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Abstract

Most productivity indexes can be exhaustively decomposed into measures of technical
change and efficiency change. Estimating these components usually involves the use
of data envelopment analysis (DEA) or stochastic frontier analysis (SFA) models. This
paper shows how assumptions concerning technologies, markets and firm behaviour can
be used to frame these models. The paper explains that the assumptions underpinning
common DEA models are rarely, if ever, true. On the other hand, the assumptions un-
derpinning basic SFA models are almost always true. The parameters of basic SFA
models can be estimated using ordinary least squares and two-stage least squares meth-
ods. More complex SFA models can be estimated using maximum likelihood methods.
Unfortunately, the assumptions underpinning some of these more complex models are
generally not true. This has important implications for estimating the drivers of pro-
ductivity change. To illustrate, the paper uses common least squares and maximum
likelihood methods to estimate the drivers of productivity change in U.S. agriculture.
As expected, the different estimators lead to qualitatively different estimates of the effi-
ciency change components productivity change.



1. Introduction

Measures of productivity can be calculated without knowing anything about tech-
nologies, markets or behaviour. However, if these measures are to inform economic
decision-making, then, among other things, decision-makers need to know the maxi-
mum productivity that is technically feasible, and the reasons why some firms1 might
rationally choose to be less productive than others. Estimating the maximum produc-
tivity that is possible requires knowledge of technologies. Explaining the choices made
by firms involves knowledge of markets and firm optimising behaviour. This paper ex-
plains how different assumptions concerning technologies, markets and behaviour can
be used to guide the estimation of efficiency and productivity change.

The starting point is to define exactly what is meant by the term technology. In this
paper, a technology is defined as a technique, method or process for transforming inputs
into outputs (e.g., a technique for manipulating an organism’s genome, or a process
for turning grapes into wine). For all practical intents and purposes, it is convenient to
think of a technology as a book of instructions. It is common to make assumptions about
technologies by way of assumptions about what they can and cannot produce. Common
assumptions are:

A1: there is a limit to what can be produced using a finite amount of inputs (output
sets are bounded);

A2: a strictly positive amount of at least one input is needed in order to produce a
strictly positive amount of any output (inputs are weakly essential);

A3: if an input vector can be used to produce a particular output vector then it can also
be used to produce a scalar contraction of that output vector (outputs are weakly
disposable);

A4: if an output vector can be produced using a particular input vector then it can also
be produced using a scalar magnification of that input vector (inputs are weakly
disposable);

1In this paper, the term firm is used generically to refer to any decision-making unit, or the manager
of that decision making unit. Thus, a firm could be anything from an individual to an economy, and the
actions of firms are the actions of firm managers.
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A5: the set of outputs that can be produced using a given input vector contains all the
points on its boundary (output sets are closed); and

A6: the set of inputs that can produce a given output vector contains all the points on
its boundary (input sets are closed).

These weak assumptions are maintained throughout the paper and will not be subjected
to empirical testing. The main reason for maintaining these assumptions is that, if they
are true, then production possibilities sets can be represented using output and input dis-
tance metafunctions. Stronger versions of A3 and A4 that have important implications
for these functions are:

A7: it is possible to use the same inputs to produce fewer outputs (outputs are strongly
disposable); and

A8: it is possible to produce the same outputs using more inputs (inputs are strongly
disposable).

If A1–A8 are true, then the output and input distance metafunctions are nonnegative
(NN), nondecreasing (ND) and homogeneous of degree one (HD1) in outputs and inputs
respectively. This means they can be used to construct proper2 output quantity and input
quantity indexes. This paper shows how they can also be used to construct a new proper
total factor productivity (TFP) index. Special cases of this new index include the Färe-
Primont TFP index defined by O’Donnell (2012c) and the geometric Young (GY) TFP
index defined by O’Donnell (2011). Any one of these indexes can be used to make
reliable comparisons involving multiple firms and/or time periods (i.e., they are proper
multilateral/multitemporal indexes). If there are only two observations in the dataset,
then the GY TFP index collapses to the well-known Törnqvist index.

O’Donnell (2012a,d) shows that all proper TFP indexes can be decomposed into a
measure of technical change and various measures of efficiency change. The main aim
of this paper is to find weak assumptions that will enable researchers to obtain consistent

2In this paper, an output or input quantity index is said to be proper if and only if it satisfies the identity,
transitivity, proportionality, homogeneity, time-space reversal, circularity and weak monotonicity axioms
listed in O’Donnell (2012b). A TFP index is said to be proper if and only if it can be written as a proper
output quantity index divided by a proper input quantity index.
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estimates of these components. In practice, estimating technical change and efficiency
change usually involves estimating relevant characteristics of the output distance meta-
function. If it exists, the output distance metafunction can be written in the form of the
stochastic frontier analysis (SFA) model of Aigner et al. (1977) and Meeusen and van
den Broeck (1977). The composite errors in this well-known model account for the fact
that, inter alia, the functional form of the metafunction is rarely known, the variables
involved in the production process are usually measured with error, and firms may not
be technically efficient. This paper shows that consistent estimation of the components
of productivity change hinges on two assumptions:

E1: the composite errors are random variables with the same mean; and

E2: the composite errors are uncorrelated with the explanatory variables.

If A1–A6, E1 and E2 are true, then the ordinary least squares (OLS) estimator is a
consistent estimator of the slope parameters in the SFA model. Contrary to what is
often stated in the literature, no explicit assumptions concerning the functional form of
the unknown metafunction are required. However, if the deterministic component of the
SFA model is a poor approximation to the unknown metafunction, then E1 and/or E2
may not be true. Common statistical tests can be used to assess these assumptions. If
either E1 or E2 are not true, then the OLS estimator is biased and inconsistent. In this
case, other consistent estimators are usually available. For example, if E2 is not true,
then the explanatory variables are said to be endogenous. In this case, two-stage least
squares (2SLS) and generalised method of moments (GMM) estimators are consistent.

Assumptions A7, A8, E1 and E2 are weak by comparison with assumptions that
are usually made in the productivity literature. For example, in addition to A7 and A8,
growth accountants working in the tradition of Solow (1957) assume that the output
distance metafunction is a Cobb-Douglas (CD) function, technical change is Hicks neu-
tral (HN), the technology exhibits constant returns to scale (CRS), markets are perfectly
competitive, firms maximise profits, and all variables involved in the production process
are observed and measured without error. An important contribution of this paper is to
show that if all of these assumptions are true, then the new TFP index takes the form of
a GY TFP index.

The structure of the paper is as follows. Section 2 explains in more detail that as-
sumptions A1–A6 guarantee the existence of output and input distance metafunctions.
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This section also explains that the value of the output distance metafunction is an output-
oriented measure of technical efficiency, and that rational firms may be technically in-
efficient because they cannot choose technologies freely.

Section 3 explains how output and input distance metafunctions can be used to con-
struct a new proper TFP index. It then explains that common homogeneity, homothetic-
ity and Hicks neutrality assumptions have important implications for the specific form
of this index. For example, if technologies are homogeneous of degree r (HDr), then
the index can be written in terms of the output distance metafunction only. To improve
readability, the proofs of supporting propositions are relegated to the Appendix.

Section 4 defines several measures of efficiency that are of interest to decision-
makers. Among them are two measures of efficiency that appear to be new: a measure
of environmental efficiency that captures TFP shortfalls associated with changes in the
production environment, and a measure of firm efficiency that captures TFP shortfalls
associated with variables that are chosen by the firm. The measure of firm efficiency
can be exhaustively decomposed into well-known measures of technical, scale and mix
efficiency.

Section 5 derives TFP indexes associated with translog, Cobb-Douglas (CD), lin-
ear and locally-linear output distance metafunctions. Among other things, this section
points out that if assumptions A1–A8 are true, then the output distance metafunction
cannot be a translog function.

Section 6 explains that common assumptions concerning markets and firm behaviour
have important implications for levels of efficiency, as well as the form of the new TFP
index. For example, if output markets are not perfectly competitive, then some firms can
maximise revenue by operating inside the production frontier (i.e., by being technically
inefficient). This section also shows that if the growth accounting assumptions are true,
then the new TFP index takes the form of a GY index.

Section 7 shows that the data envelopment analysis (DEA) models of Banker and
Morey (1986), Banker et al. (1984) and Charnes et al. (1978) are all underpinned by
assumptions that are rarely, if ever, true. Specifically, these authors implicitly assume
that the output distance metafunction is a locally-linear function, and that all variables
involved in the production process are observed and measured without error. The fact
that these assumptions are rarely true means that most, if not all, DEA estimators are
inconsistent estimators of technical efficiency. This does not necessarily mean they are
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inconsistent estimators of technical efficiency change.
Section 8 explains that if the output distance metafunction exists, then it can be writ-

ten in the form of a stochastic production frontier. This section also explains that the
Battese and Coelli (1995) (hereafter, BC95) inefficiency specification has no informa-
tion content unless the researcher has made a poor choice of approximating functional
form. More seriously, this section points out that the Battese and Coelli (1992) (here-
after, BC92) inefficiency specification is theoretically implausible, so it generally leads
to biased and inconsistent estimates of both technical efficiency and technical efficiency
change.

Section 9 uses publicly-available U.S. farm data to compute a GY TFP index. Sev-
eral estimators are then used to decompose the index into measures of technical change
and efficiency change. The estimators include a selection of least squares and maxi-
mum likelihood estimators. The least squares estimators paint similar pictures of the
drivers of TFP change. The maximum likelihood estimators paint qualitatively different
pictures of the efficiency change components of productivity change.

Section 10 concludes with a comment on public policy-making and a suggestion for
further research.

2. Technologies and Metatechnologies

Consider a production process involving a finite number of variables. In this paper,
all variables are classified as either outputs, inputs, or characteristics of the produc-
tion environment. Outputs and inputs are variables that are always chosen by firms,
whereas characteristics of the production environment are variables that are never cho-
sen by firms. Let q ∈ RN∗

+ , x ∈ RM∗
+ and z ∈ RJ∗

+ denote vectors of outputs, inputs
and environmental variables respectively. The set of output-input combinations that are
possible using technology g in a production environment characterised by z is defined
as T (z,g) = {(x,q) : inputs x and technology g can produce outputs q in environment
z}. The maintained assumptions A1–A6 that were introduced in Section 1 are formally
defined as:

A1: P(x,z,g)≡ {q : (x,q) ∈ T (z,g)} is bounded ∀x ∈ RM∗
+ (output sets bounded),

A2: q≥ 0⇒ (0,q) /∈ T (z,g) (inputs weakly essential),
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A3: (x,q)∈ T (z,g) and 0≤ λ ≤ 1⇒ (x,λq)∈ T (z,g) (outputs weakly disposable),

A4: (x,q) ∈ T (z,g) and λ ≥ 1⇒ (λx,q) ∈ T (z,g) (inputs weakly disposable),

A5: P(x,z,g)≡ {q : (x,q) ∈ T (z,g)} is closed ∀x ∈ RM∗
+ (output sets closed), and

A6: L(q,z,g)≡ {x : (x,q) ∈ T (z,g)} is closed ∀q ∈ RN∗
+ (input sets closed).

