3,000$ feet, 1.35 ; and 5,000 feet, 0.64 (table 2 and fig. 4).
The altitude of 20 feet was as low as any flights could be made with safety, and then only under the best of flying conditions. It is interesting and of value to know the comparative abundance of insects to be found in the air from a very few feet above the ground to greater levels, or to the altitude where our flight studies began. To determine this near-the-surface insect population of the air an oxperiment was conducted by G. L. Smith in 1930 and 1931.4 The staviard 3- by o-foot sticky screens were placed on a towerlike stairway with 3 -foot intervals between each elevation of these screens, making the height of the screens above the ground as follows: $3,9,15,21,27,33,39,45$, 51 , and 57 feet, with the bottom of the first screen 3 feet above the ground as in the ficld flight screen studies. There were 420,468 insects taken on these screens during the period from August 1 to November 14, 1930. Approximately one-fourth of the total collection were taken from the screen that was 3 feet above the ground. This number is twice as great as that taken from the next screen, which was 9 feet above the ground, and moro than five times as great as that taken from the highest screen, which was 57 feet above tlo ground. The number of insects taken from the screens at intervening elevations diminished gradually from the 9 -foot elevation to the 57 -foot clevation.

From the average speed of the airplane, the area of the exposed sercen, and the number of minutes of flight at each altitude the average insect population of the air was determined as shown in table 7 .

Thale 7.-Average density of the inscel propulation of the air at various altitudes, Tallulah, La., 1926-81

Of course theme were limes, as during the dispersal flights of termites or maptin flights of ants or bees, when the numbers of insects for any given volume of an was considerably greater.

[^2]
NIGHT COLLECTING

The altitudes flown at night were $500,1,000,2,000,3,000$ ，and 5，000 fect．Five humdred feet was considered to be the lowest altitude safe to fly at night．More insects were collected at night in propor－ tion to the amount of time flown than during the dry，the figures being 5.53 per 10 mimutes of flight，as against 4.62 for the day．There were，however，only 12 recognizable orders of insects taken at night as compared with 20 orders of insects and mites taken in the day flights（tables 1 and 3）．The orders of inscets not represented in the night collections were Collembola，Isoptera，Odonata，Trichoptera， Mecoptera，and Siphonaptera．Even in the day flights，only a few insects belonging to these orders were takon．

At $1,000,2,000$ ，and 5,000 feet more insects wele taken per 10 minutes at night than during the day，but at 3,000 feet there were fewer insects taken than in the day collections．The actual numbers taken at night at the altitudes of 3,000 and 5,000 feet，however，are so small as compared with the day collections that great significance cannot be placed upon the figures．Wingless forms could not，of course，attain any height at night，since the general convectional movement of air at night tends to be downward rather than upward． Thas the few spiders and others wingless forms that were in the upper air would tend to come downat night．Table 7 also shows the approx－ imate number of eubic feet of air per insect at night．

NOTES ON THE INSECTS COLLECTED

A discussion of each order is given with notes on the more interesting and the economic species taken．There were represented in the col－ lections taken in the upper air 18 insect orders，and the orders of spiders and mites．Of the total of 28,739 speeimens collected in Louisiana there were represented 216 families， 824 genera， 4 new genera， 700 species，and 24 new species（table S）．The insects are shown in detail in tables 9 and 10 ．

Table 8－－Insects，spiders，and mites collected by airplane according to the orders， families，genera，and species，Tallulah，La．，1026－31

	すクロない 1aker	Fandifex	Duterminet benera	$\begin{aligned} & \text { Now } \\ & \text { rumern } \end{aligned}$	Determintrd sjecties	Nex species
Arsnejda．	Number I． 1161	Nitmber 10	Anmber	Fiamict	Ntimber	Alamber
Acarina．．．．．．．．．．．－．．．－．－．．．．．．．．．．．．．．．－	4i ${ }^{1}$ ．	2！				
Thysomurn－－－－－－．．．－．．．．．．．．．．．－	40	2	1		t	
Collembilin ．．．．．．．．．－．．．．．．e．．．	241	3	7		4	
Orlhoptera．－．．．．．．－．．．．．．．．．．－	16：	4	1	．．	5	\cdots
Corrodentif．．．．．．．．．－．．	T	4	\cdots	\cdots	${ }_{i}$	\cdots
Isoptera．．．．．．．．－．－	1511	I	1		I＇	．．
Ephamaerojoterg．．．．．．．．．．．．	111	1	3		，	\cdots
Odonutn．．．．．．．．．－．－．	21	$\underline{2}$	if	＊	4	\cdots
Thyrsinaptera ．．．－．	3	$\stackrel{1}{2}$	12	－	1.5	
Heleroptra ．－．．．	1．254	19			成	
Bormaptern ．－．．．．．．．．．．．	3．4311	！	83	．	kid	a
		［1：	191		175	
Neuroptera．．．．．．．．．．．．．．．	31 i	1：	4.		${ }_{6}^{1718}$	－－
Trichophersta－	3	1	1 i		1	－
Mecophern．．．．．．．．．．	3 ：	1.	1	．	1	－
Lepirlophera．．．．．．．．．	星	26	；is	－	32	$\cdots \cdots$
Hymenoptera．	13． 174	\％	4	t	195	3
Diptera． Siphunatar	17， $3 \mathrm{~L}: 4$ ！	ifi_{1}	12.1		9	
Siphomaptera．． Tarecournizable．		1	1		J	
（mrror	2.42		－．			
Total．	24．701！	$215 ;$	82.1	4	7 m	4

Table 9.-Insects, spiders, and mites collected by airplane, according to altitudes, Tallulah, La., August 1926 to October 1981, inclusive

1 See table 10 for details.

Table 9.-Insects, spiders, and mites collected by airplane, according to allitudes, Tallulah, La., August 1926 to October 1991, inclusive-Con

Order, family, genus, and specios

Aranolda-Continued
Liny phifidat:
Microneta meridionalis Crosby and
Microneta meridionalis Crosby and
Bishop (young).
Microneta zonaria (Kevsering) (M. micarial.
Sicronta micaria (Emerton).....................................
ilficroneta sp.
Micronetasp. (femalas).
Vicroneta sp, (younte).
Erigone aulumnalis Emerton.
Erigone barrou'si Crosby and Bishop Erigone sp.
Erioone Sp. (fumales) Erigone sp. (tumales)
Erigonene, thoung --...........
Erigoneac, undetermined sp. (female) Erigoneae, undetermined sp. (young) Pelecopsis moestum Banks (remale)...
Linyphia commumis Hentz.
Linyphia conmunis Hentz (young)
Linyphia coccincu Hentz
Cinyphia sp.
Linyphindae undetermined spp

rgiopidae:

Arancus stellatus Walckenaer..........
 Tetragnalha sp
Tetragnatha sp. (young)
Afangora placida lientz..
Mimognatha fori SrcCook.....
Argiopidae, undetermined spp
Arkiopidae, undetermined spp. (young)

A isumenima mdeternimed sin.... Thomisi lae undeternined spu
 isuridne:
Dotomeacs sp.
Clublonidue:
Castaneirasp andeterminedspa Lycosidae:
\quad Lycosa sp
Lycosa spl (roming)
Piratasp
Piran sp. (goung).............................
Pardosa sn-
bycosidae, undetermineil sury
Lycosidae, undetermitned spp. oxyopidne:

Peutectia sp
Oxyopes sp.
Oryopes sp) (young)................................... Salticidne:

Synemosyan formica Hentz.
Waln paluaram Hentz
Phidinnts purpuratus Keysuring
Phidippts pur
Phidppus sp.
Dendruphnute rapitatur (ifentz)
Dendryphattes sp
Snlticidus, mbletermined sp,
Salticidne, urdedermined sp. (young)
Araneidh, unrecognizathes. (young)
A raneldn, unrecognizaline spp.
Total
Acarima:
Parasilinae (ombetermined nymph)
Parasitidne, undefermined spp, (females) Parasitidne
Oribatidne

Acarim. undetermined spp
A carima (undetermbind nymph)........
Total \qquad

Table 9.-Insects, spiders, and mites collected by airplane, according to altitudes, Tallulah, La., Augusi 1996 to Ociober 1981, inclusive-Con.

Acrididae:
Melanoplus femur-rubrum (DeGeer)
 celanoplus femur-rubrum (Deqeer) (female)
Tettioidea acidu Morse (famale) Teltividea lateralis (Say) (unle) Phasmidae (undetermbed nympla) Orthoptern, undetermined spp....

Total.
lsoptera:
Permitidae:
Reticulitermes rirginicus Bauks
Corrodentia:
Psocidae:
Psocus inornatiss Aaron
Lachesilla pedicutaria (Linaueus)
Lachesilla sp...........................
Ectopsocus pumitio (Banks)
Beripsocus pumilis (Banks)................ Elipsocius sp

Atropidae:
Trogiam pulsutorium (Linnaeus)
Troctes divinatorius (Mfueller).
Troctes sp..
Total.
Ephemeroptera:
Baetidae
Caenis hilaris (Say).
Caenis sp.
phemeridae:
Ephemera sp
Ephemeronters
Total
Odonata:
Libellulidae:
Perithemis enera (Say)
Perithemis ienera (Suy)...
Pachydiplax longipennis (Burmeister)-
Anisoptera, undetermined sp..........

Table 9.-Insects, spiders, and mites collected by airplane, according to altitudes, Tallulah, La., August 1926 to October 1991, inclusive-Con.

	Totalinsects taken		Collected at altitudes of-																	
			20	50	100	200	300	400	500	600	1,000	feet	2,000	. feat	3,000	feft	0	5,000	feet	Over
			(day)	(day)	(day)	(day)	(day)	(day)	(night)	(day)	Day	Night	Day	Night	Day	Night	(day)	Day	Night	(day)
Odonata-Contiuued.					Num-	Num-	Num-	Num-												
Coenagriunida: Enallagina sp-	ber	ber	ber 1	ber	ber	ber	Ver	ber	Niem	Num-	Num-	${ }_{\text {Ner }}$	$\begin{array}{\|c\|} \text { Num } \\ \text { ber } \end{array}$	$\begin{gathered} \text { Num } \\ \text { ber } \end{gathered}$	${ }_{\text {Num }}^{\text {Num- }}$	${ }_{\text {Num }}^{\text {ber }}$	$\underset{\text { ber }}{\mathrm{Num}}$	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	Num-	$\underset{\text { ber }}{\text { Num- }}$
Anomatagrion hastatum (Say).........-	6		1			2					3									
-						3									1		------			
Total.	21.		2			12					6	-------			1					
Thysanoptora:																				
Sericothrips, close to variabilis Beach.		1																		
Frankliniella trilici (Fiteb)	19	5				8			5	-...-	4				4			1		1
Thrips (Microcephalothrips) abdomina-	6					2					2		2							
	2												2							
Phlaeothripidae:											1									
- Hoplandothrips pergandei (Hinds)	1					1														
Neurothrips magnafemoralis (Hinds)---	4					4														
Leptothrips mali (Fitch)---------	8		1			4							$\underline{2}$							--------
Elaphrothrips tuberculutus (Hood)....-	5					4					1									--...-
Liothrips caryae Fitch.	1					1														
Lothrips castaneae Hood?	12		1			7					4									
Liothripe citricornis (Hood)	5					1														
Liothrips sp......---......	4					2					3		1		-----			-		
Haplothips graminis Hood.....	5					1									2			1		1
Tubulifera, undetermined spp....	1					1														1
Lhysanoptera, undetermined spn ..---	11	1				6			1		1		2		1			I		
Total.	91	7	3			44			6		21		10		8			3	1	2

Cydnidao:
Amnestus pusillus UhlerAllocoris (Thyreocoris) pūlicaria (Ḡermar).
Galgupha aterrima Malloch
Cydnidac, undetermined sp.................
Pentatomidae
Trichopepla semicitatla (Say) Mormidea lugens (Eabricius) Solubca pugnar (Fabricius) Bymenarcys neroosa (Say)
Banasa dimidiata (Sav) Podisus maculiventris (Say) Coreidae:

Acanthocephal 1 terminalis (Dallas) Anasa armigera (Say)
Harmostes reflexulus (Say)
Corizus hyalinus (Fabricius)
Corizus sidice (Fnbricius)
Jadera haematoloma (Herrich-Schaer-
Coreidne (undetermined adults) Coreidae (undetermined nyinphs) --
Aradidac:
Aradus falleni Stal
Aradus sp.
Wezira granulan
Neididae:
Alinisus mullispinus (Ashmead)
Lygucidsus spinosus (Say)
Oncopeltus fasciatus (Dallas)
Ljoacus bicrucis Say
Ortholomus scolopax (Say)
Nysius californicus Stal
Nysius californicus Stal
Nysius ericac minutus Uhler
Belonochilus numenius (Say)
Ischnorhynchus resedae (Panzer)
Ischnorhynchus championi Distant.....
Cymus angustatus Stul
Cymus virescens (Fabricias) (brevicens
Blissus leucopterus (Say)
Geocaris punctipes (Say)
Geocoris bullalus (Say).
Geocoris uliginosus (Say) -...................
 Heraeus plebrjus Stál.
Perigenes constrictus (Say)
Orthaea bilobata (Say)
Orthaea basalis (Dallas)

	$\underset{\text { Taken }}{\text { Totalinsects }}$		Collected at altitudes of																	
Order, family, genus, and species			20	50	100	200	300	400	500	600	1,000	feet	2,000	feet	3,000	feat	4,000	5,000	feet	Over
			(day)	(day)	(day)	(day)	(day)	(day)	(night)	(day)	Day	Night	Day	Night	Day	Night	(day)	Day	Night	$\begin{gathered} \text { feet } \\ (\mathrm{day}) \end{gathered}$
	Num-	Num	Num-	Nuin	Num-	Num-	Num-	Num-	Num-	Tum-										
Heteroptera-Continued. Lygaeidae-Continued.	ber	ber	ber	ber	ber	ber	$b e r$	ber	ber.	ber	ber									
	17					1														
Antillocoris pallidus (Uhler)	51	19	-		i^{-}	24			17			i	5		4		1	1	i	
Antilocoris pallidus (nymphs)	2					2														
Aphanus umbrosus (Distant)	1					1							1				1			
	1					1														
Lygneidne, undetermined spp Tfngitidae:	2			1		1														
Piesma cinerea (Say) -...............-	1					1.														
Corythucha pergandei Heidemann....--	1					1														
Corythucha spp. Gargaphia smori-..- (W)	25		2			13			1		4	\cdots	3		3					
Gargaphia amorphae (Walsh) Gargaphia spp.	2					------					1		1							
Physatocheila sp	1	1		-...--					1		2		----1							
Leptoypha sp--7.-.-.-...-	1					1							1							
Enicocephalitae: Tingitat ${ }^{\text {a }}$,	8					3					2		1		2					
Systelloderus biceps (Say)	21	1	$\underline{2}$			0			1		7		2		3					
Reduviidae: Zelus cervicalus Stål.															3		--..-	1		
Atrachelus cinereus (Fabricius)	1					1														
Hebridae:																				1
Hebrus (Naeogeus) consolidus Uhler----	1					1														
Flebrus spp Mesovelidae:	7					5					1		i							
Mesoreindae: Mesovelia mutenti White-	1					1														
Nabidae:																				
Nabis sordidus Reuter.-	1	1							1--	1									
Nabis roseipennis Reuter-	1	3							2		1			1						
Nabis sp..	1										1									
Anthocoridae: Orius (Triphleps) insidiosus (Say)																				
Miridae: (Tripheps) insidiosus (Say) --..-	214	7	13			117			5	-.----	48	2	20		11			3	-----	2
Trigonotylus breviceps Jokowlet.		1							1											
Trigonotylus sp.-	10	8	2			8			5		1	2		$1-$						1
Platytylellus sp..................	2					2														1

Adelphocoris rapidus (Say) Polymerus basalis (Reuter) Polymertts Sp.
Lyous pabulinus (Linnaeus) Lyous apicalis Fleber
Lyous pratensts (Linnaeus) (adints) Lygus pratensis (Linnacus) (nymp) Lyous pratensis virr oblineatus (Spy) Lyous pratansis var. oblineatus (Sny) Dyous spp--
Deraeocoris
Psallus seriatus Reuter (adults)
Psallus scriatus Reuter (nymphs)
Pa sallus spp.
Chlamydatus stavis (Reuter)
Chlamydatus spp...............
Curtopeltis tarians (1)istant)
Cereatocapsus a picalis Knight.-........-
lagiognatus sp.-.ine-
Tydrometridae:
ydrometridae:
Hydrometra australis Say
Gerridae:
Gerris marginatus Say-
Vellidae:
Microvelia sp
Saldidae:
Micranthis humilis (Say)
Saldidae, undetermined
Corixidae:
Arctocoriza modesta Abbott Heteroptera indeterminod spp Heteroptera, (undetermined nymph

Total
Homoptera:
Clcadidae:
Tibicen linnei (Smithand Crossbeck)
Cercopidae:
Tomaspis bicincta (Say)
Clastopteraxanthocephala Germar
Clastoptera xanthocephala var. unicolor
Membracidae:
Stictocephala festina (Say)
Acutalis semicrema (Say)
Acutalis semicrema (Say)

Micrutalis. sp
Entylia sinuafa (Fabricius)
Membracidne, undetermined sp.........

Table 9.-Insects, spiders, and mites collected by airplane, according to altitudes, Tallulah, La., August 1926 to October 1931, inclusive-Con.

Homoptera-Continued
Clcadellidae:
Euptoryginme, undetorminad sp........
Agalliopsis norella (Say)
Agolliopsis norella (Say)--...
Agallia constricta Van Duze
lyallia constra
cher)
dioceru
Idiocerus spp.
Oncopsis sp.
Oncometopia undato (Fubrichus)
Oncometopia hateralis (Eabrielus)
Momolodisca (riquetra (Fabricius)
Aulacizes irrorata (Fabricius) --
Kolla hariai Bull
Graphocephala coccinea (Forster)
Graphocephala rersita (Say)
Draeculacephala mollipes (Say)
Draeculacephala mollipes (say)...........
Corneocephala floticeps (îliey)
Corneocephala spp.
Yestocephalua puficarius Van Duzec. Xestocephalus spp.
Scaphoddeus spp.
Platymetopius frontalis Van Duzee.--
Polyamia weedi (Van Duzee)
Delfocephalus flavicostus Stil
Delfocephalus sonorta Ball.
Deltocephalus ausiralis DuLong Dellocephatus ansir
Dellocephaliss spp.
Suirellus bicolor (Vanis (Stal)
Sircilus bicolor (Van Duzes)
Phlepsitus spp.
Thamnotettix clitellarius (Sny).
Thamnotetiix nigrifrons (Forbes)
Thamnotetlix sp.

Total insects taken		Collocted at altitudes of-																	
Day	Night	$\left\|\begin{array}{c} 20 \\ \text { feet } \\ \text { (day) } \end{array}\right\|$	$\begin{gathered} 50 \\ \text { feet } \\ (\mathrm{day}) \end{gathered}$	$\left\|\begin{array}{c} 100 \\ \text { fout } \\ (\mathrm{day}) \end{array}\right\|$	$\begin{gathered} 200 \\ \text { feet } \\ \text { (day) } \end{gathered}$	$\begin{gathered} 300 \\ \text { feet } \\ \text { (CABy) } \end{gathered}$	$\begin{gathered} 400 \\ \text { (eot } \\ \text { (day) } \end{gathered}$	$\begin{gathered} 500 \\ \text { feet } \\ \text { (nlght) } \end{gathered}$		1,000 feet		2,000 feet		3,000 feat		$\left\|\begin{array}{c} 4,000 \\ \text { (oot } \\ (\mathrm{dBy}) \end{array}\right\|$	5,000 feet		$\begin{aligned} & 0 \mathrm{ver} \\ & 5,000 \\ & \text { feet } \\ & \text { (day) } \end{aligned}$
										Day	Night	Day	Night	Day	Nlght		Day	Night	
$\begin{gathered} \text { Num } \\ b c r \\ 1 \end{gathered}$	$\mathrm{Num}_{\text {ber }}$	Num-	$\underset{b e r}{N_{1 u m}} \mid$	$\underset{\text { ber }}{\text { Num }}$	Num	$\left\|\begin{array}{c} \text { Numi } \\ \text { ber } \end{array}\right\|$	$\begin{array}{\|c\|} N u m-1 \\ \text { ber } \end{array}$	$\underset{\text { ber }}{\text { Num- }}$	$\begin{gathered} N u m- \\ \text { ber } \end{gathered}$	Number	$\begin{gathered} N_{\text {ver }} \\ \text { ber } \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	Num-	$\underset{\text { Ner }}{\mathrm{Num-}}$	$\underset{\text { ber }}{\text { Num- }}$	$\begin{gathered} \text { Num } \\ \text { ber } \end{gathered}$	$N_{\text {ber }} \text { Num- }^{2}$	$\underset{\text { ber }}{\text { Num }}$	Num ber
38		4			27			1		3				3	1				1
8 1		1			7														
35	2	1			10			2				2		6			1		
18		1			1														
13					13					3				1					
10	3				13		2	*	1	1	1		$1 \times$					---
8					1		-		...--		-	…--	***-	-					
12		1			3		- + -		**	5		$\overline{3}$		-.----	- +--*		*		
07	3	0-...-	$2 i 3$			3		12		12		10			1		
1			-*-**	*-....	2						-	.			-...-.		.		
9	4	1			0		1	4			-	-	-		-	--...			
3	1				2					1	1								
28 5	47	2			14	-.....		315		4	110	7	1						1
3	0				2	-...-		10		1	3	1	${ }^{-}$	-----					
3		1			2					1	3		1						
5					2	.-*-	-..---	-		2		1							
4	4				1	-		3			i	-		1	1		$\overline{2}$		-
8 13		2			,		1							2			2		2
13 40 40	18				7			1		2	2	1	1	2					
10		2			1			9	------	9	4	4	3	5	2		1		
4										2	1	2							
							-	1					-	1	1	--....			
83	23	4			29			23		7	3	6	${ }^{-}$	7	2				
2	3				1			3		1									

Macrosteles dicistis (Uhler) Maczosteles spp.	10	1	3			28			2				4	2						2
Balclutha abdominalis (Van Duzee)....	6					2					2									
Eupnathodus spp.	17	11				3			7		1		7		2			4	1	
Dikraneura maculata Glllot Dikraneura carneola Stal	2	4				2			1			2								
Dikraneura sp.....		1							1					1						
Alconeura macra Grifith	b	10				2			7		2	3	1							
Empoasca fabae (Harris).	14	5	2			6			3		2		2	1			1			1
Empoasca solana DaLong	2	4				1			4		,									
Emponsca erigeron DeLong.	9	14				6			10		1	2	1	2						1
Emponsea blfurcafa DeLong	1	1				1			1			1								
Empoasca n. spp.........	3	1				2			1		1	1								
Empoasca (Kybos) spp	2	3				2			1			1		1						
Empoasca spp (famalos)	39	53				10			20		11	13	3	8	3	3		2	3	1
Typhlocyba gillettei Van Duze	1					1									1					
Hymetla spp..	1					1			1											
Etythroncura spp. comes group	2					2														
Erythroneura sp, obliqua group.		2							2											
Erythroneura viluerata Fitch...	2		1			1														
Erythroncura pulnerata var, nigerrima	1					1														
Erythroneura vulnerata group.	5		${ }^{-}$			3					1									
Erythroncura abolla Mcatee.	1										1									
Erythronekra obria Beamer.,		1							1											
Erythroneura spp. --...	20	19	2			11			12		3	7	2							2
Cicadellidae (undeterminad nymph).-	1					1														
Clagdellda (undoterminod adults)...	180	102	5			99			110		33	58	28	18	18	8		7		
Catonia bicinctura Yan	1							1												
Oliarus aridus Ball.	20	13	1			5			8		3	5	3		12			2		
Oliarus spp--a	1	5							5		1									
Pintalia dorsinitatius (Van l)uzee)	1	7							4			1		2	1					
Ifyndus sp.	1					1														
Otiocerits depeerii kirbs:-	1		$]^{-1}$																	
Stenocranus dorsalis (Fiteh)	3												1		2					
Megumelus spp.	17	1		2		10			1		10		10		6		4	4		1
Peregrimus maidis (Ashmond	2					2														
Stobaera tricarinata (Say).	4	1	1			2			3											
Liburniella pruata (Stil) -.........	88	28	1	$1{ }^{-}$		17			8		18	11	18	0	21	2		12	1	$\overline{2}$
Delphacodes lateralis (Van Duzeo)		1												1						
Delphacodes puella (Van Duzee)--	112	27	8			35			19		24	7	19	1	23			3		
Delphacodes basivittata (Van Duzee) -	2					1							1							
Delphacodes campestris (Van Duzoo)	1	1				1			1											
Delphacodes propinqua (Fieber)	2					1					1.									
Sogata furcifera (Horvath)	16	5				3			5		6		5							
Sogata spp.-....	19	3				3			3		4		6		3					
Delphacoides spp.--.-.-.........	104	17	2			36			11			6	19		- 16		3	6		3
Delphacinse, undetermined spp	80 5	19	3 2			35	2		16	--------	13 1	3	15		7					

Table 9.-Insects, spiders, and mites collected by airplane, according to altitudes, Tallulah, La., August 1926 to October 1981, inclusive-Con.

Myzus persicne (Sulzer) Colophn ulmicala (Fitc
 Eriosomatime undetermined spp. Aphidine (undetermined nymphs) A phidne (andetermined ndules) Aleyrodidne:

Aleyrodidae, indetermined spp. Coccidar:

Cocoldae, undetermined spp Homopters (andetermined nybuphs) 11 omoptera (andetermined adultsi.

Total...

Coleoptera:

Crrahitae
Chirina dentipes Dojean Bembilion njpine Sny.
Bembilion tariggatam say.
Bembidionsp
Perirompsus rphippintus (say) Tachyurasp.
Tachys laccus (Anay
Tachys prorimus なuy
Tachps corruscus leConte
Trechus sp.
Mi,ratopus fusciceps Cases
Mirritopus sp
Porciltes chaldites Say.
Sorandras sp
('flianuscula say)
Circinaliasp.
Zuphinm nmerianum Dejean Lebia riridipermis Dejean. . Lf bia analiy lejean
Blechrus pusio LeConte Blechrus sin.
Apenes sinuata (sach. -
Brachunus so
Brachymus so
Jarpalus nitilulus Chaudoir
Marpahus sp.
Sicnophorus
Tripletrus dulcicollin (Lapertessonectere)
Psendamphasin sericen (Ilurris)
Stenocclut tanillus (Dejenn).
Amerinus londipennis Casey
Gcniolophna lucens Cases.
Goniolophuts rectanoulus (Chaud,ir).

67 HIV MHI NL SGUIL GNV 'SUGGICS 'SLOGSNI

Table 9.-Insects, spiders, and mites collected by airplane, according to altitudes, Tallulah, La., August 1926 to October 1981, inclusive-Con.

Order, family, genus, and species

Coleopters-Continued

Carabidse-Coutinued.
Senolophus ochropezus (Say)
tenolophus dissimilis Dejean
Tachistodes indistinctus (Dejean)
Tachistodes testaceus (Dejean)
Tachistodes partiarites (Say)
Tachistodes sp
A gonoderus pallipes (Fabricius)
Carabidae, undetermined spp
Haliplidae:
Haliplus sp
Dytiscidae:
Bidessus pullus (Le Cont
Bidessus sp
Coptotomus interropatus (Fabrieius)
Copelatus alyphicus (Say)
Dytiscidae, undetermined sp...........
Hydrophilidae:
Och hebins sp................................
Fiydraena pennsylvanica
Hydraena pennsylvamica Klesenwetter.
Iydraena marginicollis Klesenwetter.-
GVdraena marginicollis Klesenwetter.Tlydrochus sp
Berosus qtriatus (Say)
Tropisternus striolatus (LeConte)-........... Paracymus subcupreus (Say).............
Paracymus sp......-..................................... Enochrus sp.
Cercyon sp
Scydmaenidne:
Conophron sp......................................
Scydmaendae, undetermined spp...

Onialinas, undetermined sup
Omaliumsp
Ephelinus juilatur (LeConte)
Ephelinus notatus (EeConte)
Trogophloeus sp. (
A pocellus sphaericollis ((ay).
Apocellus sp
Phitystethins amerhomus Friehson.
Plntsitethus sp

Osorius sp. Sp..
Stenus sp
Euacsthethas sp
Paederinne, undetermined spl
Pclaminus sp.
Lnthrobium sp
Mcdonsp
Scopaciss sp
Stiltews sp.........................
Astenus discopunctative (say)
Asterus prolizils (Erichson)
Astenus sp.
Xnatholinini, undetermher spon.
Gyrohypnus sp
Philonthus sn.
Staphylinus cinnamopterms Gravon-
horst.
Quedins sp
Tachyporimno. undetormined spp.
Tachinus limbotus Melsheimer...
Tachinus sp

Frchomus sp-
Conosomis sp.
Bolitobius sp.
Aleocharinas, undetermined spd
Afyllaena sp
Mryrmedonia sp
Toplandria sp.-..................
Thoplandria lateralis (Melshoimer)
Aheta sp.
Byroporus sp
Cardiola sp .
Aleochara sp
Baryndmas

Staphylinidae, undetermined spp..............
Pselaphidne:
Pselaphidue, undetermined spp.

Order, family, genis, and species

Coleoptera-"Continued.
Trichopterygidie:
Trichopteryitide, undetermined sma 11 isteridue:

Inister sp.
Acritus sp.
Lyeidae:
Plateros sp
Lampyridae
Pyropyca minuta fleconte
Cinthapyridse, undetormined spu
Cantharidas:
Chbuliognathrs marginatus (Fabricius)

Malachidne:
Collops zuadrimurulatus (Fabricitis)
Curidhocomus erichsoni Lecconte.
Cleridne:
Monophyltaterminata (say)
Micromalihidae
Micromulthus debilis Lelonte.
Mordellidso:
Sordellistena aypera (Molsheimer) 1 Ifordellistena pustuluta (Melshoimer) Vordellastena pm
Mordellidae, un letermined st
Anthicifae
Notorus bicolor (Say
Totorus monodon (Fahricins)
Notorike ep
Tomoierus constrictus (Siv)
A nthicus reirctus Leconti

Anthicus cyrrinus Li Ferte-Sincetere.

Anthicus, Saphtus! furipes LaFerte Suncelite
Amhicidive ${ }_{-}^{-}$Euplenidite

Zomnntes signotus (itigemant.

El Gomants fasciatus (Hahleman)
1 teltiae
(onedirus bultus (Syy)
Acolus amahits Wertont:
 lypmotias P
 Shotimim
Throschathe reficorms (Siy)

Throsese cherotat Monvouloir-
Buprethat.
Taphrocerns gracito (Say)
Hetcroeribe
Mitcrictus pasillus (Siy)..............
Motereras M).
(yphon
Cphon tariahitio (Musheret
cuph ns

Dermesthan
Trognderma sp, Gumbermined live larsa
Demesthat, undeterminel simane
Nitdulibae
Carprphilus sp
Fpheqto atare
Abmirasa y
 Selideta - !
Vontama americana Anso
Tle sper lat juts rafipes lercumte...... Eaciridium sp.
Cuctithe:
Sila amis imbetis lectonto
Jarmoptemeus hightalus csiy:

Erotylidae:
Langutia mo:ardi Catroillo Languria angustata theauvois)
Lanouria angustata var puldra LeConte ngustata var puthra

Table 9.-Insects, spiders, and mites collected by airplane, according to alitudes, Tallulah: La., August 1926 to October 1981, inclusive-Con.

	Total insects taken		Collected at altitudes of-																	
Order, family, genus, and specles			20	50	100.	200	300	400	500	600	1,000	feet	2,000	fect	3,000	feet	4,000	5,000	feet	Over:
			(day)	(day)	(day)	(day)	(day)	(day)	(night)	(day)	Day	Night	Day	Night	Day	Night	(day)	Day	Night.	(day)
Colcoptera-Continued. Cryptophagidae: Cryplophilus integer (Eeer)	Num-	$\begin{array}{r} \text { Num } \\ b e r \\ 1 \end{array}$	$\underset{\text { ber }}{\mathrm{Num-}}$	Num	$\mathrm{Num}_{\text {ber }}$	$\underset{\text { ber }}{\text { Num. }}$	Num-	$\left\|\begin{array}{c} \text { Num } \\ \text { ber } \end{array}\right\|$	$\underset{\text { Uer }}{\text { Numb- }}$	Num-	$\left\lvert\, \begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}\right.$	$\begin{gathered} \text { Num- } \\ b c r \\ 1 \end{gathered}$	Numb	$\hat{S}_{\text {Oer }}$	$\underset{\text { Oer }}{\text { Num- }}$	$\mathrm{Num}_{b e r}$	$\left\lvert\, \begin{gathered} \mathrm{Num} \\ \text { ber } \end{gathered}\right.$	$\mathrm{Num}_{\text {ber }}$	Num	$\mathrm{Num}_{\text {ber }}^{\text {Num }}$
Toramus pulchellus (LeConte)	1									---	1	1								
Toramus sp..-.-.-...-	7		1			4					2	1								
	14		8			1			4			1						1		
Mycetophagidae: Typhaca stercorea (Linnaeus)	2					2					2	1			2			1		
Colydidaet																				
Synchita sp_ Bitoma quadricollis (Horn)	1		1																	
Bitoma sp.	1								1		1									
Lathridildae: Coninomus constrictus (Gyllenhal)																				
Entomus sp......................	2					2							1							
Corticaria serrata (Paykull)		1							1											
Corticaria jerruginea Marsham.......--	5					4.					1									
Corticaria sp. \qquad Melanophthalma picta (LeConte).	50 2	5	8			20			5		8		3					1	--.---	1
Melanophthalma picta (LeConte) Melanophthalma distinguenda (Comolii)	2					1					1		1		4					1
Melanophithalma caricollis (Mannerheim) \qquad	14					9					2	1	1		1			1		
Melanophthalma sp	11	19	1			10			18			1	1		1			1		
Lathrididae, undetermined spp........ Phalncridac:	5					5														
Phalacridat: Phalacrus sp	2					2														
Stilbus Sp-...	2														1		1			
Phalacridac, undetermined spp Coccinellidae:	8	6				5			6		2		1	------	1		1			
Cocinelidae: Serminatus Sny-..............	7					4					1							2		
Scyminus loewi Mulsant	2					2														
Scymus sp-:	3			1							1		1							
Psylloboro Sp.	1					1														
Naemia scriata (Melsheimer) -....------	12		3			7					1				1					
Coleornegilla fuscilabris (Mulsant) --.-	11		1			10														
Colemoegilla foridana (Lang) .-.........-	I																			i

Hippodamia convergens Gueri Cocinella novemnotata Herbst
(Say) -....................
Tenebrionidao
Tribolium castaneum (Herbst) Typophlocus
Anobidao:
Anobiidne, undetermined sp
Bostrichidne:
Xylobiops basilare (Sny)........................
Scarabneidne:
Aphodius lividus (Olivier)
Aphodus sp-ijis (Melsthener
Ataenius gracilis (Aelsbeimer)...........
Cerambycidno:
Dectes spinosus (Sny)
Cbrysomelidae:
Pachybrachis SD
Colaspis brunuen (Fabricius)
Fidia rilicila
Metachroma sp.
Afyochrous denticollis (Say)
Afyochrous den
Myochrous sp
Myochrous
Paria cane
abricius)

Diabrotica duodecimpunctata (Fibs
Diabrotica duodecimpunctata (Enbri
Diabrotica vitata (Fibriclus)
Cerolomia trijurcata (Furster)
Oedionych is sexunculata (Higer)
Disonycha collata (Fabricius)
Allica nana Crotel
Auica rufa liliger.
Altica scmellaris Oiliver

Chalcoides helrines (IInmeus)
Chepidodera atriccutris Melsheimer
Crepidotera sp
Epitrix cucumeris (
Epitrix cucumeris (Harris)
Epitrix parvula (Fabricius)
Epitrix sp
Mantura foridana Crotch
.-....
Chatecnema denticulata (IIlig
Chateczema confinis Croteh..........
Chaetocnema pulicaria Melshaimer-
Chaetocnema sp--ariens).
Sustena frontalis (Fabriclus)
Systena tacniata Say...............................

1
1

Table 9.-Insects, spiders, and mites collected by airplane, according to altitudes, Tallulah, La., Augusi 1926 to October 1931, inclusive-Con.

