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Abstract. Item response theory is a set of models and methods allowing for
the analysis of binary or ordinal variables (items) that are influenced by a latent
variable or latent trait—that is, a variable that cannot be measured directly. The
theory was originally developed in educational assessment but has many other
applications in clinical research, ecology, psychiatry, and economics.

The Mokken scales have been described by Mokken (1971, A Theory and Pro-

cedure of Scale Analysis [De Gruyter]). They are composed of items that satisfy
the three fundamental assumptions of item response theory: unidimensionality,
monotonicity, and local independence. They can be considered nonparametric
models in item response theory. Traces of the items and Loevinger’s H coefficients
are particularly useful indexes for checking whether a set of items constitutes a
Mokken scale.

However, these indexes are not available in general statistical packages. We in-
troduce Stata commands to compute them. We also describe the options available
and provide examples of output.

Keywords: st0216, tracelines, loevh, gengroup, msp, items trace lines, Mokken
scales, item response theory, Loevinger coefficients, Guttman errors
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1 Introduction

Item response theory (IRT) (Van der Linden and Hambleton 1997) concerns models
and methods where the responses to the items (binary or ordinal variables) of a ques-
tionnaire are assumed to depend on nonmeasurable characteristics (latent traits) of the
respondents. These models can be applied to measures such as a latent variable (in
measurement models) or to investigate influences of covariates on these latent variables.

Examples of latent traits include health status; quality of life; ability or content
knowledge in a specific field of study; and psychological traits such as anxiety, impul-
sivity, and depression.

Most item response models (IRMs) are parametric: they model the probability of
response at each category of each item by a function, depending on the latent trait,
which is typically considered as a set of fixed effects or as a random variable, and
they model the probability of parameters characterizing the items. The most popular
IRMs for dichotomous items are the Rasch model and the Birnbaum model, and the
most popular IRMs for polytomous items are the partial credit model and the rating
scale model. These IRMs are already described for the Stata software (Hardouin 2007;
Zheng and Rabe-Hesketh 2007).

Mokken (1971) defines a nonparametric model for studying the properties of a set of
items in the framework of IRT. Mokken calls this model the monotonely homogeneous
model, but it is generally referred to as the Mokken model. This model is implemented
in a stand-alone package for the Mokken scale procedure (MSP) (Molenaar, Sijtsma,
and Boer 2000), and codes already have been developed in Stata (Weesie 1999), SAS

(Hardouin 2002), and R (Van der Ark 2007) languages. We propose commands under
Stata to study the fit of a set of items to a Mokken model. These commands are more
complete than the mokken command of Jeroen Weesie, for example, which does not offer
the possibility of analyzing polytomous items.

The main purpose of the Mokken model is to validate an ordinal measure of a
latent variable: for items that satisfy the criteria of the Mokken model, the sum of the
responses across items can be used to rank respondents on the latent trait (Hemker et al.
1997; Sijtsma and Molenaar 2002). Compared with parametric IRT models, the Mokken
model requires few assumptions regarding the relationship between the latent trait and
the responses to the items; thus it generally allows keeping more important items. As a
consequence, the ordering of individuals is more precise (Sijtsma and Molenaar 2002).

2 The Mokken scales

2.1 Notation

In the following text, we use the following notation:

• Xj is the random variable (item) representing the responses to the jth item,
j = 1, . . . , J .
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• Xnj is the random variable (item) representing the responses to the jth item,
j = 1, . . . , J , for the nth individual, and xnj is the realization of this variable.

• mj + 1 is the number of response categories of the jth item.

• The response category 0 implies the smallest level of the latent trait and is referred
to as a negative response, whereas the mj nonzero response categories (1, 2, . . . ,
mj) increase with increasing levels of the latent trait and are referred to as positive
responses.

• M is the total number of possible positive responses across all items:
M =

∑J
j=1 mj

• Yjr is the random-threshold dichotomous item taking the value 1 if xnj ≥ r and
0 otherwise. There are M such items (j = 1, . . . , J and r = 1, . . . , mj).

• P (.) refers to observed proportions.

2.2 Monotonely homogeneous model of Mokken (MHMM)

The Mokken scales are sets of items satisfying an MHMM (Mokken 1997; Molenaar 1997;
Sijtsma and Molenaar 2002). This kind of model is a nonparametric IRM defined by the
three fundamental assumptions of IRT:

• unidimensionality (responses to items are explained by a common latent trait)

• local independence (conditional on the latent trait, responses to items are inde-
pendent)

• monotonicity (the probability of an item response greater than or equal to any
fixed value is a nondecreasing function of the latent trait)

Unidimensionality implies that the responses to all the items are governed by a scalar
latent trait. A practical advantage of this assumption is the easiness of interpreting the
results. For a questionnaire aiming at measuring several latent traits, such an analysis
must be realized for each unidimensional latent trait.