If assumptions A1 and A5 are true then the output distance function of Shephard (1970,
pp. 207) exists.3 This function is defined as DO(x,q,z,g) = inf{δ > 0 : (x,q/δ ) ∈
T (z,g)}. If A3 is also true then (x,q)∈ T (z,g) if and only if DO(x,q,z,g)≤ 1 (Färe and
Primont, 1995, p. 22). This means that the production possibilities set and the output
distance function are equivalent representations of the technology. On the input side,
if A6 is true then the input distance function of Shephard (1970, pp. 206) exists. This
function is defined as DI(x,q,z,g) = sup{ρ > 0 : (x/ρ,q) ∈ T (z,g)}. If A4 is also true
then (x,q) ∈ T (z,g) if and only if DI(x,q,z,g) ≥ 1 (Färe and Primont, 1995, p. 22). It
follows that if A1–A6 are true then the production possibilities set and the output and
input distance functions are equivalent representations of the technology. In this paper,
a technology is said to be regular if and only if A1–A6 are true.

Technologies that have been developed in the past are generally4 still available today.
In this paper, the set of all technologies available in period t is referred to as the period-t
metatechnology. If we think of a technology as a book of instructions, then we should
think of a metatechnology as a library. In this paper, the period-t metatechnology is said
to be regular if and only if all technologies available in period t are regular.

Let Ωt denote the set of technologies available in period t. The set of output-input
combinations that are possible in period t and environment z is T t(z) ≡ ∪g∈Ωt T (z,g).
If the metatechnology is regular then equivalent representations of this metaset include
the output and input distance metafunctions. The output distance metafunction can be
defined as Dt

O(x,q,z) =ming∈Ωt DO(x,q,z,g) = inf{δ > 0 : (x,q/δ )∈ T t(z)}. The input

3Shephard (1970) does not explicitly allow for changes in technologies or production environments.
When there is no technical or environmental change, the z and g notation can be suppressed.

4Some technologies get lost. For example, Greek fire was a chemical formula that was used in the
Byzantine empire for military purposes. The formula was a too-closely-guarded state secret that has since
been lost.
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distance metafunction can be defined as Dt
I(x,q,z) = maxg∈Ωt DI(x,q,z,g) = sup{ρ >

0 : (x/ρ,q) ∈ T t(z)}.
The value of the output distance metafunction is a measure of output-oriented tech-

nical efficiency (OTE) that is usually attributed to Debreu (1951) and Farrell (1957).
In this paper, a firm is said to be technically efficient if Dt

O(x,q,z) = 1. As we shall
see in Section 6, rational firms may be technically inefficient because they operate in
imperfectly competitive markets and are unable to choose inputs and outputs freely. Ir-
respective of market structure, rational firms may also be technically inefficient because
of laws and regulations that prevent them from choosing technologies freely. For ex-
ample, from 1980–1997, the Cohen-Boyer patents were used by Stanford University
to prevent firms from using recombinant-DNA technology without the payment of a
license fee. Shortfalls in outputs, revenues and profits due to the choice of technol-
ogy are sometimes measured using metatchnology ratios. For example, output- and
input-oriented metatechnology ratios are OMR(x,q,z,g, t) = Dt

O(x,q,z)/DO(x,q,z,g)

and IMR(x,q,z,g, t) = DI(x,q,z,g)/Dt
I(x,q,z) respectively. If there are no environ-

mental variables involved in the production process and the metatechnology does not
change over time, then OMR(x,q,z,g, t) collapses to the metatechnology ratio defined
by O’Donnell et al. (2008, p. 236).

3. Regularity Assumptions and Measures of Productivity

In this paper, the TFP of a firm that uses inputs x to produce outputs q is defined
as T FP(x,q) ≡ Q(q)/X(x) where Q(q) is an aggregate output, X(x) is a aggregate in-
put, and Q(.) and X(.) are NN, ND and HD1 scalar aggregator functions (O’Donnell,
2012a,d).5 If it exists, the output (resp. input) distance metafunction is NN and HD1 in
outputs (resp. inputs). If outputs (resp. inputs) are strongly disposable then the output
(resp. input) distance metafunction is also ND in outputs (resp. inputs). In this case,
natural aggregator functions are Q(q) = Ds̄

O(x̄,q, z̄) and X(x) = Ds̄
I(x, q̄, z̄) where s̄ is a

fixed reference period, and x̄, q̄, and z̄ are fixed vectors of reference inputs, outputs and

5The NN, ND and HD1 properties are the distinguishing feature of the O’Donnell (2012a,d) definition.
Defining TFP as the ratio of an aggregate output to an aggregate input is an idea that can be traced back
at least as far as Jorgenson and Griliches (1967) and Nadiri (1970). However, Jorgenson and Griliches
(1967) are silent on the properties of aggregator functions, and Nadiri (1970, p. 1138, eq. (1)(b)) uses an
aggregator function that is not HD1.
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environmental variables.6 The associated measure of TFP is:

T FP(x,q) = Ds̄
O(x̄,q, z̄)/Ds̄

I(x, q̄, z̄). (1)

Common regularity assumptions concerning production possibilities metasets can have
important implications for output and input distance metafunctions and, therefore, this
measure of TFP. Some of the most common assumptions are listed in Table 1.7 In this
table, a(.), b(.), f (.) and h(.) are scalar-valued functions that have properties that are
consistent with the properties of T t(z). For example, if the metatechnology is HDr, then
f (x,z, x̄, z̄, t) is HDr in x and h(q,z, q̄, z̄, t) is homogeneous of degree 1/r in q.

[Table 1 near here]

Assumptions A7 (strong disposability of outputs) and A8 (strong disposability of inputs)
were discussed in Section 1. If Q(q) = Ds̄

O(x̄,q, z̄) and A7 is true, then QI(q, q̄) ≡
Q(q)/Q(q̄) is a proper output quantity index that compares the output vector q with
a reference vector q̄. Similarly, if X(x) = Ds̄

I(x, q̄, z̄) and A8 is true, then XI(x, x̄) ≡
X(x)/X(x̄) is a proper input quantity index that compares the input vector x with a
reference vector x̄. If T FP(x,q) is given by (1) and A7 and A8 are both true, then
T FPI(x,q, x̄, q̄) ≡ T FP(x,q)/T FP(x̄, q̄) is a proper productivity index that compares
TFP at the point (x,q) with TFP at the reference point (x̄, q̄).

Assumption A9 (homogeneity of degree r) says that if inputs are increased by one
percent then outputs can be increased by r percent. The metatechnology is said to
exhibit decreasing, constant, or increasing returns to scale as r is less than, equal to,
or greater than one. If the metatechnology is HDr then Dt

O(x,q,z) = Dt
I(x,q,z)

−r (e.g.
O’Donnell, 2012b, Proposition 6). This means the measure of TFP defined by (1) can be
written as T FP(x,q) = Ds̄

O(x̄,q, z̄)×Ds̄
O(x, q̄, z̄)

1/r (i.e., in terms of the output distance
metafunction only). The practical significance of this result is that we only need to
estimate the output distance metafunction in order to estimate TFP change.

6Balk (1998, p. 19) also uses the overbar notation to denote reference points. However, in statistics,
overbars are commonly used to denote sample means. Any confusion about this notation will, at worst,
lead researchers to use sample means as points of reference. In economics, unit vectors are also used as
reference vectors (e.g., Balk, 1998, p. 16, fn. 4).

7For proofs of D9–D13, see O’Donnell (2012b, Propositions 3 and 4) and Propositions 1–4 in the
Appendix of this paper.
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Assumption A10 (implicit Hicks output neutrality) says that the outputs that can
be produced using given inputs in a given environment in a given period are a scalar
multiple of the outputs that can be produced using the same inputs in the same environ-
ment in any other period. If technical change is implicit Hicks output neutral (IHON)
then marginal rates of technical transformation are time-invariant. On the other hand,
assumption A11 (output homotheticity) says that the outputs that can be produced in a
given period using given inputs in a given environment are a scalar multiple of the out-
puts that can be produced in the same period using any other inputs in any other environ-
ment. If a metatechnology is output homothetic (OH) then marginal rates of technical
substitution do not depend on outputs and marginal rates of technical transformation
do not depend on inputs. If technical change is IHON and the metatechnology is OH
then the output distance metafunction takes the form Dt

O(x,q,z) = Q(q)/F t(x,z) where
Q(q) = Ds̄

O(x̄,q, z̄) is an aggregate output and F t(x,z) is the maximum aggregate output
possible in period t using input vector x in an environment characterised by z (i.e., it is a
production function) (Proposition 5). Thus, we can write lnQ(q) = lnF t(x,z)−u where
u≡− lnDt

O(x,q,z)≥ 0 is an output-oriented technical inefficiency effect. This equation
is the bedrock of the production frontier literature. The measure of TFP defined by (1)
can also be written as T FP(x,q) = [F t(x,z)/X(x)]exp(−u) where X(x) = Ds̄

I(x, q̄, z̄).
This equation provides a basis for an output-oriented decomposition of productivity
change.

Assumption A12 (implicit Hicks input neutrality) says that the inputs that can pro-
duce a given output vector in a given environment in a given period are a scalar multiple
of the inputs that can produce the same outputs in the same environment in any other
period. If technical change is implicit Hicks input neutral (IHIN) then marginal rates
of technical substitution are time-invariant. Similarly, assumption A13 (input homoth-
eticity) says that the inputs that can produce a given output vector in a given environ-
ment in a given period are a scalar multiple of the inputs that can produce any other
outputs in any other environment in that period. If a metatechnology is input homoth-
etic (IH) then, again, marginal rates of technical substitution do not depend on outputs
and marginal rates of technical transformation do not depend on inputs. If technical
change is IHIN and the metatechnology is IH then the input distance metafunction takes
the form Dt

I(x,q,z) = X(x)/Ht(q,z) where X(x) = Ds̄
I(x, q̄, z̄) is an aggregate input and

Ht(q,z) is the minimum aggregate input capable of producing q in period t in an envi-
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ronment characterised by z (i.e., it is an input function) (Proposition 6). In this case, we
can write− lnX(x) =− lnHt(q,z)−u∗ where u∗≡ lnDt

I(x,q,z)≥ 0 is an input-oriented
technical inefficiency effect. This equation underpins the stochastic frontier model of
O’Donnell and Nguyen (2013, eq. 21). The measure of TFP defined by (1) can also
be written as T FP(x,q) = [Q(q)/Ht(q,z)]exp(−u∗) where Q(q) = Ds̄

O(x̄,q, z̄). This
equation provides a basis for an input-oriented decomposition of productivity change.

