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Abstract

Cities have been investing heavily in recent years to augment their
water supply, focusing on either stormwater harvesting or desalination. A
more optimal strategy is to consider all sources of water jointly, thereby
allowing for hedging of supply risks. A portfolio model of urban water
supply is derived, consisting of reservoirs, stormwater harvesting and de-
salination, which takes into account the uncertainties of water flows and
rainfall as well as the relative costs of associated with the three types of
water sources. Calibrating the model to Melbourne’s existing water sup-
ply system, a significant result is that optimal contributions are dependent
on current water stocks, thereby providing insights into the appropiate-
ness of historical water augmentation decisions. It is found that, with
the exception of reservoirs, observed contributions deviate from optimal
contributions for stormwater harvesting and desalination with the results
suggesting a need for future investments to target stormwater harvest-
ing ahead of desalination technology. Moreover, the optimal portfolio is
found to vary throughout the year with desalination being the preferred
supplementary supply source to reservoirs during summer months, while
harvested stormwater is the preferred choice during winter. This result
has implications for augmentation investments to mitigate seasonal water
supply shortages.
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1 Introduction

The majority of cities around the world experience some form of water shortage,

where urban water demand exceeds supply now, in the near, or medium term.

Climate change is likely to exacerbate this problem further. This problem is

recognized by water managers as highlighted by the recent surge in investments

to secure future water supply (Rygaard et al., 2011). However, what type of

water supply infrastructure should be invested in is far from obvious, as the

optimal portfolio of assets is determined by current and projected precipitation

and inflow patterns as well as a number of other economic and natural factors.

The main contribution of this paper is to consider all water sources jointly,

by specifying a dynamic portfolio model to determine the optimal contributions

to total water supply from three types of assets: desalination or water recycling

plants, water reservoirs and stormwater harvesting systems. The flow of water

from each asset is modelled as a gamma distribution, which is characterized by

an average supply flow and a measure of uncertainty. To allow for differences

in water supply technologies the contributions of each asset to the total wa-

ter stock are adjusted by supply costs. A fundamental result of the paper is

that optimal contributions to total water stock depend on current water stock,

thereby providing insights into the appropriateness of historical water augmen-

tation decisions. Calibrating the model to an existing water supply system, the

results show that, with the exception of reservoirs, observed shares deviate from

optimal shares for stormwater harvesting and desalination. In particular, the

results suggest a need for future investments to target stormwater harvesting

ahead of desalination technology. Moreover, the optimal portfolio is found to

vary throughout the year with desalination being the preferred supplementary

supply source to reservoirs during summer months, while harvested stormwa-

ter is relative more important during winter. This result has implications for

1



augmentation investments to mitigate seasonal water supply shortages.

Importantly, the modelling framework takes into account a number of char-

acteristics that distinguish the three types of water supply assets. The water

supply from desalination and water recycling plants, while being subject to high

unit costs, can be guaranteed in as much as it is independent of rainfall. As a

result, investment in such assets may be considered as risk-free. The amount

of water harvested in large reservoirs and decentralized stormwater harvesting

systems, on the other hand, is dependent on technological as well as natural

factors, in particular inflows and rainfall. Importantly, the decentralized nature

of stormwater harvesting implies that rain may be captured when and where it

falls as opposed to reservoirs, which are subject to locality constraints. Further-

more, the high degree of impermeability of urban centres means that a much

larger proportion of rainwater may be harvested even after long periods of no

rain. By contrast, most of the rain falling in a reservoir catchment area after a

lengthy period of dry and warm weather may evaporate or be absorbed by the

vegetation and in the soil. Hence, reservoirs and stormwater harvesting systems

are likely to differ in the risk characteristics, whereas desalination plants bear

zero supply risk. By design stormwater harvesting systems are small in scale

compared with reservoirs, while desalination or recycling plants tend to produce

water on demand.

The management of urban water supply infrastructure is studied extensively

in the literature. Oezelkan et al. (1997) solve the problem of optimal investment

and management of a water reservoir under supply uncertainty, where water

flows are assumed to be normally distributed, while Feiring et al. (1998) optimize

water reservoir management for the dual purpose of supplying water and energy.

The economic effi ciency of alternative water supply assets is investigated by

Pickering et al. (2007) for rainwater tanks and Salibya et al. (2009) Fletcher et al.

(2007) for desalination technology. However, none of these water supply assets
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are mutually exclusive. Indeed a combination of different types of water supply

assets may be necessary to generate the desired amount of water cost effi ciently.

This is recognized by Kirsch et al. (2009) and Kasprzyk et al. (2009), who

investigate the role of tradeable water products in securing urban water supply in

the short and medium term. In situations where urban water markets are either

nonexistent or insuffi ciently developed, investing in water products to secure

urban water supply may not be a realistic option. With any investment to secure

future supply, important questions arise with respect to the optimal timing. In

this context, the use of real option theory has been advocated to determine the

optimal timing of investing in new reservoirs (Michailidis and Mattas, 2007)

or desalination plants (Borison et al., 2008; PC, 2011). In contrast, this study

determines the optimal composition of the urban water supply portfolio, which

should proceed issues associated with the timing of investment.