Local independence implies that all the relationships between the items are explained
by the latent trait (Sijtsma and Molenaar 2002). This assumption is strongly related to
the unidimensionality assumption, even if unidimensionality and local independence do
not imply one another (Sijtsma and Molenaar 2002). As a consequence, local indepen-
dence implies that a strong redundancy among the items does not exist.

Monotonicity is notably a fundamental assumption that allows validating the score
as an ordinal measure of the latent trait.



J.-B. Hardouin, A. Bonnaud-Antignac, and V. Sébille 33

2.3 Traces of the items

Traces of items can be used to check the monotonicity assumption. We define the
score for each individual as the sum of the individual’s responses (Sn =

∑J
j=1 Xnj).

This score is assumed to represent an ordinal measure of the latent trait. The trace
of a dichotomous item represents the proportion of positive responses {P (Xj = 1)}
as a function of the score. If the monotonicity assumption is satisfied, the trace lines
increase. This means that the higher the latent trait, the more frequent the positive
responses. In education sciences, if we wish to measure a given ability, this means that
a good student will have more correct responses to the items. In health sciences, if we
seek to measure a dysfunction through the presence of symptoms, this means that a
patient having a high level of dysfunction will display more symptoms. An example
trace is given in figure 1.
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Figure 1. Trace of a dichotomous item as a function of the score

The score and the proportion of positive responses to each item are generally posi-
tively correlated, because the score is a function of all the items. This phenomenon can
be strong, notably if there are few items in the questionnaire. To avoid the phenomenon,
the rest-score (computed as the score of all the other items) is more generally used.

For polytomous items, we represent the proportion of responses to each response
category {P (Xj = r)} as a function of the score or of the rest-score (an example is
given in figure 2).
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Figure 2. Traces of a polytomous item as functions of the score

Unfortunately, these trace lines are difficult to interpret, because an individual with
a moderate score will preferably respond to medium response categories, and an in-
dividual with high scores will respond to high response categories, so the trace lines
corresponding to each response category do not increase. Cumulative trace lines rep-
resent the proportions P (Yjr = 1) = P (Xj ≥ r) as a function of the score or of the
rest-score. If the monotonicity assumption is satisfied, these trace lines increase. An
example is given in figure 3.
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Figure 3. Cumulative trace lines of a polytomous item as functions of the score
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2.4 The Guttman errors

Dichotomous case

The difficulty of an item can be defined as its proportion of negative responses. The
Guttman errors (Guttman 1944) for a pair of dichotomous items are the number of
individuals having a positive response to the more difficult item and a negative response
to the easiest item. In education sciences, this represents the number of individuals
who correctly responded to a given item but incorrectly responded to an easier item. In
health sciences, this represents the number of individuals who present a given symptom
but do not present a more common symptom.

We define the two-way tables of frequency counts between the items j and k as

Item j
0 1

Item k 0 ajk bjk ajk + bjk

1 cjk djk cjk + djk

ajk + cjk bjk + djk Njk

Njk is the number of individuals with nonmissing responses to the items j and k.

An item j is easier than the item k if P (Xj = 1) > P (Xk = 1)—that is to say,
if (bjk + djk/Njk) > (cjk + djk/Njk) (equivalently, if bjk > cjk), and the number of
Guttman errors ejk in this case is ejk = Njk × P (Xj = 0,Xk = 1) = cjk. More
generally, if we ignore the easier item between j and k,

ejk = Njk × min {P (Xj = 0,Xk = 1), P (Xj = 1,Xk = 0)} = min (bjk, cjk) (1)

e
(0)
jk is the number of Guttman errors under the assumption of independence of the

responses to the two items:

e
(0)
jk =Njk × min {P (Xj = 0) × P (Xk = 1), P (Xj = 1) × P (Xk = 0)}

=
(ajk + ejk) (ejk + djk)

Njk

Polytomous case

The Guttman errors between two given response categories r and s of the pair of poly-
tomous items j and k are defined as

ej(r)k(s) = Njk × min {P (Xj ≥ r,Xk < s), P (Xj < r,Xk ≥ s)}
= Njk × min {P (Yjr = 1, Yks = 0), P (Yjr = 0, Yks = 1)}

The number of Guttman errors between the two items is

ejk =

mj∑

r=1

mk∑

s=1

ej(r)k(s)
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If mj = mk = 1 (the dichotomous case), this formula is equivalent to (1).

Under the assumption of independence between the responses to these two items,
we have

e
(0)
j(r)k(s) = Njk × P (Xj < r)P (Xk ≥ s) = Njk × P (Yjr = 0)P (Yks = 1)

if P (Xj ≥ r) > P (Xk ≥ s) and

e
(0)
jk =

mj∑

r=1

mk∑

s=1

e
(0)
j(r)k(s)

2.5 The Loevinger’s H coefficients

Loevinger (1948) proposed three indexes that can be defined as functions of the Guttman
errors between the items.

