

The World's Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

ڰڗڰڿڗڰڝڿڰڰۿڿؠ؞ڮڿڮڿڰڰۄڰڮڎڰۅڰٷٷٷٷٷٷٷٷٷڿڎڔ؋ڿڮۼڡڰڮڝۮ؞ڝڰڿڮڎۼڟٷڝڟڟڰڛڟ؋؞ڟڎۼۻڰۼ؞ڰۼۼڰۼۻڰۼ	Control of the second s	(1995年) [1995]	recommendation and the property of recognition of
建设在收款 医多元性结合性 经通货的 化二氯甲基酚 医皮肤病 化二氯二氯甲基酚 经股份 化二氯	도 하는 사람들이 있는 것이 되었다. 그 사람들이 가득하는 것이 되었다. 그 사람들이 다른 사람들이 되었다.	"好"的,我们都在1975年前,我们就是是1770年的,我们就被选择了第二年,提供1980年。	and a transfer of Market Constitution of the American
	Company of the state of the best of the state of the stat	たまえ はそだしておし かいしんめいかん たいみん じちょっ	At the control of the property of the control of th
* [†] =TB 560 (1937) 'USDA	** PERHATEM ABOUTERANS:		889年-李 昭尼DHYH 88681 (*)
	الراكي في الأراب والمنوق سوانيات يكتر ولاية المناهدية والمترارية الرابية والمناقب والمناقب والمناقب والمار	起去了他。 电传传递 化甲醛二唑 医甲醛二甲酚 机电流电流电流	The second section is the second second second
**YIELD. STAND, AND VOLUM	catonice topscuthing	Name of the Column of the Care	
と言うなほとしいたこう このれい きょうれい ミャンヒリカ	EXINDLES FUR CYCNTHUC	O DECEMBE OF ELECTS	建 设式 使发展 医生活病 医抗血病 经 有效 经产品
· 表现是明显,这些主义是一个人,是否是不是一种的的一种的的。	KIRPALAMAN KANTAN KANTAN MALAMAN	「北美 277年前の北部第2 200 8年)の北部をジャンルと、ディーと、アプル	50 (大学) 現る 400mm 100mm
CONTRACTOR LEGISLAND AND AND AND AND AND AND AND AND AND	必能性的"微数"(大石型)有"大型",并从第4次),均量的"适宜	一一一种的现在分词是是 是一个 一个人,这一个人的一个人。	2. (1995年2月20日 1995年1957年1957年)

START

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A

YIELD, STAND, AND VOLUME TABLES FOR EVEN-AGED UPLAND OAK FORESTS

By

G. LUTHER SCHNUR

Azsociate Silviculturist Allegheny Forest Experiment Station Forest Service

United States Department of Agriculture, Washington, D. C.

UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C.

YIELD, STAND, AND VOLUME TABLES FOR EVEN-AGED UPLAND OAK FORESTS

By G. LUTHER SCHNUR

Associati illuiculturist, Allegheny Forest Experiment Station, Forest Service

CONTENTS

	Page		Page
Introduction The upland oak forests The yield tubles	3	The yield tables—Continued. Effect of density and species composition on yield	-
Basic date. Elimination of plots. Yield analyses.	10 11	The stand tables. Discussion and application of stand tables. The volume tables.	40 54
Accuracy of the yield tables. Use of tables for yield prediction in under-	33	Literature cited	86
stocked stands	24		

INTRODUCTION

The upland oak region comprises 100 million acres, or one-fifth of the commercial forest area of the United States. It contains 43 billion cubic feet, or one-third of the total stand of hardwoods; and furnishes 2% billion cubic feet, or 40 percent, of the annual cut of such species. In addition, it is favorably located in respect to the great industrial regions and centers of population. "It is recognized as the great center of the Nation's hardwood resources" (26),2

There are two principal forest types in the region (26),3 the chestnutchestnut oak-yellow poplar type, and the oak-hickory type (fig. 1). These have been further divided (27) into 21 cover types, practically

all of which are represented in this study.

Forest management in this extensive region has been dependent on a number of volume and yield studies (6, 8, 9, 12, 18, 29, 30) based on local data, some of which were very meager. Since the advent of the chestnut blight (Endothia parasitica), oak stands in the eastern part of the region have lost one of their fastest-growing components. has altered the growth capacity of many stands and accordingly lessened the usefulness of some of the earlier yield tables. Recently, yield tables (15) and yields for the average site (1) for oak in Pennsylvania have been published

Maintained at Philadelphia, Pa., in cooperation with the University of Pennsylvania.
 Italic numbers in parentheses refer to Literature Cited, p. 86.
 Shants and Zon's oak-pine type was not included in this study because of the low percentage of oak that generally occurs and the resulting higher percentage of the faster growing pines.

The present study, begun on a somewhat local basis more than 10 years ago, was expanded in 1928 to include all portions of the upland oak region. The yield, stand, and volume tables presented 5 were

FIGURE 1.—The upland oak forest region, showing location of temporary sample plots. One or more plots were obtained in each designated locality.

computed from measurements obtained on sample plots and from trees cut on logging operations throughout the region.

technique.

⁴ Prior to 1921, W. W. Ashe, F. W. Besley, E. H. Frothingham, Russel Watson, and W. D. Sterrett worked on different phases of an oak growth study. Some of the results were published in 1931 (9). In 1923, however, the present study grew out of the former and was undertaken by Frothingham and E. F. McCarthy at the Appalachian Forest Experiment Station. It was intensified by the establishment of a large number of plots, but was limited to the southern Appalachian Mountain region. Five years later it became a joint project of the Allegheny, Appalachian, and Central States Forest Experiment Stations, under the direction of McCarthy, at that time director of the Central States Forest Experiment Stations, under the direction of McCarthy; supervision the field data were collected and the preliminary analyses and compilations were made. When McCarthy left the Forest Service, the project was assigned to the Allegheny Station for completion.

⁴ The volume tables were computed under the direction of Donaid Bruce and L. R. Reineke by their alinement chart method (\$t). The yield and stand tables were computed under the direction of the author, who is indebted, however, to F. X. Schumacher for invaluable aid in outlining the study and in selection of technique.

THE UPLAND OAK FORESTS

The upland oak forests are mostly second-growth sprout stands; the author estimates the remaining areas of virgin upland oak to be 350,000 acres, or only about 0.3 percent of the total upland oak area. A great number of tree species make up the forest. The average percentage composition and frequency of occurrence of the various species, as found in the present study, are shown in table 1. Although the 15 species of oak and 50 associated species found in the region occur in innumerable combinations, from pure stands to mixtures including a great number of species, the five important oaks—white, black, scarlet, chestnut, and red—make up an average of 83 percent of the stand basal area.

Table 1.—Stand composition and frequency of occurrence of species on sample plots

[Composition and frequency of occurrence on the plots]

	All plots	3	Sit	e 40 (35-	44)	Sit	e 50 (45-	54)	Sit	e 60 (55-	64)	Sit	e 70 (65-	74)	Sit	e 80 (75-	84)
		Fre-	116-		ition Fre-			Fre-		Stand composition				Fre-			Fre- quen
Basal area	Num- ber of trees	ey of occur- rence	Basal area	Num- ber of trees	ey of occur- rence	Basal area	Num- ber of trees	ey of occur- rence	Basal area	Num- ber of trees	cy of occur- rence	Basal area	Num- ber of trees	cy of occur- rence	Basal area	Num- ber of trees	cy of occur- rence
Per- cent 28. 23 19. 11 17. 08 13. 73 4. 65 .90 .60	Per- cent 31, 29 13, 45 10, 85 13, 50 3, 45 1, 07 , 47	Per- cent 95. 30 91. 58 79. 70 63. 36 51. 98 13. 37 4. 21	Per- cent 20, 70 15, 63 6, 57 21, 80 6, 67 2, 00	Per- cent 23, 23 11, 75 5, 10 22, 95 5, 42 2, 35	Pcr- cent 75. 00 75. 00 75. 00 75. 00 50. 00 25. 00	Per- cent 31. 00 10. 64 15. 02 16. 57 5. 27 1. 52 . 06	Per- cent 34, 95 7, 24 8, 96 15, 20 4, 00 1, 57 08	Per- cent 91, 07 73, 21 76, 79 62, 50 50, 00 12, 50 3, 57	Per- cent 29. 77 16. 99 18. 28 13. 25 5. 40 . 25 1. 29	Per- cent 32. 07 12. 15 11. 55 13. 00 4. 10 1. 54 . 20	Per- cent 95. 98 94. 26 86. 21 66. 67 58. 05 18. 97 2. 87	Per- cent 28. 29 22. 84 16. 17 13. 33 3. 86 .30 .78	Per- cent 31, 25 15, 90 10, 50 13, 48 2, 80 , 41 , 56	Per- cent 97. 79 95. 59 75. 00 63. 24 48. 53 8. 09 3. 68	Per- cent 18. 04 29. 79 18. 76 10. 70 2. 55 . 15 2. 94	Per- cent 24. 31 20. 89 12. 26 10. 01 1. 63 . 33 2. 47	Per- cent 93, 33 96, 67 70, 00 43, 33 36, 67 6, 67 16, 67
.14	. 27 . 17 . 10	1. 73 1. 24 1. 98			*******	. 79	.35	1, 79 5, 36 3, 57	.01	.04	1. 15 2. 30	.01	.03	. 74			3.3
85. 03	74. 67		73.37	70.80		81.70	73.38		85. 43	74. 76		86, 07	75. 26		86. 16	74.48	
2.69 1.86 1.84 1.31	6. 08 1, 10 1. 62 4. 23	70. 05 14. 11 24. 50 52. 21 20. 30	9.80 7.87 3.80 1.20	13. 70 4. 68 2. 45 1. 35	75, 00 50, 00 25, 00 50, 00	3. 44 3. 67 2. 83 1. 64	5, 95 1, 96 2, 14 5, 51 , 19	67, 86 17, 86 28, 57 46, 43 10, 71	2, 37 2, 41 1, 51 1, 37 , 71	5. 92 1, 43 1, 55 5, 10	69. 54 16. 09 24. 14 59. 77 16. 09	2. 62 . 56 1. 86 1. 12 1. 20	6. 21 . 41 1. 57 2. 72 1, 11	72. 79 5. 56 24. 26 47. 06 25. 00	2. 58 . 64 1. 56 1. 40 1. '.4	5.90 .41 1.35 4.48 1.68	70. 00 13. 33 20. 00 43. 33 36. 67
	Basal area Per- cent 28. 23 19. 11 17. 08 13. 73 4. 65 90 40 .14 .14 .05 85. 03	Stand composition Basal area Number of trees	Composition Frequent Cy of Occurrence Occurrence Cy of Occurrence Cy of Occurrence Occurrence Occurrence Occurrence Occurrence Occurrence Occurrenc	Stand composition	Stand composition Frequent composition Frequent composition Stand composition Frequent cent cent cent cent cent cent cent c	Stand composition Frequency Composition Compositio	Stand composition Frequency Composition Frequency Composition Frequency Composition Frequency Composition Frequency Composition Frequency Composition Composition Frequency Composition Composit	Stand composition Frequency Stand composition Stand compos	Stand composition Frequency of courber of trees Stand composition Stand composition Frequency of courber of trees Stand composition Stand composition Frequency of courber of trees Stand courber of trees Stand composition Frequency of courber of trees Stand composition Frequency of courber of trees Stand c	Stand composition Frequency of occurber of trees Number of area Number of trees Number of tr	Stand composition Frequency of occurber of trees Stand composition Stand composition Frequency of occurber of trees Basal ber of trees Basal b	Stand composition Frequency of occurrence Basal area Num- occurrence Stand composition Frequence Occurrence Control area Num- occurrence Control area Num- occurrence Control area Control area	Stand composition Fre-quented per of trees Stand per	Stand composition Frequency of occurrence Basal Number of area N	Stand composition Frequency of trees Stand composition Frequency of tr	Stand composition Frequency of trees Stand area Stand composition Frequency of trees Basal area Numcest Stand coccurres Stand composition Frequency of quency of occurres Basal ber of area Numcest Stand coccurres Stand composition Stand composition	Stand composition Frequence Captor

Group A, miscellaneous—hophornbeam (Ostrya virginiana (Mill.) Koch), blue						1												1
beech (Carpinus caroliniana Walt.).															14.4		12	h 76.7 7
persimmon (Diospyros virginiana L.),			90 00				100	100	1				1.5				1.	
sourwood (Oxydendron arboreum (L.)			ľ														100	-
de C.), holly (<i>llex opaca</i> Aiton), sassafras (Sassafras tariifolium (Salisb.) Ktze.)	. 57	1.43	30, 20		1.00	50.00		07	0. 40									40.00
Red gum (Liquidambar styraciflua L.)	. 54	1.43	5. 20	. 62	1, 28	50.00	. 38	. 87	21.43	.33	1.06 .87	30.46 5.75	.66 .71	J. 54 1. 12	29. 41 7. 35	1. 67 . 26	3.66	43.33
Black gum (Nyssa sylvatica Marsh.)	. 48	1.71	37. 62	1. 22	2.78	50,00	.44	2. 17	42.86	.65	1.87	39.66	.40	1. 12	33.82	. 26	. 21	3. 33 30. 00
Shortleaf pine (Pinus echinata Mill)	.47	31	4. 21	1	2.10	30.00	.80	. 43	7.14	.44	.30	5. 17	.22	. 22	.74	1. 24	66	10.00
Black locust (Robinia pseudoacacia L.)	. 44	.29	15. 10	1. 55	1.08	25.00	. 67	39	19.64	. 53	.33	17. 82	. 23	20	10. 29	.18	. 19	10.00
Pitch pine (Pinus rigida Mill.)	. 43	. 29	4.95				. 19	.14	5.36	. 55	. 28	6.32	.48	. 43	4.41			
Group B, miscellaneous-red mulberry											14.	4- 1	100					
(Morus rubra L.) redbud (Cercis canaden-				-		1					1.5				l .	- :		
sis L.), staghorn sumach (Rhus hirta (L.)			4				100									1 1 1 1		
Sudw.), hawthorns (Crataegus spp.), dogwood (Cornus florida L.), service-			100					ł										1.0
berry (Amelanchier canadensis (I.)				100							100					1 1 1		
Med., A. laevis Weig.)	. 41	2.09	35, 15		. 15	25, 00	. 52	2. 13	44.64	48	2. 24	37. 36	.32	2. 16	31.62	. 15	. 86	23, 33
Northern white pine (Pinus strobus L.)	. 35	2.03	7. 18		. 10	20.00	.33	.30	7.14	.35	.30	9.77	. 42	. 32	5. 15	.03	.08	3, 33
White ash (Frarinus americana L.)	. 30	54	11.63				. 44	. 44	16.07	. 13	. 26	9. 20	.41	.75	13. 97	.50	1.11	10.00
Unknown or dead chestnut	. 26	. 26	3, 71				. 63	.77	3. 57	.31	. 27	5. 17	.08	.06	2, 21	.15	21	3, 33
Black walnut (Juglans nigra L.)	. 20	. 15	8.42				. 15	. 09	3.57	, 17	. 16	7.47	. 22	. 12	8.82	.36	.39	20.00
Beech (Fagus grandifolia Ehrh.)	. 18	. 56	12, 13	. 30	.75	25.00	. 13	. 20	7.14	. 13	. 34	8.62	. 24	. 95	18.38	. 27	. 79	13. 33
Black cherry (Prunus serotina Ehrh.)	. 18	.12	4.95				. 19	. 33	7.14	. 13	.08	4.02	. 27	. 11	5.88	. 01	. 03	3. 33
Pignut hickory (Hicoria glabra (Mill.) Sweet)	10	40	0.77			i .	ا مما	4										
Largetooth aspen (Populus grandidentata	. 18	. 42	3.47				. 22	. 47	1.79	.17	. 31	2.87	.17	. 50	5. 15	. 25	.71	3, 33
Michx.)	. 13	.08	2, 23				. 21	. 10	3.57	. 17	. 10	1.72	.04	, 03	1.47	. 18	. 11	6, 67
Sugar maple (Acer saccharum Marsh.)	. 12	36	10.89	. 27	. 98	25.00	. 27	. 57	10.71	04	. 17	6, 90	. 14	. 40	14.71	. 23	.74	13, 33
Shagbark hickory (Hicoria ovata (Mill.)												0.00	• • • • • •		1		• • • •	10.00
Britt.)	. 11	. 20	1.76				. 32	. 55	1.79	. 13	. 25	2.30	.01	. 03	. 74	. 02	. 08	3, 33
Aspen (Populus tremuloides Michx.)	. 09	. 07	2, 23				. 33	. 27	5.36	.01	. 01	1.15	.11	. 06	2. 21	.01	. 03	3.33
Chokecherry (Prunus virginiana L.)	. 07	.08	3.47				05	. 06	1.79	.02	. 03	1.72	. 15	. 16	5.88	.01	. 03	3. 33
Butternut (Juglans cinerea L.)	. 06	.04	2, 97				.02	. 02	1.79	.06	. 05	2.30	. 10	.06	5.15			
Cucumber magnolia (Magnolia accuminata L.), including mountain magnolia (M.		-					1.0				- '					100		
fraseri Walt.)	. 05	.08	2, 48				. 04	.06	3. 57	.02	. 03	1,72	.09	. 16	3, 68	79 (4)		3.9
Elm-American (Ulmus americana L.)	. 00	.00	2. 10				.04	.00	0. 01	.02	.00	1.72	.09	. 10	0.00			
and slippery (U. fulva Michx.)	. ቦና	. 18	4.46						1.3	. 07	. 18	4.02	. 07	. 29	7, 35	.01	.04	3, 33
Sycamore (Platanus occidentalis L.)	. 04	.04	2, 72							Öi	.01	. 57	.08	. 08	5. 15	. 18	.19	10.00
Sweet birch (Betula lenta L.)	. 03	. 04	2. 23							. 01	. 01	. 53	.06	. 10	5. 88			
Eastern hemlock (Tsuga canadensis Carr.)	. 03	. 04	. 50										. 08	. 10	1.47			
Mockernut hickory (Hicoria alba (L.)								*	100			· i						in its
Basswood (Tilia glabra Vent.), including	. 02	. 07	. 74							. 02	. 11	. 57	. 02	.04	. 74	. 01	. 12	3, 33
(T. heterophylla michauxii (Nutt.) Sarg.)	. 01	.03	1. 24	17 7 30						01	Δ.	1 70	0.1					
Eastern red cedar (Juniperus virginiana	. 01	. 00	1. 44							.01	. 03	1.72	.01	.04	1.47			
L.)	. 01	. 02	2, 23		2.3.4			4.4		.01	.03	3.45	. 01	.02	2, 21			
	• • • •	""										0.70	• 01	. 02	. 4. 41			
. 													: ' '		'			

¹ Undesignated hickories included.

The majority of the forests are understocked, unhealthy, and in a run-down condition, owing mainly to indiscriminate cutting and grazing, and to fire, disease, and insects. The chestnut blight alone has reduced the stocking and changed the composition (13) of more than one-third of these forests. However, well-stocked stands made up of both sprouts and seedlings are occasionally found throughout the region. Some of these are the result of one, two, or even three clear cuttings. For as long as 100 years, many timber areas near the sites of old iron furnaces were periodically clear cut for charcoal and at present appear to represent very nearly the growth capacity of the sites on which they are found. A large number of the study plots were located in such stands. Their yields furnish a measure of the volume of timber that can be obtained under what are thought to be the best natural growing conditions for even-aged stands. Even though the great bulk of the upland oak forests are now understocked. they should, if placed under good forest management, produce yields as good as or perhaps even better than those of the old furnace lands.

All-aged and understocked stands introduce perplexing variables

which will require further study.

THE YIELD TABLES

The yield values for fully stocked, even-aged, second-growth upland oak forests as determined in this study are summarized in table 2. Values are presented for even tens of site-quality index, with relative quality stated also. Site index is the height attained at an age of 50 years by the average dominant and codominant oak trees. Values for intermediate site indices can be obtained by interpolation from the tables or graphs.

The maximum mean annual growth of the merchantable stems on an average site is 47 cubic feet, or about 0.55 cord per acre. This is attained at about 50 years and continues at approximately the same rate up to 100 years. Although the rate is not high, it is fairly constant for this period of 50 years, or longer. Oak stands do not give heavy yields in comparison with softwoods, but their ability to maintain very nearly maximum growth for many years is much in their favor.

^{*} Excepting possibly the poorer sites, where the percentage of seedlings is low.

TABLE 2.—Composite yield of second-growth upland oak (stand 0.6 inches d. b. h. and larger)

SITE INDEX 40-POOR SITE

	Total height,			Average		Y	ield per ac	re			Mean an	nual growt	h per acre	
Age (years)	average dominant and co- dominant oak	Trees per acre	Basal area per acre	diameter breast high	Entire stem in- side bark	stem to	ntable a 4-inch utside	Inter- nation- al rule:	Scribner rule ³	Entire stem in- side bark		ntable a 4-inch utside	Inter- nation- al rule ³	Scribner rule ³
10 20	Feet 8 17	Number 6, 850 3, 260	Square feet 36 60	Inches 1.0 1.8	Cubic feet 205 485	Cubic feet	Cords 0, 24	Board feet	Board feet	Cubic feet 20 24	Cubic feet	Cords 1	Board feet	Board feet
30	25 33 40 45 48 50 52 53	1, 610 1, 020 802 651 541 483 447 411	75 82 89 96 102 109 115	2.9 3.8 4.5 5.2 5.8 6.4 6.9 7.4	755 1,030 1,300 1,540 1,765 1,975 2,175 2,375	270 680 1,060 1,420 1,750 2,050 2,330 2,590	3. 18 8.00 12. 47 16. 71 20. 59 24. 12 27. 41 30. 47	100 600 1,400 2,700 4,250 5,900 7,600 9,200	50 150 400 800 1,450 2,200 3,350	25 26 26 26 25 25 25 24 24	9 17 21 24 25 26 26 26	0.01 .11 .20 .25 .28 .29 .30 .30	3 15 28 45 61 74 84 92	1 3 7 11 18 24 34
				٤	SITE IND	EX 50-F	AIR SITI	Ċ.						
10	13 23 33 42 50 56 60 62 64 65	5, 295 2, 520 1, 246 789 623 507 419 375 346 320	39 65 80 88 95 102 110 117 124 131	1. 2 2. 2 3. 4 4. 5 5. 3 6. 1 6. 9 7. 5 8. 1 8. 7	270 635 1,000 1,360 1,720 2,050 2,355 2,635 2,900 3,140	70 540 1,000 1,600 2,080 2,510 2,900 3,230 3,520	0, 82 6, 35 12, 82 18, 82 24, 47 29, 53 34, 12 38, 00 41, 41	350 1,400 3,250 5,600 8,150 10,450 12,600 14,700	150 500 1, 100 2, 350 4, 000 5, 800 7, 750	27 32 33 34 34 34 34 33 32 31	4 18 27 32 35 36 36 36 36 35	0.04 .21 .32 .38 .41 .42 .43 .42 .41	12 35 65 93 116 131 140 147	4 10 18 34 50 64 78

¹ Converting factor, 85 cubic feet per cord.

^{2 %-}inch saw kerf to a 5-inch top inside bark.

¹ To an 8-inch top inside bark.

Table 2.—Composite yield of second-growth upland oak (stand 0.6 inches d. b. h. and larger)—Continued

SITE INDEX 60—AVERAGE SITE

		Total height,					Y	ield per ac	ге			Mean ann	ual growt	h per acre	
Age (years)	average dominant and co- dominant oak	Trees per acre	Basal area per acre	Average diameter breast high	Entire stem in- side bark	stem to	ntable a 4-inch utside	Inter- nation- al rule	Scribner rule	Entire stem in- side bark		ntable a 4-inch utside	Inter- nation- al rule	Scribner rule
10		Feet 17	Number 4,060	Square feet	Inches	Cubic feet	Cubic feet	Cords	Board feet	Board feet	34	Cubicfeet	Cords	Board feet	Board feet
50 60 70 80		. 75	1, 945 965 611 482 390 326 292 268 248	68 84 93 100 108 115 123 130	2.5 4.0 5.3 6.3 7.2 8.0 8.8 9.4 10.1	805 1, 265 1, 725 2, 165 2, 590 2, 970 3, 325 3, 655 3, 970	170 880 1,580 2,230 2,800 3,290 3,730 4,120 4,480	2. 00 10. 35 18. 59 26. 24 32. 94 38. 71 43. 88 48. 47 52. 71	850 3, 200 6, 300 9, 700 12, 800 15, 650 18, 300 20, 900	50 500 1,400 3,150 5,650 8,350 11,050 13,700	40 42 43 43 43 42 42 42 41 40	8 29 40 45 47 47 47 46 45	0. 10 .34 .46 .52 .55 .55 .55 .55	28 80 126 162 183 196 203 209	2 12 28 52 81 104 123 137
					s	ITE IND	EX 70—G	OOD SIT	E						
50		21 36 48 60 70 78 83 87 90	3, 140 1, 500 743 472 374 304 252 224 207 192	43 71 88 96 104 112 120 128 136 143	1. 6 2. 9 4. 6 6. 0 7. 2 8. 3 9. 3 10. 2 11. 0	410 975 1, 525 2, 075 2, 610 3, 115 3, 575 4, 000 4, 780	10 360 1, 270 2, 090 2, 830 3, 480 4, 030 4, 510 4, 960 5, 400	0. 12 4: 24 14: 94 24: 59 33: 29 40: 91 47: 41 53: 06 58: 35 63: 53	150 1,750 5,500 9,750 13,900 17,700 21,200 24,500 27,650	200 1, 100 3, 250 6, 700 10, 550 14, 100 17, 200 19, 900	41 49 51 52 52 52 52 51 50 49 48	1 18 42 52 57 58 58 58 56 55 54	0. 01 -21 -50 -61 -68 -68 -68 -66 -65	8 58 13S 195 232 253 265 272 276	7 28 65 112 151 176 191 199

YIELD, ETC., TABLES FOR EVEN-AGED UPLAND OAK FORESTS

SITE INDEX 80-EXCELLENT SITE

								<u> </u>
10	26 43 56 69 80 89 95 99 103 105	2, 435 44 1, 160 73 578 90 366 99 290 107 235 115 196 224 174 132 161 140 148 148	1. 8 490 3. 4 1, 145 5. 3 1, 795 6. 9 2, 440 8. 3 3, 985 9. 5 3, 990 10. 7 4, 225 11. 7 4, 725 12. 7 5, 200 13. 6 5, 650	1, 690 19. 2, 610 30. 3, 450 40. 4, 160 48. 4, 770 56. 5, 340 62. 5, 870 69.	29 350	49 57 60 61 62 62 60 59 58 56	2 0.02 31 36 56 68 65 .77 69 81 69 82 68 80 67 .79 65 .77 64 .75	18 112 17 215 62 275 133 310 189 330 227 341 246 344 256 344 261

BASIC DATA

Since permanent sample plots measured at intervals over a period of years were not available, it was necessary to use the temporary-plot method for determining yield. Its use assumes that contemporaneous measurement of several stands, on similar sites but of various ages, gives the same results as successive measurements of an identical stand over a period of years. For the study 409 temporary plots were measured throughout the region (fig. 1). As stated before, fully stocked, even-aged stands were difficult to find except in the vicinities of old iron furnaces. Nevertheless a fair geographic representation of most of the region was obtained.

PLOT SELECTION AND MEASUREMENT

The study plots were selected to meet the following requirements: (1) Thirty percent or more of the dominant stand composed of upland oak species: (2) fully stocked, as indicated by closed crown canopies (80 to 90 percent of complete closure) and the absence of very dense undergrowth; (3) even-aged; and (4) uniformly spaced tree stems. No distinct holes were permitted in the stand either on the plots or near their boundaries. In a few instances, where plots were established in stands containing recently killed chestnut trees, these trees were measured as if alive.