The rest of the paper is organized as follows. Section 2 derives closed-form

solutions for a three-asset model of water supply investments, where the flow

returns from two assets are subject to risk as modelled by correlated but not

identical gamma processes, following Wilks (1990) and Groisman et al. (1999).

In contrast to financial portfolio models based on Merton (1969) where the

optimal shares are constant, the optimal shares in the specified water model are

dependent on water stocks. This model is applied to Melbourne’s water system

that recently came under stress due to a major drought, which led to the decision

to build a large desalination plant. In Section 3, rainfall and reservoir inflow data

for Melbourne from 1915 to 2010 are used to estimate the moments of the gamma

distributions. These estimates are used in Section 4, along side parameter values

that characterize Melbourne’s water supply system, to calibrate the model and

contrast water shares for different supply situations. Concluding remarks are

provided in Section 5.
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2 A Dynamic Model of Water Assets

A dynamic portfolio model of urban water is developed that optimizes the supply

from three types of water sources. These consist of inflows into reservoirs with

water stock Sr = κrKr, where 0 ≤ κr ≤ 1 is a proportion of the fixed reservoir

capacityKr which allows for situations where reservoir levels are below capacity.

Two alternative sources of water are considered: harvested stormwater with

stock Sh = κhKh, where Kh is the annual capacity and 0 ≤ κh ≤ 1 represents

the proportion of the year when stormwater harvesting operates at full capacity.

The final alternative water source is desalinated or recycled water with stock

Sd = κdKd, where Kd represents total production capacity and κd allows for

the asset being under-utilized. An important feature of the model is the role of

uncertainty from inflows and from rain for the total water stock as well as for

cost heterogeneity when deriving an optimal portfolio of urban water supply.

2.1 Water Stock Dynamics and Consumption

The change in the stocks of reservoirs, harvested stormwater and desalination

between t and t+ dt, are specified respectively as

dSr = µrdt+ σrdzr

dSh = µhdt+ σhdzh (1)

dSd = µddt+ σddzd,

where {µr, µh, µd} represent the average flows per annum of the three water

sources, and {dzr, dzh, dzd} are random variables capturing the uncertainty in

water flows over time with the strength of the uncertainty determined respec-

tively by the annualized volatility parameters {σr, σh, σd} . The stochastic vari-

ables dzi, i = {r, h, d} are standardized to have 0 mean and variance dt. In

the analysis that follows, it is assumed that desalination provides a reliable
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supply of water that is not subject to the uncertainty of rainfall and water in-

flows in general. Formally this amounts to imposing the restriction σd = 0,

thereby effectively making water from desalination risk-free from the perspec-

tive of guaranteeing water flow. To allow for interactions amongst water flows

of reservoirs and stormwater harvesting within the time interval dt, the shocks

are assumed to be dependent, dzrdzh = ρdt, where ρ = σr,d/ (σrσd) , is the

annualized correlation coeffi cient and σr,d is the covariance between the two

shocks.

Given the water stocks of reservoirs (Sr) , harvested stormwater (Sh), and

desalination (Sd) , the total stock of water for a city with a given portfolio of

water supply at time t, W, weighted by supply costs, is defined as

W =
∑
i

c

ci
NiSi, i = {r, h, d} , (2)

where Ni is the number of assets of water stock Si held at time t, and cc
−1
i is

the ratio of the average unit price of water to the average total cost of supply

from asset i, which is assumed to be constant. Weighting the contribution to

total water stock from asset i by its cost of supply recognizes the heterogeneity

of water supply technologies and allows for the same amount of water supplied

from a cheaper source to make a greater contribution to total weighted water

stock than if it were supplied through a more expensive technology.

From (2) the change in the total water stock is given by

dW =
∑
i

c

ci
dNiSi +

∑
i

c

ci
dNidSi +

∑
i

c

ci
NidSi, i = {r, h, d} . (3)

The first two terms of this expression represent capital investments in water

supply as they incorporate changes to the number of assets, dNi, that draw from

a particular water source. To capture the trade-off between such infrastructure

expansions and short term consumption, capital investments needed to augment
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water supply in terms of consumption sacrifices in water are expressed as

∑
i

c

ci
dNiSi +

∑
i

c

ci
dNidSi = −ηxdt, i = {r, h, d} , (4)

where x (t) is water consumption and η is a level parameter. The parameter η

represents the rate of substitution between current consumption and the future

consumption stream that results from the augmentation of the water supply.

By combining (3) and (4), it follows that

dW =
∑
i

c

ci
µiNidt+

∑
i

c

ci
σiNidzi − ηxdt, i = {r, h, d} . (5)

Let the physical share of water supply from asset i be defined as

θi =
cNiSi
ciW

, i = {r, h, d} , (6)

where the θis satisfy the normalization restriction

θr + θh + θd = 1. (7)

Using (6) in (5) the change in the stock of water is now expressed in terms of

the shares

dW =
∑
i

µiθi
W

Si
dt+

∑
i

σiθi
W

Si
dz − ηxdt. (8)

As desalinated water in (1) is treated as risk-free, the change in the total

weighted water stock is rewritten as

dW = [arθrW + ahθhW − ηx] dt+
σr
Sr
θrWdzr +

σh
Sh
θhWdzh, (9)

which uses the share normalization restriction in (7), and

ar =
µr
Sr
− µd
Sd

(10)

ah =
µh
Sh
− µd
Sd
, (11)

representing respectively the excess flows relative to stock from reservoirs and

stormwater harvesting over desalination.
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To complete the specification of water consumption x, an iso-elastic util-

ity function with constant average risk aversion and zero transaction costs is

assumed

U(x) = η
x1−γ

1− γ , (12)

where γ is the constant relative risk aversion parameter. Consumers are risk

averse for γ > 0, exhibiting logarithmic preferences for γ = 1, and relatively high

risk aversion for γ > 1. Values of γ < 0, correspond to risk loving preferences.