Leperisinus aculeatus (Say)
Hypothenemus sp

Pityophthorus rhois Swaine.
Ips autulsus (Eichorn)
Xyleborus pecanis Hopkins Scolytidae, undetermined sp-.............. Coleoptera, undetermined spp

| 3 | -- | | | \|--..--| | 3 | - | , | | | | \|----- | | | | | | ----- | ------ | |
| :---: |
| 4 | ------ | | | -- | 4 | -...-- | | | | | | | | | | | | | |
| 1 | | | | | 1 | | | | | | | | | | | | | ------ | |
| 1 | | | | | | | | | | 1 | | | | | | | | ------ | |
| 1 | | | | | 1 | | | | | | | | | | | | | | |
| 1 | | | | | 1 | | | | ------ | | | | | | | | | | |
| 4 | | | | | 2 | | | | | 1 | | | | | | | 1 | | |
| 1 | | | | | 1 | | | | | | | | | | | | ----- | | |
| 1 | | | | | | | | | | 1 | | | | | | | ------ | | |
| 4 | | | | | 4 | | | | | | | | | | | | | | |
| $\stackrel{2}{9}$ | | | | 1 | | | | | | 1 | | | | | ---3. | | ----. - | | |
| | 1 | | | | 6 | | | 1 | | | | | | | | | ------ | | |
| 1 | | | | | 1 | | | | | | | | | | | | | | |
| 3 | | 2 | | | 1 | | | | | | | | | | | | | | |
| 5 | | | | | 5 | | | | | | | | -...- | | | | | | |
| 1 | | | | | | | | | | 1 | | - | | | | | | | |
| 3 | | | | | 2 | | | | | ----- | | ---.--- | - | 1 | - | | | | |
| 1 | | | | | 1 | | | ------ | | | | ------ | ------- | ------ | | --...- | | | |
| 16 | 1 | 4 | | | 3 | | | | | 6 | 1 | 1 | | 1 | | | 1 | | |
| 33 | | 9 | 1 | | 3 | | | | | 7 | | 2 | | 6 | | | 5 | | |
| 907 | 259 | 128 | 3 | | 588 | 3 | | 213 | 1 | 114 | 30 | 26 | 9 | 16 | 1 | 2 | 11 | 6 | 15 |
| 3, 567 | 854 | 431 | 21 | 6 | 2,232 | 9 | 2 | 680 | 1 | 519 | 120 | 161 | 26 | 98 | 12 | 4 | 51 | 16 | 32 |
| |
| 1 | 3 | | | | | | | | | 1 | 2 | ----- | | | 1 | | ------- | ------ | |
| 1 | 3 2 | | | | | | | 3 | | 1 | | | 1 | | ---1 | | | | |
| 1 | 2 | | | | 1 | | | 1 | | | 1 | | | | | | | | |
| 1 | 4 | ----- | | | 1 | | | | | | | | 3 | - | | ---..- | -...-- | | |
| --3
 -3
 1 | 1 7 3 | | | | 3 | | | 1 | | | | | | $\overline{1}$ | ---- | | | 1 | |
| 1 | | | | | | | | | | | | | | | | | | | |
| | - 1 | | | | | | | 1 | | | | | | | | | | | |
| 10 | 26 | | -- | | 5 | --- | | 8 | ------ | 2 | 9 | | 4 | 3 | 4 | ------ | -- | 1 | |
| |
| |
| 2 | | | | | 2 | | | | | | | | | | | | | | |
| |
| 3 | --- | - | -----* | ------ | 2 | -..-- | | --..--- | ---.-- | ------ | --.-.- | ------ | | | | - | 1 | ------ | ------ |

Table 9.-Insects, spiders, and mites collected by airplane, according to altitudes, Tallulah, La., August 1926 to October 1981, inclusive-Con.

Puralis farinalis Linnaeus Elasmopalpus lignosellus (Zeller) Pyraustinae, undetermined s
Pterophoridae
Plerophorus tenuldaclylus Fitch Pterophorus sp......................
 Cosmoterygidae:

Cosmoterygidas, undetermined sp.
Lavernidae:
Cosmopteryx spp
Gelechidae:
Arisiotelia sp, roseosuffusella Clemens? Aristotelia quinquepunctella Busck.... Gelechia spp $-\ldots . .-$
Gelechia Sp. (larvae) Dichomeris ligulella Iunebner. Gelechidae, undetermined spp...........
Blastobnsidne:
Holocera spp
Olethrentes cespilana (Huebner)
Epiblema strenuana (Walker)
Glyphipterygiidae
Glyphipteryx impigritella Clemens.
Gracilariidab:
Neurobathra strigifinitella (Clemens) Scythrididae: Eupermeni
Lyonetiidne:
Bedellia somnulentella Zeller?-
Bucculatrix sp
Tineidae:
Tinca sp.
Nepticulidne:
Nepticula sp...-
Lepidopterous larvae.
pepidoptera (undeterminedined spp

Total

Hymenoptera
Braconidae:
Mficrobracon gelechiae (Ashmead) Mficrobracon pyralidiphagus Muose* beck.
Microbracon mellitor (Say)
Microbracon platynotae (Cushman)
Mficrobracon punctatus MLuesebeck...
Aficrobracon sp.

Table 9.-Insects, spiders, and mites collected by airplane, according to altitudes, Tallulah, La., August 1926 to October 1981, inclusive-Con.

Apanteles forbesi Viereck Apanteler hyphantrine Riloy Apanteles rohuani A Luasohect Apanteles sit
Mpanteles su,.................................. Bassus avnutipes (Cresson) Bassus erplhropaster V'iereck Brastus si
Rlacus sp.
Orgilus sp
Orgilus su-.

lecophronini, undetormined sp Dioppilus sp.
Biachase, untelermined sp.....
Macrocentrus delicatis C'resson
Tele mellea (Crosson)
Opits dimitialus ashmead
Opits coriaceils Gahan.
Opius sp.
Opiusn. sh.
Gnamploton nepticulac hahwe
Gmamptotonsp
Metrorus aptograpiae
Mcteorus mulour is (Crosenesonech.
Meteorus mulgaris (Cresson).
Perililus sp
Euphorus si,
Euphorus in, sp
Eitphoriflla SD
Aphidius polygonaphis (Fitcl) Aphidtes bi
Aphidius sn
Aphidinas sp.
-ysiphtebur testarcipes (Crusson) Diacritts rapar (Curtis)
Aphilitnoe, undetermitued spp
Aphercia muscre Ashmend
Aphorta sp.
Dechnocarpa sp
Delocirpo sp.
Spanomeris su
Alysithe, undetermined spl
Rhizarchu 5 l.
New genus, new spmos
-
Jaonustinne, mbdetermined sp....... Braconidae, undetermined spi).-....... chneumonldas:

Ambliteles tumidifrons (Cresson)
Amblyicles sp. vear humilis (ProA mblyteles sp
A mulytelcs 5 p .
Acrolyta aletiae Ashmead

Table 9.-Insects, spiders, and mites collected by airplane, according to altitudes, Tallulah, La., August 1926 to October 1981, inclusive-Con.

Lorotropa sp.
Paramesius spinosus Ashmend
Paramesius sp.

Trichopria popenoel Ashmend.
Trichopria sp
Ashmentopria sph.........................

Serpbidnae:

Serphus sp
Calliceratidne:
Calliceras carlylei Girnult......-
Calliceras sp.

Mregaspithe fuscipennis (Astumead)
Megaspilus sp.
Conostigmus in....................................
Scelonidne:
Scelio catiopteni Riley
Scelio foridanus Ashmend
Scelio opaus Provich
Scelio opacus Provancher.......
Cocellhus sp...................
Ceratoteleia rubriclara (Ashmead)
Ceratoteleia sp
Hadronotus ajar Girault........................
Hadronotus sp.
Macroteleia sp.

Paridris breripennis Fouts...............
Psilanteriesp.

Trimorus bethunci (Saunders).
Trimarus sp,........................
Trimorus columbiana (Ashmend)
Trimorus n. sp
Teleas sp
Trizancantha sp-........................
Telasinae undeternined spp-
Ceratobacus sp
Mapinac, undetermine spp.
Trissolcus spor.i.............
Telenomus podisi (Ashmead)...
Telenomus persimilis (Ashnead).....
Telenomis sp-ateraine spp.
Platypasteridae:
Leptacis sp.
Platygaster errans Fouts
Platyonater baccharicola Ashmead........................ Platygaster SD
Platygasteridae, undetermined spp...............................

Table 9.-Insects, spiders, and miles collected by airplane, according to altitudes, Tallulah, La., August 1926 to October 1981, inclusive-Con.

Order, family, gentus, and specles

Hymenoptera-Continued
Platygasteridne-Conltnued.
Trichacis sp
Saxtopaster anomalirentris Ashment.
Cyniplidie:
Anncharis melanoneura Ashutend female)
Prastarpisera similis (ashmend)
Prosaspicera sp. (fmmiles).

Neralsin hyatimipennts (Ashthend)
Xyalophora
Hyitess sp.
Lonchida sp. (femmes) -.............. Cothonaspis sps.
Cothonaspis sp (Mesaplosta) (re-males)-:
Psilodora rognales).
Psilodora rogabumia (Ashmonit).
Prifodora sp. (emile).
rleadotoma sp
Rleidotoma (liptameris) Sp
Ilypodiranchiss sp.
Fitcoilimat, undetiontmed spp
Charips brasvicte (Ashmead).
Charips 5 s ,
Allorysia sp
cularidea sn
Ceropires sp.
Synerplis sp. (femnles) -
Nerichisus sp
Neutotus sp
Andricus sp .
Callirhytis sp
Compsodryorenus sp
Aglaoloma sp

Erisphapia sp \qquad Crnimiden undetcrmined sup Callimomidne:

Callimome atrenum Osten Sacken. Callimome tubicita Osten Snckern Callimome litidum (Ashmend)-.
Callimomesp.
Collimomidae, nadetermined siv.
Aronodontomerimae, undetermitiol sip. Podqurion Chaleidibac:

Bracyhmertia sn.
Spilochalcis delicata (Crasson)
Spilochatcis tomyipetiotatn (Aslmmad) Spilochatcis delira (Crossur) Spitochmes fartima (Cresson)
spilochalcis sp.
Maftichelia sp
Chalefidfae, vindetermind on
Chateideidet, undetermined sid
Eurymmitar:
Bruchophagus gilbuts (Boheman)
Euryfoma succinipedis Ashmead
Euryfomin tylodermatis Ashmead
Furytoma ap
Etrytoman. sn.
Furytomidne, undeterined sp
Marmolita wehsteri (lloward)
Mrymolita spaces Intinend.
Bruchabirs laticeps Ashmen
Rilleyn sp-annann
Rilceynsp.
Dccatoma
Decatoma vaccinitonla 1ualdur
Dccatinan baccimitala
Decalomn varians Wuld Decatomn varians Walsh-....................... Perilampidne:

Prrilampus bakeri Crawford
Perilampus phatyoaster Say.
Perilhmpts quanulesis Crawford Prrilampus fulrucreats Ashmead Perilampus sp
Miscognsteridna:
Mationstera acmea Waiker.
Lelapinno, undetermined sp
-.......
Miscogasteridao, undetermined sp
Cleonymidac, undetermined sp

円 UIV GHT, NI SHLITV GNV 'SUGUIDS' 'SLOHSNI

Table 9.-Inisects, spiders, and mites collected by airplane, according to allitudes, Tallulah, La., August 1996 to October 1981, inclusive-Con.

Order, family, genus, and species

Hymenontcra-Contimued. Pteromalidne:

Eupleromalus fachinae Gahnn
Eupleromalus riridescens (Walsh).... Eupteromatus sp
rabrocytus lanyurine Ashmead......... Tabrocylus sp.... (Ashmend)-.......................... Zatropis sp.
Merisus sp.
Pteromalus archippi Howard
Pieromalus sp.
 Amblymerus sp.
Cololaccus hunteri Crawford............
Collopisthia jorbesi (Dalia Torre)
Doecopisthia SD
pachyneuron allouraptae Ashmead
Pachyncuron ternnum Girault.........
Pachyncuron siphonophorae Ashmead
pachyncuron sp
Meteroschemu sp
Psilocira sp
Asophes sp
Asaphes sp.
Systellogastr sp.........as ashmead
Symomopus americanus Ashmead....
Sphegigasterimae, undetermined spp-
Ppheromasterinae, undetermined spp-
Eupelmidao:
Anistus redurit (Howned)
Anastus rea
Eupolmus
Eupelmus cynipidis Ashmead
Eupelmus cyaniceps A shmead
Eupelmus charitopoides Girnul
Eupelmus auratus Ashmoad.

Total Insects taken		Collected at altitudes of-																	
		20	50	100	200	300	400	500	600	1,000	feet	2,000	feet	3,000	feet	000	5,000	feet	Over
		(dsy)	(day)	(day)	(day)	(day)	(day)	(night)	(day)	Day	Night	Day	Night	Day	Night	(day)	Day	Night	(deet
$\left\|\begin{array}{r} \mathrm{Num} \\ \text { ber } \\ 3 \end{array}\right\|$	Num-	Num-	Num-	Num	$\begin{gathered} \mathrm{Num-} \\ \mathrm{ber} \\ 3 \end{gathered}$	$\begin{gathered} \text { Num } \\ \text { ber } \end{gathered}$	Num	$\underset{\text { ber }}{\text { Num- }}$	$\underset{\text { ber }}{\mathrm{Num}}$	$\underset{\text { ber }}{\text { Num }}$	$\underset{\text { ber }}{\text { Num- }}$	Num	Num-	Num ber	$\underset{\text { ber }}{\text { Num- }}$	$\underset{\text { ber }}{\text { Num }}$	Number	Number	Num-
1.		1			3	--7--.				1		1							
3 6					2					1									
30	4	2			15			1		8	2						1	1	
4		---..	1		1					1		1	----...						
1										1									
3	--...	-r.--	--.--			----*		.				1							
1 3	1				3						1		--.-**						
${ }_{11}^{6}$					5			.		1									
11		1			7		-	-----.		3 2	--..--	...	-.----	---....	----..	------		
6	3	-...--			3					1	1	2	1		-			1.	
9					3 1			1						-...-.			2		1
13	1		1		5			1		1		1	-	1	.		1		2
11					6			-		3		1	-...--	1					
1										1									
1					1	------				-									
1					1.					-		-	-	-					
3					3		\cdots	$\stackrel{\rightharpoonup}{*}$											
73	6	6	-..-		42	-..---		3		8		10	2	5	1	-	2	-----	
1					1														
2	1				2			1											
1										1									
3					3														
1					3					1									-....-

Eupelmus allynti (French) Eupelmus popa Giranit. Eupelmus rosac Ashmeak Eupelanus
Eupehminae, undetermined spp Encyrtidae:

Bohtriot rax sp.nonrinsularis Howard Cheilonerus albicornis llowarl.
Cheilontriss lineascapus Gahan......-. Copidosoma truncatellum (Dalman). Cophidosoma 1 p
Aphidencyrtus aphidirorus (atayr)....
bonoloty sericen (erminalis (

Homatotylus faminilus (Dalinan)
Tominlotylus sp
Isodramus iceryae howard.................
Pentelicus n. s .
Chrysopophopus compressicornis Ashmeal.
Chrysopophagus sp.
Microterys sp
Psyllacphagus sp
Syrphophayus sp

Encyrtidae, undetermined spp
mabaneidae
Spalangia rugosicollis Ashmead_......
Spalangia
Elasmut selosiscutellatus Crawford ... Elasmuss sp
Eulophilne:
Chrysocharis sp
Cirrospilus sp.
Closterocerus sp. ..
Comedo brevicapitatus (Cook and Comiciosp.
Derostanus fullautayi Crawford..............
Pleurotropis sp.
Eudertus stubopaca (Gabnn)-...................
Euterussp.
Eulerus n. Sp
Sympierir matacomet Criwford
Sympicsis lincaticata tiranlt
Sympiesis massayoid Crawford
Sympiesis puttitentris Girault...............
Sympiesis sp....
Tetrastich pulchriventris Girault
Tetrastichus pulchriventris Glrnul

Table 9.-Insects, spiders, and miles collected by airplane, according to altitudes, Tallulah, La., August 1926 to October 1981, inclusive-Con.

Ordor, family, genus, and specios

Bymenoutera - Continued
Enlophimazer ontinued
Tetrastichus haycnovi (Ratzoburg) - Tetrastichus sp.
Tetrastichime, modetormined sp-.... Euplectrun comstockii I Iowned. Euplectrus platyhypenac Howard Euplectrus sj .
Gyrolasia nijrocya nél Ashmead Zaprammosoma mullilineatus (Ashagramim
Iorismenus froternus (Fiteh)
Horismenus SD
Mclittotia sp
Aprostocet tus sp.
Galcopsomuia n. SD.
Entodoninne, undotormined spp
Elachertinao, andotermined spp.
Enlophidne, undetermined spp.
Mymarddae:
Anagrus orijentatus Crosby and teon-
nagrus paliditics A shmend
Gonntocerus sp.

Mymaridau, undetermined sno.....
Evanillae:
Erania semacodia (Bradley)
Hyptia floridana Ashmend
Psammodiartine:
Ceropales longipes Smith
1porinellus fasciatus (Sini
Cryptocheiltas pallidipennis Banks
Psammochnres (Pompiloides) mar-
Anthoboscidne
Sierolomorpha sp

$\mathrm{T}_{\text {tak }}$	insects sen	Collected at altitudes of-																	
Day	Night	$\left\lvert\, \begin{gathered} 20 \\ \text { (fet } \\ \text { (lay }) \end{gathered}\right.$	$\begin{gathered} 50 \\ \text { feet } \\ \text { (day }) \end{gathered}$	$\left\|\begin{array}{c} 100 \\ \text { feet } \\ \text { (day) } \end{array}\right\|$	$\left.\begin{array}{c} 200 \\ \text { foet } \\ (\text { day } \end{array}\right)$	$\left\|\begin{array}{c} 300 \\ \text { feat } \\ (\mathrm{day}) \end{array}\right\|$	$\left\|\begin{array}{c} 400 \\ \text { (oet } \\ (\mathrm{dn} y) \end{array}\right\|$	$\left\|\begin{array}{c} 500 \\ \text { foct } \\ (\text { night }) \end{array}\right\|$	$\left\lvert\, \begin{gathered} \operatorname{coc} \\ \text { fect } \\ (\operatorname{day}) \end{gathered}\right.$	1,000 feet		2,000 fcet		3,000 feet		$\left\lvert\, \begin{gathered} 4,000 \\ (\operatorname{foct} \\ (\mathrm{day}) \end{gathered}\right.$	5,000 feet		$\begin{aligned} & \text { Over } \\ & 5,000 \\ & \text { feet } \\ & \text { (day) } \end{aligned}$
										Day	Night	Day	Night	Day	Night		Day	Night	
Num-ber11421114125	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	Num-	$\begin{gathered} \mathrm{Num} \\ \text { ber } \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	$\left\lvert\, \begin{gathered} N_{u m} \\ b c r \\ 1 \\ 1 \end{gathered}\right.$	Num-	Num-	$\underset{\text { ber }}{\text { Num- }}$	$\left\|\begin{array}{c} \text { Num } \\ \text { ber } \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Num } \\ \text { ber } \end{gathered}\right.$	$\underset{\text { ber }}{\mathrm{Num}}$	$\underset{\text { ber }}{N_{u m}}$	Num-	$\left\lvert\, \begin{gathered} N_{\text {ber }} \end{gathered}\right.$	Num-	$\left\lvert\, \begin{gathered} \mathrm{Num} \\ \text { ber } \end{gathered}\right.$	Num- $e r$	$\underset{\text { ber }}{ }$	$\begin{gathered} \text { Num- } \\ b e r \end{gathered}$
	4	7	-----*	-----.	71	-.....		1	-.....-	31	2	21	1	8			2		2
				-	7				-->-----	2	- 2	1	--*-*-	1	--.....	--	-7.-.-	--.--	
	1	2	------		7	- $-\cdots \times *$		1	--.----	2	,	1	--.....	-...-..			-......		
			-..-					1											
3					2							1							
3					1			-		1		1				-.....			
1	1	--1-			1			1	---...			-	-..--"						--.-
$\begin{aligned} & 2 \\ & 1 \\ & 8 \end{aligned}$	1	1		-....--	1		------*-					1	-				1		
												1			1				
1						--...-	---*	"***			-	--		---**			1		------
2					2					1									
3	-....			-		---...-						1							2
2					2							1							
1					1									---	------				
1										1									
1					1							1					--...-		
1																			
1					. 1														

Mutillidne, undetermined sp

Formicidae:
Ponera opaciceps Mayr (winged poncra opaciceps Mayr (winged fePonera opaciceps Mays (winged Ponera trigona var, opacior Forel (queens)Ponarkers)
Ponera coarctata subsp. pennsylvanicit
 Monomorium minimum Buckley (winged queens)
Mononorium minimum (Buckley)
 Solenopsis sploni MeCook (worker) Solenopsis splon Mar Solenapsis xyloni MeCook (winged
nueens) Solenopsis xyloni MeCook (vinged
 Crematogaster sp. (winged males)
Pheidole dentata Mayr (workers) -....
Pheidole dentata Mayr (winged males) Pheidole sp. (worker)
Icpiothorax sp. (winged male)
Aphaenogaster sp. (workers)
Myrmicinae, undetermined spp. (winged males)
Tnpinomn sessile (Say) (worker)....... Iridoniertnex pruinosus var. analis
Prenolepis (Vylanderia) sp. (workers)
Prenolepis (Nulanderia) sp. (winsed
Prenolepis (Nulandcria) sp. (winged males).
Lasius sp. (winged male)..........................
Camponotus caryme var. minuta Emery (worker).
Camponotus sp. (winged male) -..............
Formicidae, undetermined spp. orkers
Formicidae, undetermined spp.
(winged males).

Table 9.-Insects, spiders, and mites collected by airplane, according to allitudes, Tallulah, La., August 1926 to October 1981, inclusive-Con.

Order, family, genus, and species	Totalinsects taken		Collected at altitudes of -																	
			20	50	100	200	300	400	500	600	1,000	feet	2,000	feet	3,000	feet		5,000	feet	Over
			(day)	(day)	(day)	(day)	(day)	(day)	(night)	(day)	Day	Night	Day	Night	Day	Night	(day)	Day	Night	$\begin{aligned} & \text { fest } \\ & \text { (day) } \end{aligned}$
Hymenoptera-Continued. Bethylidae: Perisierola cellutaris (Say) \qquad Perisuerala cellularis punctaticeps Kiefter \qquad Perisierola cellularis var. gracilicornis Kieller \qquad	Num-ber42	Num-	$\begin{array}{r} \text { Num } \\ \text { ber } \\ 1 \end{array}$	Num-	Num-			$\left\lvert\, \begin{gathered} N u m- \\ \text { ber } \end{gathered}\right.$	Num-	$\mathrm{Num}_{\mathrm{ber}}$	Number 1	$\begin{gathered} N u m \\ \text { ber } \end{gathered}$	Num ber	Num-	Num-	Num	Number	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	$\left\lvert\, \begin{gathered} \text { Num- } \\ b e r \end{gathered}\right.$	$\underset{\text { ber }}{N u m}$
						2														
	9					1														
Gonijzus platy notae Aslimend.	2					2					1		1							
Ooniozus sp- ${ }_{\text {Plastanorus }}$ laevis (Ashmead)	4					3							1						-.
	1					1														
r'silepyris sp . Rhabdepyris sp . Anisepyris sp.	1			-----	-.--**	1	-						1	------						
	2					1												1		--.---
	1					1												1		
Anisepyris Sp.--	1.					1	--.													
Aphelopus comesi Fen	2		1			2	------		1											
Aphelopus spme....	9		2			5	----								2					
Aphelopus sp-	2					2	-------								2					--...-
Chelogpnas sp	1					1	-													
Laberius lenjitarsus (Ashmead)	1										1									
Laberius lenuitarsus (Ashmead)	2		1								1				1					
Anteoniune, undetermined sp-..--.-.---	2					3					1				1					
									1											
	1					1														
Polistes fuscalus var. rubiginosus Leneletier	1										$\bullet 1$									
Sphecidae:																				
Larrina	1		1																	
Larrinae	1																			
Alyson me	1					1														
Adrenidae:																				
	1					1														
	2		1										1							
Halictus rugosus Crav																				

Halictus stultus Cresson Halictus albitarsis Cresson Halictus disparilis Cresson. ITrtictus lepidii Graenicher Halictus (Chloralictus) sp. Augochlorella sid Augochlorella pura (Say)
Agapostemon radiatus (Say)
Sphecodes sp
Anthophoridne
Melissodes bimaculala Lepeletier
Bombidae:
Bombus americanorum (Fabricius)
Apidne:
Apis mellifera Linnaeus
Apoidea, undetermined spp. Вуmenoptera, undetermined spp.

Total
Diptera:
Tipulidne:
Limonia (Rhipidia) sp
Limonia rara (Osten Sacken)
Limonia (Dicranomyia) sp-
Erioptera parva Osten Sacke
Erioptera sp
Thelobia hybrida (Meigen)
Gonomyia sp.
Epiphragma jascipennis (Say)
Tipula spp.
Tipulidac, undetermined spp.
Culicidae:
Chaborus punctipennis (Say)
A nopheles quadrimaculatus Say
Uranolaenia snpphirina(Osten Socken) Psorophora columbiae (Dyar and Psorophora columbiae (Dyar and

Aedes dexans (Meigen)
Aedes spp.
Orthrpodomyia signijera Coquillett Culicines, undetermined spp.
Gulicidae, undetermined spp
Psychodidac:

Psychodida
Tanypus punctipennis (Meigen)
Tanypus punctipennis (Meigen)-....
Tanypus sp

Asphondylia sp Diplosid sp. (group Bifili) Diplosid sp. (group Tribil)
Diplosid sp-.................................... ycetophilidre:

Cordyla sp.
 Mycetophilidae, undetermined sppScinrillae:

Eugnoriste occidentalis Coquillett. Eugnoriste sp Sciara jucunda Johannsen....................... Sciara coprophila Lintner-................ slaridne, undetermined spp
Bibionidae:
Bibio sp -....................
Dilophus ore
Biblonidae undeternined spp catopsidne:

Reichertella sp.
Sentopsidae, undetermined spp..... simuliidae:

Simulium meridonale Riley.
Simuliun occidendale Townsend.
Simulium sp -a........................ Simulidac, itndetermined spp..... Stratiomyidne:

 Tabinidue:

Tabanus mularis Stone....-................. Tabantes s
Bombytidne:
Anthrar sp.
Systoechus sp
sparnopolits sp.-.................................... revidae:
Psilocephala
Scenopinidact
cenopinidae:
Scenopinidne, undetermined spp
Asilidhe:
Dolichoposia sp
Schopodidme:
Chrusolus sp
Chrysolus
Raphium sp
Nothosy
Nothosympycnus sp

Table 9.-Insects, spiders, and mites collected by airplane, according to alitudes, Tallulah, La., August 1926 to October 1881, inclusive-Con.

Order, family, genus, and species

Diptera-Continued.
Doliehopodidse Contimed.
Thrypticus sp.
Hydrophorussp.
Gymnopternus sp.
Pelastonctruw

Dolichopodidne, undeterminued spu.
Empididne:
Hybos sp
Empis sp...
Drapetis Sp. .
Lonchopteridae:
Lonchopterida, undetermined spp...
Phoridae:
Mepaselia sp
Phora sp...
Platypezidae:
Fatypezidae:
Pipunculidne:
Pipuncultis sli....-.-..........................
Syrphidne:
Chrysopaster sp
Paragus bicolor Fabricius.
Baccha fascipennis V'jedemann
Saccha sp.......-.-.-.
Syrphus americanus Wiedemat!
Xanthopramma sp.
Tosomertus marginatus
oromerus marginatus Say.................
Allogripta si

Eristalis tenax (Limanus)
Eristalis sp-
Syrphidae, undetermined sjp..

sarcophaga lonkitual
Sarcophapa tenuicentris Fan der Wuip.
Marcophay an.
Xittornmanimac, undetermined sp.
garcophagicae undetermine
Calliphoridae:
Cochliomyia macellaria (Fabricits)
Vuscidae:
Slomorys calcitrans (Linnneus)
Morcllias
luscina sp

Anthomyidae:
Lispa sp.
Tulempiasi

-anniinac, tudetermined spy
Anthomyinae, modetermined spp-
Anthomyjidac, un
Scatopharidae
Scatophagidas, undetermined spp....
Melomyzidae.
Hilomyzidae, undetermined spp....
Borboridae:

Leptocera frontinalis (Fnllen).............

Sciomyzidae
Tetanoceras
Sciomyzidae, undetermined spp.......
Sapromyzidne
Sapromyzidac, undetermined spp.....

Table 9.-Insects, spiders, and mites collected by airplane, according to altitudes, Tallulah, La., August 1926 to October 1981, inctusive-Con.

Elachiptera nigricornis (Loow)..........Elachiptera sp.................................. Chloropidao
Drosophilidae:
Chymomyza amocna Loew.
Leucophenga varia Walker-......................Drosophila melanogaster Meigen. Drosophila sp
Scapiomyza adusta Loew --.......................... Scaptonyza sp.-.-.-............................ Milichiidine:

Desmometopa m-nigrum Zetterstedt. Ochthiphilidac:

Leucopis sp
gromyzithe:
Agromyzillae:
Agromyza virens Loew
Agromyza sp.
tgromn
Dipters, unrecognizable spmined spu....

Siphonaptera:
Pulicidae: \quad Pulex irritans Linnaeus.....................

Total time aying, minutes.

$2,500$	-292-	207	1		1,444
24.650	3, 055	1,860	61	51	13,396
51,178	6,790	721	79	63	10,277

Tabla 10.-Insecis and spiders collected by airplane al altitudes over 5,000 feet, Tallulah, La., 1926-81

Order and species	Colicoted at olltude ot-									
	6,000	fet	8,	9,009 feet	$\begin{aligned} & 10,000, \\ & \text { feet } \end{aligned}$	$=11,000$	$\frac{12,000}{\text { fet }}$	$\begin{aligned} & 13,0000 \\ & \text { tuet } \end{aligned}$	$\left\lvert\, \begin{aligned} & 14,000 \\ & \text { cet } \end{aligned}\right.$	$\begin{gathered} 15,000 \\ \text { fuat } \end{gathered}$
	Num-	Num-	Num-	Vum	Num			Num-		
Linyphiddu, undetermined sp			ber					ber		
Thomisidae, utdureminets sp										
Saltichlae, undaternimed spp										
Thysumura: Lсрisma Sp		1		2	2					1
Collembota:										
Corruderilat										
Thysanotterat pedichiafis.										
Thysbuoptera: Frath:intello tritici										
Heteropterat										
Homoptertstera, whiotermined										
Agotlia constrictu										
Snyoaste fubse..										
Delphacodes sp . 										
fo cızarith										
Aleotharinae, undet										
Orypada sp.--										
Staphylinidue, undotermined sty										
Corlicarta sp.										
Z3ychutarsus c cstitus.										
Coleoptera, undetornined spo------										
Microbracou sp...................... 1										
Diapridht, utidelermitued sp										
Platsgaster SP.										
Cothonaspix sp e-............--										
Pochuneuron siphonophorte.										
Syrphophaghes 5 P										
Encytidae, undelormined sp....---										

Thble 10.-Insects and spiders collected by airplane at allitudes over 5,000 feet T'allulah, La., 1926-31-Continued

WINGED FORMS

ORTHOPTEIAA

Of the order Orthoptera 13 were taken in the day flights and 3 at night. They were found scattemingly from May to November, inclusive. In the day collections two specimens of a cricket (Tridactylus minutus Scudd.) were taken in June and July $1929 \Omega^{+}$altitudes of 200 and 1,000 feet, respectively. Four specimens of the red-legged grass hopper (Mielanoplus femur-rubrum (Deg.)) were collected in September and October at altitudes of from near the surface to 1,000 feet. This species is very destructive, causing scrious damage to crops. The other species of grasshoppers taken in the upper air were one specimen of Tettigidea acuta Morse at 2,000 feet, and three specimens of T. lateralis (Say), two at 1,000 fect and one at 2,000 feet. Two undetermined species of Orthoptera were taken at 200 and 2,000 feet. At night one cricket, Nemobius carolinus Scudd., was taken at 1,000 and two at 2,000 feet.

CORRODENTIA

There were 78 specimens belonging to the order Corrodentia taken in the upper air. Seventy specimens were represented in the day collections and eight in the night. The families Psocidae and Atropidae and six determined species were represented. Corrodentia rppeared in every month of the year, but were more abundant in April, May, and November. The family Psocidae included the majority of the specimens taken. Several species belonging to this order are of economic importance and are known as booklice, being pests in libra-
ries and muscums. One particularly annoying species, the booklouse (Troctes divinatorius (Mull.)), was taken in the upper air at 1,000 feet. One Trogium pulsatorium (L.) was taken at $\overline{5}, 000$ feet. One Psocus inornutus Aaron was taken at 3,000 feet. Thirty-one specimens of Lachesilla pedicularia (L.) were taken in the day flights at from near the surface to 10,000 feet. Two were found at night at altitudes of 500 and 2,000 feet.

ISOPTEFA

The order Isoptera, or termites, was represented in the day collections only. There were 10 specimens taken in the upper air at altitudes ranging from near the surface to 3,000 feet. Reticulitermes virginicus Banks was the only species taken, with 13 specimens in April and 6 in May. On the dates of these collections great numbers of termites were visible in the air. It is not appropminte to refer to these swarms as "muptial flights" since the sudien appearances of termites in the air are merdy colonizing flights, or a means of dispersal (6S). It is only on these flights that termites come out into the sunlight and above ground. The wings are shed before the adult termites are sexually mature, and mating does not take place at the time of swaming. The femoles form new colonics, never retuming to the colonies from which they came. Unless carried by the wind, iermites do not fly very far. The great majority of the colonizing adults of the genus Recticulitermes, after a short vacilating flight, alight or full to the ground and lose their wings. Species oi this genus always swarm during the daytime. The dates of swaming vary with the species, the geographical location, and the season. The actual dates of the month are of no importance, as there may be swarms from one colony distributed over a period of several weeks. Termites were collected in the upper air from April 3 to 22 in 1930, and on May 21 and 22 in 1033.

EPHEMEROPTERA

The order Ephemeroptera was represented by 10 specimens taken at altitudes ranging from 200 to 3,000 feet in the spring and summer months, with equal numbers for the day and night collections. One specimen of Caenis hilaris (Say) was found at ?,000 feet in the daytime, and one specimen of Captis sp. was taken in the day at 200 , and one at 1,000 feet, and two at night at 500 and one at 3,000 feet. A species of Hexngenia was collected at 200 fect, nad one of Ephemera at 2,000 feet in the daytime. Two undetermined species of Ephemeroptera were colfected at 1,000 feet at right. The Ephemeroptera are quite important as food for fishes, as the nymphs feeding on living or dead aquatie vegetation in lakes and bayous are very abundant. Often great mumbers of Mayflies, especially species belonging to the genera Caenis and IEexalenia, were seen under street lights in Tallulah, and by morning the walks and pavements would be covered to the depth of an inch with the dead bodies of these fragile and short-lived adults. Alhough they were of en so thick in the nir that they becamo a general nuisance in siores and on the streets, comparatively few were taken in the higher atmosphere.

OmONATA

The order Odonata appeared only in the day collections, 21 specimens being collected belonging to this order. Odonata were taken in the spring and summer months and two specimens in October at
altitudes of from 20 to 3,000 feet. The dragonflies taken at 200 feet were one specimen of Perithemis tenera (Say), one Libellula vibrans F., four Pachydiplax longipennis (Burm.), and one undetermined species. At 1,000 feet there were collected one specimen of P. longipentis and two undetermined species of dragonflies. Damsel flies were collected at 20 to 3,000 feet, with one Ehallagna sp . near the surface and one Anomalagrion hastatum (Sisy) at 20 feet, two at 200 feet, and three at 1,000 feet. Dr. Needham, who determined the species of Odonata collected in the upper air, stated that he was surprised in studying them to find that the most abundant species was one of the smallest weaklings in the whole order, Anomalagrion hastatum. Airplane collecting explains the wide distribution of this species, which raiges from Canda to Argentima and which is always very local in its distribution. Dr. Neecham stated that he had never seen one flying higher than the tops of the spikerush in the seepage pools that are its home. Three undetermined species of Zygoptera were collected at 200 feet and one at 3,000 feet.

During the summer and carly in the fall the writer has seen dragonflies flying at oltitudes as high as 7.000 feet. Dragonlies are very rapid fliers, and the writer has observed these gauze-winged insects kecping up with the nirdane or eren darting ahead at times when the aiphane was flying at !t miles or more an hour. The species, as nearly as could be determined from the cockpit, was the big green damer, shar jumime (Drue.). Thus it is to be expected that very few sperinoms wouk be taken in the upper air, berause of their rapid fight and their ability to dowge the on-eominir airplane. Dragonflies are considered uselul insects, as they destroy many injurious insects, esperially mosquitocs. Ther may be seen in great numbers flying at durk. When mosequitoes and nimhtilying insects are especially netive in the air. The nymphe atoo furnish a food supply for fislos, and on the other lanel it is kiown that the larger dragonily nymphis habitually cat very goung fishes.

TfY'SANOPTPRA

The order Thy anoptera was represented be as enemens of which 91 were conlerted in the upper air during the day and 7 at night. They were roblected from Nareh to ()etober inelusive and were most
 from hear the surface to 11 chan fert. The familime reperented were

 doubt is semphable for a lamer perperatare of the thrips damage to
 most abondant, 12 aperimens lating beren collowed, 3 in fone and $\$$ in July, from neat the surface to 1 ofow feet. This species ofers in phylioxera gatls on hickory and is probably predncions. Eight specimens of Leptuthrips mali (Fitelj) were talien in the day flights in June,

July, August, and October at 20 to 2,000 feet. This specics is known as the "black hunter" and is predacious on thrips, lice, etc. Five specimens of Maplothrips araminis Llood were collseted, one nt 200 feet, two at 2.000 , one at 5.000 , and one at 11,000 feet. Many species of Thysanoptera are very serious pests of fruit, vegetables, flowers, and liek crops.

HETEROPTELA

The order Iteteroptera was represented in the eollections of insels of the upper air by a total of 1.25 sperimens. (Of this nomber 1,0 os were collected in the day dights and $15!$ at night. Heteroptera were found in every month of the year, with the greatest numbers in (Oefober and the next laryest in Day. Specimens wore collected at every altitule up to 11,000 fect. Wincten families, 83 grenera, and 09 determined species were represented.