The field measurements were obtained by the standard methods set up by the committee on standardization appointed by the Society of American Foresters (28). Plot surveys were made with a staff compass and steel tape. The diameters of all trees 0.6 inch diameter breast high,7 and larger were measured with a diameter tape.8 Heights were measured with an Abney hand level, and ages were counted on

cores obtained with a Swedish increment borer.

PRELIMINARY COMPUTATIONS

For each plot a tabulation of basal area, number of trees, and volume in each of four units (total cubic, merchantable cubic, International, and Scribner board feet) was made by species, crown class, and diameter breast high. These values were punched on cards so that the various sortings, countings, and summations necessary for the yield analyses could be made on automatic machines. were obtained from tables, constructed for this purpose, which will be explained and presented later.

Dlameter breast high, 4.5 feet above average ground level.
On some plots, established in 1923, a 2.6-inch lower diameter limit was used. However, the errors involved are relatively small, as most of these plots are in the older age classes having few trees under 2.6 inches diameter breast height.

inches diffractor creast neight.

The following tabulation shows the species for which the various volume tables were used. Only small errors are likely to result from using substitute tables for species for which no tables are available, because the percentage of the stand volume involved is very low, as shown in table 1. Even though the errors are small, some of the selections are subject to criticism. For example, it would be more logical to use the red, maple volume table for such tolerant species as beech and sugar maple:

Volume table and other species for which table was used

•	White cak	All unknown species.
	Red oak	Post cak, southern red oak, pin oak, black-jack oak, and
		other miscellaneous oak species.
•	Hickory	Ash.
	Virginia pina	All pine, hemlock, and cedar. (For Scribner volumes, 88 percent of the International volume was used.)
		percent of the International volume was used.)
•	Vellow nonlar	Aspen, basswood, cucumber, and sycamore,
	Biack cherry	'All cherry, beech, sweet birch, eith, surer madie, and4
	=	miscellaneous other species.
	Black wainut.	Butternut.

Height curves for volume determination on each plot were made by a special process after careful analysis.¹⁰ The yield tables were constructed by Bruce's (3) and Reineke's (19) methods with some modifications which are explained in the text to follow.

ELIMINATION OF PLOTS

Even though the sample stands used in this study were carefully selected as fully stocked, the difficulty met in finding such stands and the chance that an erratic one would be measured accidentally by one of the many field crews necessitated some statistical check on degree of stocking. Reineke (20) shows that the number of trees—average diameter relation, built up from a sample of an even-aged forest type, can be used as a standard for determining the density of stocking of individual stands. This use requires much less computational work than the usual basal area and number of trees tests because the dependent variable-average diameter takes care of the effect of both age and site. Also, Reineke shows graphically for a number of conifers, both in pure and mixed stands, that this relation is linear if expressed logarithmically. Application of this method to the oak-yield plot values was effected by computation of a logarithmic regression, log number of trees on log average diameter breast high. The resulting linear equation, representing the average relation for all of the yield plots, is—

Log number of trees=3.8638-1.4987 log average diameter breast high 11

By computing the residuals of log (number of trees) of the individual plots from the regression line, and grouping in terms of the standard error of regression, the grouping shown in table 3 was obtained. This shows no plot sufficiently erratic to warrant elimination. The one plot which is more than three times the standard error from the regression line is not beyond the realm of chance out of a total of 409 plots. Therefore, no plots were eliminated because of abnormal density.

It was, however, found necessary during the height-age analysis later described to eliminate five plots in the 80- and 90-year age classes. The samples of these two classes were found to be skewed; a large portion of the sample in each case was obtained in a single locality. Arbitrary limitation of the number of plots from any one locality resulted in more nearly normal distributions in these classes.

¹⁶ In order to utilize the earlier measured field plots on which data for separate height-diameter curves for each major species had not been obtained, it was necessary to find some satisfactory method of assigning heights for volume computations. After the plots were sorted into 10-foot height classes (probably average dominant height), height-diameter curves were plotted for the two numerically strongest age groups. The 60-, 70-, and 30-foot height-diameter curves for the 50-year class were found practically to coincide with the corresponding curves for the 60-year class. This test indicated no effect of age other than that already taken care of by dealing separately with each 10-foot height class. To test the effect of species the 60-foot height class was used. Separate height-diameter curves were constructed for each of the fire major oak specie, white, black, scarlet, chestaut, and red. All of these curves followed the same trend; the greatest variation between the lowest and highest was but 5 foot. This indicated that species was of minor importance. A series of height-diameter curves, one for each 10-foot height group, was then plotted on one sheet. Practically all of these merged into one curve at the lower end. Liregularities were ironed out and the final set of harmonized curves was made. This set of curves was tested graphically by plotting height-diameter curves from rendomly ploked plots from soveral height classes. No bad discrepancies were detected, so these curves were considered sufficiently accurate for volume determinations. This analysis was made by Ray F. Bower at the Central States Forest Experiment Station in 1928.

Table 3.—Distribution of plots about regression line for log (number of trees)—log (average d. b. h.) relation, by standard error groups

Standard error groups	Distributi	on of plots	Standard error groups	Distributi	on of plots
+2 to +3	Number 2 42 160 155 38	Percent 0. 5 10, 3 41. 3 37. 0 9. 3	-2 to -3		Percent 0. 5 . 2 100, 0

Table 4.—Average number of years required for oak sprouts to reach breast height

Species	Localities sampled	Sprouts measured	A verage age at breast beight	Species	Localities sampled	Spronts measured	Average age at breast height
White oak Black cak Scarlet oak Chestnut cak	Number 9 11 5 7	Number 315 140 358 16	Years 1.8 2.0 1.4 1.6	Post oak	Number 1	Number 20	Years 3. 1

YIELD ANALYSES

AGE OF STAND

The average age of the dominant and codominant trees was used as the stand age. This was obtained on each plot by averaging ring counts on 5 to 10 cores removed at breast height from as many dominant and codominant trees of the species prevailing. The resulting breast-height ages were corrected to total age by the addition of 2 years. This correction factor, which represents the average time required for the trees to reach breast height, was obtained from sprout analyses, the actual results of which are shown in table 4. Preliminary examination of the sprout measurements showed great variations in height at each age, which indicated both considerable variation in site from tree to tree and in vitality of the old root systems and stumps from which the sprouts originated. Assigning site values to individual sprouts would obviously involve so much speculation and error that no attempt was made to do it. The general average for all sites was used instead. If stump ages are used, a correction factor of 1 year is sufficient. The sample stands were considered even-aged if the ages of the individual trees of the dominant classes did not vary by more than 8 years.

SITE INDEX

The height attained by the average dominant and codominant oak at the age of 50 years was used as the index of site quality. All oaks were grouped together in obtaining this height because species composition changes with site and no one species occurs invariably in the dominant stand on all sites. The diameter of this average tree was obtained for each of the study plots in the customary way by averaging the basal areas of the dominant and codominant oaks and reading

the diameter equivalent from a table. The height was then read as usual from the height-diameter curve for the dominant stand.¹²

FIGURE 2.—Height curves used for site classification.

The average relation between height and age for each 10-foot site index is presented in figure 2 and table 5. The site index of any stand is obtained from this chart in the usual way by plotting the height of

¹⁶ On a good many plots established during 1924, heights were measured on only two or three sample trees out of the dominant stand, so that it was impossible to construct height-diameter curves directly. A careful analysis of the height-diameter relation and a special technique for the construction of the curves were worked out by B. Lucas at the Central States Forest Experiment Station in 1930. The average dominant height of each study plot was first computed by averaging the height of each trees measured. The plots were then combined by 10-foot average height groups, and height-diameter curves drawn for each group. As much as 15 feet difference occurred between trees of the same diameter in different groups. These groups were next subdivided by crown classes and new curves drawn. This time not much difference resulted between the dominant and codominant classes or between the intermediate and suppressed classes, but considerable difference was noted between the 2 groups. Comparisons between species showed very little difference. On the basis of these findings 2 sets of harmonized curves were made for the various average height groups, 1 for the dominant and codominant classes and 1 for the intermediate and suppressed with these harmonized curves as guides, the height-diameter curves for individual plots were drawn by superimposing the actual height-diameter measurements for the plot, plotted on transparent graph paper, on the harmonized curve representing the same average height class. Since the harmonized curve were made for 10-foot average height classes only, interpolation was necessary when the average height of the plot was not an even 10-foot value. This was accomplished graphically by raising or lowering the superimposed sheet the required number of units. Since the individual plots varied in density, a shifting the left or right was then necessary to get the best fit to the plotted points. If a plot was below average density, the diameters tended to be somewhat larger for the same height, and if above

the average dominant and codominant oak, as determined from measurements of the actual stand in question, over the age of the stand and reading the site index value from the curve passing nearest to this point. More exact readings can obviously be obtained by interpolation.

Table 5.—Total height of average dominant and codominant oak

Total age (years)		al heigi	ht by s	ite ind	ex !—	Matal and (01)	Total height by site index→						
40 50 60 76 80	80	Total age (years)	40	50	60	70	BC						
10	Fed. 8 12 17 21 25 29 33 37 40 43	Fed. 13 18 23 28 33 42 46 55 3	Feel 17 24 30 85 41 46 50 64	Feet 21 29 36 42 48 54 60 65 70 74	Feet 20 35 43 50 63 69 75 80 85	60. 65. 70. 75. 80. 85. 90. 95.	Feet 45 46 48 49 50 51 52 53	Feb 58 65 65 65 65	Feed 67 69 71 73 75 76 77 78 79	Feed. 78 81 83 85 87 89 90 91	Feet 89 92 95 95 96 103 104 105		

¹ Total height of average dominant and codominant oak at 56 years.

DERIVATION OF THE SITE-INDEX CURVES

One of the most important problems involved in the construction of yield tables from contemporaneous measurements of different stands, rather than from periodic remeasurements of identical stands, is that of assigning a site quality to those stands which are not of the reference age (in this case 50 years). The contemporaneous data may be used only on the assumption that the sample plot distributions throughout the range of site quality are approximately similar, in a geometric sense, for each age class. If so, an average curve of the dominant heights of all plots over age can be accepted as a satisfactory approximation of the dominant height—age curve for the average site. For the oak-yield plots these heights are as given in column 2, table 6. The points representing plots on other than the average site are distributed in the form of a comet-shaped belt widening with advancing age.

Table 6.—Location of site-classification curves

	Height and	Height by site index—										
	ation of aver- age dominant oaks	30	40	50	60	70	80	90				
)	Feet 18. 1± 3. 01 31. 2± 5. 32 42. 7± 6. 42 53. 4± 7. 42 62. 7± 8. 37 69. 6± 9. 33 74. 3± 9. 83 77. 0±10. 29 80. 3±10. 62 82. 5±10. 90	Feet 4.0 10.4 17.6 24.4 30.0 33.5 35.9 37.4 38.6 39.9	Feet 8, 3 16, 8 25, 3 33, 40, 0 44, 6 47, 7 49, 7 51, 5 53, 0	Feet 12.6 25.1 32.9 42.1 50.0 65.6 59.4 62.0 64.2 85.9	Feet 16. 9 29. 5 40. 6 51. 0 60. 0 66. 6 71. 2 74. 3 78. 9 79. 0	Feet 21, 2 35, 8 48, 3 59, 9 77, 6 82, 9 88, 6 89, 5 92, 0	Feet 25, 6 42, 2 56, 0 08, 8 80, 0 88, 7 94, 6 98, 9 102, 3 105, 1	Feet 29 48 63 77 90 99 196 111 114 118				

In most yield studies recently made for second-growth stands the average curve is used to obtain, by anamorphosis, a series of curves showing the heights attained at various ages on other than the average

site. These height curves are so spaced as to pass through the 40-foot, 50-foot, and successive 10-foot points on the 50-year ordinate, or reference age commonly used. The use of anamorphosis is a distinct step forward from the earlier technique of dividing the comet-shaped belt of points, by eye, into an arbitrary number of similar site-class belts, and of drawing, freehand, through the midzone of each a curve representative of height growth on that site. But the use of anamorphosis assumes that the percentage relationship between heights on different sites at 50 years holds for all other ages. For example, if the height of the average dominant tree at 50 years on the poorest site is, as in the present case, about 60 percent of the height on the average site, an anamorphic curve for the poorest site would show a height

FIGURE 3.—Relation of standard deviation and coefficient of variation of height to age.

about 60 percent of that for the average site at 20 years or at any other age.

Actually, the percentage varies, particularly for the lesser ages. This will be seen from column 2 of table 6. The standard deviation from the height on the average site at 20 years, if multiplied by 3 and subtracted from the average (column 2), gives 15.2 feet as the height on the poorest site, 3 which is less than 50 percent of the average. At 10 years the ratio has dropped to 40 percent. These percentage variations were found to be significantly correlated with age, as shown in figure 3.14

ii If the 20-year plots are distributed normally, in a statistical sense, about their mean, only 1 out of 370 plots would be more than three times the standard deviation from the average.
 ii F. X. Schumacher originally suggested this test (5).

Since one percentage value was not applicable at all ages it was necessary to use varying percentages. This was accomplished by computing the 10-foot height intervals on the 50-year ordinate (the classification age) in standard units (standard deviation) above or below the average curved value and applying these on each 10-year ordinate, converting back to actual height values by using the respective standard unit equivalents and curved averages. The generalized equation for computing height of any site-index curve at any age is:

$$H_{I,a} = H_a - \sigma_a \left(\frac{H_A - I}{\sigma_A} \right)$$

where $H_{I,a}$ =height of any site index I at any age a;

 H_a =average height at any age a;

 H_A = average height at any reference age A;

 σ_a =standard deviation of height about the average at any age a:

 σ_A =standard deviation of height about the average at any reference age A.

The equation for these computations in the present study is:

$$H_{I,a} = H_a - \sigma_a \left(\frac{62.7 - I}{8.37} \right)$$

where 62.7—average height at the reference age, 50 years, from table 6, and 8.37—standard deviation at the reference age, 50 years, from table 6.

Example: What is height of site-index curve 40 at 20 years? From table 6 the average height at 20 years is found to be 31.2 feet and the standard deviation, 5.32 feet. Substituting these values in the equation above and solving—

$$\begin{array}{l} H_{40,20} {=} 31.2 {-} 5.32 \left(\frac{62.7 {-} 40}{8.37} \right) \\ {=} 31.2 {-} 14.4 \\ {=} 16.8 \end{array}$$

This method was used for computing the points in table 6 which were, in turn, plotted to form the customary set of site-index curves which have been presented in figure 2 and table 5. Determination of the site index of any stand can be made by use of the following equation:

 $I = H_A + \sigma_A \left(\frac{H - H_a}{\sigma_a} \right)$

where H=average dominant height of the stand in question, and the other terms are as defined above.

Example: What is the site index of a stand 40 years old with an average height of 48 feet? From table 6 the average height at 40 years is found to be 53.4 feet and the standard deviation is 7.42 feet. Substituting and solving—

$$I = 62.7 + 8.37 \left(\frac{48 - 53.4}{7.42}\right)$$

$$= 62.7 - 6.1$$

$$= 56.6$$

PLOT DISTRIBUTION

Distribution of the sample stands by age and site index is shown in table 7. A good sample with respect to both site and age is indicated, though a weakness above 80 years is apparent. Considerable difficulty was experienced by the field parties in finding fully stocked plots in the older age classes.

Plot distribution by site index-Total Total age (years) 30-30 40-40 50-50 60-69 70-7980-89 90-99 Num-Num-Num-Num-Num-Num-Number ber ber ber ber ber ber 10 15 5 30 54 76 84 68 54 25 2 20-29 30-39 5 25 33 ī 1 35 40-49.... 50-59.... 316 10 28 2 17 19 28 1 1 7 2 12 183 1 404

Table 7.—Plot distribution by age class and site index

NUMBER OF TREES

Yield data for the total stand were based on all trees 0.6 inch d. b. h. and over. The average curve of number of trees over age was plotted on semilogarithmic graph paper, in effect using logarithm of number of trees over age. Use of this type of paper contracts the curve at the younger ages, where number of trees is great, making a decidedly less pronounced curve than on arithmetic paper and facilitating fitting the curve to the points. The series of curves for number of trees on different sites was obtained by a combination of mathematical and graphic methods of correlation. A multiple linear correlation between logarithm of number of trees, age, and site index was computed. The equation is:

Log (number of trees)=-0.01431 age-0.01113 site index+4.12427

This was modified by using Bruce and Reineke's (4) alinement-chart method to take care of the curvilinear relation between log (number of trees) and age. The net regression of log (number of trees) on site index showed no curvilinearity. The resulting values read from the modified alinement chart are shown in table 8 and pictured in figure 4. The curves shown in this figure have the usual form, dropping rapidly in the younger age classes, then gradually flattening out. Thus, an average site has approximately 4,000 trees at 10 years of age, 1,000 at 30 years, and 500 at 50 years.

¹³ It was found a good plan to replot this curve on arithmetic paper to be sure of a smooth trend.

FIGURE 4.-Number of trees per acre showing trends with age by site index.

Table 8 .- Total number of trees per acre 0.6 inch d. b. h. and larger

Total age (years)	Tre	es per i	cre by	site in	dex—	Total age (years)	Trees per acre by site index—					
1 Otal ako (2 cars)	40 Num-	50	60	70	S0	TOTAL AGE (SCALS)	40	50	60	70	80	
10	ber 6, 850 4, 716 3, 260 2, 235	<i>bet</i> 5, 295 3, 660 2, 520	ter 4,060	Num- ber 3, 140 2, 170 1, 500 1, 030 743 578 472 413 374 336	Num- ber 2, 435 1, 675 1, 160 796 578 447 366 321 200 260	60	Num- 651 590 511 506 453 464 447 428 411	Num- ber 507 457 419 391 375 361 346 332 320	Num- ber 390 353 326 305 292 280 268 254 248	Num- ber 304 274 252 235 224 215 207 198 192	Num- ber 235 212 196 182 174 168 161 154	

FIGURE 5.—Total busel area per acre for trees over 0.6 inch d. b. h. showing trend with age by site index.

STAND BASAL AREA

The average relation between the total stand basal area (all trees 0.6 inch d. b. h. and over) and age for the various sites is shown in figure 5. The values read from these curves are presented in table 9. This analysis was accomplished graphically by a series of approximations using the alinement-chart method. If

Is It is recognized that the straight-line relation above 40 years is not absolutely maintained and that there should be a tendency for the corves to flatten out with advancing age. However, the data would not permit any but a straight line. It is believed that there may have been a tendency on the part of the field crews to establish the boundaries of plots in the older stands too close to the trunks of the trees selected and in this way increase the basal area. The difficulty of finding older stands probably contributed to this tendency.

If See footnote on page 20.

Table 9.—Total basal area per acre including all trees 0.6 inch d. b. h. and larger

Total age	Basa	l area pe	er acro b	y site i	ndox—	Total age	Basal area per acre by site index—					
(years)	40	50	co	70	\$0	(years)	40	50	60	70 1. Sq. ft. 8 112 2 110 5 120 124 3 128 7 132	80	
10	Sq.ft. 36 49 60 69 76 79 82 85 89	Sq. ft. 39 53 65 74 80 84 88 92 95 90	Sq. ft. 41 56 68 78 84 89 93 96 100	Sq. ft. 43 58 71 80 68 92 96 100 104 108	Sq. ft. 44 60 73 83 90 95 99 103 107	00. 05. 70. 75. 80. 85. 90. 95.	Sq. ft. 06 99 102 105 109 112 115 119 122	Sq. ft. 102 106 110 113 117 120 124 127 131	Sq. ft., 108 112 115 119 123 127 130 134 138	110 110 120 124 128	Sq. ft. 115 126 126 132 136 146 144	

DIAMETER OF THE AVERAGE TREE

Diameter of the tree of average basal area was obtained in the usual manner by dividing the stand basal area by the number of trees and reading the diameter equivalent from a basal-area table. The average relation with age and site was obtained in the same way from the average curves of basal area and number of trees.18 The average -diameter equivalents were plotted and smoothed. The average relation with age and site is presented in figure 6 and table 10.

FIGURE 6.—Diameter of average tree at breast height showing trend with age by site index.

If The procedure followed in the basal area-ago-site correlation was as follows: (1) A percentage aliaement chart was made by Reineke's (19) method. (2) Age and site scales were adjusted simultaneously as explained by Reineke and Bruce (21, pp. 11-14). (Old values of age and site used for both adjustments.) (3) With new age and site values, new estimates of basal area were road. (4) With new basal area values both age and site axes were agin tested and adjusted if necessary. Only site axis needed adjustment. (5) Basal area over age for site indices 40 and 80 were then read and plotted as a tast to see if the relation was behaving normally. A constant percentage difference was noted between the two sites. (6) New estimates of basal area were read and the actual values were plotted over the estimated. The basal area axis was adjusted because the relation was not a 43° line. (7) Another test of site index 40 and 80 was made followed by successive adjustments of site, age, and basal area until no further improvement was evident. It was found important to make the test curves of basal area over age after each change of the chart. Application of this method of analysis to these data was made by G. M. Jemison.

16 This is a digression from the standard method. The standard, direct correlation between average basal area, age, and site resulted in an average percentage deviation twice as large and a standard error of estimate four times as large as those of the method presented here (see table 32, p. 34). The difficulties encountered in this correlation and the poor results obtained led to the use of the less desirable method, which in this study gives closer conformity to the basic data.

Table 10.—Diameter of the average tree by age class and site index

Total age	Dia	neter at	breast index—		y site	Total age	Diameter at breast height by site index—					
(years)	40 50 60 70	80	(years)	40	50	60	70	80				
10	Inches 1.0 1.4 1.8 2.4 2.9 3.4 4.2 4.5 4.5	Inches 1, 2 1, 7 2, 2 2, 8 3, 4 4, 0 4, 5 4, 0 5, 3 5, 7	Inches 1. 4 1. 9 2. 5 3. 2 4. 0 4. 7 5. 8 0. 3 6. 7	Inches 1.0 2.0 3.8 4.0 6.0 7.2 7.8	Inches 1.88 2.6 3.4 4 5.3 6.2 6.9 7.6 3 8.9	60	Inches 5, 2 5, 5 5, 8 6, 1 6, 4 6, 7 6, 9 7, 1	Inches 0. 1 6. 5 0. 9 7. 2 7. 5 7. 8 8. 1 8. 4 8. 7	Inches 7.2 7.8 8.0 8.4 8.8 9.1 9.4 9.8	Inches 8.3 8.8 9.3 9.8 10.2 10.6 11.0 11.7	Inches 9. 5 10. 1 10. 7 11. 2 11. 7 12. 2 12. 7 13. 1 13. 6	

HEIGHT OF THE AVERAGE TREE

Height of the average tree (tree of average basal area) was determined in the accustomed way by applying a percentage reduction factor to height values of the dominant stand. Figure 7 shows this percentage relation and table 11 present the final average values.¹⁹

FIGURE 7.—Percentage relation between height of the average tree and height of the average dominant and codominant oak by average diameter.

Table 11 .- Total height of the average tree by age class and site index

Total age (years)	Tot	al heig	ht by	site inc	lex—	Chatal and (man)	Total height by site index—					
	40 50 60 70	80	Total age (years)	40	50	00	70	80				
10	Feet 7 10 14 18 21 25 28 31 34 37	Feet 11 15 19 24 28 32 36 40 43 46	Feet 14 20 25 30 35 40 44 48 52 56	Feet 18 24 30 36 42 47 52 57 62 66	Feet 21 29 30 42 48 55 61 06 72 76	60. 65. 70. 75. 80. 85. 90. 96.	Feet 39 40 42 43 44 45 46 47	Feel 49 51 53 54 50 57 58 59 00	Feel 50 62 64 66 68 09 70 71 72	Feet 70 73 75 78 80 81 83 84 80	Feet 81 84 87 90 92 94 96 97 99	

¹⁹ Too much reliance must not be placed on this table, since hork of sufficient height measurements necessitated obtaining the average heights in a rough graphical manner.

YIELD IN CUBIC FEET

The total cubic volume analysis was done graphically by construction of a percentage alinement chart (19) which was then modified slightly by adjustment of the site axis in the manner referred to under stand basal area. The relation between stand volume, age, and site, is shown graphically in figure 8 and the values are tabulated in table

FIGURE 8.—Yield per acre in cubic feet, excluding bark, showing trends with age by site index,

Table 12.—Yield per acre in cubic feet, excluding bark (all trees 0.6 inch d. b. h. and larger included)

Total age	Yi	eld per:	acre by	site ind	ex	Total age	Yield per acre by site index-					
(years)	ears) 40 50 60 70	70	80	(years)	40	50	60	70	80			
10	Cu., ft. 205 345 485 625 735 900 1,030 1,105 1,300 1,420	Cu. ft. 270 450 635 820 1,000 1,180 1,360 1,540 1,720 1,895	Cu. ft. 345 575 805 1,040 1,265 1,495 1,725 1,725 1,945 2,185 2,385	Cu. ft. 410 695 1, 250 1, 525 1, 800 2, 075 2, 350 2, 610 2, 870	Cu, ft. 490 815 1, 145 1, 470 1, 705 2, 120 2, 440 2, 760 3, 085 3, 400	60	Cu. ft. 1, 540 1, 660 1, 765 1, 876 1, 975 2, 075 2, 175 2, 275 2, 375	Cu., ft., 2, 050 2, 210 2, 355 2, 500 2, 635 2, 770 2, 900 3, 026 3, 140	Cu. ft. 2, 590 2, 785 2, 787 3, 150 3, 325 3, 490 3, 655 3, 810 3, 970	Cu, ft. 3, 115 3, 350 3, 575 3, 795 4, 000 4, 205 4, 400 4, 595 4, 780	Cu.ft. 3, 696 3, 960 4, 225 4, 480 4, 725 4, 977 5, 200 5, 430 6, 650	

12. These curves show a remarkably steady increase in volume with advancing age, from the beginning, with practically no early stage of slow growth. This illustrates the early vigor of stands containing sprouts.

FIGURE 0.—Yield per acre in cubic feet of merchantable stem, including bark (to a 4-inch top outside bark), showing trends with age by site ladex.

MERCHANTABLE CUBIC AND BOARD-FOOT YIELDS

Yields in merchantable cubic volume and board-foot volumes for both International and Scribner rules at various ages on different sites are presented in figures 9 and 10, and tables 13, 14, and 15. These were computed in the usual manner from the total cubic yield values, using the average ratios for the average diameter of each site-age class read from the curves shown in figure 11.

Frounc 10.—Yield per acre in heard feet, International rule (1/8-inch kerf) (to a 5-inch top inside bark), showing trends with age by site index.

