The Influence of Social Networks on Food Choices in College Food Courts

Dan Wang
M.S. Student

Carola Grebitus
(Corresponding Author)
carola.grebitus@asu.edu
Assistant Professor
W.P. Carey School of Business
Morrison School of Agribusiness and Resource Management
Arizona State University
7231 E. Sonoran Arroyo Mall, San Tan 235F Mesa, AZ 85212

Christiane Schroeter
cschoet@calpoly.edu
Associate Professor
Agribusiness Department
California Polytechnic State University, San Luis Obispo

Selected Paper prepared for presentation at the 2014 AAEA/EAAE/CAES Joint Symposium, Montreal, Canada.

Copyright 2014 by Wang, Grebitus and Schroeter. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies.
The Influence of Social Networks on Food Choices in College Food Courts

Abstract
Obesity is still on the rise, leading to high costs for the obese individual itself but also for society. We analyze the influence of peer effects on food choices in lunchrooms with posted nutrition facts. Data were collected in a lunchroom at a large U.S. university. Groups of four patrons each were interviewed for a total of 112 observations. Among others, results for calories consumed from pizza and pasta show that individuals who are dining in groups with at least one obese group member are taking in more calories. Looking at nutrition facts when ordering the food decreases calorie intake. The results suggest that dining with obese peers increases the probability of obesity while calorie labeling decreases the probability. In terms of nutrition sign-posting this is a promising result. However, only 15% of the sample had used the nutrition facts to make all their food choice, which leads to the conclusion that overall attention to nutrition labeling needs to be increased.

Key words: buffet, calorie labeling, menu labeling, obesity, peers, students

1. Introduction
With the percentage of obese people in the U.S. nearly doubling from 15.9% to 27.6% from 1995 to 2012 (Center for Disease Control, 2013); and with 16.9% of children and adolescents, from 2 to 19 years of age, being obese (Body Mass Index/BMI greater than 95th percentile for age and gender) in 2009-2010 (Ogden et al., 2012), overweight and obesity have become a crucial issue worldwide. Although overall costs of obesity are difficult to quantify, the 2008 annual healthcare
cost of obesity in the U.S. was estimated to $147 billion (Finkelstein et al., 2009). The economic consequences of diet-related health risks induce responses by government, non-governmental institutions, industry, and persons affected by those health risks. One example of a government response comes from Arizona’s Department of Education (AZED) while developing the Arizona Nutritional Standard, dedicated to fighting obesity in Arizona adolescents (AZED, 2012).

Obesity is a potent determinant of preventable diseases, yet its development is modifiable and thus not inevitable. Major contributors to the obesity epidemic are societal, and result from an obesogenic environment that promotes consumption of high fat, energy-dense diets and sedentary lifestyles (Brug & Wammes, 2007; WHO, 2000). Among others, obesity may be prevented through behavioral changes induced via nutritional labeling, i.e., the calorie signposting in public food courts (e.g., Krieger & Saelens, 2013; Swartz, Braxton, & Viera, 2011). With the increasing prevalence of eating away from home, calorie labeling is one of the policies that aim at providing more nutritional information at fast food restaurants. Thus, policy makers are increasingly interested in determining whether and to what extent a relationship between menu labeling, i.e., the posted caloric content on the menu board, and food consumption exists.

This research determines the impact of nutrition labeling on food choices by not only assessing the use of calorie labeling to make the decision, but also taking into account the influence of peers when dining in a lunchroom. We focus on the college environment because adolescent obesity tends to persist into adulthood, which increases the risk of a multitude of chronic health risks that are related with high costs to the individual and the society. To broaden the sample, faculty and staff were also included in the sample.
The overall research objective is to investigate the influence of nutrition facts on lunch choices in relation to social network behavior. Given that informal networks among peers and co-workers provide mechanisms that have the potential to change a consumer’s choice, we interviewed peer groups to identify the social network behavior (see e.g., Cohen-Cole and Fletcher 2008). The data are used to test the hypothesis if obese individuals dining together consume more calories compared to groups that are not obese. Further, we test whether noticing nutrition facts decreases calorie intake and in how far peer effects amplify this. To analyze the data a Tobit model is used.

The remainder of the paper is as follows. Section 2 covers previous literature on nutrition facts labeling and peer groups. The third section presents the design of the study. In section 4 empirical results are presented. The last section provides conclusions.