Twenty specimens of the negro bug, (Allocomis (Thyruterin) pulicaria (Germ.) (Cydnidaph), were coheded in the diy lighs. They
 the largest numbers in March and Jome. Theme small shay black bugs, similar to beetles in apporance, are koown to atitack ripe fruits of rasphery and backbery. Two specimens of the spined soldier bug (Podisus maculiratrix (suy)) (Pentatomidar) were taken, one each in Mareh mad hpril, at 1.000 feet in the day flights. This is a beneficial predarions insect. One futwa armiger (Say) (Cormac) was caught in Jume in the daytime at 1,000 feet. This is an injurious spe-
 lected at 200 to $\bar{b}, 000$ fect in the dir fights, and four at might at 500 to 5,000 feet. Fourteen specimens of Lypm us bicrucis. Say (Iygacidac) were taken in the daytme at 200 to 7,000 fect and fow at nigle thre at 500 feet and one at 1,000 feet. Eiglaten sperimens of Diysins californious Sial (Lygapidac) were collected in the day flights at 20 to 2,000 fect, nod one at night at 1,000 feet. This species is rery injurions, especially to beets. Filty-three specimens of Aysias cricae (Schill.) were collected from near the surface to 3,000 fert, with the greatest numbers taken in July and Oetober. One specimen was found at night at 500 feet. This species is of econonic importance. Specimens of Ischnorhynchus resedaf (Panz.) (Lygacidae) were collected mostly at the higher altitutes, with three specimens at 200 feet, three at 1,000 , six eacl: at 2,000 and 3,000 lect, and three at 5,000 feet, all having been taken in the day flights and mostly in the winter and spring months. This species oflen canses thamage to plants, especially to azaleas.
Twenty-four specimens of Blissus leueopherus (Sny) (Lygacidne) were collseted in the day flights at altitudes of 20 to 3,000 lect, and the species appeared from April to November, inelusive. One specimen was taken at night at iffol feet in August. This species is the destructive chinch bug, which eanses cummous danage nad loss to wheat and corn. The writer, while flying on September 29,1930 , observed great numbers of chinch bugs at the height of 2,000 feet. The wind was from the north at, this altitude, and as nenrly as could be determined the insects were flying in a southerly direction. The Iate Elmer Johnson, senior agricultural engineer, formerly of the Delta Laboratory at Tallinht, Lan., related to the writer that at one time while he was fying in Arkansas, be saw great mumbers of insects in the air
at an atitude of 5.000 feet and detected the pecular and characteristic odor of chinch bugs. No specimens were captured yet he was quite positive in his determination of the species.

Twentr-nine specimens of (itheoris panctipes (Hay) (Iygneidae) were taken in the daytime in the months of April to Deceniber from near the surface to babl fect. This lygacid is commonly found on cotton and is predacions on many imeets. shtillocoris pallidus (Thler) (Lxgacidae) was (aken in considerable numbers, with 51 in the day collections and 19 at might. These were collected at from near the surface to athegh as $\overline{7}$, (100) leet and at night up to the height of 5 dtoo feret. Specmens were tedsen thrmghent the yent. This speciss is of no eromonie importaner. One sperimen of Corythucha pargundi; Hend. (Thuritidae was laken at 2 on feet in the month of May. This speries is thoughto tramsmit mosair diseaces. Twentyone specimens of Systhoterus bito p (say) (Enioucephatidac) were
 specimens were fomm in soptember. This is a most interesting insect, boing very odd in appotane and guite diflerent in structure from other IJetompera. It is a predarions species, and the front legs are fitted for grasping pres. (One sporimen of thrachthes cincreus (F.) (Reduridate) was roblerted at s.000 feet in Jome.

The most abundant of the speries of lletemptera taken was (Triphleps) Orime insidioshe (Sas) Anthecordate). There were 214 specimens of this in the day collertions and 7 tat night. Specimens were collected in ewery month with the greatest numbers in May. They were taken at most altitudes, with 117 specimens af 200 年et, 48 at $1,000,20$ at 2,004, II at $3,100,3$ at $\overline{5}, 000$, and one enth at 6,000 and 8,000 fect. It night five were collected at 900 feet and two at 1,000 fect. This species is known as the insidiuous flower bug and is predacions on thrips, phat lice, the chineh bus, the grape phylloxern, and other pests. Orius insidensus is alon bomon to ntiack and destey the egeg and emall harve of the com carworm (70). Right specimens of the rapid plant bug (Aldelphocoris rapidus (Say)) (Miridae) were collected, six in the day flights and two at might. This species is known to damage cotton. Five specimens of l'olyrnerus basalis (Rent.) (Miridae) were coblected in the upper air, two specimens at 200 feet and three at 1,000 feet. lifty-four specimens of the tarmished plant bus (Lumus pratensis (L.)) (Diridae) were taken duriug the daytime. They were cuptured in every month of the year with the exerption of November. There were 38 specimens collected at 200 feet, is at 1,000 , and 1 each at $2,000,3,000$, nod 5,000 feet. Two were found at night at alitudes of 500 and 2,000 feet, respectively. This inseet is of consuderable economic importance, causing damage to cotton, ordard trees, musery stock, and many species of flowers.

Seven sperimens of the cotton flew hopper (P sallus seriatus (Reat.)) (Alimidae) were collected in the daytime; two each at the altitudes of 20, 200 , and 1,000 feet, and one at 2,000 feet. They were taken in the months of April to Jume and from August to October. This species does considerable damage to cotton. There were 53 specimens of Arctocoriog motesta Abbot (Corividae) taken in the day flighte and 58 in the night flights. Specimens were found in every month of the year, but they were most abundant in September.

They were taken at altitudes up to 5,000 feet in both day and night collections. This is an aquatic specios that often appears in immense numbers around street lights at night, and by morning the walks and pavements under the lights are covered with the dead insects.

HOMOP'TELA

The order Fomoptera was third in numbers taken as compared with the other orders of insects collected in the upper air. There were 3,934 specimens collected of which 3,081 were taken in the day collections and 855 at night (tables 9 and 10). The order appeared in every month of the year.

For the day collections the largest number per 10 minutes' light were taken in October and November, with more in November. At night Homoptera were collected in largest numbers in May, September, and October, and in smallest numbers in fuly, after which they increased, reaching their maximmm in October. In the daytime fewest appeared in January, the numbers increasing until May, dropping off considerably in tume and July, then greatly increasing in August and until November, witho over three times as many specimens taken in November as in August.

Homoptera were collected in the day flights at almost every altitude u_{p} to 14,000 feet, and were taken at night atevery alditude flown up to 5,000 feet.

There were 9 families, 74 genera, 79 determined species, and 3 new species represented, Or these numbers, 0 families were represented in the daytime and 6 at night, with 71 determined species in the day collections and 38 at night (table 6).

The greatest numbers of specimens taken bolonged to the families Cicadellidae, of which family 773 were collected in the day flights and 479 at night; Chemidae, with asi in the day and 10 at night; Fulgoridae, with 518 in the day and 13.3 at night; Membracidae, with 86 in the day and 2 at night; and Aphimbe, with 304 specimens taken in the day flights and 31 at night.

The largest homopteron taken was a Tibien linnci (Sm. and Crosb.) taken at the aftitude of 200 fect. The lamily Atmbracidae was represented principally by the three-comered altalin hopper (Stictocephala festina (bay)), of which (ak sperimens were faken in the day flights from near the surface to the altilute of 1,06 feet. These specimens were collected from May to November, with the grealest numbers in June. Only one specimen of this species was taken at night, and this at 3,000 fect.

The Cieadellidae were fond at momy cyery altitude fown. Specimons were taken ap to the beight of 1 , own feet during the day flights. One of the most abundan of the speries laken was fraphocephata versuta (Say), for being caucht in the diy fights and 3 at might. They were taken ap the heieht of ot, ofo feet. In the day eollections 12 specimens were taken at $1,000,12$ at 2,000 , and 10 at 3,000 fect. This species was most abomdant in October and Novenber. There were 38 specimens of Agollia cons(ricta Yan 1), mo important pest of altalfa, collected in the diry flights in March, and in May to Oetober inclusive. This species was taken mostly at the altiade of 200 leet, with several at 3,000 , and one specimen at 10,000 fert. Two specimens were takes at aight, one at tho fect and one at 3,000 fect. Seven specimens of Aceratagallia sanguinolenta (Prov.) were taken at the altitude
of 200 feet. This is a serious pest of a number of legumes in the Eastern States. Two specimens of Draeculacephala mollipes (Say) were taken at 200 feet, one each in April and November. This species is recorded as being of importance as a grass feeder. Three specimens of Deltocephalus flavicostus Stil were collected at 200 feet, one each in May, June, and September, in the day fights. It is probably of considerubly importance as a grass feeder.

The most abundant of the species of Cicadellidae taken was Thamnoteitix nigrifrons (Forbes), which was canght in almost every month. Fifty-three specimens were collected in the daytime at altitudes up to 3,000 feet. In the night flights 29 were taken at altitudes of 500 to 3,000 feet, mostly in June and September. This is a common pest in the Enstern States. The largest species of Ciordellidae taken in the upper air were the sharpshooters (Oncometopia undata (F .), (O. lateralis (F.), and Ilomalodisea triquetra (F.). These spocies were taken throughout the year at altitudes of 200 to 3,000 fect. II. Itiquefra was taken at night also, two specimens at 500 feet and one at 1,000 feet. Forty specimeus of the leafhopper Afacrosteles divisus (Bhi) were collected in the dartime from Marel to ()etober. This species was taken mostly at the altitude of 200 fect, although four specimens were found at 2,000 feet and two at 13,000 feet. Seven sperimens were collected ${ }^{2 a t}$ night during the summer monthe at altitudes of 500 to 2,000 foet. This species attacks some grains und grassos and is mported as transmitting certain mesaic diserises. The potato lemplopper (hanpoasea fabae (Harr.)) was represented by 19 specimens taken in April, Dugust, September, and October, from near the surface to the height of 7,000 feet. Five of these were taken at night. Two specimens of Empousea solana DeLong wore collected in February an 1 September in the daytime, at 200 feet and 1,000 fiet, respoctively. Fone were taken in the might fights in Oetober at 500 fert. This cicadehid ormes on potatoes. Two specimens of Eiythroneura rulnerath Fitwh weme taken in the daytime, one in July nom the surface and one in November at 200 feet. This species is tommon pest of arapos. The Cicadelidae were most abomdant in September and Ochober, allhough they occured in great numbers thenghont the spring, summer, and fall months.
Tho family Fulgomide was sepresoled by 14 gonera and 14 determined specios of which 13 sperites wore taken in the day flights and 9 nt night. They were taken in the daytime at almost every altilude up to 14,000 fert. The Fulgoridae were taken mostly in Soptember and October, with fewest in the spring, late in the fall, and in winter. Two specimens of l'e effinus madis (Ashme.) were tation in the daytime, inseptember and Oetoler, at ewo foot. Firowere taken at night in October fhree at 600 fert, whe two at 000 feet This species is the transmitter of rem stripe in ('uba, a wims diseno similar to the
 ornata (Stal) taken in the upper air with $S S$ in the day eother tions and 28 at night. This speries is of no wecial interest eromomitily, but it was wery abondm late in the smmer at most altitudes, 12 having been taken at $\overline{5}, 000$ fore in the daytione and one each at 7,000 and

 goridae taken. There were 112 sperimens faken at alfitudes up to 5,000 feet in the dartime and at night there wero 27 specimens taken
at altitudes up to 2,000 feet. This species appeared mostly in August, September, and October.

The family Psylidae was represented by 6 genera and 10 determined species. The most abundant species of all the Homoptera taken in the upper air belong to this family, namely, Pachypsylla celtidismamma Riley, of which 321 specimens were takon from near the surface up to 5,000 feet. Of this number only five were taken at night, these a.t the altitudes of 500 , and 1,000 to 3,000 feet. This species appeared in greatest numbers in March and November. There were 47 specimens of P. celtidis-gemma Riley taken in the daytime at altitudes from near the surface to 3,000 teet, and one spocimen at the altitude of 13,000 feet. This species is the common hackberry twig gall psyllid. The family Psyllidae appeared mostly in the spring and late fall months.

The family Aphiidse appeared in considerablo numbers in the upper air, species having been taken up to the height of 13,000 feet. There were 14 determined genera represented, 8 determined species, and 1 new species. Though specimons were collected in every month of the year, they were taken mostly in April, May, and June. Fewest were taken in the wintor months. One specimen of Sipha flava (Forbes) was collected at 1,000 feet during the daytime in May. This species, known as the yollow aphid and found on sugarcane in Puerto Rico and the Tropics, has caused serious damage to broomcorn and sorghum in lllinois (38). Specimens of the cotton aphid or melon aphid (Aphis gossypii Glover) were taken in the day collections at altitudes from 200 to 3,000 feet and one specimen at 13,000 feet. Two specimens were taken at night at 500 and 1,000 feet. This species was taken in the spring months only. It is a well known oconomic species, being destructive in the South especially to cotton and cucurbits.

The most abundant aphid collected was tha pen aphid (Macrosiphum (Illinoia) pisi (Kalt.)). There were 17 specimens collected at altitudes of 200 to 4,000 feet and they were collected mostly in May. This is a very injurious speries, often serious on peas, clovers, and other legumes. One specimen of the green peach aphid (Myzus persicae (Sulzer)) was taken at 3,000 feet in May 1930. This species is of considerable eronomic importance, attacking truck crops, garden flowors, and fruit trees.

The family Aleyrodidae was represented by two specimens taken at 200 and 1,000 feet, respectively, in the day collections in Septemter 1930. The whiteflies are often very destractive to various cultivated plants.

Two spocimens of the family Coceduo (scale insects) were taken at 1,000 foet in July 1930.

In comparing the day and night collections of the species of Homoptera it was found that there was a similar tre d in the monthly maximum and minimum occurrences. The spring penk was in May, with a mininum for the summer in July. Both day and night collections incroased similarly in the number of specimens taken, with the excoption that the peak of abundance for night was reached in October, whereas that for the day collections was in November. This may be accounted for bs the fact that Cicadellidae were more active at night in Octoler than in November, because of meteopologioal conditions that limited the activity of night-flging insects in the latter month.

It is evident that many of the species belonging to certain families are more nctive in the upper air either in the daytime or at night. The families especially represented in the day collections are those of Membracidae, Psyllidre, and Aphiidae. The families Cicadellidae and Fulgoridae were collected in great numbers both in the daytime and at night. However, as estimated on the amount of time flown, more than five times as many Cicadcllidae were taken at night as during the day. This would indicate that Cicadellidae were more active at night in the upper air than during the daytime. Almost twice the numbers of Fulgoridne were taken at night as during the day, as estimated on the amount of time flown. Species of Homoptera of which more were taken in 10 minutes of flight in the day than at night are Stictocephala festina (Sny), Micrutalis calca. (Say), Agallia constricta Van D., Graphocephala rersuta (Say), Macrosteles divisus (Uhl.), Liburniella ornata (Stå), Delphacodes puella (Van D.), Aphalara veazici Patch, Trioza diospyri (Ashm.), P'achypsylla celtidismamma Riley, and Macrosiphum (Illinoia) pisi (Kalt.). Species which are apparently more active at night than during the daytime are Xestocephalus pulicarius (Yan D.) and those belonging to the genus Empoasca.

COLEOPTERA

The order Coleoptera was second to Diptera in the numbers of insects taken in the upper air. The order appeared in every month of the year, and in the day collections the specimens were most abundant in March and November, with more in March. They were found at every altitude flown up to 12,000 feet. At night Coleoptera appeared in the collections in greatest numbers in May and October, with more in May. Nearly twice as many were taken at night per unit of flying time as in the day flights. The Coleoptera collected in the upper wir were represented by 46 families, 191 genera, and 175 determined species. There were 4,420 specimens taken, of which 3,566 were collected in the daytime and 854 at night (tables 9 and 10).

More than half the Coleoptera taken belonged to the families Carabidae, Staphylinidae, Clirysomelidae, and Curculionidae.

The fomily C'arabidae was third in the number of specimens taken. The greatest numbers were found in March, Moy, and June, with the greatest number collected in May. Fewest specimens were found in January aud, for the summer, in August. They were collected from near the surface to the height of 10,000 fect. Species belonging to the genus Bembidion were taken mostly at night at altitudes of 500 and 1,000 feet. Twelve specimens of hicratopus fusciceps Csy. were collected in the day figlits, and 46 at niglit. These were collected from May to December, att altitules of 200 to 2,000 fect. Fortyseven specimens of Harpalus nitidulus Ched were taken in the diay flights, mostly at 200 feet, but three at 1,000 feet. This species wis found from February to May, with the most taken in March and the fewest in May: Thirtcen specimens of Agonoderus pallipes F ., were collected, 10 in the daytime and 3 at night, at from near the surface to 1,000 feet. This species sometimes attacks seeds of corn, althougr) it fecels mainly on insects or insect remains. Species of Carabilae daken at high altitudes were one specimen of Blechrus pusio Lec. at 10,000 leet, one Stencellus tantilus Dej. at 6,000 feet, and one Tachys sp. nt 8.000 feet.

Members of the family Staphylinidae include more specimens than any other family of Colcoptera taken in the upper air, and are among the most abundant of insects. There were 1,188 specimens collected in the daytime and 206 at night. Specimens were taken at nearly every altitude up to 11,000 feet. In the day collections staphylinids were more abundant in the months of March, May, and November than in other months, with the peak of abundance in March, but at night they appeared mostly in October. Based on the amount of time fiown, the Staphylinidae were more abundant at night, when they were probably the most active of the Coleoptera, at times the air being filled with these minute insects, especially around lights. As these insects fred in decaying animal and vegetable matter where they are predacious on other insects, they may be classed as beneficial.

One interesting fitmily represented in the collections of the upper air was the Trichopterygidie. of which six specimens were taken. They were collected in the summer months, four at 1,000 feet and two at 2,000 feet. This fanily includes the smallest beetles known, They are minute insects, the wings being long and slender, fringed with long hairs, and feathertike in apearance.

Five specimens belonging to the Lampyridae, or firefly family, were collected. One sperimen of Pyropyga inimuta (Lece.) was takell at 200 feet in April and four undetermined specimens at the sarne altitude, one in April and three in September. Fireflies do not fly high at night, as the writer never observed any "flashes" of these insects while Aying very high at night. While they are rather sluggish by day, a few are active, as all specimens were collected betweens and 10 nt. m .

One specimen of Micromalthus Lobilis Leec. (Aficromnlthidne) was taken in September at 1.000 leet. This is a most interesting species, having a very remarkable life history. It has been found by Barber (f) that most of its larvae give birth to living larrae (viviparous patedogenesis) whereas some hay single eggs (oviparous paedogenesis). This exy produces a male beetle throngh larval forms that are dififerent from those producing the female beetle. The adult female lays two egge that are not like the egry of the oviparous larva. Most of the larme burrow in and feed upon decaying wood, but thos that produce males remain guide cach in the call of its mother larsa, which latter supplies its own mutriment.

The family Dermestitac inclades three spermens taken in the day flights. One dermestid larva, a species of Tregoderma, was calught glive in Marth at the nltitude of 0,000 fect. Two budetermined species of athats were mollected in Jome at 200 feet. This fumily bucludes many species destruttive to foodstufls, household goods, and clothiner.

One specimen of the rlover stemborer Languria mazardi Latr. (Erotylidac) was takell near the surface in April.

The family (bocenollidac (ladybedtes) was represuted by 00 specimens taken in the day flights mat 2 at night. Specimens were taken in exery month execpt Jimuary and Becember. Fight determined speries were collected from near the surface to the height of 6,000 fert. Seven speciment of Symnus trminatus bity were found in the day flights, with four at 200 feed, one at 1,000 feet. and two at
 One Coleomegilla foridan (Leng.) was taken at the altitute of

6,000 feet in August. Ten specimens of C. fuscilabris (Muls.) were taken at 200 feet in the summer months. Eleven specimens of Hippodamia convergens Guer. were found from near the surface to the height of 5,000 feet. One Coccinella novemnotata Hbst. was found at 1,000 feet. Two specimens of Cycloneda munda (Say) were collected in the day at altitudes of 200 and 1,000 feet and one at night at 1,000 feet. The species of Coccinellidae represented in the collections of the upper air nazy be considered as beneficial, being predncious and feeding on aphids and other small insects.

Three specimens of the red flour beetle (Tribolium castaneum (Herbst)) (Tenebrionidae) were taken in the daytime, one each in January, April, and September, at the altitudes of $200,1,000$, and 3,000 feet, respectively. This species causes damage to stored flow and other products.

One specimen of Xylobiops basilare (Say) (Bustrichidae) was taken in March at the altitude of 200 feet. This species is one of the shot-hole borers and causes damage to wood products.

The family Scarabaedae was represented by six specimens collected in the day fights, and eight at night. They appeared in the winter, summer, and fall months. Two specimens of a dung beetle, Aphodius lividus (Oliv.), were found at night, one each in July and October at 500 feet.

The family Chrysomelidae was second in the numbers taken, there being 475 specimens in the day collections and 26 at night. The greatest numbers were taken in March and April. For the months in which flights were made at night the larger numbers of Chrysomelidae were found in May and October. There were 24 gencra and 34 determined species taken at altitudes ranging from near the surface to 11,000 feet. Seven specimens of Colaspis brunnea (F.) were collected in the summer months, six at 200 feet and one at 1,000 fect. This species is of economic importance, feeding on corn and clover and being destructive to grapes. It has alsu caused some injury to growing cotton. A specimen of the grape rootworm (Fidia viticida Walsh) was taken in June at the altitude of 200 feet. Twenty-five specimens of Myochrous denticollis (Say) were taken, 6 at 20 feet, 18 at 200 , and 1 at 3.000 fect. They were found in the spring, summer, and fall months. This chrysomelid causes injury to young corn plants. Two specmens of the strawberry rootworm (Paria canella (F.)) were found in March at 200 and 3,000 feet, respectively. This is a pest on many plants, eating leaves and buds and feeding on the small roots. One willow leaf beetle, Chrysomela $(=\operatorname{Lina})$ scripta F., was taken at night at $j 00$ feet.

The spotted cucumber beetle (Diabrotica duodecimpunctata (F.)) was caught in the upper air, with 18 specimens found in the day collections and 10 nt night. They appeared in nearly every month from February to December, although the greatest number were taken in May. They were captured in the daytime from near the surface to 1 , c as eet, and at night from 500 to 3,000 feet. There were 12 specimens of the striped cucumber beetle (Diabrotica cittate (F.)) collected, 6 each in the day and night flights. They were taken from June to October, from near the surface to 1,000 feet, and one specimen at 11,000 feet. Two adults of the bean leaf bectle (Cerotoma trifurcata (Forst.)) were found in September at the altitude of 200 feet.

Twelve specimens of Crepidodera atriventris Melsh. were collected in the day fights in April and May and from September to November, at altitudes of from 200 to 2,000 feet. This species has caused severe injury to Acalypha in gardens in Illinois and in Washington, D. C. (3). The flea beeties were taken mostly in the summer months at altitudes of 200 to 1,000 fect. The species of flea beetles collected in the upper air included the eggphant flea beetle (Epitrix fuscula Cr.); potato flea beetle (E. cucumeris (Harr.)); E. brevis Schwartz; and the tobacco flea beetle (E. parrula (F .)); seven specimens of Mantura foridana Cr. taken in April, six at 200 fect, and one at 1,000 feet; the sweetpotato flea beetle (Chuetornema confinis (Cr.), and the toothed flea beetle (C. denticuluta Ill.) at 200 feet; 19 specimens of the com flea beetle (C. pulicaria Melsh.) from 200 to 5,000 feet; the pale-striped flea beetle (Systena tamata Say) from near the surface to 1,000 feet; and many undetermined specimens. Chaptornema pulicaria has often been reported as a com pest of first importance. It has been known for many years to be a vector of bacterial wilt of com. However, it is only more or less recently that it was learned that Aplanobacter stewarti, the orranism which causes bacterial wilt of com, was found passing the winter in a virulent condition in the bodies of the hibernating adult beeties (00). New corn plank are inoculated with the wilt organism in the spring by the feeding of these beetles, and this appears to be the chief means by which disease is spread each year in romfields. Chatorema dintirulata is also a vector of bacterial wilt of com, as it will tansmit the bacterial wilt organism from infected to leuthy com for a considerable period of time, but it has not been found to hatbor the organi-m orer the winter.

Longitarwus testaceus (Melsh.) was found in (every month, although it was taken mostly in March and April. Two hundred and nine specimens were collected in the daytime from noar the surface to as bigh as 5,000 fect. Thres specimens of the striped cabbage flea beetle (Phyllotrcto striolata (III.)) were 「ound at 200 leet in April. The hop flea bectle (T'syl/iodes punctulato Melsh.) was taken late in the spring and early in the summer at 200 and 1,000 feet. A small leaf miner, Baliosus ruber Web., whs collected at 200 feet in May. The larva of this species mines in the leaves of apple and basswood. One specimen each of the striped sweetpotato beetle (Metriona bivittata (Say)), and the goden tortoise beelle (M. bicolor (F.)) were found in October and Kovember, respectively, at 200 and 1,000 feet.

The family Curculionidae was fourth in the numbers of specimens collected. There were los taken in the day flights and 12 at night. Seventen genera and 18 desceribed ipecies were represented, and they were collected in every month, although mostly in spring, being most abundant in May. Ther were found from near the surface to the altitude of 5,000 feet. Fiourteen specimens of the cotton boll weevif (Anthonomus grandis l3oh.) were rollected from May to October. One specimen was collecterl at 20 feet, seven at 200 feet, three at 1,00, and three at 2,000 fect. Only one specimen was found at night, this at the altitude of 1,000 feet. This bectie is the major pest of cotton.

Of the family Platypodidae one specimen of Platypus quadridentutus Oliv. was taken at 200 fect in October. Two adults of another similar ambrosia bectle (P^{\prime}. compositus Say) were collected noar the
surface and one at 200 feet. These beetles are destructive to dying, recently felled, and wind-blown trees, especially to cypress throughout the range of this tree.

Of the family Scolytidae five specimens of Leperisinus aculeatus (Say) were taken in the winter and spring at 200 fect. One Pityophthorus rhois Sw. beetle was found in August at 200 feet.

NEUfZPTERA

The order Neuroptera was represented by 36 specimens taken in the upper air, of which 10 were found in the day flights and 26 at night. The specimens were collected from April to November, with the greatest number taken in October, at 200 to 5,000 feet. Four families and six determined species were represented (table 9).

Four specimens of Sympherobius amiculus (Fiteh) (Sympherobiidae) were found in the upper air, two at night in August, at 1,000 and 3,000 feet, and two in September, one cach at 1,000 feet in the day and the night collections.

Seven specimens of the family Hemerobiidae were taken at 500 to 3,000 feet, with two specimens in the daytime and five at night.

The family Chrysopidae was represented by 6 specimens caught in the day flights and 17 in the night. One specimen of Chrysopa oculata Say was found at 200 feet in the day, and one each at 500 and 1,000 feet at night. Five specimens of C. oculata var. albicornis Fitch were collected, one at 200 feet in the daytime and one at 500 feet and three at 2,000 feet, at night. One $($ C. oculata var. chlorophana Burm. was found at 500 feet at night. Three C. plorabunda Fitch were taken in the day collections at 200 feet, and seven at night, with four at 1,000 , two at 3,000 , and one at 5,000 feet. Four Chrysopa species were collected at altitudes of 500 to 3,000 feet. Species belonging to this family are the well known lacewing flies, and as the larvae are predacious on aphids and other small insects they may be classed as beneficial.
One Malacomyza westwoodi (Fitch) (Coniopterygidae) was taken in the daytime in October at 3,000 feet.

TRICHOPTERA

Thref specimens belonging to the order Trichoptera (caddisflies) were collected in the upper air in the day flights (tahle 9). One specimen of Oecetis sp. was found in July nt 5,000 feet. Two undetermined species of Trichoptera were collected at 200 feet in Ociober. The Trichoptera are important as food for fishes, the larvae being abuet ant in the bottom of lakes or strenms.

MECO1TTERA

The order Mecoptera was represented by three specimens of scorpionflies of the genus Panorpa (Panorpidac), collected in the daytime at 5,000 feet on September 15, 1926. The order Mecoptera includes insects of little, if any, conomic importance.

1.EMIDOJ'F'ERA

There were 225 specimens of Lepidoptera collected in the airplane insect traps, of which 217 belonged to the INeterocera and 8 to the Rhopalocera.

RUBOLDER HETEROCERA

The Heterocera, or moths, caught belonged to 16 families and 30 genera, in which 24 species were determined. They were taken in every month of the year, although mostly in September and October. There were 67 specimens caught in the day flights and 150 at night. At night the greatest numbers nppeared in October. They were collected at altitudes ranging from nene the surface to the height of 5,000 feet (table 9).

Forty specimens belonging to the family Noctuidae (cutworms, ete.) were taken, of which 4 were found in the daytime and 36 at night. One specimen of the cotton bollworm or corn carworm moth (ITeliothis obsoleta. (F.)) was foumd at night in (Oetober at 500 fect. Seven adults of the fall armyworm moth (Laphyora frotiperda (A. and S.)) were collected, one in a day flight at the altitude of 2,000 feet, and five at 500 and one at 1,000 feet, at night. Larvac of this species are a serious pest of fied and vegetable crops. One specimen of the cabbage looper (Autographa brassicae (Riley) was takna in October at 500 feet at night. The larvae are serious pests of plants of the cabbage family as well us of many other vegetables and of flowers.

The cotton leafworm moth (Alabama argillacea (IIbn.)) was represented by 22 specimens of which 3 were taken in the daytine and 19 at night. They were collocted in August, September, and Oetober, from 200 to 3,000 feet in the daytime and from 500 to 1,000 feet at night. The larra of flas moth is ore of the important cotton pests, and the moths often cause injury to fruit in the North. There is a mystery abont the advance of the cotton lealworm from year to year. An infestation will appear in one locality and then suddenty in a place far distant. The moth is a well-known migrant, flying from the Cotton Belt of the South and appearing in great swarms in the Xorthern States and Canadn. There is no known record of this species overwintering in the Tinited States, yot each year it appents usually first in the cotton fields of the exteme Snith and then advances towned the North.

Doubthess temperature is the controlling factor in the fippearance or disappearance of the cotton Ieafworn moth, for it seems to stimulate or retard the migrations. The migrations of Alabama in South America are southward from the Tropies in leecmber and January, the caterpillars disappearing in May and fune with the advance of colder weather. In the linited States the migrations are northward as the season adrances. In some years the moths reach the most Northern and Northeastern States very efrly, and at times are reported in the North within a few days after their first appeamence in Louisiana. In 1929 the first moth found at Tallulal was one taken in the airplane insect trap on August 5 at the altitude of 500 feet. This specimen was probably a migrant, sime eggs or larvac liad not been reported in Jouisiama previously. On August 24 a moth was taken in Wisconsin. In 1920 the first egrgs and larvae were found on cotton at 'Tallulah on July 22. On Aurust 1 adults were found at Columbia, Mo. Compuring the records of 7 years it was found to take from 40 to 58 days, or an average of 56 days, for the moth to appear in nor thern Louisiana after its initial appearance in southern Texas near Brownsville. From the first record of the moth near Brownsville to the first record of the moth reported from Wisconsin there was an average of 107 days, with 121 days for Minnesota and 113 days for Michigan.

The pink boliworm (Pectinophora gossypiella (Saund.)) was not taken in the flights over Louisiana, but a few specimens were captured in Mexico, as discussed under another heading.

One moth of the green clover worm (Plathypena scabra (F.)) was found at night in October at 500 feet. The larvae of this species are very destructive to clover, alfalfa, and leguminous crops.

One moth of the celery stalk worm (Nomophila noctuella (D. and S.)) (Pyralididae) was taken in September at 3,000 feet in the drytime. This species has a world-wide distribution, but as a rule is not of much economic importance. The larvae attack celery, bluegrass, and legumes. Three adults of the garden webworm (Loxostege similalis (Guen.)) were taken at night, two at 500 feet and one at 3,000 feet. The garden webworm attacks truck crops, feeding on the foliage. It may seriously injure alfalfa. Six specimens of Geshna primordalis Dyar were taken at night in July and September, two at 500 feet and four at 1,000 feet. This is a widely distributed species, the larvae feeding on semiaquatic plants. One specimen of the meal moth (Pyralis farinalis L.) was found in September at 5,000 feet in the daytime. The larvae feed upon cereals of all kinds and do considerable damage. Three adults of the lesser cornstalk borer (Elasmopalpus lignosellus (Zell.)) were collected at night in September and October, at 500 feet. This is a very destructive species that causes injury to young sugarcane in Cuba and to young corn and other crops in the United States.

SURORDEK RFfOPALOCERA

Eight species of butterflies were taken in the day flights in April, August, September, and October, all at the lower altitudes. Λ specimen of the alfalfa caterpillar butterlly (Colias eurytheme Bdv.) was taken at 50 feet. Other species of butterflies collected at altitudes from near the surface to 600 feet were Phyciodes tharos form marcia Edw., Junonia coenia (Hbn.), Epargyreus tityrus (F.), Antigonus nessus (Edw.), Hesperia leonardus Harr., Lerema aceius A. and S., and Lerodea eufala (Edw.) (table 9).

HYMENOPTERA

The order Hymenoptera was fourth in the number of specimens taken. There were 2,947 specimens collected of which 177 were caught at night. Hymenoptera appeared in every month of the yenr, with the greatest numbers for the day flights taken in May and July and the smallest in Janury and February. At night most specimens were found in October. They were collected at nearly all altitudes flown up to the height of 14,000 feet. There were represented 33 families, 244 determined genera, and 195 determined species, with 3 new genera and 20 new species. More than hati or the Hymenoptera belonged to seven familics, these being Braconidnc, Dinpridae, Scelionidae, Cynipidac, Eulophidae, Pteromalidac, and Formicidac (tables 9 and 10).
The family Bracondac included the greatest number of specimens collected of any of the families of Hymenoptera. There were 325 specimens taken, of which 295 appeared in the day collections and 27 at night. There were 44 genera, 44 determined species, 2 new gencra, and 7 new species represented in this family. Specimens were found throughont the year and were more or less evenly distributed, but with fewest specimens taken in the winter months. They were found
at all altitudes flown up to the height of 8,000 feet. The genus Microbracon was represented by five determined species and one new species. Two of M. gelechiat (Aslim.) were collected at 200 feet, in April and May. It is a species parasitic on many lepidopterous larvae of the families Pyralididne, Tortricidae, and Gelechiidac. It is known as a parasite of the apple und grape leaf rollers, oriental fruit moth, and grape berry moth. Ton speciment of M. mellitiry (Say) were taken in the spring and summer at altitudes from near the surface to 5,000 fect. This species is exceedinely important as a parasite of the boll weevil and the pink bollworm.

Three Triaspis curculonis (Fiteh) were collected at 200, 2,000, and 3,000 feet. This is a widely distributed parasite of the plum curculio and frequently parnsitic on the boh weevil. Twenty-two specimens of Chelonus textanus Cress. were fomm, mostly in Ahyist and September, at altitudes from 200 to 5000 fect . This species is a parasite of the fall armyworm nat the bollworm. One Micruplitis ruricolor Vier. was found at 1,000 fect. This is a parasite of the armyworm (Cirphis unipuncta (Haw.)) and the green clover worm (l'lathypena scabra (F.)). The gemus siponteles was sepresuted bye s:3 specimens, of which only 4 were taken at night. There were nine detemined species collected in the spring, summer, and fall at altitudes from near the surface to 5,000 fect. Siv Apanteles marginitentris (C'ress.) were found at from near the surface to 2,000 fect. This is known as a parasite of the com carworm, full irmworm, ete, Jourten of A. militaris (Walsh) were found at altitudes up to a, 00 feot. This is a gregarious parasite of the armyworm (criphis unipunefo). There of il. forbesi Vier. were found at 200 and 3.000 fert. This is also a parasite of cutworms. One Opires dimidiatus Chwm.i, was calught at 200 teet. It is at common parasite of the serpentilic leaf miner (Agromyza pusilla Meig.). Thirteen of Mforms rulmus (C'ress) were fommi. mestly in May, at altitudes of from 200 to $2,000 \mathrm{fect}$. This is an abundant parasite of northid larve of the cutwom type. Seventern specimens of $L y$ siphlebus testactipes (Cress.) were taken in the spring and summer at altitures up to 5,000 fect. This is in important parasite of the cotton aphid ond other aphirds. Six sulults of Aphereter muserac Aslim., parasitic on various Diptern. were taken at 200 to 3,000 feet.

There were 64 specimens belonging to the family Tehneumomdac taken in the day flights, and 8 at night. The sperimens collected comprised 23 genera, 16 determined speries, and ! mew species. They were found throughout the yeur at altitudes from near the surface to the height of $\mathrm{j}, 000$ feet. Three Fiphialtes acqualis (Prov.) were collected at the altitudes of 200 and 3,000 fect, and one Acrobita aldite Ashm, at 2,000 feet. The former species is parasitio on the coton leaf worm mad the bollworm, and the latter is a secondary parasite. A specimen of D iphazon latatorius (F .) was canght at 1,000 fect. Tluis is a parasite of syrphicl Slies. One Sagaritis prorancheri (D. T.), parasitic on the fall armyworm. European corn barer, bollworm, and other lepidepterous larvac, was found at 200 lect. Four of S. orylus (C'ress.) were collected at 200 feet in the monthes of March and April. 'Jhis is also a parasite of the fall amywom (Laphygna (frugiperla), and the armywom (fitphis unipuneta).

One hundred and twenty-seven specimens belonging to the family Dinpribdac were collected, of which eight were taken at night. They were taken mosily late in the spring, in the summer, and carly in the
fill, and were found at altitudes up to 10,000 feet. There were 10 genera, 3 determined species, ane 2 new sjecies represented in the collections.

The family Eceliondate was fourth in the number of specimens taken, with 227 specimens, of which 9 were found at night. They appeared from Mareh to November, but cliefly in May and September (based on the amont of time flown). They were taken at from near the surface to the heigit of 13,000 feet. Fighteen genera, 12 determined species, and 1 new species were represented. Dembers of this Samily are egg parasites, infesting the egys of neaty all orders of insects and dee eqges of spiders. Twenty-four specimens of The nomus pulini Asibmi? were coilected up to the height of $\overline{5}, 000$ Fect. This is an eqg parasite of pentatomid bures.

The family (ynipidhe comprised 19, specimens taken, of which 10 were found at night and inchaded 5 genera and is determined species. Specimens were laken at altitudes up to 11,000 fect. appeared in every month except February, and were most abundant in Lpril and August with more in August. Members of this family are mostly minute insects. Alany species produre galls, some are parasites, and others are inguilines or cruests in galls produced by other species. Eighteen
 speries is parasitio on Diptera. Four specimens of (harips brassicue (Ashme, parasitie on the cablage aphid, were takenat 2od feet. Fiften fomater of the gemas Symurgur were collected from near the surface to 3.000 feet. species of this genus are guest flies in cyopid galls on oak.