Table 13.—Yield per acre in cubic feet of merchantable stem, including bark, to a 4-inch top outside bark

Total age	Yield		re (mer te index		ole) by	Total age	Yield per acre (merchantable) by site index—					
(years)		50	(years)	40	50	60	70	80				
10	Cu. ft. 0 20 100 270 480 680 870 1, 060 1, 240	Cu. ft. 0 20 70 250 540 820 1, 090 1, 350 1, 600 1, 810	Cu. ff. 0 40 170 510 880 1, 240 1, 580 1, 910 2, 230 2, 520	Cu. fl, 10 80 360 820 1, 270 1, 600 2, 090 2, 470 2, 830 3, 180	Cu.ff. 20 190 620 1, 170 1, 690 2, 160 2, 610 3, 040 3, 450 3, 820	60	Cu. ft. 1, 420 1, 590 1, 750 1, 900 2, 050 2, 200 2, 330 2, 460 2, 590	Cu. ft. 2,080 2,200 2,510 2,710 2,900 3,070 3,230 3,380 3,520	Cu. ft. 2, 800 3, 050 3, 290 3, 510 3, 730 3, 920 4, 120 4, 300 4, 480	Cu. ft. 3, 480 3, 770 4, 030 4, 280 4, 510 4, 740 4, 960 5, 180 5, 400	Cu. ft. 4, 160 4, 480 4, 770 5, 060 5, 800 5, 870 6, 130 6, 380	

Table 14.—Yield per acre in board feet, International rule, %-inch saw kerf, to a 5-inch top inside bark, including all trees having at least one 16-foot log

Total age	¥	ield per	acre by s	ite index	Ç—	Total age	Yield per acre by site index—						
(years) 1	40	50	60	70	80	(years)	40	50	60	70	80		
15	Bd. ft. 0 0 100 300 600 950 1,400 2,000	Bd. ft. 0 0 350 800 1, 400 2, 250 3, 250 4, 350	Bd. ft. 0 300 850 1, 900 3, 200 4, 700 6, 300 8, 000	Bd. ft. 0 150 700 1,750 3,550 5,500 7,650 9,750 11,850	Bd. ft. 80 350 1, 450 3, 360 5, 950 8, 600 11, 200 13, 750 16, 250	60 65 70 75 80 85 90 95	Bd. ft. 2, 700 3, 450 4, 250 5, 100 5, 900 6, 750 7, 600 8, 350 9, 200	Bd. ft. 5, 600 6, 900 8, 150 9, 300 10, 450 11, 550 12, 600 14, 700	Bd. ft. 9, 700 11, 300 12, 800 14, 200 15, 650 17, 000 18, 300 19, 600 20, 900	Bd. ft. 13, 900 15, 800 17, 700 19, 500 21, 200 22, 900 24, 500 26, 100 27, 650	Bd. ft. 18, 609 20, 900 23, 100 25, 200 27, 250 29, 150 30, 950 32, 700 34, 400		

¹ No trees containing a 16-foot log with a top diameter inside bank of 5.0 inches below 15-year class.

FIGURE 11.—Merchantable cubic foot—total cubic foot and board foot—total cubic foot ratios for various average diameters.

Table 15.—Yield per acre in board feet, Scribner rule, to an 8-inch top inside bark, including all trees having at least one 16-foot log

Total age	Y	lald per	nere by	site Inde	x	Total age	Yield per acre by site index-						
(years) ;	40	50	110	70	80	(years)"	40	50	60	70	80		
25	Bd. ft. 0 0 50 100 150 250 400	Bd. ft. 0 0 50 150 300 600 750 1, 100	Bd. ft., 0 50 200 500 500 1, 400 2, 150 3, 150	Bd, ft. 60 200 550 1, 100 2, 000 3, 250 4, 250 6, 700	Bd. ft. 150 500 1, 250 2, 500 4, 300 8, 650 9, 680 11, 350	65	Bd. /t. 550 800 1, 100 1, 450 1, 800 2, 200 2, 700 3, 350	Bd. ft. 1,700 2,350 3,150 4,000 4,850 5,800 6,700 7,760	Bd. ft. 4,350 5,650 7,000 8,350 9,700 11,050 12,350 13,700	Bd. ft. 8, 550 10, 550 12, 460 14, 100 15, 700 17, 200 18, 600 19, 000	Bd. ft. 13, 700 15, 900 17, 850 19, 700 21, 400 23, 050 24, 500 28, 100		

¹ No trees containing a 16-foot log with a top diameter inside back of 8.0 inches below 25-year class.

Average-diameter, number-of-trees, and basal-area values for the merchantable cubic- and board-foot stands are presented in tables 16-24. These were also computed from like values for the entire stand by using average ratios. Perfect checks between these tables are not expected, because of differences in weighting.

Table 16.—Average diameter at breast height of the merchantable cubic-foot stand, including all trees having any merchantable cubic volume (to a 4-inch top outside bark)

Total age (years)	Aye h	rage di eight b	lamete Dy sho	r at bro Index-	east -	Total age (years)	A ve	rnga d eight l	lamete by site	r at bre index—	est
	40	50	60	70	80	_	40	50	60	70	80
10	70.00000000000000000000000000000000000	M. 0244703.6025	m. 0.335827 0.445827 6.773	In. 0 4.47 5.6 6.77.8.2	/n. 25 4.65 6.51 6.51 6.52 8.52 8.52	60	In. 1 0.3 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	In. 6.8 7.1 7.4 7.7 7.9 8.2 8.5 8.7 9.0	In. 7.7 8.1 8.4 8.7 9.1 0.7 10.0	In. 8.0 9.1 9.5 9.9 10.3 10.7 11.7	7n. 9. 7 10. 2 10. 7 11. 2 12. 7 12. 7 13. 6

Table 17.—Number of trees per acre in merchantable cubic-foot stand, including all trees having any merchantable cubic volume (to a 4-inch top outside bark)

	Tree	s per a	re by :	site lu	lox	m. 4.1	Trees per sere by site index—					
Total age (years)	Num-	50	60	70	80	Total ago (years)	40	50	60	70	80	
10	ber	Num- ber 0 25 176 327 436 475 467 469 442 425	Num- ber 0 85 32 402 403 403 403 367	Num 0 53 93 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Num- ber 49 251 406 454 410 358 313 287 265 214	00	Num- ber 457 435 414 401 303 384 377 368 302	Num- ber 403 377 356 340 330 322 314 306 298	Num- ber 333 312 205 283 273 264 255 246 237	Num- ber 279 258 240 227 218 210 203 196 190	Num- ber 225 207 192 181 173 165 154 150	

Table 18.—Basal area per acre in merchantable cubic-foot stand, including all trees having any merchantable cubic volume (to a 4-inch top outside bark)

Total age (years)	Ве		per e index-	сге бу: -	site	Total age (years)	Basal area per acre by site index—					
	40	50	60	70	80		40	50	60	70	80	
10	Sq. ft. 0.0 5.8 23.3 40.9 55.3 64.5 71.7 77.7 83.2	Sq. ft. 0.0 2.6 16.8 37.0 56.8 68.4 76.7 83.3 88.9 93.8	0.0 7.6 26.3 49.0 68.4 79.1 86.1 91.0 96.3	Sq. ft. 0.0 15.1 37.5 63.0 77.5 86.1 92.2 97.1 101.9 108.2	Sq. ft. 4. 0 25. 0 51. 7 71. 2 83. 9 91. 1 90. 3 101. 3 106. 1 110. 3	60	88. 4 92. 9 97. 2 101. 4 105. 4 100. 1	98. 2 102. 5 100. 2 110. 6 114. 3 118. 3 122. 2	105. 6 109. 5 113. 8 118. 0 122. 0 126. 0	114. 8 119. 0 123. 2 127. 3 131, 3 135. 5	Sq. ft. 114.9 119.0 123.3 127.6 131.7 135.6 135.6 143.7 147.8	

Table 19.—Average diameter at breast height of the International board foot stand, including all trees having at least one 16-foot log with a 5-inch top inside bark

Total age (years)			iamete by site			Total age (years)	Average diameter at breast height by site index—					
	40	50	60	70	80		40	50	60	70	80	
15	In. 0.00 7.12 3 7.75 7.77 7.77 7.77 7.77 7.77 7.77 7.	In. 0.00 7.12 7.44 7.57 7.70 8.1	In. 0.017.127.447.888.6	In. 0.11 7.3 7.9 7.2 8.3 9.3	In. 7.1 7.2 7.5 7.9 8.3 8.7 9.7 9.7	60	In. 7.99 8.13 8.4 8.5 7.8 9.0	In. 8.3 8.5 8.7 8.9 9.1 9.8 9.0 9.8 10.0	In. 8.9 9.2 9.5 9.8 10.0 10.3 10.5 11.0	In. 9.7 10.0 10.4 10.8 11.1 11.4 11.7 12.0 12.3	In. 10.6 11.1 11.5 11.9 12.3 12.7 13.1 13.5 13.8	

Table 20.—Number of trees per acre in International board foot stand, including all trees having at least one 16-foot log with a 5-inch top inside bark

	Tre	es per s	ere by	site in	dex—		Trees per acre by site index-					
Total age (years)	40	50	80	70	80	Total age (years)	40	50	60	70	80	
	Num-	Num- ber	Num- ber	Num- ber	Num- ber		Nıcm- ber	Num- ber	Num-	Num- ber	Num- ber	
15	و' " [0	0	0	- 5	60	137	195	214	201	177	
20	0 3	14	28	17 53	32 82	65	156 175	208 214	209 206	192 186	171 166	
30	17 34	38 64	64 103	96 140	133 178	75 80	193 210	217 219	204 203	183 180	161 158	
40	53	91	139	171	187	85	224	220	202	178	155	
45 50	74 95	117 143	174 202	192 205	101 100	90	229 232	221 221	201 200	177 175	152 149	
55	117	169	213	205	186	100	234	222	199	173	246	

Table 21.—Basal area per acre in International board foot stand, including all trees having at least one 16-foot log with a 5-inch top in ide bark

	Basal	ares pe	r acre t	y site	index—	[Basal area per acre by site index—					
Total age (years)	40 50 60 7		70	80	Total age (years)	40	50	60	70	80		
15	Sq. ft. 0.0 .8 4.5 9,4 14.9 21.4 28.4 36.8	\$q.ft. 0.0 .0 8.6 9.6 18.7 27.8 37.0 47.6 59,2	\$9.ft. 0.0 1.6 7.8 18.9 32.0 46.1 59.5 71.1 80.6	\$q.ft. 0.0 4.6 15.5 30.0 47.9 64.5 76.8 85.3 93 1	\$9.51. 1.8 8.7 25.0 45.5 66.8 79.0 88.0 95.6 102.3	80	92.0 97.0	70.5 79.4 86.9 92.7	88.6 95.4 101.6 107.1 112.3 117.6 122.7 127.8	Sq.ft. 89.9 106.5 112.6 117.9 122.8 127.7 132.0 136.5 140.3	Sq. ft. 108. 5 114. 2 119. 6 124. 8 129. 2 134. 2 138. 3 143. 3 147. 8	

Table 22.—Average diameter at breast height of the Scribner board foot stand, including all trees having at least one 16-foot log with an 8-inch top inside bark

Total age (years)				er at br		Total age (years)	Average diameter at breast beight by site index—					
(3023)	40	50	60	70	80	(Jeans)	40	50	60	70	80	
25	In. 0.0 .0 .0 10,6 10.6 10.7 10.7	In, 0.0 10.6 10.6 10.7 10.7 10.8 10.9	In. 0.0 10.6 10.7 10.7 10.8 10.9 11.0 11.2	In. 10.6 10.6 10.7 10.8 11.0 11.2 11.4 11.6	Jn. 10.6 10.7 10.9 11.1 11.3 11.6 11.9 12.2	85	In. 10.8 10.8 10.9 10.9 11.1 11.1	In. 11.0 11.1 11.2 11.3 11.4 11.5 11.7 11.8	In. 3 11. 4 11. 6 11. 7 11. 9 12. 1 12. 3 12. 5	In. 11.8 12.1 12.3 12.5 12.8 13.0 13.3 13.5	In. 12.5 12.9 13.2 13.5 13.9 14.5 14.8	

Table 23.—Number of trees per acre in Scribner board foot stand, including all trees having at least one 16-foot log with an 8-inch top inside bark

Total age	Tree	s per a	cra by	site in	dax—	Total age	Trees per acre by site index—					
(years)	40	50	60	70	80	(years)	40	50	60	70	80	
25	Num- ber 0 0 0 2 4 7 10	Num- ber 0 0 2 6 10 15 20	Num- ber 0 3 8 14 22 31 41 53	Num- ber 2 8 15 23 35 51 67 80	Num- ber 5 14 26 40 58 78 92 101	65	Num- ber 17 21 27 34 42 50 66	Num- ber 36 45 54 64 74 83 90 102	Num- ber 64 74 85 96 104 111 117	Num- ber 91 100 108 114 119 124 127	Num- ber 107 111 114 118 120 121 122	

Table 24.—Basal area per acre in Scribner board foot stand, including all trees having at least one 16-foot log with an 8-inch top inside bark

Total age (years)	Ba	sal are	a per s index-	cre by -	sito	Total age (years)	Basal area per acre by site index—					
,	40	50	60	70	80	(30415)	40	50	60	70	80	
25	Sq.ft. 0.0 .0 .0 .2 1.7 3.6 5.3 7.6	Sy.ft. 0.0 1.7 3.3 5.6 8.6 12.6 17.4	Sq. ft. 0.0 1.7 4,4 8.3 12.9 19.0 26.0 35.2	Sq. ft. 1. 0 3. 6 8. 9 14. 9 23. 0 34. 6 46. 0 57. 8	Sq. fi. 2. 5 6. 2 17. 1 28. 3 41. 3 54. 8 68. 0 70. 6	05	Sq. ft. 10. 5 13. 6 17. 5 21. 9 26. 8 32. 0 37. 8 43. 9	Sq. ft. 23. 6 30. 4 37. 3 44. 6 51. 9 57. 5 75. 9	Sq. ft. 44.6 54.1 63.2 71.8 80.0 88.1 96.1 103.6	Sa, ft. 69, 1 79, 4 88, 9 97, 1 105, 1 112, 5 119, 3 126, 0	Sq. ft. 90. 6 100. 1 108. 6 116. 4 123. 4 130. 0 141. 9	

YIELD IN CORDS

Satisfactory factors for converting solid wood volumes of oak trees of various diameters to stacked cords have not been determined. A recent study ²⁰ in oak stands gives an average factor of 85 cubic feet of solid wood per cord. With this factor the merchantable cubic yield was converted to cords, as presented in table 25.

m Made by the Allegheny Forest Experiment Station on the Black Rock Forest, Cornwall, N. Y.; basis, 23 piles of wood totaling 10 cords.

Table 25.—Yield per acre of merchantable stem in cords, including bark, to a 4-inch top outside bark

Total age	Yie		cre of n y site i	ierchant idex	ahle	Total age	Yield per acre of merchantable stem by site index—					
(years)	40	50	60	70	80	(years)	40	50	60	70	80	
10	Cords 0, 0 24 1, 18 3, 18 5, 65 8, 00 10, 24 12, 47 14, 59	Cords 0. 0 24 .82 2. 94 6. 35 9. 65 12. 82 15. 88 18. 82 21. 65	Cords 0.0 -47 2.00 6.00 10.35 14.59 18.59 22.47 20.24 29.65	Cords 0. 12 1. 94 4. 24 9. 65 14. 94 19. 86 24. 59 29. 06 33. 29 37. 41	Cords 0. 24 2. 24 7. 29 13. 76 19. 88 25. 41 30. 71 35. 76 40. 59 44. 94	60	Cords 16,71 18,71 20,59 22,35 24,12 25,88 27,41 26,94 30,47	Cords 24, 47 26, 94 29, 53 31, 58 34, 12 36, 12 38, 00 39, 36 41, 41	Cords 32, 94 35, 88 38, 71 41, 29 43, 88 46, 12 48, 47 50, 59 52, 71	Cords 40. 94 44. 35 47. 41 50. 35 53. 06 55. 76 58. 35 60. 94 63. 53	Cords 48, 94 52, 71 56, 12 59, 53 62, 62 65, 88 69, 05 72, 12 75, 06	

Figure 12.—Mean annual growth per acre in cubic feet of entire stand excluding bark, showing trends with age by site index.

MEAN ANNUAL GROWTH

The relations of mean annual growth, in the first four units, to age and site are shown in figures 12, 13, and 14, and the tabular values, including those in cords, are presented in tables 26, 27, 28, 29, and 30. Culmination of growth in total cubic volume occurs at 50 years on all sites. This is the point at which the yearly growth reaches its maximum. The decline on both sides of the point is so gradual, however, that there is only 1 percent difference between the ages of 40 and 60 years. Culmination for the merchantable stand,

FIGURE 13.—Mean annual growth per acre in cubic feet of merchantable stand including bark, to a 4-inch top outside bark, showing trends with age by site index.

which is of more practical value, takes place at 55 years on the best sites, and at 90 years on the poorest. The trend here also is gradual after the point of culmination is reached, as shown in table 31, which expresses the mean annual growth as a percentage of the maximum for each site. This fact permits considerable leeway in determination of the rotation age when considering only the volume production. The growth rate is within 5 percent of the maximum for a period of approximately 50 years on any site, the best site arriving at this point at about 45 years and the poorest at 70 years.

FIGURE 14.—Mean annual growth per acre in board feet, International rule, 1/6-inch kerf to a 5-inch top, inside bark, showing trends with age by site index.

Table 26.—Mean annual growth per use in cubic feet, entire stand, excluding bark; all trees 0.6 inch d. b. h. and larger included

Total age	Ann	ual grov	vth per index-	acre by	site	Total age (years)	Annual growth per acre by site index					
(years)	40	Pubic Cubic Cubic Cubic Cubi	80	(yens)	-10	50	60	70	80			
10. 16. 20. 25. 30. 35. 40. 45. 56. 55.	Cubic feet 20 33 24 25 26 26 26 26 26 26	Cubic feet 27 30 32 33 33 34 34 34 34 34	Cubic Ject 34 38 40 42 43 43 43 43	Cubic fect 41 46 49 50 51 51 52 52 52 52	Cubic feet 49 54 57 59 60 61 61 62	60	Cubic feet 26 26 28 25 25 24 24 24 24	Cubic fed 34 34 34 33 33 33 33 32 32	Cubic feet 43 43 42 42 42 41 41 40	Cubic feet 52 52 51 51 50 49 49 48	Cubic feel 6: 6: 6: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5: 5:	

Table 27.—Mean annual growth per acre in cubic feet, merchantable stand, including bark, to a 4-inch top outside bark

Total age (years)	Ant	oual gro	wth per index—	acre by	site	Total age (years)	Annual growth per acre by site index—					
(3-6502.5)	40	50	60	76	80	Gunay	40	50	60	70	80	
10	Cubic feet 0 0 1 4 9 14 17 19 21 23	Cubie feet 0 1 4 10 18 23 27 20 32 33	Cubic feet 0 3 8 20 29 35 40 42 45 46	Cubic feet 18 18 33 42 48 62 55 57 58	Cubic feet 2 13 31 47 56 62 65 68 69	60	Cubic feet 24 24 25 25 26 26 26 26	Cubic feet 35 35 36 36 36 36 30 30	Cubic feet 47 47 47 47 46 40 45 45	Cubic feet 58 58 58 58 57 58 56 56 55 55	Cubic feet 61 61 61 61 61 61 61 61 61 61 61 61 61	

Table 28.—Mean annual growth per acre in board feet, International rule, \s\cdot \cdot \cd

Total age	Am	anal gro	wth per Index—	acre by	· site	Total age (years)	Annual growth per acre by site index—					
(years) ·	40	50	CO .	70	80	(years)	40	50	60	70	80	
15	Board feet 0 0 0 3 9 15 21 28 36	Board feet 0 0 0 12 23 35 50 65 79	Board feet 0 12 28 54 80 104 120 145	Board feet 0 8 28 58 101 138 170 105 215	Jaurd feet 3 18 58 112 170 215 249 275 285	60. 65. 70. 75. 80. 85. 90. 95.	Board feet 45 53 01 68 74 79 84 88 92	Bourd feet 93 100 110 121 131 136 140 143	Board fect 162 174 183 189 196 200 203 200	Board feet 232 243 253 250 265 269 272 275 276	Hoard feet 310 322 330 336 341 343 344 344 344	

^{*} No trees containing a 16-foot log with a top diameter inside bank of 5.0 inches below 15-year class.

Table 29.—Mean annual growth per acre in board feet, Scribner rule, to an 8-inch top inside bark, including all trees having at least one 16-foot log

Total age (years) 1	Anı	auai gro	wth per Index-		site	'Potal age (years) 1	Annual growth per acre by site index—					
(Asmr).	40	50	60	70	80	() (22.3)	40	50	60	70	80	
25	Roard feet 0 0 1 2 3 5	Board feet 0 0 1 4 7 10 14 18	Board feet 0 2 6 12 20 28 39 52	Hourd feet 2 7 10 28 44 65 90	Board feet 9 17 36 02 96 133 164 189	05	Board feet 8 11 15 18 21 24 28 34	Board feet 26 34 42 50 57 64 71 78	Board feet 87 81 93 104 114 123 130 137	Board feet 132 151 165 176 185 191 196 199	Board feet 211 227 238 246 252 256 259 261	

¹ No trees containing a 16-foot log with a top diameter inside bark of 8.0 inches below 25-year class.

Table 30.—Mean annual growth per acre of merchantable stem in cords, including bark, to a 4-inch top outside bark

Total age	Ant	nual gro	wth per index	acre, by	r site	Total age	Annual growth per nere, by site index—								
(years)	40	â0	60	70	80	(years)	40	50	60	70	80				
10	Cords 0.00 .00 .01 .05 .11 .16 .20 .23 .25	Cords 0.00 .02 .04 .21 .28 .32 .35 .35	Cords 0,00 .03 .10 .24 .42 .46 .50 .52 .54	Cords 0. 01 .06 .21 .50 .57 .61 .65 .67	Cords 0, 02 15 30 . 55 . 73 . 77 . 81 . 82	60	Cords 0. 26 . 29 . 30 . 30 . 30 . 30 . 30	Cords 0.41 .41 .42 .43 .43 .42 .42 .42 .41	Cords 0. 55 . 55 . 55 . 55 . 54 . 54 . 53 . 53	Cords 0. 68 . 68 . 68 . 67 . 66 . 65 . 64 . 64	Cords 0.82 -81 -80 -79 -78 -77 -76 -75				

¹ Converting factor, 85 cubic feet per cord.

Table 31.—Percent of maximum mean annual growth per acre, at successive ages merchantable stem, including bark, to a 4-inch top outside bark 1

Total age (years)	Maximum merchantable cubic index—										
Total ago (Jeans)	40	50	60	70	50						
	Percent	Percent	Percent	Percent	Percent						
	o o	9	, ,	2.	3						
,	Ç,	11	17	31	19 45						
	15	28	43	57	68						
	35	50	62	72	ទ័រ						
	54	64	74	83	90						
	65	75	65	90 1	94						
	73	83	89 1	95	99						
	81	89 .	96	98	100						
	88	02	98	100	100						
	92	97	100	100	100						
	92	97	100	100	100						
	96	100	100	100	99						
	96	100	100	98	97						
	100	100	100	97	97						
	100	100	98	97	96						
	100	100	98	95	94						
	100	100	98	95 .	94						
)	100	97	96	93	93						

¹ Heavy lines enclose ages and sites between which stand may be cut and yet obtain within 5 percent of the maximum mean annual growth.

ACCURACY OF THE YIELD TABLES

Measures of the association of the various yield values with age and site, and the standard errors of estimate of the yield tables, are given in table 32. The percentage of variation accounted for, shown in column 3, indicates the part of the variation of the particular yield unit that is associated with age and site. The differences between these values and 100 percent are the percentages of variation not accounted for. The difference between stand basal area and total volume with respect to percentage not accounted for is striking. Age and site account for 88 percent of the variation in volume and only 59 percent in basal area—a difference of 29 percent. Yet the stand-

ard errors of estimate show practically no difference in the reliability of estimating. The reason for this is the correlation between volume and height. Site index is based on height and height is one of the variables which determine volume. Higher correlations are expected since both the dependent and one of the independent variables contain height factors. This is true for all correlations with volume units.

Table 32.—Check of basic data against yield tables

	Carre-	Varia-	Dev	ation	Standa	rd error	Standard error of
Yield (able unit	Intion index	tion ac- counted for	A ver- age	Aggre- gate		Imate	yleld- table readings
Stand basal area square feet Number of trees logarithms A verage diameter inches Average height feet Total volume cubic feet Merchantable volume do International volume board feet Scribner volume do.	. 934 . 905 . 936 . 958	Percent 59 82 87 193 88 02 91 51	Percent 11 25 11 6 12 10 30 45	Percent +0.17 +.07 48 26 32 25 +1.04 2.8	Units 13.6 .1202 .78 4.0 321 350 1,807 1,516	Percent 14. 5 25. 7 13. 0 8. 2 16. 2 29. 4 47. 4 68. S	Percent ±0,72 ±1,28 ±41 ±51 ±2,46 ±2,34 ±2,40

In general the aggregate and average deviations and the standard errors compare favorably with those found in other yield studies. One must bear in mind, however, that these data cover a wide range of conditions as to location and species composition. Distinct differences in geologic formation, residual soil, and climate occur over this vast region. As usual, the tables for merchantable cubic- and board-foot units have large errors of estimate and percentage deviations, because the decided influence of density on tree size is accentuated where tree size is the factor governing yield. McIntyre's studies in oak stands in Pennsylvania (15), which indicate an average of 5 percent more oak by basal area than the present study, show less scatter about the average.

USE OF TABLES FOR YIELD PREDICTION IN UNDERSTOCKED STANDS

Application of normal yield tables to understocked stands is at best an approximation, especially when dealing with mixed stands. The yield table is a measure of the natural growing capacity of the best stocked stands, indicates what yields can be attained, and gives a goal to strive for and perhaps surpass under scientific management. Approximate yield predictions are usually obtained by correcting future tabular yield values by use of the present percentage relation between actual basal area, computed from a sample of the forest in question, and tabular basal area for the same age and site. Application of this percentage correction to tabular values at a future age gives a conservative estimate of yield, since understocked stands tend to approach normality with advancing age. For most practical purposes such predictions can be made for periods up to 20 years. plete discussions of this general method of application can be found in a number of publications (7, 10, 14, 15, 31) and in the standard texts on forest mensuration.

EFFECT OF DENSITY AND SPECIES COMPOSITION ON YIELD

Table 32 indicates that 12 percent of the variation in total cubic volume yield is due to variables other than age and site. To determine what part of this is due to stand density and what part to species composition, correlations were made between actual yield, in percent of the tabular, and these factors. The correlations obtained were as follows:

Correlation between actual yield in percent of the tabular and— (1) Density, deviation of actual from estimated log number of trees	Correlation coefficient
(2) Basal area of white oak group in percent of the total	
(3) Basal area of black oak group in percent of the total.	0684
(4) Basal area of other intolerant group in percent of the total	+.2992
(5) Basal area of other tolerant group in percent of the total	
(6) All five combined (multiple correlation)	\pm . 7451

A correlation coefficient of 0.119 or larger is significant. Therefore only two of the gross correlations are significant, density being by far the most important. The multiple correlation with all five variables shows very little improvement over the gross correlation with density alone. The indications are, therefore, that density contributes about half (100×0.718×0.718) of the variation from the tabular values and that species composition as expressed by these groups is of minor importance. It must be mentioned, however, that species composition probably affects yield more than these correlations show, but its effect is largely removed by the original correlation with site index. This is true because significant correlations occur between species composition and site index. These will be shown later in the stand-table discussion.

CORRELATION OF TOTAL CUBIC VOLUME WITH AGE, SITE, AND DENSITY

A curvilinear multiple correlation of total cubic volume with age, site, and density was made by Bruce and Reineke's method (4) and a very satisfactory chart was obtained (fig. 15). The standard error of estimate was lowered 29 percent by including density, and a corresponding improvement in correlation was achieved, as shown in Comparison of the two estimates of yield is available in table 33. In the younger age classes there is a greater range in yield with variation in site when density is considered as a variable than when it is omitted from consideration. This might indicate a deficiency of density classes among the younger ages in the sample used. Also, there is a tendency for the poorer sites to have higher yields above This indicates that the density of the older stands sampled on the poorer sites was lower than that of the rest of the stands sampled. In other words a correlation between density and site is indicated. This is borne out by the actual correlation coefficient of -0.1612, which is statistically significant.

FIGURE 15.—Yield of upland oaks—curvilinear multiple correlation of stand volume with age, site index, and density.

Table 33.—Comparison of yield correlations with and without density included as a variable

_	Total cubic volume yield correlated with—							
Item :	Age and site index	Age, site index, and density						
Correlation index. Percent of variation accounted for. Standard error of estimate: Cubic feet Percent.	0.936 88 321 16	0.969 94 227 11.5						

Since density is measured by the number of trees present (fig. 17), the correlation between density and site indicates to some extent that the better sites have fewer numbers of trees for any given stand diameter than the poorer ones. On the other hand the correlation between volume and density is not significant (r=0.1028). Accordingly, if there are fewer trees but the same volume on the better sites for the same average diameter, it follows that there is probably less range in tree sizes.