The Loevinger’s H coefficient between two items

Hjk is the Loevinger’s H coefficient between the items j and k:

Hjk = 1 − ejk

e
(0)
jk

We have Hjk ≤ 1 with Hjk = 1 only if there is no Guttman error between the items
j and k. If this coefficient is close to 1, there are few Guttman errors, and so the two
items probably measure the same latent trait. An index close to 0 signifies that the
responses to the two items are independent, and therefore reveals that the two items
probably do not measure the same latent trait. A significantly negative value to this
index is not expected, and it can be a flag that one or more items have been incorrectly
coded or are incorrectly understood by the respondents.

We can test H0: Hjk = 0 (against Ha: Hjk > 0). Under the null hypothesis, the
statistic

Z =
Cov(Xj ,Xk)√
Var(Xj)Var(Xk)

Njk−1

= ρjk

√
Njk − 1 (2)

follows a standard normal distribution, where ρjk is the correlation coefficient between
items j and k.
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The Loevinger’s H coefficient measuring the consistency of an item within a scale

Let S be a set of items (a scale), and let j be an item that belongs to this scale (j ∈ S).
HS

j is the Loevinger’s H coefficient that measures the consistency of the item j within
a scale S.

HS
j = 1 −

eS
j

e
S(0)
j

= 1 −
∑

k∈S, k 6=j ejk
∑

k∈S, k 6=j e
(0)
jk

If the scale S is a good scale (that is, if it satisfies an MHMM, for example), this
index is close to 1 if the item j has a good consistency within the scale S, and this index
is close to 0 if it has a bad consistency within this scale.

It is possible to test H0: HS
j = 0 (against Ha: HS

j > 0). Under the null hypothesis,
the statistic

Z =

∑
k∈S,k 6=j Cov(Xj ,Xk)

√
∑

k∈S,k 6=j
Var(Xj)Var(Xk)

Njk−1

(3)

follows a standard normal distribution.

The Loevinger’s H coefficient of scalability

If S is a set of items, we can compute the Loevinger’s H coefficient of scalability of this
scale.

HS = 1 − eS

eS(0)
= 1 −

∑
j∈S

∑
k∈S, k>j ejk

∑
j∈S

∑
k∈S, k>j e

(0)
jk

We have HS ≥ minj∈S HS
j . If HS is near 1, then the scale S has good scale

properties; if HS is near 0, then it has bad scale properties.

It is possible to test H0: HS = 0 (against Ha: HS > 0). Under the null hypothesis,
the statistic

Z =

∑
j∈S

∑
k∈S,k 6=j Cov(Xj ,Xk)

√
∑

j∈S

∑
k∈S,k 6=j

Var(Xj)Var(Xk)
Njk−1

(4)

follows a standard normal distribution.

In the MSP software (Molenaar, Sijtsma, and Boer 2000), the z statistics defined
in (2), (3), and (4) are approximated by dividing the variances by Njk instead of by
Njk − 1.

2.6 The fit of a Mokken scale to a dataset

Link between the Loevinger’s H coefficient and the Mokken scales

Mokken (1971) showed that if a scale S is a Mokken scale, then HS > 0, but the converse
is not true. He proposes the following classification:
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• If HS < 0.3, the scale S has poor scalability properties.

• If 0.3 ≤ HS < 0.4, the scale S is “weak”.

• If 0.4 ≤ HS < 0.5, the scale S is “medium”.

• If 0.5 ≤ HS , the scale S is “strong”.

So Mokken (1971) suggests using the Loevinger’s H coefficient to build scales that
satisfy a Mokken scale. He suggests that there is a threshold c > 0.3 such that if HS > c,
then the scale S satisfies a Mokken scale. This idea is used by Mokken (1971) and is
adapted by Hemker, Sijtsma, and Molenaar (1995) to propose the MSP or automated
item selection procedure (AISP) (Sijtsma and Molenaar 2002).

Moreover, the fit of the Mokken scale is satisfactory if HS
j > c and Hjk > 0 for all

pairs of items j and k from the scale S.

Check of the monotonicity assumption

The monotonicity assumption can be checked by a visual inspection of the trace lines.
Nevertheless, the MSP program that Molenaar, Sijtsma, and Boer (2000) proposed cal-
culates indexes to evaluate the monotonicity assumption. The idea of these indexes is
to allow the trace lines to have small decreases.

To check for the monotonicity assumption linked to the jth item (j = 1, . . . , J),
the population is cut into Gj groups (based on the individual’s rest-score for item j as
the sum of the individual’s responses to the other items). Each group is indexed by
g = 1, . . . , Gj (g = 1 represents the individuals with the lower rest-scores, and g = Gj

represents the individuals with the larger rest-scores).

Let Zj be the random variable representing the groups corresponding to the jth item.
It is expected that ∀j = 1, . . . , J and r = 1, . . . , mj . We have P (Yjr = 1|Zj = g) ≥
P (Yjr = 1|Zj = g′) with g > g′. Gj(Gj − 1)/2 of such comparisons can be realized for
the item j (denoted as #acj for active comparisons). In fact, only important violations
of the expected results are retained, and a threshold minimum violation (minvi) is used
to define an important violation P (Yjr = 1|Zj = g′) − P (Yjr = 1|Zj = g) > minvi.
Consequently, it is possible for each item to count the number of important violations
(#vij) and to compute the value of the maximum violation (maxvij) and the sum
of the important violations (sumj). Lastly, it is possible to test the null hypothesis
H0 : P (Yjr = 1|Zj = g) ≥ P (Yjr = 1|Zj = g′) against the alternative hypothesis
Ha : P (Yjr = 1|Zj = g) < P (Yjr = 1|Zj = g′) ∀j, r, g, g′ with g > g′.