The 37 specments of the family (haldididae biven at altitudes up to $\operatorname{sin00}$ feet induded 3 gemera, 4 determined spectis, and 1 new species. This family comprises speries whichare mostly parasitic on lepidopterons lare are pupae, athongh a few are paraisitic on other inserts.

The family Eurytomidar was represented by 49 specimens, of which 4 were taken at night. There were six genera, eight determined species, and one new sperics collected from near the surface to the height of $\overline{0}$, OOO [eet, from Mareh to Oetober. Four specimens of the clover-seed chalcit (Bruchophapus gibus (Buheman) were taken at altitudes of 200 and 1,000 fect in the daytime, and one at night at 500 feet. This is a serious pest of red and crimson clovers and alfalfa, infesting the seeds. One Bruchobiun laticeps Ashm. was collected at 1,000 feet in ()etober. This apecies is a larval parasite of bean weevils (Bruchidae).

The specimens collected of the family Pbromalidae comprised 222 individuals of which is were collected at nipht. The collected material included 16 gemera mod 1.3 determined speries found at altitudes from near the surface to 10, to0 fect. The yreatest mumbers of specimens appented in September and october. Thirty-four specimens of Zatropis intertus (Ashm.) were taken at altitudes up to 5,000 feet. This species is parasitic on the boll weevil and pink bollworm. Six of Cotolacersh hunteri (wifl. were collected at allitudes of $20 t 1$ and 1,000 feet. This is atso a parasite of the boll weevil and the pink bollworm. Four species belonging to the genus Pachyne urn were found at altitudes of from 50 to 10,000 fert. Nine speciments of P. siphonophorae (Ashm.) were taken at from 200 to ($\mathrm{i}, 000$ fect and were fond mostly in the spring montlos. This is an impertant parasite of the cotion s.phid (Aphis gussipia).

The family Eupelmidae contributed 38 specimens, of which 3 were taken at night. There were two genera, nine determined species, and one new species represented, taken from near the surface to 2,000 feet. They were found mostly in the summer months.

The family Encyrtidae was represented by 58 specimens, 2 of which were taken at night. Fourteen genera, 10 determined species, and 1 new species were taken at altitudes from near the surface to 12,000 feet. Ono Homalotylus terminalis (Say), a parasite of coccinellid larvae, was taken at 200 feet.

There were 245 specimens belonging to the family Eulophidae, 17 of which were taken at night. There were 10 genera, 15 determined species, and 2 new species represented in the collections. This fatmily ranked third in the numbers taken. The insects appeared from March to December and were mostly found in May and October, with more in May. Specimens were collected from near the surface to the beight of 13,000 icet. There were 153 specimens belonging to the genus Testrastichus collected at altitudes up to 11,000 and 13,000 feet. Some are egg parasites, but members of this genus show a great diversity in host relations. Many are larval parasites of Coleoptera and Lepidoptera, and many are secondary. Fifteen specimens of Euplectrus comstockii How. were found at 200 to 3,000 feet. This species is known as a parasite of the bollworm and cotton leaf worm. Six of E. platyhypenae How. were collected at 200 and 2,000 feet. This species is parasitic on the corn enrworm.

One Anagrus orijentatus C. and I_{4}, of the family Mymmridne was taken at 5,000 feet in May. This is an egg parnsite of the tarnished plant bug.

The family Formicidae contributed 309 specimens, of which 7 were found at night, and the material ineluded 12 genera and 10 determined species. They were taken from near the surface to the beight of 5,000 feet, and appeared in Mrrch to November, with the greatest numbers collected in July.

Great swarms of winged ants are often seen in the air in the spring, summer, and fall. These are the newly matured males and females that have emerged from their nests. The pairing of the males and females from different nests prevents too close interbreeding. The factors that determine the occurrence of the muptial flights at the same time in one locality are not understood.

Several of the species of ants collected are of special interest and eronomie importance. Some are known to occur in houses, being more or less destructive and of major importance. These are Solenopsis molesta (Say), S. sylomi MrC'onk, Pheidole dentata Mnyr, Iridomyxmes pruinosus var. analis (André), Prenolepix (Ny/anderia) sp., Tapinoma sessile (Say), and Monomorium minimum (Buckley). The genus Crematogaster nlso includes some of the most common species of ants in the South, a frw of which are house-infesting forms. Of the 150 specimens of (ramatogaster sp. collected in the upper nir, most were taken in the morning, with the majority nt from 10 to $11 \mathrm{gl} . \mathrm{m}$. They appeared in greatest numbers at the temperature range of 85° to $89^{\circ} \mathrm{F}$, and were mostly taken on partly cloudy days. Solenopsis syloni is considered to be the most destructive species in the Southern States, poultry, cuail, clothing, seeds, citrus, and nuts being attacked by it.

In comparing the morning and afternoon collections of these fire ants it was found that of the 106 specimens taken, 101 were found between 1 and $6 \mathrm{p} . \mathrm{m}$., with the majority at 2 to $4 \mathrm{p} . \mathrm{m}$. From a limited number of records on this species by M. R. Smith, it appears that the nuptial flights of fire nnts take place in the afternoon, usually between 1 and $6 \mathrm{p} . \mathrm{m}$. The greatest numbers were taken in the temperature range of 80° to $89^{\circ} \mathrm{F}$., with the majority at 85° to 89°. More specimens of the fire ant were taken when the sky wis overeast than when it was clear.

The family Bethylidue was represented by 53 specimens, 2 of which were taken at night. There were 13 genera and 8 determined species collected from near the surface to 5,000 fect, mostly itl the summer months. This is a very large family of parasitic wasps, many species being known to prey ujon either colcopterous or lepidopterous larvae.

Of the family Andrenidae, 50 specimens were collected in the upper air, only one of which was taken at night. There were of genera, and 11 determined species taken from near the surface to 3,000 feet, mostly in the spring and summer. This family contains the andrenid bees, which are solitary nest-building bees, and members of the genus Halictus, the mining bees, of which seven species were found.

One specimen of Bombus americanorum (F .) (Bombidac) was taken at 200 fect. This is a well known species of bumblebee.

Thirten specimens of the honeybee (Apis mellifera L.) (Apidae) were collected, 2 at 20 feet, 10 at 200 feet, and 1 at 1.000 feet.

DIPTERA

The material of the order Diptera comprised the greacest number of specimens collected. There were 11,304 sperimens of which 9,973 were taken in the daytime, and 1,331 at night. They appeared in every month of the year. In the dartime Diptera were most aboundant in May and June, with more taken in May. At night the greatest numbers were collected in ALay and October, with nearly twice as many taken in October as in diay. Specimens were found at every altiturle flown in the daytime up to 14,000 feet, and at every altitude flown at night. Diptera were slightly more abundant at night than in the daytime per unit of flying time. In comparing the number of specimens colleried at the altitude of 200 fect in the daytime with those at 500 feet flown at night, it was foum that curves representing the maximum and minimum collections of Diptera for each month follow each other chosely. There was a decited increase in number of specimens collected int night in May, and for the day collections the maximum numbers ware also formd at this time. In Oetober there was but a slight increase in the mumber of specimens found at 200 fort: but at night, 21500 feet, nearly twice tas many were collected is in the daytime. ('flellated on the hasis of 10 minates of fly ing (ifte. in Why more specimens were collected at 200 feet in the daytime than at 506 feet at night, but at 1,000 feet there were fower specimens. taken in the dartime than at night. In October the numbers at 1,000 fect in both day and night collections wero similar to those for 200 and 500 feet. At 3,000 feet in May and October, Diptera were more numerous nt niglt than in the daytime, but at 5,000 fect there were many difleremees, as at this high altitude other factors contribute to offset any natural tendencies of insert flight. In the day time fewest Diptera were collected in Jomury and December with about equal
numbers in each of those months These estimates are all based on the 10 -minute unit of collecting time.
Nearly three timos as many Diptera were sollected as of the seoond largest order, Coleoptora.
Many species of Diptera taken in the upper air were of economic importance, and comprise some of the most dangerous pests. Those species affecting the health of man and animals are discussed separately.

Thero were 293 specimens belonging to the family Tipulidne taken in the day flights and 48 at night. Of fow determinod species collected, IFelobia hybridn (MCeig.) was the most abundant, with 187 in the daytime and 12 at night. They were found mostly in Aarela and 1 pril. This species is one of the revy eommon crane flies and is widely distributed. Ona speries was collected at 14,000 feet in June.

Seven specimens of the family Psychodithe were taken, with one $P s$ yehola sp. in the dintime at 200 fect in fuly, one at 500 foet at night in Jume, and me at 3,000 feot in Oetober. Three other specios of the family were taken at 1,000 feot in July and November, with ono at night in Oetober. Species of this family are mothlike in appearance.
The fimily Ceridomyidiate was represented by fat specimens taken in the daytime and 20 at night. They were collesterd at all altitudes from near the surface to \bar{n}, wo feet and ono undetermined species was taken ab 14,000 leed in Lugrast. The ceridomyideds were collected throughont the ven, prineipally in Februry and October. Those are very mintute flies, many specict producing galls on vegetation.

Ono undetermined specimen belonging to the family Psilidae was taken at 20 feet in March. Somolarye of this family feed or carrots, colery, and parsnips and are offen fuite destructive.

Thers were 609 specimens taken in tho daytime and is at night belonging to the family Ephedridac. They were taken at most altitudes near the surface to 5,000 feet and rene Scatella sp. and one undetermined species of Ephydridas wero taken at 10,000 feet in September. They oceurred throughout the year, althougle more sperimens wero collected in April. This family is of no special economic importane except in the far West and in Xexico, where the laryar occur in groat numbors in the alkalime fakes, and are gathered, died, and used for food by the Indimes ($/ T_{1}, j$, , winf $)$.

Thirty-ome sperimens of the fanily Drosophilidae were taken in the (hay flights and it at night. Four epories were represented, (hynomyza amoena Loew, Leucophomete retria Walk., Drosophilu melanaynster Moig., and Scaptomyza whuta Loew. Thev were rollected at altitudes from 260 to 3 , mon leet. Sperimens were found in the collections throughont the year, but prine inally in September. Those of the genus Drosophila are know in truithlies or pomace flies, as they feed on ripe and deraying fruit. The adult flies wre widels nsed in experimental research in genetis.

Two specimens of (he genus Lefuropix (Oehthiphilidao) were taken, one in the daytime in Fobruary at 1, foo feat and one at night in October at 500 foet. The latrate of this gemes prey upon aphide and eoceids, and thus may be considered as beneficial.

One hundred and cightera specinems of the fungrs grats aryentophilidae) were taken, क्र in the day flighte and 23 at night. They were rollected at most attitudes flown. One specimen was taken at 7,000 feet in July and one at 10,000 feet in Jume. They were fond in
every month of the year except January, the greatest numbers in May. These flies are usunlly abundant, the larvae feeding on fungi and on decaying vegetable matter.

The Sciaridae were represented by 463 spocimens, of whioh 34 were taken at night. They were collected at most altitudos and appoared throughout the yoar, with the grentest numbers taken in May. Thirty-six specimens of Eugnoriste occidentalis Coq. were collected, ineluding one at night; they were taken rostly in June and Septembor. Sixty specimens of Sciara jucunde Joh. were collected in the day fights at aititudes up to 5,000 foet. One specimen of S. coprophila Lint. was taken at 2,000 feet in June. Thero wore also 268 Sciara sp. collected in the day flights and 27 at night, with the greatest mumbers taken in May. One Sciarn sp. was collected at 6,0co feet in August, one at 10,000 feet in Jone, and one undetermined species of Sciartlae was taken at 8,000 foct in May. The larvae of the genus sciara are particularly interesting in that they have a characteristic habit oi congregating in dense numbers uider tho bark of trees. Just before time for papation thay become very active, marehing over the surface of the ground in a serpontlike column, and accordingly have been termed the sciara amyworm.

Ninety-eight specimens belonging fo the family Bibiondize were taken in the day lights. They were collueted from March to ()etober, with the greater mambers apparing in The and baty. Twenty-one specimens of Dilophus beriefps Low and 19 of Ditronthe sp. were taken from near the surface to 2,000 feet. One Dibophus sp. Watso taken at 10,000 feet in Jume. The larsae of the bibienits, or Mareh flics. Ieed on decaying vegetable matter, although some apecies attack the roots of grass and erowing phants.

Two specimons were takel belongine to the fanily Satopsidae, with one, Bechetella sp. taken at 200 foet in April abd one madetermined species of shatopsidae at $\overline{5}$, 560 feet in September.
Seven rpecimens belonging to the fomily Stratiomyidae were taken, all in the day flights. Two genera were gepesented wh four oldon-
 200 feet. The stratomyiids, or soldier thes, were collected from April to July. The harye of some of the species are aquatic, others bivig in the earth or decasing wood and vegetable matter, and a few are carmionom:
Three specimens of the family Bombytindar were collected in the dastime, with a spocies of Ahthrar and one of wheturebus at 200 feet in November, and one of Sparmondins at at feel in October. The adolt lies, kown as bee flish, ate strongly buih and rapid fiers, and may be seen huvering owe flowes as they feed on the nectur. The larye are parasilic on the latrae of hemenotera and Lepidoplera, and on noxs sactio of Onhoplata, nut thay be clasied as bendicial.
Only one specimen was aken behughe to the family Thereridae,
 harvar of this family are nsuatly predacions but sometimes feed on decaring ammal and vegetable matter. The adult fics likewise are predacions.
Soventy-eight specimen of the somopinidne were collected, 15 being taken at night. They were fomm ni most altitudes up to 5,000
feet, occurring almost throughout the year, with more taken in April, May, and June. The adult flies are commonly sen on windows and for this reason are known as the window flies. The larvae are predacious and often found in houses, under carpets, etc. Others are found in decaying wood.

The family Asilidae or robber flies was represented by one specimen, a species of Atomosia taken at 20 fect in October. The adults of this family are strong fiers and are mostly beneficial. They prey on almost any insect they are able to catch.

The family Dolichopodidre was represented by 336 specimens, of which 45 were collected at night. They were found at most altitudes. One undetermined species was taken at 10,000 feet and one at 14,000 feet in September. The Dolichopodidae were taken throughout the year, although more specimess were found in June and September. This family is of some importance economically; it is a very large group containing several hundred species. The larvae of some species are predators in spalleries of other insects, and some are aquatic or semiaquatic.
Twenty-two specimens of the Empididae were taken in the day flights. They were collected at altitudes of 200 to 3,000 feet. Specimens appeared scatteringly throughout the year. The empids or dance flies are often seen in swarms, and are predrcious. The larvae live in decaying yegetable matter, some being carnivorous.

One undetermined specimen of Lonchopteridare was caught in the daytime at 3,000 feet on November 5, 1926. The adults of this family are very minute flies. The larva has a very peculiar form and has been reared from cabbage in England.

The family Platypezidne was represented by the genus Platypeza, two specimens of which wore taken. One was taken at 200 feet in February and one at 1,000 feet in October. Members of this family, callerl fiat-footed fies, are somewhat like the houselly in appearance, although smaller, and may often be seen flying rapidly in circles. The larvae are found in decaying mushrooms.

Thirty-six specimens of the family Pipunculidne were taken, one at night. This family, the members of which are connonly known as the big-eyed flies may be considered as beneficial, as the larvae are prasitic on leafhoppers. The specimens collected were found throughout the year.

Of the family Syrphidae 246 specimens were taken in the day fights, and 5 at night. Thirty-three specimens of Toxomerus polita Say were taken at altitudes up to 5,000 fect. This is one of the very common syrphids, the larvae preying mostly on plant lice, although adults have been known to be pollen feeders on cotton and com, but causing little injury ($20, p$. 162-168). The Syphidae were taken mostly in August and September, although specimens were collected in every month.

Twenty specimens were collected belonging to the family Tachinidee, of which two determined species were taken at night, one Doryphorophage doryphorae (Riley) at 500 fect in August, nat one Gonia texana Rond. at 1,000 feet in July. The tachinids were collected mostly in the summer months. Species of this fanily are bencficial, as they are parasitic chieffy within lepidopterous laryae, and are extremely important in checking the increase of many insect pests.

The family Anthomyiidue was represented by 278 specimens in the day flights and 15 at night. They were found at altitudes near the surface to 5,000 feet, and were taken throughout the year with the greater numbers in April. The anthomyidds are very common flies, the larvae living mostly in decaying vegetable matter. Some are parasitic on other insects, while a few species are very destructive garden pests.

Seven undetermined specimens of the family Scatophagidae were collected in the day flights, six at 200 feet, and one at 1,000 feet. Five were taken in June and one each in May and August. The scatophagids are commonly known as dung fles.

Two undetermined specimens of the lamily Helomyzidae were caught at 200 feet in February and December. The adult flies are found in shady or damp places, the larvae feeding on decaying wood and mushrooms.

Of the family Borboridae 518 specimens were taken in the daytime, and 19 at night. They were collected at most altitudes flown under and including 5,000 feet, and one at 11,000 feet in August. They appeared throughout the year, although mostly in the spring and fall months. They are also calied dung flies, and are of little importance, as the larvac live in excrement.

Thirty specimens of the family Sciomyzidae were in the collections. One, of the genus Tetanocera, was taken at 1,000 fect in March. Twenty-six undetermined specimens were taken in the daytime at altitudes up to 3,000 feet. Three were cuught at night. The specimens were found scatteringly throughout the year. The larvae are aquatic.
Thirty undetermined specimens of the family Sapromyzidae were collected, of which two were found at night. They were taken at altitudes up to 3,000 feet and were distributed throughout the year. The larvae are aquatic.

Nine specimens belonging to the family Otitidae were taken in the day fights. They were collected in the summer months up to 2,000 feet.

The family Trypetidae was represented by 47 specimens taken in the daytime, and 5 at night. They were found in the day at the altitudes, 200 fect (28), 1,000 (i) , 2,000 (10), 3,000 (3), and 5,000 feet (1); at night, 500 feet (2), 1,000 (2), and 1 at 2,000 feet. They were collected in every month of the year with a few more in September and October than in other months. The Trypetidac include many species which are well known gall makers.

The Sepsidue collected comprised 64 specimens taken in the day flights and 4 at night. Twelve specimens of Sepsis ziolacea Meig. were collected at altitudes up to $\overline{0}, 000$ fect. This species, widely distributed thronghout Nortl, America, was found scatteringly throughont the year, but chiefly in Mry. Fifty-five undetermined specimens of the same genns were iaken at altitudes up to 4,000 feet, mostly in May. This Ramily includes small slender flies which are so commonly met with that they have been largely shumed by the systematists ($50, p .7$). They are of economic importance, being principally scavengers, feeding and breeding in fith, sewage, excrement, carrion, and other decomposing vegetable and animal mat ter ($50, p, 3$).

Two specimens of the genus Piophila (l'jophilidae) were caught at 200 feet in April and November. The family Piophilide is similar in
habits to the Sepsidae, and is considered of economic importance, since the flies are principally scavengers ($50,1,9$).

The family Agromyzidre was represented by 18 specimens, of which 2 were canght at night. They were taken at altitudes up to 5,000 feet, and throughout the year. The agromyzids are very small flies. Many are stem and leaf miners, and a lew species live in plant galls.

DIP'EKA AFFECTING MAN AND ANIMALS

Many of the species of Diptera taken directly affect man and animals. These are included in the families Culicidae, Chironomidae, Simuliidae, Tabanidae, lhoridae, Syrphidae, Sarcophagidae. Calliphoridae, Muscidae, Anthomyiidae, and Chloropidae.

There were 111 specimens taken belonging to the family Culicidae, comprising 7 genern and 6 determined species, with 44 specimens found in the daytime and 67 it night. These mosquitoes are usually active at dusk and at night, alihough, if disturbed, may be seen flying about during the day. Fifty Chaoborus punetipennis (Say) were taken, with 22 in the day flighte at the following altitudes: 200 feet (11), 1,000 (5), and $2,000^{\circ}(6)$. $2 \2 were tiken nt night at 500 feet (19), at 1,000 (2), at 2,000 (0), fuld at 3,000 foct (1). They were found from April to October. Eleven Anopheles gradrimaculatus Say wore taken, three in the diytime and eight at night, at altitudes up to 1,000 feet, in May, June, and August. Five females and six males were taken. This species is the well known carrice of malaria. Five Culex sp. were taken, three in the daytime, one at 200 feet, and two at 5,000 feet. Two (ranotaemia sapphirina (O . S.) were found at 3,000 feet in the daytime on July 1, 1929 . One specimen of Psorophora columbiae D. and K. was tuken at 200 feet in the daytime, and one each at 500 and 1,000 fect at night. This mosquito is quite important, and may become scrious to livestock by its great numbers (8). Two females of defles rerans (Meig.) were collected at night at 5,000 feet, one specinen at 500 leet in October, nud one at 1,000 feet in May. This mosquito is anoying but it is not known to be a carrier of any discase of man. Two undetermined species o? Aedes were taken at 200 and 1,000 feet, respectively. There were 32 undeternined specimens of mosquitoes, 11 of wheln were tiken in the day flights at altitudes of 200 to 3,000 feet, and 21 at night at 600 to 3,000 feet.

The family Chironomidae was represented by 701 specimens, comprising 8 genera and 9 determined species. They were lound throughout the year, with more in the months of June and fuly in the daytime. Nearly twice as many were taken at night as in the diay in proportion to the time flown. Chironomids were foum as high as 13,000 feet. One Chironomus sp. was takell al 7,000 leet. Five undetermined specimens of Chironomidae were collected at $\overline{7}, 000$ (1), 9,000 (2), 10,000 (1), and 13,000 (1) leet.
There were 298 specimens taken belonging to the lamily Centopogonidae, of which 90 were collected at night. Thirty-two undetermined specimens of Culicoides were collected at altitudes from 200 to 13,000 lect. One specimen of Culicoides partipenais (Coq.) and one C. crepuscularis Mall, were taken in the samo flight at $\overline{0}, 000$ feet at night in October. Members of this genas are olten mistaken for mosquitoes; they are known as punkies, "no-see-ums," or sand fiies, and are bloodsucking midges. Their hite is very annoying, and where
they occur in sufficient numbers they become almost unbearable. The larvae are aquatic, and thrive in great numbers in the swamps, lakes, or ponds. No species of this genus are known as disease carriers in the United States.

The family Simuliidae was represented by 48 specimens taken, all in the daytime, in May and June. Three turkey gnats (Simulium meridionale Riley) were found in May 1929, two at 200 and one at 1,000 fect. Forty-two S. oscidentale Town. were collected at altitudes of $20(2), 200(25), 1,000(5), 2,000(5), 3,000(3)$, and 5,000 feet (2). Two undetermined species of Simulium were taken, one at 1,000 and one nt 3,000 feet. The species of Simulium are known as blate flies, buffalo gnats, or turkey gnats, and constitute one ol the major pests of our country. They viciously attack both man and animals, inflicting a most painful bite. They are at times responsible for henry losses of livestock, especially in Mississippi, Louisimn, and Arkansas, where mules occasionally are killed in great numbers when they are most needed to put in the cotton crop.

Two specimens belonging to the family Tabanidac were taken, one Tabanus mularis Stone at 1,000 feet and one undetermined Tabanus at 200 feet. Wembers of this family, commonly termed horsellies, are quite important economically, and canse considerable annoyance to both man and livestock. They are known to be active agents in the transmission of the deadly mithrax. Menbers of this genus are strong and rapid fliers, which may account for so few specimens being taken.

There were 107 specimens belonging to the family Phoridne taken in the daytime, and 14 at night. They were collected from near the surface to 8,000 feet. These small flies, commonly krown as "humpbacked" flies, are often seen dancing up and down in the air. The larvae feed mostly on decaying vegetable matter, although a few are known to be parasitic on other inserts. The genus Megaselia was represented by 45 specimens. Species of this genus have been known to survive the action of gastric juice, and thus have been included in the field and study of animal myiasis.

The lamily Syrphidate was represented by $2 \overline{5} 1$ specimens, of which only 5 were taken at night. One specimen of Sristolis tenax (L.) was token at 200 feet in February. The limve of this species, salled rattailed magrots, have been indicted in rases of intestinal myiasis in man (19; 49, 17 . $398-400$). Sypphus lirvae have also been reported as causing intestinal myinsis, athough they are mostly predacious. Three Shistalis sp. were collected, one each in February and July at 200 feet and one at 1,000 feet in Oetober.

There were two gencra mad eight identified species collected belonging to the family sureophagidac. Thirty-one specimens were taken, all in the day flights, at altitudes from near the surtace to 5,000 feet. The sarcophagids are guite important in that they may be cither bencficial inseets or dangerous pests of man and animals. Some species bave been crefited as ransing intestimal myinsis in man, Others have been found in necrotic tissues of wounds in man and may be regarded as suprophytic or beneficial (i)). Simeophag quadrisetosa Cog. was taken at 2,000 leet it July. This is one of the wery rommon excrement-feeding species (2). S. rapur Wiblk. was collected at 20 fret (1), 200 (6), and 1,000 feet (1). The larvae of this species are seavengers on meats and parasitic on some insects.

The family Calliphoridae was represented by one species, Cochliomyia macellaria (F.), three of which were taken at 200 feet and one each at 3,000 and 5,000 feet. This species is known as the secondary screwworm fly; the larvae are often found in old wounds.

One stablefly (Stomoxys calcitrann. (L.)) (Muscidae) was taken at 3,000 feet in September 1929. This tly is a defnite meuace to the farmer, causing heavy losses in practicaliy all types of livestock. Two specimens of the genus Morellia were taken at 200 feet and one at 2,000 feet. Two specimens of Muscina were collected at 200 and 1,000 feet and two of the family Muscidae at 20 and 2,000 feet.

Two hundred and seventy-eight specimens belonging to the family Anthomyiidae were taken in the daytime and 15 at night. They were found as high as 5,000 feet. The subfamily Famiinae was represented by 25 specimens tolisen at 20 feet (7), 200 (10), , , 000 (3), 2,000 (3), and 3,000 feet (2). This group has been associated with intestinal myiasis of man, although in some cases it was considered as accidental.

The Chloropidae were represented by the largest numbers of specimens taken of any family of Diptera. There were 2,227 collected, of which only 97 were taken at night. Hippelates texanus. Ald. and H. pallipes Loew are included in this family, one specimen of the former being taken at 200 feet in April. Forty-five specimens of I. pallipes were collected in the daytime as follows: 20 feet (1), 200 (15), 1,000 (15), 2,000 (10), 3,000 (3) and at 11,000 leet (1). They were found practically throughont the year. Forty-four undetermined IIippelates were also collected, one at night, in about the same numbers and at the same oltitudes as II. pallipes, excepting the 11,000 -loot collection of H. pallipes. Species of this genus have been associated with the transmission of pink eye ($49, p$. 361). Often the air seems filled with the tiny insects of the genus IIippelates, which become extremely annoying to man and asimals. They are usually excessively abundant after a rain following a dry period.

SIZE, WEIGHT, AND BUOYANCY

The size and weight, and therefore the buoyancy, of an insect determine the height to which it may be carried by air currents. This relationsbip may be experssed in terms of the acrostatic or lighter-than-air coofficient. The nerostatic coefficient yaries directly with the area of the insect which is exposed perpendicular to the pull of gravitation and inversely with the weight of the insect per mit of exposed area. This is represented by the equation

$$
A c=K K_{\bar{W}}^{R}
$$

in which $A c$ is the aerostatic cocficient, R equals the area in metric units exposed perpendicular to gravity, if represents the weight in milligrams of the insect, and K equals a constant; therefore the fighter the insect the greater the acrostatic coefficient, and the heavier the insect the less the acrostatic coeficient or actual buoymey.

The insects collected in the high attitudes, esperially from 0,000 to 14,000 fect, occurred there becruse of their relative size and weight, or buoynncy. Under the same given conditions of wind velocity and convection, a heavily built insect with small wing expanse will not
be carried up so high as a very light insect with relatively greater wing expanse.

There is, of course, a wide range of values for the ratio of weight to wing surface among insects. According to Pićron (59), this weight ranges from 0.04 to 5.93 kg per square meter. Portier and de Rorthays (61) determined the weight supported during flight by wings in 20 species of butterflies and moths, a dragonfly (Aashna grandas (L.)), and two bees (Xylocopa violacea and Bombus terrestris) and found it to be much less than in birds and airplanes. The weight sustained in butterfies is 0.1 to 0.15 kg per square meter; in certain hawk-moths, 10 times as much; in Bombus, 25 times, or 2.5 kg . In biplanes the weight supported by tho wings was equal to 8 to 22 kg , and for monoplanes 13 to 23 kg per square meter.

It is probabio that after insects are on the wing little muscular exertion is necessary to sustain the rate of specd. Insects on entering strong vertical air currents may attempt to resist them by flying through these currents; otherwise they will be carried up from one level to another.

Most butterflies find it difficult to fly in a strong wind, as the wings offer a broad surface to the air. A fow butterflies, such as hesperiids, have a jerky flight which seemingly offers less resistance to air currents. One butterfly, Catophaga galena, in Ceylon, is especialiy noteworthy in its method of flight. It is a mirgratory species and usually flies directly against the wind, and the stronger the wind blows the more rapid the flight. Tutt (72, p.72) comments on this peculiar butterfly and states-

The action of the wings of these butierfies is not horizontal like that of the Admiral or the Tortoisesheli, nor is the light even and continuous, but they are propelled in jerks, with the wings vertically closed and opened alternatuly, so as to offer the sharpest edge to the resistance of the wind. Thus the butterfly does not appear to propel itself, but to be driven forward by the action of the wind eddying round against the under surface of the wing presented to it, but how this is done it is not casy to demonstrate.

Among the Homoptera Stictocephala festina was collected mostly at the lower altitudes, with several at 1,000 and 3,000 fect. This is a very strong flier, henvily built, and able to resist the rough currents of air. The larger cicadellids, such is Oncometopia wndata and IIomalodisca triquetra, were taken mostly at 200 feet and very few above 1,000 to 3,000 feet. More specimens of the smaller species of cicadellids were taken at high altitudes than at the 200-100t level. More specimens of several species of Fulgoridue were tuken at 1,000 feet and above than at 200 feet. Most of the Fulgoridae have a large wing expanse in proportion to their body size, which accounts for their appearance in the higher altitudes. The Aphidae, although weak fiers, and the Psyllidae, which also have a large wing expanse in comparison with their small bodies, were taken in considerable numbers at as ligh altitudes as 13,000 feet.

The Heteroptera showed some correlation between size, weight, and buoyancy and the heights at which they were found. Lygacidae appeared in considerable numbers above 1,000 feet and were taken as high as 7,000 fect. Species of this family are generally strong fiers, yet with a wing expanse greater than average in proportion to their size and weight. The Tingididae, Anthocoridac, Miridae, and Corixidae were also found in considerable numbers in the higher aititudes. In most species of these families the insects are light, with compara-
tively good wing expanse. On the other hand, compactly built Heteroptera, such as the pentatomids, were not found above 1,000 feet, and very few were taken. Pentatomidae are abundant on the ground, but do not fly high, apparently because of their weight.

Coleoptera offer less resistance to the wind than do Lepidoptera, being bulky, with less wing expanse in relation to their size. Many of them are strong flicrs, however, and must depend mostly on their m:ascular power for propulsion, as they lack the ability of the butter-flics to dift with the wind. The homy elytra of beetles are concave and act more or less as vanes, and the wind blowing against them makes it difficult for the beetles to regulate their flight, putting them at the mercy of a strong wind. Thus the lowland species of beetles are carried up by ascending currents of air, and probably travel great distances at high elerations.

There are many records of the occurrence of species of Coccinclidae at high altitudes. These ladybird bectles are often migratory. It is not known why ladybird beetles fly to high mountains, especially during the midsummer days. The writer once observed (August 1920) a great swarm of ladybird beetles at the altitude of 12,680 feet, near the Arapahoe Pass in the Rocky Momtains, in Colorado. The bectles had congregated by millions on the talus slope and were crawling over the rocks projecting out of snow and ice adjacent to the Arapahoe Glacier. Many beetles could be seen flying over the ridge of the Pass. There was a strong ascending current of air on the windward side of the mountain, which doubtless aided the bectles in their upward fight. The air on the other, or leeward, side was found to be more quiet, and as soon as the beetles passed the summit of the ridge they scttled down immediately. A fow minutes after these coccinellids were first sern a severe thunderstorm came up, causing the beetles to disappear. They probably found shelter beneath the great rocks.

Coleoptera were collected at all altitudes up to 12,000 feet. More specimens per 10 minutes' light were eollected at 10,000 lect than at other high altitudes above 5,000 feet. The Coleoptera taken at altitudes above 6,000 feet belonged mostly to the families Carabidae and Staphylinidac. A few Coccinellidae were taken at very high altitudes, with two specimens of Scymnus terminatus, at 5,000 feet, and one Ceratomesilla floridana at 0,000 fect. One chrssomelid beetle, Diabrotic re rittata, was found at 11,000 feet.

Lepidoptera were not taken at heights above a, 000 fect. The specimens taken at 3,000 to 5,000 feet were small microlepidoptera, with great wing expanse in proportion to their weight and thus with more buovancy. These tiny moths are weak fliers and accordingly would be almost entirely subject to air currents in their distribution in the upper air. The Noctuidac, however, were found mostly at the lower altitudes, from 200 to 2,000 feet, with one at 3,000 feet, but with the majority of the specimens at 500 and 1,000 fect. The noctuids are strong fliers, but with less wing expanse as compared with their body weight, which would cause them to fly or to be found claser to the surface.

Hymenoptera were well represented, with 33 specimens taken at the altitudes of 6,000 to 14,000 fect. The specimens found were very small species and included 11 families. These small Hymenoptera have considerable wing expanse, with light bodies. Winged males of
ants were taken as high as 5,000 feet, while the winged queens were found mostily at 200 and 1,000 feet. The queen ants are much heavier than the mades and accordingly would not fy very high. The workers are the smallest of the ant forms.
More Diptera were taken at the ligh levels than of any other order. There were 81 specimens taken at 6,000 to 13,000 feet, mostly very small species. The Diptera taken were weak fliers, with great wing expanse as compared with their size and body weight, thus having considerable buoyancy.

WINGLESS INSECTS

Numbers of wingless insects, belonging to the orders 'Thysanura, Collembola, and Siphonaptera; also nymphs of Heteroptera, Homoptera, and Orthoptera, larvae of Coleoptera, Lepidoptera, and Diptera, great numbers of wingless ants, and spiders and mites, were collected in the upper air, from near the surface to as high as 15,000 feet. These adult wingless insects, as well as the nymphis, larvae, spiders, and mites, were all at the mercy of the air currents. It is most likely that the wingless forms found above 5,000 feet did not originally come directiy from the territory over which the flights were made, but were picked up at distant places and carried in the upper air currents, perhaps for hundreds of miles. By means of these avenues of travel insects have been distributed to far countries, to remote islands, over mountain barriers, and across stretches of hot, barren deserts and waste lands (tables 1, 2, and 3).

Araneida

There were 1,461 spiders taken in the upper air, and of this number only 60 were coliected at night. There were determined 15 families and 30 species, and there was 1 new species. The greatest number of specimens taken in any one family (192) belonged to the Linyphidae, with the next highest numbers (83) in the Lycosidae. They were found at nealy every altitude flown from 20 to 15,000 fect, and appeared mostly in November to Jamuary, with fewest in August.

AEIRONAUTICAE SPIDERS
The dispersal habits of spiders provide opportunity for an absorbing investigation. There were 1,461 spiders taken in the upper air at altitudes from near the surface to 15,000 feet. They were taken in greatest numbers in November, December, and January. The specimen taken at the highest altitude of all was a spider, and this is probably the lighest clevation at which any specimen has ever been taken above the surface of the earth.

A species of spider has been found in erevices in ice on Mount Everest at an altitude of 22,000 feet (18). Sayory (64) states that

Far above the highest plant which grew at an allitude of 18,000 feet, small hlack spiders belonging to the family of jumping-spiders were found, hopping among the rocks and hiding under the stones in such places as were swept bare of snow by the wind. They reached a height of 22,000 feet, at which athtude they were not only in prond position of being the highest permaneat inhabitants of the carth, but seemed to be alone in their isolation. No other living thing has been found to share their loneliness. There is nothing but rock, snow, and ice. What they get to feed on is a mystery.

Dr. Ewing of the Division of Insect Identification has observed dead insects in crevices at 14,000 fect, blown up white alive by surface air currents, and believes that these dead (or dying) insects furnish the food for spiders inhabiting the icy tops of high mountains.
At times while flying. the writer observed numbers of white silken flaments of wels floating through the air, evon as high as 11,000 fect or more, and oftee when landing the struts would be almost white with the silken webs wrapped around them. It is chiefly the immature stage of a spider, koom as a spiderling, that uses the air as a moans of dispersal, and it is probable that the young of most spiders are more or less addicted to this mode of transportation. MreCook (46, v.2, p.26S) states that the huntsman spider (Ifeterapoda venatorius) on account of its aeronautic labite, might well havo circumnavigated the globe with the aid of trade winds, basing his calculations on localities where the spider is known to occur and on the direction of the winds. It is interesting to note the method the young spiders have of "taking off" on their journeys. The spiderling climbs to the top of some object such as a fence, twig, or any other elevated projection, lifts its abdomen to an angle of about 45°, with legs stiflened, thus pushing the body upward, spins ont a thread, lets go, and is carried off into the air and away. Fields have often been seon covered with a gauze of silk, hlown down when the wind was ton strong. Howard (34) states that thes remarkblic sheets of gossamer are yearly found on the sides of the Yosemite Vailey and are of great extent. Comstock (16, p. 216) states that showers of gossamer have beon met by ships at sea hundreds of miles from land. Ballooning spiders are carried long distances in this way and are stopped only by striking rgainst some elovated object or by the subsidence of the breeze. It has evon been noted that it appears to be within the spider's own volition to regulate its flight, for it can draw in with its claws the forward ray and gather it in a white roll within the mandibles, thus onusing either a gradual or sudden deseent.
The familics of spiders whieh seom to have a strongly fixod aeronautical habit aro the orb woavers, epeiroid spiders just out of the cocoons, and the subfamily Erigoninae of the Liny,hiidro. These families were well represented in the airplane collections, as were also the families inchuding the erab) spiders, lynx speders, wolf spiders, and sheet-web wearers.