2.2 Model Solution

The objective is to choose consumption (x) and the shares allocated to reservoirs

(θr) and stormwater harvesting (θh) to maximize the present value of the utility

stream from water consumption for a population growing at rate ξ and having

a discount rate of δ

max
x,θr,θh

E
∫∞
0

(
e(ξ−δ)tη

x1−γ

1− γ

)
dt

subject to (9) and W (0) = W0.

(13)

As the utility function in (12) and the water dynamics given in (9) are inde-

pendent of t, the solution of (13) is based on solving the following dynamic

programming problem (see, for example p.248 in Kamien and Schwartz (1981))

(δ − ξ)V = max
x,θr,θh

(
η
x1−γ

1− γ + [arθrW + ahθhW − ηx]VW

(14)

+
1

2

(
θ2r
σ2r
S2r

+ θ2h
σ2h
S2h

+ 2
σr,h
SrSh

θrθh

)
W 2VWW +O

(
dt2
))

,

where V is the maximum obtainable value from the maximization problem de-

fined above, and σr,h is the covariance of the stochastic processes defined in (1).

Maximizing with respect to x, expresses the optimal level of water consumption

as

x = [VW ]
− 1
γ . (15)
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Maximizing the right-hand side of (14) with respect to the shares associated

with reservoirs and stormwater harvesting, θr and θh, yields the linear system

of equations

arWVW +

(
σ2r
S2r
θr +

σr,h
SrSh

θh

)
W 2VWW = 0

asWVW +

(
σ2h
S2h
θh +

σr,h
SrSh

θr

)
W 2VWW = 0,

with solutions

θr = − [krar − kah]
VW

WVWW
(16)

θh = − [khah − kar]
VW

WVWW
, (17)

where

kr =
S2r

(1− ρ2)σ2r
, kh =

S2h
(1− ρ2)σ2h

, k = ρ
√
krkh. (18)

Substituting the optimality expressions (15), (16) and (17) for x, θr and

θh respectively, into the left hand-side of (14), yields the ordinary differential

equation

(δ − ξ)V =
γ

(1− γ)
η [VW ]

γ−1
γ − 1

2

(
kra

2
r − 2karah + kha

2
h

) V 2W
VWW

. (19)

A closed-form solution for (19) is given by

V (W ) = AW 1−γ , (20)

where A is a function of the parameters of the model. To derive A, equation

(20) is used to rewrite (19) as

((1− γ)A)
−1
γ =

(δ − ξ)
γη

− (1− γ)

γ2
1

2η

(
kra

2
r − 2karah + ksa

2
h

)
, (21)

which provides a solution for A.

The optimal control function for water consumption is obtained by using

(20) and (21) in (15), to give

x =
W

η

[
(δ − ξ)
γ

− (1− γ)

γ2
1

2

(
kra

2
r − 2karah + kha

2
h

)]
. (22)

8



Similarly, using (20) and (21) in (16) and (17) yields

θr = [krar − kah]
1

γ
(23)

θh = [khah − kar]
1

γ
, (24)

as the optimal contributions of reservoirs, θr, and stormwater harvesting sys-

tems, θh, to total water supply. The optimal solution for the share allocated to

desalination is θd = 1− θr − θh, by using the normalization condition (7).

2.3 Economic Interpretation

The optimal level of water consumption given in (22), and the optimal portfolio

shares for reservoirs in (23) and harvested stormwater in (24), are all functions

of the underlying parameters of the model. The properties of the model are

discussed for the special case where the stochastic processes governing reservoir

inflows and rainfall are independent, that is σr,h = 0. From (18) this means that

k = 0, resulting in the optimal shares in (23) and (24) simplifying to

θr =
ar
γ

S2r
σ2r

(25)

θh =
ah
γ

S2h
σ2h
. (26)

These expressions show that the larger is the average excess flow of water for

reservoirs and stormwater harvesting to desalination, the greater is the optimal

contribution to total stock from the riskier sources of water

∂θr
∂ar

,
∂θh
∂ah

> 0.

The magnitude of the optimal contributions in (25) and (26) are controlled

by the size of the risk associated with each water source. A water source with

the same excess water flow, but with higher risk in terms of reliability of water

flow, would optimally have a smaller role in the portfolio

∂θr
∂σr

,
∂θh
∂σh

< 0.
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Moreover, the more risk averse society is with respect to water supply, the

smaller are the contributions of the riskier sources of water relative to desalina-

tion
∂θr
∂γ

,
∂θh
∂γ

< 0,
∂θd
∂γ

> 0.

