
 
 

Give to AgEcon Search 

 
 

 

The World’s Largest Open Access Agricultural & Applied Economics Digital Library 
 

 
 

This document is discoverable and free to researchers across the 
globe due to the work of AgEcon Search. 

 
 
 

Help ensure our sustainability. 
 

 
 
 
 
 
 
 

AgEcon Search 
http://ageconsearch.umn.edu 

aesearch@umn.edu 
 
 
 

 
 
 
 
 
 
Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. 
No other use, including posting to another Internet site, is permitted without permission from the copyright 
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. 

https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
https://makingagift.umn.edu/give/yourgift.html?&cart=2313
http://ageconsearch.umn.edu/
mailto:aesearch@umn.edu


The Stata Journal (2011)
11, Number 1, pp. 52–63

Visualization of social networks in Stata using

multidimensional scaling

Rense Corten
Department of Sociology

Interuniversity Center for Social Science Theory and Methodology
Utrecht University
The Netherlands
r.corten@uu.nl

Abstract. I describe and illustrate the use of multidimensional scaling methods
for visualizing social networks in Stata. The procedure is implemented in the
netplot command. I discuss limitations of the approach and sketch possibilities
for improvement.

Keywords: gr0048, netplot, mds, social network analysis, visualization, multidi-
mensional scaling

1 Introduction

Social network analysis (SNA) is the study of patterns of interaction between social enti-
ties (Wasserman and Faust 1994; Scott 2000). In the past few decades, SNA has emerged
as a major research paradigm in the social sciences (including economics) and has also
attracted attention in other fields (Newman, Barabási, and Watts 2006). While ded-
icated software for SNA exists (for example, UCINET [Borgatti, Everett, and Freeman
1999] or Pajek [Batagelj and Mrvar 2009]), Stata currently lacks readily available facili-
ties for SNA. In this article, I illustrate how methods for SNA can be developed in Stata,
using network visualization as an example.

Visualization is one of the oldest methods in SNA and is still one of its most im-
portant and widely applied tools for uncovering patterns of relations (Freeman 2000).
I describe a procedure for network visualization using Stata’s built-in procedures for
multidimensional scaling (MDS) and describe an implementation as a Stata command.
While I believe that network visualization in itself can be highly useful, the example
also illustrates how SNA problems can be handled in Stata more generally.

2 Methods

2.1 Some terminology

Network visualization is concerned with showing binary relations between entities.
Adopting the terminology of graph theory, I refer to these entities as vertices. Relations
between vertices may be considered directed if they can be understood as flowing from

c© 2011 StataCorp LP gr0048



R. Corten 53

one vertex to another or may be considered nondirected if no such direction can be
identified. I refer to directed relations as arcs and to nondirected relations as edges.

A typical representation of a network of relations is an adjacency matrix, as shown
in figure 1 for a network of 10 vertices. In this matrix, every cell represents a relation
from a vertex (row) to another vertex (column); for nondirected networks, this matrix
is symmetrical. Vertices that have no edges or arcs are called isolates. The number
of edges connected to a vertex is called the degree of the vertex. Lastly, the distance
between two vertices is defined as the shortest path between them. If there is no path
between two isolates, I define the distance between them as infinite.

1 2 3 4 5 6 7 8 9 10
1 0 1 1 0 1 0 0 0 0 0
2 1 0 0 1 0 1 0 1 0 0
3 1 0 0 0 0 0 0 0 0 0
4 0 1 0 0 0 0 1 0 0 0
5 1 0 0 0 0 0 0 0 0 0
6 0 1 0 0 0 0 1 0 0 0
7 0 0 0 1 0 1 0 0 0 0
8 0 1 0 0 0 0 0 0 1 0
9 0 0 0 0 0 0 0 1 0 0
10 0 0 0 0 0 0 0 0 0 0

Figure 1. An adjacency matrix, N = 10

2.2 Data structure

One particular obstacle in analyzing network data in conventional statistics packages
such as Stata is the specific structure of relational data. Whereas in conventional
datasets one line in the data typically represents an individual entity, observations in
relational datasets represent relations between entities.

I assume that data are available as a list of edges or arcs. That is, for a network of
k relations, I have a k × 2 data matrix in which every row represents an edge (if the
network is nondirected) or an arc (if the network is directed) between two vertices in the
cells. The use of edgelists and arclists is often a more economical way to store network
data than is an adjacency matrix, especially for networks that are relatively sparse.