Finally, in this paper, if technical change is both IHON and IHIN then and only
then it is said to be Hicks neutral (HN). Similarly, if a metatechnology is both OH and
IH then and only then it is said to be homothetic (H).8 If technical change is HN and
the metatechnology is H and HDr, then Dt

O(x,q,z) = Q(q)/[At(z)X(x)r] where Q(q) =

Ds̄
O(x̄,q, z̄) is an aggregate output, X(x) = Ds̄

I(x, q̄, z̄) is an aggregate input, and At(z) ∝

1/Dt
O(x̄, q̄,z) is the Solow (1957) residual (Proposition 7).9 In this case, the measure

of TFP defined by (1) can be written as T FP(x,q) = At(z)X(x)r−1Dt
O(x,q,z). If firms

are technically efficient and the metatechnology exhibits CRS then the last two terms
vanish and T FP(x,q) = At(z) (i.e., the Solow residual can be interpreted as a measure
of TFP).

4. Measures of Efficiency

It is convenient at this point to introduce firm and time subscripts into the nota-
tion. Let xit = (x1it , . . . ,xMit)

′ and qit = (q1it , . . . ,qNit)
′ denote the inputs and outputs of

firm i in period t, and let T FPit ≡ T FP(xit ,qit) denote the associated measure of TFP.
Decision-makers are often interested in the relationship between TFP and various mea-
sures of efficiency. Measures of efficiency that are of particular interest include TFP
efficiency (TFPE), firm efficiency (FE), environmental efficiency (EE), output-oriented
technical efficiency (OTE) and output-oriented scale-mix efficiency (OSME). In this

8Elsewhere in the production economics literature, if a technology is both OH and IH then it is said
to be inversely homothetic (e.g., Färe and Primont, 1995, p. 70). This paper uses the term homothetic to
avoid any confusion with the use of the acronym IH.

9Solow (1957, p. 312) uses t to represent “any kind of shift in the production function” (his italics)
and writes A(t) instead of At(z).
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paper, the TFPE, FE, EE, OTE and OSME of firm i in period t are formally defined as:

T FPEit ≡ T FPit/T FP∗t , (2)

FEit ≡ T FPit/T FPt(zit), (3)

EEit ≡ T FPt(zit)/T FP∗t , (4)

OT Eit ≡ Dt
O(xit ,qit ,zit) (5)

and OSMEit ≡ FEit/OT Eit (6)

where T FP∗t denotes the maximum TFP that is possible in period t, and T FPt(zit) is the
maximum TFP that is possible in period t in an environment characterised by zit . TFPE
is an overall measure of productive performance defined by O’Donnell (2012d, p. 880).
As the name implies, FE is a measure of efficiency associated with variables that are,
at some point, chosen by firms (i.e., inputs, outputs and technologies). Similarly, EE
is a measure of efficiency associated with variables that are never chosen by firms (i.e.,
characteristics of the production environment). These two measures appear to be new.
If there are no environmental variables involved in the production process then EEit = 1
and T FPEit = FEit for all i and t. Finally, OTE is the Debreu-Farrell output-oriented
measure of technical efficiency discussed in Section 2, and OSME is the measure of
economies of scale and scope defined by O’Donnell (2012a). It is clear from equations
(2) to (6) that T FPEit = FEit ×EEit and FEit = OT Eit ×OSMEit . Thus, the TFPE of
firm i in period t can be written as T FPEit = EEit ×OT Eit ×OSMEit . This provides a
basis for an exact output-oriented decomposition of any proper TFP index.

5. Functional Forms and the Components of Productivity Change

The index that compares the TFP of firm i in period t with the TFP of firm k in pe-
riod s is defined as T FPIksit ≡ T FPit/T FPks. If Q(q)=Ds̄

O(x̄,q, z̄) and X(x)=Ds̄
I(x, q̄, z̄)

then

T FPIksit =
Ds̄

O(x̄,qit , z̄)
Ds̄

O(x̄,qks, z̄)
Ds̄

I(xks, q̄, z̄)
Ds̄

I(xit , q̄, z̄)
. (7)

If there are no environmental variables involved in the production process then this new
index collapses to the Färe-Primont TFP index defined by O’Donnell (2012c).

The regularity assumptions discussed in Section 3 have obvious implications for the
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mathematical form of (7). For example, if technical change is HN and the metatechnol-
ogy is H and HDr, then (7) can be written as

T FPIksit =

[
At(zit)

As(zks)

][
Dt

O(xit ,qit ,zit)

Ds
O(xks,qks,zks)

][
X(xit)

X(xks)

]r−1

(8)

where X(x) = Ds̄
I(x, q̄, z̄) and At(z) ∝ 1/Dt

O(x̄, q̄,z). If there are no environmental vari-
ables involved in the production process then this equation collapses to equation (19)
in O’Donnell (2012c). The first term on the right-hand side of (8) is a combined mea-
sure of technical change (hereafter abbreviated as dT) and environmental efficiency
change (dEE), the second term is a measure of output-oriented technical efficiency
change (dOTE), and the last term is a measure of output-oriented scale efficiency change
(dOSE). Thus, equation (8) says that the TFP index (7) can be decomposed as dTFP
= dT × dEE × dOTE × dOSE. The HN and H assumptions mean that the aggregator
functions Q(q) = Ds̄

O(x̄,q, z̄) and X(x) = Ds̄
I(x, q̄, z̄) are proportional to the output and

input distance metafunctions. This means that all input and output mixes are equally
productive and there are no mix efficiency change components in (8). For details, see
O’Donnell (2012a, Section 3.7).

In practice, it is common to assume that the output distance metafunction is a
translog, CD, linear or locally-linear function. To assume it is a translog function is
to assume it is a linearly homogeneous (in outputs) version of the translog function of
Heady and Dillon (1961, p. 205) and Christensen et al. (1973):

lnDt
O(xit ,qit ,zit) =

N∗

∑
n=1

αnt lnqnit− γt−
J∗

∑
j=1

ρ jt lnz jit−
M∗

∑
m=1

βmt lnxmit

−
J∗

∑
j=1

J∗

∑
k=1

ρ jkt lnz jit lnzkit−
M∗

∑
m=1

J∗

∑
j=1

φm jt lnxmit lnz jit

−
N∗

∑
n=2

J∗

∑
j=1

θn jt ln(qnit/q1it) lnz jit−
M∗

∑
m=1

M∗

∑
k=1

βmkt lnxmit lnxkit

−
N∗

∑
n=2

M∗

∑
m=1

δnmt ln(qnit/q1it) lnxmit

−
N∗

∑
n=2

N∗

∑
k=2

αnkt ln(qnit/q1it) ln(qkit/q1it) (9)
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where ρ jkt = ρk jt , φm jt = φ jmt , θn jt = θ jnt , βmkt = βkmt , δnmt = δmnt , αnkt = αknt and

∑n αnit = 1. This function cannot satisfy any of assumptions A7–A13. The fact that it
cannot satisfy A7 or A8 (the strong disposability properties) means it cannot be used to
construct proper quantity indexes.10 The fact that it cannot satisfy A9 (HDr) means that
it cannot be used on its own to construct the TFP index (7) (we also need the associated
input distance metafunction). The fact that it cannot satisfy A10 or A12 (the IHON and
IHIN properties) simply means that the researcher must select s̄ in order to construct (7).
Outputs will be strongly disposable (SD) if θn jt = δnmt = αnkt = 0 and αnt ≥ 0, inputs
will be SD if φm jt = δnmt = βmkt = 0 and βmt ≥ 0, the HDr property will be satisfied
if ∑n δnmt = ∑ j φ jmt = ∑k βkmt = 0 and ∑m βmt = r, and technical change will be HN if
αnt = αn and βmt = βm. If all of these SD, HDr and HN constraints are satisfied, then
Ds̄

O(x̄,qit , z̄) ∝ ∏n qαn
nit and Ds̄

I(xit , q̄, z̄) ∝ ∏m xλm
mit where λm ≡ βm/r. In this case, the TFP

index (7) takes the form:

T FPIksit =
N∗

∏
n=1

(
qnit

qnks

)αn M∗

∏
m=1

(
xmks

xmit

)λm

. (10)

O’Donnell (2012b) refers to these types of indexes as multiplicative indexes. Imposing
the SD, HDr and HN constraints means that the metafunction will also satisfy A11 and
A13 (the OH and IH properties). Thus, this multiplicative index can also be written in
the form of (8).

The log-linear function of Cobb and Douglas (1928) is a special case of (9) with
all second-order coefficients constrained to zero. In the CD case, the SD, HDr and HN
properties will be satisfied if αnt ≥ 0, βmt ≥ 0, ∑m βmt = r, αnt = αn and βmt = βm. It
almost goes without saying that if these constraints are satisfied then the TFP index (7)
can be written in the form of (8) or (10).

If the output distance metafunction is a linear function then it takes the form

Dt
O(xit ,qit ,zit) = α

′
t qit/(γt +ρ

′
t zit +β

′
t xit). (11)

The term linear derives from the fact that if Dt
O(xit ,qit ,zit) = 1 then α ′t qit = γt−ρ ′t zit−

10Translog functions are often used to motivate the use of Törnqvist indexes. Törnqvist indexes are
intransitive, so they are not proper indexes for multitemporal or multilateral comparisons. However, they
are still proper indexes for binary comparisons. For details, see O’Donnell (2012b).
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β ′t xit (i.e., the frontier is linear in the output, input and environmental variables). The SD
properties will be satisfied if αt ≥ 0 and βt ≥ 0, the HDr property cannot be satisfied for
r 6= 1 but will be satisfied for r = 1 if γt +ρ ′t zit = 0, and the HN property will be satisfied
if αt = α and βt = β . If all of these constraints are satisfied then Ds̄

O(x̄,qit , z̄) ∝ α ′qit

and Ds̄
I(xit , q̄, z̄) ∝ β ′xit . In this case, the TFP index (7) takes the form:

T FPIksit =

(
α ′qit

α ′qks

)(
β ′xks

β ′xit

)
. (12)

Balk (2008, p. 65) refers to these types of indexes as additive indexes. Imposing the
HD1 and HN constraints also means the metafunction is homothetic (H). Thus, the TFP
index (12) can also be written in the form of (8). However, the combination of linearity,
SD, HD1 and HN means there are no technical, environmental or scale efficiency change
components in (8) (i.e., linearity, SD, HD1 and HN⇒ dTFP = dOTE).