The ordor Actima, or mites, was reprosented by 44 specimens takon in the upper air during tho day fights, and 2 at night. In the day thoy were found at altitudes ranging from near the surface to the height of 3,000 feet and wore taken mostly in February, Maceh, and April. The family Prasitidae was represented by 33 specimons collected at altitudes of 200 to 3,000 feet, with 2 specimens in Fobruary, 16 in March, 13 in April, and 1 in Novomber. During March, April, and May large numbers of Tipulidae were nsually in the nir, and Carnhidae wore taken in the uppor air in greatest numbors in Mareh. Acarina were esperially found on these two fanulies of insects.

The nymphs of Aemina are nostly attached to insects, a habit known as phoresy. They are zot dependent directly on the air currents, but are caried upward as riders on tho insocts. This affords an effective means for their dissomination. The specimens were
taken, however, when the surface wind velocity was from 3 to 14 miles an hour.

One undetermined species was taken alive at 3,000 feet attachod to a species of Tipulidae. The two specimens collected at night were one Dameosoma sp., taken September 18, 1929, and one andetermined species of Acarina in August at 500 fect. Specios of the gentas Dameosoma are known as moss mites. The record of the specimen taken in the upper air is interesting in that the species of the genus are not found on beetles but are beotelike in appearance, occurring under rotten logs and in moist places, in ground litter, or under loose bark. At the time the specimen was taken the surface wind velocity was 3 miles an hour and the air was slighty jough.

THYSANLEA

Forty specimens of Thysanura wera taken in the upper air, representing two families, five genern, and one determined species. 'Thysamura are the most primitive of insects. These insects, known as bristletails, are found maler stones and various objects lying on the ground and in cool and shody places. Some species of the family Lepismatidne, which were represented in the upper-air eollections, are commonly found in houses, fibraries, and muscums, attacking starehod clothes, book bindings, etc.

In the aiplane collections Thysnmum appeared in every month except Fobruary and July (table 4). Three specimens of a Iepismatid were taken at 3,000 leot and one at 8,000 . They were collected at times when the wind panged in velocity from andm to 16 miles per hour, althougt the majority were taken when the surfaco wind velocities were from 3 to 10 miles an bour.

COIHEMBOLA

The Collembohn, or spmotaik, are similar to Thysanura in being primilively wingles insects. Specimens were token in the upper air in every month except Wamary and september (table 4), and when the surface wind selocity was from calm to 13 miles per hour, prineipally ! to 10 miles per hou'. Turnty-six specimens were caught representing three families, seven genera, and four detemined species. They were found at altitudes up to 11,000 feet, the genus fourletiella being represented by one specimen each at is, $000,7,000$, and 11,000 fect. The species Sira nigromtaculatu Labb., which is often found in houses, was taken at severn? levels ap to 3,000 leet (table 9).

HYMENOPTERA
Worker ants were the omp wingless Hymenoptera found in the air. Of the 300 ants collected there were found to be 2:3 winged quens, 205 winged males, 20 workers, and 1 not distinguished (table 9). It appears that wober ants are carred into the upper air with it wind velocity of 3 to 6 miles per hour, whether the air is smooth, slightly rough, or rough. A typical colony of most species of ants consists of workers, gucens, and males. The quens are wimed untill they become fertilized. Wrokers wers taken at altitudes of 100 to 4,000 feet. One specimen of the gents Pheidole was taken at 100 fect; at 200 feet there were collected two specimens of P'onera trigona var. opacior, one Monomorium minimum, two Pheidole dentata, two Aphaenogaster spp., one Tapinona sessilile, three Prenolepis ($\mathrm{N}^{\prime} \mathrm{y}$ -
landeria) sp., and two undetermined species of ants; one Solenopsis xyloni was found at night at 500 feet; at 1,000 feet were found one Iridomyrmex pruinosus var. analis and two undetermined species of Formicidae; at 2,000 feet one specimen of Prenolepis (Nylanderia) sp. was taken; and at 4,000 feet one specimen of Camponotus caryae far, minuta was taken.

SHPHONAPTERA

One specimen of l'ules irritans L. (Pulicidae) was taken at 200 feet (table 9), on Tuly 1, 1929, at 2:16 p. m. The surface wind velocity was 7 miles an hour, and the air slightly rough at 200 feet. Fleas are jumping insects, and probably the wind was strong enough to piek up this small wingless insect and carry it along.

rMmature stages

ORTHOPTERA

One nymph of a species belonging to the family Phasmidae (wakingsticks) was taken at the altitude of 200 fect in September. The wind velocity was 10 miles an hour at the time, with considerable convection.

hOMOPTEIRA

The immature liomoptera wera represented by one cicadellid nymph taken at 200 feet, and five nymphs of the Aphitdae, threo at 500 feet at night, and one each in the daytame at 1,000 and 2,000 feet. There were also five undetermined homopteran nymphs taken, three at 200, and one cach at 1,000 and 2,000 feet, respectively. The aphid nymphs were taken when the surface wind volocities ranged from 3 to 6 miles an hour, and when the convection was fairly strong (table 9).

HETEROPTERA

Among the Ifeteroptern, nymphs wore collected in the upper air as high as 9,000 feet. They were takon in the spring when nymphs were most abundant in the field, and when the surface wind velocities were from 6 to 10 miles per hour, with the air rough and the convection strong.

Two nymphs of the family Coreidae were taken at 5,000 and 9,000 feet, respectively. Four nymphs of Acocoris were found, with one each at $20,1,000$, and 2,000 feet, in the daytime, and one at night at 2,000 feet. Thwo nymphs of Antillocoris pallidus and four of Lyfus pratensis were taleen at 200 feet. One nymph of Psallus seriutus was token at 20 feet. Nine undetermined nymphs of Heteroptera were found at the attitudes shown in table 0 .

COLEOPTERA

One small and very hairy dermestid larva, Trogoderma sp, was taken alive at 0,000 fect. It was caught on March 24, 1931, when the wind velocity was 11 miles por hour at the surface and 42 miles an hour at 9,000 feet, and the air slightity rough to rough at all altitudes. Considering the hairy covering of this small larva, with the long hairs oftering a great surface men, it is not surprising that, it was found at such a height.

LEPIDOPT:

Three larvae of the genus Gelechir: were taken in the upper air, one at 500 feet at night and two at 1,000 feet early in the morning. The two specimens at 1,000 feet were taken on the same screen on September 9,1930 . The surface wind velocity was 4 miles per hour and the air was slightly rough. The one at 500 feet was caught on the morning of the following day at $4 \mathrm{a} . \mathrm{m}$. The lower nir was calm, but at 500 feet there was a wind velocity of 9 miles an hour and the air was slightly rough. Doubtless the small caterpillar taken at 500 feet had been in the air for some time, as convection is not present at night, and the air was calm on the surface. The larvae of Gelechia are often seen dangling from limbs of trees, each by a silken thread. The wind blows these unprotected larvae loose from their silken ropes and carries them through the air. There were also two unidentified lepidopterous larvae taken at 200 feet in October when the surface wind velocity was 5 and 6 miles per hour (table 9).

It is well know that caterpillats of many of the Lepidoptera are carried by the wind. Important investigations have been made in determining the extent to which larvae of the gypsy moth (Porthetria dispar (L.)) are carried by the wind. Burgess (10) relensed newly hatched first-instar laryne that had spun silk in front of an electric fan, and found that they drifted from 20 to 30 feet. Later Collins (13) in 1915 caught larvae on specially constructed screens covered with n sticky substance, the larvae having drifted from the mainland to the Isle of Shoals, off the coast of New Hampshire, for distances as much as $13 \frac{1 / 2}{2}$ miles. Continued experiments by Collins (14) showed that the wind carried gypsy moth laryae from 19 to 30 miles inland from across Cape Cod Bay oil the const of Massachusetts. The most outstanding work clone in connection with the study of the dispersal of the gypsy moth larvae was that in 1932-33 by Collins and Baker (15), who used traps made at the T'allulah Iaboratory on an airplane, with which three newly hatched gypsy moth larvae were taken, one at an clevation between 300 and 500 feet and two at 1,000 feet, and later one larva was taken at an altitude of 2,000 feet above sea level. Studies have also been made by Felt (24) on the possible drift of insects.

DIPTERA

One small dipterous larva was found at 200 feet on October 16, 1930; the surface wind velocity was 5 miles per lour, and at 200 feet the wind velocity was 12 miles per hour, with the air slightly rough.

The larvae of Diptera, Colcoptera, and Lepidoptera were taken when the temperntures were from 67° to $86^{\circ} \mathrm{F}$.

INSECTS TAKEN ALIVE

There may be a question as to whether insects taken at heights of 5,000 to 14,000 feet are still alive.
It has been suggested that the oxygen content of the atmosphere at 14,000 feet would not be sufficient to support insect life. The writer, however, collected insects on the summit of Longs Peak, Colo., at 14,255 feet above sen level, and other collectors have recorded insects from mountains at altitudes of 15,000 to 10,500 . In a letter
to the author, C. F. Marvin, former Chief of the United States Weather Bureat, states:

To the best of our knowledge, no difference in this quantity [of oxygen] has been observed as between free air and mountain surface air. In fact the continuous and great movements of air-winds, thermal convection, hurbulance-and also molecular diffusion would quickly smooth out any appreciable difference in the percentage of oxygen between plices mentioned if for any reason it should oesir.

At the very high altitudes of 14,000 feet and above, there is less barometric pressure. lutz (44) conducted experiments with barometric pressure and its effect on insects in relation to their chance of life at high altitudes and their futuro ability to reproduce. He placed numbers of flies in a bell jar together with a dish of water to keep them from drying up in the racuums to which they woud be subjected, and pumped out the air. Lutz, in describing this most interesting experiment, said:

The barometer showed a pressure of about 22 mm but it was the water-vapor that was keeping it there, This pressure represented a height of more than seventeen miles above sen-level, and the flies were taken there from approximately sea-level in mincty seconds. The fies stopped moving, possibly because they were chilled by excessive craporation from their bodies.

Then the valves in the apparatus were openct wide and the pressure instantly returned to normal. Within four minutes all ten fless were walking about as though nothing had happened. The same procedure was repeated again and again. After the cighth trip from a pressure of that at approximate sea-ievel to one of that more than seventen miles up in a minute and a half, and return trips in less time than it takes to say it, one fly did not walk within seven mimutes after reaching ground pressure and 1 did not wait for him but weat on with the oneto three-minute swings from normal pressures to prateleally no air and back again. After the twenticth trial only Gof the 10 stalwarts were walking * * *

Human fombunce would fail so far below that of insects in such at test that no comparison can be made. All express cievator in the Empire State Building or the dropping of a enge in a deop mine are slow coaches going a short block compared to the rides these flies took fwenty-four times in four hours, * * *.
Lutz later took the two surviving fies and kept them in a cage, and found that they reproduced normally, and the following generati us failed to show indientions that anything unusual had happened in the life of these flies.

Minimum temperature is mother factor affecting the possibility of insects remaining alive in the upper air and being uble to reproduce their kind in now or distant localities. Noble (53) conducted experiments with the pink bollwom moth, using a temperature of $60^{\circ} \mathrm{F}$. This was the average temperature at which specimens were taken in the upper air (6,700 feet above sen level) by the writer in Mexico in 1928. Noble concluded that after 7 days' isolation female moths were able to begin or to resume oviposition of fertile eggs.

With the oxygen content of the air sufficient to support insect life, and with an adequate barometric pressure for their existence, there can be no apparent reason to believe that insects could not live, for a. while at least, in the upper atmosphere above the troposphere (convection region) and approaching the stratosphere.
From the collection of insects by airplane much evidence can be drawn to support the conchasion that many of the insects are alive in the very high altitudes. Considerable numbers of the specimens taken, helonging to many orders, were found to be alive when removed from the screens. It is also evident that the majority of the 28,739 specimens collected in the upper air were alive when caught, since the specimens when removed from the serecns were soft mad pliable,
even an hour or more after the flights. Insects were found alive at altitudes of 200 to 9,000 feet. Naturally, at the altitudes of 200 to 1,000 feet or more it is to be expected that the majority of the insects would be alive. It is more important for the migration and dissemination of insects that they be alive at the altitudes of 3,000 feet and above, for at that height prevailing winds are blowing and at a greater velocity, and the insects would have a better chance of being carried over long distances. A few of the more important records are given.
At 3,000 feet several midentified Diptera and a Mayfy (Caenis hilaris) were taken alive. At 5,000 feet even more of the insects taken were found to be alive. These included one specimen each of Graphocephala versuta, Aedes vexans, an aphid, one unidentified lepidopteron, and also mumbers of Diptera, including two trypetid fices. At 6,000 feet one coccinclide (Coleomegilla foridana) was found alive. At 7,000 feet an aphid was found alive. The highest altitude at which a specimen was taken alive was 0,000 feet, at which height a small dermestid larva (Trogoderma sj.) was taken. This small hairy larva was alive and wriggled considerably when phoed in a vial of alcohol.

A few specimens of importance taken alive at the lower altitudes were two boll weevils, one each at 1,000 and 2,000 feet; and a moth (Cisseps fulvicollis) at 2,000 feet. Numbers of Stictocephala festina, honeybees, one Mclanoplus femur-rubrum, one Anopheles quadrimaculatus, several chironomids, crane fies, a bumblebee, and 15 specimens of the family Lampyridae were collected alive at altitudes of 200 , 500 , and 1,000 feet.

METEOROLOGICAL DATA

In the field of ecology of insects it is most essential carefully to observe and study the complex meteorological factors associated with the interactions of insects. The numbers of insects taken in the air at any given time depended directly on the condition of the weather preceding and at the time the collections were made.

Insects maturally arc far less abundnat in the winter than in the warmer months of the year. There were times, however, ai the peak of their abundance when very fow or no insects were taken on flights. Often it was difficult to single ont any specific condition ol the wenther which contributed to these differences in the numbers of specimens taken. At times when the weather appeared to be ideal for insects, only a lew or none would be taken. Again, when wenther conditions weve "bad," insects were taken in considerable numbers.
Meteorological observations were made and carefully recorded for every flight (fig. 2), but not until the last 2 yans of flying were any records made of the wind movements in the upper air. During the 5 years of collecting, cortain meteorological conditions were found which influenced either favorably or unfavorably the numbers of insects taken. These are considered as to their influme on the activity of insects in the air, and in their relation to the numbers collected, in the following scetions.

TEMPERATURE

There is wo doubt that temperature is one of the most important meteorological factors in the control and distribution of insects. Wherever and whenever the temperature conditions are favorable, insect life is usually abundant.

The airplane collections show that temperature plays the dominant role in the seasonal distribution of insects, and, combined with various other meteorological conditions, was the most important controlling factor affecting the distribution of insects both on the surface and in the upper air. At a given locality vapor pressure, dew point, and absolute humidity usually vary more or less directly with temperature.

SURFACE TEMPERATURE

The numbers of insects in the upper air depend, of course, on the surface conditions; and the number caught at 200 feet serves as a nearly accurate index of their abundance. If the temperature is

Figune 5.--Comparative numbers of insects collected by airplane in 10 minutes of flying at the allitudes of 200 feet by day and 500 feet by night, as related to the surface temperatures, Tallulah, La., 1926-31.
favorable at the surface, and the other conditions are more or less equal, insects will be active.
In the collection of insects from the upper air during the day flights at the altitude of 200 feet, it was found that in general the numbers taken increased rapidly from low temperatures of approximately $35^{\circ} \mathrm{F}$., reached a definite peak between 75° and 79°, then dropped ofl suddenly and continued to decrease as the temperature increased from 79° to 100° (fig. 5).

Considering the orders of insects separately, there was found to be some variation in the optimum surface temperatures. Homoptera were taken in greatest numbers between temperatures of 70° and 74° F.; Heteroptera, Coleoptera, and Diptera in the range 75° to 79°; and Fymenoptera at 85° to 89°. The order of spiders, or Araneida, was collected in largest numbers at ground temperatures from 50° to 54°, this low temperature range being partially explained by their being found mostly in November, December, and January.

At the altitudes from 1,000 to 3,000 feet, insects were taken in greatest numbers when the surface temperatures were from 80° to $84^{\circ} \mathrm{F}$. It appears that as the air became warmer, convection became stronger, and carried insects into the higher levels. With the surface temperatures higher than 84°, insects in general dropped off in nambers at all altitudes.

Among the 1,162 flights made during the daytime in Louisiana, there were many cases in which temperature appeared to be the controlling factor in the numbers of insects collected. During the winter and early spring months insects were taken in greater numbers when days were warm. On very cold days few specimens were collected. Duriug the summer the collections dropped off most decidedly when the days were excessively hot, especially with temperatures of $95^{\circ} \mathrm{F}$. and above. As the temperature increased from before sunrise and until it reached abont 90° insects became more nctive and were collected in great numbers. There were times, however, when other conditions entered, such as severe winds, rain, cloudiness, or drought that offset the temperature effect and limited the numbers of specimens taken.

A few of the many examples are given in table 11 to show how temperature appeared to be the dominant factor, as indicated by the numbers of insects collected. Fer each fight the traps were exposed at $200,1,000,2,000,3,000$, and 5,000 feet for 10 minutes each, the entire flight being usually accomplished in a little over 1 hour.

Table 11.-Metenrological data showing effect of temperature on the numbers of inseds taken in airylane traps, Tallulah, La.

On November 1S, 1930, insects were taken only at 200 feet on the 8:32 a. m. fhigh. On the second fight, made at 10:45 a. m., insects were collected at hoth 200 and 1,000 fect, and on the $2: 30 \mathrm{p}$. m . flight they were taken up 102,000 leet When the lemperature was $58^{\circ} \mathrm{F}$., the air was smooth, with hiftle comyection and mownd. Then as the temperature rose, reaching 82° for the affernoon, the air become slighty rough with ensuidembe wind, and insects reached the higher whtudes. Furthemore, the low tempernture of 58° is below the range of maximum activity, while 82° is still within the optimum range.

On days when the temperatures were within or slightly above the range of maximum activity of insects, the numbers of insects taken usually decreased as the temperature rose. Examples of this rise in temperature and its effect are seen in the flights of June 17 and July 1 , 1929, and of August 1, 1930 (table 11). When the temperatures were not extreme for the first flights of the day, insects were taken at the higher altitudes, but as the temperatures increased to $90^{\circ} \mathrm{F}$. nnd above. few insects or none were taken above 2,000 feet.

Among many species of insects, sudden changes in temperature cause noticeable reactious. It was often observed that after a drop in the temperature, following a long period of hot weather, insects became aery active and abundant in the upper air. If such changes occur in the fall, especially after there has been a frost, many insects will start their migration flights. At such times the boll weevils become more active and fly out of the cottonfields to seek hibernation quarters.
In the spring a mevere reaction takes place, in that as the moun temperature increases, hibernating insects come forth, and many species start their flights northward. There is also a genema emergence of pupating insects, und hatching of egys. The increase in activity of insects in spring due to the rise in temperature arcounts for the maximum numbers taken in the upper air in the spring months, especinlly May.

To tabulat the numerous species of insects collected in the upper air according to the temperaturs at wheh they were taken would be too great an pudertaking. Some species will be found when the days are cold in winter, as well as on extremely bot davs in the summer and fall. Sudden drops or rises in temperatures will cause insects to be scarce or abuadant, respectively. (ienemaly speaking, however, insects have their optimum temperatures for antive, below or above which they will decrense in munders or distippor from the upper air.

With respect to convection, night conditions are the reverse of daytime conditions. There is commenly a "temperature inversion," that is, the temperature of the lower hayers of ar usualy increases with increase in height: and evern when there is sufficient wind to prevent this temperatare inversion, the lower atmosphere still is colder than it otherwise nomally would le (3 汤, $\mu, 42$). During the night the ground is slightly colder than the air in winter and slighty wamer in summer. The ground at nisht cools subdly, and the air loses leat by rudiation beth to the open sky and to the cooling gromed. Conduction cools the nim in immediate contact with the earth's surface, and unless the wind is strong lais layer is not mixed with the air above. Convection is usully not operative at night, and the morked cooling must take place very near the earlh's suffice ($52, p, 57$).

The amount of time spent in flight at night was scareely sufficiont to compare the restals widh thuse of the day flights, exceper for flights made on the same day. It was found, however, that the greatest numbers of insects were colleeted in the night hights at the altitude of 500 fect when the surface temperatures were from 75° to $79^{\circ} \mathrm{F}$. The temperature range from 55° to 59°, gave the next highest numbers. These lower night temperatures were recorled mossty late in the fall, when insects usually were abmiant (fig. 5).

FREE AIR TEMPERATURE

Temperatures were recorded at every altitude at which collections were made（fig．2）．

The average vertical temperature gradient is subject to much varia－ tion from various causes．

At the altitude of 200 feet most insects were collected when the temperature ranged from 75° to $79^{\circ} \mathrm{F}$ ．，surfince temperatures being the same．At the altitude of 1,000 fect the greatest numbers of insects were taken when the temperatures recorded at this altitude were from 70° to 74° ，the surface temperatures ranging from 80° to 84° ．At 2，000 feet insects were most abundant at temperatures of 65° to 69° ， with the surface temperature at 80° to 84° ．Above 2,000 feet there was much rariation，since other metcorogical conditions entered in．
Homoptera，Coleoptera，and Diptera were collected in greatest numbers at the altitude of 200 feet when the temperatures recorded at that altituke were from 75° to $79^{\circ} \mathrm{F}$ ，Hymenoptera at 85° ta 89° ， Heteroptera at $\$ 0^{\circ}$ to 84° ，and Arancila were collected in greatest numbers at 200 feet in the temperature range of 60° to 64° ．

In the day rollections at 1,000 feet，more Diptera and Hymencptera were taken when the temperatures at that altitude were 70° to $74^{\circ} \mathrm{F}$ ． Homoptera，Heteroptera，and Colcoptera were found in greatest numbers when the temperature ranged from 65° to 69° ．Spiders were found in greatest numbers at temperatures of from 60° to 64° ．

At the altitude of 2，000 lect，Diptera，Homoptera，Heteroptera，and Hymenoptera were taken in greater numbers when the temperature ranged from 65° to $69^{\circ} \mathrm{F}$ ．Coleoptera raried considerably．Arancida were collected in liurgest nombers at temperatures of 45° to 49° ．
Above the altitude of 2，000 feet，the orders ranied considerably in respect to optimum temperature ranges．

The high－altitude flights at 6,000 io 16，000 feet were made during the spring，summer，a ad fall months．For the altitude of 10,000 feet temperatures were recorded in March as low as $27^{\circ} \mathrm{F}$ ．；the minimum for April was 32° ；for May， 42° ；for Jue， 45° ；for July and August， 49° ； for September， 42° ；and for October， 45° ．The highest altitude was attained on August 13，1931，when 16，100 feet was reached．The temperature and other meteorological conditions recorded on this flight and on one on March 11，1931，are given in table 12.
Table 12．－－Metcorological data，and insects collected on the highest collecting fights mrelc at Tralutuh，La．

мatacti 11，w3

$\begin{gathered} \text { frapss } \\ \text { (hettersi } \\ \text { itnd } \\ \text { ifays } \\ \text { faums } \\ \text { hets) } \end{gathered}$	Niti－	$\left\|\begin{array}{l} \text { 'rime } \\ \text { of ex. } \\ \text { prume } \\ \text { (a.m. } \end{array}\right\|$	Leneih of imae ex－ pract	13r3 b， 11	Wet luflt	\｛telts－1 ！ive hat－ mist ity	Ninti sulde－ i！	1）．5et－ lion of withi	Air eondienta	Clomet eon－ tithan	$\left\{\begin{array}{l} \ln - \\ \text { nrels } \\ \text { IRKen } \end{array}\right.$
A：	Feet		Min－ nicy	${ }^{2} F^{\prime}$	\cdots	Per cent	, Wifex pet hy				Nrm.
1.	200	916	$11)$	iff	5	5		\because SW．	Slichlts rasurla	Clexat．	，
2.	1．01k	¢ 27	1i）	52	＋18	7	10	いごす。	－．－da．．．．	113zs．	$!$
3.	2． 3 （ 615	［138	［1］	51	H1；	6\％	15	WSil．	d ${ }^{\text {da }}$	． 10	0
	3．7601	4.19	111	51	43	$5]$	13	Ws\％	stumeth．	410	0
5.	5．900	16.413	10	＋1／	31	0	2	W＊	－dita	do．－	0
$13:$										do	
1.		16） 14.1	10	49	18129	15	－23	siv．	． Cita ata	． 10.	0
	if，intil	10.5	36	2.1	133		313	\cdots	． d_{14}	du．－	1
	13，000	12．0．1	If	19	132		37	$\therefore \mathrm{S}$	－dis		0
5．．．．．－	15．(1×1)	11，2－1	10	11					dia	elo．	0

1 Wet bulb covered with lee．
107703－39－7 7

Table 12.-Meteorological data, and insects collected on the highest collecting fights made at Tallulah, La.-Continued

AUGUST 13, 1831

$\begin{gathered} \text { Traps } \\ \text { (letters) } \\ \text { and } \\ \text { trays } \\ \text { (bum- } \\ \text { bers) } \end{gathered}$	Altitude	Time of exposure (B. ت.)	Longth of time exprosed	Dry bulb	Wet bulb	Reistive hu-midity	Wind voloeity	Direction of mind	Air condition	Cloud condition	Insects taked
			Min-			Per-	Ariles				
A:	Feet		ties	${ }^{\circ} \mathrm{F}$.	${ }^{\circ} \mathrm{F}$.	cert	per br.				
1.	200	8.11	10	72	63	61		NE.	Smooth	Hazy.	14
2	1,000	8.22	10	71	59	49	9	NE.	.	-do-v-----	14
3	6,000	8.44	10	54	35	7	15	NNE.	--.-do	-do-..-----	
4.	8,000	9.03	10	53	33	3	14	之.	-...-do.	Veryhazy.	
5	10,000	4.20	10	4	30	5	18	NミW.	-----. 0	-.do..-----	
	12,000	9.35	10	39	26	14	18	NNW.		(10.--2--	
	13,000	9.50	10	33			13	NNTV.	do	do.	0
	14,000	10.02	13	30	24	48	21	NNW.	do	do.	0
4-2.-	15, 0\%F	10. 19	10	27	17	8	21	ṄW.	do	d	1
	16, 100	10.31	5	23	14	0	21	NNE.	..--do	, $0 . .-{ }^{\text {a }}$	0

: A spicter.
Few insects were taken at the high altitudes in the early spring months, since the surface air had not reached a temperature at which insects are abundant in the air.

DEW POINT

In the collection of insects in the upper air, their distribution appeared to be correlated with the dew point, which is the temperature at which the quantity of water vapor present would at the same pressure produce saturation. If the temperature of a quantity of humid air is lowered, a temperature will finally be reached at which any further reduction must result in the condensotion of some of the moisture in the form of dew, frost, fog, cloud, or precipitation (52, p. 196).

The surface dew point was recorded at the time each flight was made. At the altitude of 200 feet fewest insects were taken at the low dew point of 25° to $29^{\circ} \mathrm{F}$., represented in figure 6 by the middle point of the range, but the numbers of specimens then rapidly increased and reached a decided peak at 60° to 64°, suddenly dropping off as the surface dew point continued to increase (fig. 6).

There was some variation in this, Heteroptera being collected in greater numbers at dew points of from 55° to 59°, Diptera and Homoptera at 60° to 64°, Coleoptera at 65° to 69°, and Hymenoptera at 70° to $74^{\circ} \mathrm{F}$. Spiders were taken in greater numbers at dew points of from 35° to 39°, and decreased in numbers as the dew point was raised, which was the reverse of the reaction on insects (fig. 7). A further discussion of dew points and spiders is given in the section on barometric pressure.

At the altitude of 1,000 fect there was still an indication that surface dew point contributed in some measure to the numbers of insects collected. Homoptera, Diptera, and Hymenoptera were more abundant when the surface dew points were 60° to $64^{\circ} \mathrm{F}$.; Heteroptera were taken mostly at dew points of from 55° to 59°; Coleoptera at 45° to 49°, although this order fluctunted much. Spiders continued to be most abundant at 35° to 39°.

For the altitudes above 1,000 feet, the variation was too great to show a decided relation, since other meteorological factors entered in to offset the effect of surface dew point.
Dew points were also calculated from readings taken in the upper air at the various altitudes, and some relation of dew points at higher altitude to numbers of insects is apparent. Homoptera varied much

Figure 6.-Comparative numbers of insects collected by airplane in 10 minutes of daylight flying at altitudes of $200,1,000,2,000,3,000$, and 5,000 feet in relation to the surface dew point, Tallulah, La.
in numbers at the altitude of 200 feet. At 1,000 feet, the greatest numbers of Homoptera were found in the dew point range at that altitude of 45° to $49^{\circ} \mathrm{F}$., the numbers dropping off decidedly as the dew point increased. At 5,000 feet a peak was reached at 60° to 64°.

Heteroptera showed a relation to the dew point only at 200 feet, with a sudden rising in numbers to a maximum abundance at 55° to $59^{\circ} \mathrm{F}$., gradually dropping off to 65° to 69°, and then decreasing rapidly thereafter.

More Coleoptera were taken at the altitude of 200 feet when the dew point at that altitude was 60° to $64^{\circ} \mathrm{F}$. For the higher altitudes no relation was evident.

Hymenoptera appeared to be directly affected by dew point at the altitude where collected. At 200 feet they reached a peak at 70° to 74°, but at the altitude of 1,000 fect considerably more Hymenoptera were collected when the dew points were 55° to 59°.
Diptera showed a general tendency to react to dew point for most altitudes from 200 to 3,000 fect. At 200 fect a peak was reached in the dew point range of 65° to $69^{\circ} \mathrm{F}$. At 1,000 feet there were two

Figore 7.-Average mumber of insects of the important orders collected by airplane in 10 minutes of daytime flying at the alitude of 200 feet, showing the effict of the surface dew point on the abundance of the insects in the air at that height, Tallulah, La,
peaks, a minor at 45° to 49°, and a major peak at 55° to 59°. For the altitude of 2,000 fect most Diptera were taken with dew points reading from 55° to 59°; at 3,000 feet most specimens were collected with dew points from 50° to 54°.

Dew point, next to barometric pressure, seemed to be the most important contributing factor to increase the numbers of spiders taken and limit the numbers of insects in the upper air.

RELATIVE HUMIDITY

Relative humidity is the ratio of the actual amount of water vapor present at any one time to the quantity that would be present if the air were saturated, and is expressed as a percentage of the latter quantity. Relative humidity is more or less regular in its daily fluctuation. During a hot sumny day it usually is low but with the approach of sunset, when the air usually becomes more quiet and the temperature drops, the relative humidity increases rapidly and remains
high during the night. After sumrise, with the rise of temperature and the increase in wind and convection, there is a gradual decrease in relative humidity. Thus with the more or less regular daily increase and decrease in the relative humidity, there would seem to be aconsiderable probability that insect activity would be closely associated with and affected by such changes.

It has been stated that certaim insects are more active at night, since they require a high degree of humidity, and are inactive during the day, remaining in dark places to avoid excessive evaporation. While this is correct to a certain degree, Uvarov (74 p. 103) considers that humidity is not the only factor that affects the daily cycle of insect activities, since a damp rainy day does not bring out the nocturnal insects from their hiding places.

The number of insects in the upper air did not appear to show any relation to the relative humidity for the investigation as a whole, or at any given time. The reason for this may be that relative humidity is so irregular and varinble under all temperatures tbroughout the year. It may be 95 percent or 20 percent at any given temperature, but insects will be abundant or scarce according to temperature and other factors rather than according to relatire humidity.

Relative humidity appears, therefore, to have no direct influence on the numbers of insects collected, since they were taken indiscriminately under widely varying conditions of humidity in both day and night collections.

ABSOLETE HUMIDITY

Absolute humidity is the actual quantity of water vapor per unit volume of air. For every flight, absolute humidity was calculated from the records of temperature and relative humidity, both on the surface and at each altitude.

A correlation was found between the number of insects taken and the actual amount of water vapor (absolute humidity) at the surface. There was a tendency for the numbers of insects to increase as the absolute humidity rose from low to high values, with fewest at absolute readings of 1.5 to 2 grains per cubic foot, and nearly seven times as many at readings of 6 to 6.5 grains. From this point the numbers of specimens taken dropped off considerably as the amount of water vapor increased. The orders Diptera, Hymenoptera, and Coleoptera showed the closest relationship between numbers collected and the amount of water vapor in the air. Homoptera and Heteroptera fluctuated considerably in this relation.

For the absolute-humidity records at the altitude of 200 feet, the relation was considerably more evident. The numbers of insects collected increased rapidly as the amount of water vapor increased, with the minimum numbers taken at the readings of 0.5 to 1 grain, and the peak at 6 to 6.5 grains per cubic foot. There were more than five times as many insects taken at the latter readings than at 0.5 to 1. The numbers dropped oft greatly after the 6 to 6.5 range was passed.

The numbers of Diptera showed the closest relationship to the amount of water vapor in the air. Spiders were taken in greater numbers at the lower absolute-humidity readings, the numbers of specimens decreasing as the amount of water vapor increased. Apparently the greater moisture content of the atmosphere, the greater the tendency of water to collect on the webs, causing the silk to become heavier.

At the altitude of 1,000 feet the greatest numbers of insects were taken when the amount of water vapor was from 6.5 to 7 grains per cubic foot, At the altitudes of 2,000 to 5,000 feet the relationship was not significant, since other conditions appeared to offset any effect of the amount of water vapor.

As mentioned in the discussion of temperature, the amount of water vapor in the air is in general connected with the temperature. With high temperatures there were correspondingly high absolute-humidity readings. At tesaperatures of from 75° to $85^{\circ} \mathrm{F}$., which were found to constitute the most favorable range for insect activity in the air, the absolute-humidity readings averaged from 5.5 to 6.5 , i. e., the larger

Figure 8--A verage number of insects collected by airplane in 10 minutes fying, in relabion to the surface vapor pressure, the flying being done at 200 to 1,000 feet altitude in the daytime and from 500 to 1,000 feet at night, Tallulah, La.
quantitics of water vapor were correlated with the largest catches of insects.

However, where favorable temperatures fo: insects were found accompanied by low absolute humidities, as weasionally occurred, there was found no apparent diminution in the average numbers of insects taken, other conditions being equal.
This would indicate that the effective factor in operation was temperature rather than absolute humidity, and that the close correspondence in the slope of the temperature-insect and absolute humidityinsect curves is due primarily to the close correlation between absolute bumidity and temperature rather than to any marked effect of absolute humidity on insect abundance.

VAPOR PRESSURE

Absolute humidity has been stated to be the actual quantity of water vapor per unit volumc of sir. The total possible amount, that is, the amount that would produce saturation, increases rapidly with
temperature. Absolute humidity is often expressed in terms of the expansive force that the vapor exerts, which is referred to as vapor pressure and is measured in the same units as employed for barometric pressure (28, $p .28$).

Vapor pressure was calculated from the records of temperature and the depression of the wet bulb, both at the surface of the ground and at each altitude when the flights were made. Surface vapor pressures were not considered for the collections of insects made above the altitude of 1,000 feet, as the relation was not important.

It is evident (fig. 8) that the numbers of insects taken were related closely to the surface vapor pressure. For the day collectionsat the altitudes of 200 and 1,000 feet, the numbers of insects increased rapidly from the vaporpressure minimum range of 0.100 to 0.199 inch to the maximum of 0.500 to 0.599 inch, there being more than three times as many insects taken at the latter as at the former. However, from the surface vapor-pressure readings of 0.500 to 0.599 , the numbers collected dropped off rapidly as the surface vapor pressures increased.

An even more decided effect was shown in the night collections at the altitudes of 500 to 1,000 feet, with a minimum at vapor pressures of 0.200 to 0.299 inch and a definite peak at 0.600 to 0.699 . The numbers of insects taken were much less after this peak had been reached (fig. 8).

There was not a great variation in the maximum numbers of specimens of the different orders of insects taken, either at 200 or at 1,000 feet. Diptera, Coleoptera, and Homoptera were taken in greatest numbers in the surface-vapor-pressure range of 0.500 to 0.599 , and Hymenoptera at 0.700 to 0.799 inch.

Spiders were affected to some degree by vapor pressure, with the greatest numbers found at the lower readings of 0.200 to 0.299 inch, and they decreased more or less in numbers as the vapor pressures increased (fig. 9).

The effects of vapor pressures as calculated for each altitude were similar to those of surface vapor pressures as related to the numbers of insects taken. The peaks, however, were more evident. Most insects were taken at the altitude of 200 feet at vapor pressures of 0.500 to 0.599 , and at 1,000 feet at 0.300 to 0.399 inch.

Vapor pressure and the number of insects caught both vary with temperature and in the same direction. The apparent vapor-pressure effect is undoubtedly due not to rapor pressure itself, but to the temperature effect upon the insects, which varies to a definite degree aud in the same direction as does the temperature effect upon vapor pressure.

Vapor pressure by its effect on dew point bas a direct relation to the occurrence of spiders; and, as aflected by temperature, an indirect relation to the occurrence of insects.

BAROMETRIC PRESSURE

Experiments and observations in both the laboratory and the field have shown that there is a more or less direct relation between atmospheric pressure and the behavior of insects. Some observers have reported rather definite reactions, while others have considered that they may be dealing only with coincidences in which other conditions may be the controlling fictors.