I extend the traditional edgelist and arclist formats by allowing the use of missing
values. I use missing values to include isolates in the list (figure 2). In figure 1, vertex
10 is isolated; in figure 2, its vertex number appears in one column accompanied by a
missing value in the other column. The order of appearance might be reversed, thus a
network consisting of k edges and N vertices, of which h isolates, can be represented by
a (k + h) × 2 matrix.



54 Visualization of social networks

col 1 col 2
1 2 1
2 3 1
3 4 2
4 5 1
5 6 2
6 7 6
7 7 4
8 8 2
9 9 8
10 10 .

Figure 2. Edgelist based on the adjacency matrix in figure 1

2.3 Procedure

The main task in network visualization is to determine the positions of the vertices
in a (typically two-dimensional) graphical layout. Obviously, the optimal placement
of vertices depends on the purpose of the analysis; however, it is often desirable to
centrally locate in the graphic those vertices that have a central position in the SNA

and to represent a larger distance in the network by a larger distance in the two-
dimensional graph. Various algorithms have been proposed toward this ideal. Among
them, those by Kamada and Kawai (1989) and Fruchterman and Reingold (1991) are
probably most widely used. Instead, I use MDS to compute coordinates for the vertices.
This strategy has the advantage of being available in Stata by default. The use of MDS

for network visualization has a long history in SNA and was first used in this way by
Laumann and Guttman (1966).

Assuming that I have a relational dataset formatted as an edgelist, I propose visu-
alizing the network by the following procedure:

1. Reshape the data into an adjacency matrix.

2. Compute the matrix of shortest paths (the distance matrix).

3. Arrange the vertices on a circle in a random order, and then compute their coor-
dinates.

4. Using the coordinates circle layout obtained in the previous step as a source of
starting positions, use the modern method to compute coordinates for the vertices
by mds.

5. Draw the graphic by combining the twoway plot types pcspike or pcarrow with
scatter.

In my implementation, steps 1–3 are performed in Mata. The calculation of the
distance matrix (step 2) involves calculating higher powers of the adjacency matrix



R. Corten 55

and can be rather time consuming for larger networks. More efficient procedures for
obtaining distances in a network are feasible, but they are not implemented in my
example.

I chose Stata’s iterative modern mds method for step 4 because it allows for the
specification of starting positions and appears to provide better results in tests. In
particular, the modern method performs better than the classic method with regard to
the placement of vertices that have identical distances to all other vertices (for exam-
ple, vertices on the periphery of a “star”). Experimentation furthermore suggests that
starting with a circular layout provides the best results.1

3 Implementation: The netplot command

3.1 Syntax

netplot var1 var2
[
if

] [
in

] [
, type(mds | circle) label arrows

iterations(#)
]

The netplot command produces a graphical representation of a network stored as
an extended edgelist or arclist in var1 and var2.

3.2 Options

type(mds | circle) specifies the type of layout. Valid values are mds or circle.

mds calculates positions of vertices using MDS. This is the default if type() is not
specified.

circle arranges vertices on a circle.

label specifies that vertices be labeled using their identifiers in var1 and var2.

arrows specifies that arrows rather than lines be drawn between vertices. Arrows run
from the vertex in var1 to the vertex in var2. This option is useful for arclists that
represent directed relations.

iterations(#) specifies the maximum number of iterations in the MDS procedure. The
default is iterations(1000).

4 Examples

To illustrate the process outlined above, I use the well-known Padgett’s Florentine
Families dataset, which contains information on relations among 16 families in fifteenth-

1. Internally, my program issues the command mdsmat distance matrix, noplot method(modern)

initialize(from(circle matrix)) iterate(#).



56 Visualization of social networks

century Florence, Italy (Padgett and Ansell 1993). The part of the data I use represents
marital relations between the families. These relations are by nature nondirected. The
data are described below:

. describe

Contains data from Padgett_marital02_undir.dta
obs: 21 Padgett marital data with

undirected ties
vars: 2 22 Jan 2010 17:37
size: 588 (99.9% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

from str12 %12s family 1 name
to str12 %12s family 2 name

Sorted by: from to

. list, sepby(from)

from to

1. Pucci

2. Albizzi Guadagni
3. Albizzi Medici

4. Barbadori Medici

5. Bischeri Guadagni
6. Bischeri Peruzzi
7. Bischeri Strozzi

8. Castellani Barbadori
9. Castellani Strozzi

10. Ginori Albizzi

11. Guadagni Lamberteschi

12. Medici Acciaiuoli
13. Medici Salviati
14. Medici Tornabuoni

15. Pazzi Salviati

16. Peruzzi Castellani
17. Peruzzi Strozzi

18. Ridolfi Medici
19. Ridolfi Tornabuoni

20. Strozzi Ridolfi

21. Tornabuoni Guadagni



R. Corten 57

The data are in this case formatted as strings that simply use the family names as
identifiers for the vertices of the network.