2. Literature review

2.1 Nutrition facts labeling

Few studies have focused on consumers’ use of menu labels at the ‘workplace’ and whether using the labels could influence a person’s dietary behavior. Thus, there is need for research to address the relationship between nutrition facts labeling and food choices. Nevertheless, several studies have been conducted regarding the general role of calorie labeling on food choices. An overview is provided by Krieger and Saelens (2013), who evaluate studies regarding the impact of restaurant and cafeteria menu labeling on behavior. Effects found are moderate on the range of 10 to 20 calorie-per-meal reductions (Krieger and Saelens, 2013). Another overview is given in Swartz et al. (2011) who point out that calorie sign posting does not decrease calorie intake significantly looking at quick-service restaurants. This confirms the finding by Elbel, Gyamfi,
and Kersh (2011) who determined that taste is the most important factor when choosing a meal. Another study by Bollinger, Leslie, and Sorensen (2011) found that calorie labeling at Starbucks reduced calorie intake by six percent on food choices; however, there was no effect on beverage choices. Again taste was most important together with price.

Several studies reveal that consumers often underestimate the calories of high-calorie foods but evidence is limited on whether individuals generally under- or overestimate the calorie content of ‘regular’ foods (Chandon and Wansink 2007). Health claims made by healthier fast food meals may lead consumers to underestimate the number of calories in their dishes and instead order high-calorie side dishes, drinks, and desserts (Wansink and Chandon 2006). In contrast, other research suggests that with general fast food, the additional dietary information might promote higher calorie intakes. A subset of consumers such as dieters might overestimate calorie contents and thus seek low-calorie choices in order to lose weight. By viewing the accurate nutrient contents on the menu boards, these dieters might recognize their overestimation and adjust their choice to a higher-calorie meal (Downs, Loewenstein, and Wisdom 2009).

One potential shortcoming of calorie labeling might be the optimistic bias regarding calorie intake, which influences understanding and attitudes about food consumption. Given that most individuals tend to discount future health benefits, a dietary modification to a lower-calorie choice would likely decrease the immediate gratification compared to the initial choice of the higher caloric item. In this case, the short-term benefit of indulging exceeds the costs. For college lunchrooms, one feasible option could be to decompose value meals to piecemeals or individual components of food and use the nutritional labels for these. Chandon and Wansink (2007) propose that this piecemeal decomposition might lead to more accurate calorie estimates, since consumers estimate the size of each component of the meal instead of the size of the
overall meal. This might decrease the likelihood of choosing a large fast food meal and entice students to put together a healthier lunch choice.

2.2 Food choice and peer effects

Large-scale observational studies show that every year of college is associated with a 3% BMI increase, especially among minority populations. Reversing or slowing this dynamic has proven difficult because students entering university are newly independent, not experienced in making their own life-decisions, and encounter many distractions. On the other hand, university students are uniquely social and social networks have been shown to be effective in leading to behavioral change. Indeed, emerging evidence on peer networks suggests that health behaviors and outcomes are shared, transferred, and influenced through social ties (Christakis and Fowler, 2007; Cohen-Cohen-Cole and Fletcher, 2008). Knowledge of the impact of peer networks on food choice behavior is critical to improve understanding about the outcomes of policies related to healthy diets.

3. Design of the Study

We conducted a field experiment in February 2014 at the dining hall of a public large-scale university in Arizona. In Arizona, 13% of adolescents aged 14-18 were considered obese and the trend has been considered to be increasing (Arizona Department of Health Services, 2012). Furthermore, overweight and obesity rates for Latinos are known to be disproportionately high (Flegal et al., 2010, Ogden et al., 2010), and there is a significant population of Latinos represented within Arizona (Chapa et al., 2004). The Latino population is the most rapidly growing sub-population in the U.S. This epidemiologic data underscores the importance of
conducting this study in Arizona. Arizona represents an important test location as it is able to measure effects of calorie signposting on Latinos.

The dining hall is an all you care to eat food court with different food stations including: beverages, Mongolian BBQ, sandwich station, pizza and pasta, hamburgers and fries, home zone (traditional food such as meat loaf), salad bar, desserts. Almost all foods offered at the food court include detailed nutrition information for each food item both on the counter as well as on monitors above the respective food station. The menu boards are used to post caloric contents as well as detailed nutrition facts of all foods offered.