Finally, if the output distance metafunction is a locally-linear function then

Dt
O(xit ,qit ,zit) = α

′
itqit/(γit +ρ

′
itzit +β

′
itxit). (13)

As we shall see in Section 7, this assumption underpins the DEA approach to measur-
ing OTE. The term local derives from the fact that, unlike the parameters in (11), the
parameters in (13) vary across both firms and time periods (i.e., there is a potentially
different linear relationship between the variables in the neighbourhood of each data
point). Again, the SD properties will be satisfied if αit ≥ 0 and βit ≥ 0, the HDr prop-
erty cannot be satisfied for r 6= 1 but will be satisfied for r = 1 if γit +ρ ′itzit = 0, and the
HN property will be satisfied if αit =α and βit = β . If the HN constraint is satisfied then
(13) is still linear, but no longer locally linear. Thus, the combination of local-linearity,
SD, HD1 and HN means that the TFP index (7) can again be written in the form of (8)
or (12). However, once again, there are no technical, environmental or scale efficiency
change components in (8) (i.e., dTFP = dOTE).

6. Markets, Behaviour and Technical Efficiency

The output distance metafunction is a representation of the set of output-input com-
binations that are technically feasible. Beyond this, the metafunction provides no in-
formation about the output-input combinations that rational firms might choose. For

15



example, it does not explain why some firms can maximise revenue by operating inside
the production frontier (i.e., by being technically inefficient).11 These outcomes have a
lot to do with market structure. In the productivity literature, it is common to assume
that output and/or input markets are perfectly competitive, and that firms maximise rev-
enue and/or minimise cost.12

If output markets are perfectly competitive then output prices do not depend on the
outputs of any single firm (i.e., firms are price-takers). Let dit denote a vector of vari-
ables that can affect demand for the outputs of firm i in period t (e.g., if the firm produces
intermediate goods then these so-called demand shifters may include characteristics of
downstream production environments; if the firm produces final goods then they may
include consumer incomes and preferences). In general, the inverse demand correspon-
dence for firm i in period t is a function of the form p(qit ,dit) ≥ 0. If output markets
are perfectly competitive then ∂ pn(qit ,dit)/∂qkit = 0 for n = 1, . . . ,N and k = 1, . . . ,N,
where pn(qit ,dit) denotes the n-th element of p(qit ,dit).

To assume that firms maximise revenue is to assume that every firm in the population
actually maximises revenue. The period-t revenue maximisation problem of firm i is

Rt(xit ,dit ,zit) = max
q≥0
{p(q,dit)

′q : Dt
O(xit ,q,zit)≤ 1}. (14)

Let q∗it = qt(xit ,dit ,zit) denote the output vector that solves (14). To assume that firms
maximise revenue is to assume that qit = q∗it for all i and t. Importantly, the value
of the output distance metafunction (i.e., the level of OTE) depends on the structure
of, and possibly conditions in, downstream markets. To see this, it is useful to write
the n-th first-order condition (FOC) for a maximum as ∂ p(q,dit)/∂ lnqn + pn(q,dit)−
λ∂Dt

O(xit ,q,zit)/∂qn = 0. The complementary slackness condition is λ [Dt
O(xit ,q,zit)−

1] = 0. If output markets are perfectly competitive then ∂ p(q,dit)/∂ lnqn = 0, the opti-
mal solution for the Kuhn-Tucker multiplier is λ ∗it > 0, and the revenue maximising out-
put vector satisfies Dt

O(xit ,q∗it ,zit) = 1. Thus, to assume that firms maximise revenue and
that output markets are perfectly competitive is to assume that OT Eit ≡Dt

O(xit ,qit ,zit) =

11Leibenstein (1979) refers to this type of behaviour as X-inefficiency.
12For example, these assumptions underpin the growth accounting approach to measuring productivity

change, where they are used to motivate the computation of Törnqvist productivity indexes.
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1. Of course, if output markets are not perfectly competitive then ∂ p(q,dit)/∂ lnqn 6= 0
and λ ∗it = 0 is possible. If λ ∗it = 0 then the complementary slackness condition implies
Dt

O(xit ,q∗it ,zit) < 1. Thus, to assume that firms maximise revenue and that output mar-
kets are not perfectly competitive is to assume that OT Eit ≤ 1. For policy-makers, the
most important implication of this result is that if output markets are not perfectly com-
petitive then firms can be both revenue efficient and technically inefficient at the same
time.13 For econometricians, the most important implication is that if output markets
are not perfectly competitive then14

uit ≡− lnDt
O(xit ,qit ,zit) =U t(xit ,dit ,zit)≥ 0. (15)

This variable is the inefficiency effect in the SFA models of Aigner et al. (1977) and
Meeusen and van den Broeck (1977). Equation (15) says that this effect can be written
as a function of variables that are not directly involved in the production process (in this
case, demand shifters).

To make these ideas more concrete, consider a single-output firm and suppose the
inverse demand function is an additively separable function of the form p(qit ,dit) =

p(dit)− bqit , where p(.) is a nonnegative function and b ≥ 0. In this case, the n-th
FOC for a maximum is p(dit)−2bq−λ = 0. Moreover, the complementary slackness
condition is λ [q−F t(xit ,zit)] = 0. It is easily shown that:15

q∗it =

p(dit)/2b if p(dit)< 2bF t(xit ,zit),

F t(xit ,zit) otherwise.
(16)

13Mathematically, revenue efficiency is defined as REit ≡ p′itqit/Rt(xit ,dit ,zit). The firm is revenue
efficient if and only if REit = 1.

14Revenue maximisation means qit = q∗it = qt(xit ,dit ,zit). Substituting this into Dt
O(xit ,qit ,zit) yields a

function that depends on (xit ,dit ,zit) instead of (xit ,qit ,zit).
15There are three possible solutions to the complementary slackness condition. If q < F t(xit ,zit) and

λ = 0 and then the FOC ⇒ q = p(dit)/2b < F t(xit ,zit). If q = F t(xit ,zit) and λ = 0 then the FOC
⇒ q = p(dit)/2b = F t(xit ,zit). If q = F t(xit ,zit) and λ > 0 then the FOC⇒ λ = p(dit)−2bF t(xit ,zit)>
0⇒ p(dit)/2b > F t(xit ,zit) = q.
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If firms maximise revenue, then qit = q∗it and

uit =

ln(2b)+ lnF t(xit ,zit)− ln p(dit) if p(dit)< 2bF t(xit ,zit),

0 otherwise.
(17)

In this simple example, if output markets are perfectly competitive, then b = 0 and
uit = 0 (i.e., the firm is fully efficient). If output markets are not perfectly competitive
and demand conditions weaken to the point where p(dit)/2b < F t(xit ,zit), then the firm
will choose to operate below the frontier (i.e., at less than full capacity). If demand in
the output market is sufficiently strong, then the firm will operate on the frontier (i.e., at
full capacity).

Analogous results are available for the case where firms minimise cost. On the input
side, the inverse supply correspondence is a function of the form w(xit ,sit) ≥ 0 where
sit is a vector of variables that can affect the supply of inputs (e.g., characteristics of
upstream production environments). If input markets are perfectly competitive then in-
put prices do not depend on the amounts purchased by any single firm. Mathematically,
this means ∂wm(xit ,sit)/∂xkit = 0 for m = 1, . . . ,M and k = 1, . . . ,M, where wm(xit ,sit)

denotes the m-th element of w(xit ,sit). It is easily shown that if firms minimise cost
and input markets are perfectly competitive then OT Eit = 1. If firms minimise cost and
input markets are not perfectly competitive then OT Eit ≤ 1. Thus, if input markets are
not perfectly competitive then firms can be cost efficient and technically inefficient at
the same time. Moreover, the inefficiency effect in the SFA model can again be written
as a function of variables that are not directly involved in the production process (in this
case, supply shifters).

Finally, it is evident that different assumptions concerning markets and behaviour
can have important implications for measures of technical efficiency. By extension,
these assumptions can have important implications for the technical efficiency change
component of TFP change, and possibly the form of the TFP index (7). To see this more
clearly, and with a view to the empirical illustration in Section 9, suppose that output
and input markets are perfectly competitive, firms maximise profit (implying they also
maximise revenue and minimise cost), technical change is HN, and the output distance
metafunction is a CD function. These assumptions underpin the growth accounting ap-
proach to measuring productivity change. In this case, profit-maximising revenue and
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cost shares are r∗nit = αn and s∗mit = λm. If firms maximise profit then rnit = αn = r̄n and
smit = λm = s̄m where r̄n and s̄m are the sample mean revenue and cost shares respec-
tively. Thus, the TFP index (7) collapses to the GY TFP index defined by O’Donnell
(2011, p. 43):16

T FPIGY
ksit =

[
N∗

∏
n=1

(
qnit

qnks

)r̄n
][

M∗

∏
m=1

(
xmks

xmit

)s̄m
]
. (18)

Like all proper TFP indexes, the this index can be decomposed into a measure of techni-
cal change and various measures of efficiency change. For example, if technical change
is HN and the output distance metafunction is a CD function, then (18) can be decom-
posed as:

T FPIGY
ksit =

[
exp(γ1t)
exp(γ1s)

] J∗

∏
j=1

(
z jit

z jks

)ρ j
[

Dt
O(xit ,qit ,zit)

Ds
O(xks,qks,zks)

]

×
N∗

∏
n=1

(
qnit

qnks

)κn M∗

∏
m=1

(
xmit

xmks

)τm

(19)

where κn ≡ r̄n−αn and τm ≡ βm− s̄m. The first term is a measure of technical change,
the second term is a measure of EE change, the third term is a measure of OTE change,
and the remaining terms (on the second line) collectively measure OSME change (here-
after dOSME). Thus, equation (19) says that dTFP = dT × dEE × dOTE × dOSME.
If all of the growth accounting assumptions are true, then dOTE × dOSME = 1. TFP
indexes associated with locally-linear metafunctions can also be exhaustively decom-
posed in this way (e.g., O’Donnell, 2012d).

7. Data Envelopment Analysis

To estimate measures of technical efficiency and productivity change, it is common
to assume that outputs and inputs are strongly disposable and that the metafunction is
locally linear. DEA models are also underpinned by the assumption that all variables
involved in the production process are observed and measured without error.