In the extreme case of infinite risk aversion the water portfolio is entirely based

on desalinated water, θd = 1, as

lim
γ→∞

θr, θh = 0.

An important feature of the optimal allocation of water is that the shares in

general vary over time as they are a function of their respective water stocks,

∂θr
∂Sr

,
∂θh
∂Sh

> 0.

This is in contrast to the optimal solution that arises from the Merton (1969)

portfolio model, where the shares are constant. A suffi cient condition for the

allocations to be time invariant is that
µr
Sr
,
µh
Sh
,
µd
Sd
,
σr
Sr
,
σh
Sh

are constant. How-

ever, by allowing these ratios to vary, the current model allows for dynamic

contributions over time to be a function of the initial conditions of water stocks.

The optimal consumption of water in (22) for the special case where inflows

and rain are independent, σr,h = 0, is

x =
W

η

[
(δ − ξ)
γ

− (1− γ)

2

(
S2r
γ2σ2r

a2r +
S2h
γ2σ2h

a2h

)]
, (27)

where the last term in round brackets represents the importance of risky water

supply assets in the water supply portfolio. Closer examination of this ex-

pression reveals that for optimal consumption to be positive, γ must exceed a

threshold, γmin, where γmin = 1 for δ = ξ and γmin > 1 when δ < ξ. Over the

range of positive consumption, γ > γmin, optimal consumption decreases in the

level of risk aversion
∂x

∂γ
< 0.
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Equation (27) also shows that consumption increases linearly with the total

stock of water in (2)
∂x

∂W
> 0.

Finally, increases in the contribution to the total water stock from risky supply

sources reduces optimal water consumption as

∂x

∂

(
S2r
γ2σ2r

a2r +
S2h
γ2σ2h

a2h

) < 0.

3 Empirical Inflows and Rainfall Distributions

The dynamic water flow equations in (1) that arise from either rainfall or in-

flows, are specified as functions of the mean parameters µi and the volatility

parameters σi. To estimate these parameters a flexible empirical distribution is

needed to capture the changing seasonal patterns of reservoir inflows and rain-

fall to capture flows of harvested stormwater over time. Following Wilks (1990)

and Groisman et al. (1999) a gamma distribution is specified

g (r;α, β) =

(
r

β

)α−1
exp

[
− r
β

]
1

βΓ [α]
, r ≥ 0, α, β > 0, (28)

where r represents either rainfall or inflows, and α and β represent the shape and

shift parameters respectively. Given the properties of the gamma distribution

the means and standard deviations of the flow equations in (1), are related to

the gamma parameters respectively as µi = αβ and σ2i = αβ2. An advantage

of this choice of distribution is that is provides robust estimates of its moments

as it takes into account extreme observations. The parameters of the gamma

distribution are estimated by maximum likelihood methods by maximizing the

following log-likelihood for a sample of T observations

lnL = ln g (rt;α, β)

= (α− 1) ln

(
rt
β

)
− rt
β
− lnβ − ln Γ [α] . (29)
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As the log-likelihood function in (29) is nonlinear in the parameters α and β,

an iterative gradient algorithm is used to compute the maximum likelihood

estimates where the derivatives of the gradients are computed numerically. All

computations are performed using GAUSS Version 10, with the optimizer based

on the software MAXLIK.

To estimate the parameters of the gamma distribution in (29) data on in-

flows to reservoirs, obtained from Melbourne Water, and on rainfall, obtained

from the Australian Bureau of Meteorology, are used. The data on inflows

consist of monthly reservoir inflows beginning January 1915 and ending Decem-

ber 2010, for the four major water reservoirs servicing Melbourne: Maroondah,

O’Shannassy, Upper Yarra and Thomson. Aggregating across the four reser-

voirs for each month yields an aggregate monthly data set of total inflows into

Melbourne’s reservoirs. A plot of total inflows into all reservoirs per month is

given in Figure 1 from 1915 to 2010.

The data on rainfall consist of daily precipitation from 1 January 1915 to

31 December 2010 for six weather stations across Melbourne: Lovely Banks,

Meredith, Portarlington, Toorourrong, Yan Yean and Wallaby Creek. These

stations are chosen for being High Quality Climate Sites, which are used for

climate projections by the Bureau of Meteorology.1 The daily data are converted

into monthly rainfall by aggregating the daily rainfalls within each month. The

monthly rainfall data are then averaged across the six stations for each month.

Figure 2 provides a plot of the average rainfall data per month across the six

sites from 1915 to 2010.

Table 1 provides some descriptive statistics on monthly reservoir inflows

and rainfall. Inflows and harvested stormwater exhibit large variations over the

year. August has the highest inflows into reservoirs with a monthly average of

1A map of HQCS Network in Victoria is available from the Australian Government Bureau
of Meteorology at http://www.bom.gov.au/climate/change/hqsites/; accessed 12/12/11).
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Figure 1: Reservoir water per month, in ML, total of 4 sites, January 1915 to
December 2010.
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Figure 2: Rainfall per month, in mm, average of 6 sites, January 1915 to De-
cember 2010.
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Table 1:

Descriptive statistics of reservoir inflows (in ML per month) and rainfall (in
mm per month), January 1915 to December 2010. Reservoir inflows are based

on total inflows per month across 4 sites. Rainfall based on average
precipitation per month across 6 sites.