CURVES OF VOLUME FOR AGE AND SITE DISREGARDING DENSITY
CURVES OF VOLUME FOR AGE AND SITE FOR AVERAGE DENSITY
WHEN DENSITY IS INCLUDED AS A VARIABLE

FIGURE 16.—Comparison between total cubic volume curves when correlated with age and site only and when density is included.

A set of total cubic-volume values by age, site index, and density a classes are presented in table 34, as read from figure 15. One can readily see from this table that even though density was controlled in the field by selecting fully stocked stands as samples, the variations

¹¹ Example of computation of density. If the number of trees in an upland oak forest stand is 500 and their average diameter is 5.0 inches, what is the density of the stand? The logarithm of 5.0 is 0.6290. Substituting this value in the equation—average log (number of trees) = 3.8038—1.4987 (og (average diameter breast high) we get log (number of trees) = 3.8038—1.0476=2.8162. The antillog of 2.8162=655, or average number of trees for an average diameter of 5.0 inches, and 500 is 76 percent of 655. Therefore the density of the stand is 76. This can be computed graphically by direct reading from figure 19.

obtained are well worth considering, especially in scientific studies. It is entirely possible to include density as a variable in all of the yield tables, but this requires further analysis, which leads naturally towards application studies in understocked stands. These are planned in future work.

FIGURE 17.-Stand density chart for upland oak.

Table 34.—Yield per acre, excluding bark, by density classes, age, and site; all trees 0.6 inch d. b. h. and larger included

POOR SITE-INDEX 40

		1001	. 511E-	1141767	2 40					
Auto (Moore)			Yie	eld per a	ere by de	nsity cla	SK I			
Age (years)	50	60	70	80	90	100	110	120	130	
10	Cubic feet 0 0 0 0 0 0 22 2182 335 485 630 775 896 1, 235 1, 326 1, 420 1, 660 1, 675	Cuble feet 0 0 0 5 175 328 499 495 1, 350 1, 450 1, 550 1, 550 1, 555 1, 555 1, 555 1, 555 1, 555	Cubic feet 0 0 0 0 1411 305 405 405 1400 1,280 1,775 1,9875 2,080 2,175	Cubic feet 0 0 73 2458 4455 587 763 940 1, 125 650 1, 4600 1, 740 1, 876 2, 075 2, 280 2, 380	Cubic feet 0 0 1755 350 525 700 6525 1,075 1,752 2,040 2,270 2,270 2,475 2,575	Cuble feet 0 70 200 440 815 800 985 1, 190 1, 510 1, 760 1, 920 2, 200 2, 310 2, 420 2, 530 2, 730	Cubic feet 00 162 350 540 720 908 1, 230 1, 540 1, 740 1, 920 2, 3475 2, 590 2, 820 2, 925	Cuble feat 75 202 460 650 6842 1,050 1,480 1,928 2,100 2,428 2,570 2,780 2,913 3,150	Cubic feet 180 385 570 775 775 7190 1,430 1,660 1,910 2,300 2,750 2,020 3,158 3,158 3,150 3,158 3,150 3,15	
	FAIR SITE—INDEX 50									
10	0 0 0 85 252 405 540 907 1, 220 1, 345 1, 590 1, 580 1, 590 1, 895 1, 990	0 60 2398 570 750 1,110 1,240 1,575 1,950 2,160 2,270 2,300	97 190 345 543 715 9100 1, 460 1, 660 1, 660 1, 660 1, 680 1, 680 1, 680 2, 880 4, 680 2, 680 4, 680 2, 680	0 120 302 4862 850 1,060 1,260 1,470 1,845 1,980 2,285 2,400 2,728 2,010 2,728 2,530	20 220 492 593 785 975 1, 220 1, 630 1, 630 1, 845 2, 335 2, 3460 2, 595 2, 946 3, 650	105 302 495 685 1,600 1,326 1,770 1,150 2,170 2,335 2,400 2,755 2,905 3,120 3,240	198 390 595 1,000 1,220 1,470 1,930 2,150 2,340 2,500 2,805 3,200 3,200 3,345 3,460	309 507 710 1, 150 1, 376 1, 875 2, 120 2, 530 2, 695 2, 573 3, 300 3, 165 3, 595 3, 739	402 622 840 1,005 1,535 1,810 2,540 2,540 2,540 2,540 3,100 3,285 3,415 3,580 4,020	
		LVERAC	e siti	E—INDI	EX 60					
10	0 0 140 305 475 080 840 1,215 1,385 1,895 1,997 2,1885 2,140 2,495	0 05 285 285 460 835 535 1, 230 1, 435 1, 250 2, 240 2, 360 2, 675 2, 785 785 785 785 785 785 785 785 785 785	30 288 4194 50 50 50 50 50 50 50 50 50 50 50 50 50	145 540 540 728 1,148 1,361 1,	245 446 648 850 850 850 850 850 850 850 850 850 85	330 540 748 748 748 748 755 757 757 757 757 757 757 757 757 75	422 655 655 656 657 657 658 658 658 658 658 658 658 658 658 658	540 755 985 1, 478 2, 225 1, 478 2, 225 2, 275 3, 355 3, 725 3, 355 3, 725 4, 4, 4, 4	650 880 1, 135 1, 385 1, 385 1, 670 1, 925 2, 470 2, 785 3, 220 3, 220 3, 635 3, 850 4, 295 4, 580 4, 775	

¹ Density is percentage of average number of trees.

Table 34.—Yield per acre, excluding bark, by density classes, age, and site; all trees 0.6 inch d. b. h. and larger included—Continued

GOOD SITE-INDEX 76

	Yield per nore by density class t													
Age (years)	50	60	70	80	90	100	110	120	130					
	Cuble	Cubic	Cubic	Cubic	Cubic	Cubic	Cuble	Gubic	Cubi					
	/cet	fect	feet	feet	feet	feet	feet	feet	feel					
	30	170	310	420	532	622	728	850	Ī. Ş					
	219	368	509	028	745	848	980	1, 105	1,					
) 	410 598	568 765	718 925	850 1, 075	975 1, 220	1,000	1, 225	1,380	1.					
)	700	970	1, 155	1, 320	1, 475	1.010	1,480 1,770	1, 055 1, 945	2,					
	975	1, 180	1, 380	1, 555	1,730	1,875	2,030	2, 225	2,					
)	1, 210	1, 430	1, 645	1, 830	2,005	2, 160	2,335	2, 525	2,					
	1, 415	1, 850	1, 880	2,030	2, 270	2, 425	2,595	2, 705	3,					
)	1,040	1,000	2, 135	2, 335	2, 530	2,080	2, 595 2, 870	3,000	3,					
·	1.845	2, 105	2, 350	2, 550	2,740	2, 925	3, 125	3, 370	3,					
)	! 2.620	2, 295	2,545	2, 755	2,970	3, 165	3, 375	3, 630	3,					
	2, 175	2, 450	2, 605	2,930	3, 170	3, 300	3, 580	3,870	4,					
}	2,340	2, 020	2, 880	3, 125	3, 365	3, 575	3,825	1, 120	4,					
)	2,475	2, 755	3, 035	3, 205	3, 550	3, 780	4, 030	4, 300	4,					
	2,500	2,800	3, 100	3, 450	3, 720	3, 950	1, 235	4, 570	4,					
	2,090	3,010	3, 315	3, 585	3, 870	1, 120	4, 405	1, 770	5,					
)														
	2,810	3, 140	3, 460	3,760	4,040	4, 320	4,615	4, 905	5,					
6	2,040 2,040 3,030	3, 270 3, 395	3, 460 3, 005 3, 745	3, 760 3, 925 4, 060	1, 040 1, 225 1, 390	4, 320 4, 505 4, 080	4, 825 5, 620	4, 995 5, 225 5, 440	5,4					
	2, 040 3, 030	3, 270 3, 395	3, 005	3, 925 4, 660	4, 225 4, 390	4, 505	4,825	5, 225	5,4					
0	2,040 3,030 E3	3, 270 3, 395 CELL,1	3,005 3,745 ENT SIT	3,925 4,050 PE—1NJ	4, 225 4, 390 DEX 80 830	4, 505 4, 080	4, 825 5, 620	5, 225 5, 440	5, 5,					
0.	2,040 3,030 EX	3, 270 3, 305 CELL,1 435 442	3, 005 3, 745 ENT SIT 580 800	3, 925 4, 050 PE—1N I 705 940	4, 225 4, 390 DEX 80 830 1, 080	4, 505 4, 080 030 1, 200	1, 055 1, 335	5, 225 5, 440 1, 200 1, 495	1,					
0	2,040 3,030 E2 288 482 685	3, 270 3, 395 CELLI, 1 435 642 862	3, 005 3, 745 ENT SIT 580 800 1, 035	3,925 4,050 PE—INI 705 940 1,190	4, 225 4, 390 DEX 80 830 1, 680 1, 345	4, 505 4, 080 030 1, 200 1, 470	1, 055 1, 336 1, 620	5, 225 5, 440 1, 200 1, 495 1, 785	1,					
)	2,040 3,030 E2 288 482 685 880	3, 270 3, 395 CELL, 1 435 442 362 1, 080	3, 005 3, 745 ENT SIT 580 580 1, 035 1, 277	3, 925 4, 050 PE—INI 705 940 1, 100 1, 450	4, 225 4, 390 DEX 80 1, 080 1, 345 1, 610	4, 505 4, 080 1, 200 1, 470 1, 752	1, 055 1, 335 1, 020 1, 915	1, 200 1, 495 1, 785 2, 660	1, 1, 2					
0	2,040 3,630 E2 288 482 685 890 1,120	3, 270 3, 395 CELL, 1 435 442 862 1, 080 1, 340	3, 005 3, 745 ENT SIT 580 1, 035 1, 277 1, 540	3, 925 4, 050 PE—INI 705 940 1, 190 1, 450 1, 725	4, 225 4, 390 5 EX 80 830 1, 080 1, 345 1, 670 1, 910	4, 505 4, 080 1, 200 1, 470 1, 752 2, 050	1, 055 1, 030 1, 055 1, 335 1, 020 1, 915 2, 215	1, 200 1, 495 1, 785 2, 660 2, 405	1, 1, 2, 2, 2, 2, 3					
0	2,040 3,030 E2 288 482 685 890 1,120 1,345	3, 270 3, 395 CELLA 435 642 862 1, 080 1, 340 1, 575	3, 005 3, 745 3, 745 ENT SIT 580 800 1, 035 1, 277 1, 540 1, 795	705 940 1, 190 1, 190 1, 190 1, 199	4, 225 4, 390 DEX 80 1, 680 1, 345 1, 619 2, 180	4, 505 4, 080 030 1, 200 1, 470 1, 752 2, 050 2, 335	1, 055 1, 030 1, 055 1, 335 1, 020 1, 915 2, 215	1, 200 1, 495 1, 785 1, 785 2, 690 2, 405 2, 690	1, 1, 1, 2, 2, 2					
)	2,040 3,030 E2 288 482 685 860 1,120 1,345 1,605	3, 270 3, 305 CCELL, 1 435 642 862 1, 080 1, 340 1, 575 1, 860	3, 005 3, 745 ENT SIT 580 1, 035 1, 277 1, 540 1, 795 2, 090	3, 925 4, 050 PE—INI 705 940 1, 160 1, 725 1, 725 1, 990 2, 360	4, 225 4, 390 DEX 80 1, 680 1, 345 1, 610 1, 919 2, 180 2, 480	4, 505 4, 080 1, 200 1, 470 1, 752 2, 050 2, 335 2, 645	1, 055 1, 335 1, 020 1, 915 2, 215 2, 500 2, 525	5, 225 5, 440 1, 200 1, 495 2, 690 2, 405 2, 690 3, 640	5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					
0	2,040 3,030 E2 288 482 685 890 1,120 1,345 1,905	3, 270 3, 395 CELL, 1 435 442 442 442 442 1, 080 1, 340 1, 575 1, 880 2, 100	3, 005 3, 745 ENT SIT 580 1, 035 1, 277 1, 540 1, 795 2, 090 2, 340	3, 925 4, 050 PE—INI 705 940 1, 450 1, 725 1, 990 2, 550	4, 225 4, 390 DEX 80 1, 680 1, 680 1, 610 1, 610 2, 180 2, 480 2, 740	4, 505 4, 080 030 1, 200 1, 470 1, 752 2, 050 2, 335 2, 645 2, 920	1, 055 1, 036 1, 036 1, 036 1, 020 1, 915 2, 500 2, 525 3, 125	5, 226 5, 440 1, 200 1, 495 1, 785 2, 690 2, 405 2, 690 3, 365	5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					
)	2,040 3,030 E3 288 482 685 890 1,120 1,345 1,605 2,060	3, 270 3, 305 CELL,1 435 642 862 1, 080 1, 340 1, 575 1, 860 2, 100 2, 360	3, 005 3, 745 3, 745 ENT SIT 580 800 1, 035 1, 277 1, 540 1, 795 2, 090 2, 310 2, 610	705 940 1, 199 1, 199 1, 199 2, 300 2, 550 2, 550 2, 550	4, 225 4, 390 DEX 80 1, 680 1, 345 1, 610 2, 180 2, 480 2, 740 3, 035	4, 505 4, 080 1, 200 1, 470 1, 752 2, 050 2, 335 2, 645 2, 920 8, 230	1, 055 1, 335 1, 020 1, 915 2, 215 2, 500 2, 825 3, 125 3, 450	1, 200 1, 495 1, 785 1, 785 2, 495 2, 495 2, 690 3, 365 3, 725	1, 1, 1, 2, 2, 2, 3, 3, 4,					
)	2,040 3,030 E3 288 482 685 890 1,120 1,345 1,605 2,060	3, 270 3, 395 CCELL, 1 435 642 862 1, 030 1, 340 1, 575 1, 860 2, 100 2, 360 2, 560	3, 005 3, 745 3, 745 580 800 1, 035 1, 277 1, 540 1, 795 2, 030 2, 830 2, 830	3,925 4,059 4,059 705 940 1,450 1,450 1,799 2,360 2,520 2,520 3,030	4, 225 -1, 390 DEX 80 1, 080 1, 345 1, 610 1, 810 2, 480 2, 748 3, 035 3, 325	4, 505 4, 080 030 1, 200 1, 470 1, 470 2, 050 2, 035 2, 645 2, 920 8, 230 3, 530	1, 055 1, 035 1, 035 1, 035 1, 020 1, 915 2, 215 2, 530 2, 825 3, 125 3, 450 3, 775	5, 225 5, 440 1, 200 1, 495 1, 785 2, 600 2, 405 3, 040 3, 305 3, 725 4, 965	ti ti					
3	2,040 3,030 ED 288 482 482 886 1,120 1,345 1,605 2,000 2,480	3, 270 3, 395 3, 395 435 642 1, 350 1, 575 1, 860 2, 380 2, 580 2, 577 2, 577	3,005 3,745 2NT SIT 580 800 1,035 1,277 1,540 1,795 2,090 2,610 2,610 2,610 8,970	3,925 4,000 PE—INI 705 940 1,460 1,725 1,090 2,550 2,550 2,520 3,030 3,320	4, 225 4, 390 830 1, 680 1, 345 1, 345 1, 345 2, 180 2, 180 2, 740 3, 035 3, 325 3, 357 3, 570	4, 505 4, 080 930 1, 200 1, 470 1, 752 2, 050 2, 335 2, 920 3, 230 3, 579 5	1, 055 1, 336 1, 620 1, 336 1, 620 2, 215 2, 500 2, 523 3, 450 3, 775 4, 055	1, 200 1, 495 1, 785 2, 690 2, 405 2, 690 3, 725 4, 680 4, 680 4, 680	के के किया किया के किया के किया के किया के किया के किया किया क					
)	2,040 3,030 E2 288 482 885 886 1,120 1,345 1,605 2,800 2,400 2,400	3, 270 3, 395 CCELL, 1 435 442 862 1, 580 1, 340 2, 100 2, 580 2, 700 2, 680 2, 760 2, 760	3,005 3,745 2NT SIT 580 800 1,035 1,277 1,540 2,090 2,300 2,830 8,070 3,280	3, 925 4, 000 7 E — 1 N 1 705 940 1, 450 1, 755 4, 990 2, 580 3, 030 3, 536 3, 536	4, 225 4, 390 1, 390 1, 080 1, 080 1, 345 1, 610 2, 180 2, 180 2, 180 2, 748 2, 748 3, 325 3, 570 3, 810	4, 505 4, 080 030 1, 200 1, 470 1, 752 2, 646 2, 020 3, 530 3, 530 3, 795 4, 045	1, 055 1, 336 1, 020 1, 915 2, 215 2, 500 2, 526 3, 125 3, 775 4, 035	5, 225 5, 440 1, 200 1, 495 2, 600 2, 469 3, 040 3, 725 4, 965 4, 980 4, 580	र्के हैं। विभाग के देवा के किया					
	2,040 3,630 EX 288 482 886 890 1,345 2,000 2,480 2,480 2,481 4,815	3, 270 3, 395 CCELI,1 435 442 842 842 1, 080 1, 340 2, 100 2, 380 2, 770 2, 680 2, 770 3, 185	3,005 3,745 2N'T SI 580 800 1,035 1,755 2,030 2,030 2,030 2,030 3,070 3,270 3,	3,925 4,000 705 940 1,450 1,725 1,725 1,280 2,556 2,556 3,760	4, 225 4, 390 1, 390 1, 080 1, 345 1, 610 2, 180 2, 748 3, 035 3, 325 3, 570 3, 819 4, 959	4, 505 4, 080 930 1, 200 1, 752 2, 045 2, 920 8, 233 5, 530 3, 705 4, 045 4, 325	1, 055 1, 336 1, 620 1, 915 2, 215 2, 500 2, 215 3, 450 3, 775 4, 335 4, 620	5, 225 5, 440 1, 200 1, 495 1, 785 2, 600 2, 405 2, 605 3, 305 4, 380 4, 380 4, 560 5, 600	1.1.1.222.333.44.55.					
	2,040 3,030 288 482 885 860 1,120 1,345 1,605 2,400 2,400 2,400 2,814 2,985	3, 270 3, 385 3, 385 435 442 862 1, 336 1, 575 1, 880 2, 576 2, 380 2, 576 2, 680 3, 157 2, 680 3, 125 3, 225	3,005 3,745 2NT SIT 580 800 1,035 1,277 1,540 2,090 2,300 2,830 8,070 3,280	3, 925 4, 000 7 E — 1 N 1 705 940 1, 450 1, 450 2, 360 2, 580 3, 030 3, 536	4, 225 4, 390 DEX 80 830 1, 680 1, 345 1, 610 1, 910 2, 480 2, 480 2, 480 3, 035 3, 325 3, 350 3, 810 4, 050 4, 250	4, 505 4, 080 1, 200 1, 470 1, 470 2, 335 2, 646 2, 920 3, 590 3, 590 4, 915 4, 955	1, 055 1, 336 1, 620 1, 915 2, 500 2, 826 3, 125 3, 125 4, 335 4, 630 4, 690	5, 225 5, 440 1, 200 1, 195 1, 785 2, 600 2, 600 3, 040 3, 725 4, 680 5, 690 5, 310 5, 310	1.1.1.02.2.2.3.3.4.4.5.5.5.5.					
	2,040 3,030 288 482 487 880 1,120 1,205 1,805 2,000 2,110 2,110 2,000 2,110 2,	3, 270 3, 395 CCELI,1 435 442 842 842 1, 080 1, 340 2, 100 2, 380 2, 770 2, 680 2, 770 3, 185	3,005 3,745 2NT SI 580 800 1,035 1,277 1,570 2,090 2,830 8,970 8,00 8,00 8,00 8,00 8,00 8,00 8,00 8,	3,925 4,059 1,059 1,169 1,169 1,169 1,169 1,169 2,556 2,556 3,760 3,555 3,760	4, 225 4, 390 1, 390 1, 080 1, 345 1, 610 2, 180 2, 748 3, 035 3, 325 3, 570 3, 819 4, 959	4, 505 4, 080 930 1, 200 1, 752 2, 045 2, 920 8, 233 5, 530 3, 705 4, 045 4, 325	1, 055 1, 336 1, 915 2, 215 2, 215 2, 226 3, 125 4, 526 4, 526 4, 526 4, 526 4, 526 4, 526 4, 526 4, 526 4, 526 5, 180 5, 180 5, 180	5, 226 5, 440 1, 200 1, 1785 2, 600 3, 040 3, 725 4, 680 4, 680 5, 000 5, 110 5, 580 5, 580	के के 1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-					
	2,040 3,030 288 482 482 481 1,120 1,345 1,345 2,030 2,130 2,480 2,481 3,480 3,480 3,480	3, 385 3, 385 5 CELL, 1 435, 442 8030 1, 340 1, 340	3,005 3,745 2N'C SI 580 800 1,0277 1,540 2,350 2,350 2,350 2,350 2,350 3,470 3,582 3,470 3,825 3,825 3,482 4,189	3.925 4,050 705 940 1,460 1,460 1,725 1,980 2,586 2,586 2,586 3,320 3,320 3,576 3,760 3,976 4,960	4, 225 4, 390 1, 390 1, 080 1, 080 1, 340 1, 340 2, 480 2, 748 3, 325 3, 325 4, 250 4, 203 4, 400 4, 791 4, 915	4,505 4,080 930 1,200 1,475 2,050 2,335 2,345 2,920 3,530 3,530 4,532 4,800 5,000 5,200	1, 055 1, 336 1, 055 1, 336 1, 020 2, 525 3, 125 3, 125 3, 175 4, 030 4, 930 4, 930 4, 930 5, 380 5, 380 5, 580	5, 226 5, 440 1, 200 1, 495 2, 606 2, 606 3, 040 3, 040 3, 040 4, 660 4, 660 5, 000 5, 500 5, 500 5, 500 5, 500	5.5. 1.1.1.2.2.2.3.3.4.4.5.5.5.6.6.6.6.6.6.6.6.6.6.6.6.6.6.6					
	2,040 3,030 288 482 487 886 1,1345 1,605 2,480 2,480 2,385 3,125 2,000 2,480 2,885 3,125 3,125 3	3, 385 3, 385 485 482 882 1, 380 1, 380 2, 180 2, 180 2, 180 3, 1	3,095 3,745 2NT SIT 580 800 1,035 1,277 1,540 1,795 2,090 2,310 2,830 3,470 3,470 3,480 3,480 3,480 3,480 3,480 3,480	3,925 4,069 705 940 1,169 1,169 1,1725 1,980 2,556 2,556 3,576 3,576 3,576 3,576 3,576 3,576 4,360	4, 225 4, 390 830 1, 680 1, 680 1, 345 1, 610 2, 480 2, 480 2, 748 3, 325 3, 325 3, 326 4, 250 4, 400 4, 700	4,505 4,080 030 1,200 1,752 2,035 2,040 2,035 2,040 2,035 4,045 4,355 4,555 4,565 4,565 5,010	1, 055 1, 336 1, 915 2, 215 2, 215 2, 226 3, 125 4, 526 4, 526 4, 526 4, 526 4, 526 4, 526 4, 526 4, 526 4, 526 5, 180 5, 180 5, 180	5, 226 5, 440 1, 200 1, 1785 2, 600 3, 040 3, 725 4, 680 4, 680 5, 000 5, 110 5, 580 5, 580	1, 1, 1, 1, 2, 2, 3, 5, 4, 4, 5, 5, 6, 6, 6, 6, 7, 6, 6, 6, 6, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,					

¹ Density is percentage of average number of trees.

THE STAND TABLES

Stand tables are essential for forest management, and it is today generally accepted that yield tables are not complete without them. Knowledge of the number of trees that may be expected in the various diameter classes is necessary for solving many problems in forest utilization and valuation. Because oak is used extensively for piece products, the yield of which depends on tree size, stand tables are especially important for the oak region.

It has been shown (2, 11, 16, 17, 23, 24, 25) that diameter distributions of even-aged stands follow certain definite laws and have characteristic forms which are determined by certain computed values. Analyses of several oak stands brought out the fact that stands that contain a number of species having different growth characteristics and varying in their tolerance and their adaptability to the site have distributions with several modes. Obviously, such stands must be

separated into their component parts and each analyzed separately, since no two stands have the same composition. Because it was impracticable to analyze each species separately, some grouping was sought. Inspection of a number of stand tallies showed the white oaks to be somewhat smaller in size than the black oaks on the same The associated species also were found to fall, perhaps more pronouncedly, into two groups, one of small trees of tolerant species and the other of large trees of intolerant species. Four groups were, therefore, set up as follows: (1) The white oaks; (2) the black oaks; (3) the other intolerant species; and (4) the other tolerant species.²² A test showed the mean stand diameters (mean of the diameters) of these groups to be significantly different while each individual group seemed to be fairly homogeneous. The mean of the differences of the group means from the plot means (diameter) and their standard errors are given in table 35. They are all significant. Each group mean was also found to be very significantly different from each other group mean, the ratios between the differences and their errors ranging from 18 to 108. Previous investigations (17, 24) show that correlation of the diameter distribution characteristics with mean stand diameter largely eliminates the effect of age and site, so stand analyses are generally based on mean diameter. Since these groups differ significantly in mean diameter, they are considered sufficiently different to require separate analyses.

Table 35.—Mean differences between diameters of species groups and plot

Species group	Mean difference of diameters from those of entire plot	Standard error of the dif- ference	Ratios of mean dif- ference to its error
White oaks	-0. 0673	走0.00819	11
	+. 8594	主.01244	69
	5482	主.02396	23
	-1. 2778	主.01548	83

The mathematical values which describe diameter distribution are: Number of trees, mean diameter, standard deviation about the mean, coefficient of asymmetry (skewness), and coefficient of excess (kurtosis). The latter is of minor importance, is subject to considerable error, and to obtain it greatly increases the volume of computational work. Moreover, tables of Pearson's type III function (22), which disregards kurtosis, were available to simplify the computation of frequencies. The other values were, therefore, the only ones considered. Charlier's types A and B curves have been used very conveniently for diameter distribution analyses (16, 17, 23, 24, 25), again because available tables simplify fitting them. Pearson's type I curve was used in one instance (23), and was shown to fit exceedingly well but required a great amount of computational work. Pearson's type III frequency was also tested in the latter case; it was found to fit very well in comparison with Charlier's curves and has the advantage of being more easily computed by direct reading of percentage

¹⁹ The species grouping is as follows, employing the miscellaneous group composition given in table 1: White oaks: White, chestnut, and post oaks, and swamp oaks. Black oaks: Scarlet, black, red, southern red, pin, blacklack, and miscellaneous oaks. Other tolerant species: Black and red gums, beech, sugar and red maple, sweet birch, eastern hemlock, basswood, miscellaneous groups A and B, unknown, and dead trees. Other intolerant species: Chestnut, hickory, hickories, pines, ashes, cherries, yellow poplar, black locust, black walnut, sycamore, largetooth and other aspen, elm, eastern red ceder, butternut, and cucumber. (See table I for scientific names of species and composition of miscellaneous groups.)

frequencies from tables of areas. These tables were, therefore, used for fitting Pearson's type III curves to the first three of the above-mentioned four groups.

FIGURE 18.—Relation between standard deviation of tree diameters and mean diameter by species groups.

Standard deviation was computed for each 0.5 inch mean diameter (of species group) class separately for each of the four species groups. The average relations are shown in figure 18. The curves differ but appear to be quite satisfactory. An exception is that for the "other tolerant" group, the shape of which indicates the presence of two universes of data. However, the relative importance of this group does not warrant further subdivision. Plotted values of skewness

---- WHITE OAK AVERAGES ---- BLACK OAK AVERAGES 20 NUMBER OF PLOTS
FIGURE 19.—Relation between skewness and mean diameter for the white and black oak groups.

FIGURE 20.—Computed and actual relation between percentage of number of trees by species groups and site index.

in figure 19 show practically the same relation to mean diameter for both of the oak groups. The curve fitted to both of the oak groups averaged together was arbitrarily used for the other intolerant group also. Because skewness values as high as +3 were found in the other tolerant group the tables of Pearson's type III function could not be used. Average percentile curves were drawn for this group.

