 No other use, including posting to another Internet site, is permitted without permission from the copyright Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. -К!!!!qеu!ezsns ano әגnsuə dןəН

This document is discoverable and free to researchers across the

The World's Largest Open Access Agricultural \& Applied Economics Digital Library

Climate change mitigation as catastrophic risk management

Simon Dietz
 London School of Economics and
 Political Science

Let's go back to the Stern Review

- Landmark report reveals apocalyptic cost of global warming

Source: Observer newspaper, one day before publication of the Stern Review

Emissions path	Present value of total climate damage $(\%$ of global GDP)	Marginal damage cost of CO2 (\$US/tCO2e)
Business as usual	$11[5,20]$	85
Stabilise greenhouse gases at 550ppm	1.1	30
Stabilise at 450ppm	0.6	25

What did the Stern Review's conclusions depend on?

The critics ($\delta=1.5 \%, \eta=2$, no

Martin Weitzman: Stern was right for the wrong reasons; fat tails are the right reason

A very quick excursion: what does IPCC AR5 say about climate sensitivity?

Martin Weitzman's Dismal Theorem

- Consider a two-period model with uncertain future consumption, and normalise current consumption to 1:

$$
W=U(1)+\beta \cdot E U(C)
$$

- How much should we be willing to give up to increase future consumption by one sure unit?

$$
M=\beta \cdot \frac{E U^{\prime}(C)}{U^{\prime}(1)}
$$

Martin Weitzman's Dismal Theorem

- Suppose:

1. Relative risk aversion >0 as $C \rightarrow 0^{+}$
2. Uncertain consumption growth $y \equiv s Z+\mu$ is given by

$$
h(y \mid s)=\left(\frac{1}{s}\right) \cdot f\left(\frac{y-\mu}{s}\right)
$$

μ is known but $s(\approx$ climate sensitivity) is itself uncertain
3. Jeffreys' prior on $s, p(s) \propto s^{-k}, k>0$ and observations of y are finite
3. Then the posterior distribution of $y, q\left(y \mid \boldsymbol{y}_{n}\right)$ is fattailed
4. Moreover $M=+\infty$!

The Dismal Theorem is a reductio ad absurdum

- Of course we're not willing to pay an infinite amount to increase future consumption
- Ways to make the Dismal Theorem go away:
- Realise that total WTP can exist even if marginal WTP does not
- Use a different prior on s
- Bound the problem somehow, e.g. bound the utility function, or WTP

Nonetheless it has contributed to changing the narrative

Climate change mitigation as
planetary
insurance

Re-doing the Stern Review analysis with fat tails

Re-doing the Stern Review with fat tails

Scenario		Marginal damage cost of CO_{2} on BAU (\$US/tCO2e)		
Tails	Discount rate	5%	Mean	95%
Fat	Stern	21	445	1862
Thin	Stern	10	138	369
Fat	High	5	346	1741
Thin	High	8	101	141

But these results depend on the curvature of the damage function

That's unfortunate, since the curvature of the damage function cannot be pinned down by empirical evidence

Which of these do you believe is more likely?

We also see, with perhaps greater clarity than before, the limits of the standard tools of expected utility theory...

Results become sensitive to how and where WTP is bounded (Weitzman, 2009); for example...

Source: Dietz
(2011) in

Climatic
Change
Fig. 4 Expected loss in social welfare as a function of the upper bound on damages (ϕ)

What about structural uncertainty? What are the implications for policy choice?

- Expected utility theory requires unique estimates of probability, most plausibly subjective in nature (de Finetti, Ramsey and Savage)
- We don't appear to have those for climate sensitivity at the very least
- Options

1. Choose the best estimate (the 'scientist's solution')
2. Aggregate the various estimates into a single estimate (the 'Bayesian solution')
3. Do something other than maximise expected utility

An alternative: the smooth model of decision making under ambiguity

- Klibanoff, Marinacci and Mukerji derive a smooth 'multiple priors' decision theory, which accounts for ambiguity aversion
- Value of a policy:

$$
V(f)=\sum_{m} p_{m} \varphi\left(E U_{m}(f)\right)=E_{\text {subj }} \varphi\left(E_{o b j} U(f)\right)
$$

- $\Phi($.$) encodes ambiguity aversion iff \Phi^{\prime \prime}($.

Ambiguity aversion can significantly increase the value of emissions cuts

Another alternative: robust control

After Hansen and Sargent (e.g. Robustness, 2007, Princeton Univ. Press)

Figure 1.7.1: Robust decision making: A decision maker with model $f_{\alpha_{o}}$ suspects that the data are actually generated by a nearby model f, where $I\left(f_{\alpha_{o}}, f\right) \leq \eta$.