Month Inflows (ML) Rainfall (mm)
Mean SD Min Max Mean SD Min Max

Jan. 24291 14335 5443 126692 44 26 1 127
Feb. 16912 9194 3684 64859 49 44 2 228
March 16356 8313 4472 50754 47 34 4 157
April 21133 17286 5548 135676 60 38 0 206
May 33270 26546 9484 149401 63 32 5 155
June 48583 33924 11203 260871 62 25 9 147
July 68868 34311 14902 163658 65 24 21 124
Aug. 90244 40075 21994 186336 72 28 16 160
Sept. 89291 35940 19267 206494 70 31 19 219
Oct. 78766 38781 10956 244167 74 35 12 182
Nov. 56952 30324 10411 162965 67 37 13 182
Dec. 39392 24408 5806 170884 58 35 2 167

Total p.a.(a) 584058 195424 163337 1272555 729 147 425 1060

(a) Based on annual data.

90244ML over the period 1915 to 2010, while March has the lowest inflows on

average of 16356ML. In the case of rainfall it is October that has the highest

precipitation and January the lowest. The total inflow across all months of the

year is 584058ML with a standard deviation of 195424ML, and for rainfall the

total per annum is 729mm with a standard deviation of 147mm.

The parameter estimates of α and β for the gamma distributions for reservoir

inflows and rainfall for each month are given Table 2. The estimates of the

shape parameter for both distributions for all months are α̂ > 1 implying a

hump-shaped distribution. The scale parameter estimates show some variation

over the months to reflect the change in the spread of the distributions in inflows

15



Table 2:

Parameter estimates for α and β of reservoir inflows (in ML per month) and
rainfall (in mm per month), January 1915 to December 2010. Reservoir

inflows are based on total inflows per month across 4 sites. Rainfall based on
average precipitation per month across 6 sites.

Month Inflows Rainfall
α β α β

Jan. 4.416 5500.828 2.185 20.335
Feb. 4.277 3954.134 1.373 35.469
March 4.648 3518.987 1.975 23.560
April 2.795 7561.184 2.359 25.357
May 2.541 13093.56 3.544 17.772
June 3.092 15712.92 5.715 10.766
July 4.136 16650.89 6.918 9.354
Aug. 4.961 18189.19 5.640 12.722
Sept. 6.196 14412.25 5.759 12.112
Oct. 4.205 18731.04 3.843 19.281
Nov. 3.778 15074.82 3.309 20.163
Dec. 3.691 10671.64 2.536 22.736

Total p.a.(a) 8.878 65790.561 23.802 30.615

(a) Based on annual data.

and precipitation over the year. These properties of the water distributions are

further highlighted in Figures 3 and 4 for inflows and rain respectively, which

give the empirical distributions for selected months over the period 1915 to 2010,

together with the estimated gamma distributions using the estimates in Table

2.
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Figure 3: Distribution of reservoir inflows (in ML) for selected months.

January April

July October
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Figure 4: Distribution of rainfall (in mm) for selected months.

January April

July October

4 Model Calibration

The model is calibrated to Melbourne’s water system. This system came under

stress due to a major drought between 1997 and 2009, which led to the decision

to build a large desalination plant in 2007. As consumption and reservoir levels

leading up to this decision as well as prior inflows and rainfall are known, this

presents an ideal setting to calibrate the model and identify the level of risk

aversion of the water authorities during the drought in particular.
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4.1 Choice of Model Parameter Values

The majority of Melbourne’s urban water comes from the four major reser-

voirs used in the empirical analysis of Section 3, with a total capacity of Kr =

1290000ML as shown in Table 3. In contrast to these large reservoirs, harvested

stormwater is stored in smaller basins that hold only a fraction of the annual

rainfall harvested. The parameter values for stormwater harvesting are based

on the characteristics of four pilot projects across Melbourne. The relative hold-

ing capacities as well as the effi ciency with which stormwater is harvested vary

widely between the four pilot projects. The total stormwater harvesting capac-

ity across the four sites is Kh = 1650ML, which assumes that storages undergo

on average three full-empty cycles a year (CWSC, 2011). The third asset in

the model is calibrated to Melbourne’s desalination plant, which has an annual

production capacity of Kd = 150000ML (MW, 2013).

The means (µi) and standard deviations (σi) of the flow equations in (1) are

computed using the parameter estimates from the gamma distribution in Table

2. In the case of reservoirs, the parameter estimates of the total annual inflows

given in the last row, are used. From the properties of the gamma distribution

in (28), the estimates for reservoirs are computed as µr = 8.878× 65790.561 =

584089ML, and σr =
(
8.878× 65790.5612

)0.5
= 196029ML. In contrast, the

decentralized and small-scale nature of stormwater harvesting systems, which

tend to have a faster stock renewal rate than reservoirs, is acknowledged by

using the monthly parameter estimates in Table 2 to calculate the mean and

standard deviation of harvested stormwater across each month of the year. This

is done in two steps. First, the monthly estimate of the scale parameter, β, is

annualized by scaling the estimate by 12. Second, the means and standard

deviations are then converted into a volume measure by multiplying the rainfall

estimate by catchment area and harvesting rate. Over the total catchment
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area for the four stormwater harvesting projects of 628ha, rainfall is harvested

at a rate of 15%, which is representative of the range of values reported in

CWSC (2011). In the case of January for example, the mean is computed as

µh = 2.185× 20.335× 12× 6.28× 0.05 = 167ML, while the standard deviation

is σh =
(

2.185× (20.335× 12)
2
)0.5
× 6.28 × 0.05 = 113ML. The estimate of

the correlation parameter is ρ = 0.475, which is calculated as the correlation

between monthly reservoir inflows and rainfall given in Figures 1 and 2 for the

total sample period 1915 to 2010. For desalination, the mean is taken as µd = 0

as the desalination plant has not produced water since being completed. As this

source of water is assumed to be riskless, the standard deviation is σd = 0.