The percent number of trees in each species group changes with site, as shown in figure 20 and table 36. White oaks decrease and black oaks increase in number with increasing site quality, while the other two groups decrease slightly. These changes in percentage composition are significant for the two oak groups but not for the others. Similar correlations between species composition and age showed no significance.

Table 36.—Percent of number of trees in each species group on different sites

		Specie	s group				3	Tota	number	of trees	by site ii	adex—
								40	50	60	70	80
Other tole	s derant species rant species	es						Percent 50, 3 14, 7 14, 5 11, 5	Percent 53.5 20.9 14.2 11.4	Percent 47.8 27.0 13.9 11.3	Percent 42. 0 33. 2 13. 6 11. 2	Perce 36 39 13 11
Tota	11							100, 0	100.0	100.0	100.0	100
1 4		<u> </u>		-,-			7					
13	 .	· .				- ;		_	_ }	<u> </u>		
ıs.		!					į.					
201			_ ! _	į		į	-	ļ		30/	25/	
CHES	!	(;	!	Í			Ì		_ _			
MEAN DIAMETER AT BREAST HEIGHT (INCHES)		·		1]	 	- K			-
19H)	<u>i</u>			-	 -		-		4-			-
Ea-	-	! ! :				-	38 :	-/-				_
7. Z. Z. –		1	- !	-		<u> </u>	/				!_	
AT B		1	İ		77~	/"	;	1	į		1	
TER		į į	i		7			:				_
AME			<u> </u>		73		ī	- -	1	1	!-	
34			_ <u>=0</u> _				1	- <u>-</u>		1		-
E KE			/S5	ļ		<u> </u>	1			<u> </u>	_	_
2 -		7527 27	_!				J₽.	lametei	meter- rs at Bra	ast Hoi	ght	
	1.00		1			}	A:	verage0 eTree o	jameter FAverage	=0iamet eBasal A	er of irea	
' -		ĺ	ĺ		\top	T-	Ĺ		T -	<u> </u>		7
٥ ـــ	<u> </u>		AGE DIA	5	6		8	9		i 15	13	

Figure 21.—Relation between mean diameter and average diameter of the stand.

For stand analysis the mean diameter (mean of the diameters) of each species group was used as a basis, whereas for yield analysis average diameter of the stand (diameter of tree of average basal area) was used. Figure 21 shows the relation between mean and average diameter of the stand, and figure 22 the relation of each species group to the stand.

For each average stand diameter for each age and site, the mean diameter of each species group was read from the curves in figure 22. The corresponding cumulative frequencies, in percent, were read from

FIGURE 22.—Relation between mean diameter of the species groups and average diameter of the plot.

the tables of Pearson's type III function (22), for each of the first three groups, standard deviation and skewness values having been obtained from the curves in figure 18 and curves similar to those in figure 19. The other tolerant group frequencies were read from the percentile curves. These cumulative frequencies were next converted to frequencies by successive subtractions. The final step was to apply these frequencies to the total number of trees in each species group—obtained by multiplying the total number of trees per acre (table 8) by the species group percentages (fig. 20). The completed tables are presented as table 37.

Table 37.—Stand table—Distribution of trees by successive diameter classes, by species groups and age
Site index 40—Poor site

										Tree	s in en	ch diar	neter c	lass i									1	
Age and species group	0.25 inch	1 inch	2 inches	3 inches	4 inches	5 inches	6 inches	7 inches	8 inches	9 inches	10 inches	11 inches	12 Inches	13 inches	14 inches	15 inches	16 inches	17 inches	18 inches	19 inches	20 inches	21 inches	22 inches	Total
10 years: White oaks	No. 406 101 119 205	No. 3,412 846 704 528	No. 244 60 80 55	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	4, 062 1, 007 993 788
Total	831	5, 580	439			****																		6, 850
20 years: White oaks Black oaks Other intolerant Other tolerant	77 14 28 52	928 206 236 222	715 187 166 82	174 58 38 15	39 14 5 4							************		*****		****** ******* ******	****** ******							1, 933 479 473 375
Total	171	1,592	1, 150	285	62											*****					**			3, 260
30 years: White oaks Black oaks Other intolerant Other tolerant	10 9 13	162 14 51 94	334 64 75 61	267 - 81 - 56 - 13	124 50 28 2	48 21 9 2	10 7 5									*****								955 237 233 185
Total	32	321	534	417	204	80	22									***								1,610
40 years: White oaks Black oaks Other intolerant Other tolerant	4	36 21 47	121 12 36 47	170 33 37 13	139 43 25 5	85 33 15	36 18 6	12 8 3	6 3 1															605 150 148 117
Total.	8	104	216	253	212	134	60	23	10															1,020

50 years: White oaks	3	14 12 32 58	57 2 22 22 40	109 12 26 13	119 26 22 5	86 31 15 1	52 25 8 1	24 14 5	10 6 2	8 2 1 8							 	 	 	 476 118 116 92 802
60 years: White oaks. Black oaks. Other intolerant. Other tolerant. Total.	2	4 0 18 28	23 1 15 29 68	62 4 19 17	89 11 18 7	85 20 14 2	62 23 8 1	35 17 6 1	15 12 3 	7 6 2 	4 2 1						 	 	 	 386 96 94 75 651
70 years: White oaks		5 11	13 10 21	35 2 14 18	64 5 15 7	71 11 12 3	61 17 9 1	39 17 5 1	22 13 3	10 8 2	3 4 1	3 2	1				 			 321 80 78 62 541
80 years: White oaks	 1		6 	20 1 11 11 18	46 3 13 9	60 6 12 4	57 11 9 2	46 14 6 1	28 14 4 1	14 11 2 	6 6 1	3 3 6	1	1					 	 286 71 70 56
Total 90 years: White oaks Black oaks Other intolerant Other tolerant	1 i	3 5	5 11	16 1 9 16	32 1 11 11	48 4 11 5	53 8 10 2	45 11 6 1	32 12 4 0	18 11 3 0	10 8 1	3 5 1	3 3	1	i		 			 265 66 65 51 447
Total	1 1 1 1	8 1 2 3	3 -4 9 -16	12 	55 24 1 9 12 46	39 2 10 6 57	73 46 5 9 3	63 44 8 7 2 61	34 11 5 1	22 11 3 0	19 12 9 2	5 6 1	3 3 1	2 2	1	1			 	 244 60 60 47 411

¹ Diameter classes are designated by midpoint values.

Table 37.—Stand table—Distribution of trees by successive diameter classes, by species groups and age—Continued
SITE INDEX 50-FAIR SITE

										Tre	es in e	ich dia	meter	class										
Age and species group	0.25 inch	1 inch	2 inches	3 inches	4 inches	5 inches	6 inches	7 inches	8 inches	9 inches	10 inches	11 inches	12 inches	13 inches	14 inches	15 inches	16 inches	17 inches	18 inches	19 inches	20 inches	21 inches	22 inches	Total
10 years: White oaks	No. 255 89 83 139	No. 2, 238 819 571 392	No. 340 188 98 66	No. 11 6	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No. 2, 833 1, 107 752 603
Total	566	4, 020	692	17					: .,•'>															5, 295
20 years: White oaks. Black oaks Other intolerant. Other tolerant	27 5 14 32	472 127 125 163	539 216 132 75	243 126 61 14	54 42 22 3	13 11 4	- # - # - # - # - # # - # - # - # - #	****	and the second		### ## ## ### ## ## ### ## ## ##													1, 348 527 358 287
Total	78	887	962	444	121	28					-													2, 520
30 years: White oaks Black oaks Other intolerant Other tolerant	5 8	60 5 30 60	173 36 48 50	200 73 44 11	133 73 27 3	60 44 14 1	27 18 5	7 8 2	3 2			34 - 47	****											667 260 177 142
Total	20	164	307	328	236	110	50	17	5															1, 246
40 years: White oaks	3	13 11 31	51 3 21 40	97 17 25 13	106 36 21 4	76 43 15 1	46 35 8 1	21 20 5	8 8 2	4 3 1														422 165 112 90
Total	3	55	115	152	167	135	90	46	18	8														789

さつかいぶんし ひしがりあり														4 1 2										
50 years: White oaks		4	20	53	77	73	53	30	13	7	3													333 130
Black oaks Other intolerant Other tolerant	2	<u>-</u> 6	1 14 27	5 18 18	14 17	26 13 2	31 8 1	25 5 1	16 3	8 2	$\begin{bmatrix} 3\\1 \end{bmatrix}$	1		*****										89 71
Total	2	25	62	94	115	114	93	10	32	17	7	1		***										623
60 years: White oaks		4 9	8 17	22 2 12 19	46 5 14 7	59 13 12 3	51 20 9 1	41. 22 6 1	24 19 4 1	11 13 1	3 8 1	3 3	i				*****							271 106 72 58
· Total	1	13	33	55	72	87	84	70	48	25	12	6	1									===		507
70 years: White oaks	1	2	5 5 11	13 1 8 15	27 3 10 10	40 5 10 4	45 10 9	38 15 6 1	27 17 4 1	16 15 2 0	9 10 1	2 6 1	2 4	2 			****** ******							224 88 59 48
Totnl	1	6	21	37	50	59	66	60	49	33	20	9	6	2										419
80 years: White oaks	1	1 2	2 3 8		18 1 8 11	30 2 9 6	37 6 8 2	36 10 6 2	28 13 5	20 14 3 0	12 13 2	6 8 1	2 5 0	2 3	2		Ī			****				201 78 53 43
Total.	t	3	13	25	38	47	53	51	47	37	27	15	7	5	2		1					==		375
90 years: White oaksBlack oaks Other intolerant Other tolerant		1 1	2 2 6	6 4 8	15 1 6 10	24 1 8 7	31 4 8 4	33 7 7 2	28 10 5 1	20 12 3 1	13 12 2 0	7 9 1	1 7 1	2 4 1		2	1							185 72 49 40
Total		2	10	18	32	-10	47	49	44	36	27	17	12	7	2	2	1				-			346
100 years: White oaks Black oaks Other intolerant Other tolerant		1 0	2 1 5	3 3 6	10 1 5 9	19 1 6 7	26 2 7 4	29 5 7 3	27 7 5 2	22 10 4 1	15 12 3 0	9 10 1	5 8 1	2 5 1	2 3	2 	1							171 67 45 37
Total		1	8	12	25	33	39	44	41	37	30	20	14	S	5	2	1	<u> </u>	<u> </u>			.	<u> </u>	320

115S07°-

Table 37.—Stand table—Distribution of trees by successive diameter classes, by species groups and age—Continued Site index 60-average site

										Tre	es in e	ich dia	meter	class							. 1 1			
Age and species group	0.25 inch	1 inch	2 inches	3 inches	4 inches	5 inches	6 inches	7 inches	8 inches	9 inches	10 inches	11 inches	12 inches	13 inches	14 inches	15 inches	16 inches	17 inches	18 inches	19 inches	20 Inches	21 inches	22 inches	Total
10 years: White oaks Black oaks Other intolerant Other tolerant	No. 136 66 51 92	No. 1, 320 690 372 289	No. 427 206 124 69	No. 58 33 17 5	No. 11	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No. 1, 941 1, 096 564 459
Total	345	2,671	916	113	15											1								4,060
20 years: White oaks Black oaks Other intolerant Other tolerant	19 5 11 24	242 74 78 126	363 189 97 57	214 157 54 11	71 74 22 2	18 21 8	5	****		****														930 525 270 220
Total	59	520	706	436	172	47	5																	1, 945
30 years: White oaks	3	28 17 45	88 13 30 44	124 47 32 12	106 73 24 4	69 63 15 1	32 39 7	9 18 4	5 5 1	3				*****	*****									461 261 134 109
Total	7	90	175	215	207	148	78	31	11	3														965
40 years: White oaks Black oaks Other intolerant Other tolerant	2	3 7 15	17 2 13 26	47 7 17 17	67 20 16 7	64 33 13 2	47 39 8 1	26 31 5	12 20 2	6 10 2	3 3		5	****	******* ******									292 165 85 69
Total	2	25	58	88	110	112	95	63	34	18	6													611

		2 10										1.7%		1.1							
50 years: White oaks Black oaks Other intolerant Other tolerant	1 3 7	7 7 15	18 1 12 19	37 5 13 8	48 13 12 4	46 22 9 1	34 26 5 1	21 25 3 0	12 18 1	5 11 1	2 5	3	1 	*****	******* ******* *******	******			 		 230 130 67 55
Total	1 10	20	50	63	77	78	66	49	31	17	7	3	1			-4	****		 		 482
60 years: White onks Black onks Other intolerant Other tolerant	0 1 3	2 3 9	9 6 12	19 2 9 11	30 5 9 5	35 11 9 2	34 16 6	26 19 5	17 19 3 0	9 15 2	4 9 1	2 5 0	3	1	*****						 187 105 54 44
Total	0 4	14	27	41	19	57	57	51	39	26	14	7	3	1					 		 390
70 years: White oaksBlack oaksOther intolerantOther tolerant		2 2 6	5 4 8	12 1 6 10	20 2 7 6	27 5 7 3	28 9 6 2	23 12 5	17 15 3 0	11 15 2 0	6 11 1	3 8 1	2 5 0	3	2				 *****		 156 88 45 37
Total	2	10	17	20	35	42	45	41	35	28	18	12	7	3	2		-,		 		 326
80 years: White oaks Black oaks Other intolerant Other tolerant	o	1 1 4	3 3 6	8 1 5 7	15 2 6 6	21 2 7 4	24 5 6 3	22 8 5 1	18 11 4 1	13 13 2 1	7 12 1	1 10 1	2 7 0	1 5	2	i					 139 79 41 33
Total	0	6	12	. 21	29	34	38	36	34	29	20	15	9	6	2	1			 		 292
90 years: White oaks Black oaks Other intolerant Other tolerant	0	1 1 2	3 2 5	6 3 6	10 1 5 6	15 1 6 4	19 3 6 3	21 6 5 2	18 9 4 1	14 11 3 1	9 12 1 0	7 11 1	3 8 0	1 6 0	1 3	1 	i		 10-40 	4	128 73 37 30
Total	0	-1	10	15	22	26	31	34	32	29	22	19	11	7	4	1	1		 		 268
100 years: White oaks		1 0 1	2 2 4	6 3 5	8 4 6	13 1 5 5	17 2 5 3	19 4 5 2	17 6 4 1	13 9 3 1	10 9 2 0	7 10 1 0	4 9 0	1 7 0	1 5	3					 119 67 34 28
Total	******	2	8	14	18	24	27	30	28	26	21	18	13	8	6	3	2	0	 		 248

Table 37.—Stand table—Distribution of trees by successive diameter classes, by species groups and age—Continued

SITE INDEX 70—GOOD SITE

						-				Tre	es in e	ich dia	meter	class										
Age and species group	0.25 inch	1 inch	2 inches	3 inches	4 inches	5 inches	6 inches	7 inches	S inches	9 inches	10 inches	11 inchos	12 inches	13 inches	14 inches	15 inches	16 inches	17 inches	18 inches	19 inches	20 inches	21 inches	22 inches	Total
10 years; White oaks Black oaks Other intolerant Other tolerant	No. 66 42 30 60	No. 765 542 235 215	No. 409 375 132 67	No. 79 73 26 7	No. 10 4 3	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No. 1, 319 1, 042 427 352
Total	108	1,757	983	185	17																			3, 140
20 years; White oaks Black oaks Other Intolerant. Other tolerant	6 8 12	107 30 45 85	221 134 65 55	176 169 49 12	82 105 25 2	32 45 8 2	6 15 4				****							******						630 498 204 168
Total	26	267	175	406	214	87	25							· Officer										1, 500
30 years: White onks. Black onks. Other intolerant. Other tolerant.	3	9 10 27	34 3 19 36	69 22 23 13	78 47 19 5	59 62 13 1	38 54 7 1	16 32 4	6 17 2	3 7 1	3					****	42			****	*****			312 247 101 83
Total		46	92	127	149	135	100	52	25	11	3													743
	1	3 8	6 8 16	18 3 11 17	36 9 12 7	43 19 11 3	39 31 8 1	28 33 5 1	16 27 3 0	8 19 1	2 9 1	2 5	2							7				198 157 64 53
'Potal		11	30	49	64	76	79	67	46	28	12	7	2											472

50 years: White oaks	0	1 3	2 3 8	8 6 12	16 3 8 10	25 6 9 5	30 13 8 2	28 19 6 1	22 22 5 1	14 22 3 0	8 17 2	3 11 0	1 6	4	1						*****			157 124 51 42
Total	0	4	13	26	37	45	53	54	50	39	27	14	7	4	1			===	===	===			===	374
60 years: White oaks Black oaks Other intolerant Other tolerant		 1 1	1 2 5	3 3 6	9 1 5 9	15 2 7 6	21 4 7 3	22 8 6 2	21 12 4 1	15 16 3 1	10 18 2 0	6 15 1	4 11 0	1 7 0	4									128 101 41 34
Total		2	8	12	24	30	35	38	38	35	30	22	15	8	4	2	1							304
70 years: White oaksBlack oaksOther intolerantOther tolerant		ò	1 1 2	2 2 5	5 3 5	10 1 5 6	14 2 5 4	1,7 4 5 3	17 7 5 1	15 10 3 1	11 12 3 1	6 13 1 0	13 1	2 9 0	1 7 0	1 3	2 	i 						106 84 34 28
Total		0	4	9	13	22	25	29	30	29	27	20	18	11	8	4	2	1						252
80 years: White oaks			1 0 1	2 1 3	4 2 4	7 4 5	10 1 4 4	13 2 5 3	14 4 4 2	13 6 4 2	11 9 3 1	7 10 2 0	6 11 1 0	3 10 1 0	2 8 0	1 6	4	2	i					94 74 31 25
Total			2	6	10	16	19	23	24	25	24	19	18	14	10	7	4	2	1	===				224
90 years: White oaks Black oaks Other intolerant Other tolerant			0	1 1 3	3 2 3	5 3 4	9 1 4 4	11 1 4 3	13 3 4 2	12 4 3 2	10 7 3 1	8 8 2 1	6 10 1 0	10 10 1 0	2 8 0	2 7	1 5	3	1 	<u>-</u> 1				87 69 28 23
Total			0	- 5	8	12	18	19	22	21	21	- 19	17	15	10	0	6	3	1	1				207
100 years: White oaks			0	1 1 2	2 i 1 3	4 2 3	7 1 3 3	10 1 4 3	11 2 4 2	11 3 3 2	11 4 3 1	9 6 2 1	6 9 1 1	4 9 1 0	2 8 1	2 7 0	1 6	4	2	<u> </u>	i			81 64 26 21
Total			0	4	6	9	14	18	19	19	19	18	17	14	11	9	7	4	2	1	1			192

Table 37.—Stand table—Distribution of trees by successive diameter classes, by species groups and age—Continued SITE INDEX 80—EXCELLENT SITE

										Tre	es in e	nch die	meter	class								 		
Age and species group	0.25 inch	1 inch	2 inches	3 inches	4 inches	5 inches	6 inches	7 inches	8 inches	9 inches	10 inches	11 Inches	12 inches	13 inches	14 inches	15 inches	16 inches	17 inches	18 inches	19 inches	20 inches	21 inches	22 inches	Total
10 years: White onks	No. 35 29 20 38	No. 424 411 162 159	No. 327 373 113 59	No. 80 115 26 11	No. 18 29 3 3	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No.	No. 884 957 324 270
Total	122	1, 156	872	232	53																			2, 435
20 years: White oaks Black oaks Other intolerant Other tolerant	4 5 8	38 9 26 62	110 64 41 45	126 128 38 10	84 128 23 3	38 77 12 1	17 32 5	4 14 2	4 2															421 456 154 129
Total	17	135	260	302	238	128	54	20	6															1, 160
30 years: White oaks Black oaks Other intolerant Other tolerant	2	2 6 14	13 2 12 24	34 9 15 16	48 27 15 6	46 45 12 2	34 55 7 1	19 43 5 1	8 27 2	4 14 1	2 5													210 227 77 64
Total	2	22	51	74	96	105	97	68	37	19	7													578
40 years: White oaksBlack oaksOther intolerantOther tolerant	1		3 4 9	8 1 7 12	16 4 8 8	25 9 8 4	27 17 7 2	23 25 5 1	16 27 3 0	9 25 2 0	5 17 1	1 10 1	6	3										133 144 49 40
Total	1	6	16	28	36	46	53	54	46	36	23	12	6	3										366

50 years: White oaks. Black oaks. Other intolerant. Other tolerant.	1 0	1 2 5 8	2 3 6	7 1 5 8	13 2 6 6 6	17 5 6 3	18 9 6 2	17 14 4 1	13 18 3 1	8 19 2 0	5 17 1 	3 13 0 	1 8 0	5	2 2	 1 1							105 114 39 32 290	
60 years: White onks Black oaks Other intolerant Other tolerant. Total	0	1 1 2 4	2 2 2 4 8	4 3 5	7 1 4 5	10 2 5 4	13 5 5 3	13 6 4 1	12 10 3 1	9 13 2 1	6 14 1 0	4 14 1 1	2 11 0	1 8 0	1 5	3	1						85 93 31 26 235	
70 years: White oaks Black oaks Other intolerant Other tolerant	 	0 1	1 3	3 2 3	5 3 4	7 1 4 3	9 1 • 4 3 17	11 3 4 2	10 5 3 2	9 8 2 1	6 10 2 0	12 12 1 0	3 11 0 0	2 9 0 	1 7 8	5	3	1 1	1 1				71 77 26 22	
Total		 0 0	5 1 1 2	2 1 3	3 2 3	15 5 1 3 3	7 1 3 3	9 2 3 2	9 3 3 1	8 5 2 1	7 7 2 1	5 9 1 0	3 10 1 0	2 9 1	1 8 0	1 6	4	2	1				63 69 23 19	
Total 90 years: White oaks Black oaks Other intolerant Other tolerant	 	0	1 1	2 	3 2 2 2	12 4 	14 6 1 3 3	16 8 1 3 2	8 2 3 2	8 3 2 1	6 5 2 1	5 7 1	3 8 1 0	2 9 0 0	2 8 0	1 7	-4 -5	3	1 2	i	 1		59 63 21 18	
Total 100 years: White oaks Black oaks Other intolerant Other intolerant		0 0 	1 0 1 2	1 1 2 4	7 2 1 2 5	9 4 2 2 2	13 5 	14 6 1 3 2	7 1 3 1	7 2 2 1	14 6 4 2 1	5 5 1 1	12 4 7 1 1	2 8 1 0	10 2 7 0 0	8 1 6 0	1 6 	3 0 4 	3	1 2 2	1 1 	1 1 1	54 58 20 16	
Total	 	"	· .4.	*	٠		"	1.2	12	- 1	10		``	••										

DISCUSSION AND APPLICATION OF STAND TABLES

The stand tables are based on the assumption that the Pearson type III function fits the diameter distributions of these species groups. They are not expected to apply exactly to individual stands, but give an indication of the diameter range to be expected under natural conditions in extensive forest areas. Since the same percentage values apply on a particular site regardless of age, the same ratios actually found between the species groups in a given stand at the present time may be used at a future age. To predict the future stand the present ratios are computed, by sites, from the samples of the forest in question and then applied to the total number of trees estimated at the future To facilitate determination of these frequencies, table 38 is presented. It shows percentage values by mean diameter classes in each species group. The several steps in the computation are as follows:

(1) Estimating the future total number of trees and average diameter from the yield tables.

(2) Computing the future number of trees found in each species group from the present ratios between species.

(3) Reading the mean diameter of each species group from figure 22.
(4) Interpolating the corresponding percentage frequencies from table 38.
(5) Applying to the number of trees in each species group.

Table 38.—Percentage distribution of trees by diameter for various mean diameters in each species group

WHITE OAKS

								Perc	ent of	trees b	y speci	es y r ou	ip of m	ean di	ameter	o!—							
Midpoint of diameter breast high class (inches)	1.0 inch	1.5 inches	2.0 inches	2.5 inches	3.0 inches	3.5 inches	4.0 inches	4.5 inches	5.0 inches	5.5 inches	6.0 inches	6.5 inches	7.0 inches	7.5 inches	8.0 inches	9.0 Inches	10.0 inches	11.0 inches	12,0 inches	13.0 inches	14.0 inches	15.0 inches	16.0 inches
0,25 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1		4 52 30 7 1			1 10 28 30 10 8 3 1	6 20 28 23 14 6 1	3 13 24 25 18 10 4 2 1	2 8 19 25 21 14 7 3 1	1 5 14 22 23 17 10 0 5 2 1	3 9 18 22 20 14 8 4 1 1	2 6 14 20 20 17 11 6 3 1	15 10 16 18 18 14 9 9 5 2 1	13 88 137 18 15 11 7 4 4 2	1 2 6 11 15 17 16 13 3 3 1 1 1	1 2 5 8 15 16 11 7 5 2 1	1 3 5 8 12 14 14 13 11 8 5 3 2 1	1 2 4 6 8 11 12 13 12 10 8 5 4 4 2 11 1	1 1 3 4 6 8 10 11 12 11 10 8 6 4 3 1	1 1 2 3 5 6 8 9 10 10 9 8 6 5 5 3 2 2 11 10 10 10 10 10 10 10 10 10 10 10 10	1 1 2 3 5 6 8 9 10 9 8 7 6 5 5 5 5 6 8 9 10 9 10 10 10 10 10 10 10 10 10 10 10 10 10	1 1 2 2 2 4 5 5 6 7 7 8 8 9 9 8 8 7 7 6 5 5 4 3 3 2 2 1 1		

Table 38.—Percentage distribution of trees by diameter for various mean diameters in each species group—Continued

BLACK OAKS

			÷,					Perc	ent of	trees b	y speci	es grot	ip of n	iean di	nmeter	of—							
Midpoint of diameter breast high class (inches)	1.0 Inch	1.5 inches	2.0 inches	2.5 inches	3.0 inches	3.5 inches	4.0 inches	4.5 inches	5.0 inches	5.5 inches	6.0 inches	6.5 inches	7.0 inches	7.5 inches	8.0 inches	9.0 inches	10.0 Inches	11.0 inches	12.0 inches	13.0 inches	14.0 inches	15.0 inches	16.0 inches
0.25. 2.	9 79 12	4 52 36 7	1 30 43 20	1 16 38 29	7 29 34 20	3 19 32 26	1 11 26 30	5 19 29	3 12 24	1 3 18	1 4 13	1 3 0	2 6	 1 4	i 3	i	i		######################################				
3 7 8		 	1	12 3 1	8 2	13 5 2	19 9 3 1	24 14 6 2	27 19 10 4 1	25 23 14 7 3	22 24 18 11 5	17 23 21 14 8	13 20 21 17 11 6	10 17 20 19 14	13 18 20 17	3 7 13 17 18 16	2 4 8 12 16 17	1 2 5 8 12 15	1 3 5 8 12	1 1 3 5 8	1 2 3 5	1 2 3	
10, 11, 12, 13, 14,	*****	,,,,,,,		*****		******						i 	3 1	4 2 1	6 3 1	11 7 4 2 1	15 11 7 4 2	16 15 11 8 4	14 15 14 11 8	11 14 14 13 11	8 11 13 14 13	6 8 11 12 13 12	
16									**	*****	******							i	3 1	5 3 2 1	8 5 3 2	11 8 6 3 2	
22. 23 24							*****												- 50 50 50 40 40 40 40 40 40 40 40 40 40 40 40 40			1	_

YIELD, ETC., TABLES FOR EVEN-AGED UPLAND OAK FORESTS

OTHER INTOLERANT SPECIES

	<u>a 121 a estable</u>		V.	HER INTO	131311111111111111111111111111111111111	1.01110						
0.25 11 77 2 13 14 15 16 17 18 19 20 22 22 22 22 22 22 2	5 50 3 35 35 3 8 1		22 20 19 19 13 15 7 10 4 6 2 3 1 2 1 1	2 1 1 5 4 11 8 17 14 19 17 17 17 13 15 5 7 2 4 1 2 1	1 2 2 6 4 11 9 16 13 17 16 16 16 16 12 14 9 11 5 7 3 4 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 3 2 7 7 5 11 9 14 13 16 15 15 15 15 12 14 9 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 4 3 8 5 5 11 9 14 12 15 14 14 12 13 9 10 6 8 3 5 2 2 3 1 2 1	3 2 6 4 9 8 11 8 13 10 14 12 12 12 10 12 5 8	3 2 4 3 6 5 8 6 10 8 11 9 11 10	2 2 3 5 6 8 9 10 9 8 7	1	
0.25 26 36 26 1	51 3. 33 4 1 1 1	4 38 28 4 25 34 5 10 14 1 3 7 1 1 2 1 1 1	5 1 23 21 30 22 23 26 10 15 5 7 2 5 1 2 1 1	15 9 17 17 26 20 19 21 10 13 6 10 4 4 2 3 1 2 1 1	S 15 16 14 20 18 16 16 16 11 13 8 9 4 7 3 4 1 1 1 1 1 1 1 1 1	10 4 14 16 14 11 17 16 14 15 10 10 8 9 6 8 3 4 3 4 1 2 1 1	15 10 12 13 12 11 15 13 12 11 15 13 9 10 8 7 7 7 4 6 3 4 2 3 1 1					

THE VOLUME TABLES

Volume measurements were obtained from many sources. Previous records obtained from various State, Federal, and private agencies were supplemented by many hundred trees measured by the field parties. In all, between 5,000 and 6,000 tree measurements were assembled.