Another alternative: robust control

- Choice under model uncertainty:
- Like a two player, zero-sum game
- Between a maximising decision-maker and malevolent, minimising mother nature, who chooses the model distortion that gives the worst pay-off
- Solution is therefore a form of max-min

$$
\max V(f)=\min _{m} E_{m} U(f) \quad \bar{\eta}>\eta>0
$$

Robust control also points to deeper emissions cuts

- Athanassoglou and Xepapadeas (2012 in JEEM) - optimal emissions cuts "most probably" increasing in degree of model uncertainty
- Funke and Paetz (2011 in Climatic Change) emissions cuts towards a stabilisation target should be deeper under robust control

Conclusion \#1

- The case for deep cuts in global greenhouse gas emissions seems stronger than ever
- even if the feasible set of cuts may be diminishing the longer we continue on something not too far from business as usual

Conclusion \#2

- There is much still up for grabs academically, as the theoretical eclecticism that has characterised the last few years of research in climate-change economics leaves us in a period of intellectual flux

Supplementary slides

Why is (marginal) willingness to pay

 infinite?- Switch to thinking in terms of discrete probability distributions:

$$
E U^{\prime}(C)=\sum_{i=0}^{k} p_{i} U^{\prime}\left(C_{i}\right)
$$

- $i=0$ is defined as the catastrophic state, $i=$ $1,2, \ldots, k$ are non-catastrophic states
- In a catastrophic state C is very small but >0

Why is (marginal) willingness to pay infinite?

State	Catastrophic state	Non-catastrophic states	
Probability	p_{0}	p_{1}, \ldots	p_{k}
Outcome	$\mathrm{U}^{\prime}\left(\mathrm{C}_{0}\right)$	$\mathrm{U}^{\prime}\left(\mathrm{C}_{1}\right), \ldots$	$\mathrm{U}^{\prime}\left(\mathrm{C}_{\mathrm{k}}\right)$

Why is (marginal) willingness to pay

 infinite?- Consider sequences of catastrophic futures

$$
\left(C_{0}{ }^{(n)}, p_{0}{ }^{(n)}\right)
$$

where $\lim _{n \rightarrow \infty} C_{0}{ }^{(n)}=\lim _{n \rightarrow \infty} p_{0}{ }^{(n)}=0$

- Dismal Theorem occurs iff

$$
\lim _{n \rightarrow \infty} p_{0}{ }^{(n)} \cdot U^{\prime}\left(C_{0}{ }^{(n)}\right)=+\infty
$$

The Ellsberg paradox (2-urn version): $1^{\text {st }}$ urn

- Imagine an urn (call it \#1) containing 100 balls
- 50 of the balls are red, and 50 are blue
- One ball is to be drawn at random from the urn, and you are offered a choice of the following bets:
- A1) Bet on red
- B1) Bet on blue
- C1) I am indifferent...

	Red is drawn	Blue is drawn
Bet on red	You win $\$ 100$	0
Bet on blue	0	You win $\$ 100$

$2^{\text {nd }} u r n$

- Now imagine a different urn (call it \#2) containing 100 balls
- Each of the balls is either red or blue but this time in unknown proportion
- One ball is to be drawn at random from the urn, and you are again offered a choice of the following bets:
- A2) Bet on red
- B2) Bet on blue
- C2) I am indifferent...

	Red is drawn	Blue is drawn
Bet on red	You win $\$ 100$	0
Bet on blue	0	You win $\$ 100$

Choice between urns (a)

- Recall that:
- In urn 1 you know that 50 of the balls are red, and 50 of the balls are blue
- In urn 2 you know nothing about the proportion of red and blue balls
- Which of the following bets would you prefer to take?
- X1) Bet on red in urn 1
- Y1) Bet on red in urn 2
- Z1) I am indifferent between "Bet on red" in urn 1 and "Bet on red" in

	Red is drawn	Blue is drawn
Bet on red	You win $\$ 100$	0
Bet on blue	0	You win $\$ 100$

Choice between urns (b)

- Recall that:
- In urn 1 you know that 50 of the balls are red, and 50 of the balls are blue
- In urn 2 you know nothing about the proportion of red and blue balls
- Which of the following bets would you prefer to take?
- X2) Bet on blue in urn 1
- Y2) Bet on blue in urn 2
- Z2) I am indifferent between "Bet on blue" in urn 1 and "Bet on blue" in

	Red is drawn	Blue is drawn
Bet on red	You win $\$ 100$	0
Bet on blue	0	You win $\$ 100$

How do people choose?

- Most people choose C1 (i.e. indifferent), C2 (i.e. indifferent again), and then X 1 (i.e. bet on red in urn 1) and X 2 (i.e. bet on blue in urn 1)
- Hold on a minute!
- If you choose X1, apparently you believe there are more red balls in urn 1 than urn 2
- But then you cannot choose both C1 and C2 (must be <50 red balls in urn 2)
- Moreover, X1 and X2 contradict each other
- So these choices cannot be described by EU theory

	Red is drawn	Blue is drawn
"Bet on red"	You win $\$ 100$	0
"Bet on blue"	0	You win $\$ 100$

- But they can be explained by ambiguity aversion