The wholesale average price of water is c = 2.47 $/kL, including head-

works and transfers (MW, 2013). The total average costs of the reservoirs

and stormwater harvesting are respectively cr = 1.39 $/kL (MW, 2013) and

ch = 2.69 $/kL (CWSC, 2011). In the case of desalination the average total

cost used in this calibration is cd = 3.00 $/kL.2 The population growth rate

for Melbourne is ξ = 0.02 (ABS, 2011) and a low discount rate of δ = 0.01 is

chosen to reflect the long term planning horizon of urban water infrastructure

projects.

The relative risk aversion parameter γ, is calibrated for the year 2007, when

the State Government announced the construction of a desalination plant with

a capacity of 33% of remaining water stock to secure urban water supply (DSE,

2007). This announcement was made when the effects of a Millennium drought

from 1997-2009 were at their most severe with reservoirs at merely 30 per cent

capacity, κr = 0.3. This decision provides the opportunity to infer the level of

risk aversion of Melbourne’s water policy makers.

2This cost estimate is lower than the total average prices that Melbourne’s water authority
is currently charged for desalinated water, which ranges between $5.00/kL and $13.29/kL
depending on the volume ordered (PWC, 2011). However, it is unlikely that such high prices
were considered when the decsion was made to build the plant, especially given the cost of
desalinated water from the existing plant in Sydney, which is $2.29/kL (NWC, 2008).
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In terms of the model in Section 2, there are two types of shares. The first

set of shares are based on the optimal formulae given in (23) and (24) together

with the normalization (7). As these shares are cost invariant and hence only

based on physical flows, they are referred to as physical shares. The second set

of shares, denoted as θci , are referred to as economic shares, and allow for costs

according to

θci =
c

ci

(
θiW

p

W

)
, (30)

where θi is the physical share for a particular water source, W is defined in

equation (2) and W p represents the physical stock of water which is computed

as (??) with neutral cost weights, c = cr = ch = cd = 1. In which case the

33% announced desalination capacity corresponds to a share of θcd = 0.33. The

relative risk aversion parameter is determined by substituting (23) and (24) in

(7), together with (10) and (11), and using (30) to convert physical shares to

economic shares, resulting in

γ =
(kr − k)

(1− θcd)

(
µr
Sr
− µd
Sd

)
+

(kh − k)

(1− θcd)

(
µh
Sh
− µd
Sd

)
, (31)

where kr, kh, k are defined in (18). Given that reservoirs operated at 30% capac-

ity, Sr = κrKr = 0.3× 1290000ML = 387000ML. Assuming a comparable ca-

pacity utilization for stormwater harvesting systems, which in effect corresponds

to harvested stormwater being available 30% of the year, then the annual stock

of stormwater is Sh = κhKh = 495ML. Based on these water stocks and the

parameter values in Table 3 the implied risk aversion parameter is calculated as

γ = 15.3

Finally, the choice of the level parameter on consumption is calibrated to

η = 0.4. This yields an optimal consumption level under the base case parameter

3The physical share of desalination, θd, that is equivalent to the announced contribution
from desalination to the total water stock, θcd = 0.33, is calculated using equation (30) with
price and costs as given in Table 3. Based on these calculations, values for the risk aversion
parameter range from 14 < γ < 18, throughout the year.
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Table 3:

Base case parameter values for Melbourne.

Parameter Value Unit Description

Kr 1290000 ML Total reservoir capacity
Kh 1650 ML Harvested stormwater capacity
Kd 150000 ML Desalination plant capacity
κr 0.3 Proportion of fixed reservoir capacity
κh 0.3 Proportion of harvested stormwater capacity

628 ha Average stormwater catchment area per site
0.15 Stormwater harvesting rate

µr 584089 ML Mean reservoir inflow
µh 167 ML Mean harvested stormwater
µd 0 ML Mean flow from desalination
σr 196029 ML Standard deviation of reservoir inflows
σh 113 ML Standard deviation of harvested volume
σd 0 ML Standard deviation of desalination flow
ρ 0.475 Correlation coeffi cient
c 2.47 $/kL Wholesale price of water
cr 1.39 $/kL Total average cost of reservoir water
ch 2.69 $/kL Total average cost of harvested stormwater
cd 3.00 $/kL Total average cost of desalinated water
ξ 0.02 Population growth rate
δ 0.01 Rate of discount
γ 15 Implied constant parameter of risk aversion
η 0.4 Implied level parameter on consumption

values equal to 400000 ML, which corresponds to the level of consumption in

2006/2007 (MW, 2012).