General volume tables were made for the five important oak species which make up 83 percent of the total basal area of the yield plots, and for seven other species aggregating 9 percent of the basal area. Not one of the other 53 species contains as much as 1 percent of the total basal area. (See table 1.) Reincke and Bruce's (21) alinement chart method was used to construct the tables.

Volume of the entire stem, excluding bark, is presented, for the various species, in tables 39-50; merchantable stem with bark to a 4-inch top outside bark in tables 51-62; board-foot volume, International rule, in tables 63-74; and board-foot volume, Scribner rule, in tables 75-83.

The accuracy of each table is shown by the check of the basic tree data with the tabular volumes. These results are presented in table 84.

Table 39 .- Total cubic-foot volume table: White oak 1

Dlameter high (inc			Volus	ne (entir	e stein, k	gs bark)	, by tota	l height	in feet		Basis:
Outskie bark	Inside bark	20	30	-10	! 	60	70	80	110	100	ber of trees
		Cubic fect	Cubic feet	Cubic feet	Cubic fect	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	
3	2. 7 3, 6	0.44 .76	1, 09	0.83	1.76					ļ] 7
5	4, 5	1.15	1,68	2,20	2.71	3. 21					5
5	5.4	1.63	2.40	3, 12	3.51	4, 54					4
	6. 5	2, 10	3, 20	4.18	5.1	6.05	6.06				7
3	7.3 8.2	2, 83 3, 55	4.12 5.15	5.40 6.72	6.62 8.25	7, 82 9, 80	9.04	10, 20			7
0 1	8. 1 10. 0		6.3	8.2 0.0	10.2 12.3	12. 1 14. 7	14.1 17.1	16.0 19.5	18. I 22. 0		4
2	10. 0		9.0	11.8	14.6	17.6	20.4	23.3	26.2	29, 0	3
3	11, 8	<i>.</i>		13, 9	17.2	20, 7	23, ()	27.4	30.8	34.0	3
5	12. S 13. 7			16, 2 18, 6	20.0 23.1	24. 1 27. 7	27. 9 32. 0	31.8	35, 5 41, 0	39. 4 45. 5	2 1:
6	14.6			21.2	26.4	31.6	36.5	41.6	46, 5	52.0	;
7	15, 5 16, 5				29. 5 33. 3	35.7 39.9	41.2 46.2	47. 0 52. 7	52. 8 59. 2	58.8	1
9	17.4			*******	37. 2	41.6	51.5	59.0	56.0	65.8 73.5	
×0	18.3						57.5	15.5	74.5	82.0	
i	10.2						63. 5	72.0	81.0	90.0	
Basis (t:	rees)	40	10.5	123	1\$5		31	53	10		64

¹ Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Tennessee, Virginia, and West Virginia. Prepared by the allnement chart method by E. R. Martell in 1928. Volume computed from tree graphs by the planimeter method. Stumps 1.0 foot high cubed as cylinders. Aggregate deviation: Table 0.3 percent high. Average percentage deviation, 8.03. Heavy lines indicate limits of basic data.

Table 40 .- Total cubic-foot volume table: Black oak 1

Diameter, bigh (inc			Volun	ne (entire	o stem, k	ess bork).	by tolu	l height i	n feet		Basis: Num-
Outside bark	Inside burk	20	30	40	5A)	60	70	80	90	100	ber of trees
2	1.7	Cubic feet 0, 20	Cubic feet 0.26	Cubic Seel 0. 33	Cubic fect 0.40	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	
3	2, 6	- 44	. 55	. 73	. 89						16
4	3.5 4.4	. 77 1, 20	1. 02 1. 60	1, 20 2, 02	1.60 2.48	1, 94 3, 02					33 48
6	5, 3	1, 73	2.28	2,90	3.58	4, 32	5, 15				. 44
7	6, 2	2, 34	3, 12	3.94	4.85	5.88	7. 00				39
5	7.1	3.05	4.05	5, 10	6,30	7, 65	9, 10	10.70			47
0	8, 0	3.58	5, 10	6.45	8,00	0.68	11, 50	13, 50	15. 70		40
10	9. 0 9. 9	• · · · · · · ·	6.3	8.0 8.6	9.8 11.8	11.8 14.3	14. (17. 0	16.6 20, I	19. 2 23. 2	21, 8 26, 4	43
12	10.0			11, 3	13. 9	17.0	20. 3	23.8	27. 5	31. 2	51 45
13	11.8			13, 3	16.3	10.8	23.7	27, 9	32.0	36, 5	34
14	12.7 13.7			15, 4	18.9	22, 8	27.5	32.2	37. 2	42.0	15
15	14.7	,		17.6	21.7	26. 2 29. 6	31.4	36, 8	42.5	48,0	18
16	15.0				27.7		35, 5 40, 0	41.8	48.2	55. 0	12
					20.7	33.5		47.0	54.4	61.5	12
18	16. 6 17. 5		[i ····	37, 5 41, 5	44. S 49. 8	52. 5 58. 5	60.8 68.0	68. 8 76. 6	7 10
20	18. 5					46, 0	55. 0	05, 0	73.0	85. 0	6
21	19, 5					51.0	60.0	71.0	82.0	93.0	4
22	20, 5			••		55, 0	66.0	78, 0	00.0	102.0	3
23,	21, 4					60.0	72.0	85.0	98. 0	111.0	
Basis (t		6	7ô	57	79	111	102	76	30	1	537

¹ Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New Jersey, New York, Ohio, Tennessee, and West Virginia. Prepared by the alinement chart method by E. R. Martell, J. H. Buell, G. L. Schnur, and R. K. Day in 1928. Volume computed from tree graphs by the phaintenter method. Stumps 1.0 foot high cubed as cylinders. Agregate deviation: Table 5.73 percent high. Average percentage deviation, 8.17. Heavy lines indicate limits of basic data.

Table 41 .- Total cubic-foot volume table: Scarlet oak 1

Diameter breast (inches)	high	v	olume (c	entire ste	m, less b	ark), by	total hei	ght In fee	et	Basis: Num-
Outside bark	inside bark	20	30	40	50	60	70	\$ 0	90	ber of trees
		Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	
3	2.6 3.6	0.49 .80	0, 68 1, 15	0.85	1.04 1.78	2. 10		-] 3€
5,,, 6,	4. 5 5. 5	1.21 1.74	1. 74 2. 48	2, 27 3, 20	2, 77 3, 93	3. 27 4. 65	3. 78 5. 45			52 39
J	6. 4 7. 3	2, 26 2, 92	3, 30 4, 25	4, 28 5, 60	5, 30 7, 00	6. 30 8. 45	7, 40 9, 90	8. 50 11. 40		50 33
9	8.3	3, 62	5, 40	7, 15	8.09	10.90	12.80	14, 80	16.80	32
10 11 12	9, 2 10, 2 11, 1 12, 0		6, 6 8. l	8.9 10.9 13.0 15.2	11. 1 13. 8 16. 5 19. 2	13. 5 16. 8 19. 8 23. 0	16.0 19.5 23.0 26.6	18, 4 22, 2 26, 2 30, 0	20.8 24.9 29.3 33.7	41 49 70
4 5	13. 0 { 13. 0 } 14. 8 { 15. S }	,			22, 0 25, 0 28, 0 31, 3	26. 3 29. 3 33. 3 37. 5	30, 3 34, 3 38, 8 43, 7	34.5 39.5 44.0 49.9	39. 0 44. 0 49. 5 55. 8	24 15 11
9	16.7 17.6 18.6	· · · · ·				41.5 45.5 50.3	48.0 53.0 58.5	55, 0 60, 2 67, 0	61.5 67.5 74.5	
21	19. 5 20. 4					55. 0 50. 5	64. 0 69. 0	72, 5 78, 0	60. 2 88. 0	₋
Basis (trees)		14	75	55	66	111	134	50	13	518

¹ Measured by the Allegheny and Central States Forest Experiment Stations in Connecticut, Indiana, Maryland, New Jersey, Ohio, Pennsylvania, Tennessee, and West Virginia. Prepared by the alinement chart method by V. A. Clements in 1930. Volume computed from tree graphs by the planimeter method. Stumps 1.0 foot high cubed as cylinders. Aggregate deviation: Table 0.50 percent low. Average percentage deviation, 7.1. Heavy lines indicate limits of basic data.

Table 42 .- Total cubic-foot volume table: Chestnut oak !

Dismeter high (in			Volun	ne (ontire	e stem, lo	ss hark)	, by tota	l helght :	in feet		Basis:
Outside bark	Inside burk	20	30	40	50	60	70	80	00	100	ber of trees
		Cubic fert	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feel	Cubic Jeel	Cubic feet	Cubic feet	
3	2, 5 3, 3	9.39 .73	0.55 1.00	0,72 1,30	0.85	1, 65 1, 01					66 87
5	4.2	i. 16	1.60	2.08	2.55	3. 01	3.60	1			71
6	5. 1		2, 33	3.01	3, 70	4.40	5, 20				83
7 8	0.0 0.9		3, 20 4, 22	4, 16 5, 42	5.08 6.82	6, 90 7, 95	7, 15 0, 28	8.35 10.70			7 56
9	7.8 8.7		5.35 6.7	0.95 \$.0	8, 40 10, 2	9.85 12.2	JI. 60 14. 6	13.70 17.5	18.30 20.6	- *	54 54
ii	0.6		8.6	10. (12.4	14.8	17.0	21.3	24. 5	28. 2	49
J2, 13,	10, 5 11, 4			12.0 14.3	14.8 17.9	18. 0 21. 4	21. 6 25, 3	25, 2 29, 6	20. 1 34. 1	33. 5 39. 2	34 35
14 15	12.3 13.2				20.9 24.0	24. 8 28. 5	29.3 33.5	34. 0 30. 0	39. 2 45. 6	45. 0 52. D	24
16 17	14. 1 15. 1				27. l 30, 8	32, 2 36, 1	37. 9 42. 7	44.0 40.6	51,0 57,4	58.8 66.3	2
18. 19	16, 0 16, 9		· · · · · · ·	,		40, 2	47. 5 52. 8	55. 8 61, 8	64.0 71.2	74. 0 82. 0	i
20	17.8						58.0	68.0	78.8	90.0	1
2)	18. 7 19. 7 20. 6						64. 0 70. 0 77. 0	75. 2 82. 0 89. 0	86, 5 94, 0 102, 0	98. 5 107. 0 116. 0	
24	21. 5		ا ا				84.0	96.0	110.0	125.0	
Busis	(trees).	7	1/5	147	177	195	72	14			709

¹ Measured by the Allegheny, Appainchian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, and Pennsylvania. Prepared by the alinement chart method by G. Luther Schuur in 1923. Volume computed from tree graphs by the planimeter method. Stumps 1.0 foot high cubed as cylinders. Aggregate deviation: Table 0.71 percent low. Average percentage deviation, 8.7, Heavy lines indicate limits of basic data.

Table 43 .- Total cubic-foot volume table: Red oak 1

Diameter h	oreast nes)		Volu	me (ent	lre stem	, less b	irk), by	total h	eight in	feet		Basis: Num-
Outside bark	Inside bark	20	30	40	50	60	70	80	90	100	110	ber of trees
2	1, 9	Cubic feet 0.18	Cubic feet 0, 27		feet	Cubic feet	Gulila feel	Cubic feet	Cubic feet	Cubic feet	Cubic feet	7
3	2.8 3.6 4.5 5.4	. 40 . 72 1. 12	. 60 1, 06 1, 66 2, 39	. 80 1, 42 2, 22 3, 20	1, 01 1, 78 2, 77 3, 96	2, 13 3, 32 4, 75					1	16 12 12 6
7 8 9	6.3 7.2 8.1		3, 25 4, 28 5, 38	4,34 5.70 7,15	5, 40 7, 08 8, 95	6, 45 8, 50 10, 65	12, 30	11, 20 14, 05	15.70 19.3			16 29 40 34
10 11 12	9, 0 10, 0 10, 9		6, 7 8, 1 9, 6	8.6 10.6 12.6 14.7 16.9	11. 0 43. 2 15. 0 18. 3 20. 9	13. 0 15. 8 18. 6 21. 8 25. 2	15. 1 18. 3 21. 6 25. 3 20. 0	17. 2 20. 8 24. 7 28. 6 33. 0	29.3 27.5 32.0 36.8	35. 5 40. 8		25 31 21
14	12, 8 13, 7 14, 7 15, 6 10, 6	 		19, 4	24.0 27.2 30.7 34.2	28. 7 32. 5 36. 5 40. 8	33. 2 37. 4 42. 2 47. 0	37. 5 42. 6 48. 0 53. 5	42. 2 47. 5 53. 6 60. 0	40. U 52. 8 59. 4 60. 5		14 15 9 7
19 20 21	17. 6 18. 6 19. 8	!			37. 8 42 46	45, 2 50 55	52.0 58 04	59. 5 66 72	60, 5 74 81 88	74. 0 82 00 98	89 98 107	- 4 3
22 23 24 25	21, 6 22, 5 23, 5							88 93 100	96 104 112	106 115 124 134	116 125 135 146	1
26 27 28 29	25. 4								130 139 149	144 154 165	157 168 180	i
Basis	(trees)	D	20	26	70	104	40	39	18	2		332

¹ Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Virginia, and West Virginia. Prepared by the allnement chart method by J. H. Buell in 1928. Volume computed from tree graphs by the planimeter method. Stamps 1.0 foot high cubed as cylinders. Aggregate deviation: Puble 0.42 percent low. Average percentage deviation, 7.68. Heavy lines indicate limits of basic data.

Table 44.—Total cubic-foot volume tuble: Hickory 1

Diameter high (inc		ļ ļ	Volt	ame (en	tire ster	n, less i	ark), b	total l	leight Ir	ı feet		Basis: Num-
Outside bark	Inside bark	10	20	30	40	50	60	70	80	uo	100	ber of trees
1	8. n	Gubic feet 0.01	Cubic feet 0,07	Cubic feet 0, 10	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	47
2	1.8 2.7 3.0 4.4	.12 .25 .41	. 22 . 45 . 75	. 32 . 65 1, 08	0.40 .85 1.38 2.07	1, 01 1, 67	2. 95				•••	78 00 01 39
5 7 8	5. 3 5. 1 7. 0		1, 55 2, 05 2, 60	2, 20 2, 90 3, 75	2, 85 3, 90 4, 90	3.45 4.60 6.05	4, 10 5, 50 7, 20	6, 40 8, 40	7. 25 9. 50			32 29 32
9 10 11 12 13	8.0 8.9 9.9 10.9				8.30 8.0 9.6 11.6	7, 80 0, 8 12, 0 14, 2 16, 8	9, 20 11, 8 14, 3 17, 0 20, 0	10.80 13.6 16.6 19.9 23.2	12, 10 15, 5 19, 0 22, 6	13.70 17.4 21.2 25.7		30 20 20 15
15	12, 9 13, 8 14, 8				13. 4 15. 0 18 20	10. 5 10. 5 22	20. 0 23, 2 27 30	23. 2 27. 2 31 35	26, 8 31, 2 35 40	30.0 34.8 40 45	44 50	7 3 5
17 18 19	15. 8 16. 8 17. 8 18. 8					28	34 35 42	39 44 49	45 50 50	51 57 64	57 64 72	ī
21 22 22 23	19. 8 20. 8 21. 8							54 60 66 72	62 60 76 84	70 75 86 95		i
Basis (t	recs)	38	£1	113	77	6t	51	41	14	1	1	488

¹ Measured by the Ynle Forest School, and Allegheny and Central States Forest Experiment Stations, and others, in Alabama, Arkansas, Connecticut, Indiana, Kentucky, Maryland, Missouri, New York, Ohio, Tennessee, and West Virginia. Prepared by the alliement chart nethod by Y. A. Cleinents in 1929. Volume computed from tree graphs by the planimeter method. Stumps 1.0 foot high cubed as cylinders. Aggregate deviation: Table 0.7 percent low. Average percentage deviation, 8.9. Heavy lines indicate limits of basic data.

Table 45 .- Total cubic-foot volume table: Virginia pine 1

Dinmeter breast (inches)	high	Volume (entire stem, less bark), by total height in feet									
Ontside bark	Inside bark	10	20	30	40	50	60	70	50	Num- ber of trees	
		Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic fect	Cubic feet		
	1.8	0.11	0, 22	0.32	0.42	0, 52);	
	2.7	. 26	. 70	. 73	.98	1.18	1, 39				
	3. 8	. 44	. 85	1.23	1. (1)	2.00	2,40	,,,,		į "	
	4.5 5,4	. 68 . 95	1.28	1,88 2,66	2.46 3.50	3.00 4.30	3.60 5.10	5, 90		1	
	6.4	1, 29	2.47	3, 63	4.80	5, 80	0.10	8.00	0.00	í	
	7. 3 8. 2	1. 65 2. 11	3.39 4.00	4.68 5.00	6, 10 7, 70	7, 50 9, 50	8.90 11.30	10, 30 13, 10	11, 70 15, 00		
0	0.2		5.0	7.3	9,5	11.0	14.0	10. 2	18.6		
1	10. 1 11. 1 12. 0 13. 0		8.0	8.7 10.3 12.1 14.1	11.6 13.5 16.0 18.8	14, 2 16, 9 19, 9 23, 3	16. 9 20. 1 23. 6 27. 5	10. 8 23. 4 27. 3 32. 0	22, 5 26, 5 31, 0 36, 0	1	
5	14.0				21. 1	20, 2	31, 5	30.0	40.8		
3 7 9	15. I 16. I 17. 1					30, 0 34, 0 38, 0	35. 8 40. 0 44. 8	41, 2 46, 4 52, 0	40. \$ 53, 5 50. 5		
Basis (trees)		2	21	12	28	36	14	12		11	

¹ Measured by the Central States Forest Experiment Station and W. D. Sterrett, in Maryland, Ohio, Pennsylvania, Virginia, and West Virginia. Prepared by the alinement chart method by V. A. Clements in 1929. Volume computed from tree graphs by the planimeter method. Stumps 1.0 foot high cubed as cylinders. Aggregate deviation: Table 0.03 percent low. Average percentage deviation, 8.3. Heavy lines indicate limits of basic data.

Table 46 .- Total cubic-foot volume table: Chestnut !

Dlameter high (luc			Volu	une (en	lire sles	n, less b	ark), h	y total h	eight ir	feet		Basis: Num-
Outside bark	Inside bark	10	20	30	40	50	60	70	80	90	100	ber of trees
1	0. 0	Cubic feet 0, 02	Cubic feet 0.06	Cubic fert	Culic feet	Cirbic feet	Cubic feet	Cubic feel	Cubic feet	Cubic feet	Cubic feet	24
2	1.8	.11	.20	0, 29	0.39		**					28
3	2.8	22	.42	. 62	.si	0.90						29
4	3.7	.38	.72	1, 05	1.36	1.72	2.02					37
5	4.6	.0	1.1	1, 6	2. 1	2.0	3.1	3.0				45
ß.,	5. 5			2.3	3, 0	3.7	4.4	5. 1				55
7	6.4	٠		3.1	4.1	5.0	6,0	6.9	7.7			48
8	7.3		_[4.1	5. 3	6.5	7. 7	9.0	10, 1	11,4		51
9		Ī	ļ		6.6	8. t 10. 0	9.7	11.2	12.8	14. 3		57
11	9.9	l			8,2 9,0	10.0	12.0 14.8	13, 9 16, 9	15.8 19.2	17.6 21.4		58 51
Ĵ2	10,8	!			12, 0	14.8	17.4	20, 3	23, 0	25. 8	23, 2	51 54
13	11.7		١.		14.0	17, 2	20.3	23,4	26.5	30.0	32.8	50
14. 15.	12.6 13.5	i		<u>.</u> .	16.0	19. 9 22. 7	23. 3 26. 8	27. 0 31. 0	30. 8 35. 0	34. A 39. O	37. 6 43. 0	26 28
16	14.5		\$, ,	25. 2	30.0	34.5	39.0	43.8	48. 2	20
17	15, 4			:		28.0	33.0	38.2	43, 5	48. 5	54.0	21
18	16.4		j.,		[30.5	36, 2	42.0	47. 5	53.0	50.0	14
10	17,4			. 4	[39.5	45.5	51.5 58.5	59. 0 62. 6	64. Q 69. B	6 2
21	18.4		;···				42, 8 45, 5	49. 0 52. 0	59.0	66.0	73.0	2
*!	4974) <u>(</u>					 -			73.0	
Hasis ((rees).	; 3	. 48	52	58	119	168	188	63	5		704

⁴ Measured by the Central States Forest Experiment Station, Frothingham, Schwarz, and others in Connecticut, Kentucky, Maryland, New York, Ohio, and Tennessee. Prepared by the alinement chart method by V. A. Clements in 1929. Volume computed from tree graphs by the planimeter method. Staraps 1.0 foot high cubed as cylinders. Aggregate deviation: Table 0.4 percent low. Average percentage deviation, 7.4. Heavy lines indicate limits of basic data.

Table 47 .- Total cubic-foot volume table: Red maple 1

Dlameter high (inc			Volu	ine (enth	o stein, l	ess bark)	, by tota	l height	in foet		Basis:
Outside bark	Insida bark	10	20	30	40	50	60	70	80	90	Num- ber of trees
2	1.0	Cu. ft. 0, 12		Cn, ft.			Cu. ft.	Cu, ft.	Cu. ft.	Cu, ft.	
3	2.9	.27	0, 23	0.34	0.41	0.54	1 00	*	*******		67
i	3, 9	,-,	.87	1.25	1.65	1. 18 2.04	1.39	2,78			97
5	4.8			1, 89	2.48	3.08	3,60	4.18	}		58
8	5. 7			2.63	3, 42	4, 25	5.05	5. 80			38 37
7	6. 0			3.48	4, 55	5, 65	6.60	7, 70	8.70		55
8	7. 5 3. 4			4, 42 5, 60	5.80	7, 20	8, 50	10.00	11, 10		64
10	0.3		*******	0.0	7, 25 8, 7	9.00	10, 60	12, 10			43
11	10. 2			8.0	10.6	10,8 12,9	12.7	14.5 17.5	16.5 20.0	18. 4 22. 2	25 18
<u> </u>	11.2				12.5	(5, 2	18.0	21, 0	23.8	26.4	11
13	12, 2				14.5	17.0	21. 2	21.8	27.8	31.0	iò
,	13. 2				15.8	20.8	24.7	28, 3	31, 8	35, 6	4
15 16	14, 1 15, 1					24.6 9 26,9	28.2 31.8	32, 4 30, 4	30.8	40.8	2
17	16. 1					30, 1	35.6	41.0	41.5 46.2	46.0 51.8	2
18}	17. 1		**			33, 5	39.8	45. B	51.0	57, 8	-
Basis (tr	rees)		16	80	106	150	130	38			532

¹ Measured by the Yale Forest School, Allegheny and Central States Forest Experiment Stations, and others, in Connecticut, Maryland, Michigan, New York, Ohio, and Pennsylvania. Prepared by the alinement chart method by B. R. Lexen in 1929. Volume computed from tree graphs by the planimeter method. Stumps 1.0 foot high cubed as cylinders, Aggregate deviation: Table 0.10 percent high. Average percentage deviation, 7.3. Henvy lines indicate limits of basic data.

Table 48 .- Total cubic-foot volume table: Yellow poplar 1

Diamete bigh (ii				Volum	ne (enth	re stem,	less bar	k), by (otal bei	ght in f	et		Basis: Num-
Outside bork	Inside burk	10	20	30	40	50	60	70	80	90	100	110	ber of trees
			Cu.ft.		Cu.ft.	Cu. ft.	Cu.ft.	Cu. ft.	Cu.ft.	Cu.ft.	įCu.β.	Cu,ft.	
·	9. 9	0,01	0.00		<u> </u>			}		}			1 '
2	1.8	117	. 20	. 28				{	 -				i
3,	2. 7	.23	. 12	.60	. 77	0.05							1
4	3, 8	39	. 73	1,05	1.30	1.71	2,05	2.36]			}	j '
5,,,,,,,,	4, 5		1. 11	1,68	2.18	2.68	3.18	3, 65	<u></u>				}:
5	5. 5 0. 4			2.38	3. 14 4. 20	3.85 5.20	4.55	5, 30	€.00				1 1
8	7.3			4.20	5, 50	6.74	6, 10 7, 95	7, 05 9, 20	8, 00 10, 50				3 3
3	8.2			5.30	6.90	8.50	10.00	11.70	13, 10				2
10	0.2			6. 5	8.5	10.5	12.3	14.2	16, 2	18.0			2
11[10.1		[7, 6	10, 6	12.4	14.8	17.0	19. 2	21.7	24.0		2
12	11.0				12.0	14.7	17.5	20.6	23.0	25. 5	28.0	31.0	2
13	12.0					17.0	20.2	23. 5	28.7	30.0	33. 2	36.0	2
14	12, 9 13, 8					19.5 22.4	23. 2 26. 5	27. 0	30.8	34.5	38.0	42.0) }
16	14, 8					22,4	30.0	31.0	35.4	39.5	44.0	48.0	
17	15.7						30.0	35.5	10.0	45.0	50.0	55.0	,
18	16.6							39. 5 44. 3	45. 0 50. 0	50.0 57.0	56. 0 63. 5	62.0 1 70.0	
19	17.5							49. 0	56,0	63.5	70.0	78.0	
20	18.5							54	63	70	78	86	
22	19.4							60	70	78	87	95	
3	26. 4 21. 3	-^						66 73	70 83	86 94	95 104	305 115	
24	22, 2							ย์กั	66	101	113	125	
Basis (t	recs)	4	01	7	13	27	82	93	20	3	- 5		264

¹ Measured by the Appalachian and Central States Forest Experiment Stations in Ohio and West Virginia. Prepared by the allimented chart method by L. I. Barrett in 1929. Volume computed from tree graphs by the planimeter method. Stumps 1.0 foot high cubed as cylinders. Aggregate deviation: Table 0.04 percent low. Average percentage deviation, 5.3. Heavy lines indicate limits of basic data.