Suppose that observations on I firms over t periods are available for estimating the

16The first term in square brackets is the GY output quantity index defined by O’Donnell (2012b, eq.
5).
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period-t metatechnology. If the metafunction is given by (13) (i.e., locally-linear), then
estimating the OTE of firm i in period t involves choosing the unknown parameters αit ,
γit , ρit and βit to maximise Dt

O(xit ,qit ,zit) = α ′itqit/(γit +ρ ′itzit +β ′itxit)≤ 1. The chosen
parameters must satisfy two sets of constraints. First, if the chosen parameters are used
to evaluate the metafunction at any data point in the sample, then the value obtained
must be no more than one (equivalently, if all the data are depicted on a scatter diagram,
every hyperplane that forms a part of the estimated frontier must envelop all the points
in the scatter). The second set of constraints are the SD constraints discussed in Section
5, namely αit ≥ 0 and βit ≥ 0. Thus, the researcher’s optimisation problem takes the
form:

D̂t
O(xit ,qit ,zit) = max

αit ,γit ,ρit ,βit
α
′
itqit/(γit +ρ

′
itzit +β

′
itxit) (20a)

s.t. α
′
itqks/(γit +ρ

′
itzks +β

′
itxks)≤ 1 for all k and s, (20b)

and αit ,βit ≥ 0. (20c)

Unfortunately, this constrained maximisation problem has an infinite number of solu-
tions. A unique solution is usually identified by setting α ′itqit = 1. With this normalisa-
tion, the researcher’s optimization problem can be written as:

D̂t
O(xit ,qit ,zit)

−1 = min
αit ,γit ,ρit ,βit

γit +ρ
′
itzit +β

′
itxit (21a)

s.t. γit +ρ
′
itzks +β

′
itxks−α

′
itqks ≥ 0 for all k and s, (21b)

α
′
itqit = 1, (21c)

and αit ,βit ≥ 0. (21d)

This is the DEA estimator of the reciprocal of OTE under the assumption of variable
returns to scale (VRS). Imposing the restriction γit +ρ ′itzit = 0 will ensure the estimated
metatechnology exhibits CRS; the restriction γit +ρ ′itzit ≤ 0 will ensure it exhibits non-
decreasing returns to scale (NDRS); and the restriction γit + ρ ′itzit ≥ 0 will ensure it
exhibits nonincreasing returns to scale (NIRS). Non-sample information concerning the
effects of changes in the production environment can be accommodated by adding sign
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restrictions on the elements of ρit .
LP (21) is a primal output-oriented DEA LP. Every primal LP has a dual form with

the property that if the primal and the dual LPs both have feasible solutions then the
optimised values of the two objective functions are equal. The dual form of LP (21) is:

D̂t
O(xit ,qit ,zit)

−1 = max
µ,λ

µ (22a)

s.t. µqnit−
I

∑
k=1

t

∑
s=1

λksqnks ≤ 0 for n = 1 . . . ,N, (22b)

I

∑
k=1

t

∑
s=1

λksxmks ≤ xmit for m = 1 . . . ,M, (22c)

I

∑
k=1

t

∑
s=1

λksz jks = z jit for j = 1 . . . ,J, (22d)

λ
′
ι = 1 (22e)

and λ ,µ ≥ 0 (22f)

where λ = (λ11, . . . ,λIt)
′ and ι = (1, . . . ,1)′. This LP seeks to scale up the output vector

while holding the input vector and characteristics of the production environment fixed.
The role of the constraints (22b)–(22f) is to define the boundary of the production pos-
sibilities set. Sign restrictions on the elements of ρit in the primal LP (21) will affect
the equality signs in the dual constraint (22d). For example, if the j-th element of ρit

is constrained to be nonpositive then the equality sign in the j-th constraint becomes
a “≥” sign. If there are no environmental variables involved in the production process
then (22d) is deleted from the problem altogether. In this case, the LP reduces to an
output-oriented version of an LP that can be traced back to Banker et al. (1984, p. 1084,
eq. 19). If the metatechnology exhibits CRS then (22d) and (22e) are replaced with

I

∑
k=1

t

∑
s=1

(λks +κks)z jks = z jit for j = 1, . . . ,J (23)

and
I

∑
k=1

t

∑
s=1

(λks +κks) = 1 (24)

where κ11, . . . ,κIt are unsigned. If there are no environmental variables and the metat-
echnology exhibits CRS then (22d) and (22e) are both deleted. In this case, the LP
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reduces to an output-oriented version of an LP that is usually attributed to Afriat (1972)
and Charnes et al. (1978). If the metatechnology exhibits NIRS then (22d) and (22e)
are still replaced with (23) and (24), but κ11, . . . ,κIt are constrained to be nonnegative.
Finally, if there are no environmental variables and the technology exhibits NIRS then
(22d) is deleted from the problem and (22e) is replaced with λ ′ι ≤ 1.

The different LPs described above are, in fact, different DEA estimators of (the re-
ciprocal of) OTE. These estimators are biased in finite samples. However, if the assump-
tions underpinning the relevant LPs are true, they are consistent estimators.17 Among
other things, this means that consistent estimates of technical, scale and mix efficiency
can be obtained using LPs of the type described in O’Donnell (2012d). Unfortunately,
if the assumptions underpinning the relevant LPs are not true, then the associated DEA
estimators are inconsistent. In practice, the assumptions underpinning DEA LPs are
rarely, if ever, true (e.g., output, input and environmental variables are almost always
measured with error, if not unobserved). It follows that most, if not all, DEA estimators
are inconsistent. This has important practical implications: as Simar and Wilson (2000,
pp. 56, 77) put it, “Consistency is an essential property for any estimator. Indeed, it
would be rather meaningless to use an estimator that does not satisfy consistency, since
even with an infinite amount of data, an inconsistent estimator cannot be expected to
give an accurate estimate of the quantity of interest . . . If the data contain noise, DEA
and FDH estimators will be inconsistent, and there seems little choice but to rely on
SFA.”

8. Stochastic Frontier Analysis

In most practical situations, the functional form of the output distance metafunction
is unknown. Furthermore, not all variables involved in the production process are ob-
served and measured without error. Without loss of generality, suppose the first M inputs
and the first J environmental variables are observed. If the output distance metafunction

17The prospect of getting more reliable estimates of OTE by increasing the number of observations in
the sample has led to interest in DEA bootstrapping methods. Relevant literature on bias, consistency and
bootstrapping can be accessed from Kneip et al. (2011).
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exists then it is a fact (not an assumption) that

lnQit = γt + f (x1it , . . . ,xMit ,z1it , . . . ,zJit)+ vit−uit (25)

where Qit is an observed aggregate output, γt is an unknown parameter, f (.) is a known
approximating function that is linear in the parameters, uit ≡ − lnDt

O(xit ,qit ,zit) ≥ 0 is
an unobserved inefficiency effect, and vit = lnQit − γt − f (x1it , . . . ,xMit ,z1it , . . . ,zJit)−
lnDt

O(xit ,qit ,zit) is an unobserved variable accounting for statistical noise. Statistical
noise comprises functional form errors (e.g., the possibility that the unknown output
distance metafunction is not, in fact, separable in outputs), omitted variable errors (e.g.,
the possibility that M < M∗) and measurement errors (e.g., failing to account for quality
by classifying goods and services into homogeneous groups). If any inputs, outputs or
environmental variables are random, then this noise component will generally also be
random. In this case, frontier production is also random and (25) is a panel data version
of the stochastic production frontier of Aigner et al. (1977). If inputs and environmental
variables are not random and there is no statistical noise, then (25) is a deterministic
production frontier of the type considered by Aigner and Chu (1968).

Characteristics of technologies, markets and behaviour have important implications
for the unobserved errors in (25). In the case of vit , for example, if the unknown output
distance metafunction is a CD function and the researcher just happens to choose a CD
approximating function, then

vit =

(
lnQ(qit)−

N∗

∑
n=1

αnit lnqnit

)
+

J∗

∑
j=J+1

ρ j lnz jit +
M∗

∑
m=M+1

βm lnxmit . (26)

The term in parentheses can be viewed as a measurement error, and the remaining two
terms are omitted variable errors. In the case of uit , if firms maximise revenue and
output markets are not perfectly competitive, then, irrespective of the properties of the
metatechnology, uit = U t(xit ,dit ,zit) ≥ 0 (i.e., the inefficiency effect is a time-varying
function of inputs, demand shifters and environmental variables).

In practice, there is generally no knowing for certain whether any assumptions con-
cerning technologies, markets or behaviour are true. The usual way forward is to make
such assumptions implicitly, by way of assumptions concerning the variables in (25).
Standard statistical tests are then used to assess whether these assumptions are true. The
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most common assumptions are:

E1 εit ≡ vit−uit is a random variable with E(εit) =−µ ≤ 0,

E2 Cov(εit ,xmit) =Cov(εit ,z jit) = 0 for all m = 1, . . . ,M and j = 1, . . . ,J,

E3 Var(εit) = σ2,

E4 Cov(εit ,εks) = 0 if i 6= k or t 6= s,

E5 vit is distributed as a normal random variable,

E6 uit is distributed as a half-normal random variable,

E7 uit = δ0 +∑
J
j=1 δ jz jit +ωit ≥ 0, and

E8 uit = exp[−η(t−T )]ui ≥ 0 where ui ≥ 0 and T is the last period in the sample.

The key assumptions are E1 and E2. Assumption E1 says the composite errors are
random variables with the same mean. E2 says they are uncorrelated with the observed
inputs and environmental variables. If these two assumptions are true then the OLS
estimator is an unbiased and consistent estimator of the slope parameters in (25). It
is common to implicitly assess the validity of E1 using standard model specification
tests (e.g., testing for fixed time and/or firm effects). Assumption E2 can be tested
using a Hausman test. If E2 is not satisfied, then consistent estimates of the slope
parameters in (25) can be obtained using, for example, two-stage least squares (2SLS).
The 2SLS estimator is a member of the family of instrumental variables estimators. In
practice, knowledge of markets and firm behaviour can be used to guide the selection of
instruments. For example, if input markets are perfectly competitive and firms minimise
cost, then input prices are likely to be strong instruments (perfect competition means
input prices are not affected by the actions of individual firms, and cost minimisation
means they tend to be highly correlated with input quantities).

Assumptions E3 to E6 are important because they have implications for the effi-
ciency of different econometric estimators. For example, if assumptions E1 to E4 are
all true, then the OLS estimator (of the slope parameters) is the most efficient estimator
in the class of linear unbiased estimators. If assumptions E1 to E6 are all true, then
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consistent and asymptotically efficient estimates can be obtained using the method of
maximum likelihood (ML).