4.2 Analysis

The parameter values described above are now used to compute the optimal

water shares for Melbourne. Optimal water shares are calculated for three water

supply situations: The first case corresponds to the crisis situation in 2007 when

water stocks were at an all time low, the second case is representative of the long
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run average water supply scenario and the third case characterizes the situation

in the beginning of 2013 when reservoirs were 80% full. Both physical shares

based on equations (23), (24) and (7), and economic shares based on (30), are

presented in the result Tables 4 to 6.

4.2.1 System in Crisis

Table 4 shows the resulting optimal physical and economic shares for the case in

2007 when water stocks were at an all-time low at 30% in both (κr = κh = 0.3) .

Ignoring supply costs the optimal share of desalination is 59%, with reservoirs

contributing only 35% and harvested stormwater just 6% for the year.

Within a year the share of harvested stormwater increases to up to 19%

during the winter months, which is a reflection that these are characterized by

high mean rainfall and low rainfall volatility. Taking the relatively high supply

costs for stormwater harvesting into account reduces the stormwater economic

shares to a maximum of 12% in July and an average of 4% over the year, which

is still significant given the negligible contribution of stormwater harvesting to

Melbourne’s water stock.

A comparison of the physical and economic shares for desalination reveals

that desalination costs of $3.00/kL yield optimal economic shares for desalina-

tion of 33%, which translates into the plant’s current production capacity of

around 33% or 150000ML that was announced at the time. Inspecting the eco-

nomic shares for reservoirs shows that in times of crisis reservoirs can only be

expected to contribute about 65% to total water stock due to their low stocks,

despite their relatively lower supply costs.

4.2.2 Average System

Table 5 shows the physical and economic shares of the three water supply assets

that would be optimal under normal conditions when reservoirs are about 65%
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Table 4:

Optimal contributions to total water stock from reservoirs, stormwater
harvesting and desalination technologies when water stocks are low ( 30% for

reservoirs and 30% for stormwater).

Month Physical Sharesa Economic Sharesb

θr θh θd θcr θch θcd

Jan. 0.39 0.01 0.60 0.67 0.00 0.33
Feb. 0.39 0.00 0.61 0.67 0.00 0.33
March 0.39 0.00 0.61 0.67 0.00 0.33
April 0.38 0.01 0.61 0.66 0.01 0.33
May 0.35 0.06 0.59 0.64 0.04 0.32
June 0.32 0.14 0.54 0.61 0.09 0.30
July 0.29 0.19 0.52 0.60 0.12 0.28
Aug. 0.31 0.12 0.57 0.62 0.07 0.31
Sept. 0.31 0.13 0.56 0.62 0.08 0.30
Oct. 0.35 0.05 0.60 0.64 0.03 0.33
Nov. 0.36 0.04 0.60 0.65 0.02 0.33
Dec. 0.38 0.02 0.60 0.66 0.01 0.33

Average(c) 0.35 0.06 0.59 0.64 0.04 0.32

(a) Physical shares (θi) based on (23), (24) and (7).

(b) Economic shares (θci ) are based on (30).

(c) Based on monthly averages in respective columns.
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full and stormwater harvesting systems can be expected to hold suffi cient water

80% of the time during a year. It is shown that, for the same level of risk

aversion of γ = 15, the optimal economic share of desalination is only about 4%

on average, as opposed to the 18% its production capacity actually represents in

the case of average water stocks prior to the building of the desalination plant,

which is computed as

150000

0.65× 1290000 + 0.8× 1650
= 0.18. (32)

This result suggests that there was an over-investment in desalination technology

when viewed against long run averages. However, this analysis does not take

a changing climate into account, under which inflows are expected to decline

significantly, making lower average reservoir stocks and even crisis level stocks

more likely and therefore desalination technology more attractive.

Inspection of the economic shares for desalination in Table 5 suggests that a

desalination plant may optimally provide around 5% to 8% of the water stock

for part of the year (October to May), while being switched off for the remain-

der of the year, when supply from stormwater harvesting is suffi ciently large

and secure to make an important contribution to total water stock. This is

also the time when reservoir stocks should be conserved for the dryer sum-

mer months by taking advantage of available stormwater. To fulfill this role

stormwater harvesting systems would need to have a total annual capacity of

around ((0.65× 1290000) + (0.8× 1650))×0.28 ≈ 235000, where 0.28 is the op-

timal economic share for stormwater for August in Table 5. From the last row

of Table 5 corresponding to θch, stormwater harvesting could on average repre-

sent about 10% of total water stock. Both of these values suggest that future

investments in water supply augmentations should target stormwater harvest-

ing projects ahead of desalination technology. However, this conclusion may

change if augmentation investments are specifically made to overcome seasonal
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Table 5:

Optimal contributions to total water stock from reservoirs, stormwater
harvesting and desalination technologies for average water stocks ( 65% for

reservoirs and 80% for stormwater).