Consider the table

Item Yjr

0 1
Group g′ a b

g c d
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Under the null hypothesis, the statistic

z =
2
{√

(a + 1)(d + 1) −
√

bc
}

√
a + b + c + d − 1

follows a standard normal distribution. The maximal value of z for the item j is de-
noted zmaxj , and the number of significant z values is denoted #zsigj . The crite-
rion used to check the monotonicity assumption linked to the item j is defined by
Molenaar, Sijtsma, and Boer (2000) as

Critj = 50(0.30 − Hj) +
√

#vij + 100
#vij
#acj

+ 100maxvij + 10
√

sumj + 1000
sumj

#acj

+5zmaxj + 10
√

#zsigj + 100
#zsigj

#acj
(5)

It is generally considered that a criterion less than 40 signifies that the reported viola-
tions can be ascribed to sampling variation. A criterion exceeding 80 casts serious doubts
on the monotonicity assumption for this item. If the criterion is between 40 and 80,
further analysis must be considered to draw a conclusion (Molenaar, Sijtsma, and Boer
2000).

2.7 The doubly monotonely homogeneous model of Mokken
(DMHMM)

The P++ and P−− matrices

The DMHMM is a model where the probabilities P (Xj ≥ l) ∀j, l produce the same
ranking of items for all persons (Mokken and Lewis 1982). In practice, this means that
the questionnaire is interpreted similarly by all the individuals, whatever their level of
the latent trait.

P + + is an M × M matrix in which each element corresponds to the probability
P (Xj ≥ r,Xk ≥ s) = P (Yjr = 1, Yks = 1). The rows and the columns of this matrix
are ordered from the most difficult threshold item Yjr ∀j, r to the easiest one.

P −− is an M × M matrix in which each element corresponds to the probability
P (Yjr = 0, Yks = 0). The rows and the columns of this matrix are ordered from the
most difficult threshold item Yjr ∀j, r to the easiest one.

A set of items satisfies the doubly monotone assumption if the set satisfies an MHMM,
and if the elements of the P + + matrix are increasing in each row and the elements of
the P −− matrix are decreasing in each row.

We can represent each column of these matrices in a graph. On the x axis, the
response categories are ordered in the same order as in the matrices; and on the y
axis, the probabilities contained in the matrices are represented. The obtained curves
must be nondecreasing for the P + + matrix and must be nonincreasing for the P −−
matrix.
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Check of the double monotonicity assumption via the analysis of the P matrices

Consider three threshold items Yjr, Yks, and Ylt with j 6= k 6= l. Under the DMHMM,
if P (Yks = 1) < P (Ylt = 1), then it is expected that P (Yks = 1, Yjr = 1) < P (Ylt =
1, Yjr = 1). In the set of possible threshold items, we count the number of important
violations of this principle among all the possible combinations of three items. An
important violation represents a case where P (Yks = 1, Yjr = 1)−P (Ylt = 1, Yjr = 1) >
minvi, where minvi is a fixed threshold. For each item j, j = 1, . . . , J , we count the
number of comparisons (#acj), the number of important violations (#vij), the value
of maximal important violation (maxvij), and the sum of the important violations
(sumvij). It is possible to test the null hypothesis H0: P (Yks = 1, Yjr = 1) ≤ P (Ylt =
1, Yjr = 1) against the alternative hypothesis Ha : P (Yks = 1, Yjr = 1) > P (Ylt =
1, Yjr = 1) with a McNemar test.

Let K be the random variable representing the number of individuals in the sample
who satisfy Yjr = 1, Yks = 0, and Ylt = 1. Let N be the random variable representing
the number of individuals in the sample who satisfy Yjr = 1, Yks = 0, and Ylt = 1, or
who satisfy Yjr = 1, Yks = 1, and Ylt = 0. k and n are the realizations of these two
random variables. Molenaar, Sijtsma, and Boer (2000) define the statistic:

z =
√

2k + 2 + b −
√

2n − 2k + b with b =
(2k + 1 − n)2 − 10n

12n

Under the null hypothesis, z follows a standard normal distribution. It is possible to
count the number of significant tests (#zsig) and the maximal value of the z statistics
(zmax).

A criterion can be computed for each item as the one used in (5), using the same
thresholds for checking the double monotonicity assumption.