There ne several foctors which produce changes in barometric pressure: There is, for example, a small regular daily variation, in which, among other things, temperature has an important offect. Both the afternoon barometric minimum and the forenoon maximum are to be regarded as effects, in part at least, of temperature increase; the minimum as due to expansion and consequent overlow, the maximum as caused by vertical convection and consequent interference with the free circulation of the atmosphere. In general, convection increases most rapidly during the forenoon, is most active at 10 to II a. m., and reaches its greatest clevation at about $4 \mathrm{p} . \mathrm{m}$. This produces a damming up of the atmosphere, due to the vertical convection, and the resulting increass of barometric pressure must take place most rapidly during the forenoon and come to a maximum at about $10 \mathrm{a} . \mathrm{m}$. After this, the convectional interference decreases while at the same time the amount of air in a yertical column of fixed cross-section diminishes, as a result of expansion and overflow; until, at about $4 \mathrm{p} . \mathrm{m}$. , the barometric pressure, as already explained, has reached a minimum ($88, p$. 235) .

The amount of evaporation is influenced slightly by barometric pressure-the higher the pressure the slower the rate of evaporation. Of course, the amount of coaporation depends upon a great variety of things, such as the nature of the surface from which the evaporation is taking place, the quantity of water vapor already in the atmosphere, the temperature, and the velocity of the wind. The amount of evaporation is greater during the day than at night, and grenter during the summer than in winter (52, pp. 102-194).

The grentest changes are produced by the passage of the barometric highs and lows that are responsible in the main for weather changes; and there are many examples in which the changes in barometric pressure are shown to have had an important bearing on the reaction of insects. As far back as 1897 it was pointed out by Sajo ($63, p$. 230) that insects became unusunlly active during barometric
depressions. Parman (57) found that in some flies the mortality increased considerably with a falling barometer. He collected data on the effects of a severe storm at Corpus Christi, Tex., in 1916. A few days before the storm Stomoxys calcitrans was very abundant, but after the storm the flies bad practically disnppeared. Musca domestica L. and Cochliomyia macellaria were also abundant before the storm, but all species of Diptera diminished appreciably in numbers with the storm, although Lucilia sp. was least affected. With the rapidly falling barometer at the approach of the storm, the muscids became nervously active and showed a tendency to seek places of protection, where they went into a state of partial coma. The great destruction of the flies may have been due to the heavy rains following the chilling effect of the storm, and to the action of the wind and sea spray. Parman also made observations at lights at night, and found insects to be more active during high barometric periods and especially while the barometer was rising. He also observed that migrations of Libythea bachmanni Kirt. took place after storms, which indicated that the flights were made during periods of high barometric pressure.

Wiliams (76) reports that in 1915 there was an invasion of migratory locusts (Schistocerca gregaria (Forsk.)) into Egypt, and all the waves of the insasion were preceded by barometric depressions; also that some butterflies, as Vanessa cardui (L.), have heen occasionally noted to follow areas of depression during their migrations. According to Pictet (5δ) Lepidoptera tend to emerge from the pupal stage during a fall in atmospheric pressure, a sudden drop in pressure, even of a small magnitude, after a long-continued rise, resulting in a considerable emergence of insects.

It is said by some that the swarming of some insects in the evening is due to the usual slight (not over 0.1 mm) increase in barometric pressure which occurs every evening between 9 and $10 \mathrm{p} . \mathrm{m}$. It is suggested, however, that swarming begins at dusk under natural conditions, kecping pace with the change mat the time sunset, and being related to a definite intensity of light, or degree of darkness, rather than to a difference in barometric pressure ($74, p p .99,100$).

Felt ($22, p .05$) states:
Since winds blow towards lows, a bwering of the barometer would be favorable for the driffing of insecis toward the center. It hardly seems as though changes in pressure alone would have a determining infuence upon the movement of insects, atthough it can be easily understood how the conditions near the center of a storm area would very likely have a profound influenee upon insect life, as well as upon larger amimals.

There is no doubt that insects would gradually drift toward the center of a low, since air has a component of flow from high-pressure areas to low-pressure arcas. But as to there being a profound influence upon insect life near the center of a storm area, it is somewhat questionable. While winds do blow toward the center of a low, they do not blow directly into the center, but spirally inward around the center. Just what the effect, then, would be on insects in the center of a stom is not certain.

Steinberg ($\%$), in his studies of the sugar-beet web worm in the Union of Soviet Socialist Republics, states that the migrations are always connected with cyclonic depressions, and that it is most probable that the moths are swept in from every quarter to the center of the cyclonic depressions. In the southeastern steppes they will re-
main in large numbers and deposit their eggs. Here will remain a mass stook of hibernating larvae, and the moths emerging the following spring may immediately threaten the cultivated areas bordering the steppes and cause a mass outbreak of the pest in them.

There is little chance of a satisfactory explanation of the phenomena observed, if pressure alone is considered as a factor affecting the behavior of insects in the air, since changes in barometric pressure are also associnted with changes in the weather. It is possible to understand how sudden drops or rises in barometric pressure can and do influence the behavior of insects, since the weather is correspondingly variable.

The collections of insects in the upper air indicate that one or more factors have an important correlation with barometric pressure.

Figure 10.-Average number of insects collected by airplane in 10 minutes of daylight flying at 200 feet altitude, as related to the surface barometric pressure, Tallulah, La.

There is no marked relation in the numbers of insects in the upper air to barometric pressure and temperature, but there is an evident tendency for temperature to be the controlling factor. Barometric pressure generally varies inversely with temperature; i. e., with high pressures there are low temperatures, and with low pressures, high temperatures. The same tendency is shown in correlating dew point with barometric pressure, for the latter also varies inversely with the dew point. There is no evidence that the relation of vapor pressure to barometric pressure affects the number of insects in the upper air.

Only the collections at 200 feet will be considered, as at 1,000 feet and above there is very littie or no correlation with barometric pressure. At the high altitudes pressure is only secondary, since other factors which overweigh or interfere with this influence regulate the distribution of insects at these heights.

The greatest numbers of insects were taken in the daytime when the barometer was at 29.85 inches; and the numbers decreased more or less rapidly as the pressure increased. (The normal barometric pressure for Tallulah, is from 30.00 to 30.15 inches.) More than
twice as many insects were taken at pressures of from 29.85 to 29.89 , than at 30.35 to 30.39 . From 29.85 to 30.05 there was only a small and gradual decrease in number of specimens taken, but from 30.05 and on the numbers fell off decidedly (fig. 10).

The orders Coleoptera, Hymenoptera, and Diptera, the three orders with the most highly developed nervous systeies, showed the closest relationship to barometric pressure, as the largest numbers were in

Figure 11 - Average number of the insects of the important orders collected by airplane in 10 minutes of daylight fying at 200 feet altitude, as related to the surface barometric pressure, Tallulah, La.
the air mostly at the readings of 29.90 to 30.00 , and thereafter decreased rapidly as the barometer rose. There was also a tendency for Homoptera to decrease in numbers as the pressure increased, but the Heteroptera showed little effect of the various pressure readings (fig. 11).
There was a distinct and exactly opposite reaction in spiders as compared with insects. This same trend was evident at the altitudes of $200,1,000,2,000$, and 3,000 feet, with the fewest specimens taken at the readings of 29.90 and the numbers greatly increasing with increase in the pressure from 29.90 to 30.10 inches. At the altitude of 200 feet there were more than twice the number of spiders taken at the pressure reading of 30.10 as were collected at 29.90 or 29.94 . Then at 30.10 the numbers of spiders taken dropped off considerably, but greatly increased thereafter from 30.15 , reaching a maximum at
30.30 , with nearly twice as many as were collected on fights when the readings were 30.15 , and almost four times as many as at 29.90 (fig. 11).
High barometric pressures from 30.15 to 30.30 inches were recorded mostly in the winter months. Since the spiders were taken in greatest numbers in November, December, and January, it appears that the occurrence of spiders i. correlated with the seasonal change in barometric pressure.

It is important to know what meteorological condition contributed the controlling factor along with barometric pressure, in order to cause such a reverse reaction of spiders in comparison with insects. Surface rapor pressure and absolute humidity did not show any direct relation with the abundance of spiders in the upper air. Dew point, however, appeared to be the outstanding factor in correlation with barometric pressure, to which spiders showod the most definite reaction. This is quite understandable when one considers the role that dew point plays in the movements of aircraft. Dew point means simply that temperature at which, without change of pressure, saturation is just reached. It might be defined as the temperature at which the saturation pressure is the same as the existing vapor pressure ($35, p, 11$).

Airplane wings offer a wide surface for the condensation of water vapor. When a plane passes through fog or clouds, or an area of saturation, a drop in temperature from a given dew point may result in the collection of moisture or ice on the surface of the wings. Accordingly it is most essential that the pilot know the dew point, especially in freering weather, as the collection of ice on the wings may result in a forced landing.

The silky webs of spiders may be compared to the wings of an airplane, sinco the spider floats on these webs as an arplane remains in the air on its wings, and if the dew point changes and moisture collects on the webs, this excess liguid weight will bring the web and its rider down toward the earth.

AIR CURRENTS

It has long been suggested that wind has played a considerable part in the distribution and dispersol of insects over the earth. There are numerons references in entomological literature to the importance of the wind as an agency in the migration and diffusion of insects. Its effects are seen everywhere in the sudden invasion of certain insect pests, when wind of sufficient velocity has brought them from distant localities; or in their sudden disappearance with the change of the wind direction.

It is important to know what effect the intensity of the wind, strong convectional currents, and the lirection of the wind have on insect movement in the upper air. Wind plays numerous roles in its effect on insects. It influences the evaporative power of the air; and the mechanical action can directly destroy insects by driving them into large bodies of water or carrying them to places unsuitable for life and reproduction, or by destroying the immatare stages, such as mosquito pupae in water. Winds of great intensity, such as are found in tornadoes, destroy insects in great numbers instead of aiding them much in their flight. If the wind becomes too strong, insects have a tendency to remain close to the ground, clinging to vegetation;
or if fyring, they may be carried along by the wind. On the other hand many insects fly against, and not with, the wind.

To understand and properly account for the clistribution of insects in the upper air it is essential to have some knowledge of the action of winds, eddies, and disturbances.

An important type of wind that has a definite effect on disturbing and distributing insects is that which usually accompanies a thunderstorm. The air becomes agitated, blowing directly toward the nearest portion of the storm front. As the rain is about to fall, the wind of ten suddenly changes to violent gusts, blowing away from the storm center and in the same direction in which the storm is traveling, which is usually different from that of tho original surface wind. After the :torm the wind may resume the same general direction as the original surface wind.

Intense heating of the surface of the carth often causes vertical currents of air, by which insects are carried upward. The writer once observed on Longs Peak, Colo., at the altitude of 14,265 feet, various species of buttertlies and dragonflies flying briskly up the sides of the great walls of this mountain and over snowbanks until the insects reached the very summit. Strong ascending surface currents of air were evident and these aided or carried the insects upward and over the mountain barriers.

These mountain air currents have been a great aid in the migration of the enormous swarms of grasshoppers which have been so destructive in past years. There is ummistakable evidence that numerous flights of grasshoppers were made at remote times. Speer (69) mentions a visit of Professor Ruggles of the University of Minnesota sereral yeurs ago to Grassliopper Glacier, near Cook City, Mont. This glacier lies in a valley in the Rocky Mountains some 12,000 feet above sea level, near Yellowstone National Park. Here Professor Ruggles found decaying heaps of locusts lying at the melting foot of the ice shect of the terminal moraine. Suecessive layers of locusts were imbedded in the ice from the bottom to the top of the face of the glacier. Ench layer was evidence of an individual flight. The bottom layers had been deposited hundreds of thousands of years ago.

Guppy (30) records that in 1897 numerous wings of butterflies were found on the top of Mauma. Loa in the Hawaiian Islands, at the altitude of 13,600 feet where life was searecly bearable for man. Muir, according to Williams (77), in writing on the Hawaiisn Islands, states:

> Ouly such [itsects, phantis, wad animalit its could come on the wing, be carried by the wind throught the air, earried on budies or in the crops of birds, or be
that in a hrond sense, the mative fanma and floma are mainly eomposed of forms
that conld travel in these ways, or of descenclents of such.

Guppy (30), however, doubts that butterffies could be transported 2,000 miles from California.

There are cases on record which illustrate the importance of winds in carrying insects over unexpectedly long distances. Wlton (21) gives an example of the appearance of winged spruce aphids on the snow at Spitzbergen, where they could have ben brought only by the wind from the Kola Peninsufa, a distance of over 800 miles.

MeAtee (45) has assembled a number of records of the fall of insects during storms. In one instanee numbers of living larvae of Tenebroides mauritanicus were found on the snow following in storm in

Haute-Savoie. The insects had probably been carried there to a height of 3,500 feet from central or southern France.

The cosmopolitan butterfly Danaus menippe (Hba.) (Anosia plex'ppus of authors) has been seen in the South Pacific, 500 miles from land. Tutt (72 p. 15) reports a record that a swarm of migratory locusts (Schistocerca gregaria (Forsk.)) invaded a ship which was making a voyage from Bordeaux to Boston, the nearest land being some 1,500 miles distant.
Hardy and Milne (81) conducted experiments on the drift of insects over the North Sea by flying collecting nets either from the mastbead or from kites flown from the shij. Altogether 730 insects were collected 120 to 150 miles from the nearest land, some being taken with kites at heights of from 200 to 400 feet. Considering the small size of the nets used, the number of insects collected indicates a very large populution of "aerial plankton" drifting across the sea. They concluded:
It appears likely that the study of insect driff over the sea, in giving definite evidence of the distances (minimum when measured from the nearest land) travelled by insects, may be of value in undiprstanding the spread of insect pests over the land, in addition to indicating the infectation of Great Britain from the Continent and throwing liglit on the origin of the inseet faunas of islands.

WIND VELOCITY

In the collection of insects by sirplane there is much evidence to show to what degree wind velocity influences insect abundance in the air. The numbers of insects taken do not imply that the wind was the most important factor but indicate the comparative numbers of insects that may be found in the air under given wind velocities.

At the altitudes of 200 to 5,000 feet insects were more often taken in the daytime when the surface wind velocity was from 5 to 8 miles per hour, nod the greatest number was taken at from 5 to 6 miles an bour. Fewest were collected at 15 to 16 miles per hour, above which velocity few flights were made. As compared with the velocities of 1 to 14 miles per hour, fewer insects were taken when the air was calm.
At the altitude of 200 feet the greatest numbers of insects were collected when the wind was hlowing at 5 to 6 miles per hour, and fewest at 15 to 16 miles. At the altitudes of 1,000 and 2,000 feet the greatest numbers were collected in the daytime when the surface wind velocity was from 7 to $\$$ miles per hour, indicating a slightly stronger wind as necessary for insects to reach the higher altitudes (fig. 12). At night very few fights were made when the wind velocity was over 5 to 6 miles an hour on the surface, and fewest insects were taken when the air was calm, the numbers collected continuing to increase rapidly up to velocities of 5 or 6 miles per hour.

As regards the orders, there was much variation. Heteroptera were collected in greater numbers at the fltitude of 200 feet, with the wind on the surface recording from 1 to 8 miles per hour.
The Homoptern collected at 200 feet were at their maximum numbers when the surface wind velocity was from 7 to 8 miles an hour, and for the higher altitudes there was a considcrable fluctuation in the numbers, with apparently litfle reference to surface wind velocity.

The Colcoptera were collected in greatest numbers at 200 feet when the wind velocity was between 5 and 6 miles per hour. The spotted cucumber beetle (Linbrotica duodecimpnanctata) was taken when the wind was calm or when it was strong. The boll weevil was collected
in the upper air when the average wind velocity ranged from calm to 5 or 6 miles an hour. The boll weevil is governed in flight by the wind. If there is no wind, or only a light one, a weevil is as likely to fly in one direction as another (36).

Figune 12.-Average number of jibsects colleeted by airplane in 10 minutes of daylight flying, as related to surface wind velocity, Tallulah, La.

The species of Hymenoptera taken at 200 feet were about equal in numbers when the surface wind velocity was from 1 to 2 and 5 to 6 miles per hour. The greatest numbers of ants were collected at velocitics of from 5 to 6 miles an Hour, with the next largest number at, 7 to 8 miles per hour. Especially was this evident at the altitude
of 200 feet. For the higher altitudes there was no apparent relation between velocities and insects taken, except at the altitude of 1,000 feet, when most ants were found when the surface wind velocity was from 7 to 8 miles per hour.

The Diptera showed a stronger reaction to the wind than any of the other orders. Their numbers taken increased from calm air, reaching a peak when the surface wind velocity was 5 to 6 miles per hour, and dropping ofi as the surface wind increased in velocity. At the altitude of 1,000 feet there was a rapid rise in the numbers collected, from the fewest at caln to most at the velocity of 5 to 10 miles per hour. At 2,000 feet more specimens were collected when the surface wind velocity was from 13 to 14 miles per hour.

Too few specimens of Lepidoptera were taken to show much relation to surface wind velocity. Alabama argillacpa was taken at night during calm evenings and at wind velocities of 1 to 4 miles per hour.

Spiters were taken in greater numbers when the velocity of the wind was from 3 to 4 and from 7 to 8 miles per hour, with most specimens at 3 to 4 miles per hour. When the velocity of the wind in the upper air was observed (theorolite readings), it was found that at the altitudes of $200,1,000$ and 2,000 feet most spiders were collected when the velocity was from 1 to 2 miles per hour.

At the high atitudes ol 6,000 to 16,000 leet many insects were taken when the upper-air wind velocities ware as high as 45 miles per hour. The velocifies at these high altitudes are significant, for when insects reach heights beyond 6,000 feet they are carried upward and doubtless great distances by the usually high winds.

wIND DIRECTION

The direction of the wind has, it is believed, tetermined to a preat extent the course of the migrations of insects. Certain prevailing winds have been definitely used in the migratory movements of insects during varicus seasons of the year. Not only lave birds tnken advantage of seasonal wind direction, but insects as well, for many insects, as suggested long ngro by various entomologists, are now hown to follow the migratory routes of birds. Such avenues of travel have been mapped out both in this country and in other parts of the world. Some lines latwe followed a coastwise route, extending from the Now England States, througl) long Ishand. (harleston Efarbor, S. C., and southward. Shamon (fti) has brought evidence in support of a western route nong the northern shores of lake Ontario and lake Erie, which bas been followed especinlly by "monarchs" in their flights to the South. Another great ronte has been indicated along the west shore of Lake Dichigan through (hicago, central and eastem Illinois, and southward to the Tropies. Routes have been suggested through the wide highways of the Great Phans and West Central States, as Minnesota, lowa, Kansas, Oklahoma, arnd eastern Texns. Fast armies of monarch butterflies and dragonflies travel southward over given routes, starting in August and September at times when the general wind direction is from the north. Appearances of insects such as Jepidoptera ame Otmata over the ocean have indicated to seamen the approach of the pampero of South America, a southwest wind often very violent (6a).

It is believed that the destructive grasshopper (Schistocerea) which often descends in vast sworms from Montam to as far as Missouri
takes all possible advantage of air currents. Hurd (88) states that on fair days, when the prevailing winds are from the southeast, the grasshoppers have been known to fly over the prairie for a distance of 200 to 300 miles. It has been shown that nearly all grasshoppers apparently prefer to fly with the wind. According to Tutt (72, p. 21) locusts, or grasshoppers, have been observed from mountains at elerations of 13,000 to 15,000 feet going in opposite directions with the difiering air currents. Complete destruction of vegetation and crops from plagues of locusts are known to have been averted by the sudden change or start of the wind.

Whether grasshoppers definitely take advantage of certain air currents, especially those favorable to their migration, it is difficult to determine. However, a sudden brisk or steady wind would serve, perhaps, as a stimulus or an aid in their dispersal movements.

Bishopp and Laake (9) found that a blowfly, Cochlyomyic macellaria, and the housely (Husca domestica) appeared to have a tendency to go with the wind in greatest numbers, although they were found to travel also against the wind and at right angles to it. Many insects of the South are migrants and are dependent for distribution on meteorological conditions, usually being carried along by southerly winds that carry the insects northward. Often insects are swept by hurricanes from one island to another, or to a mainland where they had not previously appeared. After the southwestern gales of August 26, 1n01, numbers of the "blue page" moth of Trindad were found to have been blown to the Barbados, a distance of 160 miles, and some to Dominica, still more remote ($S \delta$). Summer resorts along the Gulf coast have been invaded by great swarms of mosquitoes, blowing in with the winds. As soon as the wind changed its direction, the mosquitoes disappeared.
In August 1832 there was over 15 inches of ranlall in the Everglades, causing a considerable area to be flooded. A low-pressure center was moving in, with the barometer at 29.84 inches on September 4 , dropping to 29.67 by September 6 . Great numbers of mosquitoes (Psorophora columbiac) were blown in from the Everglades by the west wind which followed a tropical stom thrent. 'jhese mosquitoes caused mreat amoyance and made it necessary to toke measures to protect cattle and horses. Complete relief from this mosquito invasion came only when an east wind started howing on September 15. Swarms of buffalo gnats, which cause tremendous destraction to livestock in the Mississippi Deltal States, have been blown into various sections from the swamps of lower Lovisiana, when strong winds swept the area, carrying the gnats before them, and then suddenly have been blown awn with the change of the wind. Wadley according to Chapman ($11, p, 188$) considered it probable that the green bug (Toroptera graminum Rond.), found so abundant in Minnesota in 1926, was corried from Oklahoma by the southerly winds in the spring of that year.

Melnichenko (5i) found that the movement of the migrating moths of the sugar-beet webworm coneides ammst entirely with the direction and speed of the air currents at the time of their migration.
Lutz conducted expriments with light traps to determine insect, preference in relation to wind direction. He concluded from his collections that at least the night-flying 1)iptera and Lepidoptern tend to stop their flight, on the leeward site of a light, and that this some-
what favors the idea that, in general, they tend to fly against the wind (48).

When the author was discussing the subject of insect fight and wind direction with Dr. Williams of the Rothamsted Experimental Station, England, Dr. Williams offered the suggestion that it may be possible for an insect to find it easier to land against the wind than with it, just as it is important for a pilot to fly his airplane against the wind in making a lauding.

The altitucle studies of 1931 substantiated those of 1930 as regards the movement of insects with or against the wind. More insects were collected on the north side of screens, or the leeward side, since the prevailing wind during this period was from the south and southeast.

Revolving screens were placed in the field so made that the screen would turn to face the wind. Most of the boll weevils caught were found on the leeward side of these revolving screens, showing that the weevils flew into or against the wind.

It is evident that most insects can fly better against a moderate wind than with it. With the wind at 5 to 6 miles an hour, insects are able to fly against the wind, for more were found in the upper air at such velocities. At higher wind velocities insects will be carried along with the air currents, even though they may be flying into the wind, since the angle of attack makes it easier for the insect to keep itself oriented. Bees make little progress against a wind having a velocity as great as 15 miles per hour (55). As has been previously noted, Tutt ($72, p .72$) records that many butterflies have been observed to lly against a stiff wind, so strong are their migratory instincts.

In the airplane flights it was found that the greatest numbers of insects were taken at 200 feet when the surface wind direction was from north-northeast, south-southeast, and southwest. This appears to correspond with what is known respecting insect migration in general, i. e., that insects fly with the wind during the spring and summer when the surface prevailing winds are from a southerly direction, and from anortherly direction in the fall. When the wind directions were recorded by means of theodolite readings, it was found that most insects were collected at $200,1,000,2,000$, and 3,000 feet when the wind was from the northeast, and at various directions for the next highest numbers of insects taken.

The spotted cucumber bectle (Diabrotica duodecimpunctata) is known to be migratory. Smith and Allen (67) have studied its habits and have found that this destructive chrysomelid migrates northward regularly during the spring and early summer and that the offspring migrate back to the South in the fall. The migration of this beetle scems to be an cstablished habit, and certain climatic factors are taken advantage of in its accomplisloment. Of these, surface wind, upper air currents, and temperature are probably the more important, the migration oceuring during periods of favorable winds, that is, with southerly winds during spring and northerly winds during the fall. A temperature of 60° to $65^{\circ} \mathrm{F}$. or above is also necessary. In the airplane collections the general tendency appeared to bear this out, in that in the spring months most of the bectles collected were taken at times when the wind was in an southerly direction, and in the fall when the wind was in a northerly direction. Longitursus testaceus, a chrysomelid beetle of which 209 specimens were taken, was collected in greatest numbers in the spring monthe when the wind was from the south. This beetle, however, is not known to be migratory.

Many species collected had probably been carried in the upper air currents from distant localities. The late J. M. Aldrich stated that a small fly, Hippelates texanus, (Oscinidae) taken at 200 feet, is known only in the distant Southwest, and has never been collected in the Mississippi Valley. The late J. W. Folsom determined a collembolan, a species of Entomobrya, taken at 3,000 feet, as being probably cubensis Fols., known as yet only from Cuba. One of the ants collected, determined by W. M. Mann as Ponera coarctata subsp. pennsylvanica Buckley, is northern and eastern in distribution and barely extends into a number of the Southern States. M. R. Smith states that in his many years of collecting ants he has taken the species very rarely in the central and southern sections of Mississippi.

Thus it appears that the upper air currents and the direction of the wind have much to do with many serious and sudden outbreaks of insects. It is advantageous to the migration of insects from the south in the spring and for their return in the fall months. On the other hand, the direction of the wind may be a disadvantage to insects by blowing them into regions of unsuitable habitat where their food plants are not available, or where temperatures are too low or too high for them to exist. If blown out to sea they may eventually be destroyed.

CONVECTION

Convection plays an important role in the limitation of insect population in the upper air. When convection is very strong, insects flying near the surface may be quickly carried upward to enter the borizontal wind currents of the upper strata of air. Convection in the atmosphere may be divided into two classes: (1) Mechanically forced convection, as the rise of air on the windward side of a mountain, or other obstruction, and its fall on the leeward side; (2) thermal convection, involving both warming and cooling, which is by far the more important of the two; in fact, it either constitutes or is associated with all natural air movements. In reality thermal convection is only a gravitational phenomenon, consisting in the sinking of relatively cold air and the consequent forcing up of air which, volume for volume and under the same pressure, is relatively lighter (35, $p .37$).

During the winter the temperature decreases with elevation less rapidly than it does in the summer. The temperature of the atmosphere, however, is dependent on the same factors in the winter as in the summer, including radiation, co. laction, and convection, principally from the surface of the earth and the lower altitudes. Thermai convection is the spottiest, in that it is much more dependent on local surface conditions, such as plowed fields, meadows, forests, deserts, and bodies of water. Clusters of trees may create local convection currents in the air, owing to their coolness as compared with open country. The effects from water, as over lakes, swamps, and rivers, are sometimes felt up to a great height. Eddies are found over white roads, moving trains, and chimney stacks.

Mosquitoes and small Diptera have occasionally been observed swarming over treetops, steeples, and similar objects. This rising column of air is often of great importance to certnin insects, as termites, by aiding in their dispersal, and to ants and bees in mating. Theodore Roosevelt, Jr., reported that at one time while making a balloon ascension he passed through a cloud of gnats drifting at a height of some 500 or 600 feet. The warm vertical currents of air
thus carry upward numerous light bodies and insects even to the tops of mountains. Whenever atmospheric disturbances occur suddenly, as by convection, grent numbers of insects are lifted and may be removed to distant places.
F. C. Meier of the Extension Service, United States Department of Agriculture, who made an extensive study and collection of plant spores, pollen, and microorganisms of the atmosphere and stratosphere, related that on one of his flights he met with a swarm of beetles at an altitude of 4,000 fect. The airplane was making a speed of 100 miles or more per hour, and for more than a minute he encountered these beetles. The air was exceedingly turbulent.

The importance of thermal convection as an aid not only to insects but to man as well may be illustrated by the interesting account of how a famous Auctrian glider was guided by a flock of butterfics to the wiming of a coveted prize (1). Many pilots of motorless planes had tried unsurcessfully to accomplish the feat of gliding from the top of the Puy-de-i) ome in France to the mountain Banne d'Ordnache, lying on the other side of a wide valley. Kronield himself, in spite of his skill and experience, was not at all sure he could win the prize, becnuse the conditions required that the winner hop from oue peak to a ieight of exartly the stme altitude over a valley free from such obstructions as are likely to lom upgoing currents.

Describing his achievement alterward, Kronfeld said he was catapulted off the ?'uy-de-Dome at a height of 1,440 meters (about 4,500 feet) and got into the air successfully but immediately found that he could not mantain his altitude. There was no strong wind to buoy him up and no thermat strems rising toward the sky. As he nenred the foothills of the mountain on which he was to land he beran to sink again. For nearly an hour he sailed about over the woods, descending ever hower and lower until he was not more that a dozen meters above the trectops. It was then, on looking about, that he saw little white butterflies standing out sharply against the dark pine forest. They were gliding, as he was, but were slowly rising. They bad found the current he was tooking for. So he followed them and glided into a warm strean of air that earried him upward. Tis coumge returned, his speed increased above the trees, and be sailed out over a smooth grass sward 1,400 meters high and landed, winning the prize.

Later, in :s letter to the author, Kronfeld added the following information:

It might interest you io hear that I previonsly made observations about insects and the infuence aif curconts have on their fight. Any time wou see insects at greater heights, say betwen 6,000 or 10,000 feet or more, you can be certain that they mot there through up-rureents and nearly always aghingt their will. I saw millions of insects stranded on glaciers on the Swiss ath Anstrian Alps at a height of about 10.000 feet. What happens is that they get carried up by eurrents of warm air. By the influence of the iee and sums the air gets cooled, an no-current is converted into a down draught and the insects die in the eodd.

With the air calm at the surfare, convection may be exceedingly strong, chasing inseets to be carried to great heights. The air is often rough high above, and smooth below most clouds. In the ease of convection (comolus) douds (pl. 5, A), however, the air is generally smonth above and rough below. This is caused by the eonstant flow of air up and down. This diflerence in air currents was frepuently observed by the writer while flying among the elouds.

The heat-radiating and absorbing power of green fields and plowed fields may differ markedly. Differences in surface topography contribute to differences in the amount of convection over valleys, cariyons, or even bayous as in Louisiana.

The bayous there were made by the Mississippi River and form drainage canals, as it were, winding in and out of the swamps and cultivated areas. The writer vividly recalls that on a certain flight the pilot nearly lost control of the plane because of meeting a sudden downward current of air while fiying over a bayou. The plane was saved from a terrific crash only by a sudden lift caused by an ascending current at the edge of a hot dry meadow which bordered the bayout. Gregg (28, p. 46), in discussing flying in gusty air, says:

The resulting changes in air density give rise to vigorous convection which produces a bodily uplift or drop of an aircraft, with changes in the angle of attack as the column of ascending or descending air is entered or left. If, as sometimes happens, only a portion of the aircraft is affected by such a column, e. g., one Wing is in rising air and the other is not, a decided tilting of the machine is produced. If, for instance, on entering a columb of rising air, the angle of attack is so changed as to keep the machine at a constant level, an abrupt drop (poptlarly known as "air pocket" or "hole in the air") will occur as the column of rising air is left.

Convection is more rapid in the morning and reaches its greatest height late in the afternoon. Melnicbenko (51), in his studies of the migration of the sugar-beet webworm (Loxostege sticticalis (L.)), shows that the diurnal rises and departures of the moths are always in connection with convection currents in the air, and that the diumal flights of the moths are associated with heat conrection in the air about noon. Convection usunlly reaches its limit at about 5,000 feet and is strongest in the lower strata. Usually the atmosphere becomes more stable and an arplane runs smoother abore 1,000 feet.

It is very difficult to measure the convection in the air, owing to the difference in the air morements. During each airplane flight to collect insects, the amount of convection was judged by the "feel" of the plane in the air. The amount of vertical motion in the atmosphere was estimated in the following terms: (1) Smooth air, where the plane ran evenly with no vibration felt; (2) slightly rough, when the plane began to tilt from side to side, with slight sudden lifting and falling; (3) rough, when the machine was thrown about considerably, making it somewhat difficult to keep it adjusted (flying then became hazardous at very low altitudes, and very few "hedge-hopping" flights were ever made under these conditions, since the danger of crashing was greater); and (4) very rough, when the plane was thrown violently about, maling it very difficult to control at times. Often these strong ascending air currents resulted in a sulden drop of the machine for as mucb as 100 feet or more. Few flights were made below 1,000 feet wher the air was very rough, and even at that altitude some risk was run.

The insects taken were separated into divisions for each altitude according to the amount of convection as estimated by the pilot and the person making the meteorological records and controlling the trap. Since most of the flights were made by J. M. Yeates and the writer as observers, the convection was recorded and suflicient llights were made to compare records and reach a relatively uniform standard of measurement, with the air conditions classed as smooth, slightly rough, rough, and very rough.

At the altitude of 200 feet more insects were taken when the air was smooth than when it was slightly rough or rough. The supposition is that when the air was smooth, more insects were in the air from

Figure 13.-Average number of insects collected by airplane in 10 minutes of daylight flying, showing the relation between the altitude reached by the insects and the condition of the air, Tallulah, La.
their own volition from near the surface to 200 feet, since they were flying about undisturbed with less chance of interference by air currents. At the altitudes of 1,000 to 5,000 feet, however, fewer insects
were found when it was smooth, and the greatest numbers were collected when the air was rough (fig. 13).

The evident interpretation of these data is that under disturbed conditions of the atmosphere weak-flying forms, such as aphids, small Diptera, Hymenoptera, and insects of this character, of which thousands were taken, are unable to remain close to the ground but are carried up in convection currents into regions above the altitudes where they would be expected, thus giving an increase in insect population in the air. The rougher the air, the greater the numbers of insects that were found at higher levels. At lower altitudes there was a considerable modification of chance distribution, since the strongflying insects were better able to remain close to the ground, or cling to vegetation. Under rough conditions many of the stronger fiying insects doubtless did not take wing at all, and the insect population under these conditions at altitudes above 3,000 feet was found to consist primarily of the very weak fliers such as aphids. Many insects are able to regulate their fight activities to a considerable extent and are not always at the mercy of sir currents unless the air is very rough and wind velocities considerable.

Chance distribution varies inversely as the square of the distance from the earth's surface. Under slightly rough and rough conditions, at somewhere between the 500 and 1,000 foot levels distribution is equal to that expected according to the laws of chance, with fewer insects than expected below 500 feet and more than would be expected above 1,000 feet. The greater the atmospheric disturbance from calm to slightly rough and rough, the greater the variation from the expected chance distribution.

Among the records of the 1,356 flights made to collect insecte in the upper air, examples are numerons in which convection played a very direct part in the distribution of the insects. With the air smooth, and a brecze of 3 to 4 miles per hour, there was a greater number of insects in the air and a closer appronch to the theoretical chance distribution. A wind of this strength is not sufficient to interfere with normal insect flight. It is not to be inferred, however, that because the air is smooth there is no convection, as often it was very strong. Especially was this noted during clear summer days when thermal convection and attending movement so mixed the surface layers of the air with those next above as to bring both to a more or less common velocity, which was greater than the undisturbed or night surface ve. locity, and less than that of the undisturbed upper layers before their mixture with the lower layers ($35, p .137$).

After insects are up in the smooth air and then are canght in strong ascending and horizontal currents of air, they will be carried upward from elevation to elevation. A few of the more outstending and interesting examples are given in table 13, in which convection was the apparent cause of the distribution of the insects in the apper air.

Often when it was slightly rough at 200 feet and smooth above, insects would be taken in abundance at the lower altitudes and few or none taken above 1,000 feet. An example of this is shown in the flight of July 2, 1930 (table 13). On this flight 57 ants of the species Solenopsis xyloni were taken at 200 feet and one at 1,000 feet.

There were many flights when the air was slightly rough at 200 feet, and as altitude increased either convection or wind velocity increased, or both, and insects were carried upward and taken in greater numbers. The flights of September 18, 1929, represent this condition (table 13).

Table 13.-Examples of interesting cases of distribution of insects in the upper air in relation to air currents, Tallulah, La.

When the air was slightly rough or very rough, insects were usually taken in greater numbers in the higher altitudes. Examples of this are found in the flights of October 21 and November 7, 1929, and August 11 and 31 and October 16, 1931 (table 13). In the collections on the first two of these dates a grent variety of insects of all sizes were caught at the lower altitudes.

At 2,000 feet there were taken Orius (Triphleps) insidiosus and Stirellus obtutus, which are small Hemiptera but with good wing expanse. Spiders were abundant at 200 to 3,000 feet.

The species of Heteroptera collected at 5,000 feet in the fligbt of August 11, 1:31, are especiallv interesting. These were Lygus pratensis, Geocoris punctipes, Nysius ericae minutus, and Allocoris (Thyrecoris) pulicaria. The first three species are comparatively strong fliers, with correspondingly good wing expanse in proportion to their body weight, giving added buoyancy. The negro bug Allocoris pulicaria is a small, hard-shelled, shiny-black bug, which resembles a beetle. While this species is a strong flier, it does not have much wing expanse in comparison with its body weight. The rough air at all alfitudes, with wind velocities of 10 to 17 miles per hour, probably accounts for its occurring at this height.

The species collected in the fight of August 31, 1931, varied in size, weight, and buoynncy. At the altitude of 200 feet the Heteroptera taken were Orthea basalis, a light insect with considerable wing expanse, and Trichopepla semivitata, a rather large and heavy pentatomid. The Homoptera included four specimens of Delphacodes puella, \& rery small fuigorid having considerable buoyancy. Liburniella ornata, a small fulgorid with a great wing expanse in comparison with its very small body, was taken at the altitudes of $2,000,3,000$, and 5,000 fcet.
At the time the fight of October 16, 1931, was made great numbers of insects were out, primarily owing to a good rain in the morning after a long dry spell. The day cleared up, insects appeared in great abundance, and as convection was very strong they were carried upward. Niany strong fliers were collected, such as the large sharpshooter Oncometopia undata, taken at 200 and 1,000 feet, and a female red-legged grasshopper (Melanoplus femur-rubrum). Graphocephala versuta was taken at all altitades, with 2 at 200 feet, 1 at 1,000 , 11 at 2,000 , and 7 at 3,000 feet. The psyllids Pachypsylla celtidis-mamma and P. celtidis-gemma were also abundant at all altitudes up to 3,000 feet. One butterlly, Junonia coenia, was caught at 200 feet, and numbers of spiders were taken at all altitudes.