Assumption E7 can be traced back to Battese and Coelli (1995). This assumption
is always true, but it generally brings nothing to the party unless the researcher has first
made a poor choice of functional form. To see this, suppose there is only one input,
one output, one environmental variable, and the log-metafunction is lnDt

O(xit ,qit ,zit) =

lnqit− γt−ρ lnzit−δ zit−β lnxit . In this case, E7 can be written as uit = δ zit +ωit ≥ 0
where ωit = γt +ρ lnzit +β lnxit− lnqit . If all variables are observed and the researcher
(correctly) chooses f (zit ,xit , t) = γt +ρ lnzit +δ zit +β lnxit , then (25) takes the form

lnqit = γt +ρ lnzit +δ zit +β lnxit + vit−uit (27)

where vit = 0. In this case, the ML estimator is consistent with or without E7 (i.e., E7
contains no additional information). On the other hand, if the researcher chooses a CD
approximating function then (25) takes the form

lnqit = γt +ρ lnzit +β lnxit + vit−uit (28)

where vit = δ zit . In this case, neither E1 nor E2 are true and, without E7, the ML
estimator is inconsistent. It is easily shown that (28) and E7 are together equivalent to
(27) (i.e., E7 contains additional information). In this case, if the researcher chooses a
CD approximating function and E7 is maintained, then the ML estimator is consistent.

Finally, assumption E8 is an implausible assumption that can be traced back to Bat-
tese and Coelli (1992). In practice, ui ≥ 0 is generally interpreted as a time-invariant
technical inefficiency effect. This is implausible because, given the definition of uit , it
implies there is no statistical noise (i.e., it implies that all variables involved in the pro-
duction process are observed, there is no measurement error, and the functional form
of the output distance metafunction is known). Even if ui is interpreted more broadly,
as a combined measure of technical inefficiency and statistical noise, E8 cannot be true
unless statistical noise is time-invariant. Thus, in practice, maintaining assumption E8
generally leads to biased and inconsistent estimates of OTE.
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9. Empirical Illustration

This section uses publicly-available panel data to estimate agricultural efficiency
and productivity change for I = 11 states in the northeastern U.S. for the T = 30 years
from 1960 to 1989.18 The main purpose is to illustrate the way in which non-sample
information concerning data, technologies, markets and behaviour can be used to guide
the estimation of efficiency and productivity change. Readers who are particularly in-
terested in U.S. agricultural productivity should see Ball et al. (2004) and/or O’Donnell
(2012d).

9.1. Data

The Economic Research Service (ERS) of the U.S. Department of Agriculture (USDA)
is one of the most reliable public sources of state-level data on production and input use
in U.S. agriculture. This section uses ERS data on N = 3 aggregate outputs (livestock,
crops, other outputs), M = 4 aggregate inputs (capital, labour, land, materials) and J = 1
environmental variable (temperature) to compute and decompose a GY TFP index. Like
most statistical agencies, the ERS uses quantity index formulas that do not satisfy a cir-
cularity axiom.19 This is a common source of statistical noise: failure to satisfy the
circularity axiom means, for example, that two states could produce exactly the same
outputs and yet the output quantity index would say that their outputs were different.20

Omitted variables (e.g., soil quality, rainfall) and measurement errors (e.g., aggregation
from the farm-level to the state-level) are additional sources of statistical noise in the
ERS accounts. This has obvious implications for the choice of estimator: recall that
“if the data contain noise, ... there seems little choice but to rely on SFA” (Simar and
Wilson, 2000, p. 77, fn. 14).

18The states are CT, DE, MA, MD, ME, NH, NH, NY, PA, RI and VT. The data are a subset of the data
used by O’Donnell (2012d). Only a subset of those data are used here because, at the time of writing, the
full dataset was not publicly available. Besides, this section is illustrative.

19The quantity indexes are implicit indexes computed by dividing values by EKS price indexes. More
details concerning the construction of the variables can be found in Ball et al. (1997, 2004).

20Other indexes that fail the circularity axiom include chained Törnqvist and EKS indexes. These
indexes are used by most statistical agencies, not just the ERS. For more details on index number axioms,
see O’Donnell (2012b).
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9.2. Technologies

In the case of U.S. agriculture, there is no reason to suppose that the period-t agri-
cultural production metatechnology cannot be represented by an output distance meta-
function. In that case, the relationship between the variables in the ERS dataset can be
written in the form:

lnQit = γ0 + γ1t +ρ lnzit +
M

∑
m=1

βm lnxmit + vit−uit (29)

where Qit is (proportional to) the GY quantity index in equation (18). If statistical noise
is random, then equation (29) is a CD stochastic production frontier. The noise com-
ponent in (29) accounts for the possibility that there is measurement error in the con-
struction of Qit , as well as the possibility that the output distance metafunction is not,
in fact, a CD function. There is no knowing whether these particular errors are random
or deterministic (or zero). However, the noise component also subsumes omitted vari-
able errors, and we can be confident that at least one omitted variable is random (e.g.,
rainfall). We can also be reasonably confident that agricultural inputs and outputs are
strongly disposable. Agricultural nonpoint source pollution, for example, is evidence
that inputs are strongly disposable. Thus, we can expect β1, . . . ,β4 ≥ 0.

9.3. Markets and Behaviour

Four generally-accepted facts about U.S. agriculture are that i) total land area is
fixed, ii) farmers are price-takers in input and output markets, iii) farmers make input
decisions before output prices are known, and iii) they choose variable inputs in order
to maximise expected profits. If land area is fixed, then, for all intents and purposes, it
can be treated as a characteristic of the production environment.21 If input prices and
characteristics of the production environment are known at the time input decisions are
made, then the period-t optimisation problem of farmer i is V = maxx≥0,q≥0{pe

it
′q−

w′itx : Dt
O(x,q,zit)≤ 1} where pe

it ≥ 0 is a vector of expected output prices. The output
and input vectors that solve this problem are q∗it = qt(pe

it ,wit ,zit) and x∗it = xt(pe
it ,wit ,zit).

21In the case of production frontiers, fixed inputs and measures of quality are mathematically indistin-
guishable from characteristics of the production environment. To see this, simply redefine the production
possibilities set as T (z,g) = {(x,q) : variable inputs x and fixed inputs z and technology g can produce
outputs q} or T (z,g) = {(x,q) : technology g and inputs x of quality z can produce outputs q}.
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If the farmer forms naive expectations (i.e., if pe
it = pi,t−1) and chooses qit = q∗it and

xit = x∗it then, among other things, xit = xt(pi,t−1,wit ,zit). In the present context, this
means we can expect inputs of capital, labour and materials to be functions of lagged
output prices and current period input prices, all of which are exogenous.

9.4. Parameters and Technical Efficiency

If assumptions E1 and E2 in Section 8 are true, then the OLS estimator is a consistent
estimator of the slope parameters in (29). Moreover, a consistent estimator of OTE is
a corrected least squares (CLS) estimator that can be traced back to Winston (1957,
p.283).22 The OLS parameter estimates and the average of the CLS OTE estimates
are reported in the first column of Table 2. The parameter estimates are plausible: all
of the coefficients have the expected signs and most are statistically significant at the
5% level; the coefficient of the time trend indicates that the sector has experienced
technical progress at a rate of 1.1% per annum, which is a slightly lower rate than the
estimated 1.8% per annum reported by Ray (1982); the estimated elasticity of scale is
slightly less than one, which implies that a solution to the expected profit maximisation
problem exists; and the coefficient of determination (not reported in Table 2) is 0.994,
indicating that the CD function provides an excellent approximation to the unknown
output distance metafunction. However, a Hausman test leads to the conclusion that
the log-capital, log-labour and log-materials variables are endogenous (the p-value was
less than 0.0001). Following the discussion in Section 9.3, this test was conducted
using the lagged aggregate output price and the four input prices as instruments. Eleven
observations (i.e., all the observations for 1960) were lost due to lagging. The practical
significance of the Hausman test result is that the OLS estimator is almost certainly
biased and inconsistent, meaning the parameter estimates and the associated average
OTE score reported in the first column of Table 2 are unreliable.

[Table 2 near here]

The second column of Table 2 reports 2SLS estimates. Again, the lagged aggregate
output price and four input prices were used as instruments. A test of over-identifying

22The CLS estimator of OT Eit is exp(êit− µ̂) where êit is the OLS residual and µ̂ = max{ê11, . . . , êIT}.
Thus, the CLS estimator of OT Eit/OT Eks does not depend on µ̂ .
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restrictions was used to confirm that these instruments are valid. The parameter esti-
mates are generally plausible: one coefficient does not have the expected sign but it is
statistically insignificant; the coefficient of the time trend indicates that the sector expe-
rienced technical progress at a rate of 1.2% per annum, which is only marginally higher
than the OLS estimate; the estimated elasticity of scale is 0.976 and significantly differ-
ent from one at levels of significance greater than 8.1% (the p-value is 0.081); and the
coefficient of determination is 0.957, indicating that the model still explains most of the
variation in observed log-outputs. One reason we might not use these 2SLS estimates to
draw inferences concerning efficiency and productivity is that we might firmly believe
that inputs are strongly disposable. In that case, we would want the estimated CD func-
tion to have the same properties as the metafunction it approximates. That is, we would
want the estimates of β1, . . . ,β4 to be nonnegative. The third column of Table 2 re-
ports 2SLS estimates that satisfy these nonnegativity restrictions. The restrictions were
imposed using a simple accept-reject algorithm proposed by Geweke (1986) (this par-
ticular algorithm was used because it is simple to implement in the SHAZAM software
package). The so-called restricted two-stage least squares (R2SLS) estimates are theo-
retically plausible, by construction. The R2SLS standard errors are much smaller than
the 2SLS standard errors, indicating that the information content in the SD constraints
is high. The CLS estimator was again used to estimate OTE. The R2SLS estimates
of OTE are on average higher than the 2SLS estimates, but still lower than averages
reported elsewhere in the literature [e.g., 0.88 by Morrison Paul and Nehring (2005)].23

The fourth column in Table 2 reports two-stage ML (2SML) estimates obtained
under the assumption that the noise and inefficiency effects are distributed as normal
and half-normal random variables respectively (i.e., assumptions E5 and E6). The first
stage was identical to the first stage in 2SLS: each endogenous explanatory variable was
regressed on all instrumental and exogenous explanatory variables, and the predictions
from these regressions were saved (in effect, OLS was used to estimate three input
demand equations). In the second stage, the endogenous variables in (29) were replaced
by their predicted values, and the resulting equation was estimated by ML. Thus, the