2.8 Contribution of each individual to the Guttman errors, H coeffi-
cients, and person-fit

From the preceding formulas, the number of Guttman errors induced by each individual
can be computed. Let en be this number for the nth individual. The number of expected
Guttman errors under the assumption of independence of the responses to the item is

equal to e
(0)
n = eS(0)/N . An individual with en > e

(0)
n is very likely to be an individual

whose responses are not influenced by the latent variable, and if en is very high, the
individual can be considered an outlier.

By analogy with the Loevinger coefficient, we can compute the Hn coefficient in the

following way: Hn = 1 − (en/e
(0)
n ). A large negative value indicates an outlier, and a

positive value is expected (note that Hn ≤ 1).

It is interesting to note that when there is no missing value,

HS =

∑N
n=1 Hn

N
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Emons (2008) defines the normalized number of Guttman errors for polytomous
items (Gp

N ) as

Gp
Nn =

en

emax,n

where emax,n is the maximal number of Guttman errors obtained with a score equal to
Sn. This index can be interpreted as

• 0 ≤ Gp
Nn ≤ 1

• if Gp
Nn is close to 0, the individual n has few Guttman errors

• if Gp
Nn is close to 1, the individual n has many Guttman errors

The advantages of the Gp
Nn indexes are that they always lie between 0 and 1, in-

clusive, regardless of the number of items and response categories and that dividing
by emax,n adjusts the index to the observed score Sn. However, there is no threshold
standard to use to judge the closeness of the index to 0 or 1.

2.9 MSP or AISP

Algorithm

The MSP proposed by Hemker, Sijtsma, and Molenaar (1995) allows selecting items from
a bank of items that satisfy a Mokken scale. This procedure uses Mokken’s definition
of a scale (Mokken 1971): Hjk > 0, HS

j > c, and HS > c, for all pairs of items j and k
from the scale S.

At the initial step, a kernel of at least two items is chosen (we can select, for ex-
ample, the pair of items having the maximal significant Hjk coefficient). This kernel
corresponds to the scale S0.

At each step n ≥ 1, we integrate into the scale S(n−1) the item j if that item satisfies
these conditions:

• j /∈ S(n−1)

• S(n) ≡ S(n−1) ∪ j

• j = arg maxk/∈S(n−1) HS∗(n)

with S∗(n) ≡ S(n−1) ∪ k

• HS(n) ≥ c

• HS(n)

j ≥ c

• HS(n)

j is significantly positive

• Hjk is significantly positive ∀k ∈ S(n−1)
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The MSP is stopped as soon as no item satisfies all these conditions, but it is possible
to construct a second scale with the items not selected in the first scale, and so on, until
there are no more items remaining.

The threshold c is subjectively defined by the user: the authors of this article rec-
ommend fixing c ≥ 0.3. As c gets larger, the obtained scale will become stronger, but
it will be more difficult to include an item in a scale.

The Bonferroni corrections

At the initial step, in the general case, we compare all the possible Hjk coefficients to 0
using a test: there are J(J − 1)/2 such tests. At each following step l, we compare J (l)

Hj coefficients with 0, where J (l) is the number of unselected items at the beginning of
step l.

Bonferroni corrections are used to take into account this number of tests and to
keep a global level of significance equal to α (Molenaar, Sijtsma, and Boer 2000). At
the initial step, we divide α by J(J − 1)/2 to obtain the level of significance; and at

each step l, we divide α by {J(J − 1)/2} +
∑l

m=1 J (m).

When the initial kernel is composed of only one item, only J − 1 tests are realized
at the first step, and the coefficient J(J − 1)/2 is replaced by J − 1. When the initial
kernel is composed of at least two items, this coefficient is replaced by 1.

Tip for improving the speed of computing

At each step, the items k (unselected in the current scale) that satisfy Hjk < 0 with an
item j already selected in the current scale are automatically excluded.

3 Stata commands

In this section, we present three Stata commands for calculating the indexes and al-
gorithms presented in this article. These commands have been intensively tested and
compared with the output of the MSP software with several datasets. Small (and gen-
erally irrelevant) differences from the MSP software can persist and can be explained by
different ways of approximating the values.



J.-B. Hardouin, A. Bonnaud-Antignac, and V. Sébille 43

3.1 The tracelines command

Syntax

The syntax of the tracelines command (version 3.2 is described here) is

tracelines varlist
[
, score restscore ci test cumulative logistic

repfiles(directory) scorefiles(string) restscorefiles(string)

logisticfile(string) nodraw nodrawcomb replace onlyone(varname)

thresholds(string)
]

Options

score displays graphical representations of trace lines of items as functions of the total
score. This is the default if neither restscore nor logistic is specified.

restscore displays graphical representations of trace lines of items as functions of the
rest-score (total score without the item).

ci displays the confidence interval at 95% of the trace lines.

test tests the null hypothesis that the slope of a linear model for the trace line is zero.

cumulative displays cumulative trace lines for polytomous items instead of classical
trace lines.

logistic displays graphical representations of logistic trace lines of items as functions
of the score: each trace comes from a logistic regression of the item response on the
score. This kind of trace is possible only for dichotomous items. All the logistic
trace lines are represented in the same graph.

repfiles(directory) specifies the directory where the files should be saved.

scorefiles(string) defines the generic name of files containing graphical representa-
tions of trace lines as functions of the score. The name will be followed by the
name of each item and by the .gph extension. If this option is not specified, the
corresponding graphs will not be saved.

restscorefiles(string) defines the generic name of files containing graphical repre-
sentations of trace lines as functions of the rest-scores. The name will be followed
by the name of each item and by the .gph extension. If this option is not specified,
the corresponding graphs will not be saved.

logisticfile(string) defines the name of the file containing graphical representations
of logistic trace lines. This name will be followed by the .gph extension. If this
option is not specified, the corresponding graph will not be saved.

nodraw suppresses the display of graphs for individual items.

nodrawcomb suppresses the display of combined graphs but not of individual items.
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replace replaces graphical files that already exist.

onlyone(varname) displays only the trace of a given item.

thresholds(string) groups individuals as a function of the score or the rest-score. The
string contains the maximal values of the score or the rest-score in each group.

3.2 The loevh command

Syntax

The syntax of the loevh command (version 7.1 is described here) is

loevh varlist
[
, pairwise pair ppp pmm noadjust generror(newvar) replace

graph monotonicity(string) nipmatrix(string)
]

loevh requires that the commands tracelines, anaoption, gengroup, guttmax,
and genscore be installed.

Options

pairwise omits, for each pair of items, only the individuals with a missing value on
these two items. By default, loevh omits all individuals with at least one missing
value in the items of the scale.

pair displays the values of the Loevinger’s H coefficients and the associated statistics
for each pair of items.

ppp displays the P + + matrix (and the associated graph with graph).

pmm displays the P −− matrix (and the associated graph with graph).

noadjust uses Njk as the denominator instead of the default, Njk −1, when calculating
test statistics. The MSP software also uses Njk.

generror(newvar) defines the prefix of five new variables. The first new variable (only
the prefix) will contain the number of Guttman errors attached to each individual;
the second one (the prefix followed by 0), the number of Guttman errors attached
to each individual under the assumption of independence of the items; the third
one (the prefix followed by H), the quantity 1 minus the ratio between the two
preceding values; the fourth one (the prefix followed by max), the maximal possible
Guttman errors corresponding to the score of the individual; and the last one (the
prefix followed by GPN), the normalized number of Guttman errors. With the graph
option, a histogram of the number of Guttman errors by individual is drawn.

replace replaces the variables defined by the generror() option.

graph displays graphs with the ppp, pmm, and generror() options. This option is
automatically disabled if the number of possible scores is greater than 20.
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monotonicity(string) displays indexes to check monotonicity of the data (MHMM). This
option produces output similar to that of the MSP software. The string contains the
following suboptions: minvi(), minsize(), siglevel(), and details. If you want
to use all the default values, type monotonicity(*).

minvi(#) defines the minimal size of a violation of monotonicity. The default is
monotonicity(minvi(0.03)).

minsize(#) defines the minimal size of groups of patients to check the monotonicity
(by default, this value is equal to N/10 if N > 500, to N/5 if 250 < N ≤ 500, and
to N/3 if N ≤ 250 with the minimal group size fixed at 50).

siglevel(#) defines the significance level for the tests. The default is
monotonicity(siglevel(0.05)).

details displays more details with polytomous items.

nipmatrix(string) displays indexes to check the nonintersection (DMHMM). This op-
tion produces output similar to that of the MSP software. The string contains two
suboptions: minvi() and siglevel(). If you want to use all the default values,
type nipmatrix(*).

minvi(#) defines the minimal size of a violation of nonintersection. The default is
nipmatrix(minvi(0.03)).

siglevel(#) defines the significance level for the tests. The default is
nipmatrix(siglevel(0.05)).

Saved results

loevh saves the following in r():

Scalars
r(pvalH) p-value for Loevinger’s H coefficient of scalability
r(zH) z statistic for Loevinger’s H coefficient of scalability
r(eGutt0) total number of theoretical Guttman errors associated with the scale
r(eGutt) total number of observed Guttman errors associated with the scale
r(loevh) Loevinger’s H coefficient of scalability

Matrices
r(Obs) (matrix) number of individuals used to compute each coefficient Hjk

(if the pairwise option is not used, the number of individuals is the
same for each pair of items)

r(pvalHj) p-values for consistency of each item with the scale
r(pvalHjk) p-values for pairs of items
r(zHj) z statistics for consistency of each item with the scale
r(zHjk) z statistics for pairs of items
r(P11) P + + matrix
r(P00) P −− matrix
r(eGuttjk0) theoretical Guttman errors associated with each item pair
r(eGuttj0) theoretical Guttman errors associated with the scale
r(eGuttjk) observed Guttman errors associated with each item pair
r(eGuttj) observed Guttman errors associated with the scale
r(loevHjk) Loevinger’s H coefficients for pairs of items
r(loevHj) Loevinger’s H coefficients for consistency of each item with the scale
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3.3 The msp command

Syntax

The syntax of the msp command (version 6.6 is described here) is

msp varlist
[
, c(#) kernel(#) p(#) minvalue(#) pairwise nobon notest

nodetails noadjust
]

msp requires that the loevh command be installed.

Options

c(#) defines the value of the threshold c. The default is c(0.3).

kernel(#) defines the first # items as the kernel of the first subscale. The default is
kernel(0).

p(#) defines the level of significance of the tests. The default is p(0.05).

minvalue(#) defines the minimum value of an Hjk coefficient between two items j and
k on a same scale. The default is minvalue(0).

pairwise omits, for each pair of items, only the individuals with a missing value on
these two items. By default, msp omits all individuals with at least one missing value
in the items of the scale.

nobon suppresses the Bonferroni corrections of the levels of significance.

notest suppresses testing of the nullity of the Loevinger’s H coefficient.

nodetails suppresses display of the details of the algorithm.

noadjust uses Njk as the denominator instead of the default, Njk −1, when calculating
test statistics. The MSP software also uses Njk.

Saved results

msp saves the following in r():

Scalars
r(dim) number of created scales
r(nbitems#) number of selected items in the #th scale
r(H#) value of the Loevinger’s H coefficient of scalability for the #th scale

Macros
r(lastitem) when only one item is remaining, the name of that item
r(scale#) list of the items selected in the #th scale (in the order of selection)

Matrices
r(selection) a vector that contains, for each item, the scale where it is selected

(or 0 if the item is unselected)
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3.4 Output

We present an example of output of these programs with items of the French adaptation
of the Ways of Coping Checklist questionnaire (Cousson et al. 1996). This question-
naire measures coping strategies and includes 27 items that compose three dimensions:
problem-focused coping, emotional coping, and seeking social support. The sample is
composed of 100 women, each with a recent diagnosis of breast cancer.

Output of the loevh command

The loevh command allows researchers to obtain the values of the Loevinger’s H coef-
ficients. Because the sample was small, it was impossible to obtain several groups of 50
individuals or more. As a consequence, for the monotonicity() option, the minsize()

has been fixed at 30. We studied the emotional dimension composed of nine items (with
four response categories per item). The rate of missing data varied from 2% to 15% per
item. Only 69 women have a complete pattern of responses, so the pairwise option
was employed to retain a maximum of information.

. use wccemo

. loevh item2 item5 item8 item11 item14 item17 item20 item23 item26, pairwise
> monotonicity(minsize(30)) nipmatrix(*)

Observed Expected Number
Difficulty Guttman Guttman Loevinger H0: Hj<=0 of NS

Item Obs P(Xj=0) errors errors H coeff z-stat. p-value Hjk

item2 92 0.2935 453 732.03 0.38117 7.4874 0.00000 1
item5 92 0.3261 395 751.61 0.47446 9.5492 0.00000 1
item8 90 0.3667 515 788.65 0.34699 7.6200 0.00000 4
item11 97 0.5670 519 862.50 0.39826 9.2705 0.00000 1
item14 98 0.6327 532 752.63 0.29314 6.8306 0.00000 3
item17 94 0.7660 299 487.40 0.38653 7.4598 0.00000 1
item20 95 0.6632 494 711.53 0.30573 6.7867 0.00000 1
item23 85 0.5412 525 729.72 0.28054 6.1752 0.00000 2
item26 89 0.6517 502 710.59 0.29355 6.3643 0.00000 2

Scale 100 2117 3263.33 0.35128 15.9008 0.00000

Summary per item for check of monotonicity
Minvi=0.030 Minsize= 30 Alpha=0.050

Items #ac #vi #vi/#ac maxvi sum sum/#ac zmax #zsig Crit

item2 3 0 -4 graph
item5 3 0 -9 graph
item8 3 0 -2 graph
item11 3 0 -5 graph
item14 3 0 0 graph
item17 2 0 -4 graph
item20 3 0 -0 graph
item23 3 0 1 graph
item26 3 0 0 graph

Total 52 0 0.0000 0.0000 0.0000 0.0000 0.0000 0
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Summary per item for check of non-Intersection via Pmatrix
Minvi=0.030 Alpha=0.050

Items #ac #vi #vi/#ac maxvi sum sum/#ac zmax #zsig Crit

item2 1512 49 0.0324 0.0990 2.2005 0.0015 1.6844 1 51
item5 1512 85 0.0562 0.1239 4.1743 0.0028 2.9280 6 81
item8 1512 90 0.0595 0.1105 4.2927 0.0028 2.5221 4 81
item11 1512 120 0.0794 0.1105 5.4429 0.0036 2.5221 6 89
item14 1512 88 0.0582 0.1081 4.1701 0.0028 2.3015 7 88
item17 1512 52 0.0344 0.0865 2.4122 0.0016 2.0662 2 57
item20 1512 52 0.0344 0.0830 2.2127 0.0015 2.3015 1 57
item23 1512 90 0.0595 0.0990 4.2123 0.0028 1.8742 3 77
item26 1512 94 0.0622 0.1239 4.3258 0.0029 2.9280 4 87