Meals at the dining hall can be purchased by students, faculty, staff, and visitors. Single meals and meal plans are available as well as unlimited dining for a semester. The food court offers breakfast, lunch and dinner. The patrons of the food court were interviewed with a written questionnaire over the course of one week during lunch time. In order to account for peer effects, this field experiment considered groups of patrons who dined at the food court. Groups of four were interviewed at a time for a total of 28 groups, i.e., 112 participants in total. Survey participants received a gift card for one meal at the food court for reimbursement of their time. Each group member in the network of interviewees received a number which was linked to the questions in the questionnaire to ensure confidentiality. The survey was IRB approved.

The survey instrument was tested with a focus group before the data collection started. The questionnaire consisted of three parts. The first part regarded the relationships of the interviewed groups, i.e., questions regarding the group participants were dining with (e.g., how well they know each other, how often they dine together and whether the peer’s food choice influenced one’s own food choice). The second part covered the patrons’ food choices, their evaluation of the foods offered at the food court in terms of nutritional value as well as questions
on the consumption at the food court and whether the respondent had paid attention to the nutrition labeling, the third part of the questionnaire was concerned with participants’ socio-demographic information.

4. Empirical results

4.1 Descriptive statistics

Sample Characteristics

112 participants in groups of four were interviewed. The majority, 68% of respondents, were young adults between 18 and 24 years old, 14% of respondents were between 25 and 34 years old. 9% each are between 35 and 45 years old, and 46 and older. The majority of the sample (69%) is students, 3% faculty, 14% each were staff and visitors, respectively. 63% of the respondents used a meal plan to pay for the lunch (meal costs about $5 depending on the plan). 37% of respondents bought lunch at a premium price of about $9. Of the interviewees, 92% of those having a meal plan are students. The dining hall is the only food court on campus to use the meal plan.

68% of participants are male, 32% are female. Although the respondents are not only students, the results to a certain extent reflect the gender ratio of students enrolled on the campus where the interviews took place. On campus 75% of enrolled students are male. With regards to education 29% of respondents have a high school diploma. 32% of respondents received some college education. In addition, the respondents who have bachelor’s degree and master’s degree account for 17% and 14% of participants, respectively. The remaining share of participants holds a technical school diploma (1%), associate’s degree (4%) and doctorate (2%). The ethnical
structure of the respondents in this survey is to large extent consistent with the college environment as a whole.

With regards to participants’ weight, 4% of respondents are underweight with a BMI of less than 18.5. Half of the respondents’ BMI is in the range of 18.5 and 24.9 which is defined as normal weight. 24% of respondents are overweight and 22% are considered obese (BMI >=30). This is included in the econometric analysis following Cohen-Cole and Fletcher (2008) by constructing two variables “ego-obese” and “peer-obese”. Ego-obese is a dummy variable equal to 1 if the respondent is obese, peer obese is a dummy variable equal to 1 if at least one group member is obese.

Social Networks of Lunchroom Patrons

To start with, we look at the groups dining together. In this regard we asked participants to indicate how often they communicate with each other and through which channels. Each group member evaluated how often they communicate with the other members on a 6-point scale with 1=Less than monthly, 2=Monthly, 3=A few times a month, 4=Weekly, 5=A few times a week and 6=Daily. Looking at the mean values, it appears that in the groups the contact between the members is very even on average (though this can differ between the individual groups). The results show that the groups dining together do not interact much. On average, they meet face to face a few times a month or weekly, emailing ranks second, phone calls and social network websites are least popular.

Figure 1 provides an overview of the strength of ties generated by summing up the frequency of communication between the respective group members and multiplying it with the strength of tie.
Next we asked how often the respective group members have lunch together and found that on average individuals in a group either have lunch together seldom (less than once a month) or very frequently (a few times a week). Having lunch together on a monthly basis is least common. We used this data to further weigh the social ties among group members by multiplying the weighted strength of ties with the lunch frequency. Figure 2 gives an overview of all groups. In some groups (e.g., G27) it is evident that the ties are very strong compared to others (e.g., G12).
Also, we note that some networks resemble a complete/all channel network (see figure 3a, group 8), while others are incomplete networks (see figure 3b, group 4).