23Morrison Paul and Nehring (2005) used an estimator proposed by Battese and Coelli (1988) (here-
after, BC88). The BC88 estimator usually yields much higher estimates of OTE than the CLS estimator
used here.
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only difference between the 2SML estimator and the 2SLS estimator is that in the second
stage the model is estimated by ML instead of OLS. The 2SML parameter estimates are
generally very different from the 2SLS estimates, indicating that the information content
in E5 and E6 is high. However, the 2SML estimates of OTE are, on average, only
slightly lower than the least squares estimates. These 2SML efficiency estimates were
obtained using an estimator proposed by Battese and Coelli (1988) (hereafter BC88)
(this estimator is consistent with E5 and E6 and is hard-wired into the FRONTIER
software package).24

Finally, the columns labelled BC95 and BC92 report 2SML estimates obtained un-
der assumptions E7 and E8. The BC95 estimates are similar to the 2SML estimates,
indicating that the information content in E7 is small. The BC92 estimates are quite
different to all other estimates, reflecting the fact that E8 cannot be true. The BC95 and
BC92 estimates of OTE were obtained using estimators proposed by Battese and Coelli
(1995, 1992) (these estimators are also hard-wired into the FRONTIER package).25

9.5. TFP Change and Efficiency Change

Irrespective of characteristics of technologies, markets and behaviour, the GY TFP
index (18) is well defined. If the researcher writes the metafunction in the form of (29)
then the GY TFP index can be decomposed as:

T FPIGY
ksit =

[
exp(γ1t)
exp(γ1s)

][
exp(ρ lnzit)

exp(ρ lnzks)

][
exp(−uit)

exp(−uks)

] M

∏
m=1

(
xmks

xmit

)τm
[

exp(vit)

exp(vks)

]
(30)

where τm ≡ βm− s̄m. This is an empirical version of equation (19). The first term
measures technical change, the second term measures EE change, the third term mea-
sures OTE change, and, even though it is not a function of outputs, the third term (not
in brackets) measures OSME change. The last term measures the change in statistical
noise. Thus, equation (30) says that the GY TFP index can be decomposed as dTFP
= dT × dEE × dOTE × dOSME × dNOISE. Evaluating these components is straight-
forward: in this paper, the dT, dEE and dOSME components were evaluated using the

24If the 2SML parameter estimates are used to compute CLS estimates of OTE then the average is an
implausibly low 0.469.

25If the BC95 and BC92 parameter estimates are used to compute CLS estimates of OTE then the
averages are 0.427 and 0.553 respectively.
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parameter estimates reported in Table 2; dOTE was evaluated by computing changes
in estimates of OTE; and dNOISE was computed as a residual. Importantly, it is eas-
ily shown that if the CLS estimator is used to estimate OTE then dNOISE = 1. For
purposes of comparison, selected components were also estimated using DEA: in this
paper, DEA estimates of dT were obtained by computing changes in the maximum TFP
in each time period; dOTE was obtained by solving LP (22);26 dNOISE was set to one;
and dEE × dOSME was computed as a residual.

Table 3 compares (estimated) levels of TFP and efficiency in Connecticut (CT),
Delaware (DE) and Maryland (MD) in 1989 with corresponding levels in CT in 1961.
The interpretation of these estimates is straightforward. For example, the first entry in
the OLS column indicates that CT farmers were 47.5% more productive in 1989 than
they had been in 1961 (dTFP = 1.475).27 The next five entries in this column indicate
that this was due to a combination of significant technical progress (dT = 1.357), a
1.3% improvement in characteristics of the production environment (dEE = 1.013), a
7.6% increase in scale-mix efficiency (dOSME = 1.076), and a 0.2% fall in technical
efficiency (dOTE = 0.998). The noise component vanishes by construction. The differ-
ent components in (30) are transitive, so the estimates in Table 3 can be used to make
meaningful comparisons of TFP and efficiency across both states and time. For exam-
ple, the entries in the OLS column indicate that DE farmers were 39% more productive
than CT farmers in 1989 (dTFP = 2.050/1.475 = 1.390), mainly because they were
27.7% more scale-mix efficient (dOSME = 1.374/1.076 = 1.277).

[Table 3 near here]

Finally, the estimates reported in Table 3 reveal that different estimators lead to qual-
itatively different estimates of the efficiency change components productivity change.
To get a clearer picture of these differences, Figure 1 presents measures of TFP and
efficiency change in MD from 1961 to 1989 (cf. CT in 1961). Observe that the DEA
and OLS estimators paint plausible but quite different pictures of the drivers of TFP
change: the DEA estimator suggests that the only source of TFP growth was technical

26For computational simplicity, the output distance metafunction was assumed to be nonincreasing in
temperature. This is equivalent to treating temperature as an input.

27Note that there are no unknown parameters in (18), so estimates of dTFP do not depend on the choice
of econometric estimator. However, the components of TFP change are sensitive to this choice.
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progress, while the OLS estimator suggest that TFP growth was due to a combination of
technical progress and improvements in EE, OSME and OTE. The 2SLS and R2SLS re-
sults are similar to the OLS results, indicating that the endogeneity problem is relatively
unimportant when it comes to estimating the components of productivity change (in this
empirical application). The 2SML and BC95 estimators paint plausible but inaccurate
(i.e., noisy) pictures of TFP change. This suggests that the normality and half-normality
assumptions underpinning these estimators may not be true. Finally, the BC92 estimator
paints a noisy picture in which OTE is steadily, and implausibly, falling. This reflects
the fact that the assumptions underpinning this model cannot be true.

[Figure 1 near here]

10. Conclusion

Measuring TFP change is an important part of economic decision-making. Dif-
ferent decision-makers choose different measures of TFP change (i.e., different index
formulas) depending on what they value. For example, most national statistical agencies
construct TFP indexes by assigning zero weights to goods and services that do not have
a market price, and in so doing they place a value of zero on, for example, unpriced
household production (e.g., cooking, cleaning, childcare) and environmental bads (i.e.,
pollution). This paper considers a new TFP index formula that does not involve the use
of market prices: it only involves vectors of input quantities, output quantities and envi-
ronmental variables. The advantage of this index is that it can be computed when prices
are either unavailable (e.g., because they have not been collected) or negative (e.g., bad
outputs). The downside is that it cannot be computed without estimating a functional
representation of the metatechnology (e.g., an output distance metafunction). One of
the contributions of the paper is to show how non-sample information concerning tech-
nologies, markets and firm behaviour can be used to inform the estimation process. For
example, the paper points out that if inputs and/or outputs are strongly disposable, then
the output distance metafunction cannot be a translog function. The practical implica-
tion is that if inputs and/or outputs are strongly disposable, then a translog production
frontier model must contain an error term representing statistical noise. The paper also
shows that if the output distance metafunction is a Cobb-Douglas function, technical
change is Hicks neutral, markets are perfectly competitive, and firms maximise profit,
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then the new TFP index proposed in the paper collapses to the GY TFP index defined
by O’Donnell (2011). The GY TFP index is an index that uses sample average revenue
and cost shares as weights, so it assigns zero weights to goods and services that do not
have a market price.

Measuring (or estimating) TFP change is only a small part of productivity analysis.
A much larger and more difficult part is estimating the drivers of TFP change. Another
of the contributions of the paper is to show how the GY TFP index can be decomposed
into measures of technical change, environmental efficiency change, output-oriented
technical efficiency change, and output-oriented scale-mix efficiency change. The abil-
ity to identify these components has important implications for public policy-making: as
O’Donnell (2012d, p.873) puts it, if we cannot identify the drivers of TFP change, then
“policy-makers cannot properly assess whether the payoffs from improving the rate of
technical progress (e.g., through increased R&D expenditure) are more or less likely to
outweigh the payoffs from improving levels of either technical efficiency (e.g., through
education and training programs) or scale and mix efficiency (e.g., by using taxes and
subsidies to change relative prices).” This paper shows how non-sample information
concerning technologies, markets and firm behaviour can influence the accuracy with
which these components are estimated. In an empirical application to U.S. farm data,
least squares estimators painted the most plausible and accurate picture of the drivers of
TFP change.

Finally, the theory and empirical results presented in this paper suggest that the
DEA and BC92 estimators are biased and inconsistent estimators of OTE. This does not
necessarily mean they are biased and inconsistent estimators of OTE change. Further
investigation of this issue seems worthwhile.
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Appendix

Proposition 1. If a metatechnology is IHON then Dt
O(x,q,z) = Ds̄

O(x,q,z)/a(x,z, s̄, t).

Proof. Let κ = a(x,z, s̄, t). If IHON then Dt
O(x,q,z) = inf{δ > 0 : q/δ ∈ Pt(x,z)} =

inf{δ > 0 : q/δ ∈ κPs̄(x,z)} = inf{δ > 0 : q/(δκ) ∈ Ps̄(x,z)} = inf{(δκ)/κ > 0 :
q/(δκ) ∈ Ps̄(x,z)}= (1/κ) inf{(δκ)> 0 : q/(δκ) ∈ Ps̄(x,z)}
= Ds̄

O(x,q,z)/κ = Ds̄
O(x,q,z)/a(x,z, s̄, t)

Proposition 2. If a metatechnology is OH then Dt
O(x,q,z) = Dt

O(x̄,q, z̄)/ f (x,z, x̄, z̄, t).

Proof. Let κ = f (x,z, x̄, z̄, t). If OH then Dt
O(x,q,z) = inf{δ > 0 : q/δ ∈ Pt(x,z)} =

inf{δ > 0 : q/δ ∈ κPt(x̄, z̄)} = inf{δ > 0 : q/(δκ) ∈ Pt(x̄, z̄)} = inf{(δκ)/κ > 0 :
q/(δκ) ∈ Pt(x̄, z̄)}= (1/κ) inf{(δκ)> 0 : q/(δκ) ∈ Pt(x̄, z̄)}
= Dt

O(x̄,q, z̄)/κ = Dt
O(x̄,q, z̄)/ f (x,z, x̄, z̄, t)

Proposition 3. If a metatechnology is IHIN then Dt
I(x,q,z) = Ds̄

I(x,q,z)/b(q,z, s̄, t).

Proof. Let κ = b(q,z, s̄, t). If IHIN then Dt
I(x,q,z) = sup{ρ > 0 : x/ρ ∈ Lt(q,z)} =

sup{ρ > 0 : x/ρ ∈ κLs̄(q,z)} = sup{ρ > 0 : x/(κρ) ∈ Ls̄(q,z)} = sup{(κρ)/κ > 0 :
x/(κρ) ∈ Ls̄(q,z)}= (1/κ)sup{(κρ)> 0 : x/(κρ) ∈ Ls̄(q,z)}= Ds̄

I(x,q,z)/κ

= Ds̄
I(x,q,z)/b(q,z, s̄, t)

Proposition 4. If a metatechnology is IH then Dt
I(x,q,z) = Dt

I(x, q̄, z̄)/h(q,z, q̄, z̄, t).