Table 49 .- Total cubic-foot volume table: Red gum 1

Dlameter high (inc				Volum	e (enth	e stem	, less b	erk), b	y totai	helgin	t in fee	ı		Basis: Num-
Outside bark	Inside bark	10	20	80	40	50	80	70	80	90	100	116	320	ber of trees
2 3 4 5	1. 5 2. 4 3. 3 4. 2	0. 09 . 20 . 34	0, 16 08 .	0. 22 . 50 . 87	0. 28 .64 1. 10	0.34 .78 1.30		Cu.fl.	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	21 28 21 12
5, 7, 8, 9,	5. 1 6. 1 7. 1 8. 1 0. 1		1, 20 3, 75		3, 25 4, 40 5, 75 7, 4	4, 10 5, 50 7, 30 9, 4	4, 96 6, 55 8, 70 11, 3	5, 70 7, 70 10, 40 13, 5	6, 50 9, 00 12, 00 15, 6	10, 20 13, 80 17, 7	11, 40 15, 30 19, 8	20, 8		16 15 20 14 16
11	10. 1 11, 1 12. 1 13. 0				9.2	11.8 14.1 16.0 19.7	14. 1 17. 0 20. 4 23. 5 27. 0	27. 3 32. 0	19. 2 23. 6 27. 3 32. 0 37. 0	21.8 26.0 31.0 36.0 41.5	21.0 20.0 34.0 39.5 46.0	25. 4 31. 0 30. 0 42. 0	44. 0 50. 0	19
16	14, 9 15, 9 16, 9 17, 8 18, 7						31,3 35, 5 39, 5 44, 5	36.3 41.5 40.0 52.0 58 63	42.0 48.0 51.0 60.0 66	47. 5 54. 0 60. 0 67. 0 74 82	52. 5 50, 5 60. 0 74. 0 82 90	55. 5 63. 0 70. 0 78. 0 87 95	65. 0 72. 5 82. 0 90 99	23 12 12 9
22 23 24 25 Basis (t	20. 0 21. 6 22. 0 24. ft rees}		23	52	27	21	17	69 75 82 80 24	80 87 95 103	90 98 107 115 81	99 100 118 128 71	104 114 124 135	109 119 130 140	3 2 5 381

¹ Measured by the Central States Forest Experiment Station and Chittenden, in Indiana, Missouri, and South Carolina. Prepared by the alinement chart method by H. R. Leven in 1929. Volume computed from tree graphs by the planimeter method. Stumps 1.0 foot high cubed as cylinders. Aggregate deviation: Table 0.3 percent high. Average percentage deviation, S.I. Heavy lines indicate limits of basic data.

Table 50 .- Total cubic-foot volume table: Black cherry 1

Diameter l high (inc			Volu	me (en	tire sten	n, less b	ark), by	y total h	eight lu	feet		Basis: Num-
Outside bork	Inside bork	20	30	40	.50	80	70	80	D 0	100	110	ber of trees
		Cubic feet	Cubic fect	Cubic feet	Cubic feet	Cuble feet	Cubic feet	Cubic feet	Cuble feet	Cubic feet	Cubic feel	
²	1.9	0, 26	0.36	0, 46				- <i></i>				2
3	2, 9 3, 8	. 84 . 83	73	. 95		2.36	}					13 15
5	4,8	1.8	1.9	1, 80	1.94 3.0	3.6	4. 1				**-***	3
ß	5.7	7.0	2.6	3.4	4.4	6.0	6.8	8.7		*		13
7	6.6	*******	3. 5	1.8	5.7	6.8	8.0	9.0	*	• • • • • • • • • • • • • • • • • • • •		11
B	7. 6		4,6	6, 1	7, 5	9,0	10, 5	11.8	13.2			13
9	8. 5			7, 6	0.5	1L3	13, 0	15, 8	16, 8	***		11
10	9, 4	<i>-</i>		9,5	11.8	14. 6	[16.2]	18, 5	21.0		* * · • • •	3
11	10.4	j		11.4	14. 2	16, 8	19. 8	22, 3	25, 0	27.8		19
12 13	11, 3 12, 2			13, 4	10.8	20, 0 23, 2	23, 2 27, 2	26. 5 31. 0	30.0 35,0	33, 0 39, 0	38. 0 43. 0	18 18
14	13. 2				22.7	27. 0	32, 5	30.0	47.8	46.0	50, 5	14
15	14. ï				20.0	31, 5	36. 5	42.0	46. 5	53. 0	58.0	
10	15. 0				20, 5	35, 5	41. 5	47. 5	54.0	80, 0	67, 0	0 2 2
17	16.0					40.5	17. 5		61. 5	68.0	76, 0	2
18 19	16, 9 17, 9					45.0 61.0	53, 0 59, 0	68.0	78. 0	77. 0 87. 0	85. 0 96. 0	
20	18.8						65. 0	70.0	88. 0	96.0	105. 0	
Basis (t	reas)	6	10	14	30	20	-8	14	18		.,	159

¹ Measured by the Allegheny and Central States Forest Experiment Stations in Ohio and Pennsylvania, Prepared by the alliencent chart method by O. Luther Schnur in 1929. Volume computed from free graphs by the planimeter method. Stumps 1.0 foot high cubed as cylinders. Aggregate deviation: Table 0.06 percent low. Average processing deviation, 7.15. Beavy lines indicate limits of basic data.

Table 51 .- Merchantable cubic-foot volume table: White oak 1

Diameter breast		Volu	1110 (to 1	ort-0.1-1	li top ou	itsido bi	erk) by	total he	light in	feet	Busis;
high (inches)	20	30	40	50	60	70	SO	ţi0	100	110	ber of trees
· · · · · · · · · · · · · · · · · · ·	Cubic feet	Cubic feet 0.15	Cubic feet	Cubic feet 1.18	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	
6	0. 42 1. 33	1. 16 2. 00	1, 76 2, 93	2.37	3, 03 4, 72	3.68 5.70					74 59
7 8	2.14	3, 20 4, 41	4.32 5.02	5. 52 7. 47	8, 72 0, 00	8, 04 10, 60	9, 40 12, 30				63 82
10		5. 84	7. 72 9. 7 11. 7	0.60 11.9 14.5	11.50 14.3 17.3	13, 50 16, 7 20, 1	15, 60 10, 3 23, 3	22. G 26. 4	30.0		52 42 36
12 13 14			14. i 10. 5	17.4 20.3	20. 0 24. 1 27. 8	24. 0 28. 0 32. 5	27. 7 32, 3	31. 4 36. 4	35. 5 41, 2		33 33
15 16			**	23. 3 20. 8 30. 5	31. 8 36. 0	30.8 41.0	37, 0 42, 3 47, 8	42.0 47.8 54.0	47. 2 54. 0 01. 0	59, 9 67, 0	29 15 15
17. 18. 19.				34. 0 38. 0 42. 0	40.0 45.0 50.0	46, 5 52, 0 58, 0	53, 2 60, 0 66, 0	60. 0 67. 0 74. 0	68, 0 75, 0 83, 0	75. U 83. 9 92. 0	13 5
26. 21. 22.					**		72 78	SI 88	01 100	101 110	i
Basis (trees)	1	73	102	159	143	30	-1S	40	108	110	599

¹ Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Fennsylvania, Tennessee, and West Virginia. Prepared by the alinement chart method by E. R. Martell in 1928. Volume computed from tree graphs by the plandmeter method. Stump height 1.0 foot. Aggregate deviation: Table 0.16 percent high. Average percentage deviation (525 trees, 5 inches plus), 8.07. Heavy lines indicate limits of basic data.

Table 52.—Merchantable cubic-foot volume table: Black oak:

Diameter breast	v	olume (t	o a 4.0-in	ch top or	itside bu 	rk), by t	otal helg	ht In feet	;	Bas
high (inches)	20	30	40	50	co	70	80	90	100	ber tree
	Cubic feel	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	
		1.23	1, 57	1.90	2, 27	<u> </u>			,	i
	1. 58 2. 30	2, 21 3, 25	2.86 4,22	3, 50 5, 20	4. 19 6. 25	4, 92 7, 40				
		4.40	5.74	7. 15	8.50	10.10				ļ
	,	5, 60	7, 88	9.12	11.10	13. 10	15. 20	17. 30		ì
} !		7.0	9, 2 11, 2	11.4 14,0	13. 9 16. 8	16.3 19.9	18. 9 23. 2	21.8 26.5	24. 6 30. 0	
3			13, 4 15, 8	16. 7 19. 6	20, 2 23, 7	23.8	27, 7	31.8	35. 8	
} }			18.3	22. 9 28. 3	27. 6 32. 0	27. 9 32. 8 37. 8	32. 5 38. 0 43. 5	37. 2 43. 2	42.0 48.8	İ
3				30.0	36.2	42.8	49. 6	49.8 56.8	58, 5 63, 9	
				33.9	40.8	48. 2	56.1	04.0	72, 0	ľ
		-	<u></u>		45.7	64, 3	02.8	71.5	80.8	
) }			·		51, 2 56	60. 0 67	69. 9 77	80.0	90. C	
					62	73	85	98 98	100 110	
					68	Š1	94	107	121	
3	<u>-</u>			<u> </u>	74	88	102	118	133	 -
Basis (trees)	2	48	45	78	111	101	76	31	1	

¹ Measured by the Allegheny. Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Pennsylvania, Tonnessee, and West Virginia. Prepared by the alimement chart method by J. H. Buell and E. R. Martell in 1923. Volume computed from tree graphs by the planimeter method. Stump height 1.0 foot. Aggregate deviation: Table 0.1 percent low. Average percentage deviation (488 trees, 5 inches plus), 9.5. Heavy lines indicate limits of basic data.

Table 53 .- Merchantable cubic-foot volume table: Scarlet oak 1

Diameter breast high	Volu	me (to n	4.0-Inch	top outsi	de bark)	, by tota	l height i	n feet	Basis Num
(inches)	20	80	40	50	GD	70	80	90	ber of trees
	Cubic feet	Cubic feet	Cubic fect	Cubic feet	Cubic feel	Cubic feet	Cubic feet	Cubic feet	
	1.05 1.08	1. 34 2. 24	1.60 2.91	2. 01 3. 65	2.40 4.41	2,78 5,17			
	2.36 3,13	3. 25 4. 40	4.25 5.75	5. 40 7. 40	6. 50 9. 10	7. 70 10, 90	8, 95 12, 40		
	1.00	5, 65	7,50		12.00	14.00	16, 10		
		7.0	9.4	12, 0	14.8	17. 1	19. 7	22.0	Į.
			11. 6 13, 8 16. 1	14.8 17.5 20.4	17. 9 21. 2 24. 9	20. 9 24. 9 29. 0	24. 0 28. 5 33. 5	26. 0 32. t 37. 7	
***************************************				23.8	29. 0 33. 5	34. 0 39. 0	38.8 44.5	44.0 50.2	
			. <i>.</i>	31. 0 34. 5	37. 7 42. 5	44. 0 49. 8	50. 5 57. 0	57. 0 04. 0	
					48, 0 63, 0	55. 5 62. 0 68. 0	64. 0 70. 0	71.0 79.5	
					58.5 04.0 70.0	75. 0 82. 0	77. 5 85. 0 93. 5	87. 0 90. 0 104. 0	
Basis (trees)	6	63	54	86	111	134	50	13	4

¹ Measured by the Allegheny and Central States Forest Experiment Stations in Connecticut, Indiana, Maryland, New Jersey, Ohio, Pennsylvania, Tennessee, and West Virginia. Prepared by the elinement chart method by V. A. Clements in 1930. Voltano computed from tree graphs by the planimeter method. Stump height 1.3 foot. Aggregate deviation: Table 0.12 percent high. Average percentage deviation (449 trees, 5.0 inches and over), 7.1. Henvy lines indicate limits of basic data.

Table 54.—Merchantable cubic-foot volume table: Chestnut oak 1

	Volu	me (to a	4.0-inch	top outsi	de bark).	. by tota	l haight i	in feet	Basis:
Diameter breast high (inches)	30	40	50	60	70	80	90	100	Num- ber of trees
	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	
	0. 09 1. 00	0. 51 1. 69	0.94 2.41	1.48	4, 00				8
	2.20	3, 08	4.08	5, 22	6.30				á
	3. 55 5. 05	4. 70 6. 55	6.00 8.20	7.50 9.95	8.88 11.60	10. 25 _13. 30			7 5
O	0. 68 8, 5	8. 50 10. 5	10.45 12.8	12.55 15.5	14.55 17.5	16, 50 20, 3	18.60 22.8	25, 2	5 5
i		12.6	15, 3	18, 4	21. 1	24.0	27. 0	29, 9	4
2 3		14. 9 17. 2	18. 0 20. 9	21. 6 25. 0	25.0 28.8	28. 4 32. 5	31. 5 36. 2	35. 0 40, 2	3
4			24. 0 27. 3 80. 5	28. 6 32. 2 36. 0	32. 9 37. 2 42. 0	37, 2 42, 3 47, 0	41.7 46.8 52.0	45. 8 51. 8 57. 0	2
7			34. 0	40.0	46.0	52.0	58. 0	64. 0	
8 9				45, 0 49, 0	51. 0 56. 0	58. 0 63. 0	04. 0 70. 0	70.0 77.0	
:0 <i></i>	l				62	69	77	84	l
1 2 3					07 72 78	75 81 87	83 90 96	92 99 - 106	
¥					84	94	105	114	
Basis (trees)	45	134	177	192	72	14	1	1	63

¹ Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, and Pennsylvania. Prepared by the alinement chart method by G. Luther Schuur in 1928. Volume computed from tree graphs by the planimeter method. Stump height 1.0 (oot. Aggregate deviation: Table 0.73 percent low. Average percentage deviation (553 trees, 5.0 inches and over), 9.77. Heavy lines indicate limits of basic data.

Table 55 .- Merchantable cubic-foot volume table: Red oak 1

Diameter breast high (inches)	1	7olume (lo a 4.0-l:	ach top c	utside b	ark), by	total hei	ght in fee	t	Basis: Num-
man (menes)	30	40	50	60	70	80	90	103	110	ber of trees
	Cubic feet	Cubic fee!	Cubic feel	Cubic feel	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	
4		0.57	0.90	1.30						5
5		1.59	2. 17	2.78		 -				13
6	2. 15	2.86	3.64	4.48	}					6
7	3. 39	4. 33	5. 32	6.48						16
8		5, 95	7, 25	8.75	10.30	11.80				29
9		7. 70	9, 45	11.05	13.00	15. 10	17. 60			
11		9.8 12.0	11.8	14.0	16.3 20.0	18.9 23.0	22. 0 28. 7			34 95
12		14, 3	17. 1	20.4	23.8	27.4	31.6	36. 5		25 31
13		16. B	20.2	23.9	27 9	32.3	37.0	42. 9		21
14		10.7 22.8	23.7 27.3	27.8 32.2	32.5	37, 4	43. 2	50. 2		22
15			31.0	36.5	37. 3 42. 6	43, 0 49, 2	49. 9	57. 2		54
16			35.1	41.4	48.2	49.2 55.5	56, 5 63, 9	65. 2 73. 0) 55 9
18,				40.4	53.8	62, 0	71. 0	82. 0		! 7
19			43.8	51.6	60.0	68.8	78.8	90, 5	102. 0	7
20			48.5	57. 0	66, 5	76.0	87. 4	100.5	112.0	4
21	1	,		63.0	72.8	83.5	95. 5	110.5	124.0	ં
22	}		- <i></i>			91.0	105. 0 115. 0	121.0 132.0	136. 0 148. 0	
21							125. 0	144.0	160.0	
25]			135	156	174	1
26							145	168	188	
27 28		*					156 168	180 195	205 232	};
29		i		ļ	[180	218	262	1
Basis (trees)	3	20	69	103	50	39	16	218		*
DRSIZ (CIECZ)	. 0	<u> </u>	1 04	1 100	1 00	1 39 .	10	2	<u> </u>	302

¹ Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Virginia, and West Virginia. Prepared by the alinement chart method by J. H. Buell in 1928. Volume computed from tree graphs by the planimeter method. Stump height, 1.9 foot. Agreesta deviation: Table 9.66 percent low. Average percentage deviation (297 trees, 5.0 inches and over), 8.14. Heavy lines indicate limits of basic data.

Table 56. - Merchantable cubic-foot volume table: Hickory

Diameter breast	٦	Volume	(to a 4.6)-inch to	ip outsi	de bark), by to	tal heigi	nt in fee	t	Basis: Num-
high (inches)	20	30	40	50	60	70	80	90	100	110	ber of trees
	Cubic Ject	Cubic fect	Cubic feel	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic fect	Cubic fert	
5	0.83	1. 13	1.44	1.78	2.10	2.40					46
5	1.35	2.61	2.67	3, 35	3, 95		5. 20				31
3	1.96	2.94 4.00	3.95 5.42	4. 95 6. 35	6. 00 8. 25	6, 95 9, 80	8.00 11.20	12. 50			42 39
9		5.20 6.5	7. 10 8. 8	8.95 11.3	10, 90 13, 4	12, 70 15, 5	14.40 17.0	16.00 20.0	22.0	·····	47 49
11		8.0	11.0	13, 6	16. 3	19. 1	21.8	24. 3	26. 9		3.
12			13.0 15.2	16. 2 19. 2	19. 6 23. 0	22.9 26.7	25.9 30.5	29.3 34.0	32.0 38.0		18 23
!4 15			17.8 20.5	22. 2 25. 5	26. 5 30. 8	31, 2 36, 0	35. 5 41. 5	40.0 46.0	44.0 52.0	56.0	1.
i6 i7			23.0	29. t 32. 5	35, 0 39, 5	46.0	46. 5 53. 0	53. G 60. G	59. 0 67. 0	64. 0 73. 0	i .
18	•			37.0	44.0	52.5	60.6	68.0	76.0	1 83.0	
19		,-,	*****		50. 0 55. 5	59. 0 65. 0	67. 5 76. 0	77. 0 86. 0	86. 0 96. 0	94.0	
20 21					62.0	73.0	85. C	96.0	108.0	104. 0 115. 0	
27 23			· · -		68.0 70.0	81. 0 89. 0	94. 0 102. 0	106. 0 115. 0	116, 0 126, 0	125.0 137.0	
Basis (trees)		13	52	87	86	80	39	19	2	1	378

i Measured by the Yale Forest School, Alicheny and Central States Forest Experiment Stations, and others, in the States of Alabama, Arkansas, Connecticut, Indiana, Kentucky, Maryland, Missouri, New York, Ohio, Tennessee, and West Virginia. Prepared by the alinement chart method by V. A. Clements in 1929. Volume computed from tree graphs by the planimeter method. Stump height 1.0 foot. Aggregate deviation: Table 0.2 percent low. Average percentage deviation (379 trees 5.0 inches and over) 10.2. Heavy lines indicate limits of basic data.

Table 57.—Merchantable cubic-foot volume table: Virginia pine 1

Diameter breast high	Volur	ne (to a -	1.0-inch t	op outsid	ie bark).	by lotai	height is	n feet	Basis Num
(inches)	20	30	40	50	60	70	80	90	ber of
	Cubic feet	Culife feet	Cubic feet	Cubic fert	Cubic feet	Cubic feet	Cuble Jeet	Cubic feet	
	0.08	1, 42	1.05	2.43	2.83	<u>.</u>	[{
	1, 63 2, 20	2, 32 3, 13	3, 15 4, 40	4. 05 5. 80	4.85 7.10	5, 55 8, 40			
		4, 62 5, 10	5, 85 7, 50	7. 90 10. 40	9, 85 12, 90	11, 50 15, 00	13. 10 16. 80		
		6, 2	9.4	13.0	15, 8	18, 2	20.2		l
			11,4	15. 6	18.9	21.6	23, 9	26.2	
	1		13. 8 15. 9 18. 2	18.4 21.1 23.8	22.0 25.1 38.8	25, 0 29, 0 33, 0	27, 8 32, 0 36, 5	30.5 35.3 40.2	
			20.6	27.0	32.3	37.2	41.3	45.5	
			. 	30. 2 33. 3 37. 0	36, 2 40, 0 44, 0	41.5 46.0 51.0	46. 2 51. 3 56. 5	51. 0 56. 2 62. 0	
Basis (trees)		13	46	88	44	16	ī		

¹ Measured by the Central States Forest Experiment Station and W. D. Sterrett in Maryland, Ohio, Pennsylvania, Virginia, and West Virginia. Prepared by the alinement chart method by B. R. Lexen in 1929. Volume computed from tree graphs by the planimeter method. Stump height 1.0 foot. Aggregate deviation: Table 0.25 percent low. Average percentage deviation (208 trees) 8.6. Heavy lines indicate limits of basic data.

Table 58 .- Merchantable cubic-foot volume table: Chestnut !

Diameter breast	,	⁷ alume (to a 4.0-1	nch top e	outside b	ark), by	total hel	ght in fe	et.	Basis:
high (inches)	20	30	40	50	GO .	10	80	90	100	ber of
	Cuhic feet	Cubic (ret	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic fect	
• • • • • • • • • • • • • • • • • • •	0.9	1.2	1.6	2,0	2.3	2,7		,	,	۱ ،
	1.6	2.3	3.6	3, 6	4.3	5.0	l	l		
		3, 3	4.3	5.3	6.3	7.4	8, 5	9.5		
}	}	4.4	5.7	7.2	8.8	9.9	11.4	13.0	J	,
10		5. 6	7. 5 9. 3 11, 2 13. 8	9.4 11.5 14.4 17.1	11. 2 14. 1 17. 2 20. 6	13, 2 16, 4 20, 0 23, 8	15. 2 18. 8 23. 0 27. 0	17. 2 21. 2 25. 8 30. 1		
3 4 5			16.0 18.9 22	20. 0 23. 2 27	24. 0 28. 0 32	28, 0 32, 2 37	31.9 36.5 42	35, 4 41, 6	39. 8 45. 5 52	
67 78 8				30 34 38 42	30 40 45 50	42 46 52 57	47 52 59	52 59 65	58 65 72	
0				42	55	54 63	65 71	72 79	79 87	1
1 2				50 55	60 65	69 74	77 84	86 92	94 100	
3				60	71 1	81	91	100	108	
\$ 5		·		·•	77 :	88 95	98 104	106 112	114	
S					96	102	110	120	130	
7					96	107	117	126	136	
Basis (trees)	1	8	38	118	194	235	100	7		69

I Measured by the Central States Forest Experiment Station, Frothingham, Schwarz, and others in Connecticut, Kentucky, Maryland, New York, Ohio, and Tennessee. Prepared by the alinement chart method by V. A. Clements in 1929. Volume computed from tree graphs by the planimeter method. Stump height 1.0 foot. Aggregate deviation: Table 0.2 percent low. Average percentage deviation (699 trees) 7.7. Heavy lines indicate limits of basic data.

Table 59.—Merchantable cubic-foot volume table: Red maple 1

Diameter breast high (inches)	Volum	ie (to n 4	0-inch to	p outsid In feet	e hark),	by total	height	Busts: Num-
Tribulett vicast night (country)	30	40	50	60	70	80	90	ber of trees
<u> </u>	Cu. ft.	Cu. st.	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	
5 B	1.38 2.47	1, 78 3, 18	2. 15 3. 88	2. 52 4, 50	2.90 5.25	3. 25 5. 80		38 37
? 8	3, 52 4, 68	4.56 6.10	5, 64 7, 50	6. 55 8. 80	7. 55 10. 10	8.50 11.50		55 65
9 IO	5.90 7.2	7. 70 9. 4	9.50 11.5	11, 20 13, 6	12, 80 15, 7	14.60 17.8	19.8	42 25
12	8. 6 10. I	13.2	13.0 16.3	16.3 19.3	18, 9 22, 5	21. 6 25. 5	24. 0 28. 6	18)!
14	11.6 13.4	15. 4 17. 7	19. 0 22. 0	22. fi 26. 0	28, 1 30, 2	29, 8 34, 5	33. 3 38. 8	10 4 2
15 16			25. 2 28. 3	30. 6 34. 0 37. 8	34.8 39.2 44.0	30, 5 44. 8 50. 2	44.4 50.0 57.0	1
17 18			31.5 35.5 30.2	42.3 47.0	49. 5 55. 0	57. 0 63. 0	63. 0 70. 0	
Basis (trees)	l———	15	117	136	36	0		310

¹ Measured by the Yale Forest School, Allegheny and Central States Forest Experiment Stations, and others, in Connecticut, Maryland, Michigan, New York, Ohio, and Pennsylvania. Prepared by the allnement chart method by B. R. Leven in 1920. Volume computed from tree graphs by the planimeter method. Stump height 1.0 foot. Aggregate deviation: Table 0,22 percent low. Average percentage deviation (310 trees) 8.5. Heavy lines indicate limits of basic data.

Table 60 .- Merchantable embic-foot volume table: Yellow poplar 1

Diameter breast	,	Volume	(to a 4.0	ineh to	op outsk	le bark)), by tot	al heigh	nt in fee	i i	Basis: Num-
high (inches)	20	30	40	50	60	70	80	90	100	110	ber of trees
		Cu.ft.				Cu.ft. 2.7.	Cu.ft.	Cu.ft.	Cu.ft.	Cu.ft.	13
5	0.93 1.57	3, 26 2, 18 3, 10 4, 15	1, 59 2, 80 4, 03 5, 48	1.95 3.50 5.05 6.00	2, 33 4, 22 6, 25 8, 50	5.00 7.45 10.10	5, 95 8, 75 11, 80				10 30 32
9		5.30 6.5	7. 00 8. 6	8.90 10.9 13.0	10.90 13.0	12,80 15.5 18.7	15. 00 18. 1 21. 8	20. 6 24. 8			25 29 29
12			10, 5 12, 2 14, 1	15. 2 17. 6	15.8 15.6 21.4	22. 0 25. 4	25.8 30.0	29. 0 31. 0	32.01 37.8	34, 8 41, 0	20 20 21
15				20, 2 23, 0	24.7 28.1	29. 0 33. 8 39. 0	34.7 40.0 45.5	39. 8 48, 0 52. 5	44. 0 51. 0 58. 0	48. 0 55. 5 64. 0	18 7 4
16 17 18					35. 5	43, 0	51.5	50. 5 07. 5 75. 5	66.5	72. 5 82. 5 93. 6	<u>i</u>
19				1				85 95	95 108	106 118	·····i
Basis (trees)		1	10	25	82	95	10	109	120 5	130	240

¹ Measured by the Appalachian and Central States Forest Experiment Stations in Ohlo, Pennsylvania, Virginia, and West Virginia. Propared by the alluement chart method by L. I. Barrett in 1929. Volume computed from tree graphs by the planimeter method. Stump heightl.0 foot. Aggregate deviation: Table 0.39 percent high. Average percentage deviation (234 trees, 5.0 inches plus) 6.6. Heavy lines indicate limits of basic data.

Table 61 .- Merchantable cubic-foot volume table: Red gum 1

Djumeter breast		Volu	me (to	n 4.0-I	uch to:	outsi	de barl	k), by	total h	eight h	n feet		Basis: Num-
high (inches)	20	30	40	50	60	70 ——	80	90	100	110	120	130	ber of trees
		Cu.ft.			Cu.ft.	Cu.ft.	Cu, ft.	Cu. ft.	Cu.ft.	Cu.ft.	Cu.ft.	Cu. ft.	
5	0.6	1.0	1.3	1.6				ļ		ļ			12
0	1.1	1, 7	2.2	2, 7	3.2	3.8	- -						16
7	1, 6	2.4	3.1	4.0	4.9	0.0	7		 -				15
8		3. 2	4.4	5.7	7.1	8.5	_01	12					20
9,		4, 2	5.9	7.8	9.8	12.0	14	17	19				14
10		5.4	7.6	10.0	13.0	16. O	18	21	23	25			18
11	 		10	13	17	20	23	25	28	30			21
12			12	16 19	20 23	24 27	27 31	30 35	33 38	36 42			25 34
14				23	27	31	36	40	44	48	53	1	27
15					31	36	41	46	51	56	81		19
16					35	41	47	93	58	64	69	73	23
17		'			40	46	52	59	05	71	77	83	23
		1			44	52	59	66	73	80	87	94	12
19		·'			49 54	57 63	65 72	73 81	81	89 99	97 108	104 115	9
20					24	70	80	80	99	100	118	126	1 6
						77	68	•	110	120	130	140	"
23						85	97	100	120	131	142	152	2
24						93	106	119	131	143	155	167	. 6
25	t .					100	114	129	142	155	160	180	
Tanin (teans)	<u> </u>	11	24	24	17	24	62	61	73	14	3		313
Basis (trees)		111	24	24	11	24	62	1 61	10] 14	1 "		318

¹ Measured by the Central States Forest Experiment Station and Chittenden in Indiana, Missouri, and South Carolina. Prepared by the alinement that method by I. If, Hanley in 1929. Volume computed from tree graphs by the planimeter method. Stump height 1.0 foot. Aggregate deviation: Table 0.03 percent high. Average percentage deviation (313 trees) 10.0. Heavy lines indicate limits of basic data.