Figure 3a: Strength of Lunch Ties (weighted) – Example Group 8 (Complete / All channel network) and Group 4 (Incomplete networks)
Preferences for Dining Hall Food Stands

After determining the strength of ties between the group members, the preference for the individual food stands is determined by asking “How much do you like the food from each of the following food stands from on a scale from 1 (least) to 5 (best)”. The dining hall has ten food stands which provide the patrons with a variety of foods. The top three food stands are beverages (4.0), Sizzle (3.8) and salad bar (3.7). The beverage stand provides the customers with various options, including soda, juice, coffee, and other beverages. Sizzle is offering various hamburgers, sandwiches, hot dogs and French fries which are similar to the foods offered by fast food chains. The salad bar provides both prepared salads and self-help salads. The results to some extent reflects that most people still prefer the combination of their lunches to be like a combo meal offered by most fast food chains - hamburger, salad bowl and a soft drink.

Compared to foods from the top three food stands, Asian style foods from the Mongolian BBQ stand (3.4) and comfort foods from the Homezone (3.4); both of which actually represent unique characteristics of the dining hall, do not draw as much attention of respondents. Other food stands (pizza & pasta, sandwiches, etc.) range between 3.4 to 2.9 in terms of liking. In general, the food at the dining hall is perceived rather positively.
Nutrition Fact Labeling and Calorie Intake at the Food Court

Considering that all foods are labeled for nutrition facts the question remains whether patrons pay attention to and use the food facts. 54% of participants stated they did not notice the menu labeling at all. 46% of participants did notice the nutrition facts. Out of this 31% of participants used the menu labeling for choosing some of the items they wanted to eat. 15% of participants made all their food choices based on the nutrition facts. Among the studies of point-of-purchase menu labeling, Krieger et al. (2013) finds that patrons who reported attending to calorie information dramatically increased when patrons visited the food chains where menu labeling was posted more often and more commonly than patrons of other chains. Elbel et al. (2009) discuss that 54% of study respondents in New York City indicated noticing calorie labels in fast food restaurant and about 15% of study respondents in the same setting reported that calorie label did influence their food choice. In our study we include whether participants looked at the nutrition facts again following Cohen-Cole and Fletcher (2008) by constructing two dummy variables “Peer noticed nutrition facts” and “Ego noticed nutrition facts”. The first one being equal to 1 if at least one of the group members stating noticing the nutrition facts, the latter one being equal to 1 if the individual him-/herself noticed the nutrition facts.

In order to make assumptions on whether nutrition fact labeling and peer groups affect calorie intake and therewith weight increase participants had to provide detailed information on the food they consumed at the food court when interviewed. As calorie intake is depending on the foods consumed which in turn relates to the more and less healthy options provided by food stand (e.g., healthy foods at salad bar versus unhealthy food at the grill), we start with table 1 by displaying the calorie intake at the different food stands in the lunchroom. In the questionnaire a check list was used for participants to indicate which foods they consumed during lunch the day
of the interview. Thus, what foods and how many calories every respondent consumed from each food stand was determined.

Table 1: Calorie Intake at Food Stands

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean</th>
<th>SD</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total calories</td>
<td>788</td>
<td>443</td>
<td>35</td>
<td>2577</td>
</tr>
<tr>
<td>Grill</td>
<td>209</td>
<td>289</td>
<td>0</td>
<td>1225</td>
</tr>
<tr>
<td>Home zone</td>
<td>116</td>
<td>202</td>
<td>0</td>
<td>832</td>
</tr>
<tr>
<td>Pizza and Pasta</td>
<td>114</td>
<td>175</td>
<td>0</td>
<td>800</td>
</tr>
<tr>
<td>Beverages</td>
<td>92</td>
<td>103</td>
<td>0</td>
<td>395</td>
</tr>
<tr>
<td>Mongolian BBQ</td>
<td>88</td>
<td>153</td>
<td>0</td>
<td>663</td>
</tr>
<tr>
<td>Deli</td>
<td>64</td>
<td>168</td>
<td>0</td>
<td>1102</td>
</tr>
<tr>
<td>Salad bar</td>
<td>43</td>
<td>104</td>
<td>0</td>
<td>592</td>
</tr>
<tr>
<td>Dessert</td>
<td>35</td>
<td>86</td>
<td>0</td>
<td>470</td>
</tr>
<tr>
<td>Cereal/Milk</td>
<td>18</td>
<td>62</td>
<td>0</td>
<td>420</td>
</tr>
<tr>
<td>Soup</td>
<td>12</td>
<td>38</td>
<td>0</td>
<td>229</td>
</tr>
</tbody>
</table>

Among 10 food stands, the grill (Sizzle) contributed most to the calorie intake (22%) because fast foods offered by grill food stands are quite popular as well as high in calorie contents (more than 500 calories per meal). The foods from the Pizza food stand and the Mongolian BBQ contribute to 16% and 15% of calorie intake for the lunch, respectively. Beverages contribute with 12% to the total calorie intake, which reflects that beverage has become a considerable source of calorie consumption. Malik et al (2006) discuss that consumption of sugar-sweetened beverage, particularly carbonated soft drink, has become a key contributor to the epidemic of overweight and obesity.

In the next step the amount of total calories consumed for lunch was divided into four categories using the mean value of 787.80 kcal, the maximum amount of calories consumed (2576.91 kcal) and the standard deviation of 442.61 kcal. The first category ranges from 0 and 345.19 kcal which is the difference between the mean value and standard deviation. The second category ranges from 345.20 kcal to 787.80 kcal. The third category ranges from 787.81 kcal to
1,230.41 kcal, which is the summation of the mean value and the standard deviation. Finally, the fourth category ranges from 1,230.42 to 2,576.91 kcal.

Looking at how nutrition facts labeling influences calorie intake, the 35% of respondents who consumed calories within the range of 345.20 kcal to 787.80 kcal noticed and used menu labeling for all items, 57% noticed and partially used menu labeling and 43% didn’t notice menu labeling. 23% of the respondents who reported seeing and completely using menu labeling consumed less than 345.19 kcal, 11% of those respondents reported seeing and partially using menu labeling and while 10% of respondents didn’t look at the menu labeling. Surprisingly, a higher percentage (18%) of respondents who saw and used menu labeling consumed more than 1,230.42 kcal compared to 17% of respondents who saw and partially used menu labeling and 15% of respondent who reported not seeing menu labeling at all.

Influence of Peers on Food Choice

In order to determine whether the group members influenced the individual’s food choice a series of questions was asked to be answered as “true” or “false”. Table 2 shows whether the individuals noticed the food other group members ordered, whether they talked about the food, recommended it and ultimately ordered the same food their peers ordered. Results show that a fair share of individuals order the same food. In general the group member notice their peers food, talking about the food is common but with a lower share then purely noticing it. About a quarter recommends the food they eat to their peers either while ordering (before eating) or while eating together.
Table 2: Influence of Peers on Food Choice

<table>
<thead>
<tr>
<th></th>
<th>Member 1</th>
<th>Member 2</th>
<th>Member 3</th>
<th>Member 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordered the same food (order)</td>
<td>23%</td>
<td>27%</td>
<td>36%</td>
<td>31%</td>
</tr>
<tr>
<td>Noticed what food (s)he ordered before I ordered (notice 1)</td>
<td>27%</td>
<td>31%</td>
<td>18%</td>
<td>23%</td>
</tr>
<tr>
<td>Noticed what food (s)he ordered while eating (notice 2)</td>
<td>64%</td>
<td>61%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>Talked about the food before I ordered (talk 1)</td>
<td>23%</td>
<td>25%</td>
<td>60%</td>
<td>60%</td>
</tr>
<tr>
<td>Talked about the food while eating together (talk 2)</td>
<td>45%</td>
<td>42%</td>
<td>40%</td>
<td>48%</td>
</tr>
<tr>
<td>Recommended my food before eating (recommended 1)</td>
<td>21%</td>
<td>17%</td>
<td>18%</td>
<td>15%</td>
</tr>
<tr>
<td>Recommended my food while eating (recommended 2)</td>
<td>25%</td>
<td>25%</td>
<td>24%</td>
<td>27%</td>
</tr>
</tbody>
</table>