Month Physical Sharesa Economic Sharesb

θr θh θd θcr θch θcd

Jan. 0.84 0.02 0.14 0.92 0.01 0.07
Feb. 0.83 0.00 0.17 0.92 0.00 0.08
March 0.85 0.00 0.15 0.93 0.00 0.07
April 0.83 0.03 0.14 0.91 0.02 0.07
May 0.77 0.14 0.09 0.87 0.08 0.05
June 0.62 0.38 0.00 0.79 0.21 0.00
July 0.50 0.50 0.00 0.72 0.28 0.00
Aug. 0.68 0.32 0.00 0.82 0.18 0.00
Sept. 0.66 0.34 0.00 0.81 0.19 0.00
Oct. 0.75 0.15 0.10 0.87 0.08 0.05
Nov. 0.78 0.11 0.11 0.88 0.06 0.06
Dec. 0.82 0.05 0.13 0.91 0.03 0.06

Average(c) 0.74 0.17 0.09 0.86 0.10 0.04

(a) Physical shares (θi) based on (23), (24) and (7).

(b) Economic shares (θci ) are based on (30).

(c) Based on monthly averages in respective columns.

shortages.

4.2.3 Abundant Water

Since the desalination plant was completed in 2012 it has not added any water

to Melbourne’s supply system, due to high levels in reservoirs at around 80%

of capacity. Setting κr = 0.8 and assuming that stormwater harvesting systems

always have suffi cient water stocks, κh = 1.0, Table 6 shows that the optimal

contribution from desalination is indeed zero for every month of the year. On

average, the optimal contribution by reservoirs is 88% to total water stock with
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the remainder supplied through harvested stormwater. The optimal stormwater

capacity in abundant water systems is greater than under average conditions as

it should be able to deliver up to 1/3 of total supply in some months thereby

reducing the demand on reservoir water.

5 Concluding Remarks

Worldwide, cities increasingly struggle to meet the demand for water from con-

ventional sources as urban populations continue to grow and inflows into reser-

voirs decline. In this environment, one may think of a portfolio of water supply

assets to augment future water supply. Investment options include large cen-

tralized infrastructure projects, capable of producing water at any time and

decentralized infrastructures that capitalize on greater predicted future varia-

tion in rainfall.

In this paper, a general framework was developed to determine the optimal

water consumption and contribution to total water supply from conventional and

alternative sources by using a continuous-time dynamic model of long-term opti-

mal portfolio allocation across alternative water assets, consisting of reservoirs,

harvested stormwater and desalination. Water sourced from water reservoirs

and harvested stormwater are subjected to inflow and precipitation volatility,

whereas the flow from desalination is not weather related and thereby consid-

ered as riskfree. Important features of the framework consist of the specification

for reservoir inflows and rainfall as gamma distributions, and allowance for cost

heterogeneity across all water assets. A closed-from solution of the theoreti-

cal model was shown to exist for optimal consumption and optimal individual

contributions from the three types of water supply assets to total water stock

investigated.

The properties of the model were investigated using calibration methods
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Table 6:

Optimal contributions to total water stock from reservoirs, stormwater
harvesting and desalination technologies when water stocks are high ( 80% for

reservoirs and 100% for stormwater).

Month Physical Sharesa,c Economic Sharesb,c

θr θh θd θcr θch θcd

Jan. 0.97 0.03 0.00 0.99 0.01 0.00
Feb. 1.00 0.00 0.00 1.00 0.00 0.00
March 1.00 0.00 0.00 1.00 0.00 0.00
April 0.96 0.04 0.00 0.98 0.02 0.00
May 0.82 0.18 0.00 0.90 0.10 0.00
June 0.53 0.47 0.00 0.73 0.27 0.00
July 0.38 0.62 0.00 0.66 0.34 0.00
Aug. 0.60 0.40 0.00 0.78 0.22 0.00
Sept. 0.57 0.43 0.00 0.76 0.24 0.00
Oct. 0.82 0.18 0.00 0.90 0.10 0.00
Nov. 0.86 0.14 0.00 0.92 0.08 0.00
Dec. 0.94 0.06 0.00 0.97 0.03 0.00

Average(d) 0.79 0.21 0.00 0.88 0.12 0.00

(a) Physical shares (θi) based on (23), (24) and (7).

(b) Economic shares (θci ) are based on (30).

(c) A non-negativity restriction was imposed on some shares that are reported
as being zero.

(d) Based on monthly averages in respective columns.
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based on parameter values characterizing the Melbourne water supply system,

which has recently come under pressure due to a major drought that led to the

decision to invest in a large desalination plant to boost Melbourne’s water sup-

ply. By accounting for different costs of supply, the results showed how optimal

contributions of each asset to the total water stock depend on existing water

stocks, thereby providing insights into the appropriateness of historical water

augmentation decisions. When assessed against average water stocks, rainfall

and inflows, it was shown that the optimal contribution by reservoirs is close

to current levels, whereas harvested stormwater should optimally constitute a

larger share in the portfolio than is currently the case.

Finally, the analysis provided insights into the importance of various wa-

ter supply assets throughout the year, with desalination technology being the

preferred supplement to reservoir water during the summer months when mean

rainfall is low and subject to high variation. During winter it is harvested

stormwater that is the preferred alternative supply as it would optimally pro-

vide a significant share of the total water stock, thereby helping to conserve

reservoir water for the dryer summer months. However, the current capacity of

Melbourne’s stormwater harvesting systems is insuffi cient to fulfill this role.
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