Table 62.—Merchantable cubic-foot volume table: Black cherry 1

Diameter breast	Volum	e (to a 4	i.0-inch t	op outsi	de bark)	by tota	l height	in feet	Basis: Num-
high (inches)	30	40	50	60	70	· 80	90	100	ber of trees
	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	Cubic feet	
1	0.27	0.45	0. 55	0.63					7
5	1, 0 1, 7	1.8 3.2	2. 2 4. 0	2.7 4.8	3. 2 5. 5	6,0			. 7 8
7	2.4 3.1	4. 5 5. 9	5. 8 7. 6	7. 0 9. 2	8. 1 10. 7	8.9 11.8	13, 2		13 13
9		7.4	9.7	11.6	13. 5	14.8	16.5		8
10		9.0	11.8	14.3	16. 5	18. 2	20, 2	21.9	, 7
i1 		10.7	14.0	16.8	19.5	21. 3	23, 2	25. 2	12
12 13		12.8	16.8 20.0	20. 2 23. 8	22. 9 27. 0	25. 2 30. 1	27. 8 33. 5	30. 3 37. 0	12 16
14			23. 7	28. 5	33.0	37. 0	420	47. 0	15
15 16		•	28. 5 30. 0	36. 0 46. 0	41. 0 56. 0	48. 0 67. 0	55. 5 82. 0	63. 0 98. 0	14 5
Basis (trees)	4	9	29	31	5	44	15		137

¹ Measured by the Allegheny and Central States Forest Experiment Stations in Ohio and Pennsylvania. Prepared by the alinement chart method by G. L. Schnur in 1929. Volume computed from tree graphs by the planimeter method. Stump height 1.0 foot. Aggregate deviation: Table 0.06 percent high. Average percentage deviation (137 trees) 7.88. Heavy lines indicate limits of basic data.

Table 63.—Board-foot volume table International (%-inch) rule: White oak 1

Diameter brea high (inches)		Volum	e (to a !	5.0-inch	top lasid	e bark)	by total	beight	in feet	Basis: Num-
Outside bark	Inside bark	30	40	50	80	70	\$ 0	90	100	ber of trees
		Board leet	Bourd feet	Board Jeet	Board feel	Board feet	Board feet	Board feet	Board feet	
7	6.3	0	i	0	14	20				72
8 9	7, 3 8, 2	8	$\frac{9}{21}$	20 31	28 40	35 49	42 59		[72 48
10	9.1	16	29	41	53	65	78	91		41
11	0.01	23	37	52	66	82	98	114		33
12	10.9	29	45	64	82	101	12L	141	161	38
13	11.8		54	76	98	122	146	170	195	30
14	12.8		1 65	101	117 139	145	175	203	231	30 23 12
15	13. 7 14. 6	******	76 : 88	107 123	130	172 198	206 237	238 277	273 314	12
17	15. 5			142	184	228	272	320	364	
18	16.5			162	210	260	312	364	415	12 2
19	17.4			132	237	205	354	412	470	2
20	18.3			_ ,		330	398	464	530	
21	19.2				}- <i>-</i>	368	412	515	590	1
22	F 20. 1			- 		410	490	570	660	
Basis (trees)		2	52	165	80	3!	52	19		401

¹ Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Pennsylvania, Tennessee, and West Virginia. Prepared by the alimement chart method by R. K. Day in 1023. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.38 percent low. Average percentage deviation (338 trees, 8.0 inches inside bark plus) 13.87. Heavy lines indicate limits of basic data.

Table 64.—Board-foot volume table International (1/2-inch) rule: Black oak!

Diameter brea high (inches)		Volume (to a 5.0-inch top inside bark) by total height in feet										
Outside bark	Inside bark	30	40	50	60	70	80	90	100	Num- ber of trees		
		Board Seel	Board feet	Bourd feet	Board feet	Board feet	Board feet	Board feet	Board feet			
<u></u>	6. 2	0	6	6	16	24				29		
3	7. 1	Ð	7	20	29	37	45			47		
	8.0	3	181	36	41	52	64	77		48		
lo	9.0		27	40	53	68	84	102	123	43		
lt	9. 9 10. 9		34 41	49 60	66 82	85 105	105 130	128	152 187	51		
12	11.8		49	72	98	127	156	156 188	226	45 34		
4	12.7		58	\$8	117	149	184	225	270	1 15		
5	13.7		68	101	137	176	218	265	315	19		
16	14.7	J		117	158	202	252	308	362	12		
7	15.6			134	180	232	292	850 1	415	12		
8	16, 6				204	265	328	396	473	7		
9	17. 5				230	298	370	445	533	10		
0	18.5				260	332	410	498	595	- 6		
21	19. 5				288	370	480	558	650	4		
2	20. 5				320	410	505	615	740	3		
3}	21, 4				350	450	560	675	815			
Basis (trees)		1	10	50	105	103	75	31	1	385		

¹ Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New Jersey, New York, Ohio, Tennessee, and West Virginia. Prepared by the alinement chart method by E. R. Martell in 1928. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.35 percent low. Average percentage deviation (351 trees, 8.0 inches inside bark plus) 14.7. Heavy lines indicate limits of basic data.

Table 65 .- Board-foot volume table International (%-inch) rule: Scarlet oak 1

Dismeter breast (Inches)	high	Volume (to a 5.0-inc	d i top Insid	e bark), by	r total hel	ghi in fect	Dasis:
Outside bark	Inside bark	40	50	50	70	80	00	Number of trees
		Board feet	Board feet	Board feet	Board feet	Board feet	Board feel	
3	6. 4 7. 3	9	11 i 25	20 36	27 46	35 56		43
)	8.3	19	38	52	65 i	78	95	32 32
10	9. 2	20	52	69	85	102	124	41
11	10, 2	38	65	85	107	126	151	49
12	11. l	47	78	104	128	150	184	70
14	12.0 13.0	56	(14	12L	140	179	219	41
5	13. 9		109 125	140 161	175 202	210 240	254 202	28 12
6	14.8		140	155	230	274	332	ii
! 7.	15. 8		160	210	260	310	377	5
18	16.7			234	200	345	420	ı
19	17. 6 18. 6			259	319	382	460	2
21			^	287	355	423	510	7
22	19, 5 20, 4			315 343	300 425	402 : 502	560 610	i
Deste (Access)								
Basis (trees)] 9	54	110	134	50	13	370

¹ Mensured by the Allegheny and Central States Forest Experiment Stations in Connecticut, Indiana, Maryland, New Jersey, Ohla, Pennsylvania, Tennessee, and West Virginia. Prepared by the alinement chart method by V. A. Clements in 1930. Scaled in 16-foot log lengths with trimming allowance of 6.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.34 percent high. Average percentage deviation (257 trees, 9.0 inches inside bark plus) 11.7. Heavy lines indicate limits of basic data.

Table 66 .- Board-foot volume table International (%-inch) rule: Chestnut oak 1

Diameter breast (inches)	high	Valu	ıme (to a	5.0-inch	top Insid	le bark),	by total	l height i	n feet	Basis Num
Outside bark	Inside bark	30	40	50	no	70	80	l)O	100	ber of
		Bourd feel	Board feet	Board feet	Board feel	Board feet	Board feet	Board feet	Board feet	
	6.0	Ů.	3	12	19	24	29] ;
	6, 9	3	14	24	31	37	44	! !	1	
	7.8	11	24	33	42	51	60			[]
·	8,7	19	31	43	54	66	78	••••		1
! ?	0.6 10.5	25 31	39	53	68	82	90	113		
	11, 4	31	47 ± 56	65 77	83 98	101 120	119 143	137 163		ļ
	12.3	٠, ١	66	90	116	141	167	103	(···	ĺ
	13. 2		77	105	134	163	194	224		ı
	14.1			121	155	189	223	258	1	1
***************************************	15, 1			137	176	215	254	293		1
;	15, O I				198 1	241	287	330	!	ĺ
	16. 9.		•			270	320	370		
	17.8					300	355	412	465	1
·	18.7				. ,	332	392	455	515	
	19.7					365	432	500	565	
	20, 6					400	473	545	622	
	21.4					438]	520	600	680	
Basis (trees)		3	52	173	138	40	6			4

¹ Measured by the Allegheny, Appalachian, and Central States Porest Experiment Stations in Connecticut, Maryland, New York, Ohio, and Pennsylvania. Prepared by the alinement chart method by E. R. Martell in 1928. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.6-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.48 percent low. Average percentage deviation (342 trees, 8.0 inches inside bark plus) 14.0. Heavy lines indicate limits of basic data.

Table 67 .- Board-foot volume table International (%-inch) rule: Red oak 1

Diameter breast (inches)	high	Volum	o (to a 5.	0-luch to	p inside	bark), h	total he	lght in f	æi	Basis:
Outside bark	Inside bark	30	40	50	60	70	80	90	100	ber of trees
		Bourd feet	Board feet	Board feet	Board feet	Board feet	Board feet	Board Seet	Board feet	
	6, 3	2	7	13	18	24				10
·	7. 2	9 1	18	24	31	39	47			24
0	8. 1 9. 0	16 24	25 34	34 46	44 58	54 72	06 87	79 104	125	40 3
2	10. 0 10. 0		43 54	58 71	73 89	89 110	110 134	130 159	157 190	2
3. 4. 5.	11.9 12,8 13.7		65 77 89	85 100 117	107 126 146	131 156 180	160 187 220	190 225 260	230 271	2
6 7 8.	14. 7 15. 6 16. 6	*******		135 154 173	108 192 218	210 240 270	252 288 325	302 344 390	315 360 414 470	1
9 0	17. 6 18. 0 19. 6			195 219 242	245 274 303	301 338 372	568 468 454	440 490 540	530 588	
2 3	29. 0 21. 0 22. 5						500 545 590	592 650 708	650 715 785 860	
5	23. 5 24. 4 25. 4 26. 4							770 830 900	930 3,010 1,095	*******
9	27. 4							980 3,050	1, 195	•
Basis (trees)			9	00	103	50	30	16	2	27

¹ Measured by the Aliegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Virginia, and West Virginia. Propaged by the alinement chart method by J. H. Bueil in 1928. Scaled in 18-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 18-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 1.03 percent low. Average percentage deviation (262 trees, 8.0 inches inside bark plus) 11.87. Henvy lines indicate limits of basic data.

Table 68.—Board-foot volume table International (%-inch) rule: Hickory 1

Diamoter breast (inches)	high	Volu	ше (lo я	5.0-inch	top insid	le hark),	by total	helght in	fect	Basis: Num-
Outside bark	Inside bark	40	តថ	60	70	80	90	100	110	ber of trees
		Bourd feel	Board feel	Board feet	Board feel	Board feet	Board feet	Board feet	Board feet	
6 7 8	5.3 6.1 7.0	0 3	1	9 28	17 34	24 41	29 48			28 31
9 10 11	8. 0 8. 9 9. 9	14 25 33	28 40 50	39 52 65	49 64 81	58 77 96	67 90			36 20
12. 13.	10.9 11.9 12,9	41 40 58	60 71 84	70 94 110	97 118	117 142	111 137 168			20 15
i5	13. 8 14. 8	66	96	129 150	140 165 190	170 200 230	200 235 275	275 315	360	3 5
17	15.8		126	172	220	268	312	380	420	2
1819	16.8 17.8				250 285	305 340	355 405			
2122	18.8 19.8 20.8				320 355 395	385 435 485	460 515 580		••••	
23	21.8					100	4300			1
Basis (trees)		13	44	51	41 :	14	1		1	165

¹ Measured by the Yale Forest School, Allegheny and Central States Forest Experiment Stations, and others, in Alabama, Arkansas, Connecticut, Indiana, Kentucky, Maryland, Missouri, New York, Ohio, Tennessee, and West Virginia. Prepared by the alimement chart method by Y. A. Clements in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot. Additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.15 percent high. Average percentage deviation (100 trees, 8.0 inches inside bark plus) 14.4. Heavy lines indicate limits of basic data.

Table 69 .- Board-foot volume table International (1/2-inch) rule: Virginia pine

Diameter breast high	(Inches)	Volume (o a 5,0-inc	h top insid	le bark), b	y total heir	ght in feet	Basis:
Outside bark	Inside bark	40	50	k u	70	80	90	Number of trees
		Board feet	Board feet	Board feet	Board feet	Board feet	Board feet	
8	6.4 7.3	10 20	17 31	25 42	33 54			33 22
9	8. 2	30	45	60	75	90		14
10	9. 2	42	61	79	98	114	130	4
11	10. 1	53]	75	98	118	138	157	. 6
12	11.1	66	92	116	140	162	182	5
13	12.0	78	107	134	160	184	208	8 10
	13.0	91 j	123	153	180	209	234	10
15	14.0	105	140	171	203	23(259	1
16	.15. 1		155	159	223	254	283	
Basis (trees)		22	34	33	15	ı		105

I Measured by the Central States Forest Experiment Station, W. D. Sterrett, and others, in Maryland, Ohio, Pennsylvania, Virginia, and West Virginia. Prepared by the alignment chart method by V. A. Clements and L. H. Reineke in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height, 1.0 foot. Aggregate deviation: Table 0.5 percent high. Average percentage deviation (49 trees, 8.0 inches inside bark plus) 11.5. Heavy lines indicate limits of basic data.

Table 70.—Board-foot volume table International (1/8-inch) rule: Chestnut 1

Dinmeter breast high (inc	ches)	Valume	(lo & 5.0-	inch top	inside ba	rk), by to	otal heig!	nt in feet	Basis
Outside bark	Inside bark	40	50	60	70	90	90	100	Num ber o trees
		Board feet	Board feet	Board feet	Board Jeel	Board feet	Board feet	Board feel	
	fi, 4	3	8	13	19	24			,
~~~~~	7.3	8	19	27	33	40	48		! ;
	8. 1 0. 0 0. 9	19 28 36	31 42	40 54	49 66	58 78	70 01		
	10.8	45	53 66	68 84	82 100	95 117	112 139	130 160	
	11.7 12.6	한 원	78 92	99 117	119 140	140 167	168 199	193 225	
	13. 5 14. 5	75	107	137	165	196	230	260	
	13.4		124 143	159 184	191 220	225 255	260 300	302 340	
	16, 4 17, 4		163 185	208 232	245 275	285 320	340 375	382 428	
	18.4		205	255	305	357	415	462	
	19. 4 20. 3			282 315	338 368	390 425	450 485	505 550	
	21. 3	[		- 340	403	400	530	505	
	22.3 23.3			370 398	435 460	495 530	570 600	640 675	
	24. 3			430	195	560	048	710	
	25. 3 26. 3	,		455 482	525 560	600 640	680 720	750 798	
Basis (trees)		5	62	180	227	92	7		5

¹ Measured by the Central States Forest Experiment Station, Frothligham, Schwarz, and others, in Connecticut, Kentucky, Maryland, New York, Ohio, and Tennessee. Prepared by the allnement chart method by V. A. Clements in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height, 1.0 foot. Aggregate deviation: Table 0.56 percent high. Average percentage deviation (332 trees, 10.0 inches inside bark plus) 10.5. Heavy lines indicate limits of basic data.

Table 71.—Board-foot volume table International (1/2-inch) rule: Red maple:

Diameter breast high	(Inches)	Velume (	to a 5.0-inc	h top Insid	e bark), by	total heig	ht in feet	Basis:
Outside bark	Inside bark	40	50	<b>60</b>	70	80	90	Number of trees
		Board feet	Board feet	Board feet	Board feet	Board feet	Board feel	
7	6.6	5	14	22	25	35		55
	7. 5 8. 4	16 25	28 37	34 46	42 55	50 65		66 43
*	9.3	34	46	53	70	82	93	25
10	10.2	42	57	70	85	100	117	21
12	11, 2	52	60	88	106	126	144	. 11
13	12. 2	62	83	104 122	128 151	152 181	177 212	К
14	13, 2	72	96		180	210		1 2
15	14. 1		115	147	212	255	1 300	
10	15. I 16, I		133 153	170 199	245	300	350	
17	10, 1				· · · · · · ·		1	
Basis (trees)		11	85	117	40	δ	İ	239

¹ Measured by the Yale Forest School, Allegheny and Central States Forest Experiment Stations, and others, in Connecticut, Maryland, Michigan, New York, Ohio, and Pennsylvania. Prepared by the allowment chart method by B. R. Lexen in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.32 percent low. Average percentage deviation (115 trees, 8.0 inches inside bank plus) 13.5. Heavy lines indicate limits of basic data.

Table 72. -Board-foot volume table International (15-inch) rule: Yellow poplar 1

Diameter high (inc		,	Yolume (	to a 5.0-l	neh top i	nside bai	rk), by t	otal heigi	it in feet		Basis: Num-
Outside hark	Inside bark	30	40	50	60	70	<b>S</b> 0	90	100	110	ber of trees
		Hoard feet	Boord feet	Board feel	Hourd feet	Board feet	Board feel	Board feet	Bourd feet	Board feet	
6	5. 5	0	ŋ	0 )	- 5	12	¹				3
7	6.4	G	0]	11	18	25	31				23
8	7.3	7	15	22	30	38	46				32 24
9	8. 2	16	24	32	42	52	64				29
10	9.2	24	32	42	54	08	82	95			
11	10. 1	31	40	52	68	85	105	122	136		29
12	11.0		40 -	64	83	104	130	152	170	185	20
13	12.0		58	76	98	127	159	187	208	225	21
14	12.9			87	114	148	154	218	241	260	18
15	13.8		. ,	98	131	169	214	250	280	304	7 5
16	14.8				140	190	242	285	320	350	ە. ا
17	15.7	 		•	<u> </u>	214	272	320 300	362 405	392 440	
18	18.6	· ·	¦					395	442	480	l i
19	17.5				1	***		430	180	525	l '
20	18. 5	4-4						430			
Racie	(trees)	-	3	17	70	Í 93	22	3	5		213

[!] Measured by the Appalachian and Central States Forest Experiment Stations in Ohio and West Virginia. Prepared by the alinement chart method by L. I. Barrett in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0-foot. Aggregate deviation: Table 0.044 percent high. Average percentage deviation (151 trees, 8.0 inches inside bark plus) 10.4. Heavy lines indicate limits of basic data.

Table 73.—Board-foot volume table International (1/8-inch) rule: Red gum1

Diameter high (inc		<u> </u>	Volume	(to a 5	.0-Ineh t	op insjd	le back)	, by tot	al heigh	t in fee	ŧ	Basis: Num-
Outside bark	Inside bark	40	50	60	70	80	100	100	110	120	130	ber of trees
<del></del>	-	Board feet	Hourd feet	Board feet	Board feet	Board fect	Board feel	Board feet	Board feet	Board feet	Board feet	
B	7. 1	G.	6	16	26	36	<u>{</u>					18
9	8, 1	5	17	31	45	55	65			<i>-</i>		14
10	9. 1	j 14]	31	48	65	80	93	100	<i></i>			10
11	10. 1	22	44	85	85	101	118	129	140	,		21
12 13	11, 1 12, 1	32	57 73	82 100	105 129	123 152	143 175	157 192	170 208	222	<b>-</b>	25 34
14	13.0		80	120	154	181	211	232	250	270		27
15	14.0			140	180	218	245	275	300	320	340	19
	[4. 9			160	208	245	288	320	340	365	395	23
17 18 19 20	15. 9 16. 9 17. 6 18. 7 19. 7			185	240 270 308 340 380	285 320 362 410 460	330 375 420 480 540	360 415 465 530 595	390 450 510 580	420 490 550 630	450 525 595 670	22 12 9 7
22 23	20. 0 21. 6				420 465	500 500	597 650	650 720	705 790	695 765 850	745 825 990	9 3 2
24	22.6				\$25	625	_ 725	800	880	950	1,010	5
25	23.6	i			505	675	790	880	950	1,030	1, 110	
Basis (	rees)	4	10	16	24	63	61	71	14	3		266

¹ Measured by the Central States Forest Experiment Station and Chittenden in Indiana, Missouri, and South Carolina. Prepared by the alinement chart method by J. H. Hanley in 1829. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation; Table 0.34 percent low. Average percentage deviation (214 trees, 10.0 inches inside bark plus) 12.1. Heavy lines indicate limits of hasle data.

Table 74 .- Board-foot volume table International (%-inch) rule: Black cherry 1

Diameter breast (inches)	hlgh	Volu	olume (to a 5.0-inch top inside bark), by total height in feet								
Outside lark	Inside bark	30	40	50	60	70	80	90	100	Num- ber of trees	
		Board feet	Board Jeet	Board feet	Board feet	Board feet	Board feet	Board feet	Board feet	 	
	5. 7 0. 8 7. 6	0 (U 17	0 15 24	11 20 31	14 25 38	17 30 45	20 34 52	58		111	
ō	8. 5 9. 4		34 47	45 60	54 74	64 87	73 100	82 114	126	1	
12 3	10. 4 1 11. 3 12. 2		58 73	75 95 123	92 120 150	412 141 173	128 150 195	142 175 215	150 192	11	
5	13, 2 ; 14, I			154 190	184 225	212 255	235 280	257 302	232 275 320	14	
6 7 8	15. 0 16. 0 16. 9			228	262 302 340	295 335	320 362	342 383	362 405		
0	17, 9 18, 8				375	375 410 442	400 438 470	425 400 492	444 480 510	 	
Basis (trees)	·			26	30	7	44	18		125	

¹ Measured by the Aliegheny and Central States Forest Experiment Stations in Ohio and Pennsylvania. Prepared by the alinement chart method by G. L. Schnur in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.6-fach log. Stump height 1.0 foot. Aggregate deviation: Table 0.14 percent low. Average percentage deviation (125 trees) 12. Heavy lines indicate limits of basic data.

Table 75 .- Board-foot volume table Scribner rule: White oak 1

Diameter breast (Inches)	blgh	Volut	ne (to sr	8.0-inch	top losk	de bark),	, by total	height i	n feet	Basis: Num-
Outside bark	lnside bark	40	50	00	70	80	90	100	110	ber of trees
		Board feet	Hoard feet	Board feet	Board feet	Board feel	Board feet	Board feet	Board feel	
0	9, 1	[ 0 ]	1	9	22	33	<u> </u>			41
11	10, 0	2	10	34	46	57	67	.77		36
12	10. 0 11. 8	14	30 53	53 71	66 88	80 103	93 . 122	105 138		33 23
14	12.8	44	63	96	111	133	156	175	*	29
15	13.7	71	83	109	137	163	190	213	241	15
18	14. 6		98	130	162	192	224	252	287	15
7	15.5		116	154	192	226	264	297	338	13
18	19. 5		134	178	219	266	303	342	390	5
19	17.4		154	203	252	208	350	395	449	2
20	38.3				287	342	400	450	510	
21	19. 2				324	386	450	505	574	1
22	20, I				302	430	SANI	560	640	
Basis (trees)			33	76	24	47	40	3		223

¹ Measured by the Aliegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Tennessee, Virginia, and West Virginia. Prepared by the alinement chart method by R. K. Day in 1928. Scaled in 18-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.0 percent high. Average porcentage deviation (145 trees, 12.0 inches inside bark plus) 16.07. Heavy lines Indicate limits of basic data.

Table 76.—Board-foot volume table Scribner rule: Black oak 1

Diameter breast (inches)	Voluz	Volume (to an 8.0-inch top inside back), by total height in feet								
Outside hark	Inside bark	40	50	60	70	80	90	300	110	ber of trees
		Board feet	Board feel	Bonrd feet	Board feet	Board feet	Board feet	Board feet	Board feet	
10 11 12	9.0 9.9 10.9	0 0 1	0 4 14	4 20 50	13 45 73	30 63 92	47 80 100	61 93 127		27 51 45
13 14 15	11.8 12.7 13.7	4 10 21	36 54 70	72 90 107	05 116 140	116 144 173	140 173 208	164 202 240		34 13 19
16	14.7 15.6		84 96	125 144	163 167	203 233	240 277	278 321	318 367	12 12
18	16, 6 17, 5 18, 5			163 184 206	214 240 288	263 295 335	312 352 394	362 409 456	418 472 625	7 10 6
21 22	19. 5 20, 5			228 250 272	292 328 358	365 461 442	435 480 528	507 560 615	584 644 708	4
Basis (trees)	21,4		12	46	81	74	31	1	708	245

I Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New Jersey, New York, Ohio, Tennessee, and West Virginia. Prepared by alinement chart method by J. H. Buell, R. K. Day, E. R. Mertell, and G. L. Schnur, in 1928. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.6-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.19 percent high. Average percentage deviation (164 trees, 12.0 inches inside bark plus) 14.78. Heavy lines indicate limits of basic data.

Table 77 .- Board-foot volume table Scribner rule: Scarlet oak 1

Diameter breast high (incl	Volume	Volume (to an 8.0-inch top inside bark), by total height in feet							
Outside bark	Inside bark	50	60	70	80	90	of trees		
		Board feet	Board feet	Board feet	Board feel	Hoard feet			
	9. 2	8	14	30	51	69	38		
*********	10.2	22	45	00 )	82 ]	95	45		
	11. I 12. 0	57 79	77 94	92 1 113	108 133	127 157	70 41		
	13. 0	95	113	134	159	188	2		
	13. 9	110	131	156	185	219	ī		
	14, 8	127	152	180	212	250	13		
	16.8	145	174	206	241	285			
	16, 7 17, 6		197 219	232	273	319	]		
	15.6		213	258   285	303	352 398			
	19. 5		208	312	364 1		•		
******************	20, 4	******	201	339	394	420 453			
Basis (trees)		10	67	110	48	13	25		

¹ Measured by the Allegheny and Central States Forest Experiment Stations in Connecticut, Indiana, Maryland, New Jersey, Ohio, Pennsylvania, Tennessee, and West Virginia. Prepared by the alinement chait method by V. A. Clements in 1930. Scaled in 16-foot log lengths with triuming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.6-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.64 percent high. Average percentage deviation (201 trees, 10.0 inches (uside bark plus) 16.0. Heavy lines indicate limits of basic data.

Table 78 .- Board-foot volume table Scribner rule: Chestnut oak 1

Basis Num	Volume (to an 8.0-inch top inside bark), by total height in feet									Diameter breast high (Inches)			
her o	110	100	114)	80	70	60	50	40	Inside bark	Outside bark			
-	Board feet	Banrd feet	Board feet	Bourd feet	Board feet	Bourd feet	Board feet	Board feet					
		56	77	34 59	21	29	0 18	U 0	8. 7 9. 6 ⁻	0			
·-		130 162	105 135	94 108	65 85	48 65	33 48	18 32	10. 5 11. 4				
-		197	184 194	133 158	107	83 101	62 77		12.3 13.2	·			
-		234 270	226	185	128 148	118	92 107		14. 1 15. 1	+			
-		309 347	263 290	210 240	172   194	136	101		16. 0				
		387 426	324 359	268 296	219 241				16. 9 17. 8				
· ]	544	470	396	328	269				18.7				
	595 052	515 562	434 475	360 395	296 325				19. 7 20. 6				
1	712	813	520	430	357				21. 5				
2		<u> </u>	<u>1</u>	13	47	108	37	1		Basis (trees)			

¹ Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, and Pennsylvania. Prepared by the slinement chart method by R. K. Day in 1928. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.69 percent high. