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Factors Affecting Cow-Calf Herd Performance
and Greenhouse Gas Emissions

Tong Wang, Seong C. Park, Stan Bevers, Richard Teague, and Jaesung Cho

A Cobb-Douglas stochastic frontier function is estimated for the cow-calf enterprises in the
Texas Rolling Plains using Standardized Performance Analysis (SPA) data. We find that factors
promoting higher herd productivity include machinery investment, pasture-quality improvement,
and protein supplement. In contrast, herd productivity is compromised by a longer breeding
season, percentage of hired labor, and deviation from mean annual rainfall. Interestingly, more
technically efficient farms tend to emit fewer greenhouse gas units per unit of output. For example,
net greenhouse gas emissions are 6.12 and -8.70 pounds of carbon equivalent, respectively, for
farms with technical efficiency below 0.8 and above 0.96.

Key words: greenhouse gas emission, standardized performance analysis, stochastic frontier
analysis, technical efficiency

Introduction

The beef cattle industry in the Rolling Plains region of Texas is inherently risky due to
frequent drought conditions, volatile cattle prices, and rising input costs. Moreover, national beef
consumption has declined steadily in the past three decades, dropping from 94.4 pounds per capita
in 1976 to 59.7 pounds in 2010. In the face of these challenges, the Beef Cow-Calf Standardized
Performance Analysis (SPA) provides an analytical tool to help farmers and ranchers identify
their strengths and weaknesses in production and financial performance. In 1992, the National
Cattlemen’s Beef Association adopted the SPA program that had been developed through efforts of
their member producers, the National Integrated Resource Management Coordinating Committee,
and Cooperative Extension Specialists from multiple universities.

The goal of the Beef Cow-Calf SPA analysis is to integrate production and financial records into
a single analytical tool for cow-calf operations. Typically, an SPA is completed by a rancher and an
extension specialist working together. The results of each complete analysis are sent to a regional
coordinator, who checks the results for accuracy and enters them into a regional database. Texas
leads the country in the number of analyses completed since the SPA program began. Two decades
after its inception, the SPA data provides a key tool for analyzing herd performance over multiple
production regions and years.

Most previous literature analyzing SPA data has attempted to identify factors that affect the cost,
production, and profit of cow-calf enterprises (Falconer, Parker, and McGrann, 1999; Dunn, 2000;
Miller et al., 2001; Ramsey et al., 2005). Scant attention had been paid to determining efficiency
measurements among beef cow-calf enterprises until Cho, Park, and Bevers (2011) evaluated
technical efficiency and its determinants among cow herd operations.
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The study of efficiency measurements began with seminal work by Farrell (1957), who suggested
constructing the production function either as a parametric function or as a nonparametric piecewise-
linear convex isoquant. There are two approaches to estimate a parametric model. One is the
deterministic estimation, which uses a linear programming method introduced by Aigner and
Chu (1968). This method ensures nonviolation of the monotonicity conditions and parametric
restrictions (Färe et al., 2005). The other approach is Stochastic Frontier Analysis (SFA), which was
simultaneously introduced by Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck
(1977). Their model specification added stochastic elements to the deterministic frontiers, thus
overcoming a major shortcoming of the deterministic estimation method, in which all variation from
the production frontier is interpreted as inefficiency. The most popular method for constructing a
nonparametric model is the Data Envelopment Analysis (DEA) method, which became widely used
after Charnes, Cooper, and Rhodes (1978) reformulated Farrel’s (1957) approach. DEA employs
a linear programming technique to construct a nonparametric piecewise-linear frontier. Unlike the
parametric model, DEA can be implemented without knowing the relationship between input and
output.

The analysis of efficiency measurement is now widely used, with a few applications to the beef
cattle sector. For example, Trestini (2006) used the SFA approach to study the technical efficiency
of Italian beef cattle production and concluded that the inefficiency term is negatively correlated
with herd size and the proportion of concentrated feed in the whole diet. Otieno, Hubbard, and
Ruto (2012) applied the same method and found that promoting controlled cattle-breeding methods
improved efficiency. Nonparametric production analysis has also been applied to study the efficiency
of Kansas beef-cow farms (Featherstone, Langemeier, and Ismet, 1997). Factors that have been
identified as influencing inefficiency include herd size and the percentage of income from beef cows.
Rakipova, Gillespie, and Franke (2003) studied technical efficiency determinants in Louisiana beef
production with a DEA model and discovered that, besides a higher level of improved pasture and
better breeding practices, technical efficiency also increases with farmers’ experience and formal
education.

This paper analyzes cow-calf enterprises in the Rolling Plains region of Texas, comprising
approximately 24,000,000 acres of primarily grassland characterized by low rolling hills to rough
canyon lands (Gould, 1975). The location of the Rolling Plains is depicted in figure 1. Using SPA
data from 1996 to 2011, we attempt to determine the factors that affect the production output of
cow-calf enterprises and to measure the technical efficiency of cow-calf herds in the region.

We also investigate whether firms that are more technically efficient are also more efficient in
greenhouse gas emissions per unit of product. The climate impact of the beef industry has received
increasing consideration in recent years, and an emerging literature investigates greenhouse gas
(GHG) emissions among different beef production systems in various regions of the world. In line
with current environmental impact concerns, this paper also attempts to establish the relationship
between technical efficiency and GHG emission per pound weaned.

Data

The analysis uses SPA data for cow-calf producers from 1996 to 2011. Considering the geographic
differences and disparities in farm practices among the vast regions covered by SPA data, we
focus on the subset of cow-calf farms from the Texas Rolling Plains. A total of forty-two ranches
participated in the study during this sixteen-year period. Among them, thirty ranches (71.4%)
participated for only one year, eight (19.0%) participated for two to three years, and nine (9.5%)
participated for more than five years. There are a total of seventy-six observations.
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Figure 1. Location of Texas Rolling Plains

Variables in the Cobb-Douglas Stochastic Frontier Production

Following Ramsey et al. (2005) and Cho, Park, and Bevers (2011), we choose the variable pounds
weaned per exposed female as the production output (i.e., the dependent variable). This variable is
defined as the total pounds of calves weaned divided by the total number of females either exposed to
bulls or in an artificial insemination program. Eight input factors are chosen as independent variables
in the stochastic frontier production function.

The average age of weaning is included as a time input variable, as we expect that calves
weaned at an older age will weigh more than calves weaned at a younger age. We also include
three investment variables—real estate assets, machinery assets, and livestock assets on the cost
basis—used in Ramsey et al. (2005) and Cho, Park, and Bevers (2011). These values are the total
average assets value divided by the total number of breeding cows at the beginning of the fiscal
year. As Ramsey et al. (2005) note, real estate assets may affect production negatively or positively
depending on their management. The input of machinery assets is expected to play a positive role in
production due to the increased capital intensity of the farm (Cho, Park, and Bevers, 2011). The sign
of the coefficient of livestock assets is also equivocal, as we are not sure whether the investment in
livestock is for better quality breeding stock with increased reproduction rates (Ramsey et al., 2005).

The variable purchased feed fed contains four components: roughage, complete feed, mineral
and salt, and protein supplement. As each component has a different unit price and is likely to play
a different role in production, we choose not to add them up as one aggregate variable. Instead,
two major categories, pounds of roughage fed and pounds of protein supplement fed, are chosen as
two independent variables in the study. The variables of complete feed and mineral and salt are not
included, as they are not widely used. Our choice of feed variables is different from those used by
Ramsey et al. (2005) and Cho, Park, and Bevers (2011), who use total pounds of feed as a single
explanatory variable, but did not find it to be significant in the production function.

Koger et al. (1975) point out that improved pasture is more likely to increase cow production
compared to native pasture because improved pasture typically provides forage of both higher
quality and greater quantity. No direct data is available on the percentage of improved pasture, but
we do have observations on costs of chemicals, fertilizer and lime, and seed and plants per breeding
cow. Since these three inputs are essential for improved pasture, we add expenditures on these three
variables as a proxy for percentage of improved pasture.
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Similar to Battese and Coelli (1992), we include an adjusted input cost variable that includes
gasoline, fuel and oil, hired labor and management, family living withdrawal (operator labor),
and veterinary care and breeding. Expenses on these four categories are most likely to contribute
to a higher productivity.1 Costs on machine work, repairs and maintenance, supplies, utilities,
professional fees, depreciation data, insurance, and property taxes are not included here, as they
are unlikely to have any impact on pounds weaned per exposed female.

Variables in the Technical Inefficiency Effect Model

To investigate sources of productivity inefficiencies, we include five variables that capture farm
and environmental characteristics. Calving season length is defined as the number of days from the
beginning to the end of the breeding season. Shorter breeding seasons are typically an indicator of
advanced management, as they result in better use of labor and productivity improvements (Ramsey
et al., 2005). However, Deutscher, Stotts, and Nielsen (1991) found that a 70-day breeding season
was better than 30- and 45-day seasons in terms of calf weaning weight per breeding female. They
pointed out that optimal breeding season length should be determined with considerable care, as
a shorter breeding season is not always better for productivity. In contrast, using SPA data from
1991 to 2001 for Texas, Oklahoma, and New Mexico, Ramsey et al. (2005) found that a shorter
breeding season significantly improves pounds weaned per exposed females. Cho, Park, and Bevers
(2011) showed that herd inefficiency level increases as the breeding season becomes longer, but this
relationship was not significant using SPA Southern Plains data from 2004 to 2008.

The variable percentage of owned land is calculated as the acres of cattle land that are owned
divided by the acres of cattle land that are owned and rented on the farm. A farmer who leases
land is less likely to use sustainable practices and maintain long-term economic viability (Rakipova,
Gillespie, and Franke, 2003); therefore, they are more likely to maximize their short-term profit. We
also include the percentage of operator labor, which is the operator labor cost divided by the costs
of operator and hired labor, to check whether farmers’ who spend less time on their farms will have
lower technical efficiency.

A favorable production condition for a cow-calf operation can be defined as favorable weather
conditions. Therefore we include a rainfall variable to capture efficiency variances across years.
Cho, Park, and Bevers (2011) directly used the variable of fiscal rainfall, which is the absolute
value of rainfall during the fiscal year, and found it negatively affected herd productivity. Although
above-average rainfall produces more grass growth if cattle numbers stay the same, forage quality
decreases. Conversely, drier than average conditions can cause such low grass-growth rate that there
is not enough to sustain animal numbers. In extreme cases plant mortality is increased. As both
too little and too much rainfall can compromise herd productivity, we use a new variable, deviation
from mean annual rainfall (MAR), as the absolute difference between percentage of MAR and 100.
For example, if the percentage of MAR is 70, then deviation from MAR is |70− 100|= 30. It is
hypothesized that herd inefficiency levels will increase in proportion to deviation from MAR.

Finally, we include the variable total acres as an indicator of herd size. This variable captures
the effects of two interconnected variables: the number of breeding females and acres per female,
both of which may affect herd productivity. Featherstone, Langemeier, and Ismet (1997) found a
positive relationship between herd size and technical efficiency, but Cho, Park, and Bevers (2011)
demonstrated exactly the opposite result. We can infer that the relationship between herd size and
efficiency may vary depending on whether the average herd size in the sample exceeds the optimal
herd size.

1 Personal communication with Professor S. Bevers, Extension Economist of Texas A&M AgriLife Center.
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Table 1. SPA Variable Summary Statistics for Texas Rolling Plains (1996–2011)
Variable N Mean Std Dev Min Max Unit
Pounds Weaned Per Exposed Female 76 455 88 225 638 Pounds
Average Age at Weaning 76 8 1 3 12 Months
Livestock Assets (Cost Basis) 76 782 320 46 1,838 Dollars
Machinery Assets (Cost Basis) 76 258 490 0 3,842 Dollars
Real Estate Assets (Cost Basis) 76 2,295 3,673 0 25,551 Dollars
Roughage 76 1,131 1,254 0 5,217 Pounds
Protein Supplement 76 379 308 0 2,066 Pounds
Improved Pasture Proxy 76 40 40 0 177 Dollars
Adjusted Input Cost 76 119 49 24 251 Dollars
Breeding Season Length 76 125 86 45 365 Days
Percentage of Owned Land 76 53 41 0 100 Percent
Percentage of Operator Labor 76 29 36 0 100 Percent
Total Acre 76 8.10 14.92 0.381 102.63 Thousand
Deviation from Mean Annual Rainfall (MAR) 76 26 17 0 81 Percent

Summary Statistics

Table 1 provides a summary of statistics for the variables defined above. Other than the five variables
included in the inefficiency model (that is, percentage of owned land, percentage of operator labor,
breeding season length, deviation from MAR and total acre) all of the variables included in the
stochastic frontier function are measured on the basis of number of exposed females on the farm.

Statistics in table 1 reflect diversity in farm characteristics and practices as well as environmental
conditions across years. For example, the improved pasture proxy varies from $0 to $177 in the cost
of chemical, fertilizer, and plant and seed categories of inputs. This means that the grazing land
includes native rangeland, where the land is managed as a seminatural ecosystem, and improved
pasture, where seed, establishment, and fertilizer are required to produce forage for grazing and
hay production. Both machinery and real estate assets on a cost basis have a minimum of $0 and a
maximum of $3,842 and $25,551 for range and cultivated pasture, respectively.2 This demonstrates
the dramatic differences in capital intensity. Similarly, both roughage and protein supplement range
from a common minimum value of 0 pounds to a maximum of 5,217 and 2,066 pounds for range
and cultivated pasture, respectively. This reflects a large difference in extensive and intensive grazing
systems but also indicates the range of environmental conditions that inevitably affect farm grazing
conditions and potential. Deviation from MAR provides a more specific measurement of abnormal
environment conditions. A mean deviation of 26% with 17% standard error suggests considerable
rainfall differences across years. Breeding season length varies from a minimum of 45 days to a
maximum of an entire year, indicating a big difference in management intensity among farms.
Finally, the huge range that exists in the total acre category reveals the coexistence of extremely
small and large farms in the Texas Rolling Plains.

Methodology

To accommodate the analysis of unbalanced panel data, we use the SFA method, which is the most
suitable approach for our purpose (Battese, Coelli, and Colby, 1989; Seale, 1990; Battese and Coelli,
1992, 1995). The SFA method has been used in a wide range of research dealing with unbalanced
panels, as evidenced by recent works (see Jin et al., 2010; Mukherjee, Bravo-Ureta, and De Vries,
2013; Wang and Wong, 2012).

2 Machinery assets value will be $0 if the machinery asset has been used past its depreciated life, while real estate assets
value is assigned $0 if the ranch operates exclusively on leased land.
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General Stochastic Frontier Production Function

We propose a stochastic frontier production function for unbalanced panel data (Battese and Coelli,
1992). On the observed dataset with N farms over T periods, the model can be defined as

(1) Yit = f (Xit ;β )exp(Vit −Uit)

and

(2) Uit = ηitUi = {exp[−η(t − Ti)]}Ui, t ∈ T (i); i = 1,2, . . . ,N;

where Yit represents production output for the ith firm at the tth period of observation; f (Xit ;β ) is
a function of a vector of input variables Xit and a vector of unknown parameters β ; Vit denotes
random errors that are independent and identically distributed as normal distribution N(0,σ2

v ),
accounting for the factors that are not under the control of the farm. A nonnegative term, Uit , is
included to account for the technical inefficiency in production. It is assumed to be independent
and identically distributed as nonnegative truncations of the normal distribution N(µ,σ2), where
µ = zitδ . Additionally, zit is a vector of explanatory variables associated with technical inefficiency
in the cow-calf industry and δ is a vector of unknown parameters. The technical inefficiency effect
Uit can be specified as

(3) Uit = zitδ +Wit .

The random variable Wit follows truncated normal distribution of N(0,σ2), where the truncated
point is −zitδ , so that Wit ≥−zitδ and Uit ≥ 0.

We can test whether the stochastic frontier production function is necessary by testing the
significance of the parameter γ = σ2

u /(σ
2
v + σ2

u ). For example, if γ is close to 1, then σ2
v is zero,

and a deterministic frontier function suffices. But if the null hypothesis, γ = 0, is accepted, then σ2
u

is zero and term Ui can be removed from the model; the parameters can be consistently estimated
using an ordinary least square method.

Parameter η is an unknown scalar to be estimated; a positive η means that farms tend to improve
their technical efficiency over time, while a negative η stands for a decreasing level of technical
efficiency and η = 0 indicates a constant technical efficiency over time. Here T (i) is a subset of the
integers, 1,2, . . . ,T , representing the periods of observations involved. The mean technical efficiency
of farm i over the observed periods can be defined as

(4) T Ei =
E(Yit |Ui,Xit , t ∈ T (i))

E(Yit |Ui = 0,Xit , t ∈ T (i))
= E[exp(−Uit)].

This measure has values between 0 and 1. For example, if a farm has a technical efficiency of
0.90, then the farm realizes 90% of the output that is possible for a fully efficient farm employing
comparable inputs.

Stochastic Frontier Production Function in Cobb-Douglas Form

The stochastic frontier function for the panel data on cow-calf enterprises in the Texas Rolling Plains
can be tentatively specified in the following Cobb-Douglas form,3 where subscripts i and t refer to
the ith enterprise and the tth year, respectively:

3 We also estimated the model using Translog form. Using the likelihood test, however, we find the Cobb-Douglas
specification is preferred in our case.
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ln(PoundWeanedit) = β0 + β1 ln(AgeWeaningit) + β2 ln(Livestockit) +

β3 ln(Machineryit) + β4 ln(RealEstateit) +

β5 ln(Roughageit) + β6 ln(Proteinit) +(5)

β7 ln(ImprovedPastureit) + β8 ln(InputCostit) +

Vit −Uit ;

where the technical inefficiency effect Uit is defined as

Uit = δ0 + δ1BreedingLengthit + δ2PercentOwnedLandit +

δ3PercentOperatorLaborit + δ4TotalAcreit +(6)

δ5RainDevit +Wit .

As two-stage estimation may cause serious econometric problems (Kumbhakar, 2000, pp. 264), we
estimate the parameters of equations (5) and (6) simultaneously using the Frontier 4.1 program
written by Coelli (1996), which permits the unbalanced panel data to be estimated.

Technical Efficiency and GHG Emissions

To establish the relationship between technical efficiency and net GHG emissions per pound
weaned,4 we divide farms into several groups according to their technical efficiency levels. For
each efficiency group, we choose an “average” farm, which takes the average variable values
of all the farms in that group. We calculate GHG emissions from six sources: 1) enteric CH4
emissions; 2) manure CH4 emissions; 3) manure N2O emissions and soil GHG emissions; 4)
protein supplement; 5) energy use; and 6) fertilizer use. Using the most recent methods specified
by the Intergovernmental Panel on Climate Change (2006), we obtain net GHG emissions for each
technical efficiency group.

From SPA data, we can obtain the average conventional inputs related to GHG emissions for
each group. For example, to calculate enteric CH4 emission of a selected group, we first compute
the average number of females and the percentage females that weaned a calf. Other input variables
associated with GHG calculation include gasoline, fuel and oil expenses, and fertilizer and lime
expenses. Besides the data available in SPA, other values or parameters required to calculate GHG
emissions are assumed using the literature and local expert opinion.5 The calculation for enteric and
manure CH4 requires the average number of bulls and heifers on the farm. As only number of cows
is available in SPA data, we rely on expert opinion and assume the number of bulls and the number
of stocker heifers make up 3.75% and 15% of the total number of cows.

Detailed methods using the example of a representative farm in the Texas Rolling Plains are
described in the Appendix. We use the most recent method specified by the Intergovernmental
Panel on Climate Change to calculate GHG emissions and sequestration for each technical efficiency
category. Sources of parameter or input values that are needed for GHG emissions or sequestration
are also provided. Methods for calculating the carbon emissions are provided on a production cycle
basis, which were converted to a yearly basis after we obtained the results.

Results

Table 2 provides estimates of the stochastic frontier production function as specified in equation (5).
Four explanatory variables (livestock assets, real estate assets, roughage, and adjusted input cost) in

4 Net GHG emissions per pound weaned is defined as total net GHG emissions divided by the farm’s total output in
pounds, which is calculated as pounds weaned per exposed female multiplied by the number of cows.

5 Professor S. Bevers, Extension Economist, Texas A&M AgriLife Center, Vernon Texas.
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Table 2. Maximum-Likelihood Estimates for Parameters of Cobb-Douglas Stochastic
Frontier Production Functions for Cow-Calf Enterprises on Texas Rolling Plains (1996–2011)

MLE Estimates
Variable Parameter Model 1 Model 2
Constant β0 2.2663∗∗∗ 2.3898∗∗∗

(0.1796) (0.1152)

ln(Average Age at Weaning) β1 0.0980 ∗ ∗ 0.0928∗
(0.0495) (0.0508)

ln(Livestock Assets) β2 0.0358 –

(0.0486)

ln(Machinery Assets) β3 0.0213∗∗ 0.0207∗∗

(0.0103) (0.0091)

ln(Real Estate Assets) β4 0.0026 –

(0.0045)

ln(Roughage) β5 −0.0039 –

(0.0040)

ln(Protein Supplement) β6 0.0295∗∗∗ 0.0301∗∗∗

(0.0116) (0.0094)

ln(Improved Pasture Proxy) β7 0.0110∗∗ 0.0111∗∗∗

(0.0054) (0.0041)

ln(Adjusted Input Cost) β8 0.0020 –

(0.0458)

σ2 = σ2
v + σ2

u 0.0063∗∗∗ 0.0088∗∗∗

(0.0020) (0.0034)

γ = σ2
u /σσσ2 0.5529∗∗∗ 0.7232∗∗∗

(0.1421) (0.1161)

log(likelihood) 105.23 104.00

Notes: Estimated standard errors are given in parentheses. Single, doube, and triple asterisks (*, **, ***) indicate significance at the 10%, 5%,
and 1% level.

Model 1 are not significant, thus we eliminate them and estimate the alternative model, referred to
as Model 2, that includes the rest of the variables in equation (5). The coefficients for Model 2 are
shown in table 2. Not surprisingly, average weaning age significantly increases the pounds weaned
per exposed female, providing the greatest elasticity among all the explanatory variables. Without
taking this factor into account, farmers who wean calves at an earlier age are likely to be assigned
to the low-efficiency category. The only reason to wean at a younger age would be to ensure that
rebreeding of the cows was not compromised, as the cows need to recover body condition after
weaning to ensure a high conception rate.

The variable that generates the second greatest elasticity is protein supplement. Using pounds
of feed fed as an explanatory variable directly, Ramsey et al. (2005) concluded that it did not
lead to higher productivity. To understand the impact of this input, we divided pounds of feed fed
into protein supplement and roughage. Protein supplement plays an important role in improving
productivity, while the coefficient for roughage had a negative sign and is not significant. A plausible
explanation is that roughage is most often fed as a substitute for forage grown on the farm when it
is in short supply due to abnormal weather conditions. Therefore, roughage might be viewed as a
proxy for unfavorable weather conditions. Plus, feeding of roughage to make up for a shortage of
forage biomass is a practice that reduces profitability and causes damage to the rangeland or pasture
(Díaz-Solís et al., 2009).

Similar to Cho, Park, and Bevers (2011), we also found that an increase in machinery and
equipment assets significantly improves productivity, while livestock assets and real estate assets
play no significant role. As an indicator of farm management and capital intensity, it is not surprising
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Table 3. Tests of Hypothesis for Parameters of the Inefficiency Stochastic Frontier Production
Function for Cow-Calf Farmers

Null Hypothesis Log (Likelihood) Test Statistic λλλ Critical Value Decision
H0 : β2 = β4 = β5 = β8 = 0 104.00 2.46 9.49 Accept H0

H0 : γ = δi = 0 for i = 0, . . . ,5 83.25 41.50 14.07 Reject H0

H0 : δ1 = δ2 = δ3 = δ4 = δ5 = 0 88.75 30.50 11.07 Reject H0

H0 : η = 0 91.83 1.20 3.84 Accept H0

to find that the variable of machinery and equipment assets has a positive effect on productivity.
As Ramsey et al. (2005) point out, the ambiguous relationship found between livestock assets and
productivity indicates that investment in livestock is not directly related to enhanced productivity.
Also, investment in real estate assets may only reflect producers’ personal goals, such as wealth
accumulation, and will therefore have little to do with productivity.

The improved pasture proxy variable also had a positive impact on productivity, as improved
pasture typically provides higher quality forage with greater quantity per acre. Koger et al.
(1975) and Rakipova, Gillespie, and Franke (2003) observe the same positive relationship between
improved pasture and cow productivity. Adjusted input cost, however, plays no significant role in
productivity. Thus we can infer that labor and veterinary services actually contribute little to overall
herd productivity in the Texas Rolling Plains area.

Hypothesis Testing

We carried out a series of tests on the joint significance of the four insignificant terms of Model 1 and
some null hypotheses on technical efficiency. The results of those likelihood-ratio tests are provided
in table 3. The likelihood-ratio test statistic is calculated as λ =−2[ln(L(H0))− ln(L(H1))],
where ln(L(H0)) denotes the log(likelihood) of the restricted model and ln(L(H1)) represents
the log(likelihood) of the unrestricted model. Table 3 also lists the log(likelihood) value of each
restricted model.

The test statistic, λ , has approximately chi-square distribution with degrees of freedom
equal to the number of parameters restricted to be zero. For example, for the first hypothesis,
H0: β2 = β4 = β5 = β8 = 0, λ follows chi-square distribution with degrees of freedom equal to 4.
Since this hypothesis is accepted, Model 2 is preferred to Model 1.

The second hypothesis states that the inefficiency effect is completely absent from Model 2. Here
γ ≡ σ2

u /(σ
2
v + σ2

u ) = 0 involves parameters associated with the variance of the technical inefficiency
variable Uit and random variable Vit . If the null hypothesis γ = 0 is accepted, then σ2

u is zero and the
inefficiency term Ui can be removed from the model. In other words, all farms are efficient and the
model can be consistently estimated using the ordinary least square method. As this hypothesis is
also rejected, it means technical inefficiencies exist in Model 2.

The third hypothesis states that the inefficiency effect for Model 2 exists, but it is not a linear
function of the five explanatory variables specified in equation (6). This null hypothesis is rejected.
Consequently, the joint effects of these five variables on the production inefficiencies are significant,
although the individual effects of some variables may not be.

The last hypothesis states that the technical inefficiency effect for Model 2 does not vary over
time. This hypothesis is accepted, which means there was no improvement in technical efficiency
from 1996 to 2011 for cow-calf farmers in the Texas Rolling Plains.

Determinants of Technical Inefficiency

Technical efficiency provides a measure of the output of farm i over time t relative to the output
that can be produced by the most efficient farm in the sample using the same inputs. The average
technical efficiency level for the seventy-six cow-calf farms is 95.1%, which is comparable to the
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Table 4. Estimation of Inefficiency Effect Model
Variable Parameter MLE Estimates
Constant δ0 −0.0955

(0.0868)
Breeding Season Length δ1 0.0008∗∗∗

(0.0003)
Percentage of Owned Land δ2 −0.0009

(0.0007)
Percentage of Operator Labor δ3 −0.0032∗∗∗

(0.0009)
Total acre δ4 −0.0065

(0.0052)
Deviation from Mean Annual Rainfall (MAR) δ5 0.0029∗

(0.0016)
σ2 0.0088∗∗∗

(0.0034)
γ 0.7232∗∗∗

(0.1250)

beef-cow production efficiency level obtained by Cho, Park, and Bevers (2011) using SPA data from
three southern states from 2004 to 2008 and Rakipova, Gillespie, and Franke (2003), who studied the
efficiency of Louisiana beef-cow producers. Meanwhile, our estimated efficiency level is far greater
than the 78% found for beef-cow herds in Kansas (Featherstone, Langemeier, and Ismet, 1997) and
the 69% found for beef-cow herds in Kenya (Otieno, Hubbard, and Ruto, 2012). This confirms that
technical inefficiency, though it exists, is not a serious problem for most cow-calf farms in the Texas
Rolling Plains.

Estimates for the technical inefficiency effect of Model 2 are provided in table 4. Breeding season
length is positively related to the technical inefficiency. Thus farms with a longer breeding season
have a significant lower productivity. This result is in accordance with that of Ramsey et al. (2005),
suggesting that in the Texas Rolling Plains, an average farm can still improve its productivity by
reducing breeding season length. Another variable that significantly affects technical efficiency is
percentage of operator labor, which indicates that farm owners who devote more time on the beef-
cow operation to decrease spending on hired labor will achieve higher efficiency.

A positive relationship exists between deviation from mean annual rainfall and technical
inefficiency. A rainfall level close to mean annual rainfall will promote productivity, while too little
or too much rain are both counterproductive. Severe drought is a serious threat to the beef industry
in Texas (Independent Cattlemen’s Association, 2011). We find that an 80% deviation from MAR
increased technical inefficiency by 23.2%. Using absolute rainfall level as an explanatory variable
(Cho, Park, and Bevers, 2011) was less instructive than the deviation from MAR used in this study.

Similar to Rakipova, Gillespie, and Franke (2003), we also found both percentage of owned land
and total acres had negative values and were not significant in the inefficiency model.

Technical Efficiencies of Different Categories

Table 5 gives the technical efficiencies of cow-calf operations in the Texas Rolling Plains in three
categories. The first is by farm, giving the average technical efficiency of each farm from 1996 to
2011. The second is by observation, where we treat the same farm sample in a different year as a
different observation. The last is by year, where we average all farms’ efficiency levels observed in
the same year. The average technical efficiency level for each farm (first column) outperformed that
for individual observations (second column). This suggests that although herd productivity may
occasionally be negatively affected by some uncontrollable factors such as abnormal rainfall in
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Table 5. Frequencies and Percentages of Technical Efficiencies for Cow-Calf Farms
Frequencies and Percentages

Technical Efficiency By Farm By Observation By Year
0.70–0.79 0 (0%) 3 (3.95%) 0 (0%)
0.8–0.85 1 (2.5%) 3 (3.95%) 0 (0%)
0.86–0.9 3 (7.50%) 3 (3.95%) 2 (14.29%)
0.91–0.95 5 (12.50%) 13 (17.11%) 3 (21.43%)
0.96–1 31 (77.50%) 54 (71.05%) 9 (64.29%)

Total 40 (100%) 76 (100%) 14 (100%)

Table 6. Technical Efficiency by Size of Cow-Calf Farms

Size (Acres) N Technical
Efficiency

Size (No. of
Breeding
Females)

N Technical
Efficiency

Below 1,000 22 0.913 Below 100 14 0.950

1,000–4,000 21 0.966 100–200 27 0.929

4,000–10,000 16 0.964 200–300 12 0.970

Above 10,000 17 0.970 Above 300 23 0.967

Total 76 0.951 Total 76 0.951

specific years, such unfavorable effects seem to level off over the years. From the perspective of
the year (third column), we found a lower proportion of farms with efficiency values lying in the
0.96 to 1.00 range because all of the farms tend to be affected by the unfavorable environment in the
same year, thus the average inefficiency level for those years can be relatively low.

To further understand how technical efficiency relates to herd scale, table 6 presents average
technical efficiency for different categories of herd size, measured in total acreage and number of
breeding females. No clear relationship exists between technical efficiency and number of breeding
females. This can be seen from the ranking of technical efficiency, where herd size of 200–300
comes first, then herds with size over 300, then herds with size below 100, while the lowest technical
efficiency occurs for herds of size 100–200. Although economy of scale is generally found when
attempting to reducing costs, no study has shown that a larger herd is associated with increased
productivity (Langemeier, McGrann, and Parker, 2004; Featherstone, Langemeier, and Ismet, 1997;
Ramsey et al., 2005). However, when it comes to the total farm area, table 6 clearly shows that farms
occupying a larger area generally have greater technical efficiency.

Technical Efficiency and GHG Emission

Based on the technical efficiency level, we divided observations into five groups according to their
technical efficiency levels (70%–79%, 80%–85%, 86%–90%, 91%–95%, and 96%–100%) and refer
them as efficiency groups 1 to 5. Then we applied the methods specified in the Appendix to obtain
net GHG emissions for each group.

The final results are provided in table 7. We found that, in agreement with DeRamus et al. (2003),
GHG emissions per pound weaned decline as technical efficiency increases. This is caused partly
by the positive relationship between technical efficiency and pounds weaned. The average pounds
weaned per exposed female for efficiency groups 1 to 5 are 300, 345, 354, 431, and 481, suggesting
that the inputs generating GHG emissions are used more efficiently to produce each unit of output by
groups with higher technical efficiency. Group 1 has the highest GHG emissions per pound weaned
due to high fertilizer and protein supplement use and low pounds weaned. While GHG emissions
tend to decline for groups with increased technical efficiency, GHG sequestration generally displays
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Table 7. GHG Net Emissions among Five Technical Efficiency Categories for Cow-Calf Farms
Technical Efficiency 0.70–0.79 0.80–0.85 0.86–0.90 0.91–0.95 0.96–1
Enteric CH4 3.97 3.49 3.46 2.86 2.58

Manure CH4 0.15 0.13 0.13 0.11 0.10

Manure N2O 1.75 1.52 1.48 1.22 1.09

Protein Supplement 0.09 0.04 0.04 0.06 0.04

Energy Use 2.68 3.18 2.66 1.82 1.45

Fertilizer Use 0.21 0.13 0.19 0.09 0.08

GHG Emission 8.85 8.48 7.95 6.15 5.32

GHG Sequestration 2.73 3.64 6.27 10.81 14.02

Net GHG Emission 6.12 4.84 1.69 −4.66 −8.70

Notes: Units are pounds of carbon equivalent per pound weaned.

the opposite pattern. This is because GHG sequestration is solely determined by total farm acres in
our calculation, while a positive relationship exists between total acre and technical efficiency (table
6). The average total acres for efficiency groups 1 to 5 are 427, 458, 1,795, 4,982, and 10,054. In
addition, the higher efficiency groups tend to have a higher number of acres per female, averaging
3.5, 7.3, 7.5, 17.1, and 23.5 for efficiency groups 1 to 5. This suggests that beef-cow operations with
lower cow density (lower stocking rate) are more likely to be both technically more efficient and to
have lower net carbon emission rates per pound weaned. For net GHG emissions, a negative sign
indicates net sequestration rather than net emission.

Cow-calf farmers in efficiency groups 4 and 5 produce net carbon sequestration rather than
carbon emission (table 7). More technically efficient farms also have more net carbon sequestration,
suggesting that environment quality will not be compromised by pursuing higher technical
efficiency. This will benefit more technically efficient cow-calf farmers who would likely be
rewarded by any future carbon credit program. However, farms in lower efficiency categories, mostly
those farms with dense (heavily stocked) beef-cow populations are not likely to benefit from a GHG
reduction program.

Discussion

This paper investigates the relationship between various farm management practices and technical
efficiencies. The stochastic frontier function used to investigate the factors that promote higher
productivity for a typical cow-calf farmer indicated that there were significant but small increases
in elasticity from different management factors. A 10% increase in each management action
increased pounds weaned per breeding cow by 0.98% for average age at weaning, 0.30% for protein
supplementation, 0.21% for investment in machinery, and 0.11% for pasture-quality improvement.
In contrast, investment in real estate and livestock assets had no significant effect. The roles played
by roughage feed and adjusted input cost—including labor and veterinary services—were also not
significant.

The level of technical efficiency is assessed for cow-calf enterprises sampled by SPA data in
the Texas Rolling Plains. At 95%, the average technical efficiency for cow-calf farms on Texas
Rolling Plains is comparable to that of beef-cow herds in the U.S. Southern Plains (Cho, Park,
and Bevers, 2011; Rakipova, Gillespie, and Franke, 2003), but greater than that of beef-cow herds in
Kansas at 78% (Featherstone, Langemeier, and Ismet, 1997) and in Kenya at 69% (Otieno, Hubbard,
and Ruto, 2012). Average technical efficiency is also found to increase as farm area increases. For
example, average technical efficiency is 91.3% for farms below 1,000 acres and 97% for farms above
10,000 acres, suggesting increasing returns to scale as farm size increases. However, no significant
improvement in technical efficiency was found over time during the 1996 to 2011 survey period.

Significant variables resulting in lower technical efficiency include a longer breeding season,
lower operator labor percentage, and increasing deviation from MAR. We found that technical
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efficiency increased 8% if breeding season length decreased by 100 days. In addition, in the case
of extreme drought (50% of MAR), estimated technical efficiency was reduced by 14.5%., which
underscores the importance of favorable weather conditions for cow-calf operations. To help cow-
calf operations mitigate losses due to severe drought, measures such as using management-intensive
grazing with multiple paddocks and drought insurance should be promoted. In addition, we also
find farm efficiency increases on average by 3.2% with a 10% increase in the percentage of operator
labor.

This paper also aimed to determine the relationship between technical efficiency and
environmental impact. Life-cycle analyses indicated that enteric CH4, energy use, and manure N2O
generate about 95% of all GHG emissions for all efficiency groups, with 45%, 20%, and 20%
attributable to enteric CH4, energy use, and manure N2O, respectively. In comparison, manure CH4,
protein supplement, and fertilizer use have little effect on GHG emissions per unit of output.

Direct linkages can be found between farm efficiency and carbon emission and sequestration. We
found that carbon emissions per unit of output decrease as farm efficiency increases. This is partly
due to the positive correlation between farm efficiency and output level. However, higher carbon
sequestration occurs on farms that are more technically efficient as a result of more acres allocated
to each breeding cow. The greatest net carbon sequestration was found for the two most technically
efficient groups, indicating that pursuing technical efficiency will not compromise environmental
quality.

Conclusion

This paper addresses two equally important issues. First, we use an SFA method and find that
direct expenditures on protein supplement, machinery investment, and pasture-quality improvement
enhance farm productivity. Factors that affect technical efficiency include breeding season length,
percentage of operator labor, and deviation from MAR. Second, this paper provides the first study
on the relationship between cow-calf farm technical efficiency and environmental consequences as
indicated by greenhouse gas emission. Results suggest that for the cow-calf industry, pursuing farm
efficiency aligns with environmental protection goals.

The focus of the SFA model in this paper is on output, or pounds weaned per breeding
female, rather than profitability. In addition to our finding, future research could investigate whether
the incentive to pursue financial profitability conflicts with environmental protection objectives.
Future efforts could also extend the method to model the link between pursuing efficiency and
environmental protection in different industries, such as cropping, or in different regions.

[Received April 2013; final revision received October 2013.]
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Appendix A: Methods for Calculating Total GHG Emissions
of a Representative Cow-Calf Farm

Data are provided by Stan J. Bevers, Professor and Extension Economist-Management for Texas
A&M AgriLife Extension Service, who specializes in ranch management and analysis.

Farm Description

Calculatations are based on a herd size of 800 cattle, including 400 cows, 60 heifers, 325 calves,
and 15 bulls. All of the calves except sixty heifers are sold immediately after weaning. We assume
a breeding season from April to August and a birth season from January to May. For simplicity,
we assume a 90% pregnancy and lactating rate (actual pregnancy rates range from 90–92% and
lactating rates are about 88%). Weaning occurs from September to November. The life cycle we
consider here is defined as the entire production period, which lasts from April to November of the
following year. During the breeding season from April to August, the breeding cows also feed the
previous batch of calves. For calculation purposes, the lactation period lasts 120 days. During the
gestation period from August to the following May (based on a 283-day pregnancy) we assume 133
days of overlap between pregnancy and lactation and 150 days of pregnancy only. From May till
the weaning season, we assume there are 90 days of lactation only and 120 days of overlap during
which the lactating cows are pregnant with the next generation of calves. In a production cycle, we
assume that a typical cow spend 210 days lactating, 150 days pregnant while not lactating, and 253
days both lactating and pregnant, for a total of 613 days.

We assume a 100% pasture manure management system, given that managing a dry-lot manure
system is too costly. We also assume leaching and runoff does not occur on the pasture. Supplemental
feed is either Coastal Bermuda hay or Sudan hay. However, supplemental hay is rarely used in the
Southern Plains except in years of severe drought, so we ignore GHG emissions from this source.
Typically, supplemental protein is used from December to March, when the grass protein is low. The
400 cows were fed two pounds of supplemental protein per head per day for 120 days, for a total
of 96,000 pounds per production season. Supplemental proteins include grain-based protein made
of corn and oil-based protein made of cottonseed and soybean meals. Here we calculate the GHG
emissions from soybean meal as an example of protein supplement source.

Methodologies

We describe the methodologies used to calculate GHG emissions for five components of emissions
on a typical cow-calf farm, including enteric methane emission, manure methane emission, manure
N2O emission, supplemental protein CO2 emission, and GHG emission from farm energy use and
fertilizer use. Carbon sequestration was also calculated.

Enteric CH4

According to the Intergovernmental Panel on Climate Change (2006), we have CH4enteric = EF ×
N/106 Gg CH4 per production cycle, where N is the number of head of livestock species and EF
is the emission factor for the defined livestock population in kilograms of CH4 per head per year.
According to the Tier 2 approach,6 EF should be developed by

(A1) EF =
GE( Ym

100 )365
55.65

,

6 IPCC suggests the Tier 2 approach for beef cattle when estimating emissions from enteric fermentation. According
to IPCC, “The Tier 2 method should be used if enteric fermentation is a key source category for the animal category that
represents a large portion of the country’s total emissions.”
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Table A1. Energy Use and Carbon Dioxide Emissions by Fuel Source on U.S. Farms, 2005

Fuels Energy Consumed
(BTUs)

CO2 Emissions
(g CO2 eq)

Diesel 408.5 29.58
Gasoline 128.5 9.01
LP Gas 76 4.74
Natural Gas 53 2.80
Electricity 135 23.28

Source: Global Change Program Office, Office of the Chief Economist (2008, table 5-2)

where Ym is the methane conversion factor, which is the percent to gross energy in feed converted
to methane. According to the Intergovernmental Panel on Climate Change (2006, table 10.12),
Ym = 6.5%± 1.0%. The lower bound is more appropriate for feed with high digestibility and high
energy value, and vice versa. For calves fed entirely on milk, Ym = 0. As a result, we use Ym = 0 for
the preweaning calves. Factor 55.65 (MJ/kg CH4) stands for the energy content of methane. If an
animal subcategory is staying on the farm for less than 365 days, we replaced 365 with the number
days that the animals actually stayed on the farm; GE is the gross energy intake in MJ per head per
day, which is further defined as

(A2) GE =

NEm+NEa+NEl+NEp
REM +

NEg
REG

DE%
100

,

where NEm is the net energy for maintenance, which is required by the animal so that
the body energy is neither gained or lost. It can be calculated as: NEm =C fi × (Weight)0.75.
For nonlactating cows, C fi = 0.322; for lactating cows, C fi = 0.386; for bulls, C fi = 0.370;
Weight is the live-weight of animal in kilograms. According to the U.S. Environmental
Protection Agency (2012, table A-173), Typical Animal Mass (TAM) in the year 2010 is 613
kilograms/head for cows and 919 for bulls. TAM for steers and heifers are 234 and 220,
respectively, according to the expert’s description. Therefore, for nonlactating and lactating cows,
we have NEm = 0.322× (613)0.75 = 39.67 and NEm = 0.386× (613)0.75 = 47.55. For bulls,
NEm = 0.370× (919)0.75 = 61.76. The net energies for maintenance for steers and heifers are
NEm = 0.322× (234)0.75 = 19.26 and NEm = 0.322× (220)0.75 = 18.39.

Next, NEa =Ca × NEm stands for the net energy for activity, which is energy needed by the
animal to obtain food, water, and shelter. It is based on the feeding situation rather than the feed
itself; for cattle confined in a small area such as a barn, Ca = 0; for cattle confined in areas with
sufficient forage such as a pasture, Ca = 0.17; for cattle grazing in open range land, Ca = 0.36 In
the Rolling Plains, most cattle feed on pasture, so we choose Ca = 0.17. Additionally, the NEa for
nonlactating cows, lactating cows, bulls, steers, and heifers are 6.74, 8.08, 10.50, 3.27, and 3.13.

Third, NEl = Milk × (1.47 + 0.40× f at) is the net energy necessary for lactation, where Milk
is the amount of milk produced (kg/day) and f at is the fat content of milk (%). According to the
U.S. Environmental Protection Agency (2012), the lactation estimates for beef cow from January to
December are 3.3, 5.1, 8.7, 12.0, 13.6, 13.3, 11.7, 9.3, 6.9, 4.4, 3.0, and 2.8 lbs milk/beef cow/day.
As we choose April to August as the breeding season, calves are born between January and May and
weaned between September and November. If cows give birth in January, February, and March and
wean the calves eight months later, the average daily milk production would be 9.32, 9.44, and 9.21
pounds. Thus we choose the average milk production as 9.32 lbs/day (4.24 kg/day). Also according
to the U.S. Environmental Protection Agency (2012), the percentage of fat in milk is 4%. Therefore
for lactating cows we have NEl = 4.24× (1.47 + 0.40× 4) = 13.02.

Also, for pregnant cows, NEp is the net energy required for pregnancy (MJ per day), where
NEp = 0.1× NEm = 0.1× 39.67 = 3.97. For heifers and steers, NEg is the net energy for growth
(MJ per day), defined as NEg = 22.02× [BW/(C ×MW )]0.75 ×WG1.097, where BW is the average
live body weight (BW) of the animals in the population (kg); C is a coefficient with a value of 0.8 for
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females, 1.0 for castrates, and 1.2 for bulls; MW is the mature live body weight of an adult female
in moderate body condition (kg); and WG is the average daily weight gain of the animals in the
population. BW and WG data for heifers and MW data are directly obtained from Professor Bevers.
For heifers, we have NEg = 22.02× [220/(0.8× 613)]0.75 × 2.51.097 = 32.98.

Cattle feed digestibility, denoted by DE%, ranges from 45% to 55% for crop byproducts and
range lands; 55% to 75% for good pastures, good preserved forages, and grain-supplemented forage-
based diets. Following the expert’s opinion, for the Rolling Plains we chose the second category, thus
the average DE% is 65%. Finally, based on DE%, we can calculate REM, the ratio of net energy
available in diet for maintenance to digestible energy consumed:

(A3) REM = 1.123− 4.092× 10−3 × DE% + 1.126× 10−5 × (DE%)2 − 25.4/DE% = 0.51.

We can also calculate REG, is the ratio of net energy available in diet for growth to digestible energy
consumed:

(A4) REG = 1.164− 5.160× 10−3 × DE% + 1.308× 10−5 × (DE%)− 37.4/DE% = 0.31.

Now we are ready to calculate enteric methane emissions. For lactating only cows:

(A5) GE =
(NEm + NEa + NEl)/REM

DE%/100
=

(47.55 + 8.08 + 13.02)/0.51
65/100

= 207.09;

EF =
GE × (Ym/100)× days on lactating only

55.65
(A6)

=
207.09× (6.5/100)× 210

55.65
= 50.80;

(A7) CH4enteric = EF × N/106 = 50.80× 400× 90%
106 = 0.018.

For pregnant and not lactating cows:

(A8) GE =
(NEm + NEa + NEp)/REM

DE%/100
=

(39.67 + 6.74 + 3.97)/0.51
65/100

= 151.98;

EF =
GE × (Ym/100)× days on gestation only

55.65
(A9)

=
151.98× (6.5/100)× 150

55.65
= 26.63;

(A10) CH4enteric = EF × N/106 = 26.63× 400× 90%/106 = 0.010.

For pregnant and lactating cows:

GE =
(NEm + NEa + NEl + NEp)/REM

DE%/100
(A11)

=
(47.55 + 8.08 + 13.02 + 3.97)/0.51

65/100
= 219.06;



Wang et al. Cow-Calf Herd Performance and GHG Emissions 453

EF =
GE × (Ym/100)× days both lactating and pregnant

55.65
(A12)

=
219.06× (6.5/100)× 253

55.65
= 64.73;

(A13) CH4enteric = EF × N/106 = 64.73× 400× 90%/106 = 0.023.

For cows that are neither lactating nor pregnant (for simplicity we assume 10% of cows remain
nonproductive in the 613-day period):

(A14) GE =
(NEm + NEa)/REM

DE%/100
=

(39.67 + 6.74)/0.51
65/100

= 140;

(A15) EF =
GE × (Ym/100)× 613

55.65
=

140× (6.5/100)× 613
55.65

= 100.24;

(A16) CH4enteric = EF × N/106 = 100.24× 400× 10%/106 = 0.004.

For bulls:

(A17) GE =
(NEm + NEa)/REM

DE%/100
=

(61.76 + 10.50)/0.51
65/100

= 217.98;

(A18) EF =
GE × (Ym/100)× 613

55.65
=

217.98× (6.5/100)× 613
55.65

= 156.07;

(A19) CH4enteric = EF × N/106 = 156.07× 15/106 = 0.002.

For stocking heifers:

GE =
(NEm + NEa)/REM + NEg/REG

DE%/100
(A20)

=
(18.39 + 3.13)/0.51 + 32.98/0.31

65/100
= 228.59;

(A21) EF =
GE × (Ym/100)× 613

55.65
=

228.59× (6.5/100)× 613
55.65

= 163.67;

(A22) CH4enteric = EF × N/106 = 163.67× 60/106 = 0.010.

Together, on the representative farm we defined in the previous section, overall enteric emissions
can be added up as

CH4enteric = 0.018 + 0.010 + 0.023 + 0.004 + 0.002 + 0.010
(A23)

= 0.067 Gg CH4 (67,000 kg CH4) per production cycle.

Thus, the enteric methane emission is equivalent to 1,407,000 kg CO2 per production cycle, or 1,551
tons CO2 per production cycle (1 unit of CH4 has a global warming potential of 21 units of CO2).
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Manure CH4

The method we describe in this section is provided by ICF Consulting (1999b),which is similar to
the Tier 2 method in IPCC, but is more informative in that it treats each U.S. state differently, rather
than treating the North American region as a whole. Overall, the manure methane emissions can
be calculated as: CH4manure = Total V Si × B0 ×MCFj ×WS%i j; where Total V Si stands for the
volatile solid produced by all the animals in each subcategory per year; it can be computed from

(A24) Total VSi=Population of subcategory i (head)× TAMi (lbs/head)× VS coefficient

Typical Animal Mass (TAM) is 397 lbs/head for calves, 794 for steers and heifers, 1,102 for cows
and 1,587 for bulls. From ICF Consulting (1999b, table 7.4–11), we know that the VS coefficient
is 2.6 lbs VS/lb animal mass/year. Thus TAMi × VS coefficient values for calves, heifers, cows, and
bulls can be calculated as 469, 938, 1,302, and 1,875 kg/animal/year for all states. Estimates by ICF
Consulting (1999b) will be used, as they include all four of the categories we need. Meanwhile, we
adjust those values by a factor of (1,600/1,302 = 1.23) to match the EPA’s updated information.7

The adjusted TAMi × VS coefficient values for calves, heifers, cows, and bulls are 577, 1,154, 1,602,
and 2,307 kg/animal/year (1,270, 2,539, 3,524, and 5,075 lbs/animal/year).

B0 is the estimate of the maximum methane-producing capacity of U.S. livestock. For beef not in
feedlots, B0 = 2.72 ft3 per lb VS;8 MCF stands for the methane conversion factor for manure system
j (%). In Texas, MCF is 1.4% for pasture/range/paddock manure system and 2.1% for dry lot manure
system. In Oklahoma, those values are 1.4% and 1.9%. As we only consider a pasture/range/paddock
manure system (since the dry lot system is too costly to maintain), we choose MCF = 1.4%.

WS%i j stands for the percentage of animal i’s manure managed in manure system j. Here we
assume a 100% pasture manure system based on the expert’s opinion. We calculate manure methane
emission as

CH4manure = Total VSi × B0 ×MCFj ×WS%i j

= (325× 1,270 + 60× 2,539 + 400× 3,524 + 15× 5,075)
(A25)

× 2.72× 1.4%× 100%

= 78,094 ft3 CH4 per year.