4.2 Econometric Modeling

In order to measure the effect of peers and nutrition labeling on calorie intake at the school lunchroom we choose the calorie intake from pizza and pasta to econometrically determine what increases or decreases the consumption (see table 3). As was evident in table 1, there was a share of participants who did not consume calories from pizza and pasta (minimum of zero). Therefore, we use a Tobit model with the lower boundary set to 0 and the upper boundary set to 801, to account for the truncated data. Results show that the older the participant the lower the calorie consumption from pizza and pasta. If the individual is dining in a group where at least one group member is obese, calorie intake increases by 306 calories through pizza and pasta. If the individual noticed the nutrition facts then calorie intake through pizza and pasta drops by 168 calories. Those who order the same food like their peers have a lower calorie intake while those who state that they noticed their peers food while eating have a higher calorie intake (which could be due to going back to get a serving of their peer’s food).
Table 3: Influence of Peers and Nutrition Labeling on Calorie Intake from Pizza & Pasta

<table>
<thead>
<tr>
<th></th>
<th>Coeff.</th>
<th>SE</th>
<th>t-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>-23.546</td>
<td>7.674</td>
<td>-3.070</td>
</tr>
<tr>
<td>Cost of meal in U.S.$</td>
<td>12.628</td>
<td>10.835</td>
<td>1.170</td>
</tr>
<tr>
<td>White</td>
<td>71.338</td>
<td>96.091</td>
<td>0.740</td>
</tr>
<tr>
<td>Peer obese</td>
<td>306.231</td>
<td>107.021</td>
<td>2.860</td>
</tr>
<tr>
<td>Ego obese</td>
<td>125.261</td>
<td>116.676</td>
<td>1.070</td>
</tr>
<tr>
<td>Peer noticed nutrition facts</td>
<td>41.653</td>
<td>111.571</td>
<td>0.370</td>
</tr>
<tr>
<td>Ego noticed nutrition facts</td>
<td>-168.057</td>
<td>96.129</td>
<td>-1.750</td>
</tr>
<tr>
<td>Order</td>
<td>-113.168</td>
<td>66.786</td>
<td>-1.690</td>
</tr>
<tr>
<td>Notice 1</td>
<td>32.932</td>
<td>61.046</td>
<td>0.540</td>
</tr>
<tr>
<td>Notice 2</td>
<td>82.365</td>
<td>46.228</td>
<td>1.780</td>
</tr>
<tr>
<td>Talk 1</td>
<td>-7.777</td>
<td>64.125</td>
<td>-0.120</td>
</tr>
<tr>
<td>Talk 2</td>
<td>-44.223</td>
<td>58.276</td>
<td>-0.760</td>
</tr>
<tr>
<td>Recommended 1</td>
<td>94.836</td>
<td>85.659</td>
<td>1.110</td>
</tr>
<tr>
<td>Recommended 2</td>
<td>-32.492</td>
<td>70.596</td>
<td>-0.460</td>
</tr>
<tr>
<td>Constant</td>
<td>172.147</td>
<td>189.903</td>
<td>0.910</td>
</tr>
<tr>
<td>Sigma</td>
<td>314.758</td>
<td>45.243</td>
<td></td>
</tr>
<tr>
<td>Prob > chi2</td>
<td>0.005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL-value</td>
<td>-245.647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LR chi2 (13)</td>
<td>31.540</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pseudo R2</td>
<td>0.060</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. Conclusion

This study measures calorie intake at a food court while accounting for peer effects and nutrition sign posting. Results are promising with regards to the sign posting when looking at calorie intake from pizza and pasta. The calorie intake decreases when the individual is paying attention to the posted nutrition facts. On the other hand, dining in a group with one or more obese members increases calorie intake. Though about 50% of the patrons had noticed the calorie labels, only a relatively small share had used them to make all their food choices. This finding suggests that further research is needed to increase the impact of nutrition facts on actual choices. Furthermore, though we were able to measure tie strength, our current analysis does not include tie strength in the analysis of calorie consumption determinants. Future research will include more determinants into the analysis of food choice, i.e., calorie consumption.
Our project provides a unique contribution to the literature by assessing student choice behavior with regard to menu labeling. While we collected data in the university setting, our methods are readily transferrable to students at an elementary, middle, or High school, or even adults in the workplace. Results from this study will improve the understanding of the food decision structure within social networks, which will allow a more targeted approach to health promotion in school lunchrooms.

References