INSECT ACPIVITY AT NIGHT

The atmospheric conditions at night are the reverse of the daytime conditions. Relatively calm air generally prevails in the lower strata at night; there is little thermal convection, and the surface friction holds the lower air levels comparatively quiet at the time of a light to moderate wind. In general, the maximum wind velocity in the daytime is reached between noon and 3 p. m., and the minimum at night between midnight and $6 \mathrm{a} . \mathrm{m}$. At sunset the ground begins to cool, and, being a much better radintor than the atmosphere, it often cools, especially during clear uights, to a decidedly lower temperature than the air at some distance above it. Hence, late at night when the sky is clear and the wind light, the temperature of the lower layers of air usually increases with increase in height, and even when there is sufficient wind to prevent this temperature inversion, as it is called, the lower atmosphere still is colder than it would be without this radiation. The amount of surface cooling depends jointly upon the rates of radiation to and from the sky and the time involved ($35, p$. 42).

Insects that are in the higher levels (above 3,000 feet) during the
day tend to be brought down toward the suriace at night, with the descending cool air currents, or because of failure of upward convection currents, while those on the surface are carried upward in the ascending warm air. In this way there is apparently a concentration of nightflying insects from the surface and the diurnal insects which have been left in the upper air from the day. On many flights insects were collected in greater numbers at the higher adtitudes than they were at the lower levels.

The data from three flights which are cutstanding examples are given in table 14 to sbow the relative distribution of insects in the upper air at night.

Thble 14.-Examples of the distribution of insects at night (air smooth) under various types of weather conditions, Tallulah, La.

On the flight of October 13, 1930, one microlepidopteran belonging to the family Pterophoridae was taken at the altitude of 1,000 feet. August Busck, who determived the species of microlepidoptera taken in the upper air, made the following comment:
An interesting collection. All of these are minute, weak-flying species, which voluntarily would not go more than a few yards from the place they hatched out. Air currents are solely responsible for their being taken in the upper air. The wide distribution of some species of Pterophorus is accounted for in this manner.

On the same flight two mosquitoes, females of Aedes vexans, were taken at the altitude of 5,000 feet.
In gederal it may be said that at night insects were in greater numbers in the upper air at all altitudes when the air was smooth. In most instances, however, there was considerable wind in the upper air even at times when the air was calm at the surface. Insects were often taken in greater numbers at 1,000 feet and above than at the lower altitude of 500 feet, during the same flight.

LIGHT INTENSITY

The numbers of insects appearing during the time from daybreak to dark varies considerably. The actual hour or period when insects are most abundant in the air depends upon the amount of light and the meteorological conditions most favorable for their activity.

Insects which require considerable moisture or high humidity are not usually found flying during the daytime, as they prefer deep shade or dark places.

It has been suggested that the time of activity of certain crepuscular insects, such as mosquitoes, depends on the light being of a definite intensity. There are, however, other conditions which point to the intensity of light as secondary. Light and heat are inseparable in their effects, for with less light, as on very cloudy days, mosquitoes become active, since evaporation is not in general so great as on sumny and hot days.

Insects react positively or negatively to light and their activity varies according to the amount of light. Thus great numbers of insects fly by day; other species, not until late in the evening or after dark. Sunshine has a stimulating effect on most insects, but if the rays of the sun are too nearly direct and intense, many insects, especially the immature stages, will be killed.
The distribution of insects is influenced by the intensity of light. Grevilius (29) has shown that some insects will concentrate in the best illuminated part of a cage, even if that part is kept cooler than the others. In other words, within the limits from 60° to $71^{\circ} \mathrm{F}$. temperature is less important than light. One controling factor in the oviposition of the codling moth is the intensity of light, as, according to laboratory experiments, the moth usually deposits its eggs in the evening, or at night (39).

Marcovitch (48) has shown in experiments with Aphis sorbi that just as the short days of the fril stimulate the production of fall migrants, so the lengthening days of spring stimulate the production of spring migrants. The length of day in relation to the time of hatching appears to be an important factor influencing the early or Iate production of migratory forms.

Light seems to be the principal factor in the activity of bees. In one instance, after a storm, though the temperature remained low, honeybees resumed their activities (42).

There are many meteorological factors which contribute to the maximum activity of insects during the daytime; the more important of these, other than light intensity, are temperature, humidity, convection or air currents, and wind velocity. The surface wind velocity at night is usually less than during the dry. Convection starts at sunrise and reaches its maximum intensity at $4 \mathrm{p} . \mathrm{m}$.

Temperature and light are inseparable in their effects. Melnichenko (61) has shown that the influence of light upon the flight activity of the sugar beet webworm was extremely interesting in that the moths were negatively phototropic when the temperature was not lower than 24° or $22^{\circ} \mathrm{C}$. and positively phototropic when the air temperature at the flight level of the moths fell to 20° or $19^{\circ} \mathrm{C}$.

In another study of the numbers and species of insects collected in the upper air, the day flight periods were dinided into four major groups. These were: (1) Daybreak to sunrise and shortly after, or the hours from 5 to $7 \mathrm{a} . \mathrm{m}$.; (2) morning flights from 8 a . m. to noon; (3) afternoon flights from 1 to $5 \mathrm{p} . \mathrm{m}$.; and (4) sunset or late evening before dark, from 6 to $8 \mathrm{p} . \mathrm{m}$.

It was found that at the altitudes of 200 to 5,000 feet a few more insects were collected during the time from daybreak to sunrise than during the morning flights at the same altitudes. At this time of the
day, or early in the morning, there is a concentration of night-flying insects at all altitudes; these insects are added to the day-flyiag insects which begin activity at the break of dawn and continue to increase in numbers as the light increases or the temperature rises.

In the afternoon, when convection is strongest, the upper air usually becomes slightly rough to rough, wind increases in velocity, and insects are carried upward in greater numbers. At the altitudes of 3,000 and 5,000 feet, however, fewer insects were taken than for the same altitudes at daybreak.

At sunset the maximum numbers of insects are found. Many night-fiving insects are starting to fly, and together with the day forms there is an accumulation of insects. At 3,000 feet, however, the number legan to drop off, but at 5,000 feet more insects were collected than during the morning and afternoon flights. Thermal convection has practically ceased ai this time, and insects which were carricd to altitudes above 5,000 feet are beginning to deseend only to meet with many night-flying insects.

The orders Heteroptera; Homoptert, Coleoptera, Hymenoptera, and Diptera were taken in greatest numbers in the dilytime between 5:30 and 6:30 p. m.

At night more Diptera were collected at 11 p. m., while Coleoptera, Homoptera, and Heteroptera were in greater numbers earicer in the evening, or from S to $9 \mathrm{p} . \mathrm{m}$.

During 1929 and 1930, 19 days were given to flights to determine at, what hour of the day insects were most abundant. Nine days of flying were made from March to October in 1929, and 10 days from March to August in 1930. An average of six flights were made for each day, find on scyeral days seven or eight flights were made. The flights usually started at or before sumise, were begun every other bour, and ended from 5 to $6 \mathrm{p} . \mathrm{m}$. In the 120 flights there was found to be no direct relation between the maximum numbers of insects caught and any particular hour of the day. On some days the greatest numbers were taken parly in the moming, at 6 , or at 8 , or 11 a. n. Sometimes the maximum numbers were taken in the afternoon from 1 to $5 \mathrm{p} . \mathrm{ml}$. These results simply show that the time of day had little relation to the maximum or minimum numbers of insects collected. It was found that the greatest numbers or insects were taken when the sky was clear, when the air was smoothat the ground surface, and when the temperature ranged from 64° to 90°, with a peak activity at $75^{\circ} \mathrm{F}$.

The uumbers of insects collected had a close relationship to temperature. In March, with low temperatures early in the morning, few insects were taken, but the numbers increased with the rise in temperature. It was undoubtedly the temperature increase from 40° to $81^{\circ} \mathrm{F}$. Which caused the increase in the numbers of insects found in the air.

During the summer months temperature had the same effect, since insects were at times just as abundants early in the morning as at any other time of the day, regardless of light. For the 120 flights from March to October, the results show a temperature correlation, with fewest insects collected in ranges of from 36° to $58^{\circ} \mathrm{F}$. Insects begin to be active at a minimum temperature of approximately 60°, becoming increasingly active and reaching their peak in the range from 76° to 86°, then gradually dropping off from 87° to 92°, with a minimum
activity beyond 94°. Therefore, with a later time for sunrise in the winter and spring months insects do not begin activity until temperatures increase as the day adrances. In the summer and fall months, with the sunrise earlier in the morning, and correspondingly higher temperatures, insects start flying at sumise.

COLLECTIONS BEFORE AND AFTER DAEK

It is generally thought that some insects are more active as twilight appronches than at any other time, while others cease to be active or are never seen. As darkness arrives some species are seen which were not observed at twilight. At first it may be considered that this decrease or increase in the numbers and species of insects flying at this time is in direct proportion to the intensity of light. But, as stated, light may be secondary in its effect on insect movement, for the conditions of light and heat are inseparable in their effects. Evaporation is retarded and relative humidity increnses at night, and many insects are more active under the conditions of high humidity and lower temperatures of night.

In order to determine to some extent the exact numbers of insects that were flying before and after dark, flights were made a few minutes before dark and then immediately after dark. Each flight was so timed that 10 minutes were flown at the altitude of 500 feet during a period of considerable light, immediately after sumset or twilight. Then 10 minutes of flying time was made at 1,000 feet after dark. The airplane then descended to the altitude of 500 feet to fly anotier 10 minutes in complete darkness. The flichts were made each year during August to November in 1929, 1930, and 1931. In this way collections were made showing the numbers and species of insects which were in the air before and after dark at the time of each fight.

Nearly twice the number of insects were taken before dark as after dark. The orders of insects that showed considerably larger numbers taken before dark than after dark were Fomptera, Coleoptera, and Diptera.

The Homoptera were represented mostly by Cicadellidac, and more than twice the number of these were taken belore dark than after dark. Although more Heteroptera were taken before dark, a few species were taken in greater numbers after dark, and \mathfrak{n} few species appeared only after dark. Nearly twice as many Arctocorixa modesta were found after dark as before dark.

The Coleoptera comprised mostly specimens belonging to the families Staphylinidac and Carabidae, and were taken mostly before dark.

The Lepidoptera were slightly more abundant after dark, the Noctuidro especially. Nine specimens of the cotton leaf worm moth (Alabama urgillacea) were taken after dark at 500 feet, and only one specimen before dark. The fall arnyworm moth (Laphyyma frugiperda) was taken mostly after dark.

The Neuroptera were represented by species of Chrysopa or lacewing flies taken before dark.

The Hymenoptera appeared to be mostly day-flying insects, although several species were found at 500 fect after dark. Among the species taken after dark were one clover-seed chalcis, Bruchophafus gibbus, Meteorus vulgaris, Euplectrus comstockii, and E. platyhypenae.

Approximately one-third more Diptera were taken at 500 feet before
dark than were found after dark. Mosquitoes appeared in about equal numbers before and after dark. Culicoides varipennis and C. crepuscularis, or "punkies," were taken after dark.

MOONLIGHT

It was of interest to determine how the activity of insects in the upper air was affected by moonlight. Hora (32) noted in India that swarms of Mayflies appeared usually about the period of full moon. He studied the dates of swarming of Mayflies in other countries and found with each species that the appearance of swarms coincided with a definite moon phase.

In order to have comparable data, flights at 500 feet from May to September, inclusive, when the moon was half full to full, were compared with collections made on nights with no moonlight, and there appeared to be a tendency for insects to be more abundant in the air on nights when there was considerable moonlight. Considering individual flights made during the several years of collecting, it was found that the maximum numbers were taken mostly on nights of bright moonlight. Moonlight nights when only a few insects were collected were usunlly characterized by relatively low temperatures.

Coleoptera, Hymenoptera, and Diptera were taken in greater numbers on moonlight nights than on dark nights. A few more Heteroptera, Homoptera, and Lepidoptera were taken on dark nights than on moonlight nights.

The presence or absence of moonlight made no apparent difference in the height at which insects were collected, for insects were taken up to 5,000 fect about as many times when it was dark as when it was moonight.

CLOUD CONDITIONS

The intensity of light, the temperature, the humidity, evaporation, and other meteorological factors are directly affected by the cloudiness of the sky. Insects are sensitive to the atmospheric changes resulting from the degree of cloudiress from a clear to an overcasts sky. When clouds obscure the sum, cutting out the direct ravs and lessening the amount of light, the temperature drops, and the rate of evaporation is lowered. Many insects prefer clear and sunny days, whereas others are more active when the sky is partly cloudy or overcast.

Tvaroy (78, p. 83) and Parker (56, p. 65) report that nymphs of Mellanoplus mexicanus and Camnula ppllucida stop their march even when the sun is obscured by a small passing cloud. This is due, apparently, to the sudden change in the intensity of light or to the drop in temperature. In the cases of nocturnal Lepidoptera, eloudiness increases the number of insects coming to light, but this is probably due to the increase in air humidity catsed by cloudiness (62). The activity of honeybees during cloudy intervals on sunny days is lowered. One bee visits on the average from six to nine flowers in a minute when the sun shines, and only five or six when there are clouds. The actual cause of this difference remains unknown (78).
The beautiful underwing moths of the genus Catocala remain in the deep woods, at the bases of trees or under an overhanging bank of a stream, during hot sunny days. They prefer these dark, wooded places where they are hidden from direct sunlight, and remain there quiet and motionless unless disturbed. During a very cloudy day, however, they become restless and may be seen flying sbout in the
woods from tree to tree and even flying out into the open spaces. Mosquitoes usually become more active on a cloudy day.

Clouds have a direct relation to sudden changes in air temperature, causing strong air currents, eddies, and gustiness. Clouds are associated with vertical convection, resulting from the local application of heat, and the consequent forming of strong horizontal temperature variations, which may often be observed in the rapid boiling and rolling motions of the upper portions of large cumulus clouds. These conditions were frequently met with when flying on days when the sky was partly cloudy, the air usually being rough because of these strong vertical convectional currents of air, and the plane was sometimes difficult to control.

For every flight made, both day and night, the cloud condition was recorded. When the sky had a few scattering clouds or was less than three-tenths covered, this was considered as a clear day, as these few clouds could have no effect on insect activity. When the sky was from four- to seven-tenths covered with clouds, this was considered as partly cloudy; beyond this the sky was recorded as very cloudy or overcast.

The greatest numbers of insects were taken on days and nights when the sky was partly cloudy. For the day collections the difference was small between sunny and partly cloudy days, but there appeared to be a tendency for more insects to be found on partly cloudy days. On days when the sky was overcast there was usually an appreciable drop in the numbers of insects taken. At night nearly twice as many insects were collected on partly cloudy nights as on clear nights; more insects were also collected on nights when the sky was overcast than on clear nights.

The orders of insects showed some relation, in the numbers taken, to cloud conditions. Homoptera, in general, indicated only a slight relation to the degree of cloudiness in the daytime. At 20 feet more specimens were collected on partly cloudy days, hut at 1,000 feet more were taken on clear days.

Heteroptera were collected at 200 feet in greatest numbers on partly cloudy days, with fewest when the sky was overcast. For the altitudes above 200 feet for the day collection the differences were not appreciable. At night, however, the numbers taken were fewest on clear nights, increasing to their maximum on very cloudy nights.

More Coleoptera were taken at 200 feet on clear days, the numbers gradually dropping off as the sky increased in cloudiness.

So few Lepidoptera were taken in the day flights that no comparisons are possible. At night more than twice as many specimens were found on partly cloudy nights ns on clear or overcast nights.

Diptera and Hymenoptera did not show a very definite relationship to cloudiness in general, although more were taken on partly cloudy days.

Spiders were collected in considerably greater numbers on clear dnys. This may be owing to the decrease in humidity in the air, for when it is partly cloudy and overcast the relative humidity is generally greater, and thus moisture would collect on the gossamer webs, making them less buoyant.

Doubtless the reason that a more definite relationship between the number of insects taken in the upper air and the cloud conditions was not evident is that when the flights were made the sky may have been
from four- to six-tenths cloudy, but not immediately over the territory where the plane flew, or vice versa. The sky may have become cloudy within at very short time, or the sky may have been partly cloudy, or almost overcast, when the plane left the ground, but clear before the end of the flight. Accordingly the collections were subject to these rariations in cloud conditions.

PRECIPITATION

Precipitation had a definite effect on the numbers and species of insects found in the upper air. It is sciurcely possible to estimate the effects of excessive rainfall on the numbers of insects by exact observation; yet when a period of drought is followed by sudden rains, one is able to observe an increase in the insect population. Excessive rainfall checks the llight of many insects, reduces their progeny, especially of subterrancan species, by drowning, or causes fungus growths on many insects such as aphids. Hunter and lierce (97, p. 118) found that th moderately cold winter, with temperatures frequently near the fatnl zone, and excessive precipitation, is yery unfavorable for the boll weeril, but that a winter with little precipitation and a temperature within the zone of fatal temperatures is much more unfarorable. Frequent rains late in the spring and in summer are conducive to an increase in the boll weceil population.
On the other hand, deficient winfull checks aquatic insects, and the lack of rain kills food plants, making it diffeult for larvae or nymphs to mature. A long period of drought causes the ground to become dry, making it dificult for ground insects to emerge through the hard soil, or grently delaying the emergence of certain species. But if this is followed by a suddern rain, the insects in the soil often emerge in great swarms. J. C. Bridwell has stated that in various excessively arid regions, such, for instiance. as the Kalihari Desert of west-central South Africn, the normal dry condition is interrupted at intervals of perhaps 10 years by seasons of excessive rainfall. With such wet seasons there appear in wast mumbers the strange insects peculiar to that region but not apparent during the long intervening dry period. Similar mass emergence of dormant drought-senled insects has been noted in various arid regions, and sometimes in the Somoran region of the United States.

On various ocrasions the effects of drought, excessive precipitation, or sudden rains were observed while insects were being collected by airplane. A few exmples are given to represent these conditions.

In April 1930 less than one-half inch of rain fell, and there was no rain of any importance until May 7 , when one-half inch was recorled. On this day insects increased greatly in mumbers in the upper-air collectious, awraging 58 insects per flight, with a maximum of 79 insects in one flight. The families Aphifidae and Psyllidae predominated in the collections. During Muy the precipitation amounted to nearly 10 inches, and insects were taken in greater mumbers than in any other month of the year.
During June 1930 no rain was recorded. On the morning of Juty 2 the first rain fell. Tnseets berame exeedingly abundant immediately after this first light rain. Seven flights were made on this day, with an average catch of 35 insects per flight and a maximum of 83 specimens in one flight. Ants appeared in swarms in the air, and 76 ants were collected up to 3,000 feet, including specimens of Monomorium
minimum, Crematogaster sp., Solenopsis xyloni, and Aphaenogaster sp. Aphids and thrips were also abundant. Very little rain fell in July, and scarcely enough in August, September, and October to relieve the drought. Then from Novernber 11 to 14 more than 2 inches of rain fell, ending at noon on November 14. The sky became clear and the afternoon was very wamn and sunny. Insects were unusually numerous in the air. A fight was made between 1:40 and $3: 08 \mathrm{p} . \mathrm{m}$., at the altitudes of 200 to 5,000 feet, and 189 insects were taken. This was the largest number of specimens collected on aby single day flight. The predominating insects taken belonged to the families Cicadellidae, Psyllidae, Chrysomelidae, and Carabidae, and thers were 23 specimens of ants, winged males of Crematogaster sp.

During September 1031 and up to October 16 there was scarcely any precipitation, and few insects were taken in the fights made during the daytime. On the morning of October 16 nearly 1 inch of rain fell. A flight was made in the afternoon, on which 136 insects were taken at altitudes of from 200 to 5,000 feet, with 31 specimens at 3,000 feet. This was the second largest number of specimens taken on any light. The insects belonged mostly to the families Cicadellidae, Psyllidae, Mycetophilidae, Eulophidae, and Pteromalidae. Many spiders were also taken up to 3,000 feet.

Many other examples might be given to illustrate the effect of precipitation as a controlling factor in the increase or decrease of numbers of insects in the upper air. During the months when precipitation was excessive and temperatures low, however, insects dropped off to $\frac{1}{}$ muinumu.

ELECTRICAL STATE OF THE ATMOSPHERE

On the approach of a thumderstorm insects are unusually active. Dragonflies have been seen in great abundance just before thunderstorms. Collectors of moths in Europe are also in general agreement that on heary, still nights, with thunder in the air, moths are much more active and numerous than at other times. Certain insects migrate just before or immediately after thunderstorms.

The movements of air currents in and preceding a thunderstorm are often very mapid, with the wind blowing outward in front of and is the general direction of the travel of the storm. Descending currents in a thunderstorm may stir up insects to a considerable degree.

Kestner (40) observed that in man a nervous depression is usually found during a decline of the barometer on sultry days preceding thunderstorms. He raises the question about the possible existence of substances in the higher air levels, formed by the radiation of the sun and driven down by the descending air currents, which may be responsible for lower blood pressure in man and cause his depressed feeling. What effect such a condition would have on insects has never been determined, little being known regarding this subject.

It has been suggested that the incrense in numbers of nocturnal insects flying before a thunderstorm is due to the electric state of the atmosphere, or to some meteorological factor such as pressure or humidity. That the ozonization of the atmosphere during a thunderstorm causes insects to remain inactive for a long time afier the storm, ouring to the stupor produced by the ozone, has been held by Gourdon (27). Ozone is present in only very small quantities in the lower atmosphere, since in the presence of moisture at ordinary temperatares 107703-39--9
ozone soon reverts to ordinary oxygen. Ozone is present in the stratosphere, since the extreme ultraviolet radiation, such as there is every reason to believe is emitted by the sun, in passing through cold dry oxygen converts mish of it into ozone; and it has long appeared exceedingly probable that this substance must exist in appreciable quantities in the outer air (35,p.88). The peculiar odor often noted after a storm is not that of ozone, but is due to nitrogen peroxide according to Humphreys. The quantity of ozone in the atmosphere is extremely small, usually 1 part in $1,000,000$, and there is much more during the winter than during the summer (52, p. 13),

Since ozone is practically absent in the lower atmosphere and since its amount is greater in winter than in summer, ozone could bear no relation to the behavior of insects.

Only a few flights were made at times when thunderstorms were appronching, since flying conditions were unfavorable, in fact it was dangerous to fly. The air was never smooth on the surface, and was slightly rough to rough at all altitudes. Observations were made on these occasions to determine what effect lightning and thunder might have on the activity of insects in the air. It was found that the numbers of insects collected under such conditions were usually above the average. Insects were taken at all altitudes, from 200 to 5,000 feet. Those especially abundant were aphids and leafhoppers. Among the Colcoptera, staplyylinids were noticeably abundant.

It would be difficult to detemme what eflect liglitning and thunder have in the activity of insects. It is doubtful whether there is any direct relation between the numbers of insects taken in the upper air and the electric state of the atmosphere when thunderstorms are imminent, since other conditions, as wind, humidity, barometric pressure, and tempernture, disturb insects.

EFFECTS OF THE MISSISSIPPI RIVER FLOOD OF 1927 ON THE INSECT POPULATION OF THE AIR

The extensive and destructive floods in the Mississippi Valley during the spring and summer of 1927 are well remembered. The flooded area included an almost contintuous strip in some places 30 miles in width along the Mississippi River renching from New Madrid, Mo., to the Gulf of Mexico.

The flood at Talluloh, was caused by the breaking of Cabin Teal levce some 8 miles northeast of the town, on $\mathrm{May} \dot{3}, 192 \overline{6}$, and the water covered the territory in and about Tallulah to a depth of from 1 to 15 feet (pl.5, B). A part of the country opposite Tallulah on the Mississippi side of the river was not flooled, since the land is much higher, especially at Vicksturg. On the Louisiana side there was considerable teritory nt Lake Providence, 28 miles north of Tallulah, which was not overflowed. Most of the water had receded by A ugust 1 , although the dowlands and swamps were covered for severnl months longer.

It is of importance to know what effect these flood conditions had on the insect life within the territory covered with water. One of the most conspicuons cflects was the migration of vast numbers of ants. Trees, shmbbery, and aven louses that protruded above the rushing currents of water formed places of rofuge for ants. Often the ants, bringing along their eggs, formed in a ball at the top of a plant, only to be destroyed as the waters waslied them away.

Practically everything in the path of the overflow was directly or indirectly affected. Considerable vegetation was destroyed, and much of it was covered with water for several months. Probably the majority of the adult winged insects escaped, but may species were prevented from feeding or depositing their eggs, and immature stages undoubtedly were killed, especially those forms near the ground.

Many species became more abundant after the overflow, probably because of the destruction of their parasitic and predacious enemies. It has been observed by Coad (12) that certain insects became abnormally abundant and injurious, and that in some cases this increase in numbers and abnormal injury was noticed almost immedintely after the water receded, while in others the effect was slower and lasted for several years. The larvae of the fall armyworm (Laphygna frugiperda) and the bollworm (Heliothis obsoleta) were exceedingly abundant and caused considerable damage, becoming injurious immediately after the water receded.

Other insects which were formerly injurious, such as the cotton aphid (Aphis gossypii) and the cotton flea hopper (1 'sallus seriutus), were afterward extremely scarce. The cotton aphid was scarce especially during 1928 . The widd host plants of the cotton flea hopper were killed, and until these phants were agnin established this cotton pest did negligible damage.

The boll weeril was practically destroyed in the flooded aren, but on small patches of isolated cotton on protected places or high ridges the boll weevils found refuge, and those places served as nuclei of reinfestation. The flood had wo eflect on the cotton leaf worm, since this insect migrates into the cotton territory.

A number of flights were made over a nonffooded mea at Mansfiedd, La., about 165 miles west of Tallulah. This territory was not comparable with that of Tallulah, as it land a somewhat different type of vegetation. It had been quite dry there during the summer and insects were accordingly senree.

For an exact comparison seven flights each were made over the flooded and nonflooded territory at Tallulah during September 1927: The flooded territory consisted of an area adjacent to the A :ississippi River and was comparatively narrow. It was therefore possible for great numbers of native insects to escape the rushing waters.

At the altitude of 200 feet over eight times as many insects were taken over the nonflooded area as were colliected over the flooded territory. At altitudes of 1,000 to $\overline{5}, 000$ feet, however, the usually expected numbers were collected. Over the flooded area eight times as many insects were taken at 1,000 feet as at 200 [eet. This definitely shows a drift in of insects from nonflooded region.

The insects represented in the collections at 200 fert over the flooded area were mostly those of the families Chloropidae, Dolichopodidae, and Ceratopogonidar of the Diptera, A very few lenfloppers and plant lice were also taken.

The collections made over the territory which had not been flooded showed a definite inerease in the numbers of families and specios taken. Many more leafhoppers were collected and iarger specios of Diptera were represented. Microlepidoptern, parasitie IIymenoptera, Staphylinidae, and a few Heteroptera wree also taken.

In tho flights made over the flooded area in the following October, the mumbers taken greatly incrensed at the 200-foot altitude.

As the water receded, vegetation grew again, and the difference in the collections became less noticeable in both numbers and species taken over these localities.

SEEDS COLLECTED IN THE UPPER AIR

Numbers of seeds were caught on the collecting screens. Unfortunataly theso were saved only during the lasti year (1931) of collecting, and accordingly the collection is rather small. It shows, however, the comparative sizes of the fow species of seods represented and the height at which they were found. A list of the seeds caught on the screens and the altitude at which they were drifting is given in table 15.

Tsble 15.-Ptant seeds caught by the collecting screens and the allitude at which found, Talluloh, La., 19.51

The seeds of Populus sp. were taken in June; Paspalum dilatatum, P. urillei, and P. pubiflorum, from July to October; and the seads of Erigeron sp. were collected throughout the year. The height to which seeds of Populut sp. were taken is, of course, to be attributed to their light weight, and their "parachute" attachment in the shape of a pappus. Seeds are subject to much the same conditions as insects, in so far as their size, weight, and buoymay are concorned.
The late A. S. Hitchcock of the Bureau of Plant Industry, who identified the seeds of the grasses, considered the hist to be anthor surprising. He added:
One would expect to find flufy keeds like those of Andropogon virginicus. The two species of Paspalum, P. dilututum and P. urville, are ciliate-margined, but are rather heavy for stuch high flights. The abundane of P. urviltei is noteworlly. This is an introdheced species common in some incalities of Louisiana and adjacent States, but not widely disisibuted. That the seeds were all pathered in the region of Tallunh would be if fact coordinated with the presence of Paspalums urvillei there.
P. urrillei is a native of Brazil, Uruguay, and Argortina, having veen introduced into the United States some 40 years ago. This species was collected at altitudes of 200 to 5,000 feet.

Most of the seeds wore taken when the upper air was slightly rough to rough and when convection currents were rather strong. For
example, on September 29, 1931, the air was from slightiy rough to rough, and seeds of Paspalum urvillei and P. dilatatum were taken at all altitudes up to 5,000 feet.

Plants, like insects, have become established in remote islauds of the sea and in continents far distant from their original homes. Seeds are transported by birds and by water, but the majority are probably carried in the upper air currents by the prevailing winds.

COLLECTION OF INSECTS IN MEXICO

In August 1928 a trip was made to Mexico under the direction of B. R. Coad, and F. A. Fenton, formerly of the Bureau of Entomology, to investigate the possibility of the migration of the pink bollworm by flight. Two airplanes, equipped with insect traps, were flown from Tallulah via El Paso, Tex. After a week at El Paso, and at Juarez, Mexico, in making the necessary customs arrangements to transfer the planes and equiproent across the border, the planes landed in Tlahualiio, Durango, Mexico, on August 22, 1928. The pilots were accompanied by Lieut. Eduard Aldorsoro, Mexican escort pilot, and, through the courtesy of the Mexican Government Manuel Alcazar accompanied this entomological expedition as interpreter and official representative.

The territory in which the fights and studies were made is situated some 500 miles southeast of EI Paso and 200 miles south of the Big Bend section of Texas. The headquarters for this investigation were established on the hacienda of the Tlahualilo Agricultural \& Colonization Co., situated in the Laguna district of Durango and Coahuila. The Laguna district was ideally located for the study of pink bollworm migration flights, since it is a desert reclaimed by irrigation and completely surrounded by barren desert and equally barren mountains. Vegetation other than that grown by means of irrigation and cultivation is scarce. Cotton is the principal crop and normally 75,000 to 100,000 bales are produced annually. The pink bollworm has been present in this section since 1911, and the infestation and damage here are the highest on the North American Continent.

It had been found that the fluctuations in the infestations of the pink bollworm in the Big Bend section of Texas were in proportion to the increase or decrease of infestation in the Laguna district, and it had been suggested that the moths from the Laguna district flew with the aid of the prevailing winds to the Big Bend section. In order to test the possibility of this source of infestation, a series of airplane flights were made over the Laguna district to determine whether any pink bollworm moths were actually present in the upper air.
Forty-four fights were made between August 27 and September 17, 1928, at altitudes from near the surface to the height of 4,000 feet. No night flying was done except on a few occasions when the plane landed late in the evening. Thirty-one hours and twenty minutes were used in the actual collecting, in which time 1,294 insects were taken. Ten orders of insects were represented, including Ephemeroptera, Odonata, Thysanoptera, Heteroptera, Homoptera, Coleoptera, Neuroptera, Lepidoptera, Hymenoptera, and Diptera (table 16).

Table 16.-Insects collected by airplane in Tlahualilo, Durango, Mexico, in August and September 1988, according to altitudes

Order, family, genus, and species	$\left\|\begin{array}{c} \text { Total } \\ \text { in- } \\ \text { sects } \\ \text { tothen } \end{array}\right\|$	Collocted at altitudes of-						
		$\underset{\text { feet }}{20}$	$\begin{aligned} & 100 \\ & \text { feet } \end{aligned}$	fect	$\begin{gathered} 1,000 \\ \text { feet } \end{gathered}$	$\begin{gathered} 2,000 \\ \text { feet } \end{gathered}$	$\begin{aligned} & 3,000 \\ & \text { feet } \end{aligned}$	4,000
Ephemeroptere: Baetidne: Clocen sp	Num-ber122415	$\underset{1}{\mathrm{Num}} \underset{\substack{\text { ber } \\ \hline}}{ }$	$\begin{gathered} N u m- \\ b e r \end{gathered}$	$\begin{gathered} \text { Num- } \\ \text { ber } \end{gathered}$	Num-	Numi-	Num	NLEM
Odonata: Undetermincd species of the suborder Anisoplera. Thysanoptera: A eolothripidae: Stomatothrips favus Hood. Thripidas: Heltothrips phaseola Hood					2			
		-----1	4	- \quad 2	2 1 3	2	2	1
Eeteropters:								
Amptest	2	1	1					
Pentatomidae:								
Alecidea ionoula Stal	1	1						
Coreidae: Auftits impressicol/ts Stâl.	3	2	1					
Neididae:	1							
Aknisus multispinus (Ashmend)		1						
I.ygacidae: Nysius calforvicus Stal								
Nystus ericae (schillhg)	17	1	${ }_{6}^{2}$	b		1	1	
Yeracus pietjus Stal ---	$\frac{1}{1}$							
Explochiomera fusicornis (Stal) ..-------------		1						
Tingididne: Piesma cinerea (Say)								
Corylhuchasp..	1	--...	1					
Gargaphia iridescens Ohamplon	5		3	1		1		
Mitidue:		\cdots						
Trigonotpus breviceps Jakowler	11	$\begin{aligned} & 3 \\ & 2 \end{aligned}$	3	3	2			
Trigonotylus breuliceps Jakowlef (y ympts)	8		4	2				
Adelphocoris rapidus (Say)	12	-	2	2	1			
Plapionathue sp.		1						
Chlamydatus sp.	6			i	1	i		
Leucopoecila atbofastiata Reutor	1		${ }_{1}^{2}$					
Miridne (undetermined nymph	1						1	
Miridae (undetermined adults)		3	2	2				
Total.	85	27	20	18	0	3	2	
Eomoptera:								
Membracidne:	1							
Stictocephala festina (Say)				1				
Cicrdella hieroglyphica (Ssy)	17			1				
Drttculacephata sp................................					i			
Carneocephata nuda Nottingham.-............	17	-	2	B	1			
Xeatocephatus puticarius Van Duzee--.......				5				1
Platumetopius acutus (Say)--..................			4	1	1			
Deltorephatus sp.....	1044	3 1	1	1	1		1	
Exitiants obscurinervis (Stal).			1	,	1		1	
Phicpsiza sp-.........	4					1		
Actnopterus anoutatus	1	\cdots	1					
A facrostetes divisus (0)iner).		1	1	1				
Nesesteles neglcetus (DeLong and Davidson).	12	5	4	2	1			
Nesosteies spm......		1						
Erththoneura spr-	10				1			
Cfeadellidae, (undetermined adilts).		61	2		1	4	4	
Fulsordellidae, (undetermined nymphs).....--	10		2	1				
Fulgoridas: Olayius aridus Ball.			3					
	10			$\frac{1}{2}$				
Delphacedes consimitis (Van Disce)-.........-	4	1						
Detpharodes sp	1			1				
JIeteroprylla texana Crawford.	$\begin{array}{r} 2 \\ 18 \\ 102 \\ 2 \\ 1 \end{array}$	1						
Triozimae, undetermined sp.								
Paratrioza cockerelli (Sute).		9	23	17	20	23	0	1
Paratitoza sp						1		
Trioza SP.		1						
Total.	250	55	54	51	35	36	15	6

Table 16.-Insecls collected by aitplane in Tlahualilo, Durango, Mexico, in August and September 1928, according to altitudes-Continued

Table 16.-Insects collected by airplane in Tlahualilo, Durango, Mexico, in August and September 1928, according to altitudes-Continued

Order, family, genus, and species

Hymenontera:
 Argidae:

Šertetiphora (Leston) zabriskiei Webster and Majly (females)
Seerictiphora (Letton) zabriakie! Webster and Mally (msle)
Braconidaé;
Microbracon nuperut (Cresson)
Mfictobracon sp
Chelonus albobasilaris Ashmend
Chelonus Sp.
Apanteles sp.
Bassus sp.
Euphoriana uniformes Gahar
Vipio sp.
Bracondae, undetermined sp
Ichneumonidae:
Mesochorus sp.
Eceilonidae:
Telenomut Sp-
Geellonidae, undetermined sp
Platygasteridae:
Plattyaster Sp
Cynupide:
Cynipldae, andetermined sp
Callmonidue:
Microdontomerus sp
Chalcididas:
Chalcididae, undetermined sp
Spllochateis sp
Eurytomidae:
Rileya sp .
Eurytoma sp
Encyrtidse:
Bothriathorar sp
Pteromaljdee:
Cyrtogaster sp
Zatropis sp-
Ptoromalidue, undetermined sp
Eulophidae:
Tetrastichus sp.
Eulophidae, undetermined sp.
Tiphijdae:
Tiphia sp
Formictdae:
Ponera 5p. (males)
Ponera sp. (females)
Monomoriums.
Bethylidae:
Bethylideo, undetermined sp
Sphecidse:
Trypazyton carinfrone Fox (femalo)
Andrenidae:
IJalicius ligatus Say (female).
Jalichus pseudotegularis Coekerell (females)
Fratictus preinosiformis Crawlord
Hatictus (Chtorilictus) Sp.
Spherodes $5 p$.
Mellisodes pallidfinata Cockerell
Andrenldte, undetermined sp.
Apidne:
Apis mellifera LInnaeus.
Apoldea, undeterminetl sp
Total.
Diptera:
Culicida日:
Sayomyia sp.
Chironomitae:
Cuticoides sp.
Chifonomus sp.