This is equivalent to 3,225 lbs of CH4 per year given that 1 ft3 = 0.0413 lbs; or 1466 kg CH4 per
year which equals 2,462 kg of CH4 per production cycle. Thus the manure methane emission on this
farm is 51,702 kg CO2 per production cycle, or 57 tons CO2 per production cycle.

Manure N2O

N2O emissions generated by manure in a “pasture, range, and paddock” system occur directly
and indirectly from the soil (Intergovernmental Panel on Climate Change, 2006). Thus, we refer
to the methods provided in (Intergovernmental Panel on Climate Change, 2006, Section 11.2), ‘N2O
emissions from managed soils.’

7 In EPA (2012), the calculation TAMi (lbs/head)×VS coefficient (lbs VS/lb animal mass/year) is provided as a single
value V S (kg/animal/year) for the year 2010. Three categories are provided in EPS Annex 3, Table A-193: Cow, Heifer, and
Steer. Those values are 1,589, 1,013, and 923 for Oklahoma and 1664, 1,053, and 971 for Texas. Since the average value for
a cow for those two states is roughly 1,600 in 2010 and 1,302 in 1999 (U.S. Environmental Protection Agency, 2012), we
adjust the ICF Consulting (1999b) estimates by a factor of 1600/1302 = 1.23 to obtain the updated estimates.

8 Note that coefficients such as B0 provided in ICF Consulting (1999b) require us to use inputs in English units, while
inputs in metric units are required for calculations such as equation (1), where factor 55.65 has units of MJ/kg CH4,
according to Intergovernmental Panel on Climate Change (2006). To maintain the traceability of the original formulas and
factors/coefficients, we choose different units correspondingly. In the main paper we convert all the final GHG net emissions
uniformly into English units.
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Direct N2O emissions from urine and dung inputs to grazed soils can be calculated as
N2Odirect = F × EF3 × 44/28 kg N2O/year, where F is the annual amount of urine and dung in
kg N/year deposited by grazing animals on pasture, range, and paddock. The value of F can be
estimated using the method from ICF Consulting (1999a):

F = unvolatilized N excreted by subcategory i

= 0.8× Population of subcategory i (head)× [TAMi (kg/head)/1,000]×
(A26)

Kjeldahl N per day per 1,000 kg mass (kg/day) ×

percentage of manure i on pasture/range/paddock× 365 days per year.

We take the Typical Animal Mass (TAM) in the year 2010 according to the U.S. Environmental
Protection Agency (2012, table A-173) and convert it to kg/head. The TAM for calves is 40 kg at
birth and 234 kg at weaning, averaging 137 kg; the TAM for steers stockers, heifers stockers, cows,
and bulls are 330, 324, 613, and 919 respectively. Kjeldahl N per day per 1,000 kg mass (kg/day)
takes the value of 0.34 for all subcategories listed above. Thus, F can be calculated as:

F = 0.8× (325× 137 + 60× 324 + 400× 613 + 15× 919)/1,000×

0.34× 100%× 365(A27)

= 32,062.

EF3 is the emission factor for N2O emissions from urine and dung deposited by grazing animals on
pasture, range and paddock in kg N2O/kg N. EF3 takes a default value of 0.02 with uncertainty range
between 0.007 and 0.06 (Intergovernmental Panel on Climate Change, 2006, table 1 1.1). Therefore:

N2Odirect = F × EF3 × 44/28 = 32,062× 0.02× 44/28
(A28)

= 1,008 kg N2O/year; or 1,692 kg N2O/production period.

In addition to direct N2O emissions, emissions of N2O also occur through the volatilization
and deposition of N as NH3 and nitrogen oxides and their products back into soils,9 which can be
calculated as N2Ovolatilization = F × Frac1 × EF4 × 44/28, where F is the annual amount of urine
and dung deposited by grazing animals on pasture, range, and paddock in kg N/year, which can be
calculated as:

F = Population of subcategory i (head)× [TAMi (kg/head)/1,000]×

Kjeldahl N per day per 1,000 kg mass (kg/day)×

percentage of manure i on pasture/range/paddock× 365 days per year(A29)

= (325× 137 + 60× 324 + 400× 613 + 15× 919)/1,000× 0.34× 365

= 40078.

The fraction of F that volatilizes as NH3 and NOx is denoted as Frac1, which takes a default value
of 0.2 with uncertainty range between 0.05 and 0.5 (Intergovernmental Panel on Climate Change,
2006, table 11.3). EF4 is the emission factor for the atmospheric deposition of N on soils. EF4 takes
a default value of 0.01 with uncertainty range between 0.002 and 0.05 (Intergovernmental Panel on

9 The other possible way is through nitrogen leaching and runoff in some regions. In the Rolling Plains we regard it as
zero based on expert opinion.
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Climate Change, 2006, table 11.3), thus:

N2Ovolatilization = F × Frac1 × EF4 × 44/28

= 40078× 0.2× 0.01× 44/28(A30)

= 126 kg N2O/year; or 212 kg N2O/production period.

Together these equations yield:

(A31) N2Odirect + N2Ovolatilization = 1,692 + 212 = 1,904 kg N2O/production period.

Give that one unit of N2O has the same global warming potential as 310 units of CO2, manure N2O
emissions are equivalent to 590,240 kg CO2 per production cycle, or 651 tons CO2 per production
cycle.

Protein Supplement

We calculate GHG emissions in one pound of supplemental protein using soybean meal. According
to the American Soybean Association (2012), one bushel (sixty pounds) of soybean yields about
forty-eight pounds of soybean meal. Five-year average GHG emissions for soybeans between 1996
and 2000 are estimated as 15.1 pounds of CO2 per bushel (Field to Market, 2012). To produce the
96,000 pounds of soybean meal required by the typical farm in the 120-day period, GHG emissions
are estimated to be 96,000/48× 15.1 = 30,200 pounds CO2, or 15.1 tons CO2 equivalent.

CO2 from Energy Use

Ryan and Tiffany (1998) report fuel-related energy expenses of $10.24 per head for cow-calf
operators in 1995. We use the energy-use data breakdown from Ryan and Tiffany (1998): 6.07
gallons for diesel, 0.74 for gasoline, and 1.62 for LP gas, and 59.24 kWh for electric. After
converting all the units to BTU based on 124,884 BTU/gallon and 3,413 BTU/kWh, we have
758,048 BTU for diesel, 92,414 for gasoline, 202,312 for LP gas, and 202,186 for electric.

According to the conversion unit provided in table S1, GHG emissions from diesel, gasoline, LP
gas, and electric are 54.89, 64.80, 126.18, and 348.66 kg CO2 equivalent. Overall, CO2 emissions
per head for cow-calf operators are 1,088.55 kg CO2 equivalent. Given 400 head of cattle on our
example farm, farm energy use generates 435,420 kg, or 480 tons CO2 equivalent.

Use of Fertilizers (Nitrogen, Phosphorus, Potassium, Lime)

The price of N and P is 0.6 dollars per pound, obtained from district 2 (Southern Plains)
data accessible from http://agecoext.tamu.edu/resources/crop-livestock-budgets/by-district.html.
The ratio of N and P applied to the grass per acre in one production season on a representative
farm is 2.5:1.

Equivalent carbon emission for the production, packaging, storage, and distribution of N and P
takes the mean value of 1.3 kg CE/kg and 0.2 kg CE/kg (Lal, 2004, table 5).

Carbon Sequestration

Total GHG sequestration per year for Texas rangeland is 447 kg C per hectare (Potter et al., 1999),
or 180.90 kg C per acre.