The first example (figure 3) shows the most basic usage of netplot. It uses the
netplot from to command to produce a network plot of the data resulting from MDS.

Figure 3. Marital relations among Florentine families, with vertex placement by MDS

In many analyses, it is useful to be able to identify specific vertices in the network.
Identification is facilitated by adding labels to the plot using the label option (figure 4).2

I can now observe that this network has a cohesive core formed by the Medici, Ridolfi,
and Tornabuoni families, and that the isolated vertex is the Pucci family.

2. The placement of labels outside the plot region is part of the default behavior of twoway scatter,
which is used by netplot. This can be easily adjusted afterward.



58 Visualization of social networks

Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

Ginori

Guadagni

Lamberteschi

Medici

Pazzi

Peruzzi

Pucci

Ridolfi
Salviati

Strozzi

Tornabuoni

Figure 4. Marital relations among Florentine families, with vertex placement by MDS

and labels added

Sometimes it is not necessary to have the relatively complicated plot as produced by
MDS. Then a simple view on the data can be produced by the circle option (figure 5).

Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

Ginori

Guadagni

Lamberteschi

Medici

Pazzi

Peruzzi

Pucci

Ridolfi

Salviati

Strozzi

Tornabuoni

Figure 5. Marital relations among Florentine families, with circular vertex placement
and labels

For my final example with these data, I assume that the data are directed. That
is, I assume that each line in the data represents a directed relation from one vertex to
another vertex. Imagine, for instance, that the data now represent whether a family has



R. Corten 59

ever sold goods to another family. Such situations can be visualized using the arrows

option, which draws arrows instead of lines between vertices (figure 6). The graph in
this example was slightly adjusted afterward by using the Graph Editor to reduce the
sizes of the markers and to make the arrowheads better visible.

Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

Ginori

Guadagni

Lamberteschi

Medici

Pazzi

Peruzzi

Pucci

Ridolfi
Salviati

Strozzi

Tornabuoni

Figure 6. Marital relations among Florentine families, shown as directed relations with
vertex placement by MDS and labels

As a final example, I draw a plot of a somewhat larger network of 100 vertices. The
data for this example were simulated using the “preferential attachment” algorithm
proposed by Barabási and Albert (1999) to construct the network shown in figure 7.3

This example highlights two limitations of netplot. First, as figure 7 shows, vertex
placement can be suboptimal: several vertices in the figure are placed too close together,
while others are placed too far from neighboring vertices, which leads to crossings of
edges. The reason is that in this particular treelike network structure, there are many
vertices that have the exact same distance to all other vertices, which makes placement
by MDS difficult. Second (not visible in the figure), the procedure becomes considerably
more time consuming with this number of vertices. I discuss this issue in more detail
in the next section.

3. The actual simulation was conducted in Mata. The function in which the Albert–Barabási algo-
rithm is implemented is part of a larger library of functions for network analysis under development
by the author.



60 Visualization of social networks

Figure 7. Marital relations among Florentine families, shown as directed relations with
vertex placement by MDS

5 Performance

To get a rough idea of the performance of netplot in terms of computation time, I
conduct two simulated tests. First, I draw plots of networks of increasing network size,
keeping network density constant at 0.5. This leads to an exponentially increasing num-
ber of edges in the network. To draw the plots, I use netplot without any options. The
input networks are randomly generated Erdös–Rényi graphs (Erdös and Rényi 1959).4

For the second test, I again draw plots with increasing network size but keep average
degree constant rather than density. This implies a linear increase in the number of edges
in the network. I use an average degree of 3.

In both tests, I look at networks with sizes ranging from 5 to 100 in increments of
5. In addition, I simulate networks of 500 nodes and networks of 1,000 nodes. I keep
track of the average time needed to draw a graph over 10 iterations per network size.

The results are shown in figure 8 for the networks of up to 100 nodes. The figure
indicates that average time increases quadratically with network size, although time
increases more strongly with constant density than with constant degree. For networks
of 500 nodes, computation times average 1,545 seconds for networks with a density of
0.5 and 1,182 seconds for networks with an average degree of 3. For networks of 1,000
nodes, the average times are 6,936 seconds and 7,769 seconds, respectively.

4. The tests were run in Stata/SE 11 on a PC with a 2.66-GHz dual-core processor and 1 GB of
memory and running the Microsoft Windows XP 32-bit operating system.



R. Corten 61

Obviously, computation time becomes a major obstacle when using netplot on
larger networks. In addition, convergence and computational problems of the MDS

procedure become more frequent in larger networks. Closer analysis (not reported) of the
running time of the different components of the command reveals that the computation
of coordinates using MDS after computation of distances is the most time-consuming
step in the procedure.

0
1
0

2
0

3
0

4
0

T
im

e
 (

s
e
c
o
n
d
s
)

0 10 20 30 40 50 60 70 80 90 100
N of vertices

Density = .5 Average degree = 3

Figure 8. Average computation time by network size

6 Discussion

In this article, I have demonstrated how to use built-in techniques for MDA and graphics
to visualize network data in Stata. This method often produces useful results, although
not always for all networks. A major drawback is the long computation time needed to
compute vertex coordinates on larger networks. As a workaround for this problem, the
number of iterations may be limited by using the iterations() option.

Visual results could likely be improved by using vertex placement algorithms dif-
ferent from MDS. Good candidates are the often-used “spring embedding” algorithms
by Kamada and Kawai (1989) and Fruchterman and Reingold (1991). Given the com-
mand architecture of netplot, these methods could be added relatively easily, and
implementing them would be an obvious target for future development.

A second reason to focus on placement algorithms different from MDS in future
development is that the MDS procedure appears to be the major cause of the long
computation time needed for large networks. At this moment, however, it is not clear
how, for example, the Kamada–Kawai and Fruchterman–Reingold algorithms compare
with MDS in terms of computation time.



62 Visualization of social networks

Another approach to improving efficiency is to use more-efficient methods for com-
puting distances in the network. The simple approach currently implemented, which is
based on repeated matrix squaring, computes some quite unneeded information in the
process. More-efficient algorithms for computing shortest paths exist (see Cormen et al.
[2001]) and might be implemented in the future.

The introduction of Mata with Stata 9 has made matrix programming more effective
and more accessible for the average user. This opens up further possibilities for the
development of SNA methods in Stata. The fact that Mata can be used interactively
makes it easier to use the alternative data structures representing networks common in
SNA. The quickly growing interest in social networks in and outside the social sciences
certainly justifies the further development of SNA methods for Stata.

7 References

Barabási, A.-L., and R. Albert. 1999. Emergence of scaling in random networks. Science
286: 509–512.

Batagelj, V., and A. Mrvar. 2009. Pajek. Program for Large Network Analysis. Ljubl-
jana, Slovenia. http://vlado.fmf.uni-lj.si/pub/networks/pajek/.

Borgatti, S. P., M. G. Everett, and L. C. Freeman. 1999. UCINET. Program for Social
Network Analysis. Lexington, KY. http://www.analytictech.com/ucinet/.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein. 2001. Introduction to
Algorithms. 2nd ed. Cambridge, MA: MIT Press.

Erdös, P., and A. Rényi. 1959. On random graphs, I. Publicationes Mathematicae
(Debrecen) 6: 290–297.

Freeman, L. C. 2000. Visualizing social networks. Journal of Social Structure 1.
http://www.cmu.edu/joss/content/articles/volume1/Freeman.html.

Fruchterman, T. M. J., and E. M. Reingold. 1991. Graph drawing by force-directed
placement. Software—Practice and Experience 21: 1129–1164.

Kamada, T., and S. Kawai. 1989. An algorithm for drawing general undirected graphs.
Information Processing Letters 31: 7–15.

Laumann, E. O., and L. Guttman. 1966. The relative associational contiguity of occu-
pations in an urban setting. American Sociological Review 31: 169–178.

Newman, M., A.-L. Barabási, and D. Watts, ed. 2006. The Structure and Dynamics of
Networks. Princeton, NJ: Princeton University Press.

Padgett, J. F., and C. K. Ansell. 1993. Robust action and the rise of the Medici,
1400–1434. American Journal of Sociology 98: 1259–1319.

Scott, J. 2000. Social Network Analysis: A Handbook. 2nd ed. London: Sage.



R. Corten 63

Wasserman, S., and K. Faust. 1994. Social Network Analysis: Methods and Applica-
tions. Cambridge: Cambridge University Press.

About the author

Rense Corten is a postdoctoral researcher at the Department of Sociology and the Interuniver-
sity Center for Social Science Theory and Methodology, Utrecht University.