Proof. Let κ = h(q,z, q̄, z̄, t). If IH then Dt
I(x,q,z) = sup{ρ > 0 : x/ρ ∈ Lt(q,z)} =

sup{ρ > 0 : x/ρ ∈ κLt(q̄, z̄)} = sup{ρ > 0 : x/(κρ) ∈ Lt(q̄, z̄)} = sup{(κρ)/κ > 0 :
x/(κρ) ∈ Lt(q̄, z̄)}= (1/κ)sup{(κρ)> 0 : x/(κρ) ∈ Lt(q̄, z̄)}= Dt

I(x, q̄, z̄)/κ

= Dt
I(x, q̄, z̄)/h(q,z, q̄, z̄, t)

Proposition 5. If a metatechnology is OH and technical change is IHON then

Dt
O(x,q,z)=Q(q)/F t(x,z) where Q(q)=Ds̄

O(x̄,q, z̄) and F t(x,z)= a(x̄, z̄, s̄, t) f (x,z, x̄, z̄, t).

Proof. IHON⇒Dt
O(x,q,z)=Ds̄

O(x,q,z)/a(x,z, s̄, t)⇒Dt
O(x̄,q, z̄)=Ds̄

O(x̄,q, z̄)/a(x̄, z̄, s̄, t).
OH ⇒ Dt

O(x,q,z) = Dt
O(x̄,q, z̄)/ f (x,z, x̄, z̄, t). Thus, IHON and OH ⇒ Dt

O(x,q,z) =

Ds̄
O(x̄,q, z̄)/[a(x̄, z̄, s̄, t) f (x,z, x̄, z̄, t)] = Q(q)/F t(x,z)

Proposition 6. If a metatechnology is IH and technical change is IHIN then

Dt
I(x,q,z)=X(x)/Ht(q,z) where X(x)=Ds̄

I(x, q̄, z̄) and Ht(q,z)= b(q̄, z̄, s̄, t)h(q,z, q̄, z̄, t).
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Proof. IHIN⇒Dt
I(x,q,z)=Ds̄

I(x,q,z)/b(q,z, s̄, t)⇒Dt
I(x, q̄, z̄)=Ds̄

I(x, q̄, z̄)/b(q̄, z̄, s̄, t).
IH⇒ Dt

I(x,q,z) = Dt
I(x, q̄, z̄)/h(q,z, q̄, z̄, t). Thus, IHIN and IH⇒ Dt

I(x,q,z) =

Ds̄
I(x, q̄, z̄)/[b(q̄, z̄, s̄, t)h(q,z, q̄, z̄, t)] = X(x)/Ht(q,z)

Proposition 7. If technical change is HN and the metatechnology is H and HDr then

Dt
O(x,q,z)=Q(q)/[At(z)X(x)r] where Q(q)=Ds̄

O(x̄,q, z̄), X(x)=Ds̄
I(x, q̄, z̄) and At(z)=

Ds̄
O(x̄, q̄, z̄)

2/Dt
O(x̄, q̄,z).

Proof. OH and IHON⇒ Dt
O(x,q,z) = Q(q)/F t(x,z) (A). IH and IHIN⇒ Dt

I(x,q,z) =

X(x)/Ht(q,z). HDr⇒Dt
O(x,q,z)=Dt

I(x,q,z)
−r. Thus, IH, IHIN and HDr⇒Dt

O(x,q,z)=

Ht(q,z)r/X(x)r (B). (A)⇒Dt
O(x, q̄,z)=Q(q̄)/F t(x,z) (C). (B)⇒Dt

O(x, q̄,z)=Ht(q̄,z)r/X(x)r

(D). (B) ⇒ Dt
O(x̄, q̄,z) = Ht(q̄,z)r/X(x̄)r ⇒ Ht(q̄,z)r = Dt

O(x̄, q̄,z)X(x̄)r (E). (C) and
(D)⇒ Q(q̄)/F t(x,z) = Ht(q̄,z)r/X(x)r⇒ F t(x,z) = X(x)rQ(q̄)/Ht(q̄,z)r (F). (E) and
(F) ⇒ F t(x,z) = X(x)rQ(q̄)/[Dt

O(x̄, q̄,z)X(x̄)r] (G). If At(z) = Ds̄
O(x̄, q̄, z̄)

2/Dt
O(x̄, q̄,z)

then HDr ⇒ At(z) = Ds̄
O(x̄, q̄, z̄)D

s̄
I(x̄, q̄, z̄)

−r/Dt
O(x̄, q̄,z) = Q(q̄)X(x̄)−r/Dt

O(x̄, q̄,z) =

Q(q̄)/[Dt
O(x̄, q̄,z)X(x̄)r] (H). (G) and (H) ⇒ F t(x,z) = X(x)rAt(z) (I). (A) and (I) ⇒

Dt
O(x,q,z) = Q(q)/[At(z)X(x)r]
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Table 1: Selected Assumptions Concerning Metasets and Metafunctions

Assumption Definition

A7 outputs strongly disposable (x,q) ∈ T t(z) and 0≤ q1 ≤ q⇒ (x,q1) ∈ T t(z)
A8 inputs strongly disposable (x,q) ∈ T t(z) and x1 ≥ x⇒ (x1,q) ∈ T t(z)
A9 homogeneous of degree r (x,q) ∈ T t(z)⇔ (λx,λ rq) ∈ T t(z) for all λ > 0
A10 imp. Hicks output neutral Pt(x,z) = a(x,z, s̄, t)Ps̄(x,z) for any s̄
A11 output homothetic Pt(x,z) = f (x,z, x̄, z̄, t)Pt(x̄, z̄) for any x̄, z̄
A12 imp. Hicks input neutral Lt(q,z) = b(q,z, s̄, t)Ls̄(q,z) for any s̄
A13 input homothetic Lt(q,z) = h(q,z, q̄, z̄, t)Lt(q̄, z̄) for any q̄, z̄

D7 outputs strongly disposable ∂Dt
O(x,q,z)/∂qn ≥ 0 for all n

D8 inputs strongly disposable ∂Dt
O(x,q,z)/∂xm ≤ 0 for all m

D9 homogeneous of degree r Dt
O(λx,q,z) = λ−rDt

O(x,q,z) for all λ > 0
D10 imp. Hicks output neutral Dt

O(x,q,z) = Ds̄
O(x,q,z)/a(x,z, s̄, t) for any s̄

D11 output homothetic Dt
O(x,q,z) = Dt

O(x̄,q, z̄)/ f (x,z, x̄, z̄, t) for any x̄, z̄
D12 imp. Hicks input neutral Dt

I(x,q,z) = Ds̄
I(x,q,z)/b(q,z, s̄, t) for any s̄

D13 input homothetic Dt
I(x,q,z) = Dt

I(x, q̄, z̄)/h(q,z, q̄, z̄, t) for any q̄, z̄
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Table 2: Parameter Estimates†

OLS 2SLS R2SLS 2SML BC95 BC92

γ0 intercept -1.861 2.211 0.553 12.361 12.637 1.743
(0.355) (3.464) (0.889) (8.715) (7.789) (4.234)

γ1 time 0.011 0.012 0.011 0.010 0.012 0.022
(0.001) (0.002) (0.001) (0.004) (0.004) (0.002)

ρ degree days 0.224 -0.232 -0.047 -1.229 -1.243 0.151
(0.044) (0.364) (0.100) (0.912) (0.818) (0.410)

β1 capital 0.105 0.001 0.045 0.261 0.276 -0.077
(0.039) (0.151) (0.037) (0.342) (0.317) (0.144)

β2 labour 0.216 -0.012 0.072 -0.889 -1.027 0.279
(0.028) (0.288) (0.054) (0.721) (0.643) (0.286)

β3 land 0.016 0.356 0.198 1.310 1.592 0.282
(0.023) (0.317) (0.090) (0.815) (0.723) (0.320)

β4 materials 0.659 0.632 0.670 0.249 0.104 0.314
(0.017) (0.172) (0.057) (0.427) (0.383) (0.183)

δ0 u-intercept -4.979
(5.212)

δ1 u degree days 0.002
(0.002)

η u time -0.010
(0.003)

Elasticity of scale 0.996 0.976 0.984 0.931 0.945 0.798
Average OTE 0.770 0.765 0.800 0.723 0.788 0.601

†Standard errors are in parentheses; underlining indicates significance at the 5% level; R2SLS estimates
of β1, . . . ,β4 are significant, by construction.
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Table 3: TFP and Efficiency Indexes: CT, DE & MD in 1989 cf. CT in 1961

Index DEA OLS 2SLS R2SLS 2SML BC95 BC92

Connecticut
dTFP 1.475 1.475 1.475 1.475 1.475 1.475 1.475
dT 1.726 1.357 1.395 1.355 1.340 1.392 1.839
dEE 1.013 0.987 0.997 0.933 0.932 1.009
dOSME 1.076 1.038 1.068 1.006 0.932 0.982
dEE × dOSME 0.839 1.089 1.024 1.065 0.938 0.869 0.991
dOTE 1.019 0.998 1.033 1.022 0.923 0.980 0.792
dNOISE 1 1 1 1 1.271 1.245 1.023

Delaware
dTFP 2.050 2.050 2.050 2.050 2.050 2.050 2.050
dT 1.726 1.357 1.395 1.355 1.340 1.392 1.839
dEE 1.081 0.923 0.984 0.654 0.651 1.053
dOSME 1.374 1.558 1.553 1.691 1.469 0.892
dEE × dOSME 1.122 1.484 1.438 1.528 1.106 0.957 0.939
dOTE 1.059 1.017 1.022 0.990 1.218 1.176 1.164
dNOISE 1 1 1 1 1.135 1.309 1.020

Maryland
dTFP 1.657 1.657 1.657 1.657 1.657 1.657 1.657
dT 1.726 1.357 1.395 1.355 1.340 1.392 1.839
ddEE 1.071 0.931 0.986 0.686 0.683 1.047
dOSME 1.188 1.402 1.342 2.334 2.442 0.791
dEE × dOSME 0.907 1.273 1.306 1.323 1.600 1.667 0.829
dOTE 1.059 0.959 0.910 0.925 0.815 0.627 1.084
dNOISE 1 1 1 1 0.948 1.139 1.003
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Figure 1: TFP and Efficiency Indexes: MD from 1961–1989 cf. CT in 1961
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