This scale has a satisfactory scalability (HS = 0.35). Three items (14, 23, 26) display
a borderline value for the HS

j coefficient (0.28 or 0.29). The monotonicity assumption is
not rejected because no important violation of this assumption occurred and the criteria
are satisfied. This is not the case for the nonintersection of the Pmatrix curves: several
criteria are greater than 80 (items 5, 8, 11, 14, 23, 26), showing an important violation
of this assumption. The model followed by these data is therefore more an MHMM than a
DMHMM. Because the indexes suggest that the MHMM is appropriate, the score computed
by summing codes associated with the nine items can be considered a correct ordinal
measure of the studied latent trait (the emotional coping), and the three fundamental
assumptions of IRT (unidimensionality, local independence, and monotonicity) can be
considered verified.

Output of the msp command

The msp command runs the Mokken scale procedure.

. msp item2 item5 item8 item11 item14 item17 item20 item23 item26, pairwise

Scale: 1

Significance level: 0.001389
The two first items selected in the scale 1 are item2 and item11 (Hjk=0.6245)
The following items are excluded at this step: item14 item23
Significance level: 0.001220
The item item17 is selected in the scale 1 Hj=0.5304 H=0.5748
The following items are excluded at this step: item8
Significance level: 0.001136
The item item5 is selected in the scale 1 Hj=0.5464 H=0.5588
The following items are excluded at this step: item26
Significance level: 0.001111
The item item20 is selected in the scale 1 Hj=0.3758 H=0.4864
Significance level: 0.001111
There is no more items remaining.
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Observed Expected Number
Difficulty Guttman Guttman Loevinger H0: Hj<=0 of NS

Item Obs P(Xj=0) errors errors H coeff z-stat. p-value Hjk

item20 95 0.6632 212 339.64 0.37582 5.5460 0.00000 0
item5 92 0.3261 179 376.71 0.52484 7.5735 0.00000 0
item17 94 0.7660 124 233.07 0.46797 5.8889 0.00000 0
item2 92 0.2935 186 367.75 0.49422 6.9525 0.00000 0
item11 97 0.5670 181 400.10 0.54761 8.4434 0.00000 0

Scale 100 441 858.64 0.48640 10.9364 0.00000

Scale: 2

Significance level: 0.008333
The two first items selected in the scale 2 are item23 and item26 (Hjk=0.4391)
The following items are excluded at this step: item8
Significance level: 0.007143
The item item14 is selected in the scale 2 Hj=0.4276 H=0.4313
Significance level: 0.007143
There is no more items remaining.

Observed Expected Number
Difficulty Guttman Guttman Loevinger H0: Hj<=0 of NS

Item Obs P(Xj=0) errors errors H coeff z-stat. p-value Hjk

item14 98 0.6327 115 200.89 0.42756 5.4739 0.00000 0
item23 85 0.5412 109 193.44 0.43651 5.2885 0.00000 0
item26 89 0.6517 114 200.00 0.43000 5.4109 0.00000 0

Scale 100 169 297.17 0.43129 6.5985 0.00000

There is only one item remaining (item8).

The AISP creates two groups of items.

On the one hand, five items measure negation or the wish to forget the reason for the
stress: item2, “Wish that the situation would go away or somehow be over with”; item5,
“Wish that I can change what is happening or how I feel”; item11, “Hope a miracle will
happen”; item17, “I daydream or imagine a better time or place than the one I am in”;
and item20, “Try to forget the whole thing”. For this set, the scalability coefficient is
good (0.49), and there is no problem concerning the monotonicity assumption (maximal
criterion per item of −4), nor is there a problem concerning the intersection of the curves
(maximal criterion per item of 38). This set seems to satisfy a DMHMM and is composed
of 5 of the 11 items composing the “wishful thinking” and “detachment” dimensions
proposed by Folkman and Lazarus (1985) in an analysis of the Ways of Coping Checklist
questionnaire among a sample of students.

On the other hand, three items measure culpability: item14, “Realize I brought the
problem on myself”; item23, “Make a promise to myself that things will be different
next time”; and item26, “Criticize or lecture myself”. For this set, the scalability coef-
ficient is good (0.43), and there is no problem concerning the monotonicity assumption
(maximal criterion per item of −6), nor concerning the intersection of the curves (max-
imal criterion per item of −6). This set seems to satisfy a DMHMM and is composed of
the three items of the “self blame” dimension proposed by Folkman and Lazarus (1985).
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In our case, it is possible to choose between a set of items that satisfy an MHMM

and two sets of items that each satisfy a DMHMM. Because the three sets of items
are interpretable (emotional coping for the set of items satisfying MHMM; negation and
culpability for the two other sets of items), there is no problem to choose freely from the
available types of measured concepts. Concerning the validation of the questionnaire,
it is preferable to choose the set of items containing all items satisfying the emotional
coping, which is closer to the output returned by the loevh command.
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