Cecldomyitdas:
Cenldomyididae, undetermined sp

Table 16.-Insects collected by airplane in Tlahualilo, Durango, Mexico, in August and September 1928, according to allitudes-Continued

The Thysanoptera comprised four of Stomatothrips flavus Hood and 15 of Heliothrips phaseola Hood. Both species were collected at altitudes up to 4,000 feet.

There were 85 Heteroptera taken, representing 7 families, 16 genera, and 13 determined species. They were found at altitudes up to 3,000 feet. The species taken were of more or less general distribution.

The Homoptera comprised 250 specimens of 4 families, Membracidae, Cicadellidae, Fulgoridae, and Psylidac; 19 genera; and 14 determined species.

There were 136 Coleoptera found representing 15 families, 31 genera, and 9 determined species. One striped cucumber beetle (Diabrotica vittata) was taken at 1,000 feet and six tobacco flea beetles (Epitrix paruula) were found at altitudes of from 20 to 3,000 feet. Twelve Acanthoscelides prosopis (Lec.) (Mylabridae) were found at altitudes of 20 to 2,000 feet. This beetle is destructive to seeds of mesquite, both in Mexico and in the United States.

The Lepidoptera were represented by 18 specimens, including 8 families and 3 determined species. Seven specimens of the pink bellworm moth (Pectinophora gossypiella (Saund.)) were taken; four at 20 feet, one at 100 feet, one at 1,000 feet, and one at 3,000 feet.

There were 104 specimens of Hymenoptera found, including 18 families and 10 determined species. One Euphoriana uniformis Gahan was taken at 1,000 feet. This braconid is recorded in the United States National Museum collections from nymphs and adults of Lygus pratensis.

The Diptera comprised 274 specimens, representing 23 families, 33 genera, and 14 determined species. There were 79 specimens of Chironomidae taken. Owing to the extensive irrigation system the chironomids found breeding places. Five horn flies (Haematobia irritans L .) were taken at altitudes up to 2,000 feet. This lly was especially troublesome to the cattle and was abundant everywhere. One fly especially abundant in the collections was Trypanea bisetosa (Coq.) (Trypetidae), of which 74 specimens were taken, some at all altitudes flown.

As a whole the families and species represented in the upper-aircollections in Mexico were found to be much the same as those taken at Tallulah. There were, however, some decided differences in the numbers of specimens taken with reference to altitude and time of day. As was stated, the Laguna district is surounded by mowntains and a desert region, and the insects collected were those which for the most part came directly from this district.

In order to make a more definite study of the insect population of the upper air, the flights were divided into the following four divisions: Flights made at daybreak, in the morning, in the afternoon, and at sunset. The collections made at daybreal showed a very heavy population at the lower altitudes, with a decided decrease at altitudes above 500 feet.
The morning flights, made between S a. m . and noon, showed a decrease in the numbers taken at 20 and 100 feet, but for altitudes above 100 feet the numbers increased gratly, with nearly twice the number taken at 500 feet as at 20 feet, and more were taken at 1,000 feet than at 20 feet.

In the afternoon the numbers of insects taken dropped off appreciably for all the altitudes.

At sunset the greatest numbers of insects collected during the day were taken at 20 feet. Insects were scarce at 500 and 1,000 feet, and no specimens were collected above 1,000 feet.

Early in the morning or at daybreak, when the insects were very active, especially at the lower altitudes, the average temperature was $67^{\circ} \mathrm{F}$., and convection had ceased. Later in the morning convection began, and the temperature increased to an average of 79°, the air becoming turbulent. The insects found close to the ground were carried upward, showing a great increase in the upper air at altitudes of 500 feet and above. Convection was decidedly strong during the morning hours, and made flying difficult and hazardous at the very low altitudes. In the afternoon convection was not so strong, the temperature rising to 84° on an average, and the numbers of insects decreasing rapidly, especinlly at the higher altitudes. At sundown there were almost no insects at the high altitudes, but there was a concentration of insects near the surface, when nocturnal insects became active. These changes in the insect population of the upper air were presented day after day with remarkable regularity. In the airplane collections, two pink bollworm moths were taken at 20 and 100 feet, respectively, at daybreak; two were found in the moming collections at 1,000 and 3,000 feet, respectively; and threc specimens were taken at 20 feet at sunset. These few specimens were collected at daybreak and sunset close to the ground, in the absence of convection, and at high altitudes in the morning when convection is greatest.

In this section of Mexico the prevailing winds are from the south or southeast, and any strong ground wind will also be from that. direction. Regardless of the direction of the ground wind the airplane at 1,000 feet would always encounter winds from tho south or southeast, becoming very strong at the altitude of 3,000 feet. This same wind was encountered as a strong head wind by the pilots when flying to Tlahualilo, although it greatly aided the return flight. Thus it can be seen that insects caught up by the violent convectional currents of the morning to the heights of 3,000 and 4,000 feet will be caught in tbe horizontal wind currents.

It was also found, when collecting north or west of the Tlahuabiloproperty, either at the edge of the cultivated area or over the desert, that insects were as aboudant in the upper air as they were found to be directly over the irrigated area, although, of course, there was no surh concentration of insects close to the ground as was found over the cultivated area. When flying east of the extreme southern area of the Laguna, however, where the prevailing wind was out of the desert few insects were taken at the higher altitudes. This is in contrast to the conditions in Louisiana, where insects are abundant in all directions within the area flown. In the Lagun few insects were found above 3,000 feet, whereas at Tallulah insects continued to be taken up to the height of 14,000 feet, and no doubt many of those found in the upper air directly over Tallulah had been brought in from distant localities.

The flights made at Thanualilo, and all other observations (41, 47, 54), bear out the idea that flight with the aid of air currents has been a dominant factor in the distribution of the pink bollworm in the United States.

SOURCES OF INSECTS AND ROUTES OF MIGRATION

One of the difficult things comected with a study of insects collected at some distance above the ground is the determination of the probable sources of the insects. Those taken at altitudes above 10,000 feet may have been in the air for days, carried in the prevailing winds and strong air currents from places hundreds of miles away. The record of a collembolan Entomobyra cubensis Fols., taken at 3,000 feet, known only from Cuba, points to evidence of insects carried by air currents from distant points. However, where the territory over which flights are made is of a more or less homogencous nature it is impossible to determine whetler the specimens taken in any flight have had their origin in the territory immediately beneath or whether they have been carried in for great distances by winds. There are fortunately certain areas in the United States where such studies might well be carried on. The insect fama of irrigated lands with their imported plants are usually accompanied by no inconsiderable populations of the pests and insects associated with those plants. These insects are often actual immigrants into the area and differ markedly from the native desert fauna of insects. Studies in such areas, then, both inside the cultivated area and outside it, to find the extent of movement of desert forms into, and emigrant forms out of, the irrigated area might be of marked value.

A project which should yield information of interest as well as of economic importance on this subject is the tracing of the flight of the cotton leaf worm moth (Alabama argillacea). It is known that argillacea does not overwinter in this country and that the moths migrate each season from the countries to the south, but no serious attempt has ever been made to find the actual source of infestation or to trace the routes of flight taken. Airplane collecting flights made daring the probable time of migration would be of special interest. These flights should be made along the Gulf coast with the chance of collecting any moths in flight from the Tropics. Flights should be made along the constal region of Central America and in the Caribbean Sea between the West Indies and the northern coast line of South America. Not only could important records of the fight of the cotton leaf worm moth be taken but also records of other tropical economic insects such as the Mediterranean fruitfly, Mexican fruitfy, and pink bollworm moth.

In further studies of the flight and migration of insects in general it would be of considerable interest to collect insects in the upper air over bodies of water hundreds or thousands of miles from shore. When transocennic air-passenger routes are established and regular schedules flown from continent to continent, an excellent opportunity to make these collections may be offered.

Workers in other fields of science have become much interested in the study of upper air zones. On November 12, 1937, a group of scientists met under the auspices of the National Rescarch Councl to consider these matters. Trom this meeting there resulted a committee on aerobiolugy. It is hoped that this meeting marks the begiming of an important step in the advancement of research in the study of aerini dissemination of micro-organisms, viruses (insect transmitted), pollen, insects, and other objects. The National Research Council interdivisional committee on nerobiology hopes to establish a central laboratory which will assist in the fieds of human, veterinary, and
plant pathology, industrial mycology, economic entomology, plant breeding, and meteorology.

Fred C. Meier, senior scientist, Division of Cooperative Extension, Extension Service, United States Department of Agriculture, was appointed chairman of this committee. Meier's work in collecting spores and micro-organisms with the cooperation of Charles \AA. Lindbergh and Albert W. Stevens, of the stratosphere flights, was outstanding and fitted him most advantageously for directing the activities. in this new field of research. ${ }^{\text {s }}$

AIRCRAFT AS INSECT CARRIERS

With the great numbers of airplanes in use throughout the civilized world, numerous ways are offered for insects to find shelter in the cockpit, fuselage, or cabin of an airplane.

Quarantine stations have been established for a number of years at the international airports in the United States under the direction of the Bureau of Entomology and Plant Quarantine, cooperating with the Customs Bureau and the Public Health Service of the United States Treasury Department. During the fiscal year 1935, 3,150 airplanes arriving from foreign countries and from Hawaif were inspected (71). A total of 916 interceptions of prohibited and restricted plant material were taken from airplanes.
Immediately after a passenger airlmer arrives, the passengers' baggage and the express are unloaded, and inspectors search for quarantined materinl, and at some ports clean the airplane with a light portable machine, very much like a vacuum cleaner, to get any insects that might be in the dark corners or around the window jambs.
During the 5 years of collecting insects in the upper air there were many times when insects were found in the cockpit or cabin of the airplane used. This was particularly noticeable during the spring and early fall months when insects were at their maximum abundance. Insects would fly into the lighted hangar at night and would often fall in to the cockpit undernenth the lights. The next morning, when the airplane was taken out and flown, many of these insects still remained in the cockpit or back in the rear fuselage. Often, when the airplane was ligh in the air, and at a considerable distance from the landing field, these insects would be seen flying out of the cockpit.

To have kept a collection of the insects found in the cockpits and cabins of the several airplanes used would have been a haborious undertoking. Often numerous microlepidoptera, Noctuidne, even Alabama argillacea, Heliothis obsoleta, and Laphygma fruyiperda, would fly out when the motor was started, or be seen crawling in to the parts of the fuselage where the draft from the propeller could not disturb them. Many beetles, as carabids and staphylinids, were always to be found. Leafhoppers were common stowaways. Wasps were always to be feared, for often they built nests in the fuselage behind the seat; in fact, mechanics working on the planes were often annoyed by wasps as the intter flew in and out, and at one time the writer was stung on the ankle by a wasp while the airplane was flying at a 5,000 -foot altitude. It became an accepted part of the daily

[^3]routine to clean a mud dauber's nest out of the air-speed tube, which projected underneath the wing. Invariably every day a mud dauber wasp filled this small air-speed tube with mud, which if not tboroughly cleaned would interfere with the registering of the speed of the airplane.

Mosquitoes find an excellent hiding place in the dark cockpit, and unless driven out by the air blast from the propeller, or by the pilot, remain therein while the airplane is in flight.

It is not always easy for insects to fly out of the cockpit while the airplane is in flight, since the great pressure of the air when the plane is flying upward forces them down on the floor of the cockpit.

On several occasions insects flew into the airplane while it was flying. A specimen of Stictocephala festina flew into the cockpit at the altitude of 2,000 feet and one at 4,000 feet. On one flight the writer flew through a swarm of chinch bugs at 2,000 feet, and several flew into the cockpit.

With the new means for the dispersal and distribution of diseases and dangerous insect pests offered by modern air transportation, it is urgent that physicians, health officers, and medical and economic entomologists be ever ready and alert to cope with this situation.

COLLECTING INSECTS IN THE UPPER AIR

The actual work of collecting insects in the upper air in this country and abrond has been very limited. The following references given of such work are the only other ones which have come under the attention of the writer. While the data of collections made from forestlookout stations, mountnintops, and roofs of high buildings are of great interest and importance, only those collections that have been made in the free air high above the surface of the earth are given herewith.
E. P. Felt made several fights using an insect trap attached to the lower wings of an airplane. A number of insects were taken in flights on August 30 and 31, 1926. (22, 23.)

In 1927 Felt and Chmoerlain (25) used traps on various types of kites for the purpose of demonstrating possibilities of capturing insects in the upper air.

In 1931 and 1932 T. T. Terrell, of the Division of Forest Insect Investigations, of this Bureau, made collections using airplane insect traps as designed by the writer. Exposures were made as high as 13,000 feet, but without results at the very high altitudes. Diptera and Hymenoptera were taken up to 9,600 feet. The flights were made to study the flight artivities of the mountrin pine beetle (Dendroctonus moniticolac Hopk.). In 1933 the standard Weather Bureau kites were used in Montana, 7 miles southwest of Dillon, in the open plains between the Beaverhend and Madison National Forests. Eight successful kite flights were made as high as 8,000 feet above the ground. Soveral bark beetles were taken, but none of the mountain pine beetle.

Flights were made by Collins and Baker (15), of the Burenu of Entomology, at Melrose Highlands, over a section of southeastern Massachusetts that was heavily infested with the gypsy moth. In 1932 the airplane insect traps as designed by the writer, with certain modifications by Collins and Baker, were used for the flights. In 1933 a different type of airplane insect trap was used designed by

Karl O. Lange, and installed on an airplane (15, p. 325). The flights were made to study the distribution of the gypsy moth iarvae, as discussed on page 91.

In June 1932 several flights were made in Honolulu, using the airplane insect traps, with a modification to accommodate them for the type of airplane used. The flights consisted of 6 hours' flying time, and were made at elevations from 50 to 1,800 feet. No mosquitoes were taken, and the conclusion of the Honolulu health authorities was that mosquitoes do not fly over the mountains into the city of Honolulu, Obviously it is not good science to make such Ω conclusion in view of the brief time given to the work. Also the three species of mosquitoes represented in Honolulu are essentially domestic or house mosquitoes, and are not migratory species, and thus are not expected to make extensive flights or be caught in the upper air.

Lucien Berland, of the Muscum National D'Fistoric Naturelle, Paris, was the first European entomologist to have used an airplane to collect inseets in the upper air. The collections were made in 1934 with specially devised nets attached to the wings and controlled from the cockpit. Dr. Berland made many flights collecting considerable material, representing the orders Collembola, Thysanoptera, Hemiptera, Homoptera, Psocoptera, Coleoptera, Hymenoptera, and Diptera. Collembola were taken as high as $2,000 \mathrm{~m}$, and Hemiptera, Homoptera, and Dipterat at $2,500 \mathrm{mi}$. The flights were made near Paris (5,6, 7).

Jean Larribere, accoucheur è l'Hopital d'Oran, made a number of fights at Oran, Algeria (north Africa), using the Berland airplane insect nets. He collected a number of insects.

Father Le P. Poidebard used nets on airplanes to collect insects while making archateological surveys in Beymouth, Asia Minor.
J. A. Freeman of London, who was a student in Cornell University during 1937, made collections of insects in the upper air using kites. This work was done along the Great Lakes in Canada.

In Enghand Freeman worked under the direction of A. C. Hardy, of the Department of Zoology and Oceanography, University College, Hull, making a specinl study of insect drift. Nets were used on the 300 -foot masts of a large wireless station. This work was done between 1932 and 1935. Freeman also used specially eonstructed kites for collecting, whereby samples could be obtained at given altitudes.

Hardy and Milne (31) studied the drift of insects over the North Sea in 1936. They used collecting nets flown either from the masthead or kites flown from the ship. Considerable data were collected as discussed on page 110.

SUMMARY

Collecting insects in the air by means of special traps fitted to the wings of yarious types of airplanes was accomplished during the 5 -year period from August 1926 to October 1931. During this period the traps were in operation for 1,007 hours in 1,314 flights at Tallulah, La., and 44 flights at Tlahualilo, Durango, Mexico.

There were 30,033 specimens of insects and spiders taken at altitudes ranging from 20 to 15,000 feet. Specimens were taken in every month of the year. They were caught most abundantly in May, per

10 minutes of flying time, and in fewest numbers in January and December.

Eighteen orders of insects and the orders of spiders and mites were collected. There were represented in the Louisiana collections, 216 families, 824 genera, 4 new genera, 700 species, and 24 new species. The order Diptera was the most abundant order in the air, and nearly three times as many specimens were taken as of any other order. Coleoptera followed next after Diptera in the numbers taken.

Homoptera and Hymenoptera were taken at 14,000 fect, the highest altitude at which insects were found. The highest altitude at which any specimen was taken was 15,000 feet, at which a spider was caught.

The numbers of insects taken at different altitudes in 10 minutes of collecting in the daytime were as follows: At 200 feet, 13.03 specimens; 1,000 feet, $4.70 ; 2,000$ feet, $2.41 ; 3,000$ feet, 1.35 ; and 5,000 feet, 0.64 specimens. For the night collections the figures are: At 500 feet, 15.31 specimens; 1,000 fect, $5.73 ; 2,000$ feet, $2.52 ; 3,000$ feet, 1.11 ; and 5,000 feet, 0.89 specimens.

Of the Araneida, 1,461 specimens were taken, chiefly in November and up to 15,000 fect altitude. The Heteroptern were taken up to 11,000 feet, with the grentest number in October, 1,259 in all being captured. There were 3,934 Homoptera caught, chiefly in November and as high as 14,000 feet. The Coleoptera were most abundant in March, and 4,420 were caught, the greatest altitude at which any were taken being 12,000 feet. The Hymenoptera and Diptera were most abundant in May and both were taken as high as 14,000 feet, and 2,947 Iymenoptera and 11,304 Diptera were taken during the airplane flights.

The size, weight, and buoyancy of an insect contributes directly to the height to which it may be carried by air currents. Of the Fomoptera, numbers of the small species of Cicadellielae, Fulgoridae, Psyllidac, and Aphidae were taken up to 14,000 feet. These are weaker fliers of small size but of comparatively large wing expanse. Many species of the other orders represented at high altitudes were also small inscets

Numbers of adults, nymphs, and larvae of wingless forms of insects and mites were collected in the upper air at altitudes as high as 14,000 feet and a spider at 15,000 feet. These wingless forms are all at the complete morey of the upper air currents.

There is much evidence to support the conclusion that many of the insects taken in the upper air were alive at the time they were collected. Many specimens were alive when removed from the screens. Among the most interesting of these was one mosquito, dedes verans, and a cicadellid, Graphocephala rersuta, taken alive at 5,000 feet; a corcinellid, Coleomeghlla floridana, at 6,000 Sect; an aphid at 7,000 feet; and a small demestid larva, Trogoderma sp., at 9,000 feet.

The relative distribution and nbundance of insects in the air depend on the weather conditions preceding and at the time of observation.

Temperature was undoubteally the most important factor regulating the numbers of insects to be found in the air at any given time. The optimum range was from 75° to $79^{\circ} \mathrm{F}$., surface temperature. Dew point and rapor pressure were found to be more convenient criteria than relative hamidity or absolute hamidity for expressing the rela-
tion of moisture in the air to the number of insects collected. Most insects were collected when the surface dew point was from 60° to 64°. Spiders were taken in greater numbers at the lower dew points of 35° to 39°.

The numbers of insects taken followed closely the differences in the surface vapor pressure. The apparent vapor-pressure effect is undoubtedly not due to vapor pressure itself, but to the temperature effect upon the insects, which varies to a definite degree with and in the same direction as does in general its effect upon vapor pressure.

Barometric pressure showed some possible refation to the numbers of insects in the upper air. More insects were taken at pressures of 29.85 to 29.89 inches, the numbers collected decreasing with variation therefrom. Spiders were collected mostly at the high barometric pressure of 30.30 . (The usual normal barometric pressure at Tallulah, La., is from 30.00 to 30.15 inches.)

The intensity of air currents is a great factor in the distribution and dispersal of insects. Most insects were taken at the lower altitudes when the surface wind velocity was from 5 to 6 miles per hour, and fewest when it was calm.

The direction of the wind has influenced to a great extent the migrations of insects. In the airplane flights at Tallulah it was found that the greatest numbers of insects were taken when the surface wind direction was from the north-northeast, southeast, or southwest. Some insects were apparently moving with the wind during the spring and summer when the surface prevailing winds were from a southerly direction, and again with the wind from a northerly direction in the fall.

Convection and turbulence play an important role in determining the insect population in the upper air. At the altitude of 200 feet more insects were taken when the air was smooth. At 1,000 feet and up to 5,000 feet more insects were taken when the air was rough or slightly rough. As the air became rougher greater numbers of insects were found proportionately at the higher levels. When insects are in smooth air and caught in strong ascending and horizontal currents of air they will be carried upward.

It was found that from 200 to 5,000 feet more insects were collected during the time from daybreak to sunrise than during the hours from $8 \mathrm{a} . \mathrm{m}$. to noon. At sunset the maximum nembers of insects are found. At that time many crepuscular and night-flying insects are becoming active, and together with the day forms there is an accumulation of insects.

The intensity of the light, with temperature, humidity, mnd evaporation, as well as other metcorological fretors, are directly affected by the cloudiness of the sky. The greatest numbers of insects were taken on days and nights when the sky was partly cloudy. Spiders were taken in greater numbers on clear days, the numbers diminishing as the sky increased in cloudiness.

When flights for collecting insects were made shortly before and after dark, it was found that almost twice as many insects were taken before dark as after dark.

When the collections were made on moonlight nights and very dark nights, it was found that more insects were taken on moonlight nights than on nights when the moon was not shining. While the difference was not great, yet there appeared to be a tendency for insects to be
more active in the upper air on nights when there was considerable moonlight.

Precipitation had a definite effect on the numbers and species of insects found in the air. A rain after a long period of drought caused an increase in insect activity, and insects were taken in greater numbers in the upper air at such times. At times when precipitation was excessive and temperatures low, insects dropped to minimum numbers.

It was noted that the electric state of the atmosphere at times of thunderstorms apparently increased the numbers of insects collected to above the average.

Numbers of seeds were found in the upper air at altitudes of 200 to 5,000 feet. They belonged to the families Compositae, Salicaceae, and Gramineae. The seeds were usually taken on flights when the upper air was slightly rough to rough from convection currents. Seeds are subject to the same conditions as insects in so far as their size, weight, and buoyancy are concerned.

Flights made over the flooded area of 1927 at Tallulah showed definitely that fower insects were in the air at the lower aititudes. However the numbers taken at 1,000 feet and above were approximately the same as over nonflooded territory, indicating that insects Hew or drifted in.

In the airplane collections of insects in Mexico the pink bollworm moth was found as high as 3,000 feet. This and other studies all indicate that the pink bollworm moths are carried in the upper air currents for considerable distances.

Modern aircmit offer a new source of danger in the dispersal and distribution of diseases and dangerous insect pests. During the 5 years of flying to collect insects, many inseets were found in the cockpits of the planes used, even during flight.

LITERATURE CITED

(1) Anonysot's.
1934. BUTMERFLIES GUIDED GLIDER TO \$1,000 IN PERLLOUS FRENCH MOUNtain fligitr. Christian Sci. Monitor, Sept. 7, 1934.
(2) Alditit'th, T. M.
1916. SARCOPHAGA AND ALLIES IN NOHTH AMERICA. 301 pp., illus. La Fayctie, Ind.
(3) Malduf, W. Y.
1926. rhe acalypha flea beetle (rRemdodera athiventma melsh.) Jour. Vcon. Ent. 19: 624-632.
(4) Barben, Heqbaft S.
1913. THE REMARKABLE LIEE-HISTORY OF A NEW FAMILY (MICROMALTitinet of heetles. Biol. Soc. Wash. Proc. 26: 185-190, illus.
(5) Beriand, Lucien.
1935. Phemiers héstidtats de mes recherches en avion sur ba faune et la flobe atmospheifiguen. Arn. Soc. Eint. France 104:
(6) \qquad 73-96, illus.
1936. L'EXPLORATION HIOLOGIQUE DE L'ATMOSPHERE EN AVTON ET LAEMploi roskible de gejule méthode en métcobologie. Meteorologie, No. 1, ser. 3. Paris.

1937, DONNÉES RÉCENTES SUR LE TILANSPOHT AÉRIEN D'ANTMAGX ET DE
 1Siogeo. (ompt. Rend. Sommatre des Scances 14 (119): 25-28.
(8) IBishopp, F. C.
1933. mosquytors kity Livestock. Science 77: 116-116.
(9) ——.... AND laAKF, İ. W.
1921. Dispersion of flabs ay flikilit. Jour. Agr. Research 21: 729-7bif, illus.
(10) Burgess, A. F.
1913. the dispersion of the axpsy mote. U. S. Dept. Agr. Bur, Ent. Bull. 119, 62 pp., illus.
(Ii) Chapman, Royal N.
1931. animal ecology, with espectal reference to insects. 464 pp., illus. New York.
(12) Coad, B. R.
1928. floods disturb the balance of nature in world of insects. U. S. Dept. Agr. Yearbook 1927: 312-317, illus.
(13) Collins, C. W.
1915. dispersion of gypsy mote lirvet by the wind. U. S. Dept.
\qquad Agr. Bull. 273, 23 pp., illus.
1917. methods dsed in determining wind dispersion of the gypsy moth and some other insects. Jour. Econ. Ent. 10: 170-177, illus.
(15)

- and Baner, W. L.

1934. EXPLORING The UPPER AIR FOR WIND-bORNE GYPSY MOTH LARVAE. Jour. Econ. Ent. 27: 320-327, illus.
(16) Comstock, John Henry.
1935. the spider book . . . 721 pp., fllus. Garden City, N. Y.
1936. an introduction to entomology. Rev. ed., 1044 pp ., illus. Ithaca, N. Y.
(18) Davis, Emily C.
1937. another try at everest. Soi, News Letter 23: 230-231, illus.
(19) Dove, W. E.
1938. myiasis of man. Jour. Econ. Ent. 30: 29-39.
(20) Eddy, C. O., and Livingstone, E. M.
1939. frankliniella fusca hinds (Thrips) on seedling cotton. S. C. Agr. ExF ${ }^{+}$'ta. Bull. 271, 23 pp., illus.
(21) Elton, C. S.
1940. the dispersal of insects to spitsbergen. Ent. Soc. London, Trans. 1925: 289-299.
(22) Felt, Ephraim Porter.
1941. dispersal of insects by air currents. N. Y. State Mus. Bull. 274: 59-129.
1942. ingect inhabitants of the upper air. 4th Internatl. Cong.
\qquad Ent. Trans., v. 2, pp. [869]-872.
1943. dissemination of insects by air curments. Jour. Econ. Ent. 30: 458-461.
(2.5) and Chamberlain, Kenyon F.
1944. THE OCCURRENCE OF insects at some beight in the air, especialiy on the roofs of high bumdings. N. Y. State Mus. Cir. 17, 70 pp., illus.
(26) Forbes, S. A.
1945. noxious and heneficial insects of the state of illinois. Ill. State Ent. Rept. 23, 273 pp., illus.
(27) Gourdon, G.
1946. la ctpttre et la destruction des insects par rayons dltraviolets. Rech. et Invent. 10: 245-250, illus.
(28) Gregg, Willis Ray.
1947. aeronatpical meteorology. 144 pp., illus. New York.
(29) Grevilifus, A. Y.
1948. zur kenntniss den biologie des goldafters (euproctis chrysormhoea (l.) hb.) ond der dubch denselben verursachten beschädicungen. Bot. Centbl., Beihefte 18 (abt. 2): 222322, illus.
(30) Guppy, H. B.
1949. dispersal of butterflies and other insects. Nature [London] 116: 543.
(31) Hardy, A. C., and Milne, P. S.
1950. insect drift over the nohth sea. Nature [London] 139: 510-511.
(32) Hora, S. L.
1951. lunar periodicity in the reproduction of insects. Jour. Proc. Asiatie Soc. Bengal (n. s.) 23: 339-341.
(33) Hotpes, Frederick C., and Frison, Theodore H.
1952. the plant lice, or aphidas of illinois. In. Nat. Hist. Survey Bull. v. 19, art. 3, pp. 121-477, illus.
(34) Howard, L. O.
1953. on cossamer spiders' Whe. Eint. Soc. Wash. Proc. (1893-96) 3: 191-192.
(35) Hछmphreys, W.J.
1954. peysics of tre air. 654 pp., illub. New York and London.
(36) Hunter, W. D., and Coad, B. R.
1955. tee holl-weevil problem. U. S. Dept. Agr. Farmers' Bull. 1329, 30 pp, illus.
(37) - and Pierce, W. D.
1956. mbxican cotton-boll weevil. 62d Cong. S. Doc. 305, 188 pp., illus.
(38) Hurd, Willis Edwin.
1957. influmnee of the wind on the movements of insects. U. S. Monthly Weather Rev. 48: 94-98.
(39) Isley, Dwight, and Ackerman, A. J.
1958. LIFE-HISTORY OF THE CODLINQ MOTH in AREANSAS, WITH SPECIAL mbference to factors limiting abundance. Ark. Agr. Expt. Sta. Bull. 189, 57 pp., illus.
(40) Kestner, Otto.
1959. klimatologische studien if. der wirkung der strablung auf den bleldpack. Ztschr. Biol. 73: [7]-9.
(41) Loftin, U. C., McKinney, K. B., and Hanson, W. K.
1960. REPORT ON INYESTIGATIONS OF THE PINK BOLLINORM OF COTTON IN mexico. U. S. Dept. Agr. Bull. 918, 64 pp., illus.
(42) Lundie, A. E.
1961. tee flight activities of tee honeybee. U. S. Dept. Agr. Buli. 1328, 38 pp., illus.
(43) Lutz, Frank E.
1962. Wind and the direction of insect flight. Amer. Mus. Novitates $291,4 \mathrm{pp}$., illus.
(45)
1963. our ignotance concerning insects. Camada Ent. 64: [49]-56.
(45) McAter, Waldo L.
1964. showers of organic matter. U. S. Monthly Weather Rev. 45: 217-224.
(46) McCook, Henry C.

1889-93. Ambrican bpiders and their spinningwork . . . 3 v., illug. Philadelphia.
(47) McDonald, R. E., and Loftin, U. C.
1033. dispersal of tey pink bollworm by flight or wind carriagm of thi motes. Jour. Econ. Ent. 28: 745-755, illus.
(48) Marcovitch, S.
1924. the migration of thi aphididat and the appearance of the bexual forms as affected by the relative lengti of daily lighi exposure. Jour. Agr. Research 27: 513-522.
(49) Matheson, Robert.
1932. medical entomology. 489 pp., illus. Springfield, Ill., and Baltimore, Md.
(50) Melander, A. L., and Spuler, Anthony.
1917. The dipterods families sepsidae and piophilidae. Wagh. Agr. Expt. Sta. Bull. 143, 97 pp .
(51) Melnichenko, A. N.
1935. regolahisidg of mass flying of the ajult loxostege stroticalis l. and the problem of the prognosis of their flichts mbarations. Bull. Plant. Protect. ber. 1, Ent., No. 17, 54 pp., illus. Moscow.
(52) Milhasm, Willis Isbister.
1934. METEOROLOGY; A text-book on the weateer, the causes of its changes, and weather forecastina, for the student and general reader. 549 pp ., illug. New York.
(53) Noble, L. W.
1936. the biological possibility of infestation by fliget of ten Ping bollworm mote. Jour. Econ. Ent. 29: 78-79.
(54) Ohlendorf, W.
1926. sTudies of the pink hollworm in mexico. U S. Dept. Agr. Bull. 1374, 64 pp., illus.
(55) PArx, W.
1923. flight studies of the honeybee. Amer. Bee Jour. 63: 71.
(56) Parkrar, J. R.
1930. SOME gFFECTS OF TEMPERATURE AND MOISTURE UPON MELANOPLUE mexicanus mextcands saussure and camnula pelldcida scddder (orthoftera). Mont. Agt. Expt. Sta. Bull. 223, 132 pp., illus.
(57) Parman, D. C.
1920. OBSERYATIONS OF TEY EFFECT OF STORM PHENOMENA ON INSECF activity. Jour. Econ. Ent. 13: 339-343.
(58) Pictet, A.
1918. les Ggzosions de papillions et la pression barombtrique. Bull. Soc. Lepidopt. Genève $4:[67]-74$, illus.
(59) Pigron, Henry.
1927. de la loi qui relie la surface des ailes ad poide des individus DANS UNE MEME ESPECE ANIMALE, ET DE QUELQUES PROALEMES concernant le vol des insects. Compt. Rend. Acad. Sci. [Paris] 184: 239-241.
(60) Poos, F. W., and Exhott, Cearlotte.
1936. chrtain insect yectors of aplanobacter stemarty. Jout. Agt. Research 52: 585-608, illus.
(61) Portier, P., and de Rorteays.
1926. rechercege sur la charge supportee par les ailes des lepptdofteres de diverses familles. Compt. Rend. Acad. Sci. [Paris] 183: 1126-1129.
(62) Procznow, Oskar.
1905. entomologie tid meteorologin ein beitrag zur biologie Der inseiten. Ent. Ztscir. 19:[165]-166, [169]-172, 178-179, 183-184.
(63) Saso, K.
1897. insextenreisen. Illus. Wchnschr. f. Ent. 2: 229-235, 241-242, 257-263.
(64) Savory, Theodore H.
1928. the biology of spiders. 376 pp., illus. New York.
(65) Schadpr, F. B.
1879. flight of lepidoptera in mid-ocean. Bull. Brooklyn Ent. Soc. v. 2, No. 1, p. 73.
(66) Shannon, Howard J.
1916. insect migrations as related to those of birde. Sci. Monthly $3: 227-240$, illus.
(67) Smith, Cleag. E., and Alzen, Norman.
1932. teie migratory babin of tee spotted cocumber beetle. Jour. Econ. Ent. 25: 53-56.
(68) Snyper, T. E.
1930. preventing damage by termites or white ants. U. S. Dept. Agr. Farmers' Bull. 1472, 22 pp., illus.
(69) Speer, R. P.
1934. grasshoppers. Country Gent. 104 (4): 11, 54-55, illus.
(70) Steinberg, D.
1935. tey possibilities of the sugar beet wee worm's (Loxostegr sticticalis l.) propagation in the origin bteppes of the kammock adtonomods sse. Bull. Plant Protect. ser. 1, Ent. No. 13, 67 pp., illus. Moscow.
(71) Strong, Lee A.
1935. reyort of the chirf of the bureaj of entomology and plant quarantine 1035. 96 pp U. S. Dept. Agr. Ann. Repts. [Separately paged.]
(72) Tumt, J. W.
1902. the migration and dibpersal of insects. 132 pp . London.
(73) Uyaroy, B. P.
1928. LOCUSTS AND GRASSHOPPERS, A HANDBOOE FOR THEIR STUDY AND control. 352 pp ., illus. London.
(74) Uvarov, B. P.
1931. insects and climate. Ent. Soc. London Trame. 79: 1-247, illus.
(75) Weiss, Harry B.
1927. insects captured in the hookodt stations of new jersey. N. J. Dept. Agr. Cir. 106, 21 pp., illus.
(76) Williams, O. B.
1930. the mygration of butterfines. 473 pp ., illus. Edinburgh and. London.
(77) Williass, Francis X.
1931. Handbook of the insects and other inyertebrates of hawailan sugar cane fields. . . 400 pp., illus. Honolulu.
(78) Wilson, G. F.
1926. pollination in orceards (vii.). Jour. Roy. Hort. Soc. 5I: 225-25I, illus.
(79) Winburn, T. F., and Painter, Reginald H.
1932. insect enemies of the corn earworm (helothis obsoleta fabr.). Jour. Kans. Ent. Soc. 5: 1-28.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

Thia bulletin is a contribution from
 ogist, in Charge.

[^0]: 1 Sabmitted for zublication May so. 193k.
 under the supervision of IS, K. Comb. The work was continned water the direction of C. L. Marhatt while he whs Chief of the Burgua of Entmolagy. F. C Hishopp, netime in tharge of Cothon Lusect Investigations

 R. G. Domp, B. C. Young, C. A. Bemen, anit the ble mith, C. C. Atedintey, for assistante in the eonstruetion of the airphane insect traps: and th the pikats why flew the airpinnes that were used. ©. C. Mefinley,
 Roberi Spints, Robent Tate, C. F. Rainwater, Bhert sherwin. J. W. Hobles, Ik. G. Jame, gnt pspecially to J. Xf. Yeates, for their usistance in the manipulation of the traps on manyon the fights and in recording the meterological data. Most of the specinew that were collected were sermateth ns to orders by C. F. Rainmater and the writer before they were montied mid srat 10 carions specialtsts for further determination. Nost of the materint was manted hy P A. Woke. The insens thken during the first 2 yemes of cohecting, however. were jrepared and mountrat by the specintisis in the Division of ansert identifeation
 was a hoborious undertatimp. For its eficient performane thane are due to (' 5 , W, Muegebeck, in charge
 Burenu, who made arrangernents for handing the mand gration of the materna, The specialists who
 and the late C. IR Crosby; Acmina. H. E Ewine: Collemholn, the hate J. W. Folsom; Thysamma, F. Sil-
 the hate A. N. Caudeft; Corndentia, A, N. Caudelith A. B. Rumey; Iseptern. T. F. Snyder; Ephemerop-
 J. D. Mond; ILetpropkern, II. O. Marber und I. L. Dozier; Homoytera, Warold Mortison, D. W. Mason.

[^1]:

 O. H. Dradley. W. V. Kine. F. P. Fell, and I) if Halit siphomplera. F, C Bishopr.

 The seets collectet at varitus imes in the upper nir were fintified by the jate f. V. Coville, S. F. Btake,

 Marvin, Sormet Chipt of the Weather Sherans, who persmally arrmbed introductions and assistance, as

 Id Enzland Mr. Frecman worked wifter the fifection of A O Ifardy, of the dopart tnent of zontrey and

 mologist of the alucum National D'llatnire Natutelle.

[^2]:

[^3]: companythghim on this fight wrs Earl B. Mckintes, dean of he Sehool al Medicine, Geare Wanhiugtor

 first planned by Meler fand his combittec, mad thit the inlerast and activities in merocntomology wht contitue and further advance ways and means to study the dissemination of insects in thentir.

