

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

S

 NATIONAL BUREAL OF STANDARDS-19C3-A

UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C.

THE FLOW OF WATER IN IRRIGATION AND SIMILAR CANALS ${ }^{12}$

By Fred C. Scobey
Senior irrigation engineer, Division of Irrigation, Bureau of Agricultural Enginecring ${ }^{3}$

CONTENTS

	Page
Notation and nomenclaturs.	
Notation.------------	
Capacity formulas and attondiat erupirical cata	
Empirical equations for flow in uniform channels	
Scope of experiments	
Equipment sud methods employed for col-	
In the ofice	
Normal fow and departures therefrom.	
Determining the progressive values of 7 in the	
Examplo for perindic matiod	
Elements of teld tests to determine roughaess	
Explanatory notes for tabie z-	
escription of cera	33
Sidehill cuts, with retaining walls......-..	
Miscollaneous sbetions-...-.....-.	

Practical uses of the experimental data. 40
Msterial and shage of changel................
Sinuons or straaming fow
Shooting flow
5

Flow around curres and bends in canals.- $\$ \$$

Eydraulic roughness inciudes more than
roughness of channel surface.
63
Chandel surface roughness affects tho fow
Primary and seconiory youghness.-.-.-. on
Other conditions that affect the fow $-\cdots$

Recommendations for vaiues of 7 for different
xinds of canals
Vnftues of n for earth cansis.
66
Values of n for miscrilaneons channelma- B8 terials
Variations of n it the seme canal-...................... 72
Conclusions
$\frac{72}{28}$

INTRODUCTION

Usually the greatest expense of farming under irrigation, over that of farming in humid regions, lies in the costs of building and operating the irrigation system. Eventually, all or nearly all these costs are borne by the farmer himself in meeting the assessments of his organized irrigation district, mutual company, or water users' association. Obviously, the farmer is seldom equipped to use technical data

[^0]such as are presented in this bulletin, but he is served by his engineer who is prepared to apply them to bring about economies reflected in those assessments.

This bulletin treats of flowing water in irrigation and similar canals. It is based on field tests made to determine the retardation factors in severul formulas applieqble to the various conditions found in practice. It is offered for use by engineers in designing, measuring, and operating irrigation, power, municipal, and similar canals, and for courts and attorneys at law interested in cases involving the carrying capacities of open artificial canals.

This bulletin includes the results of many tests made since 1913 under the direction of the author, those made by engineers of the United States Bureau of Reclamation generally following the procedure laid down in Department Bulletin 194 (50) ${ }^{4}$ and other experiments. The newer parts contain more data for canals conveying clear and muddy waters in siosi- and poured-concrete sections, and canals of excessively sinucus line. The text includes comments pertinent to the design and operation of open canals. These comments are the result of more than 25 years of observation on such channels.

Department Bulletin 194 contained such observations as were available on flumes of concrete, metal, and wood. Since then a special study of this type of channel has been made and embodied in a separate publication (57), copies of which may be obtained from the Superintendent of Documents, Washington, D. C., for 15 cents ench. For that reason all tests on flumes and discussion thereof are omitted from this bulletin. Likewise, the longer discrysion of methods and equipment and of basic formulas, found in Tepaiu.nent Bulletin 194, are omitted as being fairly well-known by this time. Reference to that publication, which can be found in many public and private engineoring libraries, will refresh the mind o:' the reader who cares to begin at the beginning.

Irrigation systems are designed to supply certain quantities of water to the soil for use by crops. These predetermined quantities of water must be carried in earth, concrete, wood, steel, masonry, cobblestone, or rock-cut channels. Very often one canal will include channels in several of these materials. Obviously, well-kept canals of the smoother materials will convey water with less retardation than is possible by poorly kept channels or those of rougher substance. In order to proportion correctly the size of the canal under any specific conditions anticipated, the extent to which the flow of water will be retarded by the character of the channel and other conditions must be known. This knowledge can come only through actually measuring the flow and all the attendant cross sections and slopes, in canals operating under manifest coaditions.

NOTATION AND NOMENCLATURE

NOTATION

Throughout this bulletin, the following symbols are used to designate the same elements. Additional deseription and definition will be found in Nomenelature.

A-The weighted mean area of the water cross section throughout the length of reach considered, in square fect. (See Nomenclature, weighted values.) Also used for area in the abstract.

[^1]a-The area of any particular water cross section, usually given a subscript to identify the location and the corresponding elements.
C-Coefficient in Chezy formula, $V=C \sqrt{R S}$.
d-Depth of water in the channel, in feet, sometimes given a subscript to identify location as d_{1}, d_{2}, etc.
d_{c}-Critical depth. (See Nomenchature.)
$d_{n}-$ Normal depth. (See Nomenclature.)
F_{n}. The elevation of a point on the energy line (57), in feet, usually given a subscript to identify location. $E=Z+h=k+d+h$.
g-The gravitational constant $\llcorner 32.2$ in English measures.

$H_{m i s}$-Minimum energy content $=d_{c}+h_{c}$.
h-Velocity head, assumed $=\frac{v^{2}}{2 g}$, in feet; the drop in elevation of the water surface necessary to generate the velocity under consideration.
h_{c}-Velocity head for Belanger's critical velocity, v_{c}, in feet.
ho-Friction loss. The fall in the energy line, through the length of reach considered, in feet. The difference in the values of E at the two ends of the reach. For idealized steady uniform fow only, the fall in the energy line, in the water surface and in the channel bed are alike. The loss due to all hydraulic roughness rather than perimeter-contact friction only.
k-Elevation of canal bed above daturn, in feet.
L - Length of reach considered, measured along the bed slope, in feet.
n--Coefficient of hydraulic roughness in Kutter's formula. (An indicator of the nature of the channel.)
${ }^{n}$ '-Coeffeient of hydraulic roughness in Manning's formula.
P-Wetted perimeter in the abstract.
$p-$ Wetted perimeter, in feet, at a particular cross section, from which $\frac{a}{p}=r$.
Q-The amount of fow, in cubic feet per second, under consideration. DesignQ^{\prime}, the flow used as maximum capacity in the design of a canal or other structure.
R-Mean value of hydraulic radius $\left(r_{1}, r_{2}, r_{3}\right.$, etc.) through the reach considered, in feet, for computation of roughness coefficients. Also R used for hydranlic radius or hydraulic mean depth, in the abstract.
$r-$ Hydranic radius at a particular cross section, in feet, usually given a subscript to identify location as $r_{1}=\frac{a_{1}}{p_{1}}$,
S-The slope of the energy line (E line); always downward in direction of flow. The slope factor in flow formulas such as Kutter's. $S=\frac{h_{f}}{L}$ in feet per foot. Except in uniform flow, S is not the slope of the water surface. In idealived flow, it is parallei to and hence equal to slope of the surface and that of the channel bed.
-Slope of the bed of the canal, usually downward. In design, s usually is computed as parallel to E line and to water surface for an assumed normal surface at capacity flow.

T-Width of water surface at section under consideration, in feet.
V-The mean velocity of the water through the reach under considerstion, in feet per second. Approximates $\frac{Q}{A}$ if cross aections are taken often enough so that mean area A closely approximates the mean value of a grest many local areas (a_{1}, a_{2}, a_{3}, etc.). In chutes, the swell of the water due to entraingnent of air may annul the a dauity equation $V=\frac{Q}{A}$. (See p. 53.) V is also used for velocity in the abstract.

0 -The average velocity of water in a local cross section, usually given a subscript to identify location, as $v_{1}=\frac{Q}{a}$,
Z-Elevation of the water surfa se above datum, in feet, usually given a subscript to identify location as Z_{1}, Z_{3}, etc.

WS-Water surface; usually sloping downward. May remain level though flowing fairly rapidly throughout length, L, sey 1,000 feet. This emphasizes the

[^2]fact that energy slope, S, is effective, not water siope. May rise abruptly, through the hydraulic jump. May rise and fall intermittently-above and below critical depth, either with or without the jump, for flow dear critieal depth in a uniform chanrel.

nomenclature

In this bulletin certain words and phrases have special meanings not found in the ordinary dietionary.

Canal: In the irrigated West, "canal" is the name usually applied to an irrigation channel and "ditch" to a drainage channei, even relatively small channels. This usage is followed in the irrigation and drainage reports of the United States Bureau of the Census, especially as applying to main canals. Smaller channels leading from these are termed "laterals" and a still smalier distributary a "farmer's lateral" or a "head ditch." Seldom is the word "canal", applied to any drainage channel. Canals and laterals are usually "designed." The digging of smaller farm laterals or head ditches is usually dependent on experience and the implements at hasd.

Critical depth: In design and operation, critical velocity (attributed to Bélanger) and the depth at which this velocity holds sre of importance. For any given section, quantity of fow, Q, and total energy, H, there are two depths of water for which $d+h$ are identical. These are called the "alternate stages." At critical depth, these two stages merge. For any other such value of H, there are two other depths that are also conjugate ($57, p .75$.) Water at less than critical depth is flowing at shooting velocities and the chanmel usually becomes a "chute." If the depth is greater than the critical, velocities are streaming, subject to both the backwater curve and the drop-down curve. Shooting velocitics are not subject to long backwater or drop-down curves, as ordinarilly considered. They do exist under the condition of accelerating flow, from critical velocity at the top of a chute to a much faster veiocity that is the normal for the chute under consideration. Problems involving cond.tions mentioned in this paragraph are found in the design of spillway channels protecting reservoirs and in steep channeis (chutes) Jowering a canal from one general elevation to another of much less clevation.

Energy slope: The rate of fall of the energy line.

$$
S=\frac{h_{f}}{L} .
$$

Energy line: The energy grade line. The locus of Bernoulli's summation, considering losses; hence, the E line. It should not be confused with water surface. For tapered flow the encrgy line is taken as straight for the reach being considered. If the taper is caused by checked water, the depth increases, velocity decreases, and the E line is slightly concave upward. If the velocity increases the E line is slightly convex upward.
Hydraulic roughness: Cause of loss of head in fowing water; includes influence of channel surface and alinement, mosses, silts, sands and all the other losses that go so make hydraulic roughness different from mere channel surface friction.

Normal depth: The depth of water at normal flow d_{n} (вce). The idealized depth resulting from computations for uniform flow. Some writers prefer "neutral depth" to avoid any confusion with "normal" meaning "at right angles to." For flow down steep chutes, depth is measured normal (at right angles) to the slope of the chute rather than vertically, Only in this connection can confusion arise in the use of normal depth as defined above.

Normal flow: Uniform flow in a uniform channel, satisfying the solution for a flow formula, such as Kutier's. Under this condition, the bed slope, the water surface, and the energy line are parallel. Though useful in design, such uniform flow is seldom found in field experiments. Long, straight channels of uniform shape and uniform surface would develop this idealized flow. It should not be taken for granted in any field tests for values of n. Some writers prefer "neutral flow" to normal flow.

Regime flow: Established condition with no seour and no silting in a canal built up of the silts conveyed in the water (32, 35, 37)

Shooting and streaming flows: See Critical depth.
Weighted values: Throughout this bulletin values of local elements, such as a, r_{t} etc., are weighted in the determination of corresponding mean values, A, R, etc. in accordance with the length of reach each local element infuences.

CAPACITY FORMULAS AND ATTENDANT EMPIRICAL DATA

Preceding a description of the methods, equipment, and results of field observation relating to the capacity of canals under various conditions, the formulas used in design of canals from the capacity standpoint must be shown in order to make clear the various hydraulic elements entering them and to disclose how the values of these elements are developed from field measurements. ${ }^{6}$

Although the conyeyance of water in artificial channels was one of the earliest of engineering achievements, as yet no rational capacity formula (as substituting for an empirical formula) has been accepted. Therefore, the value of any recognized formula lies in the amount of empirical data, developed by the best of field experiments, that can be placed at the disposal of the engineer seeking the solution of a problem of flow. In all the formulas offered in the following pages, all elements are of assured measurable dimensions with the exception of the coefficient of roughness. Evaluation of this element, varinble over a wide range, is the goal of experiments such as those listed in this bulletin.

While seldom attained in canals under operation conditions, umiform, normal flow must be assumed in design, except in special locations where variations can be fully anticipated and provided for.

EMPIRICAL EQUATIONS FOR FLOW IN UNIFORM CHANNELS
Current best practice still warrants the use of the Chezy formula, viz:

$$
\begin{equation*}
V=C \sqrt{R S} \tag{1}
\end{equation*}
$$

with the values of C developed from careful field tests, in terms of the Ganguilet-Kutter formula (hereafter referred to as the Kutter formula) (28),
thus:

$$
\begin{equation*}
V=\left\{\frac{\frac{1.811}{n}+41.66+\frac{0.00281}{S}}{1+\left(41.66+\frac{0.00281}{S}\right) \frac{n}{\sqrt{R}}}\right\} \sqrt{ } \overline{R S} \tag{2}
\end{equation*}
$$

All the elements in this formula can be found from simple engineering dimensions, except the value of n. It is the so-called coefficient of roughaess, and was originally developed from 81 series of gagings on open channels.

Many able hydraulicians of the past decade or two have advocated the use of the Manning formula as superior to that of Kutter.? The reader desiring to pursue this idea is referred to the following authori-

[^3]ties: King (38, 34), Horton (36), Lindquist (38, 39), Leach (36), Houk (81), Parker (47), Blanchard (2), and Chivvis and Monteith (9).

For comparison the field data in table 1 have been used to develop Manning's n^{\prime} as well as Kutter's n.

Manning's formula ${ }^{8}$ is

$$
\begin{equation*}
V=\frac{1.486}{n^{\prime}} R^{0.67} S^{0.50} \tag{3}
\end{equation*}
$$

Other formulas that have been given consideration in both Europe and, to some extent, in the United States are those of Strickler (61), Lindquist (38), Matakiewicz (42), and the Bazin formula of 1897 ($34, p .256$). Quite often a problem arises as to the proper equivalent value of n or n^{\prime} to use for canals with bottom end sides of entirely different characteristics but whose individual values of n or n^{\prime} are known within narrow limits. For instance, the determination of the equivalent value of n^{\prime} to use for a concrete-lined bottom (say, $n=$ 0.014) in a rock cut (pl. 21, A) where the sides have been somewhat improved by the use of shot concrete (say $n=0.025$). In 1933 Horton $(28,29)$ offered a formula and a graphical method for the solution of this problem. Letting $n^{\prime}{ }_{b}$ and $n^{\prime}{ }_{s}$ represent the values of n^{\prime} (Manning) for the bottom and for the sides respectively, and letting $z=$ the ratio of the length of one side of the cross section to the width of the bottom, then the equivalent value of $n^{\prime}=\left(\frac{n_{b}^{\prime}{ }_{0}^{3 / 2}+2 z n_{3}^{\prime}{ }^{3 / 2}}{1+2 z}\right)^{2 / 3}$

Neicessary field data for values of n

As previously stated, n is the one element not easily and assuredly determined in office estimates of canal design. Therefore the field data must be obtained with a view to solving the equation in Kutter's formula, the value of n being the desired answer.

For the sake of brevity in computation, in formula (2) let $B=k+\frac{m}{S}$ where k is 41.66 and m is 0.00281 , and let $e=1.811$, while C is the Chezy coefficient, equal to $\frac{V}{\sqrt{R S}}$, then

$$
\begin{equation*}
n=\sqrt{\frac{e \sqrt{R}}{B C}+\frac{1}{4}\left(\frac{C-B}{B C}\right)^{2} R}-\frac{1}{2}\left(\frac{C-B}{B C}\right) \sqrt{R} \tag{5}
\end{equation*}
$$

[^4]To solve Manning's n^{\prime}, transpose formula (3)

$$
\begin{equation*}
n^{\prime}=\frac{1.486}{V} R^{0.87} S^{0.50} \tag{6}
\end{equation*}
$$

For both the Kutter and Manning formulas field determinations result in known values for the same elements:

1. The mean velocity of the water prism, V
2. The mean hydraulic radius, R.
3. The effective slope (that of the energy gradient), S.

From these elements, the value of n or other coefficient is determined.

None of the elements above is found by single direct measurements in the field. The field measurements cover the following items:

1. Measurements of a definite length of reach, L. A length of about 1,000 feet is excellent. For large canals on flat gradients a longer reach is desirable.
2. Careful current meter, weir, or other measurements that will yield the discharge, Q. This discharge should hold steadily throughout the field measurements for all elements.
3. Measurements that will yield the cross-sectional area and wet perimeter of the water prism at the two ends of the reach and as many intermediate locations as are feasible.
4. The actual or assumed elevation of the water surface at one end of the test reach and measurements to all feasible accuracy of the corresponding elevation at the other end.
The other field data to be taken in order to make the resulting value of n fully comprehensible comprise a careful description of the material forming the containing channel, including such aquatic and larval grow ths as affect the flow of the water, and the infuences of ali structures in the canal and all changes in alinement throughout the reach tested. This general description not only should cover the reach tested, but should also extend upstream and downstream for sufficient distances to include anything influencing the flow within the reach.
Temperatures of the air and water may be taken, but it is doubtful if any deductions may be made as to the direct influence of the various temperatures on the flow of water in the usual more or less irregular channel.

SCOPE OF EXPERIMENTS

Tests were made on channels in Arizona, California, Colorado, Idaho, Louisiana, Montana, Nebraska, Nevada, Oregon, Texas, Utah, and Washington. These channels ranged in size from small ditches carrying less than 1 second-foot up to cauals carrying more than 2,600 second-feet. The materials comprise concrete, earth, rubble masonry, cobblestones, wood, and special combinations. Velocities encountered extended up to about 30 feet per second. From other sources the author has obtained the data for additional tests, especially at very high velocities where in his opinion there was not sufficient evidence in results of his own experiments from which to draw conclusions.

In several cases it was possible to get data covering several tests on exactly the same reach of channel, witis varying discharges of water, to indicate the trend in values of n with changes in depth.

EQUIPMENT AND METHODS EMPLOYED FOR COLEECTING FIELD DATA ${ }^{\circ}$

Linear measurements.-These were made with engineer's tapes 25 , 50 , or 100 feet long.
Leveling.-A sensitive 18 -inch wye level and the best of Phila-dephia-type rods were used. (Datum can be assumed if not known.) Sights were equalized and made short enough so that the rod could be read directly, without use of the target. Check levels closed the circuit. Levels were re-run until it was certain no appreciable error had been made.

Discharge measurements.--These were usually made with current meters. For the measurements recorded in Demartment Bulletin 194 (55), the Price cup meter was used exclusively. For measurements made during the past 10 years, the European type with horizontal axis (Hoff meter) was mostly used. Meters were always rated just before or just after any extended series of tests; however, ratings do not change materially when a meter is handled carefully in measuring canal flows, this service being much less violent than river gaging. Usually, but not necessarily, the meter station was one of the section locations along the length of reach tested. For tests on narrow canals, footwalks or planks were used. For large canals a portable equipment trunk was devised. This trunk, when hung by sheave wheels from a cable anchored at the ends by portable steel pins, became a gaging car (pls. 11, B and 16, B). The gaging car trunk packed with the testing equipment, was shipped as baggage from place to place. The cover was without hinges but had duplicate lock-and-clip appliances on both sides so that it could be lifted off while the trunk was used as a gaging car. When in experimental use, the car was suspended from and traveled on 130 feet of fine 58 -inch steel haulage cable.
When it was necessary to make a current-meter measurement of discharge in a canal where grass or moss might clog the meter and make the measurement inaccurate, or where the bottom was slightly uneven, the sides and bottom were neatly trimmed by means of a sharp shorthandler hoe.

The steps taken in obtaining the field data and making the office compatations, in most of the experiments made by the engineers of the 3 ureau of Agricultural Engineering, may be outlined as follows:

IN THE FIELD

1. Arrange for a steady flow of water in the canal throughout the test and, if possible, have that flow undisturbed over night or longer, so that a regimen of flow has become established before the test experiments are begun.
2. Select the reach to be tested, L. This need not be straight, but should be typical of a definite category and long enough to develop a definite fall. Most canals have an apprecinble amount of curvature, so it is desirable to include moderate curvature in the test reach. Often the test reach can be selected near the gaging station used for routine measurements of the canal flow. That station may even be the upper or lower end of the reach; often, however, such a station has special size and shape and should not be included in the test reach.
3. Start the hydrographer on the measurement of the discharge,
[^5]Q, by the best method available (55, p. 12). This is usually a directfield measurement by current meter or otherwise. The elaborate meter gagings from which data in this bulletin were developed took from 3 to 5 hours. The meter was held at enough points in each "vertical" to develop the vertical velocity curves. The width of the canal was divided into 10 to 20 verticals-more than asual. Most of the gagings were thus based on velocities at from 50 to 125 or more points in the cross section. Check measurements were usually made by the integration method. The discharge gaging was made while the other data were being developed by the rest of the field party.
4. Carefully chain the length of the test reach, L, leaving the pins or stakes for use in the subsequent operations.
5. Choose as many cross-section locations as are feasible. On a reach, say 1,000 feet long, the locations at the ends of the reach are important and should certainly be taken. Others desirable are the midpoint and quartering points. To develop the procedure, assume these five locations are chosen and number them (i. e., locations 1, 2, 3, 4,5). For all weighting, equidistant locations have a multiplier of 1.0 for each of the two ends and of 2.0 for the intermediate locations.
6. For ench location take measurements that can be developed into cross-sectional shape, area, and wet perimeter of the water prism, a_{1}, a_{2}, etc., and p_{1}, p_{2}, etc.
7. By most careful use of the level and rod determine the relative elevations of the water surface at the two ends of the reach at least, Z_{1} and Z_{5}. In the experiments conducted by the author these ends were usually marked by nail heads flush with the water surface and set with a hook-gage device used in a stilling well. These nails could be used clirectly as points for the level rod. The stilling well was a simple tin box about 3 inches in diameter with a small hole in the bottom permitting it to extend below the nail. Water would rise in this box, through the hole, in such a quiet condition that the nail could be driven with the hook-gage device to all the accuracy required. In concrete-lined canals the nails could be driven vertically in cracks usually found at expansion joints. If the lining was without cracks, a small hole was made with a steel punch and the nail set with the stilling box and hook device as before described.

Sometimes the leveling was done between well-set stakes near the edge of the water at the ends of the reach, and by secondary measurements with a hook gage the relationship between the stake-bench mark and the water surface was determined. This process (or its equivalent) is best where a series of tests is to be made, perhaps over a long period. The leveling should be as nearly precise as possible, especially on large canals of gentle slope where a few thousandths of a foot become a large percentage of the friction loss. Erroneous empirical values of n can generally be traced to false values or interpretation of S

IN THE OFFICE

1. From the current-meter notes, depth-velocity curves for the various verticals are platted and, by planimeter, the mean velocity in each vertical is determined from the resulting vertical velocity curve. This velocity is multiplied by the area of the vertical strip to which it applies, to determine the local quantities of flow in each strip; and the integrated value of the local flows determines Q, the total discharge
in the canal. The cross sections for each location are now platted on fairly large scale. For uneven sections the areas a_{1}, a_{2}, etc., may be planimetered while for lined canals they may be computed and, for a weighted value,

$$
\begin{equation*}
A=\frac{a_{1}+2 a_{2}+2 a_{3}+2 a_{4}+a_{5}}{8} \tag{7}
\end{equation*}
$$

The wetted perimeters, p_{1}, p_{2}, etc., may be determined by computations or by stepping around the perimeter with dividers. Local values of the hydraulic radius are next determined as $r_{1}=\frac{a_{1}}{p_{1}}$, etc. The weighted average value then appears from the simple formula

$$
\begin{equation*}
R=\frac{r_{1}+2 r_{2}+2 r_{3}+2 r_{4}+r_{5}}{8} \tag{8}
\end{equation*}
$$

with Q as determined for the discharge and A as found by formula (7) the mean velocity throughout the length of reach tested becomes

$$
\begin{equation*}
V=\frac{Q}{A} \tag{9}
\end{equation*}
$$

2. If the areas at the ends of the reach should happen to be nearly alike, the differeace in elevation of the water surface $Z_{1}-Z_{5}$ can be taken as the friction loss h_{f}, and the slope $S=\frac{h_{f}}{L}$. In this case S would be equivalent to the slope of the water surface. It is believed that all the original experiments of Kutter and many since then have been based on the assumption that S is the slope of the water surface, without determining whether the areas (and hence the velocities) at the ends of the reach were alike. Commonly they are not. This is true for flat slopes and gentle velocities as well as for steep slopes and high velocities, because a difference in velocity heads, at the ends of the reach, of but a few humdredths of a foot may be a large percentage of the fall in the water surface and this difference enters the determination of the friction loss h_{f} equally with an equivalent fall in the surface.

Assuming the areas and hence the velocities at the ends of the reach are not alike, then, for example, the local velocity $v_{1}=\frac{Q}{a_{1}}$ and the velocity head $h_{1}=\frac{v_{1}{ }^{2}}{2 g}$. The energy line at location 1 becomes $E_{1}=Z_{1}+h_{1}$, and at location 5 becomes $E_{5}=Z_{5}+h_{5}$. The friction loss $h_{f}=E_{1}-E_{5}$ over the length of reach, L. Therefore, the energy slope

$$
\begin{equation*}
S=\frac{h_{f}}{L}=\frac{E_{1}-E_{6}}{L}=\frac{\left(Z_{1}+h_{4}\right)-\left(Z_{5}+h_{5}\right)}{L} \tag{10}
\end{equation*}
$$

When the areas at the ends of the reach are reasonably alike there has been no material net change in the investment in velocity head, regardless of minor fluctuations within the reach tested, as evidenced by slightly varying areas in intermediate stations.

From the office platting and computations, R, V, and S have now been determined. These can be substituted in formulas 5 and 6 to solve for n and n^{\prime}.

NORMAL FLOW AND DEPARTURES THEREFROM

Every conveyance canal is designed with certain assumptions of the four elements S, V, R, and n, looking toward the various combinations of V and A that will multiply together to give the desired design quantity of flow or discharge, Q. The adopted water prism indicates normal design flow and assumes a uniform flow in a uniform channel between changes in shape or hydratulic elements of the water prism. When the canal is finished, if the assumed value of n and the initial value of n should be exactly alike, the actual normal flow coincides with the design normal. However, this is seldom the case and the water prism at whatever depth in uniform flow, if it actually develops, is in normal flow. In practice, actual flow is seldom uniform over an appreciable reach of canal. Water in a canal is nearly always being either accelerated or retarded within a range of velocities that is sometimes unbelievable. This is evidenced by the fact that nearly all test observations show a difference in the size of the areas of cross section throughout any reach of canal. When velocities are increasing, part of the total energy available at the beginning of the reach has been utilized in the increase in velocity head required at the lower end of the reach over that for the upper end. Conversely, when the velocities are retarded the change in velocity head has been negative and the difference in the necessary velocity heads has been added to the fall of the water surface to make the total fall used in the friction slope.

The deduction from this continual change in average velocity is that the slope of the water surface is not the whole measure of the friction slope and the slope of the energy line must be used. The energy line is located above the water surface by the amount of the velocity head, usually assumed as $1.0 \frac{V^{2}}{2 g}$; whereas recent studies of the velocity contours within canal sections indicate that $1.1 \frac{\mathrm{~V}^{2}}{2 \mathrm{~g}}$ more truly expresses the summation of the velocity heads for the various elements of flow across the water prism. There is no uniformity to the coefficient I.I, but it is more nearly correct than 1.0 and some computations of carefully explored sections indicate values as high as 1.35 , or more.

The term "normal flow" naturally suggests the use of normal velocity, V; normal slope, S; etc., for the various hydraulic elements satisfied when uniform normal flow exists. The question naturally arises, Why is uniform flow not attained as a rule? Such flow would be the rule in the uniform channel regardless of the efficiency of the channel, but this uniformity must extend to uniformity of alinement and of all other attendant conditions. The presence in most canals of tangents and curves in alinement; of various constrictions at checks, drops, bridges, and other structures; of changes in channel materials, such as earth sections changing to concrete-lined sections, or from one type of canal through a flume or siphon pipe and then back to open sec-
tion again-all tend toward departures from the normal and must be looked for as certainties in canal operation.

DETERMINATION OF ENERGY SLOPE, s

In order to bring out the difference between surface slope and energy slope (52) in the determination of n, a concrete example is given:
Test No. 260 was made on the Salt River Valley Canal, in Arizona. The various items of the data were as follows:

[^6]The energy slope is more likely to approximate the bed or design slope than is the slope of the water surface. In the example, the value of n computed for the energy slope was 0.0222 , while if computed for the slope of the water surface this value was 0.0217 . The difference is academic rather than practical for low velocities but for lined canals and flumes, where higber velocities are the rule, it is material and should not be disregarded.

DETERMINING THE PROGRESSIVE VALUES OF n IN THE SAME LOCATION

Sometimes progressive values of maximum carrying capacity of a channel are desirable. These are generally determined in terms of Kutter's n. If the value of n is determined by experiment when the channel is new and clean, then a par value can be computed. Subsequent tests will disclose the progressive relationship to that par value; then, if the capacity is being reduced, various improvement steps can be tried and the net effect of each step determined by observations on one or more test reaches used for all observations. Usually there is a marked difference in the bottom and sides of a channel, especially in the older concrete linings. From periodic tests at various depths of chanmel, the relative effect of sides and bottom can be definitely determined. Periodic tests, taken over a typical reach and separated only a few days, give an excellent curve of seasonal change in the values of n or in the related maximum carrying capacity. This change in capacity can be pictured on a time-quantity diagram. A second curve
of the seasonal demand or the seasonal supply-whichever controlswill indicate the extent of change necessary in the seasonal capacity. For systems without reservoir storage, seasonal reduction in capacity may not be working hardship, if the available capacity will satisfy the reduced seasonal supply.

The results of periodic tests and the methods used are well exemplified in the improvement of the Los Angeles aqueduct from Owens River, serving Los Angeles with domestic, power and irrigation water. This conduit reaches from Owens Valley to San Fernando Reservoirs, a distance of some 230 miles. It is constructed largely in concrete sections of trapezoidal or rectangular shape, interspersed with many long inverted sipbon pipes of concrete and riveted steel and with concrete-lined tunnels. Finished in 1913 the entire aqueduct cost about $\$ 25,000,000$ (41, p. 271); the design hydraulic elements of say the Mojave division canal sections were: Capacity, $Q=431$ secondfeet; $V=4.59, S=0.00035$, and $n=0.014$. Several years ago it was decided to bring in additional water from Mono Lake by way of Owens Valley, and the city authorities were confronted with the problem of how to do it. The obvious alternatives were to build a second aqueduct, parallel to the first, or to increase the capacity of the first to accommodate the new water. Preliminary observations disclosed that the old aqueduct had deteriorated, in places, so that its capacity had declined to about 400 second-feet. The actual initisl capacitycalled the par value elsewhere in this bulletin-had not been determined by test. It was several years after completion of the aqueduct that its full capacity was required, and by that time some deterioration land taken place, priacipally on the bed of the conduit.

Periodic tests, elaborately carried out, resulted in the decision to secure a maximum capacity of 500 second-feet by increasing the capacity of the existing aqueduct. Paradoxically, this was attained by making the channel smaller; that is, an exceptionally smooth lining was laid on the floor of the old concrete (pl. 3, B).
Detailed elements of the periodic tests, both before and after improvement of the lining are given in table 1, Nos. 18 to 32 . It is to be noted that the increase in capacity was not theoretical, approximately 500 second-feet of water being actually run in the aqueduct. Thus an increase in capacity of about 25 percent was secured at a capital cost of some $\$ 320,000$, which was only 1.4 percent of the capital cost of the original conduit. This bold undertaking was so completely an appreciation of the value of Kutter's n in the determination of capacity that the methods used in the observations are worth describing.

Proctor ${ }^{\text {to }}$ discloses the results of the tests leading to the improvement of the aqueduct. In 1927 field parties under his direction regulated a steady flow of 389 second-feet into the aqueduct at Haiwee Reservoir. This was determined by both Venturi meter and current meter observations, which agreed with each other to within 0.56 percent. Similar gagings were made at the various curreat-meter stations down the aqueduct, and the loss of water in the various reaches was determined. In later computations this loss was prorated between meter stations. The meter measurements were all interpreted through the vertical velocity curves. For the length of the

[^7]aqueduct, measurements down to the water surface were made from reference points established on manholes or on the edges of holes cut in the concrete cover of the aqueduct. The location of the water surface, was taken as the mean between crest and valley of waves in minute-long observations.

Curves for values of Kutter's n between 0.010 and 0.015 were drafted for each cross section. These were the d, Q curves similar to those shown in figure 1. From these, preliminary figures showing the approximate value of (assuming uniform flow) and the maximum capacity were determined for each cross section. This procedure also disclosed the bottlenecks where capacity was a minimum and where improvements were to be concentrated. In February 1928, water was

Frause 1.- Curves for determination of progressive capacity of a typical lined canal. (Colorado Rlver Aquaduct akken as exsmple.) Basic curves give vajues of area, A, and bydrautic radius, R, for any depth of water. Secondary curves shovv values of velocity, V_{1} and dischafye, Q, for all reasonable depths and values of n. For comparison, the V ed curve (which is independent of tho value of n) is also given.
turned out of the aqueduct and the inside surface classified in terms of apparent roughness. Cross-sectional measurements were made at each observation point and the energy gradient was computed from point to point. Drop-down curves were encountered in rough reaches followed by smooth ones, and backwater curves in smooth reaches followed by rough ones. Such nonuniform flow was computed for the energy gradients from point to point.

The Freeman division, some 20 miles in length, was found in excellent condition. This division rated the desired extra capacity with but little rehabilitation work. Items Nos. 18 to 24 in table 1 show the values of Kutter's n after this division of the conduit had been in service about 15 years without special treatment of the interior. On the other hand, items Nos. 25 to 32 show similar results for the Mojave division, some 28 miles long, both before repair work and afterward.

In the preliminary study of the aqueduct it was noticeable that the concrete on the bottom had eroded badly in. places and in others hardly at-all. In fact, much of the difference in capacity, in various reaches, was due to tilis difference in bottom conditions, and these conditions were traceable to the hardness of the original concrete. Proctor then developed a test procedure. In essentials, a phonograph needle was dulled at the point until about one sixty-fourth of an inch across. This needle was then loaded with $1-, 2-, 3-, 4$-, and 5 -pound weights. It was found that a satisfactory hardness was achieved when the 4 -pound weight was the least that would develop a cleancut scratch on the concrete, against a straightedge laid on the bottom of the aqueduct ($\mathrm{pl} .3, B$).

Ir the rehabilitation work, approximately a 1 -to- 2 mixture of cement and sand less than one-eighth of an inch in maximum dimension, was used. Over the bottom was placed a mix as dry as would spread uniformly, screeded to a minimum thickness of three-eighths of an inch. A bond with the old concrete was secured by thoroughly brushing a 1-to-I mixture of cement and sand over the cleaned surface just before the mortar was placed. The mortar was allowed to stand until just before the initial set, excess water being absorbed by the addition of a dry mixture of 1 part sand to 1 of cement. The surface was smoothed, and the drier thoroughly spread with a wooden float. The surface was then finished with a steel trowel after the mortarhad started to set, the troweling being delayed as long as possible. It was essential to deposit the mortar at the same rate at which the steel troweling could progress; the trowel work had to be done at the latest possible time so that the operation would not bring water from the mortar to its surface, thus causing a soft wearing surface. This process of finishing by the use of surface drier results in crazing of the surface where the mortar is subject to extreme drying, but none of this took place within the conduit as it remained moist even during periods of shut-down of 2 weeks or more.

EXAMPLE FCR PERIODIC METHOD

For determining the value of n or for the general purpose of observation of progressive capacity of a canal the following outline is given:
Figure I shows some of the characteristic curves (57) for the canal section of the new Colorado River aqueduct, conveying water for municipal and irrigation use of the member cities of the Metropolitan Water District of Southern California. This is a concrete-lined canal, 20 feet wide on the bottom with side slopes of $1 / \frac{1}{2}$ to 1 , and design elements as follows: With Manning's $n^{\prime}=0.014$, then $V=4.45$ for a depth of 10.2 and $S=0.00015$, and $Q^{\prime}=1,605$. With Kutter's formula at $n=0.014$, the value of Q^{\prime} would be 1,576 second-feet. The diagram is based on Kutter but Manning is quite close, through the range considered. There will be no expansion joints in the lining. Periodic determination of the values of n or of other information concerning this portion of the aqueduct can be quickly made from this set of curves.

Note that the point A^{\prime} gives design elements by Manning's formula on the curves and A by Kutter's formula. Suppose the value of n shortly after the aqueduct is put in commission should be much lower than the design figure. On a channel of this importance, discharges
will be measured as a matter of routine. Suppose the design- Q^{\prime} of 1,605 second-feet could be run in the canal and found, in long typical reaches, to be but 9.2 feet deep, then the curves (point B) show that the value of $n=0.011+$ has been actually attained. This query then presents itself: If the value of $n=0.011$ holds, what is the maximum capacity of the aqueduct? The point O indicates that nearly 2,000 second-feet could be run in this portion of the aqueduct. If the condition of the aqueduct as a conveyor of water should again be checked, say after 10 years of use, and a tlow (discharge) of 1,300 second-feet should be found consistently to occupy a depth of 9.2 feet (point 7), then it would appear that the aqueduct had gradually reached ac condition equivalent to that assumed in design and that the value of $n=0.014$ holds. If, in say another 10 years, the same flow of 1,300 second-fect occupies a depth of 9.55 (point E) rather consistently, then the aqueduct has depreciated beyond the conditions assumed in design and the value of $n=0.015$ bas been reached. Suppose that by this time it is decided a sustained capacity flow of 1,700 second-feet is desirable; then point F shows that the canal surface and hydraulic. roughness must be improved until $n=$ about 0.013 .

Any important canal should be tested to see whether critical depth may be imminent for any condition liable to come to the channel. Critical depth is usually associated with fairly high velocities. For any shape of channel with continuous functions of A, P, R, eic., the velocity head for critical velocity for any depth is given by the formula:
and

$$
\begin{equation*}
h_{c}=\frac{A}{2 T^{\prime}} \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
V_{c}=\sqrt{2 g h_{c}} \tag{12}
\end{equation*}
$$

For the metropolitan aqueduct section under consideration the V, d curves for various values of n are given, and it is noted that these curves are quite distant from the curve V_{c}, d. In other words, values of V_{c} are so high that no condition of this aqueduct can be imagined that would yield such velocities.

ELEMENTS OF FIELD TESTS To DETERMINE ROUGHNESS COEFFICIENTS

In table 1 are shown the hydraulic elements of the empirical data, followed by text matter giving brief descriptions of the general conditions at the canals tested. In both table and descriptions the experiments are usunlly arranged in groups according to the material of the containing channel, while the order within each group follows an ascending value of n. Where several tests were made on the same canal with the same or various discharges of water, tests on that particular canal are not separated.

EXPLANATORY NOTES FOR TABLE 1

Column 1 gives the consecutive numbers, which refer to the order followed in the discussions in the following pages.

Column ? shows the authority and his experiment number where such was carried. The initials referring to members of the staff of the Bureau of Agricultural Engineering at the time the experiments were made, are as follow' FCS refers to the author, Fred C. Scobey, senior irrigation engineer, in elarge of experiments on the flow of water in conduits. At various times the was assisted
by E. C. Fortier, P. A. Ewing, F. G. Harden, A. S. Moore, R. H. Wilken, and others. DHB refers to the late Don H. Bark, then in charge of work in ldaho. BPF refers to the late Burton P. Fleming. WBG refers to W. B. Gregory, then head of the department of experimental engineering, Tulane Tniversity, La. STH refers to Sidney T. Harding, then irtigation enginecr in charge of work in Montana. VMC refers to V. M. Cone, then in charse of work in Colorado.. SF refers to the late Samuel Fortier, then Chief of the Division of Irrigation, for citations to experiments he had made some years beforc (19, 19). FCS +AK refers to experiments made, in informal cooperation, by the author and Arthur Kidder, then engineer for the Pacific Gas \& Electric Co.

For experiments by engineers in other agencies, the following symbols are used: BR refers to the United States Bureat of Reclamation. When the reference is followed by initials the engineer reporting the data has been identifed: thus D refers to A. L. Darr, F to L. E. Foster, L to E. W. Lane, M to J. S. Moore, and S to W. G. Steward. JBL refers to J. B. Lippincott, consulting engineer, Los Angeles, Calif. (4O). REB refers to R. E. Ballester, director of irrigation works on the Rio Negro, Argentina (4). CCW refers to C. C. Wiliams, then professor of civil engineering at University of Colorado (e9). 13 CC refers to Braden Copper Co., of Chile, reported in correspondence with the writer by A. J. Noerager. See also plate 21, B.

JW refers to J. Eppler, of Switzerland (62). ES refers to Ettore Scimemi, of Padua, Italy (58,54), MV refers to Marco Visentini, of Parma, Italy (68). RRP refers to R. R. Proctor, ficld engineer, Department of Water and Power, Los Angeles, Calif.

Column 5 refers to the general shape of the canal cross section, also referred to in figure 2. These data, considered in connection with columns 7 to 9 , inclusive, give an idea of the water section.

Column 12 refers to the method of measuring or otherwise determining the discharge at the time of test, Q. In detail: M refers to current meter, I signifies that the integration method was used, VC signities that the mean velocity was obtained by means of the multiple-point method interpreted through vertical velocity curves, $-2+8$ signifies the mean of the velocitics obtained at 0.2 and 0.8 depths in each vertical was accepted as the mean of the verticul, -6 signifies that the velocity obtained at 0.6 of the depth below the surface was accepted as the mear for the vertical. Extensive experiments indicate the discharge computed this way is about 5 percent too high for measurements in artificial chanmels.

RC signifies the discharge was taken from a rating curve. If the test reach was too far from the gaging station usually an appropriate correction has been made for seepage losses between it and the gaging station. IV refers to a weir measurement, under standard conditions. Cafter the W signifies that a Cipolletti weir was used. Vent. refers to a Venturi meter in a pipe line.
Column 19 shows the various wind conditions; C , significs caim; U , upstream; D, downstream; and A, across. Where of sufficient inportance to affect results seriously, additional information is given in the text.

Tbe other columns are self-explanatory.

[^8]

FIGURE 2.-Typieal shapes of chanzels used in elassifylig data in column 5, table 1 .

Table 1.-Elements of experiments determining the coefficient of flow in Chezy's formula and the coefficients of roughness in the Kulter and Manning formulas
CONCRETE LININGS: POURED OR HAND-LAID CONCRETE

Same canal, another reach. Much gravel
on lined bed for test 53 . Very little on lined bed for test 53 . Very little
gravel on bed during tests 54 to 57 , ingravel on bed during tests 54 to 57 , in-
clusive. clusive.
Same canal, another reach, on section 4
wita much smoother concrete.
Water control and improvement district
No. 6.
0 King Hill project, Idaho, Rough, curve
Sanderfer, Calif. Tangent, smoolh... Sanderfer, Calif. Tangent, smooth....
Uncompahigre project, Colo............. Same, below 7 drops.
Same, mile post 6

S
Yakima project, Wash. Mabton Canal Same. This series of observations was made on the same reach of canal between Apr, 1 (for Mr. Moore's test 1) and Oct. 13,1916 (for his test 18). The from 23° to 75° and having a total length of 441.3 feet. The water surface elevations were derived from book-gage readings. The gages were hastalled in vertical concrete wells, cast in the canal bank and connected with the fowing prism by a horizontal pipe. he current the upper end of the reach: Tests 3 to 0 inclusive were made while there were slight obstructions on the canal bed, due the er rolling in from the hillside. Orland project, Calif. Lateral No. 12 . Colton Calif Tangent South Cottonwood Ward, Utah. Band. Modesto main, Cal
Santa Ana main, sandy bed. Deposit.-South canal, Pacific Gas \& Electric Co Calif. Series to determino values of n or canal with very sharp bend Reaches in section A follow ench other Likewise in sections B and C, Reach Reach A2, radius 450 feet 6 feet radius. feet, A4 radius 1,100 feet, A5 radius 112 feet, Ab radius 1,100 feet, a 7 radius 06 feet, A8 radius 500 feet, $B 1$ radius 78 feet.

Table 1.-Elements of experiments determining the coefficient of flow in Chezy's formula and the coefficients of roughness in the Kutter and Manning formulas-Continued

CONCRETE LININGS: POURED OR EAND-LAID CONCRETE-Continued

SHOT-CONCRETE (GUNITE) LININGS WITH EXCEPTIONS NOTED

133	FCS-91	1929	Rossow, near Mission, Tex	L	1,003.8	7.7	2.4	13.32	2.02	27.0	M-I.	1.39	0.176	129.4	0.0122	0.0122	81	C
134	FCS-97.	1932	East main, near Edinburgh	L	2, 800.0	8.2	2.0	11.74	2.44	28.7	M-I.	1. 23	. .382	112.6	. 0137	. 0137	86	
135	FCS-90.	1029	Main, near Progresso, Tex.	L	2,483.0	8.3	2.4	13.86	1.93	20.7	M-I	1.38	228	108. 4	. 0144	. 0144	86	
136	FCS-99.	1933	Ervine Ranch canal, Calif. Best reach	K	600.0			6.72	2.90	19.47	M-I.-.--	. 99	85	99.7	. 0149	0149		
137	FCS-99a	1933	Same canal, surface rough and uneven	K	400.0			6.08	3. 20	19.47	M-I	. 94	1. 428	87.1	. 0167	. 0169		
138	FCS-99b	1933	--do...	K	900.0			5.56	3.50	19.47	M-I	. 07	1. 492	84.1	. 0173	. 0178		
139	ECS-96.	1832	Main, near Weslaco, Tex	L	1, 100.0	7.6	2.4	13. 17	1.85	24.4	M-I.	1.38	2. 261	97.6	. 0158	. 0171	88	
140	ES	1024	Canale di S. Croce, from Piava River--*	C	714.4			49.9	3.61	180.7		2.17	- 53	106.5	. 0160	. 0160		
$\begin{aligned} & 141 \\ & 142 \\ & 143 \\ & 144 \\ & 145 \end{aligned}$	ES.	1024	(Same, in Italy. 1 curve of 100 meter radius. Built 1020. Sidos left as shot. Bed smoothed but covered in places with sand and gravel. Values verity use of $n=0.017$ for untreated shot-concrete.	C	714.4			($\begin{aligned} & 64.0 \\ & 71.3 \\ & 81.8 \\ & 87.7 \\ & 115.2\end{aligned}$	4.13 4.53 4.69 4.92 5.67	$\begin{aligned} & 264.8 \\ & 324.4 \\ & 384.2 \\ & 430.8 \\ & 654.6 \end{aligned}$		$\begin{aligned} & 2.59 \\ & 2.82 \\ & 3.12 \\ & 3.18 \\ & 3.87 \end{aligned}$	$\begin{array}{r} .58 \\ .58 \\ .68 \\ .60 \\ .63 \end{array}$	$\begin{aligned} & 106.5 \\ & 112.1 \\ & 110.3 \\ & 112.6 \\ & 14.8 \end{aligned}$.0104 .0158 .0162 .0160 .0181	.0164 .0158 .0163 .0164 .0162		
$\begin{aligned} & 146 \\ & 147 \end{aligned}$								$\left(\begin{array}{l}53.3 \\ 71.5\end{array}\right.$	3.38 3.71 3.13	180.8		2.29 2.83	$\begin{array}{r}.44 \\ .39 \\ \hline\end{array}$	106.6 111.6 120.3	. 0160	$\begin{aligned} & .0160 \\ & .0158 \end{aligned}$		
148	ES.	1924	Samb, farther dowustream, much less					78.4	4.13	324.4		3.02	. 39	120.3	. 0148	. 0148		
151								129.6	5.05	654.6	M	4. 10	. 39	126. 2	. 0147	. 0149		
152	ES-A.-....--	1924		-	2, 257.8	31.90	0. 63	125.5	5. 90	741.0		4.07	. 380	140. 7	. 0127	. 0129		
153	ES-b......-	1924	Very	0	2, 257.8		9.42	194: 6	7.71	1,500.0	M	5. 25	. 418	164.8	. 0116	. 0116		
154	$\begin{aligned} & \mathrm{ES}-\mathbf{c} \\ & \mathbf{E S}-\mathrm{a} \end{aligned}$	1924	Very		2,257. 8		11. 6	254. 0	8.27	2, 101. 0	M	6. 10	.552	140.7	. 0143	. 0138		
156	$\begin{aligned} & \text { ES-a } \\ & \text { ES-b } \end{aligned}$	1924	Same, "ceme	C	884.8 884.8	48.2	7.48 10	179.3 277.3	4. 13 5.41	1, 741.0	M	4.72 6.04	- 230	134. 0	0142 0131 0	. 0143		
7	ES-C	1824	Reac	-	884.8		12.4	364.0	5. 77	2,101.0	M	6. 90	.236	146. 7	0140	. 0142		
158	ES	1924			1,225.2	54.4	7.97	180.6	4. 10	${ }^{2} 741.0$	M	4.23	. 334	108. 7	0174	. 0175		
9	ES	1924			1, 225. 2		10.66	294.8	5. 09	1,500.0	M	5.77	. 288	129.0	. 0150	. 0149		
160	ES-	1924		¢	1,225.2		12.95	400.0	5. 25	2, 101.0	M	6. 59	. 335	122.0	. 0175	. 0172		
61	ES	1924	ton to mid-depth, then $2: 1$ to battom.	C	2, 311.8		8.46	200.0	3. 71	741.0	M	4.53	. 274	102.7	. 0180	. 0177		
162	ES	1924	top to mid-depth, then $2: 1$ to battom.		2,311.8		10.96	309.0	4.86	1, 500.0		5. 97	.305	114.8	. 0180	.0181		
163	$\mathrm{ES}-\mathrm{c}$	1924			2,311,8		13.16	402.5	5. 22	2,101.0		6. 63	. 326	112.0	. 0190	. 0182		
164	ES-a	1924					[8.86	301.2	2.46	741.0	M	5.31	. 183	77.5	. 0250	. 0250		
65	$\mathrm{ES}-\mathrm{b}$	1924	above. Side slopes 2:1. Bed rounded.	-	4,320.6	75. 45	11.12	436.0	3.44	1,500.0	M	6. 43	. 380	69.4	. 0290	. 0293		
	FS-C-93	1924	Lateral N, near Mcallen	P	200.0		(12.86	552.0	3.81	2, 101. 0		7. 22	. 430	68.4	. 0290	. 0307		
8	FCS-92	1931	Same, broomed "gunite"	P	200.0 800.0	3. 1	1.4 1.90	3. 68 68	3.89 1.89	12.6	${ }_{\text {M-I }}$. 74	2.91 .374	77.6	. 0176	. 0182	88	
	FCS-89\%	1019	Lower, Lindsay-Strathmore irrigation district.	11	883.9	13.0	2.0	26.09	1. 70	44.4	Vent...	1. 83	. 190	91.4	. 0177	. 0180	72	
70	FCS-95.	1832	West, near Harlingen, Tex	C	1,600.0	9.5	3.5	16. 50	1.03	17.0	M-I.	1. 5.3	110	79.8	0187	. 0201	85	U

EARTH CANALS

	－ロニニロローッニッニ
oremi esonecsoiven－rivin iven－1	
－ 	Nonemonnon－nom
O 	
	．

[^9] .0170
.0211
.0210
.0200
.0187
.0200
0.0207
.0194
.0193
.0188
.0190
.0210
.0238
.0170
.0194
.0174
.0176
.0180
.0186
.0181
.0183
.0184
.0186
.0193
.0194
.0199
.0188
.0211
.0190
.0225
.0244
.0242
.0293
.0251
.0260
.0224
.0258
.0254
.0204
.0224
.0280
.0192
.0196
.0200
.0202
.0204
.0204
.0205
.0206
.0208
0211
 \qquad

Table 1.-Elements of experiments determining the coefficient of flow in Chezy's formula and the coefficients of roughness in the Kutter and

 	Wive －in ons	ب\％ Nogpnoio			
H\＆ ili，mi 1，	\lll＜ －ดoの0			$\begin{aligned} & \text { ぶぶ3 } \\ & 1 \\ & 1 \\ & 104 \\ & 1 \end{aligned}$	心 $+\infty+\infty+\infty+\infty+\infty+\infty+\infty+\infty+\infty+\infty$
 	－ 	©		$\begin{aligned} & \text { Ho } \\ & \text { OOB } \end{aligned}$	

[^10]Table 1.-Elements of experiments determining the coefficient of flow in Chezy's formula and the coefficients of roughness in the Kutter and Manning formula-Continued

EARTH OANALS-Centinued

COBBLE-BOTTOMED CANALS

346	COW-13	1908	Bersley, Colo	I		16.0	46	7.4	1. 74	12.9	M	44	1.93	87.0	. 0220	. 0149	
347	VMC	1912	Lateral 1 from Rio Grande canal, Colo.	1	1,238.0	25.5	1.46	37.22	3.86	143.6	M	1. 42	12.20)	68.8	. 0222	. 0230	
348	VMO.	1912	Rio Grande canal, Colo-.......	I	2,000.0	65.4	2. 23	146.0	4.84	707.0		2. 22	13.07	58.4	. 0284	. 0289	
349	BCC-2.25.		(Cachapoal canal, Chile, tests through					(135	3.90	527.0		4.38	1.88	60.7	. 0317	. 0319	
350	BCO-2.94---		cangth of canal at ky figures in					107.4	4.91	527.0		3. 80	11.02	78.8	. 0230	.0235	
351	BCC-4.09		cated by ligures in column 2. Nos.					110.9	4.75	527.0	M	3. 99	11.5	61.4	. 0307	. 0304	
352	BCO-7.03	1928	351 in cem	D				141. 1	3.73	527.0	M	4.43	1.82	61.9	. 0312	. 0308	
353	BCC-7.41.		some boulders. No. 353 cemented five					93. 25	5. 65	527.0		3.62	11.5	76.7	. 0249	. 0240	
354	BCC-8.12...		gravel, smooth. No. 354 , rock cut,					105. 3	5.02	527.0		3. 85	11.77	60.8	. 0308	. 0306	
355	BCC-8.31		cemented fine gravel, smooth.					129.5	4.07	527.0		4.38	1.87	66.0	. 0291	. 0288	
356	BCC-8.67.	1928	Adobe earth, some boulders	D				120.0	4.39	527.0		4.03	11.23	60.6	0312	. 0318	
357	BCC-9.15	1928	Earth and gravel, stony b	D				122.8	4. 20	516.0	M	4, 04	11.5	53.9	. 0352	. 0335	
358	BCC-9.57	1928	--do	D				139.0	3. 71	516.0	M	4.19	1.94	59.1	. 0324	. 0316	
359	BCC-9.84	1928	do	D				142.3	3. 63	516. 0	M	4. 20	${ }^{1} 1.00$	56.0	. 0340	. 0338	
360	BCC-10.04.-	1928	do	D				161.1	3.20	616.0	M	4. 74	1.70	55.5	. 0356	. 0370	
361	BCC-10.23.-	1928	do	D				121.3	4.25	516.0	M	4.21	11.7	50.2	. 0382	. 0421	
362	BCC-10.37.-	1928	Cemented gravel and boulders, s	D				118.6	4.35	516.0	M	4.06	11.30	59.9	. 0311	. 0313	
363	BCO-10.60..	1928	Earth and boulders, rough stony be	D				127.3	4.05	516.0	M	4.33	${ }^{1} 1.80$	45.9	. 0423	. 0414	
364	BCC-10.94..	1928	Cemented gravel and boulders, smoo	D				128.7	4.01	516.0	M	4.36	11.00	60.7	. 0326	. 0312	
365	BCC-10.99..	1928	Earth and boulders, rough stony bed.....	D				129. 1	4.00	516.0		4.32	${ }^{1} 1.54$	49.0	. 0395	. 0405	
366	BGC-11.28..	1928	Comented gravel and boulders, smoo	D				110.8	4. 66	516.0	M	4.01	11.30	64.5	. 0288	. 0290	
367	BCC-11.41.-	1928	- do	D				106.5	4.84	516.0		3.86	11.40	65.9	. 0270	. 0282	
368	BCC-11.50	1928	do	D				93.7	5. 54	516.0	M	3. 61	11.03	66.3	. 0278	. 0277	
369	BCC-11.73.	1928	Cemented fine gravel	D				103.7	4.98	516.0	M	3. 84	11.10	76.6	. 0243	. 0243	
370	BCC-11.85..	1928	do.	D				104. 3	4.95	516.0		3.91	11.10	75.5	. 0253	. 0247	
371 372		1892	Cavour, Italy, Finished 1866. Tests by	\{ H		71. 5		448. 3	3. 10	1,300.0		5. 17	1. 290	80.1	. 0247	. 0246	
372			Bazin. Rocky bed. Grassed sides	H		76.8		718.6	3. 70	2, 8589.0		7.3 L	1.290	80.4	. 0202	. 0259	
373	MV-1	1933	Same, tests 41 years later by Visent	H	16, 400.0	65.0		79.4	4.22	3,347.0	M	8.07	. 258	92.3	. 023	. 0229	
374	MV-2	1933	Same, bed covered, small cobbles		16,4(\%). 0			825.0	4. 40	3,632.0	M	8.31	310	86.7	. 025	. 0246	
375	SF-63	1897	Hyrum, Utah.	H		5.0	. 37	1.87	+ 84	1.54		. 35	11.3	38.9	. 0260	. 0320	
376	STH-31	1913	Bitter Root Valley lrripation Co, Mont.	II	fio. 0	27.0	2.32	62.57	2.27	142.0	M-VC.	2.27	. 55	60.6	. 0262	. 0283	
377.	STH-4	1913	Billings Land \& Irrigation Co., Mon	II	1,000.0	24.0	2.67	64. 10	2, 67	171.0	M-VC	2.38	.72	64: 2	. 02264	. 02269	62 D
378	COW-7	1908	Loveland and Greeley, Colo...............	I		34.0	1.74	59. 20	1. 69	100.0	M-6.	1.69	1.50	58.2	. 02067	. 0280	
379	FCS-10.	1913	Upper, from Big Cottonwood Oreek, Utah.	1	050.0	11.0	1. 39	15. 28	1.76	26.9	$\mathrm{M}-\mathrm{YC}$	1,17	1.012	51.2	. 0277	. 0209	
380	FCS-15	1913	Logan and Northern, Utah, grassy banks.	D	630.0	16. 2	2. 60	42.72	1.77	75.7	M-VC	2.25	. 37	61.3	. 0270	. 0272	51 C
381	VMC	1912	Rio Grande lateral No. 1, Colo	I	5. 2880.0	43.7	1.87	81.6	4. 66	380.0		1.85	3.66	56, 3	. 0254	. 0292	
382	FCS-51.	1913	Reno, of Reno Light \& Power Co., Nev., riprap.	D	800.0	18.0	3.92	70.69	3. 57	252.0	$\mathrm{M}-\mathrm{VC}$	3.02	1. 129	(61. 1	. 0291	. 0294	D
383	COW-12	1908	Beasley, Colo., gravel bed, log sides	I		24.0	. 50	12. 10	1. 10	13.3		. 45	11.4	42.5	. 0320	. 0320	
384	FCS_{5}	1913	Sullivan and Kelly, Nev., laid	$\stackrel{1}{4}$	670.0	10.5	2.45	25.7	1.54	40.9	M-VC	1. 81	. 603	48. 2	. 0324	. 0342	70 A
-385	$\begin{aligned} & \text { SF-55. } \\ & \mathrm{SF}-47 \end{aligned}$	1897	Smithneld lateral, Utah	H		5.1	. 58	2. 97	. 43	1.29	W	. 52	1.353	32.0	. 0339	- 0417	
387	SF-33-	1897	Logan and Hyde?	I		1.8	. 32	. 80	1. 1.02	${ }^{5} 5$	W	\bigcirc	1.12 .12	20.7	. 03368	. 04548	
388	SF-57	1897	Smithfield latera, U	1		4.6	.24	1. 11	1.33	1. 48		. 23	17.1	21.1	. 0377	. 0550	
389	FCS 42.	1913	Cochrane, Nev	G	733.8	14. 0	1.58	23.08	1.18	27.2	M-VC	1. 39	. 685	37.9	. 0379	. 0416	71 U
390	FCS-89	1913	Beasley, Colo.,	1	880.2	14. 0	. 71	9. 97	1. 82	15.1	M-VC.	. 65	5. 84	29. 6	. 0383	. 0468	52 A
301	FCS-52.	1913	Capurro, Nev.	E	300.0	3.2	. 86	2.74	. 35	. 96]	$\mathrm{W}-\mathrm{C}$. 56	. 3366	25.6	. 0403	. 0527	C

Table 1.-Elements of experiments determining the coefficient of fow in Cheoy's formula and the coeflicients of roughness in the Kutter and

COBBLE-BOTTOMED CANALS-Continued

sidehill cuts with retaining walls

395	STH-23.	1913	Hedge canal, Mont., plastered		250.0	14.0	3.08	43.10	1.58	08.1	M	231						
396	STH-27.	1913	Same, earth and gravel bed.	J	450.0	13.0	3. 76	33.9	1. 85	60.5	$\mathbf{M}-\mathrm{VC}$	2.31 2.10	. 330	90.5	0185	0190	55	C
397	STB-9.	1913	Cove canal, Mont., concreto	J	900.0	12.0	1. 68	20. 21	2.30	40.6	M-VO	1.45	80	67.5	0228	0229		
398	FOS-17a	1913	Logan, Hyde Park, and Smithfeld, Utah.	J	337.0	13.0	1.73	22.40	3. 12	70.2	M-VC	1.48	1.852	69.7	. 0256	. 0267		
399	FOS-17b	1913	Same, another reach.	E	100.0	12.5	1.78	22, 22	3. 10	70.2	M-VC	1. 44	2.37	54.2	0278	. 029	5	
400	8TE-26.	1913	Hedge canal, Mont., concrete wall, floor..	J	300.0	12.5	2.88	36.0	1.85	60.5	M-VC	2. 13	44	60.5	. 0260	. 0250		
401			Fossa di Pozzolo, Italy, bed and sides --		3,918.3	42.65	3.81	128.7	3. 50	380.0	M	3. 47	1.067	53.4	0.033	. 0238		
402	M	1931	cocky, masonry wall lower side.		$3,918.3$	42.65	4.30	164. 0	3.47	569.4	M	3. 50	1. 087	57.8	. 032	. 0328		
403		1931	Same reach. Sce plate 12-A		3,918, 3	42.65	4.40	197, 1	4.04	793.1	M	4.01	1.112	62.7	. 030	. 0312		

MISCELLANEOUS SECTIONS

404	FCS-74	1013	Lower, Riverside Wator Co., Calif........ E	200.0	10.5	1.38	14.45	1.32	10.0								0
405	FCS-73	1013	Same, sandy bed, one side ple	750.0	10.0	1.52	15. 15	1.26	19.0	$\mathrm{M}-\mathrm{VO}-$	1.24	5253	47.4	0.024	0.0207	73	C
406	BR-S-26.		\{Rossi Mill, Idaho, sides almost vertical.-	520.0	12. 25		41.2	3, 64	150.0		2. 53	1.7115	85.8	. 0202	. 0202		
407	FR-S-27		R of rouph boards, grass in cracks. $\}^{J}$	520.0	12.66		49.3	4.18	206.0		2.65	1.8654	87.3	. 0200	0200		
408	FCS	1913	Logan, Hyde Park, and Smithfield, Utah E	265.0	9.5	2.15	20.40	3.44	70.2	M-VO..	1.52	3.0	50.9	. 0298	. 0314	55	C
403	JE	1905	Power canal, city of Aarau, Switzerland ${ }_{\text {- }}$ (C	1,066.0	52. 1		405.0	3.32	1, 346.0	M-VC..	6. 62	120	118.	. 0173	0173		

Table 1.-Elements of experiments determining the coefficient of flow in Chezy's formula and the coefficients of roughness in the Kutter and

CONORETE OHUTES-Continued

暗

 plintereajli-

 of Witur ard Poutor.

TYPICAL CONCRETE SURFACES.

 ate from some maters but mpy be ratnoverd, ss shown liy the dark surface io the right of the seale, restoring the original surface. D_{s}, High velocities accompanled by erosire material hase removed the fines in the sife wall tibove the watch, ryearly onilining each neblele in the original agregate.

[^11]

1. Lower canal, Lindsay-Strnthmire irrigation district, Catifornia. (No. Ital) Corerete lining tefi as shot from a gun. Note characteristic unoven water line and corieretu sirface. Contrast this lining with later shot-contrete linings as made in T'exas (pl. 2, A). B, Sulphur Greek wasteway, Washington. Nate long standing swella. (See Nos 435 to 45il.) C, Mavariek County Water Control and Itmprovement Uistrict No. 1, Teras. Exenvater in thin strata (see redks in foreground), the bothom was smooth but the sto of of this canal were exteedingly raugh. Ta fncranse the cajpecity the sides wore litied with redwood planks spaced to allow water to prass freely and not puifi up an unbalanced shatic head on ofther site of tha liningIn right foregroums the vertical studding is shown anchored to the bed.

 Grash and weets as showth, Mudero cmal mamberatre is conthecive to better tabucily conditions
 muddy waters discourage huatis prowth in hite wher prisn, hut hae fertile sift banks grow dense voge tation that arass town mo the water prism and devolousa hiph vaite of n.

A. Canale Fosea di fozzolo, daly. (No. Au1-2, viewed upstream.) An ofd canal with typical ellintical
 States. The other bank is a verical wall. Note the racky beti and the moss jatches in the forearounts. Photograph by coartasy of Mareo Visentini who repurted experiments an this canal. B, Milner-Gooxling main canal, Idabo. Unusalal construction. The dry-hait rowk walls were backfletl with pravel and earth, throurh a hady fissured rexik cit. Photograph from liuremu u! Rechanation.

 fhotergaphe from thareat of tievitamat bin.

 Arl the i *
 !!:... - : s.ata

 fosed it formatusel, bell.

 fornia. (No. 307; upsirema frenil slation 5.)

 shonlat be protected with riprap while the velgeity is toing rediecel to that bermissible in the earth

 engithers of the Unfled States section, lnierratiomal Bonndary Commission.

 of brumas sumartia.

 the brink at the top. Air enters the prism front the sithes untione water is qute white at the botion of
 flow for the distonee shown. In suble of the chutes on this camat the bydrable jamp takes phe a a shors

 a wherity, prewtimg formation of a graded smowh hat,

 mountain streant by a rough jinimg of groutert rueks. (', This part of the Joavis ;unt Weber Counties
 from 13 urenu of Reclamaion.

DESCRIPTION OF CANALS

The descriptions in the following pages are supplementary to table 1 , which gives all the information necessary to a clear understanding of the hydraulic conditions holding at various tests with the exception of a detailed description of the channel. The descriptions follow the same order and are numbered like those in the table. Missing numbers indicate there is no information additional to that found in table 1. The tense used is of the time the experiments were made.

CONGRETE LININGS

Podred or hand-laid congrete

No. 1, experiment DEB-4, Ridenbaugh canal, Nampa-Meridian irrigation district, Idaho. Test was made 2 years before and covered about the same reach as test No. 3 below. Bark found a slightly lower value for slope than later experimenters, which accounts for the lower value of n found. The preponderance of evidence indicates that a value of about 0.0125 is right for this excellent concrete, to include both tangents and curves. Coefficient $n=0.0110$.

No. 2, experiment FCS-24. Same canal as No. 1. Very smooth, hand-troweled, cement wash on a base of concrate $3 y$ inches thick. The reach is on tangent with about a 6° curve beginning at station 9 . Lining was slabs 16 feet long with iron dowels and strips of tarred paper between slabs. After the forms were removed, joints were poured with a neat cement. As a rule the joints are as smooth to the hand as any other part of the lining (pl. 5, A), though slight cracks are opened during cold parts of the day. This is an exceptionally well-made lining, which, coupled with the fact that the curves are spiraled into the tangents, accounts for the very low value of n found by all experimenters. For additional experience on this canal see Nos. 1 to 15, table 1. Examination 20 years later showed little deterioration in this concrete. Coefficient $n=0.0121 .{ }^{12}$

No. 3, experiment FCS-24a, was on the same canal as FCS-24, but the reach included not only the 901 feet of tangent as above, but also the above-mentioned curve, which was about 600 feet long, and a short reach of tangent below the curve, making the total reach 1,819 feet long. As is to be expected, the value of n is a little higher than on tangent. The slabs on curves were but 12 feet long. Coefficient $n=0.0129$.

No. 4, experiment BPF-3. This experiment was made on approximately the same reach of canal as FCS-24, but was $1,020.6$ feet long, with one slight curve in the reach. The slopes of the surface in this and experiments 44 and 45 were found by a line of levels run between the ends of reaches as usual, but the water surface was found by means of a gage constructed on the piezometric principle. The slope given in the table is the mean of 23 tests. Coefficient $n=0.0124$.

Nos. 16 and 17, experiments JBL-6 and 5. Former supply conduit for Los Angeles, Calif. Covered conduit. In use 4 years, one curve in section tested. Where wetted, section was very smooth. Apparently of 1 to 3 cement-mortar plaster on concrete. No deposit or growth. Coefficients $n=0.0108$ and $n=$ 0.0111 .

Nos. 18 to 32, inclusive, experiments RRP. Los Angeles aqueduct, Calif. These tests comprised a most comprehensive set of experiments, made to determine possibilities of increasing the capacity of the aqueduct from Haiwee Reservoir to San Fernando Valley. This conduit is used for municipal supply, power, and irrigation. Concrete-lined sections only were studied for this bulletin. Field and office experiments and computations by forces of the department of water and power, under the immediate direction of R. R. Proctor, field engineer. Two typical reaches are included in table 1 data. (See below.) For both, the discharge measurements were made at both ends of the reach by current meter, held at $0.2,0.4,0.6$, and 0.8 of the water depth in six verticals. The computations for Q were made by using both vertical and horizontal velocity curves. The results are stated to be within 0.5 percent of the true discharge. The observed loss of water was prorated according to distance below the initial measurement. For the purpose of the original experiments the method of study and determina-

[^12]tion of values of Kutter's n are given on page 13. The values of the roughness coefficients given in table 1, are based on slope of the energy gradient and weighterd values of the average velocities and hydranlic radii throughout the reaches as listed, using cross-sectional dimensions for many intermediate stations.

Nos. 18 to 24, inelusive, experiment RRP, Fremman division. General methods are outlined in the paragraph above. The lining in this division was found to be in such good condition after some 1.5 years of operation that practically no repairs were made ($\mathrm{pl} .3, A$). The fact that a general value of $n=0.0125$ was found on a long reach designed with $n=0.014$ supported the plan to bring all of the con-crete-lined portion of the aqueduct to this standard or better and also established the fact that a smooth surface of great hardness not only could be constructed but also could be relied upon to maintain its desired smoothness, whereas other localities showed that inferior concrete lining, while perlaps originally fairly smooth, was too soft to withstand the eroding effect of abrasive matter entering nearly all conduits.

Nos. 25 to 32, inclusive, experiment RRP, Mohave division. General methods are oatlined in the paragraphs above. This division incladed lonk reaches that required improvement to convey the desired flow of water (pl. 3, B). The tests listed as Nos. 25 to 27 , inclusive, took phace before any repairs were made, and the later tests after improvement. The change in values of n is attributed entirely to the smoother bottom installed after the preceding tests.

No. ?3, experiment FCS-98, small lateral, 13 miles north of Weslaco, Tex Hand-laid and troweled concrete. V-shaped with bottom rounded on 10 -inch radius. Free of mud, sand, and moss. 15 -mile wind downstream. Swept elean just before test, hence conveyance of muddy Rio Grande water not in point. Coefficient $n=0.0133$.

Nos. 38 and 39 , experiments BR-D, South Branch (C) canal, Klamath project, Bureau of Reclamation, Oreg. ${ }^{13}$ Tests by Allan Darr on 3 -inch concrete lining poured in 1919-20 to replace former timber lining on earth fill. Methods of tests based on those given as laid down by the author (55). Sections taken every 100 feet. Coefficient $n=0.01 .35$ and 0.0126 .

No. 40, experiment FCS-19, North Side Twin Falls Land \& Water Co.'s main canal near Milner, Idalso. As shown in plate $\overline{5}, B$, this concrefe lining fils out the main irregularities in a very rough lava-rock cut. An examination of the section below the water line was impossible at the time of making the experiment, and the various cross sections from which the value of R was deduced were taken from office notes. A study of these notes shows that the hottom is undulating and that while the bigh velocity would prevent the accumulation of sand deposits, the velocity is slightly retarded by the disturbance in the filaments of current due to the undulations. Coefficient $n=0.0138$.

No. 41, experiment BR-F, Carlshad project, Burean of Reclamation, N. Mex. Tests by C. A. May and E. C. Koppen, October 1915; after greatest demand. Gravel and weeds typical of time of season. Concrete hand-finished, true to section and grade. Expansion joints, asphalt strips, at 50 -foot intervals, projecting one-fourth to one-half inch. Five percent of hottom covered with gravel from fine to 2 -inch diameter. Alignment: First 246 fect on 8° curve, thence 500 feet tangent, thence 250 feet 8° curve. Metered at midsection. Levels between nail heads in top of stakes. Depths by level and rod. Coefficient $n=0.0137$.

No. 42, experiment BR-F, 1 mile below No. 41. One slight curve. Lining and gravel just like in No. 41 test. In addition, slight retardation caused by weeds dragging on surface near the edges. Coefficient $n=0.0139$.

No. 43, experiment FCTS-13, Davis and Weber Counties canal, Ttah (pl. 24, C). An example of the retarding effect of woorlen expansion joints if they project into the canal section. Jining was laid in slabs from 8 to 16 feet in width. Strips of wood a little larger than building lath were placed between slabs with the iclea that they would eventuaily lee pulled and the space filled with asphalt. This was not done, so strips project from 0 to 1 ginches into the section. Lilewise, velocity at the bottom was retarded by smail patehes of gravel, sloughed off the hillside cut in which the canal runs. Coeficient $n=0.0154$.

No. 44, experiment BPF-1, Davis and Weber Countics canal, Utah. This experiment was in the same carial as tests Nos. 43 and 45 , but about 8 miles upstream and about 1 mile below the head gate from the river. Condition of bottom could not be determined. The concrete on sides was smooth and unbroken. The hydraulic grade was taken as the mean of five tests with level and

[^13]piezometer and found to be 0.000413 , while constructed grade of this portion of canal was 0.000445 . Coefficient $n=0.014$.

No. 45 , experiment $13 \mathrm{PF}-2$. This test was on a rencl +6 S .5 feet long, included in he 1,000 feet described in No. +4. Patehes of gravel of all sizes up to 5 inches in weatest dimension eovered 10 percent of the area, mostly adjoining the tocs o^{i} ne side slopes. Coefficient $t=0.01 .46$.
vo. 60, experiment FCS 94, lateral (s, near Ediaburgh, Tex. Conerete in panels with projecting asphaltic joint fillers. Smonther than broomed shot concrefe but not the equal of well-troweled surface. Coefficient $n=0.014 \mathrm{k}$.

No. 61, experiment J) H3-10, Kiog HiIf canal, [daho. Test was on boti tangent and curves. The conerete was motsurfaced, bul left as hand tanped to grade. After surface eoat had set, the 2 - by dimelh end forms were remoned and the groove poured with a 1 to 1 misture of sand and cement. The surface was very rontgh, especially at the joints. The canal was clean of detritus and moss. Coefficient $n=0.01+3$.
No. 62, experiment F(S-69, Sanderfer D)ith ('o.'s main canal, rear Whitier, Calif. As shown in plate $\overline{5}, C$, this reach is straight and uniform. The botiom is slightly dished. As is the case of many small hined ditehes in sonthern California, the sides and bottom are eovered with a rough deposit whel entirely vitiates the good results which would be anticipated by using a smooth ecoment whith such as the one on this difeli. This deposit apperars th accumatate on aither smooth or rough concrete, so the added expense of the former does not appear to be warranted in view of the results. The water in this ditch was chear athe without sand. Since this test, the camal las been placed in a concrete pipe and covered. Coefficient $n=0.0155$.

Nos. $63-1 ; 6$, experiments $\mathrm{BR}-\mathrm{F}-12$ to 15 , Suth eamal, freompalugre project, Burean of lieclamation, Colo. ${ }^{14}$ Concrete east against board forms about 1907. Experiments F-12 and 13 were on reaches that ineluded freftent eurves and short tangents. Lining had many eracks and the cruss sertion was contractecl by relining in several places. No. Fiolt was on a tangent where origimal finish was a plaster coat of cement. The sides were still in mood condition but the bottom was worn, cracked, and heaved in places. No. F- 15 was on tatugents with one slight eurve in concrete cast against board forms and still in good condition. (Gee F-1I oul ehte, No. 453 .) Fuster's tests were ahout 3 yeuts affer Cone's (A 0.67) and 16 years thefore Lane's (Nos. $45+$ to 464 , inelusire). Lined portions of this canal were designed with $n-0.012$; after 8 years n varied between about $0.01+$ and 0.017 while 15 years later n had increased but litile. Apparently corerete such as thin, subject to high wokeities wilh water containiug muth abrasive diebris, finally attains a ronghness corresponding to n. 0.018 or lese, then holds that value because the bottam velocites are retarded by the rough surface. Likewise all the finc cement, sand, and gravel have berim washed out, at the surface, leaving fair-sized pebbles well-hedded in a cement matris. This rough fenish becomes the final operating sirface.

No. 67, experment JMC (C'), same eamal (pl. 10, A). Reach between miles 9 and 10. Sce above for descriptions. Camal carrying less than one-tenth rated capacity. Coefficient $n=0.0155$. Three years before Foster's tests nbove.
No. 68 , experiment JBJ,-8, Santa Ana canal, near Yorb, Calif. Conercte famped behind board forms. No plaster coat. Section wide and shallow. Several inches of sand in bottom. Moss and grass in pateles on sides. Coefficient $n=0.0157$.
No. 87, experiment FCS-37a, lateral 12, Orland project, Bureau of Reclamation, California. A small lined section of trapezoidal form, with a slight dishing in the bottom. About 50 feet alove station 0 is the lower end of a clute drop, and the ditch below station two turns to the right 90° in a curve of 34 fect radius. The surface of the chamel was a grod grade of concrete, but not smooth washed. It had a slight deposit of slimy silt, which woukd have allowed a low value of n but for gravel scattered throughout the ditch section. Coefficient $n=0,0160$.

No. 88, experiment FCS-37. On the same lateral as No. 87 but covers a straight reach immediately below the right-angle curve noted above. In the opinion of the author the value of n in this experiment is better for the gravel condition in a small lined seetion than that found in the shorter reach used for No. 87. This gravel ranged in size from fine to that of a walnut and had a marked influence in retarding the velocity, as there was more or less movement of the gravel down the

[^14]channel, which retards velocity more than does stationary gravel. Coefficient $n=0.0192$.

No. 89, experiment JBL-7, Colton canal, near Colton, Calif. Lining of unplastered concrete. No sand or gravel. Sides and bottom covered with thin coat of moss. Coefficient $n=0.0167$.

No. 90, Experiment FCS-11, South Cottonwood Ward canal, ncar Murray, Utah. A reach was chosen in the middle of 450 feet of lined section between an earth section and a flume. A slight curve at the upper cnd. A deposit of about 0.07 foot of fine sand and rootlike growths covered the bottom and modified the original section of rather rough concrete. A slight deposit of moss and slime also modified the sides of the channel. Coefficient $n=0.0171$.

No. 91, experiment FCS-55, Modesto irrigation district main canial, near La Grange, Calif. As shown in plate $6, A$, this reach of canal is on an approximate tangent. There is a very sharp curve about 50 feet below the reach tested. The lining is a fair grade of concrete, being about as rough as an orange. The value of n is high, because of the presence of a number of pieces of slate rock that have fallen into the canal from the adjoining cliffs. This influence probably is materiaily reduced when the canal is carrying water to capacity. However, this experiment shows the value of cleaning the canal as often as practicable in order to maintain a high carrying capacity which is much desired by this district. Coefficient $n=0.0174$.
No. 92, experiment FCS-63, Santa Ana and Orange canal, near Orange, Calif. In the reach tested, there was a gentle curve between stations 5 and 7 . As shown in plate 6, B, taken from about 200 feet below station 10, this canal has the rough deposit and moss common to southern California ditches. In addition the concrete lining of the bottom has been completely covered by a deposit of soft sand from 0.1 to 0.2 foot deep. This lining had originally been a reasonably smooth piece of work, but the deposits had destroyed much of the usefu'ness of the smooth concrete. Coefficient $n=0.0176$.
Nos. $93-118$, experiments FCS-101 to 117, inclusive, South canal near Auburn, Calif. This extended series of experiments was primarily for purpose of developing influence of extremely sharp bends in canals ($p 1,19, B$). This influence affects both the value of n and the position of water surface at two sides of the canal. The concrete surface was quite rough; a value of n in long tangents would have been about 0.016. Long reaches of varying total curvature were chosen. Careful current-meter measurements were made to determine discharge. The average water burface was taken with a special piezometer device, on both right and left banks of the canal, every 50 feet on tangents and oftener around bends. Plotting of the water surface on both edges told little as to the average slope of the canal. However, when the elevations at the two sides were averaged and to this mean elevation was added the velocity head for the mean velocity at that station, a point on the energy gradient was disclosed. The developed energy line was on a very even slope and practically smooth. The evenness of slope indicated that there was no extra loss of head concentrated at the sharp bends, but that the loss was distributed along the whole reach and the result was a higher value of n for the reaches of most curvature. This was the first time experimental data disclosed this fact, so far as is known to the author (57, p. 61).

Nos. 119 and 120, experiments ES, Camuzzoni canal, Verona, Italy. An industrial canal of large size, constructed in 1896, in rougl but even concrete. First tested when new by H. Bazin just before offering his 1897 formula. Coefficient 0.018 for No. 119. Again tested in 1924 by E. Scimenti (No. 120) and the coefficient found to be $n=0.022$.

No. 121, experiment FCS-70, Los Nietos Water Co.'s main canal, near Whittier, Calif. Original lining in this canal is fairly smooth, but the deposit common to this region has so changed its character that, aided by the rolling sand, a high value of n is found. This sand was about 0.03 foot deep. There was also a slight retarding effect due to grass and weeds dragging on the surface of the water near the edges of the channel. Coefficient $n=0.0188$.
No. 122, experiment FCS-67, Arroyo Ditch \& Water Co.'s main canal, near Whittier, Calif. As shown in plate 6, C, this rough-finish concrete section has accumulated a deposit of rough mossy growth that greatly rctards the velocity of the water. In a few places throughout the reach tested the lining was irregular and not in true alignment, which also tended to increase the value of n. The reach was on tangent, with a sharp angle about 50 feet above station 0 . Coefficient $n=0.0188$.

Nos. 123 to 128 , experiments FCS-31, FCS-30, FCS-32, Central Oregon Irrigation Co.'s north canal, near Bend, Oreg. These experiments were with varying discharges, on consecutive days, in identical reaches; (a) is on a tangent

240 feet long between a 15° eurve above and a 14° curve below; (b) embraces 157 feet of tangent, then 154 feet of 14° curve to the right, then 90 feef tringent, then 109 feet of 15° curve to the left, then the tangent that includes (a) 240 feet long, then 178 feet of 14° curve.
This lining is clean-scoured, very rough, and deeply pitted concrete made in a rough lava-roek cut. As shown on plate 7, A, the cross sectional form is even and the filaments of current are not disturbed except by the curves. The inherent roughness of the lining accounts for the high values of n.

This lining was a $1: 4 ; 5$ mixture, deposited behind shiplap forms against a hand-laid rock wall, filling the eavities in a rough rock cut. Expansion joints of $1 / 4$ - by 4 -inch lumber were placed on sides and bottom every 12 feet and left in the concrete.

No. 129, experiment JBI-4, upper canal, Riverside Water Co., California. Coat of 1 to 3 cement plaster roughly applied to concrete. Canal partially cleaned of ar stringy grass a few days before test. Isolated bunches of grass left in boitom. Two curves included in reach. Coefficient $n=0.0218$.

No. 130, experiment FCS-68, small ditch from pumping plant, California. Although constructed with a smooth-finished eement wash, this ditch shows a high value of n becense a dark, crinkly deposit has changed the condition of the walls. Vegetation on the banks dragged in the water and retarded velocity to a slight extent (pl, 7, B). This test is not given full weight because the ditch is too small to give a first-class current-meter measurement. The mean of three measurements was used. Coefficient $n=0.0220$.

No. 131, experiment FCS-75, Riverside Water Co.'s lower canal, Riverside, Calif. This experiment gives a good example of a cement-wash lining in which under favorable conditions in southern California a friction factor of about 0.018 might be expected without removing the sand which appears to be ever present in the canais in this vicinity. If the sand were removed by the ardition of numerous sand sumps and gates this factor would be reduced to 0.016 or thereabouts. At the time of unaking the tests on this canal, the lining had been broken in scattered spots, allowing vegetation to rootand grow as shown in plate 7, C. In the bottom of the channel were scattered deposits of loose sand, covering possibly 10 pereent of the bottom area. In some of these deposits moss and water grasses flourished.
This lining was a cement and sand coat about I inch thick, applicd directly to the trimmed surface of the earth channel. Occasional fractures in such a lining are to be expected. Coefficient $n=0.0221$.

No. 132, experiment FCS-71, Riverside Water Co.'s upper canal, in Riverside, Calif. While originally the canal was lined with a well-built and but lightly pitted cementwash surface, the bottom of the channel has completely lost its identity as a concrete lining insofar as friction is concerned, sinee there is now more than 18 inches of sand in the bottorn. This drifts down the canal in little poekets that look like hoof prints of livestock. The positions of these shift rapidly, causing the depth of water at a given point to change 0.4 or 0.5 foot in about 30 minutes. This condition renders a measurement by current meter using muitiple points obviously inaccurate, hence the integration method was used, as the latter gives results as close to those found by multiple points as can be desired. A measurement by this method takes but a few minutes, and the canal bottom in this period probably does not shift sufficiently to vitiate the results. As shown in plate $9, A$, there are no curves or structures above the reach tested to change results, and the same condition holds downstrean. Coefficient $n=0.0231$.

Shot-CONCRETE

No. 133, experiment FCS-91, Rossow canal, Hidalgo County Water Control \& Improvement District Na. 7, near Mission, Tex. Fresh concrete "struck" with rectangular blade shortly following "gun" (pl. 2, B). Reach just eleaned for test; straight and very smooth. This process makes a smooth surface but all rebound and loose material from the striking process must be removed completely or the canal bottom will have porous, inferior concrete. Coefficient $n=0.0122$.
No. 134, experiment FCS-97, south branch of east main cansa, Hidalgo County Water Control \& Improvement District No. 1, near Edinburgh, Tex. Long straight reach too far from Rio Grande for heavy muds. Surface well broomed behind "gun." Cleaned a month before test. Surface hard and sound but too rough to allow the hand to slide freely over it. Designed for $n=0.014$. One inch thick, reinforced 4 - by 8 -inch wire, 12 -gage. Mix 1 to $4 y$. Cost 13 cents per square foot. Coefficient $n=0.0137$.

No. 135, experiment FCS-90, main canal, Hidalgo County Water Control \& Improvement District No. 5, near Progresso, Tex. New canal of concrete, well broomed behind "gun." About 0.3 foot mud in circular bottom of 4.5 feet radius for 102° arc. No slimes on sides. Surface undulating up to 0.1 foot variation. Coefficient $n=0.0144$.

Nos. 136, 137, and 138, experiment FCS-99, main ditch. Irvine ranch, Tustin, Calif. In semicircular section, lined with concrete and left as shot, that is, there was no smoothing treatment. The contract price of 6 cents per square foot did not permit the contractor to do any polishing. The three reaches computed vary materially in surface characteristics. The section is very rough to the touch but was clean of silt and debris. It conveys clear water from a sriall rescryoir a short distance upstream. Vaiues of n ranged from 0.0149 to 0.0173 with a weighted average for the entire reach of 0.0165.

No. 139, experiment FCS-96, eanal, Flidalgo and Cameron Countics Water Control \& Improvement District No. 9, Texas. Circular section of rough concrete, probably broomed after "shooting." Slightly slimed over with silt. Coefficient $\pi=0.0158$.

No. 167, experiment FCS-93, lateral N. Hidalgo County Water Control \& Improvement Distriot No. 1, Dear McAllen, Tex. Small lateral with concrete as shot from "gun," without treatment. Very rough and clean, in section approximating parabola. Some silt slime would improve capacity. Coefficient $n=0.0176$. Sce FCS -92 for improvement effected by brooming.

No. 168, experiment FCS-92, same; just downstream from No. 167, the only difference being that this surface was broomed behind the "gun," making coefficient $n=0.0149$.

No. 169 , experiment FCS-S9' lower camal, Lindsay-Strathmore irrigation district, Calif. Conerete as shot from the "gnn", without smoothing treatment. The surface of the concrete was covered with fine algae, like velvet, without streamers. Had been recently cleaned. Water is clear and cold. The bottom, 75 percent covered with drifting dunes from 0 to 0.2 foot deep, of fine sand. Concrete bolh rough and undulating. C'oefficient $n=0.0177$ verifics recommendation of 0.017 for clean shot conerete, without treatment. (PI. 8, A.)

No. 170 , experiment $F C S-9 \overline{5}$, west canal, Cumeron County Water Improvement District No. 1, near Farlingen, Tex. Conerete broomed behind the "pun." Silt in canal bottom about 0.1 foot thick. Wind upstream. Coefficient $n=0.0187$.

earth channels

No. 171, experiment CC $\mathrm{W}-14$, Interstate canal, Neloraska. In same soil and with same gencral deseription as No. 191. This canal designed with frictional factor of $0.02 \overline{5}$, but on arcount of high velocity maximum discharge allowed is 830 second-feet insteat of the 1,421 seeond-fect for which designed. Coefficient $n=0.012$. This value of n is almost unbelievably low, but values below 0.009 for the Sidhnai (amal in India have been vonched for by able authority (35 , ${ }^{2}$: 343).
No. 190, experiment FCS-2, Farmers' Tristate canal, Nebraska. This test and also No. 191, are on long, struight reaches of a large canal, constructed in lirule clay. In the oricimal design the value of n was estimated as 0.025 , but, alifough the canal is rumaing to hat partial capacity, the mean velocity is almost suficient to scour the matriat. Tt had one riffle midway of its length, caused by old bridge approaches jutting into the canal. The values of n in Nos. 171, 190, and 191 are comparable, as the Snterstate canal is in the neighborhood of the Tristate. A fringe of grass extends along the edge but retards only a very small part of the fese. The bottom is extremely even, smooth, and hard, and with the adidition of a coating of serfiment from the murky waters of the North Platte later, appears to be very effecient. (ientle curves adjoin both upper and lower conds of the reach. For further matess su No. 191. Coefficient $n=0.0130$.

No. 191, experiment H(S'I, Farmery' Tristate canal, Nebraskn. This reach (pil, $6, B$) was perfectly rlean cht throughont its length, and in the opinion of the anther gives a better value of a than the reach in No. 190 . In both tests the fall is slight, and the mean value of the reable of several tests with the level was acmplerd. The rearh is a tapent betwen two gentle curves. The bottom was :s liseribed in No. 190. Coefficient $n \div 0.01$ g.4.

So. 192, experiment ST-15, 'Corme brameh, Bear River canal, Utah. Reach fa-4 of growth. Originaly traperoidal in elayey loam, but now segment of an e lined witl smeoth sitf. six yeurs old. Coofficient $n=0.0155$.
 enif of capacity, merely covering botiom. Slight curves at ends of reach. Bot-
tom is fine silt, merging into sand. In places bogey. Fxeeptionally smoolh. regular, and free of impediments. Coefficient $n=0.0$ fiñ.

No. 194, experiment TCS-S3, Maricopa cajal, Salt River project, Part of a long stretch of canal with a clean, sandy bottom and a slight fringe of grass along the edge, but the influence of the latiter was practically negligible ($\mathrm{ml} .10, \mathrm{C}$). Coufficient $n=0.0166$.

No. 195, experiment FCS-3, Winter Creck ditch, Nehraska. A kong, straight reach, with very clean, hard bottom, in a cemented material. A fringe of grass bordered both edges. A stiff wind was blowing directly downstream during the test, and a value of n of 0.0180 is probably better for this canal than that found by the measurement made. Coefficient $n=0.0170$.

Nos. 208 and 209, experiment CCW-1, Empire intake camal, Colorado. Straight, prade uniform, channel in firm sand, and fravel having no pebbles larger than one-half inch in diameter. No vegetation. Two years old. Coeffecents $n=0.0170$ and 0.019%.

No. 210, experiment STH-7, Billings Land E Irrigation Co's canal, Montana. 2 A straight reach of canal in clay lonm soil. The little grass at the edges is of slight consequence, as the hottom is slick, though rougher by cutting in places. The mean velocity, 2.45 fect per scoond, was about the limit, as cutting was taking phace where the botion was not protected with a deposit of gravel. A downstream wind probally re 1 iers the value of n from about 0.01 , making it quite comparable with No. 195 above. Cofficient, $n=0.0174$.

No. 211, experiment VMC, Jarbenu Power canal near Minle, Colo. New. First third of reach in chayey loam with few water-worm stones projecting. Rest of reach in elayey loam in which moss was starting. Coeflicient $n=0.0176$.

No. 212, experiment STH-5t, Cove diteh, Montana. This is the sume ditch, with same chamel conditions as No 213 . This reach is all curve, the first 300 feet 30°, then 300 feet on a reverse 30°. Coefficient $n=0.0180$.

No. 213, experiment STH- ̄a, Cove ditch, Montana. This rach is half on tangent and half on a 20° curve. Ditch 6 vears old. Originally excavated in sandy lonm soil, the bottom is now covered with a silt deposit. A fringe of grass retards the velocity at the edige, but not the nain flow. Coeficient $n=0.0186$.

No. 214, esperiment $\mathrm{STH} \mathrm{H}-19$, Bilings Land \& Irrigation Co's main canal, Montana. This reach follows a gentle hillside contonr, although practically straight. Alittle sand and fine gravel is scattered over a general botom of elean soil. Velocity (mean 2.30 fect per second) appears to be about right for this soil, as the midelle of the section is clean withont cutting and there is a slight deposit of silt and mud along the sides. A downstream wind perhaps gives a value of n slightly below what might be expected. Cocfficient $n=0.0181$.

No. 215, cxperiment FCS-82, Grand canal, Salt River project, Arizona. This reach eovers a clean-cut stretch, straight exeept for a gentle curve about 250 feet long, shown in plate 17, , Originally excavated in a clay loam soil, the section now has a deposit of clean sand in the middle and slick, silty mud near the sides. The fringe of grass shown in the view is slightly above the general high water mark and hard little influence on the reach when tested. Coefficient $n=0.0183$.

No. 216, experiment. SF-3, Logan, Hyde Park \& Smithfield canal near Logan, Ttah. In operadiou 15 vears. Bottom and sides smooth earth and gravel up to 1 inch in diameter with some 2 -inch pebbles. Slight growth of grass on one side. Yalue of n is lower than might be expected. Coefficient $n=0.0184$.

Nos. 217, 218 , 219, and 220 , experiments STH-18, Bilhings Sand \& Trrigation Co., Montana. These tests were made on the same reach of canal, with varying discharers of water. The reach is straight, with a curve nearly adjoining each rod. The bottom of the canal, originally excevated in Benton shale, is covered with fine sand. The slate at the sides has broken to a fine, sliek clay: The cross section is guite regular. Value of n does not vary materially. ('ross winds, blowing durime test c and d, might easily have affected the slope sufficiently to arconnt for such variation as appears.

So. 221 , experiment STH-6, Billings land \& Irrigetion Co., Montama. Test wai oll a straght reach, between gentle curves. The canal, excavated in Billings clay, is generally clean, but has a little fine gravel in the bed and some fine silt deposit near the sides. A few cattle tracks and a litile grass had a slight relarding effect near the sides, hut did not affect the main flow. Cosflicint $n=0.0188$.

No. 236, experiment FCS-87, Maxwell ditch, Colorato. This diteh foliows a montain contour. The sides were rather irregular, with a fringe of grass: t^{r} :bottom was free of growth and covered with sand and fragments of rock. wit'. the low velocity allowed a silt deposit near the banks. Cocflicient n (anald

No. 237, experiment STH-33, Bitter Root Valiey Irrigation Co., Montana. This reach of canal follows a contour, giving gentle curves joined by short tangents. The bottom is covered with sand and fine gravel with an occasional cobble of twofist size. The reach is uniform in cross section. Coefficient $n=0.0196$.

No. 238, experiment VMC, Grand Falley canal, Colorado. Carrying nearly full capacity. Bed lined with fine sediment. Sides rather uneven surface of clay loam. Short grass on bank was submerged one-balf foot. Coefficient $n=0.0200$.

No. 239, experiment FCS-57, laterai 7, Turlock irrigation district, California. This canal was tested so late in the season thet it was carrying but a small porthon of its capacity. The reach is straight, in hard-packed smooth sand. Water being low, the grasses on the banks did not affect the flow at the time of test (pl. 17, B). Coefficient $n=0.0202$.

No. 240, experiment STH-17, Billings Land \& Irrigation Co., Montana. This reach, located 400 feet below a tunnel and 200 feet above a fume, is in sidehill excavation of mixed earth and sand-rock with some shale. It is fairly clean, with some loose rock and sand deposits, while there is a slight growth of trailing moss at the lower end. Coefficient $n=0.0204$.

No. 241, experiment CCW-3, Rist \& Goss diteh, Colorado. Built in heavy Iomm. Sides and bottom well conted. No weeds or aquatic growth. Cocflicient $n=0.0204$.

No. 242, experiment VMC, Wifoox canal, Rifle, Colo. Bed of fine silt, sand, and pebbles, with thin scattering of 6 -inch cobbles. Discharge tested less than one-twenticth of rated eapacity. C'oefficient $n=0.0205$.

No. 243, experiment CCW-i, Oli Barnes ditch, Colorado. In good condition. Constructed in firm earth. Channel well coated with sediment. Xo stones or pebbles, but some long grass overhangs banks. Coefficient $n=0.0206$.

No. 244, experiment STH-34, Bitter Root Valley Irrigation Co., Montana. A canal in its fifth year of operation. Reach is straight, with bottom and sides covered with graded sand and gravel to cobble size. Sand filling the interstices between larger pieces probably accounts for a value of n far below that of a cobble ditch. Coefficient $n=0.0208$.

No. 24ă, experiment SF-6, Logan \& Richmond canal, T"tah. Bed smooth and free of vegetation. Some indentations near top of chanmel. Coefficient $n=0.0211$.

No. 246, experiment STH-35̄, Bitter Root Valley Irrigation Co.'s canal, Montana. This reach, rather irregular in form, was excavated in hardpan. Drifting sand has smoothed over some of the irregularities. Alignment is sinuous. Coefficient $n=0.0211$.

No. 247, experiment $\mathrm{STH}-14$, lateral No. 2, Billings Land \& Irrigation Co., Montana. A straight reach of canal, originally excavated in sandy loam soil with some gravel. Present bottom is smooth, unshifting sand, evenly distributed. Coefficient $n=0.0212$.

No. 248, experiment WBG-1, Morris canal, Louisiana. A straight sectiva of a large rice-irrigation canal. The previous winter it had been plowed, leaving the bed rough. Water grasses retarded the velocity near the edges. The value of n is lower than the author would expect from the description. Cocficient $n=0.0216$.

No. 249 , experiment STH-25, Hedge canal, Montana. A reach of canal excawated in soft granite sidenim. The present section is covered with disintegrated granite, mostly less than $\frac{3 / 2}{2}$-inch size, but there are a fer pieces ranging up to two fist size. Coefficient $n=0.0216$.

No. 250 , experiment $F C S-78$, Birch canal, Imperial irrigation district, California. Originally exeavated in alluvial silt soil, but deposits of sand on the bot tom and growths of grass looking like half-grown oats have completely changed the nature of the chamel. The water in this valley, from the Colorado River, was heavily charged with silt at all times of the year, and this formed a slick deposit which withstands a high velocity before scouring. The conditions and values in this test and No. $31 \overline{5}$ are directly comparable, the higher value of n in No. 315 being due to the denser growth of grass as shown in the view, plate 17 . C. Coefficient $n=0.0217$.

No. 251, experiment WBG-f, Crowley canal, Louisiana. A straight reach of rice canal. Before the beginning of the irrigation season the canal hed had been plowed and harrowed. Grass interfered with velocity near the sides. Coefferent $n=0.0219$.

No. 252, experiment VMC, Bessemer canal, Pueblo, Colo. Bed of smooth water worn adobe. Coefficient $n=0.0219$.

No. 253 , experiment $\backslash \mathrm{MC}$. Same canal as No. 252 . Channel the same except for the presence of cottonwood tree rootlets at the sides. Coefficient $n=0.0281$.

No. 254, experiment STH-8, high line of Big ditch, Montana. A good example of expectation for a ditch of this type. Originally constructed in a gravel soil, the low velocity has permitted deposit of silt until the bed is smoothed over and n is much smaller than it was in the new ditch. This reach follows contours with sharp curves, joined by short tangents. Coefficient $n=0.0220$.

No. 255, experiment CCW-2, Louden ditch, Colorado. Bed has clean, sandy bottom without growth of any kind. In fair condition. Coefficient $n=0.0220$.
No. 256, experiment VMC, mesa lateral, Grand Valley canal, Colorado. Bed smoothly lined with fine sediment. Sides of uneven loam. Short grass on bank submerged one-half foot. Coefficient $n=0.0220$,

No. 257, experiment FCS-64, Santa Ana and Orange canal, California. This test shows the value of eleaning a ditch to increase the caparity. The alignment (pl. 11, A) follows a gently eurving contour. Had been well shoveled out within a few days, removing all retarding influence of grasses and moss. There was a very little soft sand near the sides of the section with occasional poekets of sand. The value of n is comparable with that in No. 307, which is on the same kind of a canal subject to the same conrlitions but not cleaned recently. Coefficient $n=0.0221$.
No. 258, experiment FCS-80, central main canal, Imperial, Calif. Test was on a long reach of straight canal. Banks nearly vertical as left by cleaning of silt with a bucket dredge. The bottom is very hard and quite regular, despite this method of cleaning. The velocity was retarded for about 1 foot from each bank by a growth of tules. The silt-laden waters formed slick banks. Plate 11, B, shows the reach and the portable rating car in action. If the sides were freed of growth at all times (impracticable in this region) the value of n would be under 0.020. For small canals in this locality see Nos. 250 and 315 . Coefficient $n=0.0221$.

No. 259, experiment STH-20, Billings Land \& Irrigation Co., Montana. Canal was originally constructed in varied strata, having an earth surface underlaid with a stratum of gravel, while the bed was in Benton shale. This has now been covered in phaces with graded gravel. In general, the upper end of the reath had a smaller sectional area, consequently a higher velocity, and the gravel was scoured clean, while the lower end had a Iower velocity and the gravel influence had been reduced by the deposit of silt. Coefficient $n=0.0221$.

No. 260, experiment FCS-84, Silt River Valley canal, Arizona. A straight reach of canal originally constructed in graded gravel underlying silty loam soil. The high velocity encountered (mean 3.12 feet per second) scoured the bed of the canal, exposing hard-packed small gravel, while near the sides a slick deposit of silt formed a , surface with but little retarding action on the water. The fringe of grass and small roots at the extreme edges (pl. 14, A), influcaced but a very small portion of the flow. Coefficient $n=0.0222$.

No. 261, experiment $\mathrm{CCW}-5$, Geo. Rist ditch, Colorado. Originally excavated in material ranging from enrth to coarse gravel with occasional cobbles up to 6 -inch size. Bed Jined with sediment. Banks uneven and overhung with sod. Coefficient $n=0.0224$.
No. 262, experiment STH-2, Big ditch near Billings, Mont. Canal was originally excavated in Billings loam, which tends to be clayey. The bed has a slight deposit of sand which undercuts beneath the feet in wading, showing that the mean velocity, 2.09 fect per second, was almost sufficient to eause scouring of sand deposit. Fine mud has been deposited at the sides where the velocities are low. Coefficient $n=0.0225$.

No. 263, experiment STH-38, Bitter Root Valley Irrigation Co., Montana. The first half of this reach is on tangent, the second half on a 20° curve around a gravelly point. On the tangent the bed is covered with fine sand in serrations from 1 to 2 feet longitudinally with the canal and about 6 inches decp. In the second half the sand covers the middle portion of the bed, while gravel up to cobble siae forms the edges. The value of n found, 0.0226 , is lower than is to be expected.

No. 264, experiment FCS-40, Iateral No. 10, Orland project, Calif. Many of the conditions holding for this test are clearly shown in plate $14, B$. The gravet, mostly under hen's-egg size, is well compacted in the bed, while a few acattered patches of moss have a retarding influence. There were about two patches, each 5 feet in diameter, in each 100 feet of length down the ditch. Coefficient $n=$ 0.0228 .

Nos. 265 to 285, inclusive, experiments REB 1 to 21 . A comprehensive test on canals for irrigation from Rio Negro, Argentina, reported by Ballester, (4). Twenty-one reaches of canals and laterals, all in earth excavation, were chosen for teat. The discharge was measured by current meter of the European type,
using the 0.2 and 0.8 depths method, following procedure outlined by Hoyt and Grover. The slope of the water surface was taken between tops of stakes driven flush with the water surface at the two ends of the rench and every 40 to 50 meters between. The locations of the stake heads were platted on full scale vertically and at $1: 2,000$ horizontally, and an average line was drawn through the points as indicative of the average location of the water slope. Reaches selected elearly showed either silt accumulations or freedom from such deposits. This selection was for the purpose of comparing Kemedy's silt data (SZ) with experience it Argentina. Detailed comments for the various reaches follow (the numbers correspond with Bailester's series numieers):

I to 4 , inchusive. In good condition, without silt deposits.
5. Gravel bed and vertical sides. Almost a "cotbie-bottomed" canal.
6. Gaged at maximum capacity; bed of gravel, somewhat irreatar; apparently with silt deposits at the fect of the side slopes, the bed rounded.
7. Straight, the trapezoidal original section held intact, with no silt beds after 4 yeurs of operation.
8. Bed in sandy soil, with some vegetation at the sites. After 15 years of operation. no silt banks.
9. Camal in sandy soil: annual cleaning of silt banks required.

10 to 14, inclusive. Representative of canals in excelient and cconomic maintenance, both in respect to silt banks and to growity apuatic plants. Tests 10 and 11 show rich grass growth along the banks at the water surface.

15 and 16. Little silt deposit and abundant side vegetation which retards the flow so that cleanings are repuired every 2 to 3 years.
17. Silts itself so that annual cleanings are requirect.
18. A reach operated more than 15 years without requiring desilting.
19. and 20. Reaches in good condition, without silt banks but with lateral vegetation that retards the flow, explaining the high value of the roughness coefficient.
21. A reach with both silt sud aquatic growths that reduce the velocity "extraordinarily" as indicated by the high coefficient.

No. 2S6, experiment SF-39, lateral 2, Bear River canal, Ctah. Conditions similar to No. 287 exceft there was no moss and some bunches of grass along the edges retarded velocity. Coefficient $n=0.0230$.

No. 287, experiment $\mathrm{SF}-14$, lateral of Bear River canal, Utah. Excavated in clayey loam. Now bed is covered with sediment. Patches of harsetail moss. Edges uneven. Confficient $n=0.0230$.
No. 291, experiment FCS-39, main canal south, Orland project, Bureau of Reclamation, California. This reach is straight; originally constructed in a yellow clay which is very slick when wet. A darker deposit of silt now covers much of this clay. A value of n of about 0.017 might be expected but for patches of moss nud water grusses occupying about 20 percent of the bottom of the chamel. This influence brings about a value of 0.0231 for n.
No. 202, experiment FCS-36, River Branch canat, Sacramento Valley Irrigation Co., California. Excayated in Sacramento silty clay loam, which breaks into very hard smail clods (pl. 14, C). The bed of the ditch was very slick and hard. A few scattered soft lumps of mud and a fringe of grass and thorns extending out i foot raised the value of n from about 0.017 to 0.0236 . Although the mean velocity is nearly 3 feet per second, there was no sign of scour in this hard soil. Coefficient $n=0.0236$.

No. 293, experiment SF-1, Providence canal, Ctah. In gravel size of peas with scattered pieces size of walnuts. No vegetation. Coefficient $n=0.0238$.

No. 294, experiment SF-27, Logan, Hyde Park and Thatcher canal, Utah. Sides smooth with sediment; bottom of earth, gravel, and pebbles up to $2 \frac{1}{2}$ inches diameter. Coarser material covered ont-fourth of perimeter. Coefficient $n=$ 0.0246 .

No. 295, experiment WBG-4, a small, new ditch in Louisiana. This ditch was practically as left by a plow, being but a week old. The reach was straight. Coefficient $n=0.0246$.

No. 296, experiment SF-18, College and City canal, Utah. No vegetation, but sides uneven. Bed covered with fragments of fat rock from $1 / 2$ to 2 inches in greatest dimension. Coefficient $n=0.0247$.

No. 297, experiment FCS-88, Boulder \& White Rock ditch, Colorado. A small ditch with one bend. Original excavation was in mendow soil over river gravel. The bed contained graded gravel, mosily small but with a few cobbles of two-fist size. A dark silt had deposited in the lower velocities near the edges which were nearly vertical, well-sodded banks. This ditch would be called in a good working condition as most of the stones were unavoidable. Coefficient $n=0.0248$.

No. 299, experiment STH-3, Billings Land \& Irrigation Co., Montana. This reach was originally excavated in Billings gravel. Silt has deposited in the low velocities at the sides, but the main bed is composed of gravel with cobbles up to two-fist size. The slight fringe of grass did not retard the main flow. Coefficient $\boldsymbol{n}=0.0258$.

No. 300, experiment KTH-1, Billings Land \& Irriqation Co., Montana. A straight reach expasated in gravelly soil. The bed is of compact gravel up to one-fist size, while silt has deposited in the lower velocities near the sides. No grass in the water section. The mean velocity of the water, 2.35 feet per second, appears to be sufficient to prevent the deposit of silt over the bed, though the water is very runder. ('oefficient a 0.0250 .

No. 301, experiment STH-36,]itter Root Valley Yrrigation Co., Dontana. The first two-thirds of the reach was on a sidehilh in hardpan, while the last third, originally comstructed on a revek boltota, is now formod of and dififts similar to those spoken of in No. 263. In the first part the hardpan is scoured clean exeept on inside of curves where and has deposited, while farther down the diteh some colbles are mixed with the sand. Coeficient n 0.0260.

No. 302, experiment Fe's 14, North Ogden camal, Tah. This reach Cohows a liillside contour about one-half mile below the motth of Ogrten Canyon. The material is composed of soil and rounded bonders ranging from sand to stones several hundred pounds in seight. The sides were guite vertical and fringed with willow roots and grass, while a few patches of moss were seatered throughout the length of the reach. Aside from this moss this test would eome under the class of cobble-botton ditches, and the value of $n=0.02 f 2$ is about right for such ditches.

No. 303, experiment TCN-96, min branch canal, Turlock irrigation distriet, California. This canal, shown on plate 18, B, was carrying but a small part of its total caparity. The water was so low that the influence of grass, which would have atfected a deeper sertion, was lost. The bed was hard-packed fine sand. CocFlicient $n \cdot 0.0262$.

No. 304, experiment YMi', Rocky Ford canal, ('oloratio. Shed of fine lonse sath. Sides of clay wilh finc arass roots projecting. Some grass overhangs into water. Canal somewhat crooked and bunk irregular. Coefficient $n:=0.0266$.

No. 30n, experiment $F(\mathcal{S}-23$, a lateral of the South side Twin Falls canal, in Twin Falls, Jraho (pl. 1S, A. Exeavation was through 1. foot of lava-ash soil before striking hardpan. The present bed of the lateral is clean and hard, A dense erowth of sod and long grass retards the water at the vertical sides, and some silt has deposited on the edges of the bottom in the low velocities. Coeflicient $n=0.0267$.

No. 306 , experiment FCS-太, salt Take ('ity and Jordan camal, एtah. A reach with one gentle curse in the upper end, but otherwise straight. Oripinally consiructed in sandy soil with small gravel, the bottom now is very hard and cenented exeept at the sides, where the velocity is not sufficient to prevent silt from depositing. A detse growth of grass killed the velocity for about one-half foot from the vertical banks, typical of old ditehes in Colorado and Utah, Coefficient $n=0.0267$.

No. 307, experiment FCS-66, Fullerton ditel, Anaheim-Vnion Water Co., Calfornia (pl. 18, C). Grass and moss kill the velocity for about 1 foot from the banks; the bed is a hard, cemented, sandy loam, with about 0.1 foot of shifting sand. This canal was under cxactly the sane conditions as No. 257 , except that this needed cleaning and the other had just becn eleaned. Coefficient $n=0.0269$.

No. 30S, experiment F(S-86, Farmers' camal, near Boulder, Colo. This canal is on a gently darving hillside. Willows and grass form a dense fringe at the sides, white the botom, origimaly in red mountain soil mised with fragments of sandstoue, now bas a hard, gravelly botom, with angular fragments rather than rounded pebbles. The section is irregular, and the walue of n is quite comparable with that of a cohbe-bottom ditch, althongh this reach is not cobble bottomed. Coetieximit n-0.0270.

Nos. 309, 310, and 311, experiments $\mathrm{STH}-12 \mathrm{a}$, th, and e, lateral 2, Millings Tand \& Irripation ('o., Montana, An irregularesetion of small lateral, constructed in lowny earih. Xons fringed will grass, which trails somewhat, though newly mowed. The bottom is irregular, with drifting sand throughont most of the reach. The canal is too irregular to justify eonceding too much weight to the various values of n found.

No. 312 , experiment FCS-5, lateral of Parley's ditel, ('tah. A straight reach in gravelly lomm soil. A fringe of grass retards velocity for about one-half foot from the banks. bottom is clean sand which yicids about 1 inch to the feet of a
wader. A slight wind upstream makes the value of n a little high. Coefficient $n=0.0278$.
No. 313, experiment VMC, Bessemer ditch, Colorado. Bed of fine silt marging into clays with liberal sprinkling of loose stones up to 3 inches diameter. Coeffcient $n=0.0280$.

No. 314, experiment FCS-20, lateral of South Side Twin Falls canal, Idaho. On a gentie contour curve of about 400 feet radius. Constructed in hardpan underlying about a foot of lava-ash soil, the water section is quite slick but is badiy washed in longitudinal gulfies. The banks, too, are irregular and fringed with a dense growth of grass and alfalfa. Coefficient $n=0.0283$.
No. 315 , experiment FCS-79, Beech canal, Imperial Valley, Calif. This test is under exactly the same conditions as those described in No. 250 , with the exception that a longer time has elapsed since the dense growth of grass shown on plate 11, C was cut. The difference is noted by comparing the above view with that in plate $17, C$. Coefficient $n=0.0290$.

No. 316, experiment FCS-49, Wheeler ditch, Nevada. Ditch follows contour in curves of from 300 to 500 feet radins. While the battom is hard many boulders of several hundred pounds weight border the channel, and a few have rolled into if. A dense growth of grass and bushes fringes the sides, and a fine, dense moss retards velocity for about 0.3 foot from the bottom. Coefficient $n=0.0292$.

Nu. 317, experiment FCS-85, Jateral 10 from Arizona canal, Salt River project, Ariz. Straight reach of small diteh on a steep grade. Constructed in a silt loam soil, the high velocity has washed very irregular gullies and pockets. An average growth of grass and weeds also retards velocity. Coefficient $n=0.0298$.
Nos. 318 and 319 , experiments STH-13, lateral of Billings Land \& Irrigation Co., Montana. These tests on the same reach of canal but with varying discharges, and for No. 318 grass fringing the edges was cut, hence removing some of the retarding influence present in No. 319. The bottom is covered with fine, deep, shifting sand.

No. 320, experiment FCS-72, upper canal, Riverside Water Co., California. A straight reach originally excavated in a sandy loam soil. The bottom is covered with a bed of fine sand which remains hard until disturbed, when it cuts rapidly. Dense grass along the sides and scattered patches of moss in the canal cause a high value of n. Coefficient $n=0.0315$.

No. 321, experiment FCS-77a, lower canal, Riverside Water Co., California. Though originally excavated in a clean-cut section of soft bardpan, the present condition of this reach is much less efficlent, owing to a deposit of shifing sand and growths of water grasses and dense grass along the edge, though not so bad as in No. 322. Coefficient $n=0.0318$.

No. 322, experiment FCS-77b. Same canal as No. 321, but the grass along the edge kills velocity for about 1 foot from both banks. Otherwise the same generai condition holds as before. This reach adjoins the other reach at a right-angled bend. Coefficient $n=0.0360$.

No. 323, experiment FCS-59, main canal, Modesto irrigation district, Calif. Test was made on a wide canal carrying but a small portion of its total capacity. This gave a condition of shailow water fowing over gullied hardpan having about 0.1 foot of shifting sand. No grass touched the water at this stage. Coeffcient $n=0.0300$.

No. 324, experiment SF-64, Hyrum canal, Utah. Sides overgrown with alfalfa and weeds. Bed of coarse gravel up to walnut size. Coefficient $n=0.0319$.

No. 325, experiment VMC, Bessemer cansl, Colorado. Bed of fine silt, merging into clays with liberal sprinkling of loose stones up to 3 inches diameter. Coefficient $n=0.0321$.

No. 326, experiment FCS-9, lower canal from Big Cottonwood Creek, Utah. Originally constructed in a sandy loam soll, the bottom was hard with no cobbles but with a deposit of soft mud in the lower velocities near the sides. The reach tfited is on a gentle contour curve, which exerts an inappreciable infuence when compared with the vegetable growth. The banks are nearly vertical and irregular, ike most rooted channels. Willow roots and grass have so encroached on the channel that a high value of n is obtained. Coefficient $n=0.0324$.
No. 327, experiment FCS-60, Yosemite Power Co.'s ditch. Follows a mountain contour in disintegrated-rock soil. A fringe of bushes and grass retards velocity at the banks, while the bottom is porous and gravelly with scattered boulders and rock fragments up to two-fist size. Coefficient $n=0.0334$.
No. 328, experiment FCS-62, Golden Roek ditch, Yosemite Power Co., California. Reach tested follows a gentle mountain contour. The bottom is of clean dis-
integrated slate with scattered pieces to two-fist size. Although this bottom has a great retarding infuence, the value of n is higher than is to be expected. There was but Jittle grass touching the water. Coefficient $n=0.0346$.
No. 329, experiment STH-1.5, lateral 1, Billings Land \& Irrigation Co., Montana. This reach of ditch is in sandy loam fill. The water section is irregular with sand in the bottom and a little trailing grass and moss. Cocfficient $n=0.0349$.

No. 330, experiment SF-26, Logan and Benson-Ward canal, Utah. Bed of medium-sized gravel. Flow much impeded by horsetail moss occupying about one-fourth of water section. Coefficient $n=0.0352$.

No. 331, experiment FCS-18; Logark and Hyde Park canal, Logan, Utah. Straight reach originally constructed in gravelly soil with many cobbles from egs to two-fist size. At time of test the edges were irregular and densely grassed, with patches of moss and some cobbles seattered throughout the reach. The moss lies ustally within 0.3 foot of the bottom. Coeffieient $n=0.0364$.

No. 332 , experiment $\mathrm{CCW}-9$, Hillsboro ditch, Colorado. In general bad condition, wilitirregular gradient and rough banks. Gravel channel seoured by current. Coefficient $n=0.0371$.

No. 333, experiment FCS-53, lateral 23, Turlock irrigation district, Caiif. Straight reach excavated in hardpan requiring blasting. This leaves the section rough and pitted. The bottom was covered with 3 jnches of rough, gritty sand. As the canal was only about onc-lonlf full, no grass touched the water. Coefficient $n=0.0373$.

No. 334, experiment FCS-25, Perrault canal, Boise, Idaho. This diteh, constructed in gravelly loam soil, has a very hard cemented bottom. A dense growth of grass so kills the velocity for a distance of about 1 foot from each bank that the value of n is very much grcater than would be the case if the canal were kept free of this growth. Coeflicient $n=0.0381$.

No. 335, esperiment, SF-62, lateral of Hyrum canal, Utah. Partialy overgrown with alfalfa. Strip of moss on each side occupied about one-fifth of channel. Bed of flat fragments of rock, up to 3 inches greatest dimension. Coefficient $n=0.0393$.

No. 336, experiment FCS-46, Orr ditch, Reno, Nev. The mach in a horseshoe curve arom the small lake on the university campus. Originally exarated in loamy soil with a lititle gravel. The bed was clean scoured, but near the sides a man wading sank about 4 inches in soft mud. Dense grass and willows retard the velocity at both banks, while the water section is very irregular throughout the reach. Coefficient $n=0.0397$.

No, 337, experiment FCS-21, a amall ditch in Twin Falls, Idaho. Originally constructed in hardpan, the reach is irregular with scattered debris such as is so often found in town ditches. Grass arches across in many places. Coefficient $n=0.0399$.

No. 338, experiment FCS-4, New Rutner diteh, Nebraska. Ditch follows a gentle coniour line down a creek bottom. At time of test it had a very hard bottom of medium-fine grayel, well packed, but a dense growth of grass killed the velocity for about one-half foot from each bank, and scattered patches of moss retarded that in the middle. The banks of the ditch are very irregular. Coefficient $n=0.0436$.

No. 339, experiment FCS-44, Sullivan \& Kelly ditch, Nevada. A ditch excavated in a gravel and cobble hillsidc. At time of test the bottom was hardpacked gravel in the center with a slight deposit of soft mud at the sides. Scattered colsbles and a dense growth of grass retarded the yelocity of the water. The reach follows a gently curving contour line with one right-angled bend near the lower end. Coefficient $n=0.0436$.

No. 340, experiment WBG-2, Roller canal, Louisiana. This test was made on a straight reach of canal. The vegetation extended about 5 feet from each shore, Coefficient $n=0.0461$.

No. 343, experiment SF-53, lateral of Thatcher canal, Utah. About twothirds filled with horsetail moss. Such bed as is exposed is sediment. Coefficient $n=0.0519$.

No. 344, experiment SF-52, lateral of Thatcher canal, Utah. About threefourths filled with moss. Bed exposed is fine sediment. Coefficient $n=0.0529$.

No. 345, experiment WBG-5, a small diteh in Louisiana, chosen as representative of the small ditches in the rice country. Grass extended from one bank to the other across the bed, occasionally growing to the water surface from the bottom of the ditch. The grass forms a dense mat in the bottom. It had been cut with a scythe about 1 week before the test. Coefficient $n=0.0544$.

COBRLE-BOTTOM DITCHES

No. 346, experiment CCW-13, Beasley ditch, Boulder, Colo. Channct of gravel on bottorn with cobbles on the sides. On a slight curve with no vegetation in channel. General condition elassfd as good. Coeffeient $n=0.0220$.

No. 347, experiment VMC, Rio Grande canal, lateral 1-c, Del Norte, Colo. Description about the same as for No. 348, except that the gravel is finer. Coemcient $t=0.0221$.

No. 348, experiment VMC, Rio Grande canal. Del Norte, Colo. Bed varics fan fine gravel to smooth round rocks about 6 , inches in diameter. Coefficient $n=0.0284$. (Pl. 22, C.)

Nos. 349 to 370 , inclusive, experiments BCC, Cachapoal canal, Braden Copper Co., Chile. Originally constructed in 1909-11 fur capacity of 550 second-feet. Enlarged in 1928 to 750 second-feet. Prior to this enlargement some 480 cross sections were taken; capacity flows were held steady and measured at both ends of canal. Reaches are listed in order, with distance in kilometers from head, in column 2, table 1. Elevation of water surface at each measured section was used in determination of C in Chezy formula for typical reaches listed covering length of canal of 12 kilometcrs. Typical condition indicated by plate 21, B.

No. 375, experiment SF-63, Hyrum canal, Utah. Sides of earth. One-half of perimetor seross bottom covered with rock fragments up to 1 inch across. Weeds and alfalfa, grew up to water's edge. Coefficient $n=0.0260$.

No. 376, experiment STH-31, Bitter Root Valley Irrigation Co.'s canal, Montana. A nearly straight reach excavated in very gravelly ground with boulders up to 2 cubic feet in size. The first third of the distance is fairly smooth on the bottom with no stones larger then two-fist size; upper siope cobbly and with some grass on the lower water edge. Second third of distance shows much roughness, with cobbles over most of bottom. Last third, in condition intermediate between first and second thirds. Coeficient $n=0.0262$.

No. 377, experiment STH-4, Bilings Land \& Irrigation Co., Montana. A straight reach excavated in graded gravel up to two-fist size underlying about I foot of soil. The canal is 9 years old. Mud has deposited in the slower velocities at the sides. Dense grass fringes the cdge but does not trail in the water. Coefficient $n=0.0264$.

No. 378, experiment CCW-7, Loveland and Grecley canal, Colorado. Overhanging sod banks with grass in water. Earth channel with many cobbles up to 8 inches in diameter. Reach on a curve. Coefficient $n=0.0267$.

No. 379, experiment FCS-10, upper canal from Big Cottonwood Creel, Utah. Reach follows a gentle contour curve on a very gravelly hillside. Sides vertical and lined with trees and willows, rootlets of which extend into the water prism. The bottom is completely covered with cobbles up to two-fist size. As with nearly all ditches of this character the sides are irregular in outline, the cobbles not breaking into $s 8$ even bank. Coefficient $n=0.0277$.

No. 380, experiment FCS-15, Logan and Northern canal, Utah. A fine example of ditches following gravelly hillside contours near the mouths of canyons, a condition typical of many canals near the mountains. The sides are densely fringed with willows and bushes, rootlets of which hold silt and form nearly vertical banks. The bottom is completely covered with well-packed gravel and cobbles up to two-fist size. Coefficient $n=0.0270$.

No. 381, experiment VMC, Rio Grande lateral No. 1, Colorado. Bed of graded material from fine gravel to water-worn rocks 6 inches or more in diameter. Three tests on the same reach with 380 second-feet, 33.34 second-feet, and 27.16 second-fect, gave values of n as $0.0284,0.0386$, and 0.0370 , respectively. This gives a lower value of π for the greater discharge.

No. 382, experiment FCS-51, Reno ditch of the Reno Light \& Power Co., Nevada. Reach was originally excavated in an old river bed containing innumerable boulders up to 5 cubic feet in size (pl. 20, A). About a year before this tesi the sides and bottom of this channel had been paved with a hand-laid riprap of these bonlders, the sides being laid about $1 / 3$ to 1 , and the bottom flat. Many of the boulders at the top of the walls have rolled into the canal, as no cement or other bond was used, but the general condition of the walls appears to be goori. The reach tested was straight with the exception of a gentie curve in the last 200 feet. Coefficient $n=0.0291$.

No. 383, experiment CCW-12, Beasley diteh, Boulder, Colo. Bxcavated in gravel and fine sand with a good many small cobbles. Banks held in place by logs laid parallel to stream. Coemcient $n=0.0320$.

No. 384, experiment FCS-43, Sullivan \& Kelley ditch, Nevada. This reach follows a gentle contour on a rocky hillside. The boulders have been hand laid
in a nearly vertical wall on the lower side white the bottom and upper side are rough and irregular with projecting large boulders．A slime of mud from the Truckee River water covers all rocks below the water line．Vegetation is negligi－ ble．Coefficient $n=0.0324$ ．

No．385，experiment SF－55，Smithfield canal lateral，Utall．Cobbles partially covered with silt．Edges made irregular by cattle．Cocfticient $n=0.0329$ ．

No．386，experiment SF－47，Logan and Hyde Park Canal，Utah．Entire channel composed of loose coarse gravel up to hen＇s egg in si\％c．Coeficient $n=0.0337$ ．

No．387，experiment SF－33，Jateral of Hyrum eanal，Utal．A case where water flows very slowly over a rough surface on steep grade．Bed composed of ioose cobbles up to 3 －inch size，Coefficient $n=0.0365$ ．

No．388，experiment SF－57，latcral of Smithfield canal，Utah．Canal on steep grade with bed composed of gravel and cobbles．Coefficient $n=0.0377$ ．

No． 389 experiment FCS－42，Cochrane ditel，Nevada．Constructed in grav－ cliy soil with many cobbles．Test was made on a reach haviug one bend．The bottom had many loose cobbles scattered on an otherwise hard gravel bed．The banks throughout nearly all of the reach tested were overhung with densely grassed sod．In addition about 20 percent of the water section was occupied with moss．Cocfficient $n=0.0379$ ．

No．390，experiment FCS－89，Beasley ditch，Colorado．A straight reach carrying but about one－fourth its capacity．The bottom and sides are a mass of unpacked gravel and boulders up to 2 cubic feet in size．Coefficient $n=0.0383$ ．

No．391，experiment PCS－52，Capurro ditch near Reno，Nev．A sinall ditch thickly fringed with grass and with scattered cobbles in the bottom．The banks are nearly vertical，densely rooted，and very irregular．The bottom is covered with about 0.1 foot of soft mud through which the seattered cobbles project． Coefficient $n=0.0403$ ．

No．392，experiment SF－24，canal of Brigham City Electric Light Co．，Utah． Well－formed canal．Bed of nedium－sized unpacked gravel．One－third of water section filled with long waring water plants．Coefficient $n=0.0424$ ．

No．393，experiment SF－56，lateral of Smithfield City canal，ぞtah．Edges uneven．Bed of clear－washed gravel and cobbles．Coefficient $n=0.0423$ ．

No．394，experiment SF－46，Brigham City canal，Utah．About half full of horsetail moss．Such bed as is exposed is gravel．Edges overgrown with cress and weeds．Coefficient $n=0.0499$ ．

SIDEHLLL CUTS，WITH RETAINING WALLS

No．395，experiment STH－23，Fedge canal，Montana．A short reach excavated in granite hillside，with the lower bank formed of a random rubble masonry wall， well plastercd with mortar on the nearly vertical water face．The reach is straight except for a slight curve in the last 50 feet．The bottom is covered with granite gravel，most of which would pass a $1 / 2$－inch screen，with occasional pieces one－fist size．The excavation is quite true to line for a rock cut．Coefficient $n=0.0185$ ．

No．396，experiment STH－27，Hedge canal，Montana．This reach is about 500 feet below that in No．395．The upper side is excavated quite true to line in earth and disintegrated granite．The lower side is a vertical concrete wall laid against board forms．The floor is concrete with from 1 to 2 inches of fine，sharp ravelings from the hillside．In spots the floor shows，Coefficient $n=0,0225$ ．

No．397，experiment STH－9，Cove diteh，Montana．Reach is cut from a sand－ stone hillside．Lower bank is a rubble masonry wall plastered with conerete on the water side．Bottom is also overlaid with concrete．Alinement is wavy with some 20° curves．From stations 0 to 2 there is some gravel；from stations 2 to 4 ，clean bottom，the rock on upper bank being smooth but the width irregular；from sta－ tions 4 to 6 ，more uniform in width but rough on rock side；from stations 6 to 7 ， rock wall rough and width variable；from stations 7 to 8 ，rook wall smooth， bottom clean or little gravel，the width uniform．Coefficient $n=0.0228$ ．

No．398，experiment FCS－17a，Logan，Hyde Park，and Smithfield canal，Utah． A reach between an earth section and the reach in No． 399 below（pl．15，A）． The excavation is on a steep hillside．The upper bank is nostly of willow roots， while the Iower bank is a well－made concrete wall．The bottom is covered with coarse gravel．This reach is nearly straight with bends at both ends．Coeffi－ cient $n=0.0256$ ．

No．399，experiment FCS－17b，Logan，Hyde Park，and Smithfeld canal，Utah． Just below the reach described in No． 398 the canal enters the section covered in this test．The same concrete wall formed the lower bank，and the bottom was
about the same, but the upper bank was a rough vertical rock cut. The difference in the vaiue of n is about what is to be expected. Coefficient $n=0.0278$.

No. 400, experiment STH-26, Hedge canal, Montana. A rock cut with concrete floor and a rubble masonry lower wall, faced with 3 inches of concrete deposited against wood forms. The bottom is mostly covered with sand and ravelings of small rock. The upper bank is rough rock excavated true to cross section. The alinement is practically straight except for one sharp curve. Coefficient $n=0.0269$.

MISCELLANEOUS SECTIONS

Nos. 404 and 405 experiments FCS-74 and FCS-73, lower canal, Riverside Water Co., California. These tests made on a straight reseh of canal in a sandy soil with a shifting sand bottom and a wood lining on the lower side (pl. 15, B). The canal in test No. 404 is in the shade of a dense row of trees and is free of moss accumulations. Coefficient $n=0.0249$. The canal in test No. 405 is in the sun and moss has accumulated on the wood liding. Coefficient $n=0.0291$.

In both tests the water was retarced by a rank growth of grass for about 1 foot from the bank opposite the wood lining. The diference in the values of n is directly due to the moss, which grows in sunlight but not in shade.

Nos. 406 and 407 , experiments BR-S-26 and 27 . Rossi Mill ditch, Idaho. Rough board sides with gravel. Some grass growing through cracks between boards. Coefficient $n=0.020$.

No. 408, experiment FCS-17e, Logan, Hyde Park, and Smithfeld canal, Utah. This reach is fairly straight, excavated in rough rock. The bottom is strewn with coarse gravel (pi. 15, C). Coefficient $n=0.0298$.

No. 409, experiment JE. Canal for electric plant of city of Aarau, Switzerland (62). A straight canal with large geschiebe on the natural bed and concrete sides on slope of 1 to I. Coefficient $n=0.0173$.

No. 426, experiment FCS-AK, Drum canal, Pacific Gas \& Thectric Co., California. A test by representatives of the owners and the author. The canal section lies on a steep mountain side (pl. 19, A). The upper bank is a submerged rock wall 4 feet high. Above this the caral has been widened abruptly, forming a berm 5 feet wide, to an excavated side slope. The water was 3 feet deep on the berm. The lower side is paved with concrete "planks" laid side by side down the incline of the bank. These planks are precast and used wherever erosion endangers a canal bank. Cross sections had been carefully taken at every station through the reach tested, with the water out of the canal. The sectional areas varied greatly over a range about 13 percent above and below the computed mean area. Coefficient $n=0.0262 .{ }^{15}$

No. 428, experiment FCS-100, Deschutes municipal district, near Bend, Oreg. A straight reach of eanal with lava-rock masonry walls having plastered inside face, the bottom of fairly smooth concrete (pl. 19, C). Cross sections were taken every station through the length tested. Coefficient $n=0.0207$.

No. 429. experiment FCS-98, Yakima Valley canal, near Yakima, Wash. A combination of concrete lining and bench fiume, which replaced a timber flume after the latter wore out. The upper side is on a slope of about $1 / 2$ to 1 . The bottom is a typical concrete lining with some rock debris. The lower side is a nearly vertical concrete wall like a bench flume. The meter measurement was made at the company gaging station just below the outlet of Cowiche siphon. This point was the upper end of the reach tested. The value of $n=0.0154$ is typical of conerete linings subject to hillside debris.

No. 430 , experiment BR , Cottonwood flume, Idaho. Rubblestone fairly well laid. Some coarse sand in bed being carried as silt. Coefficient $n=0.0163$.

No. 431, experiment FCS-29, Jacobs ditch, Boise, Idaho. As shown in plate $9, B$ the sides are of first-class rubble masonry with all cracks smoothly plastered with cement. The bottom is smooth cement lining laid like a good grade of sidewalk. About 50 feet below the lower end of the reach the ditch passed through a vertical trash grating, which was kept clean of debris during the test. Coeffcient $n=0.0149$.

No. 432, experiment FCS-27. The same ditch as No. 43I, but this reach is lined on both sides and bottom with dry laid, unchinked rubble, as shown in plate 9, C. The bottom is quite irregular, with scattered loose cobbles. A clean grating came a short distance below the reach, as in No. 431. Coefficient $n=0.0235$.

[^15]No. 433, experiment FCS-28. The same ditch as No. 431. This reach, one city square long. came beiween No. 431 and No. 432 . It appeared to have been originally like No. 451 , exeept that the bottom was not lined. There were several cobbles throughout the bottom of this reach, and this probably accounts for the fact that the value of n is slightly higher than for No. 432 , while to all ap. pearances it should have been slightly lover. A grating similar to those noted above came below the lower end of the reach. Coelficient $n=0.0250$.

No. 434, experiment FCS-45, Orr ditch, Reno, Nev. As shown in plate 10, A, the sides are smoothly built rubble, with most of the cracks well plastered, but the bottom is covered with shifting sand and loose cobbles so that, if lined, the lining is completely concealed. The lined section ends shortly below the kower end of this reach, passing into an earth channel. This test exemplifies the need of keeping sand and gravel from a lined section if the low value of n that might be expected is to be realized. Cocfficient $n=0.0298$.

concrete chutes

Nos. 451 and 452 , experiments VMC, south canal, Uncompahgre project of Bureau of Reclamation Colorado. This canal, extending from the outhet of Gunnison tunnel to the Uncompahgre River, is a serics of ordinary concrete-lined canal sections (see Nos. 63 to 67 , inclusive) with several stcep chutes ($p l \mathrm{l}$. 10 , A and $22, B$). Tests were made on the latter by Cone and lis associates some 3 years before the Foster test (No. 453) and 19 years before the more elaborate tests by Lane and associates (Nos. 454 to 464, iuclusive). ${ }^{16}$ The Foster tests were reported in Bureau of Keclamation data card No. 25. The photographs show the class of concrete when the canal was new and detail views show how the bottom and lower parts of the sides have been eroded by the high velocities (20 to 35 feet per second) in a terrain tlat contributes much abrasive material.

Practical uses of The experimental data

The greatest practical use of the data given in table 1 is to allow selections of values of Kutter's n : r use in the design of new irrigation and similar channels for specified original surfaces of definite categorics with the indicated modifications of these values that may reasonably be anticipated to result from seasonal or permanent changes. Likewise to be anticipated are the changes in the values of n relleeting conditions within the water prism that affect the hydraulis roughness but may have no bearing whatever on the condition of the surface of the conduit materinl. Obviously, canals should seldom be designed so that the best possible conditions are anticipated, for il they are not attained the channel fails to meet capacity requirements.

The use next in importance is that made by the management of any system involving older canals. Such managements are continually faced with the problem or changing from simple earth channels to a more improved type. This may be necessary to stop seepage and water-logging of land adjacent to canals, to increase the capacity of the canal without increasing its size, or to hold the same capacity in a smaller channel. In some highly developed arens, canels located beside roads have been placed in covered conduits in order to make more space available for highway traffic. For instance, the Sanderfer Ditch near Whittier, Calif., (pl. 5, C) has been placed in it concrete pipe operating es a flow-line channel i. e., not under pressure. ${ }^{17}$

Similar changes have been made in orange groves and other farm land where the value of the areas snlvaged and reduetion of operating costs have more than paid for the exchange of covered concrete cor-

[^16]duits for original open canals in earth or concrete. Another use is described in detail on page 15 where the capacity of an existing conduit was increased by direct improvement of the original channel.

A future use lies in the studies of the canalization of streams. Much of this work has been done in Europe. In the United States many small streams, in their passage through urban property, bive been placed in canal sections, either open or covered. Recently the Rio Grande has been rectified from El Paso to Fort Quitman, Tex. Funished, summer of 1938.) This work has changed a meandering river for 155 miles of its length to a camai but 88 miles in length, witi the resulting steeper gradient available for the transportation of silt and sand. This change also stabilized the intermational boundary between the United States and Mexico. The canalized channel was designed for a flow of 11,000 second-feet, using a valuc of Kutter's n of 0.025 for the normal flow chamel and 0.030 for the flood channel.

As problems arise, the usual given quantities are: The discharge, Q, and generally the bed slope s. Lnitorm flow must ordinarily be assumed; hences is parallel and equal in value to the energy slope S. Sometimes any slope may be used, over an appreciable range, so that many possible channels can be set up for economic study. Even with both Q and S given, there are many shapes and sizes that will yield the desired answers from a mathematical standpoint. Most canals will have gentle velocities without entrained air so that the continuity equation, $Q=A V$, will hold true. Thus any combination of A and 1^{-} that will yicld the desired Q can be used. But solution of the Kutter or the Manning formula yields a value of R rather than of A. For preliminary study a set of tentative simuitaneous values of R and \dagger^{-}
can be taken from the estimate diagram (p. 66). Then $A=\frac{Q}{V}$. Ref-
erence to the Bureau of Reclamation lyydraulic tables (67) readily shows several combinatious of canal dimensions and shapes, all yielding the required values of R and A.

The data herein can be used for a question frequently propounded to the engineer, What will be the maximum capacity of a canal, spillway, floodway or the like, already constructed but never subjected to full capacity? Here the slope S is generally assumed as equal to the bed slope s, unless other facts are available from which backwater curves can be developed or other elements that give a more proper value of S, even if nonuniform flow will be found to hohl.

From the measurements of cross section, values of A, P, and R can be developed for all depths. With the best possible estimate of the value of n that will bold at the time given in the hypothetical question, then the estimate diagram can be entered with the various possible combinations of R, S, and the assumed n. The diagram will yield the corresponding vaiues of V which can be multiplied by the proper value of A to produce the desired answer, Q. The maxinum Q of the various possibilitics cau thus be estimated. Of course, all such estimates are approximations only.

Before reaching decisions in such circumstances, the engineer should consider:

1. The material of construction and the channel shapes available for $i t$.
2. The most efficient proportions for various shapes.
3. Whether the canal will be of moderate slopes and in sinuous flow or on a steep slope and thus in shooting flow.
4. Whether the terrain permits of a relatively straight canal or calls for many curves and bends.
5. The surface of the material. A good surface in any material does not tell the whole story. Other things must be considered because hydraulic friction frequently differs from surface friction.
6. Whether the capacity will be affected by muddy water, insect life, or aquatic growths.
7. With items 1 to 6 considered, what velocities should be used.

These items are discussed in detail from the capacity and design standpoint in the following pages.

Material and shape of channel

Usually the various materials of which a canal can be constructed are associnted with certain definite shapes.

Earth.--Original construction in a trapezoid with some assurance that this shape will tend to become an elliptical bed (pl. 13, A). The form of the ellipse depends largely on the amount of grivel and cobbles in the matrix $(35, p .278)$. Fine silts without grit tend to produce a deep narrow section. Wide, flat bottoms are often developed where cobbles are predominant (pl. 22, C). Intermediate shapes appear to depend on the relative number and size of pebbles and boulders.

Concrete.-Generally a trapezoid with side slope of $1 \frac{1}{2}$ or 2 to 1 . In lower Rio Grande Valley common shapes with shot concrete are 120° of a circle with tangent sides or an approximate parabola. These shapes have enough arch action to resist breaking under pressure of earth or mud bacling. Many modern canals have the bottom dished to get this arch action. Sometimes struts brace the top of the lining. Concrete shapes often depend on the method used. Shot conerete is placed on horizontal, vertical, sloping, or curved surfaces. Poured concrete, with or without forms, is used in trapezoidal shape while, with forms, any shape desired can be obtrined. Small covered channels with freewater surfaces are usually of concrete pipe. Cut-andcover sections are usually nearly vertical in side wall, but sometimes circular or trapezoidal shapes are covered. Precast concrete "planks" are used to line sloping banks, especinlly on the outside of curves, to prevent erosion.

Wood.-Wood (other than in wooden flumes) is used to line trapezoidal sides and bottom of canals (pl. 10, B).

Brick.-Brick is not used to any extent in the Lnited States for irrigation or power canals, but is still used to some extent in Indin. One system in lower Rio Grande Valley is using both brick and tile to line moderate-sized canals in rounded cross scctions. Rough-finish coat covers the joints.

Mctal.-Sometimes a channel is lined with sheet inetnl. (Spillwny at El Vodo Dam, N. Mex.) Usumlly a metal channel is a fame of some sort.

Rubble masonry.-Over most of the irrigated West rubble masonry has been largely replaced with concrete. However, in the lava flow terrain of the Northwest there are a few conals of laid-up lava rock,
unlined or liner with a coat of cement mortar (pl. 24, B). Along the border between the United States and Mexico, the use of "momposteria" is quite feasible as the Mexican is an excellent worker in concrete and rubble masonry (pl. 20, C). This material is usually given about 1 to 1 or steeper slope in the side walls.

Most efficient section.--Important in the consideration of efficiency is the determination of the shape most economic from the hydraulic standpoint. For any shape, the best section is the one that gives a minimum value to $\frac{P}{A}$ (or a maximum value to R). If hard, unerodible materials are used, the most efficient channel is the semicircle. For the rectangle, the ratio of $b=2 d$ is best.
In lining canals with concrete, of course a minimum quantity of concrete is desirable. This minimum is reached in the semicircle. However, for the larger canals construction features in most cases dictate the use of the trapezoid.

The maximum use of any available energy content ($d+h$) is reached at critical flow. Taking shape in to consideration the ultimate maximum efficiency is reached when critical flow is found in a semicircular channel. (An example is given ($57, p, 80$).)

While the most efficient cross section and shape seldom can be chosen, it is well to know what that shape and section are so that they may be approached, if not attained.

SINUOUS OR STREAMING FLOW

Nearly all canals are designed and operated at sinuous or turbulent flow. ${ }^{18}$ This covers the streaming range from Reynold's critical flow to Bélanger's critical flow. Below Reynolds' critical point, the surface is glassy and movement almost imperceptible. Authorities agree that the loss of head is proportional to the first power of the mean velocity. This condition is, of course, not conducive to the primary purpose of conveyance of water. Oddly enough, at Bélanger's critical flow are found a glassy-like surface, a relatively transparent prism, and a nearly uniform velocity. If it could be assured and controlled, Bélanger's critical flow would be ideal for conveyance in channels that would not be scoured by the relatively high velocities. However, it is too sensitive to slight changes in canal surface to be used commercially, except for short distances.

If the channel is slightly smoother than assumed in design, the tendency is for the prism to race at velocities in the shooting stage, until checked by curvature or change in roughness. Thereupon the flow will change--usually through the hydraulic jump-to the strenming stage which is then slower than the normal stage, and the movement of the prism will quickly accelerate until normal stage is reached, whether faster or slower than critical flow.

[^17]
(Ses Critical Depth, D. 1)

In canal clutes and reserroir spillways, velocities lie wholly in the zone of shooting, rapid or torrential flow, as it is variously culled (pl. $8, B$). Such flow is subject to phenomena now being eritically studied as research problems. Some chutes and spillways develop "slug" How in greater or lesser degree, and some do not, the reason for either condition not being clear (pl. 22, A). Again, some entrain air it appreciable quantities, thus swelling the volume so that the continuity equation $Q=A V$, no longer holds ($p 1.22, B$). So far as is known, the water prism with the swelled volume can be determined by the use of the same friction coeflicient used for ordinary flow. However, the actual faster velocity is that computed with much lower values of the friction coefficient ($57, p p, 90-91$). On slopes that are obviously sharp inclines ($\mathrm{pl} .22, B$) the depth of water should not be taken in the rertical but in a phane normal to the bed of the chmonel.

The antithesis of the sharply inclined spillway chute sometimes holds just above the brink leading to the chute. Here the bed of the collecting channel leading to the spillway crest may be level or even have an adverse slope.

FLOW AROUND CURVES AND BENDS IN CANALS

Streaming flow around gentle curves in both earthen and lined conals results in a small amount of superelevation of surface on the outside (concare side) and depression on the inside, of the curve. Any scouring of an earthen channel takes place on the outside of the curve, and the raveled material is deposited on the inside (convex side) (pl. 10, A). For sharp curves or bends in a lined section (that cannot be easily scoured) the greatest relocities are near the inside (rortex flow?); the smoothest surface is on the outside, and the choppy water is on the inside of the bend (pl. 19, B). The water on the outside appears to roll up from below the surface and flow rapidly along the surface from the outside to midchannel, where it meets the edge of the choppy waves. The net result, in terms of design, is that about the same freeboard is required on both sides of the channel around bends or curves.

For sharp bends, the path of the flow on the inside of the curve is materially shorter than that on the outside. This, of course, gives n steeper gradient on the inside and makes more fall per unit length available for high velocities and for correspondingly benvy frictional losses.
For velocities faster than the critical (that is, for shooting flow) the direct forward velocity is faster than a velocity convertible to vortex flow, and it is not feasible to hold the prism within a trapezoidal channel on a curve of much sharpness. A vertical outside wall with a properly designed top may turn back the wave into the channel.

One obvious control can be effected by warping the whole channel so as to depress the floor on the inside and elevate it on the outside. The effects of curvature in canals may be itemized about as follows:

IN EARTH CHANNELS

New banks on the outside of moderate curves are easily eroded. They should be protected by brush or rock riprap. Curves sharp
enough to class as "bends" are very difficult to hold in earth chanmels, except with riprap.

Mud and debris will be deposited on the inside of curves as they become available to the flow.

Velocities are so moderate in such canals that no provision need be made for difference of water surface elevations on the outside and inside of curves. The highest velocity is sometimes on the outside and sometimes on the inside.

```
IN LINED CHANNELS
```

For streaming flow, which occurs in most canals of such gentle slope as not to class as chutes, there appears to be a critical curvature.

Curves sharper than this critical can be classed as bends. For the same channel, this critical curvature may change with depths of water.

Flow around bends appears to be of two forms:
(1) On the inside of the bend the surface is depressed but choppy, the velocities are higher than on the outside; the flow is distinctly forward and color, string, or other flags held on a rod close to the side will hug the side of the channel. If the lining is formed by short straight reaches, separation of the prism and an eddy occur just below each angle point. Trareling debris on the bottom works toward the inside, as cyidenced by a clean polished streak in many lined chamels.
(2) On the outside of the bend the surface is clevated but smooth, the velocities in rectangular, circular, or trapezoidal sbapes are slower than on the inside; the water appears to be rising rapidly from some point below the surface and rolling toward the center of the chamel. Surface flow is from the outside toward the center (not toward the outside as many technical books and articles state). Flags held on rods at the outside take angles of 30° to 45° with the side, instend of hugging it as might be expected. On the outside, the flow appears to lack tho straight forward features characterizing the inside flow. It. surges up from below the surface as sand boils in a heavily silted river. Sometimes chips float aimlessly noout, slowly working their way downstream.

FOR EXTREMEGY SINUOUS LINED CANALS

The value of n used in design should be 0.001 to 0.003 higher than for the same conditions in a reasonably straight canal.
The surface is elevated on the outside and depressed on the inside, and the hydraulic grade line developed by averaging these two surface points for each station follows a very broken unpredictable path.
If the velocity head for the mean velocity at each station be added to the hydraulic grade line as computed above, the result is the energy grade line, usually called the energy line.
The energy line, even for this yery sinuous canal, is remarkably straight, being without the steep dips that would be expected at each distinct bend.
This means that the local losses for the individual bends continue on downstream and blead with the normal loss. Thas it is not necessary to allow a special drop in energy for each individual bend, but merely to use a higher value of n throughout.
For streaming flow, no special frecboard on the outside appears necessary; the elevated but smooth water on the outside approximately balances the depressed bat choppy water on the inside. However, some excess freeboard may be necessary both inside and outside.

Apparently, water surface warp reverses at the same point where alinement curves reverse.

For two close bends in the same direction the clevation of the outside and the depression on the inside are greater for the second curve.

The flow in a tangent below two close reversing curves is smoother than below curves following the same direction. This suggests that some point near the lower end of this tangent is a better place for a gaging station than one on a longer tangent following bends in the same direction. This is probably true of sinuous rivers as well as camals. (For more complete discussion see Scobey (57).)

FOR SHOOTHNG FLOW YN LINED CIIANNELS

Curves and bends are to be avoided as much as possible. Little is known of the action of rapid flow in curved chates. It was noticed that in one traperoidal chamel the water flowed up the steep outer side and left the bottom ol the chamel on the inside "dry." On the other hand, shooting flow approaching a shapp curve with nearly yertical outside wall passed through the hydraulic jump in twisted form, rolling the water prism buck into the chanel again.

Shooting fow may be converted to streaming flow before conveying the water around a sharp curve, or it may be modified by planiting rough "plums" of boulders on the floor of the curve, with freebourd on both banks increased to cate for the flow it the modification throws the prism into streaming flow.

For additional comments on the effects of curves and bends the reader is referred to the following authorities: Godlirey ($2 /$), Yarnell (70,71), Mitchell and Harrold (43). Shepherd (58), Freeman (21), and Pearl (49).

EFFECTS OF MUDDY WATERS, AND AQUATIC GROWTHS

The statement is almost axiomatic that muddy waters do not have extensive aquatic growth out in the water prism and that clear waters in earthen chamels are scldom free of such growths throughout the irrigation season. ${ }^{13}$ However, intermittent flow of muddy water may not eradicate aquatic growth, ceren though muddy for 2 or 3 weeks at a time. In concrete-lined canals, silty waters sometimes form a conting on the conerete. If allowed to become thick, this coat forms a bed for the growth of various types of "moss." (Quotation mariss are used as irrigation parlance includes many forms of growth that are not moss, strictly speaking.) Sometimes this combined mud-and-moss cont becomes thick and leathery. It then has a bunchy formation that ioses the high carrying-capmeity effect of a thin slick cont. Blow sand slides down the incline of concrete canal sides until it reaches the line where capilhary water is effertive, there becoming moist and necumulating in firm patches that do nut seour out even in reasonably high velucities. This is particularly true if the waters of the canal are silty, the eflect then being to add sticky colloidal mods to the sharp sand deposits.

Throughout the West the Russian-thistle, or tumbleweed, has a great influence on the reduction of eapacity of canals. During a hard

[^18]wind, dry thistles from the last year's crop break off and roll along the roads and fields until stopped perhaps by an irrigation canal, where they not only reduce velocities by their own structure but also form the nucleus of mud islands. Extensive erosion takes place in the canal bed around each island.

Muddy waters like those of the Colorado River and Rio Grande reduce capacity by deposits that encroach from the two sides, forming berms up to \mathfrak{a} surfsce level close to that of the water (pl. 13, B). In this shallow water and rich mud, tules, arrowweed, and dense grasses take root and form deposits that cannot readily be scoured out but must be removed by mechanical means if the capacity of the camal is to be restored. Usually the deposit of mud on the bottom between the berms is relatively thin.

The growth of vegetation in clear-water canals depends much on water temperatures. In localities where the supply is clear mountain water, fresh from melting snow, the effect of vegetation is at a minimum. However, those same waters, after miles of transport, become like the waters of the Southwest, warm and limpid. In earth channels and at ordinary velocities these waters are particularly subject to the vegetation hazard. Relatively high velocities, say 3 to 4 feet per second, discourage plant growth; so does deep water; i. e., 3 feet or more.

Canals carrying muddy waters should be designed for high velocities even though drop structures may later have to be instalied. This is particularly true of new systems not, expected to operate at full capacity for many years. If the canals should be operated at partial capacity, with low velocities, the mud deposits would form typical meandering flow on a bed built up within the larger canal bed ($\mathrm{pl} .23, B$). When the full-design capacity is required, say several ycars in the future, the banks will be so well seasoned that they can withstand a much higher velocity than was believed possible only a few years earlier.
A shaded canal is seldom afflicted with aquatic growths. However, trees use water consumptively.

Not all acquired conditions are adverse in effect. It has long been known that thin coatings of slick nud improve the capacity of rough concrete or graveled canal beds, unifying the suríace over local holes and humps. Canals originally excavated in glacial drift and morainal material are relatively low in capacity and high in seepage loss owing to the predominance of cobble boulders of all sizes. Artificially muddied water has often been used in such canals to lessen the seepage and grade the material of the canal bed, making it smoother and increasing its capacity.

For additional discussion of canal capacity as influenced by aquatic growth and muddy waters, the reader is referred to the following authorities: Lippincott (40), Kennedy (32), Finley (16), Pacific Electric Association (8), Burkholder (7), report of the City of Los Angeles (41), Grunsky (25), Lindley (37), Buckley (6), Haltom (26), Dibble and Parry (13), and Etcheverry (15).

PERMISSIBLE VELOCITIES

In canals having conveyance as their sole function, necessity to conserve slope usually prescribes velocitics in either earth or concrete channels that are in streaming stage of flow. In concrete and other
tough material, permissible velocities are only of moment when the channel is designed as a chate-essentially a drop structure-to lower a body of water from one genernl elevation to another. The mena velocity of a canal section is a direct factor in the amount of water it carries, since $Q=A T$. From a cost standpoint alone, to get the maximum capacity for the minimum cross section, of course the lighest feasible velocity is desired. In earthen chanels this is usually under 3% feet per second; in gravel, from 4 to 7 feet; and in concrete, metal, and wood, usunlly mader 6 to 8 fect per second ($\mathrm{pl}, 20, B$). Other factors being equal, a camal shoudd be designed for a velocity approaching that permissible for the materin of the camal and the type of water to be conveyed. The other factors that may operate fagainst such velocities are discussed below.

1. It may be necessary to conserve slope in order to command a larger aren. This would reduce the velocity for a given material.
2. It may be necessary to prevent siling and scouring in a given channel conveying muddy waters. This may dictate the use of recent data for nonsilting-nonscouring velocities (32, 3.5). These are somewhat below those usually thought of as permissible.
3. It may be necessary to use a rather low relocity to induce precipitation of silt from the water in order to reduce seepsige losses, especially in a new emal in a well-settled country, where seepage water might do expensive damage.
In many of the older books on irrigation and hydmulics permissible relocities were confused with trmsporting velocities. It is now known that the two are almost paradoxien-that the material most easily transported may be relatively hard to scour. That is, old seasoned canal beds with slick siltr banks are not easily croded, but these silty particles, when raveled off the baak, easily remain in suspension in the water and are most easily carried. In fact, if transported as colloidal matter in a dispersed state, they may even stay in suspension without apprecinble velocity. On the other hand, clean sugar sand is so easily sct in motion that a clean sandy bed is continually changing local formation; yet this material may require a much higher velocity to pick it up and transport it downstrem.

Table 2 was developed by the author from material submitted to the special committec on irrigation hydraulics of the American Society of Civil Engineers (20). The contributors of there data were operators of irrigntion systems throughout the West and were well informed as to the action of waters in their particular canals. As developed originally, this table was circulated for discussion throughout the membership of the society and received but little, if any, adverse comment. It has since then been freely copied into engincering literature ${ }^{20}$

[^19]Table 2.-Pcrmissible canal velocities

Oribinul materlal excsvated for canal	Velocity after aging. of carals eartying -		
	Clear water, no detritus	Water transporting colloidal sitts	Water transportne porcolloidal silts, sayds. gravels, or rock iragmeats
	Feet per second	Foet per second	Fete per second
Fine sand (moncollaidal)--ater	1.50	2.50	1. 2.50
Silt lomm (when noncolioidid)	2.00	3.00	$\bigcirc 00$
Alturial silts when moneolloidhl	2.00	3, 30	2.00
Ordinar frm loam............	2.50	3. 0_{0}	2.25
Volcanic ash soll....	2, 56	3.50	2.09
Fios gravel...	${ }^{2} 50$	5.00	3. 15
Stiff clay (very colloidnl)-...........-lilai	3. 3.75	5. 00 5.00	3.00
Graded, loarn to cobbles, when noncolloith	3.75 3.75	5.00 5.00	3. 300
Graded, silt to cobbles, Wien cohotriai	4.00	5. 50	5. 0
Coarse gravel (aoncollotdal)	4.00	6. 00	6. 50
Coboles and shingle-....--	6.00	6.00	5.00

Supplementing table 2 are certain definite findings, which should be fully understood before figures from the table are applied.

1. All velocities should be less than Bélanger's critical velocity; i. e., all flow should be in strenming stage.
2. Permissible velocities are usually much higher than transporting velocities for the same materials. That is, in a well-seasoned canal, a higher velocity is reached before the bed is broken and eroded than is necessary to transport the eroded particles after they become detached.
3. In a well-seasoned earth camal, the bed is usually composed of particles of various sizes, compacted, with voids in each size of materind flled with smaller particles until the result is a tough, sometimes slick coat. This cont is not easily broken if kept refatively free of foreign objects, such as Iarge rocks or anchored tumbleweeds which start eddies that break the bed and lead rapidly to serious erosion.
4. Dispersed colloids, in either the material of the canal bed or the water conveyed by it, or in both, tend to cement particles of silt, sand, and gravel in such a way as to make them resist erosive effects.
5. Flocculated colloids are useful in flling interstices in more open. material, but they do not have the high cementing properties of those in a dispersed state.
6. The grading of material, running from very fine to coarse, coupled with the adhesion brought about by the sticky colloids, make possible high mean velocities without any appreciable scouring effect.
7. Canals when new usually flow over many types of material, owing to the variation in the soils encountered. A relatively homo-
geneous bed is highly desirable; therefore artificial silting may be used if natural muddy waters cannot be relied on during any appreciable part of the season.
8. Irrigation canals usually require check structures for the control of deliveries to laterals on either side. These checks can be used to retard velocities in easily eroded parts of the canal or to induce the settlement of muds artificially placed in the canal for this purpose, perbaps several miles above the checks.
9. The use of checks, whether necessary for irrigation deliveries or not, allows higher velocities than might otherwise be pernissible. By this means, velocities can always be reduced, but it is very difficult or impossible to increase the velocities if too low a standard is set in the beginning.
10. If the canal be for hydroelectric power, municipal, or other use requiring that it be put under approximately full capacity as soon as feasible, a lower velocity should be chosen or curves and other critical points protected by riprap in some form. (Item 9 may also rereive consideration.)
11. Sometimes earth channels can be built for initial use on canal systems, with the expectation of obtaining the eventual lugher capacity by lining the canals with concrete. Fortunately, the gradients necessary for flow in the earth canals are also those conlucive to a good operative velocity in a lined section. For usual irrigation canals and laterals the capacity of a lined section is about 1.5 times that of an unlined canal.
12. Early erosion, under, say, 4 -foot velocities, may be checked by blasketing the canal bottom with bank-run gravel from which the sand has been removed. Silt remaining in the gravel, or silt in the water, eventually makes a smooth cont not eroded by velocities under about 5 feet per second, with a value of n around 0.022 .

FOR CORBLE-BOTTOM DITCIES

Most unlined canals leading from the mouths of canyons in the Mountain States cross debris cones or glacial moraines. While such canals are originally excarated in "earth," it soon develops that the finer materituls are carried away by the water and a distinet type of cobble armor becomes characteristic of the channel bed (pl. 22, C). The mountain streams carry muddy waters during the spring and after summer storms. Most of the irrigation season they are crystal cles. After this armor develops, a high velocity is permissible. However, this possibility is offset in new cansls by the need of precipitating any silt that flows in them, as they nearly always have excessive seepage losses for many years after they are built. These canals take on many of the characteristics of the streams from which they are diverted. There is almost no downward cutting but Interal erosion is effected by washing out the fines and dropping the cobble plums onto the bed of the canal. After the canal has become well bedded with graded material, the high permissible velocity may be attained by carcful removal of stray cobbles as they accumulate either by rolling in from above the upper bank of the canal or as the result of lateral srosion from one bank or the other.

TOR CONCRETE-LINED CANALS

Many of the older treatises on hydraulics list about 15 feet per second as the upper limit for the hardest rocks. With many examples representing extensive experience it is known that very high velocities can be used in modern well-made hard concrete. Canal chutes with velocities from 20 to 40 feet per second are common; scattered examples show even up to 80 feet per second. The spillway tunnels at Boulder Dam are designed for velocities of 150 feet per second. For any particular flood, such spillways are in operation for a few days at most.
In concrete all velocities that might class as the upper permissible are faster that Belanger's critical velocity and are thus in the zone of shooting flow.

Defore allowing water flowing at such velocities to come to the end of a concrete chute and be discharged into an earth canal or a stream, it is well to change the velocity through the hydraulic jump to a subcritical velocity. This will dissipate much of its energy and will not subject the banks below the chate to excessive erosion.

In straight channels with clear water, in gliding contact with the bed, there is no practical limit to velocities. Sharp abrasives may erode cement and fine sand (pl. 4, D). The resulting pebbly surface changes little.

In concrete chutes, dense carpets of "moss" are quite common thus keeping the swift waters from direct contact with the channel proper. In floodways, dense Bermuda grass will withstand 6- to 8foot velocities.

High-velocity flow is often associated with so-called slug flow, which causes a highly uneven turbulence in the outlet pool and excessive erosion (pl. 22, A). Just how it is caused and when such flow is to be expected is not known.

For additional discussion on permissible velocities the reader is relerred to the following authorities: Fortier and Scobey (20) Davis (11), Paul (48), and Etcheverry (15).

REGYONAL CHARACTERISTICS INFLUENCING CANAL CAPACITY

Climate, terrain, geology, waters, winds, insect life, and acquatic growths vary so widely throughout the West that certain characteristics can be identified with localities.

In all the Western States, slimes (pl. 4, C) and aquatic growths can be expected in clear-water canals, while only in the extreme South and Southwest are heavy arrowweed, tamarisk, willows, tules, and cattails found growing along the edge of silty-water canals.

Canals served by streams from the lava beds of Washington, Oregon, and Idaho are usually clear, except for the short periods just after heavy showers. Various "moss" growths reduce capacity to a marked degree, particularly in July and August. Nearly any growth in the water prism is called moss, though most of the types commouly found are not true mosses (pl. 12, A). A large part of the maintenance funds of canals is devoted to the eradication of these growths. Likewise, in this region, certain insects pass part of their life cycles in the water. The caddisfly, for example, lives through the Iarval ane? pupal stages in a case composed of small pcbbles, pine needles, and other trash, cemented into a twiglike structure about three-
sixteenths of an inch thick and from 1 to 2 inches long (pl. 4, A). These cases and algae growths that appear to exist under the same conditions can easily raise the value of n from 0.013 to 0.016 or more in a season, becoming a maximum at the season of greatest water demand. Various methods of combating such growths have been tried (63, 65, 66).

Cadals in lava terrain usually carry sharp ravelings of basalt that remove the finer elements of concrete, leaving a rough bed with a value of n materially higher than that of the original concrete. On very steep chutes in such country the abrasive is usually whirled up into the water prism and does not appear effective in keeping down the "moss" growths characteristic of high-velocity chutes.
In Montana, Wyoming, and the Dakotas sweetclover and mustard grow densely along the edge of the water and drag in the water prism. In southern California and Arizonia water grāss and Johnson grass are great offenders in a similar way. In lower Rio Grande Valley of Texas, Bermuda grass works down from the canal banks and drags in the water; it also grows quickly in the bed of any lateral without water for a few days, since there is nearly always a shallow deposit of silt, even in the lined sections. Willows and other large trees in California and Arizona send dense root masses out into the water prismeither clear or silty-not only consuming large quantities of water but also forming a mat that fills with silt and is difficult to remove. Such trees prevent the use of machinery in cleaning canals and thus, while they ara beautiful and shady, have little or no economic place along a canal bank. In New Mexico, Colorado, Wyoming, and Utah, willow brush and cottonwood usually establish themselves along a ditch bank if unmolested. In Montana long streamers of horsetail moss reduce capacities as much as 60 to 75 percent. This so-ealled moss is also common in Utah, Idaho, and Colorado. Aquatic vegetation is not limited to the States mentioned but the types are particularly active in the States named.

Winds have great influence on capacity. In parts of Wyoming, Montana, Nebraska, Nevada, eastern Colorado, Imperial Valley of California, and Yuma Valley of Arizona, strong winds blow sand into the canals, hold back the flow if blowing upstream, and sometimes fill a canal with tumbleweeds of Russian-thistle or other plants. Russianthistles are particularly troublesome in Nevada during June. In lower Rio Grande Valley in Texas, the wind tends to blow fine sand into lined sections of canals. It is found above the water, in shallow drifts, that become moist and hard from water drawn up by capillarity from the canal. A canal seriously threatened by blowing sand may be protected by low fences of one or two 12 -inch boards placed several feet from the banks. These boards cause sand drifts to pile up like snow on the leeward side, whence it may be removed or smoothed down after the storm. Where sand is anticipated, a reasonably high velocity may be used to keep it moving down the canal rather than filling the available prism. Of course, some of the semiaquatic growths along canal banks have the saving virtue of stopping some of the wind troubles.

In Colorado, all canals from mountain streams are clear except just after rains. In the warmer parts moss and watercress are common. Leaving Colorado, the main stem of Rio Grande becomes turbid as it flows out into the middle Rio Grande Valley near Espanoln, N. Mex.

This condition becomes worse until the stream enters Elephant Butte Reservoir. From this settling storage it issues as clear water, except during certain floods from the Puerco. However, it picks up more or less silt and soon becomes muddy again, but is not so heavily laden as just above the reservoir.

In Texas irrigation water from Rio Gravele is very muddy as a rule. Water used in Salt River Valley of Arizona is not clear nor is it so heavy as either Rio Grande or Colorado River water. Diversion structures now being constructed (1937) on lower Colorado River provide for desilting the water.

In Wyoming and Colorado, the Green and Colorado Rivers are very clear in their upper reaches and only moderately muddy up to their junction in Utah. Below that point, the Colorado becomes very heavily Iaden with silt, in both dispersed and colloidal states. Most of this mud settles out in Lake Mead. Generally clear water will leave this reservoir but will pick up more sand and a little silt until again cleared in the reservoir above Parker Drm. Heavy diversions for irrigation will be made below this dam. In recognition of the fact that the river will again be loaded with bed and suspended silts, an elaborate structure is being built at the Imperial heading to rid the water of much of this burden. Thus the irrigation canals of Yuma and Imperial Valleys will have much less mud and sand to contend with than formerly. However, it may be necessary to make changes in canal design for these areas. Formerly canal velocities of 5 to 6 feet per second were not considered excessive, but with relatively clear water the limiting velocities may have to be reduced, with corresponding reduction in capacity for the same size canal. For old canals, this reduction will probably be effected by the construction of drop structures; new camals will be designed for fower velocities. Likewise the clearer water will incrense aquatic grow ths.

Canals irrigating or crossing the gravel cones immediately below the mouths of mountain canyons in Montana, Wyoming, Colorado, and Utal, and some of the glacier streams of Washington and Oregon, are usually characterized by steep, grassy banks and cobble bottoms (pl. 24, A). When well aged, sucb beds become graded from fine to coarse gravels, with each rock well bedded. Such terrain is often on benchiand above the geveral river bottom. When new, seepage losses are excessive but some canals from 60 to 80 years old are said to be remarkably tight, provided the parent stream carries fine silt a portion of the time or artificial silting is effected to fill the voids. Sometimes such canals start with values of n of about 0.022 and then lose capacity as more and more cobblestones wash from the matrix of the banks or roll in from above until the value approaches 0.030; but the accumulation of graded material and silt finally makes a fairly smooth bed and the value of n returns to around 0.022 .

The soils of western Nebraska are particularly adapted to hard, clean canal sections with very low values of n (even below 0.016). Selection of too high a value for design may lead to excessive velocities and consequent erosion.

In Arizona, diversions from the Giila, although below Coolidge Dum, sometimes run high in silty muds that rapidly encroach on tanal capacity unless the canal can be operated at sustaining velocicies (pl. 23, B).

For additional discussion of canal capacity as affected by local conditions, the reader is referred to the following ruthorities: Hopson (27), Lippincott (40), Taylor (63), Reclamation Service (65, 66). The older volumes of Reclamation Record mention many such examples in maintenance and operation notes.

HYDRAULIC ROUGHNESS

hydraulic roughness includes more than roughness of channel surface

The rate of flow in a new, straight, uniform channel, conveying clear water, is largely determined by the roughness of the channel surface, e. g., of earth, concrete, wood, metal, or other material. In ordinary field use channels do not remain new; they are seldom straight; flow against or with prevailing winds; do or do not acquire growths of insect life, moss, tules, cattails and the like; and carry water that contains more or less silt, sand, and gravel, or are subject to inflow of such materials from their banks or blown in by winds.

All these secondary influences set up conditions that may have much greater inffuence on the capacity than the roughness of the original channel. In the design of canals, it is this massed inffuence of all conditions, both on the chamnel surface itself and out in the water prism, that must be anticipated in the selection of a value of n or other roughness coefficient (35, p. 304). The values of n as found in field research are due to this liydraulic roughoess rather than to any surface roughess only. Seldom can the separate losses due to each of many conditions other than channel surface be evaluated.

Since there is always friction, even in the best of chanmels, it is best to think of the conditions in terms of degrees of roughness rather than the degrees of smoothness. Thus, the rougher (hydraulically) the channel, the larger the value of n.

For any material of construction, the hydraulic roughness is a minimum, the velocitios and hence the capacity a maximum, if precautions are taken to-

1. Specify and obtain a good grade of original surface, if of concrete it should be hard as well as smooth.
2. Get as favorable alinement as is feasible at reasonable expensc. Gentle curvature is usually unavoidabie and its influence is sometimes difficult to locate in terms of values of n. In other words, losses due to such curvature are not excessive. Sharp curvature and bends have definite extra losses and should be provided for.
3. Reduce the mud content in the canal water to a minimum, especially the bed load. It may be advisable to retain silty muds to reduce percolation losses and the capncity of cobble bottom channels will be improved by such mads in filling spaces between rocks.
4. As water is cleared, aquatic growths increase. Maintenance operations should provide for the continuous reduction of such growths.

For discussion of roughess in addition to that of the containing channel surface, the reader is referred to the following nuthorities: Buckiley (6), Dibble and Parry (13), Ellis (14), Finley (16), Grunsky (25), Haltom (26), Hopson (27), Lippincott (40), Taylor (63), (65), and Etcheverry (15).

CHANNEL SURFACE ROUGHNESS AFFECTS THE FLOW

When the cross saction of the usual flowing canal is explored with a. current meter, it is noticed that the velocities increase from the sides toward the center and from the surface and bottom toward a
point approximately three-tenths of the water depth below the surface. These increases take place in fairly smooth curves without shearing offsets, except right at the channel surface." ${ }^{3}$
If the velocities at the side and bottom are excessively retarded by a very rough channel, then the whole curve of velocities is held back across the water prism (fig. 3). Likewise, the curve from the water surface down may be greatly retarded by wind movement upstrenm. The author has seen

Fidure 3--Typical horizontal velocity cirves, showing trends toward bank velocitics for canals of various values of r2. If smooth surfaces increnso the bank veloeities then the whole velocity curve is inereased. It is not possible to liold a current naeter at the extreme sides of lined channels, hernce the trend only can be showe. The number of the enrve corresponds to the reference number in table 1 . flow almost stopped in shallow canals during heavy adverse winds. Of course, a downstream wind will increase the velocities by pulling forward thesurfaceends of the vertical velocity curves. Thus canals flowing with or agninst prevailing wind directionsshould be designed with this factor in mind.

primary and secondary roUGHNESS

To get the best capacity results, local surfaces should be uniform as regards the material, and large surfaces should be free of undulations and sudden changes in configuration (pl. 4, B). A material that lends itself to one kind of roughness in localareas and another lind in larger areas develops primary and secondary roughness. To illustrate: Corrugated metal is made of a smooth material-the primary surface-but is quite rough hydraulically owing to the fluting of the corrugations, in secondary roughness. Shot concrete, when cast without forms and untouched, is rough to the hand and undulating of surface, thus having both primary and secondary roughness in high clegree

[^20](pls. 3, C and 21, A). Some plaster coats are similar in texture (pl. 4, B). Concrete cast against forms, on the other hand, may have many small air pockets and be quite rough in primary surface. However, if smooth rigid forms are used, the resulting surface will be without undulations, and thus the secondary surface may be excellent and overshadow the local roughnesses. Secondary roughness affects the capacity of a channel by inducing slashing eddies that completely annul the good effects of a smooth primary surface. A sandy canal bed may develop even three types of roughness. When bedded down, such a bottom is quite smooth; the egual of a good earth channel. Such sand usually requires a small admisture of clayey muds. At the saltation stage a rough bottom of small traveling dumes reduces capacity both by loss of chamel space but also by higher values of n. On the other hand, large canals and rivers in sandy beds sometimes acquire a bottom with many deep temporary pockets where sand boils bave "exploded" (pl. 23, C). The pockets so formed soon fill with other bed material and other poekets are developed.

The All-American Canal in southern California would probably have been of this type if a sandy channel, as cxcavated, had been used. However, this type of channel was made oversize and lined with a refill of selected carth so compacted that entirely different conditions will prevail, and the pockets so characteristic of sand beds will not develop.

Secondary roughness has cften been overlooked in choosing a value of n for design purposes.

OTHER CONDITIONS THAT AFFECT THE FLOW

Were hydraulic roughness confined to the surface of the containing channel, the range of surfices would begin at the equivalent of plate glass or celluloid and end with the roughest of rock cuts and boulderstrewn torrents. A surface appronching that of phate glass is attained in scme of the best, workmanship in concrete. Such a surface might be represented in an open chanmel by Kutter's $n=0.010$. Very small channeis in glass, smooth cement, or celluloid attain even 0.008 for n. At the other extreme would lie the rough rock cut with a value of 0.040 for actual cross section and, say, 0.035 for the "paper" section on which the cut is based. However, values of n even beyond 0.100 are reached. In any given canal, values above or below those attributable to the containing surface are induced in many distinct ways. Moss, tules, cattails and other water-loring plants especially reduce capacity. Scattered patches of rock debris, shifting sand, and the like not only reduce the capacity by dragging back the velocity filaments of current but also by diminishing the area of the water prism. Likewise, excessive curyature, channel constrictions at bridges, checks, and other operation structures all cut down the general capacity of the channel, unless complete allowances for their separate losses have been included in the tarious steps of fall allotted to each portion of the canal.

It is known that a smooth conting of fine silty mud will slick up a rough concrete surface and improve its capacity. Of course, beyond a certain amount of this netion the capacity would drop, owing to the throttling effect on the channel area.

The preceding parngraphs explain why hydraulic friction controlling the capacity of any channel covers much more than the skin friction of contant between the chamiel surface and the water prism, and also
between the water surface and the air. Too oftent the designer contemplates the channel surface only, without regard to the many other influences that may have greater effect on the capacity than the condition of the channel surface.

ESTMMATE DIAGRAM

Figure 4 gives a solution for general problems involving the Kutter formula. The use is best explained by an example. The dashed lines show that in a channel with hydraulic radius, $h=2.6$ and with an assumed value of $n=0.015$ and a slope of 0.00125 the velocity will be about 6.7 feet per second. The quantity of flow, Q, is then equal to $A V$. This diagram can be used for design of canal sections of any shape. For very flat slopes interpolate between guide lines, which are split for divergent values of n.

Recommendations for values of n for different kinds of CANALS

While the following discussion is in terms of the various materials of which the canals are constructed and thereafter known, it is fully appreciated that the greatest variations from standard ralues are due to influences that may not identify themselves with any particular materials of construction. Moreover, these influences do not always appear in the form of surface roughness. In these facts lies the greatest difficulty hampering the development of retardation factors for a few categories of roughness and then placing all assumed variations within one of these categories according to their appearance compared with the known criterin. For example, a clean, rough lining of shot concrete untouched by trowel or other smoothing device, may have exactly the same roughness factor as a smooth concrete channel with a well-developed growth of moss in the water prism. In the one case an excellent footing is obtained, the surface is very rough to the hand and an obvious lack of refinement exists. In the other, little footing is obtainable, the surface may be slick and smooth to the hand and there is little or no appearance of surface roughness. Yet the capacities are both obviously below par; in other words, roughness may not be dimensional.

The cause of the hydraulic roughness may be quite different in the flowing prism of water from the condition appearing when the water has been turned out of the canal. Such circumstances make it impossible to evaluate roughness coefficients except in an empirical way. If certain surfaces could be established as standard (say comparable with the seven primary colors) they could perhaps be definitely evaluated in a laboratory. There would still be the many variations of surface and other conditions causing lyydraulic roughness comparable with the innumerable shades of colors, and these would be more common than the standards originally tested.
values of n For earth canals

The basic values given above are extensively used for design purposes in the United States. However, there may be wide rariations

Figure 4.-Diagram for the solution of geveral problems involving the Kutter formula. From the intersection of R and n follow the guide ines to hines, see pase 68 .
from these values, and the conditions that lead to them are indicated under specified groups.

The value of n for earth channels extends over a far greater range than that typifying any other material. Nore complex conditions, more permutations and combinations of conditions exist than are possible in a channel not erodible at reasonable velocities. If kept clean, concrete, wood, or steel must maintain about the same cross section, uniform as a rule. Earth, on the other hand, may form a definite periphery of a channel when new, but after a few years of operation the character of the boundary has entirely changed. Grass, weeds, and fibrous roots may form the material for nearly vertical sides ($55, p, 238$), while the bottom may silt up or scour deeper; it may be smooth or deeply pocketed. A distinet trapezoidal form changes to a segment of an ellipse, silt depositing in the lower corners, while the middle of the bed remains unchanged or becomes strewn with rocks or gravel. The true shape of the ellipse depends on the materials. Fine silts without heavy abrasives appronch a half circle, while enrth with many cobble plums generally shapes into a very flat ellipse, with vertical or eren overhanging siles (35, p. 239): When test pits or other means show that many cobblestones are in the "earth" formation, it is quite certain that a cobble-bottom canal wilk be formed after a few years of operation. Then a value of $n=0.026$ or more will hold until silts and smajler stones form a graded bed with a value approximating those usually used in design ($n=0.020$ to 0.025).
The values of n given in the following list cover the usual condlitions, while a study of the descriptions of the chamels under the earth-channel headings will disclose the influence that changes the value of n from one of these standards.

1. $n=0.016$ for excellent conditions of earth channcls. The velocity to be so low that a slick deposit of silt may accumulate, or the natural material be such as to become smooth when wet. The iniluence of vegetation at the edges to be a minimum. The water to be free of moss and other aquatic growth. The alinement to be free of bends and sharp curves.
2. $n=0.018$ for conditions intermediate between types 1 and 3 . For volcanic-ash soils with no regetation. For large canals in very fine silt.
3. $n=0.020$ for well-constructed camals in firm earth or fine, packed gravel where velocities are such that silt may fill the interstices in the gravel. The bauks to be clean-cut nad free of listurbing vegetation. The alinement to be rensonably straight. Very large canals of type 4 may be designed with $n=0.020$.
4. $n=0.0225$, although carried to one more significant figure, is given for the reason that it has long been used for this type and the tests do not diselose any reason for changing. This value for the average well-constructed canal in material which whil eventanlly have a medium-smooth bottom, with graded gravel, grass on the edges and average a lignment or silt at both sides of the bed and a few scattered stones in the middle. Hardpan in good condition, clay and hara-ash soil take about this value. Regime channels take about $n=0.0225$ for design purposes (35).
5. $n=0.025$ for canals where the retarding influence of moss, growths of dense grass nenr the edges, or scattered cobbles begins to show. The value of n in earth channels where the maintenance is
neglected commences at this value and rapidly goes up. This is good value to use in the design of small head ditches or a small ditch to serve but one or two farms. Also for canals in a hilly terrain, where the upper bank may be wholly in cut, thus making the canal liable to much debris rolling down the hillside above. Such canals should be cleaned at least once a year or they will not keep in condition that yields a value as favorable as 0.025 . This value was much tised from 1900 to 1910 for canal design. Since then 0.0225 has been adopted for the same conditions.
6. $n=0.030$ for canals subject to heavy growths of moss or other aquatic plants. Banks irregular or overhanging, with dense rootlets. Bottom covered with large fragments of rock, or bed badly pitted by erosion. Values of n between 0.025 and 0.030 also cover the condition where the velocity is so high that cobbles are kept clean and unpacked in the center of the canal, but silt deposits near the sides. A complete covering of coarse gravel without firm bedding takes about this value. Such canals usually constructed in earth conglomerate. For large floodway channels, well maintained.
7. $n=0.035$ for canals about 50 percent choked with moss growth. For flood channels that will not receive continuous maintenance, say with a dense Bermuda-grass carpet.
8. $n=0.040$ for canals badly choked with moss or henvy growths. For canals in which seattered large cobbles and boulders will collect; approaching a mountain stream in clean loose cobbles.

Floodways poorly maintained go from 0.050 up.

VALUES OF a FOR CONGRETE IININGS

Where water is highly valuable, the attainment of a given capacity essential, or the loss of water detrimental, concrete lining is generally used. It may be a coat of cement-and-sand plaster, say threecuarters of an inch thick, applied to a moist, neatly trimmed earthen bank (pl. 7, C). It is usually of reinforced concrete developed by dumping, pouring, or pumping more or less moist concrete mixtures into panels and bringing the surface to a predetermined location by means of screeds, trowels, or movable smoothing platforms (pl. I, A). The panels are usually separated by expansion joints. Concrete may also be shot by compressed air as a mixture of cement, sand, and water against a moist, trimmed earth bank (pl. 2, A); against wood or steel forms; as a body matrix, filling rubble walls to a relatively even surface, or as a conting to fix the surface of a rock cut and prevent weathering and leakage ($\mathrm{pl} .21, A$). If the water to be conveyed is relatively clear and experience in the neighborhood indicates that excessive moss or larval conditions will not be present, then full utilization of smooth surfaces may be made. If a smooth surface is to be masked by silt, or moss, insect eggs, and laryae, any added expense for smooth suxfaces is hardly warranted as these influences are likely to be effective on smooth and rough surfaces alike and tend to bring them to uniformity (pl. 1, B). The basic resulting surfaces, formed by the last two methods, are so dissimilar in characteristics that they require some separate discussion, although both are essentially concrete.

Types I and II cover basic values of n for poured and shot concrete respectively. Variations from these basic values are given in types III to VII inclusive.
I. Poured concrete, basic value, $n=0.014$.-This is the value used for many years by the Bureau of Reclamation for poured-concrete canal linings. It is conservative for ordinary conditions, in that modern methods yield original surfaces at least one or two points lower and hence some acquired roughness has been discounted (pl, 1, A). Where the original surface will not change, this value conforms to surfaces as left by smooth-jointed forms or to be roughly troweled. Where alinement is about equal in curves and tangent lengths. The bed to be clem and free from rough deposits. This value also applicable to shot-concrete surfaces, when cleaned and well broomed (pl. 2, B) or shot against smooth wood or steel facing (i. c., the wood or steel is on the water side ($57 \mathrm{pl} .1, \mathrm{C}$).
II. Shot concrete, basic value, $n=0.017$.-For concrete shot on canal bed or side walls, against a smoothly trimmed earth base or against board or steel backing (opposite from the water side) this value is applicable if the resulting surface is not subjected to any smoothing treatment and is to cary clear water. The surface, without heavy aquatic growth, is distinctly rough, with individual sand and small pebbles clearly outstanding. The hand cannot be slid orer such a surface without being scratched. Beside this rough prickly local surface the secondary roughness is developed by undulations an inch or more between the planes of summits and valleys (pl. 3, C). Where maximum capacity is not of moment or where the capacity of the rough surface still is sufficient for the maximum supply of water, this type of concrete is excellent in thatit has great density and hence is very watertight. Usually the rebound strips the loose pebbles of their cement contings and thus results in a concrete rich in cement. This is particularly true at the top of canal side walls, the mixture getting leaner as the bottom is reached. The rebound should not be allowed to set where it falls as it contributes to an excessive roughness and has little value in cementing properties and strength. If leit in the canal, such a bottom is easily pierced with a stcel rod in the hand; hence easily breaks up and loses the desired watertight propertics.
$n=0.017$ is also applicable to very roughly coated poured linings with meyen expansion joints.

Conditions under which departures from these basic values of n can be anticipated are described below. In hydraulic research work with models, similarity of surface may require approach to exceedingly smooth surfaces and computations in terms of very low values of n. For such work the reader is relerred to Stile's tables (60) which begin at $n=0.006$.
III. $n=0.012$ for hard, poured concrete of the highest grade of material and workmanship and exceptionally good couditions. Quite generally used for design from 1900 to 1915. Since then 0.014 has been used under the same conditions. The surface of the lining to be as smooth to the hand as a troweled sidewalk. The expansion joints, if any, to be so well masked that they practically fulfill the same conditions. The climate and water to be such that moss, mud, or insect laryae do not accumulate to any great extent. These items can usually be checked by inspections of other canals in the neighborhood. The water should be free of shifting material. The alinement sloould be of long tangents joined by smooth gentle curves. The channel must be of true dimensions and laid to uniform grades. This value, or even one point lower ($n=0.011$) is more readily obtnined in a semicircular or parabolic form than in the trapezodal form. This may
be in small part due to the added hydraulic efficiency of the curved shape, but is more probably due to the use of oiled-steel forms in obtaining these shapes. This value should seldon be used in design. It will often be attained in the original surface under modern (1937) methods but will too often be radically changed under operative conditions. Shot concrete has been surface-treated so well that this value has been attained, but it is probably at least one point (0.001) too low for design use.
IV. $n=0.013$ for construction as in type III but with curves as in the usual mountain canyon. Same construction and alignment as in type III but with small amount of sand or debris in the water. Construction as in type I but with very favorable alignment or for water that carries a yery small amount of colloidal silts that will form a thin slick coating on an original surface of slight roughness. This value of n can be used for design in the conveyance of clear water where excellent concrete surfaces can be assured under specifications calling for premium work and where conditions are such that the original surface is reasonably certain to remain the long-time operative surface. Shot concrete that has been given the best of smoothing treatment with trowel or struck with a steel blade, so that it rales equatly with poured concrete of best workmanship, can then be considered under the specifications introducing this paragraph. One large-area aqueduct floor was brought to an even surface with a metal screed, then smoothed with a wooden float and finally polished with a metal hand trowel. The result would justify 0.013 for design and probably rate 0.012 or less as an initial value.
V. $n=0.015$ for construction as in type I but with sharp curves and clean bottom or moderate curves and much debris on the bottom but clean-cut sides. This is about the value to use for the conveyance of muddy waters of streams like Rio Grande and the Colorado (of the far West) in either poured or shot concrete. That is, both smooth and rough concrete as originally laid down, are likely to arrive at a fairly common surface. A slick mud coating with mossy reinforcement sometimes takes on the characteristics of soft suede leather and can be peeled of the surface in flakes as large as the hand. This toughness produces a surface that has fair capacity and is not easily eroded. This value of n should be used in design for broomed shot concrete with either clear or muddy water although lesser values may be attrined. Smooth concrete that is seasonally roughened by insect Iarvae or algal growths takes a value of $n=0.015$ or higher. Consideration should be given to the concurrent seasonal water supply. If it is always inadequate to meet the canal capacity during the same months that bring the seasonal reduction in that capacity, the canel may be designed with a lower value of n, say 0.014 , and still be large enough to carry midsummer flows.
VI. $n=0.016$ for lining made with rough board forms conveying clear water with small amounts of detritus. For welli-made concrete in deep cuts leading to or from tumnels and subject to heavy contributions of rocky detritus from steep-cut banks. For old linings that have been improved with a thin cement mortar cont, since this coat is quite liable to spall off, especially in a country of cold winters. For smooth or rough concrete if conveying waters that develop moderate coatings of lime $\left(\mathrm{CaCo}_{3}\right)$.

Lining of original type I eventually takes about this value if subject to reasonably heavy noss growth or large amounts of cobble detritus. Likewise, maximum values of n due to larval growth take about this value.
VII. $n=0.018$ for very rough concrete with sharp curves and deposits of gravel and moss. A broken gradient, irregular cross section, and the like, contribute to this high value of n.
Where experiments show higher values of n than those given above for concrete linings, the conditions are such, as a rule, that the containing material has lost its identity as concrete, and thick coatings of sand, accumulations of moss, or deposits of sand change the general classification of the channel.

Values of n FOR miscellaneous Channel matertals

1. Cobble-bottom canals. The typical clenn-washed cobblestonc canal is so common near the mouths of canyons that it should be recognized as in a distinct category. Where the cobbles are graded in size and well packed the value of n is about 0.027 , increasing as the larger rocks predominate and the lack of graded sizes prevents packing, and reaching 0.040 for large boulders and heavy sand. The value of n is reduced as silt masks the cobbles and the usual earth canal approached.
2. Wood-plank linings, $n=0.016$ and up. Since these linings are in contact with the ground, they allow grass and weeds to become well rooted in the cracks. Likewise, they are generally uneven with patches of mud and moss (pl. 10, B).
3. Rubble and concrete combination, $n=0.015$ and up. Where clear water is carried in a smooth bottom and well-plastered sides the lower value will hold. If the sides are umplastered, $n=0.017$ is a minimum value to use. For fair rock bottom and shot-concrete sides, $n=0.017$ and up. For rubble channels, both sides and bottom roughly covered with cement mortar a value of $n=0.025$ may be reached.
4. Uniform rubble, or concrete sides only and natural-chamnel bed (pl. 12, B), $n=0.018$ and up. For canals and rectified river channels. Concrete or relatively smooth rock bottom and woodplank sides, $n=0.017$ and up. The lower values will apply if the plank lining is held away from the side wall (pl. 8, C).
5. Rock-cut canals, $n=0.035$ or less. The higher value holds for untouched rock cuts, based on the "paper" cross section. Overbreak makes the channel larger with a net slower velcoity than for the paper section. Probably the actual walue, based on the intricacies of the broken surface, runs about $n=0.040$, but it is hardly feasible to anticipate the extent and formation in the overbreak, hence use of the design section and the lower value of n is better. Where the cut is smoothed up with shot concrete, of course the values of n drop rapidly. Usually such is surface is very undulating; also, such a canal is generally given a high velocity, as the work is expensive. Thus mere surface appearance should not lead to the selection of a too-definitely exact value of n. The local areas may justify 0.017 but the undulations require a value of about 0.025 .

More discussion of fiow in rock-cut clannels will be found under the following suthorities: Ramser (50, 51), Sherman (59), Mugnier (44), DeLacy (12), and Newman (45).

VARIATIONS OF n IN THE SAME CANAL

It is well known that the same channel does not necessarily have the same value of n throughout the season. Aquatic growths, especiaily moss, may so change the value of n from early spring to the middle of summer that the channel may carry but 75 percent of its rated capacity for the same depth of water in the channel. The author made a series of current-meter measurements on a prominent lined canal near Yalima, Wash., during July. The canal conveyed more than 70 second-feet when clean in the spring, but in July it carried but 62 second-feet, although bankfull. The velocity was retarded by moss accumulations. As the total capacity of the canal is needed throughout the season, it would have been better to design this concrete channel for a value of n about 0.017 for moss and sharp bends than to use a value of 0.012 as was done. A ligh velocity would have resulted during the months when the canal was clean, but this would not have injured the concrete. Insect larvae have much the same seasonal effect.

Occasional comments are made to the effect that the value of n changes with the depth of water in the same channel. If this is true the data in figure 5 indicate the change is very slight and quite negligible. While it is sometimes shown by a series of measurements in the same channel, the author believes the change is largely due to differences in surface between bottom and sides of the channel, especially in a lined canal. ${ }^{22}$ Almost invariably the bottom is rougher than the sides, especially in the older canals. This is true of both poured and shot concrete. In fact the bottom sbould be considered first when increase of the capacity of a concrete-lined canal is attempted. If the water is free of sand, a hard smooth inner lining of rich cement-aud-sand mortar will materinlly increase the canal capacity. Many otherwise good linings have a bottorn corresponding to a value of n of 0.017 or more while the sides rate less than 0.014 . Thin inner linings should be well bonded with the old surface, otherwise they will scale and spall off so that the surface may become rougher than belore the improvement was attempted.

CONCLUSIONS

A careful study of the data in this bulletin and the extensive literature bearing on the capacity of canals, together with first-hand observations of such channels with an especially critical interest in their capncity features over a period of nearly 30 years, warrant the following conclusions.
(1) The Kutter (Ganguillet-Kutter) formula is applicable to the design and operation of open artificial channels of sizes in general use. It is favored over all others in most countries where irrigation canals are common, and is almost universally used for canals in hydroelectric practice.
(2) The Manning formula can be used with the same Walues of n^{\prime} as for n in the K.utter formula over a range between about 0.012 and 0.020 or, in other words, through the zone most used for canals in concrete, wood, or metal.
(3) Caution should be used in design by the Manning formula outside the range given in (2) above, if the designer is thinking in

[^21]terms of a value of n in the Kutter formula. (Over a large range of R and S, an equivalent value of n^{\prime} for n may be found in published tables (34).)
(4) Manning's formula is much the easier to solve as a problem in simple mathematics and also lends itself for application where any of the usual functions S, V, R, and n, are to be used in connection with some other phase of hydraulics, such as the solution of backwater curve problem.
(5) Shortcomings are recognized in the Kutter formula but their influence is only of moment under conditions seldom found in canal practice. (The new All-American canal, in southern California may bring out such imfluences, as R and V are both quite high and the slope S is very gentle, thus allowing the mooted slope factor in Kutter to become effective.)
(6) The factor n must include all the influences which tend to retard velocity. The principal influences are undoubtedly (a) rubbing friction between the water and the containing channels, and (b) vegetal growth extending into the main body of the water. The lack of carrying capacity in many channels is probably due to the fact that the first-cited influence was the only one considered. Of secondury importance, but nevertheless deserving of careful consideration in about the order named, are the following: (c) Angles and

Figere \quad.-Diagram showing variation of n with parying velocilies (open circies) and with varying bydraulte radii (dots) is the discharge is varied in the same reach of the same channels.
sharp curves in the alinement. (d) Influences that tend to accentuate sinuous currents. The concrete lining in a rough-rock cut may fee? quite smooth and yet be so undulating as to cause heary cross currents which retard velocity. All projections and irregularities in the bank of a canal clisturb the flow in addition to exposing a large area to rubbing friction. (e) Sand and gravel cause heavy loss in velocity whan allowed to enter and nccumulate in shifting patches on a lined canal bed. Fine sand drifts clownstream in deep, irregular pockets and may entirely change the character of the bottom of a smoothly lined canal. On the other hand, a water laden with fue silt flows more freely after the silt has deposited in a slick coat over minor irregularities than in a new, though eloan. canal. A canal carrying such a water may be designed for a far higher velocity through the same kind of soil than would be the case if the water were clear. It is necessary only to rum low heads in the new canal until a thick waxy deposit has been placed on the canal bed, after which the vidocity may be nearly doubled over that which would have scoured the material in which the canal was originally excavated.
(f) The prevailing wind direction may be given some consideration. A stady of vertical velocity curves shows a marked change in form with change in wind condition. A downstream wind aids the flow of surface water to the extent that it has the maximum velocity in the vertical, while an upstrenm wind so shapes the velocity curve that the surface velocity is as slow as that near the bottom.
(7) A value of n must be chosen which will apply to the conal in question at the critical period of the season. For instance, most canals are cleaned once a yers. A growth of moss may become very heavy by July or August, but the water supply may be much less than during the early drys of June. If the camal is designed to carry its peak load on the basis of its being in good condition, there will still be sufficient carrying cap acity for the smaller discharge when moss has appeared.
(8) In the design of earth channels having a trapezoidal form when constructed, the computations should be based on the expectrtion that the canal will take an elliptical form within a short time and thereafter maintain this shape unless altered artificially.
(9) Capacity of old rough concrete canals can be materially increased at a fraction of the capital charge for the original construction.
(10) Shot concrete should be surface-treated to secure high capacity. If capacity is sufficient anyway then water tightness is better assured without surface treatment, as this includes a tendency toward more porous concrete.
(11) Initial high capacity due to smooth surfaces is not a permanent feature where muddy waters predominate. Such water increases, the capacity of a very rough channel and decreases the capacity of \mathfrak{L} very smooth one.
(12) Determinations of the values of n in experimental research work should not be conducted on the basis of the surface slope. The energy slope is the effective quantity and agrees with the surfince slope only for uniform flow, and uniform flow cannot be assumed to be present. Generally it is not. If cross-sectional areas are developed at the ends of a test reach, no matter how uniform the flow looks or should be, it is generally found that these areas are unlike. Hence
the velocities are unlike and have different investments of velocity head in their total energy contents.

LITERATURE CITED

(1) Anonymous.
1918. WATER TEARS QUARTER-INCH TUNNEL LINING TOPIECES

Engin.
(2)
1921. MANNing's Formbla better than ketter's. Engin. News-rec. 87: 96, illas.
(3) Bakhmeteff, Bohis A.
1932. hydratolics of open channels. 329 pp., illus. New York and London,
(4) Ballester, R. E.
1927. Velocidades y coeficientes de asperetid. mas convenientes para el cílculo de los canaleg de riego en th rio negro. Publicado en Contribución al listudio de las Ciencias Físicas y Matematicas, Ser. Téc., t. 111, entr. 5, pp. 435-476, illus.
(5) Breazeale, J. J.
1926. A Stupy of the colorado River silt. Ariz. Agr. Expt. Sta. Tech. Bull. 8, pp. $\{165\}-185$.
(6) Buckley, Arthur Burton.
1923. THE INFLUENCE OF SIET ON THE VELOCITY OF WATER FLOWING in oren channels. Inst. Civ. Engin. Minutes Proc. (1022-23) 216 : 183-197. Appendixes and diseussion, pp. 198-298, ilhs.
(7) Burkaolder, Joseph 1.
1928. REPORT OF THE GHIEF ENGINEER . . SUBMITTING A PLAN FOR FLOOD CONTROL, DEAINAGE, AND IRRIGATION OF THE MIDDLE RIO GRANDE conservaney promecr. N. Mex. Middle Rio Grande Conservancy Dist. v. 1, illus.
(8) Carlson, C. B., chairman.
1928. Hydrajlic power committee reports. flumes. Report of Subcommittee of Hydraulic Power Committee. Electric West 60: 376-396, illus.
(9) Cervvi", L., and Monterte, C. N.
1917. A manning formula for flow. Engin. News-Rec. 79: 277-279, i\#lus.
(10) Cone, V. M., Trimble, R. E., and Jones, P. S.
1914. Frictional resistance in artificial waterways. Colo. Agy. Expt. Ste. Bull. 194, 48 pa., illus. [Fncludes items initiaied VMC, table 1.]
(11) Davis, Arthor P.
1912. safe velocities of water on concreme. Engin. News 67: 20-22, illus.
(12) De Lacy, J.
1911. KOTHERS FORMOLA VALOES FOR CUT CHANNELS. (Letter) Engin. News 66; 120 , illus.
(13) Dibble, Barry, and Parry, T. W.
1917. CONTROL OF MOSS, WEEDS, AND WILKOWS ON THE MINIDOKA PROIECT. Reclam. Rec. [${ }^{\top}$. S.] 8: 192-193, illus.
(14) Ellis, Geohge Fenry.
1916. The flow of water in imbigation channels. Amer. Soc. Civ. Engin. Trans. 80: 1644. [Discussion, pp. $1662-1688$, illus.]
(15) Etcheverry, B. A.
1916. Irmigation pratotice and enginemaing. v. 2, Conveyance of Water, 364 pp., Hins. New York.
(16) Finley, G. C.
1919. ENLARGEMENT OF The Yakima-tieton main canal . . . Engin. News-Rec. 82 : 1255-1258, illus.
(17) Fitin N Pathick John.
1892. IRRIGATION CANALS AND OTRER IRRIGATION WORKS, iNCLUDING THE FLOW OF WATER IN IRRIGATION CANALS AND OFEN AND CLOSED chankels genemally with tableg simplifying and faciliTATING THE APPLICATION OF THE FORMDLAE OF KUTTER, D'ARCY, and bazin. 398 pp., illus. San Francisco.
(18) Fortier, Samuel.
1900. carrying capacities of fhrigation canals. Utah Agr. Expt. Sta. (19) \qquad Bull. 71, 55 pp., illus.
1901. Conveyance of water in irrigation canals, flumes, and pipes. U. S. Gcol. Survey Water-Supply and Irrig. Paper 43, 86 pp ., illus. [Includes itcrus initialed SF, table 1.]
(20) -..... and Scobey, Fred C.
1926. permissible canal velocities, Amer. Soc. Civ. Engin. Trans. 89: 940-956. [Discussion, pp. 957-984, illus.]
(21) Freeman, Delbert B.
1931. flow of wayer around bends. (Letter) Engin. News-liec. 106: 161.
(22) Gaby, Frederick A.
1927. developments of the hydro-electrac power commission of ontario. Amer. Soc. Civ. Engin. Trans. 90: [883]-913, illus.
(23) Gangullet, E., and Kumer, W. R.
1893. a general formula for the jniform flow of water in rivers and other chanvels. Transl, from German . . . by Rudolph Hering and J. C. Trautwine, Jr. Ed. 2, 240 pp, illus. New York.
(2i) Godfrey, Edward.
1930. subface elevations on curved streanis. (Letter) Engin. News-Rec. 105: 859.
(25)

Grunsky, C. E.
1930. Sily transportation by sacramento and colorado rivers and by tee maperlal canal, Amer. Soc. Civ. Engin. Trans. 94: 1104-1133, illus. ©Discussion by C. S. Howard, Harry F. Blancy, E. S. Lindley, Thaddeus Merriman, Ivan E. Eouk, and C. E. Grunsky, pp. 1134-1151, illus.]
(26) Hautom, A. J.
1917. Growth of moss in imrigation cantls, saly river project. Reclam. Rec. [U. S.] 8: 191-192.
(27) Horson, E. G.
1911. phet tleton canal. Amer. Soc. Civ. Engin. Trans. 71: 158-184, illus.
(28) Horton, Robert E.
1933. separate houghness confficients for channel bottom and
1934. compositr noughness in channels. (Letter) Eugin. News-Rec. 112: 747.
(30) Houk, Ivan E.
1918. calculation of flow in open channels. Ohio, Miami Conservancy Dist. Tech. Repts., pt. 4, 283 pp., illus.
\qquad
1919. the manning formola again. Eingin. News-Rec. 82: 1274-1276.
(32) Kennedy, R. G.
1907. hydradlic diagrams for channels in earth, giving discharges, mean velochites, and silting data for yarying bed widtas, depths and suopes. Based on Gangullet $\&$ Kutter's Formula. Ed. 2. Issued for the use of the Public Works Department, Indiu, 23 pp ., idus. Edinburgh [?].
(33) Jing, Horace W.
1919. history and ose of manning formdla. (Letter) Engin. NewsRec. 82: 685.
1929. Handbook of hydradics fol the soldtion of hydraulte froblems. Ed. 2, 523 mp., illus. New York and London.
(35) Lacey, Gerald.
1930. smable channels in allovidm. Inst. Civ. Eingin. minutes Proc. sess. 1929-30, 229: 259-384, ilhs. [Reconsiders Kennedy, Lindley, and other silt data.]
(36) Leach, H. R.
1919. Yarlation of roughness coefficent in manning and kutter yormolas. (Letter) Eugin. News-Rec. 82: 536-538, illus. [Remarks by Robert E. Horton on Leach's comments, in letter to editor, p. 538.]
(37) Iindley, E. S.
1919. regime channels. Punjab Engin. Cong. 7: 63-74-l, illus.
(38) Lindquiet, Ehik.
1926. Formler för aerikning ay medaliastigheten 3 öppna led-
1933. ON VELOCity formolas for open channels and pipes. Speciai Report to World Power Conf., Sectional Meeting, Seandinavia. (Originally published in Swedish as, "Formler för beräkning av medalhastigheten i oppna Iedningar. Studie av GanguilletKutter's Almënna formel.' ${ }^{\prime}$) 52 pp ., illus.
(40) Lippincott, J. B.
1907. ObsERVATIONS to Deterning the Value of " C " and "N" as gsed in tee kutabr formola. Engin. News 57: 612-614, illus.
(41) Los Angeles Board of Public Service Commissioners.
1916. COMPLETE REPORT ON CONSTRDCTION OF THE LOS ANGELES AQUEDUCT; with introductory historical sketch. 319 pp., illus. Los Angeles.
(42) Matakiewicz, M.
1925. OGOLNA FORMULA NA Gredinia chyzobé przeplywu wh lótyeikach rzecziych i kanalowych. Praca Referowana na Posiedzeniu Komisji Lwowskiej Akad. Nauk Technicznych D. 30 Grudnia 1924 R. 97 .pp., illus.
(43) Mipohbll, Wilyiam D., and Harrold, L.
1930. Flow of water around bends. (Letter) Engin. News-Rec. 105: 739-740, illus.
(44) Mugner, R .
1911. kotter formula values for nock-cut channels. (Lettor) Engin. News 65: 488.
(45) Newman, E.
1911. KUTTER's Formula corficients for rogk channels. (Letter) Eugin. News 66: 239.
(46) Newton, C. G.
1913. the hydro-electric ydevelopment of the braden copper co. Engin. News 69: [1041]-1046, illus.
(47) Parker, P.
1919. Vartation of rojehness cogfficient in manning's and mutter's formulas. (Letter) Engid. News-Rec. 82: 1276-1277.
(48) Paul, Cearles H.
1916. use of water-gas tar and coal tar on concrete subject to high velocities of water. Reciam. Rec. [U. S.] 7: 46.
(49) Pearl, James W.
1933. flow of water around bends. (Letter) Engin. News-Rec. 111: 570.
(50) Ramser, C. E.
1923. KUTTER'S N FOR RODGH ROCK CMANNBL EXCAVATED BY EXPLOSIVES. Engin. News-Rec. 91: 936, illus.
1927. smoothing rovah rock channel to inchease capacity. Engin. 2) Regbock, Th.
1922. dLe bestmmung der lage den energie-linid bei flitssenden
 wertes (determination of the line of energy for flowing Water, ding the velocity head compensation valde). Bauingenieur 1922, Pamphet 15. Berlin.
(53) Scimemi, Ettore.
1925. determinazione sperimentale del coefficienta di scabrezza NEI Canali rifyestiti di cement-gun (cannone a cemento). Estratto dall'Elettroteenica, Giorn. ed Atti della Assoc. Elettrotecnica Ital., 25 Marzo 1925. vol. 12, No. $9,4 \mathrm{pp}$., illus. (Includes items initialed ES, table 1.)
(54)
1933. rilievi sperimentali sul fonzionamento idrajlico det arandi impianti indjetriali. Estratto dai Fiascicoli IX e XI, vol, 10, Settembre e Novembre 1933-XII della Riv. Mens. " L 'Energia Elettrica." 47 pp., illus. (Includes items initialed ES, table 1.)
(55) Scomey, Fred C.
1915. the flow of water in irrigation channels. U. S. Dept. Agr. Bull. 194, 68 pp., illus. (Reprinted, 1924.)
(56) \qquad \rightarrow
1920. the flow of water in conchete pile. U. S. Dept. Agr. Bull. 852, 100 pp ., illus.
(57)
1933. the flow of water in fldmes. U. S. Dept. Agr. Tech. Bull. 393, 99 pp., illus.
(58) Shepatrd, E. M.
1931. FLow of Water around hends. (Letter) Engin. News-Rec. 106: 82.
(59) Saerman, L. K.
1911. [KUTTER'S FORMULA Valdes FOR nock-Cut channels.] (Letter) Engin. News 66: 120.
(60) Stiles, Arthur Alyord.
1917. tables of velocity of water in open channels derived from kutter's formula. Tex. Reclam. Dept. Bull. 6, 130 pp.
(61) Sthickler, A.
1923. beiträge zur frage der gescemindigkettsformel und der radeigeeitszahlen fur ströme, kanale und geschlossene leitungen. Mitt. Amtes für Wasserwirtschaft No. 16.
(62) Swizerland Bureat Hydromethoue Federal.
1909. Le developpement de l'hydrometrie en suisse. 86 pp., illus. Bernc, Switzerland. (409, table 1.)
(63) Taylor, Padl.
1918. algae growtes lncrease valde of n in kutter's formola... Engir. News-Rec. 81: 179-181, illus.
(64) Cinited States Reclamation Service.
1913. experimental faldes of kotter's coefficient " x " for open channels. Reclam. Rec. [U. S.] 4: 141-143.
(65)
1918. control of adgae by copper suthhate. Reclam. Rec. [U. S.] 9: 531.
(66)
1920. insects decrease carrying capacity of tieton canal. Reclam. Rec. [U. S.] 11: 85-86.
(67)
1934. hydradlic and excavation tables. Ed. 6, rev. and enl., 168 pp., illus. Washington, D. C.
(68) Visentini, M.
1933. fisultati di misure asegutte su grandi canali per la determinazione dei coefficienti di scabrezza. Min. dei Lav. Pubblici, Com. per l'Ingegneria del Consiglio Nazo delle Ricerche Mem. e Relaz. No. 8, 8 pp., illus. (Includes items initialed MV, table 1.)
(69) Williams, Clement C .
1910. notes on the flow of water in irrigation ditches. Colo. Univ. Studies 7: 237-247, illus.
(70) Yarnell, D. L.
1930. hydraulic characterigtics of flow of water around gends. (Extracts) Engin. News-Rec. 105: 376-377, illus.
(71)
1930. flow of wateh around hends. (Letter) Engin. News. Rec. 105: 939-940.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

Secretary of Agricult	Henry A. Wailace.
Under Secretary	M. L. Winson.
Assistant Secretar	Harry L. Brown.
Coordinator of Land Use Planning and Director of Information.	M. S. Etsenhower.
Director of Extension Work,-.-	C. W. Warbubton.
Director of Finance.	W. A. Jump.
Director of Personnel	Roy F. Hendrickson.
Director of Rescarch	James T. Jardine.
Solicitor	Mastin G. White.
Agricullural Adjustment Administration.	H. R. Tolley, Administrator.
Bureau of Agricullural Economics... .-.	A. G. Blace, Chief.
Bureau of Agricultural Engineering-..	S. H. McCrory, Chief.
Bureau of Aninal Industry	John R. Mohler, Chief.
Bureau of Biological Survey	Ira N. Gabrielson, Chief.
Bureau of Chemistry and Soils.	Henry G. Knigut, Chief.
Commodity Exchange Administration_.	J. W. T. Dovel, Chief.
Bureau of Dairy Industry.	O. E. Reed, Chief.
Bureau of Entomology and Plant Quarantine,	Lee A. Strong, Chief.
Office of Experiment Stations-----.......	Jamres T. Jardine, Chief.
Farm Security Administration-	W. W. Alexander, Administrator.
Food and Drug Administration.	Walter G. Campbell, Chief.
Forest Service....	Ferdinand A. Silcox, Chief.
Bureau of Home Economics.	Louise Stanley, Chief.
Library-	Claribel R. Barnett, Librarian.
Bureau of Plant Industry	E. C. Agchter. Chicf.
Bureau of Public Roads.	Thomas H. MacDonald, Chief.
Soil Conservation Service	H. H. Bennett, Chief.
Weather Bureau_	F. W. Reichelderfer, Chief.

This bulletin is a contribution from
Bureau of Agricultural Engineering
S. H. McCrony, Chief.
Division of Irrigation
W. W. Mcladghlin, Chief.

[^0]: Submitted for publication May 9, 1938,
 This bulletin supu gedes Dephrtment Bulletin 104. The Flow of Water in Ierigation Ohannels.
 The author desirc. 's acknowledge fodebtedness to the various engineers and mnnagers of Irrigation, muncipal, bad powei or iems who farnished dista or permitted the testiog of canals under ther charge sometimes aiding in the tests; to the ofleers of tha Burean of Reclamathon who allowed access to original data on tests made by their staff; and to engincers In foreiga countries who have sent data coneerning their own research. Ackuowiedgment is also made to the Burenu of Reclamation for photozzaphs thastratiag typical conditions to aid in a complete understanding of recommender values for Kutter's 7 . Obviously, It was not feasible to take photographs of cansis tested, without water in them. Tests were made during the height of the season when it was not feasible to tura the water out.

[^1]: ${ }^{4}$ Italic numbers in parentheses refer to Literature Cited, p. 75.

[^2]: ${ }^{1}$ This is the usual faterpretation of velocity head. Strletly speaklag, it should be the menn value of the velocity heads for aill the elemants of fow weruss the section, rather than the vejoolty head for the mear velocity across tha soction. The true value mey be 15 petcent or more in excess of of as given tere.

[^3]: att is assumed that the robder is familiar with the essentials of the development of tha Gangullet. Kutter formula in 1809, to evaluste the element C in the Chozy formula of liz5, since it had been fourd that C wos not a constant as assmined in the work of Chezy. The complete history of the development of "Kutter's formula as it is callod io the Uniter Stales is glven thy Ganguillet and Kutter (as), nad in some of the roore claborato works on bydratilics. Comparison with other formulas is mado by Houk (30) and Gaby (it, p. 889.)

 Wome readers will question the use of the Kutter formula in this revision instead or the Manoing formute. with all its known fuits, the Kutter formula is still used very genernlly for the design of canols and similar conduits (Itmes, nonprassure tunnels and the fike) by organizations menst farailiar with hoth formulns, such as the V. S. Buresu of Reclamation, most of the organized irrigation districts of the United States, the various agencles baidding and operating canals in India and Argentivs (4), Peru, and Chile (36), South Africa, and Switzerland (62). In Italy (58,54, 68) recont research work has bean carried on in tho terms ol Barin (17) and Ganguilet-Kutter (commonly reforred to in this country and in this publication as "Kutter"), with no mention of Manning. It has como to be recoguized that the soorilied siope term. i. e., $\frac{0.00381}{\dot{S}}$ was developed to make the original Kutter formula conform to the Humphreys and abbot measuremgnts on the Mississippi Iiver, and now those measwements of slope ate genornily cliseredited. However, the slope torm has but smanl infuence, except in the very flet gratients, say bolow $S=0.0003$, which are used only for very large canals.

[^4]: A short discussion appears warranted to show the degree of conformity between Kutter's n and Manning's n^{\prime}. The use of identical vajues of n and n^{\prime} do not yield the same results of morderate size. with vahues tound in camals considered in this builatin. For the lined canals and others of moderate size, Fith vanues of say $n=0.012$ to 0.020 , practically identical results are o beld in the constructed channel. When the two most likely to assume the value of n that will actually hoid in the concraghness, the divergeuea bat wean, formulas are applied to very large canals or channelsorexcess less certain of hitting upon the right value for the
 roughness coefflcient. For instance, irrigation canal soitions, would have a value cf $n=0.013$ with a slope channels, lined with smooth concrate under exceliont candtans, Mannine formula will yisld approximately of say 0.001. Solution for the velocity, V, by either Kutter or Mand, the great All-American Canal, now the same results for the same valus of n and n. On the other hand, the following hydraulic properties at (193i) being constructed to serva Imperial Valley in California, has the forlowing ha value of Kutter's $n=$ the head end: $Q^{\prime}=15,155$ secud-feet; $R=16.8 ; N=0.0000528$ apaing formule would have required the use of 0.020. To obtain the ssme computed value on of thts canal, $Q^{\prime}=10,165$ sceond-feet; $S=0.000538 ; R=14.19$; $n^{\prime}=0.0187$. Likewise, for the rock-cut section of this cas for the theoretical soction. To obtain the same and $V=6.0$ feet per second for a desigu value of $n=0.035$ for the theoretical sechic elements, would require value of V by the Manning formula, using the same velues ior the otinet hy a wids range of conditlons, the that of $n^{\prime}=0.03 z$. For a comparishic tables (54, tabte 82).

[^5]: - For the sako of brovily detail doseriptions siven in Department Bulletin 104 (55) are omited here

[^6]: Length of reach. feet.- 900.0
 Diseharge, Q, as found by current meter-- second-fect. 131.3
 Elements at station 0 .

 Assumed clevation of water surface, $Z_{\mathrm{n}}^{\mathrm{n}} \ldots \mathrm{F}$....feet.-
 Area, $a_{0}-$-----------------------square feet-- 38.61
 Velocity $v_{0}=Q / a_{0}-\ldots-------$---feet per second.- 3.40
 Velocity head, $h_{0}=v_{0}^{2} / 2 g$
 Elevation of energy line $E_{0}=Z_{0}+h_{0} \ldots \ldots$ feet.
 Elements at station 9:
 Fall in water surface between station 0 and 9 foot

 Elevation of energy line $E_{9}=Z_{9}+h_{9} \ldots \ldots$.........eet. .
 90.000
 3. 40
 90. 180
 89. 319
 . 143
 89. 462

 Friction loss, between stations 0 and $9, h_{f}=E_{0}-E_{9} \ldots-718$
 Energy gradient, or slope $S=h_{h} / L=0.718 / 000=0.000798$.
 Surface slope $\left(Z_{0}-Z_{0}\right) / 900=0.681 / 900=0.000757$.
 Constructed, or "design" slope, probably . 0008.

[^7]: 10 R. R. Prortor, Deld angineer, Braremu of Water Workspha Supply, Clty of Los Angeles. Unpublished report. The construction wias under the direction of J. E. Phillips, engineer in charge of Owons Iliver aqueduct division.

[^8]: It About the same Lime Department Bulletinn 194 ($\overline{5} 5$) apponred, a sitrilar papeer was published by the Colorado Station (10). Tests prefixed b) VMC aro excerpied from that publienion.

[^9]:

 心 Nom ow ock

[^10]: 000か00 a

[^11]:

 wereds th lroken ?hates.

[^12]: 12 Additional tests on this and other canals in the Boise Valley will be found in (01) which is excerpted from an unpablished report by W, G. Steward entitled "The Determination of n in Kutter's Formula for Various Cenals, Flumes, and Ohutes on the Boise Profect and Vicinity." 1013.

[^13]: ${ }^{13}$ DARR, A. L. EXPERIMENTAl, INVESTGATIONS "C" CANAL, KLASATH PRONECT, OHEGON-GALIFORNIA.

[^14]: pablished refrort.]

[^15]: US KODDER, A, W, REFORT ON TEST FOR COEYFICENT OF ROUGENESS AND RETARDATION OF FLOW DUX TO CURYATVRE DRJM AND LAEE VALEEY CROSS-OVER cANALS. Drum Division Pacife das \& Electic Co, 6 p. illus. (Unpublighed.)

[^16]: ${ }^{10}$ Lanfe, E, W, an inyestigation of the nybralilics of a long ghute in the socta canal or tite USCOMPAIGRE fROIECT, U.S. Buranu of Reclariation, I2 p. illus. (Unpublished.)
 is A change jike this involves the eapaeity of conereterpipe Ifmes. For this Informotion the reader is
 C., at 25 cents.

[^17]: ${ }^{18}$ The writer suggests the more general use of "sinuous" How, with "turbulent" being reserved for the vtolently agitated water quite commonly encountered in hydraulic enginearing practice. As ased by Reynolds, "turbutent" flow included everything ebove "ghassy" fow which rould include conditions found in most irrigation canals-a tather placid fow of 2 to 3 feet per second. If "sinuous" is used for such flow, "turbulont" can be uscd for a description more in keeping with such dictionary definitlons as Webster's (i934 ed.): "Turbulent: Aroused to violent commotion; violently agitated; tumutons." Obviousiy the for in most canais and gentle rivers does bot meet this definition, yot they are turbulent according to Reynolds and this term has been carried in the iterature of hydrautes to this day.

[^18]:

 !ively litue vegethlion.

[^19]: 20 The terin "eficetive colloids" as used in this thble, should be exphined. Collondat mads, to have a
 persed rather than the laceutated state. In the dispersed state teey are very fine, are frampontect by any veloeity whatever nud in many cases remam in suspension in still water for a bog time. Likewise, they hre

 mueh on the topason the bot tom. Obvousty. this is entighty difereat fron sedimentation, where the water clems wholly by gravity setthment. A description of dispersed and flocemined siths from the Colorado Raper has been fiver hy Breazente (s). The velocities giveg fin table 2 are based on well-seasoned canais. In irrigation practice maximum veloeities usually hevelopslowly, with the grow of of e setteraent on the prodect. For less than maximum capacity the motan yojocity is materially tess and seouring is not likely to be serious. However, tho frigation demand in the eraty days of oneration may be so much less than camer capacity that the restulting veloeities do not prevent excessive silt deposits and may develop a meandering stream on the ney lid fortind by them (pl. 22, B). Even os small ier igntion demand may be too much for a new eann on sharp beads with conserquent ercessive prosion on the outside and silt deposits on the ibside of the curves (pl. 23, A)

[^20]: ri In o barge channel it is difficult to telermine what tho horjzontal velocity curves are doing just as they reach the side of the water prism. In eareful meler meusurements on Tiger Greak flumg, in Califortia (B chavael it sect wde and approaching the rechangle in shape) the mena jorizontal velocily curvo was projected 0.4 fool andil it fenehed the conerete sides of the flume. For a mean velocity of 7 is feet per second the meximum was 7.80 and slightly to one side of the eenter; tho minimum at the left side was 5.52 , and ou the right side 5.88 fect per second. Thls measurement was in a rach of caned for which the value of Kutter's n was determined to be 0.0118 , indienting something akin to sherring right at the smooth concrete will. Therediker the curve of velocilies gradually renched a maximum and then diminished os the opposite sfde was ajproached. Had the channel sifes been slightiy roughencd, the extreme side velocities woukl hava heen less and then the whice horfantal velocity eurve wonld have been dragged back so that thre sanje tustitity of flow Q, would bsve required a larger cross scetion.

[^21]:

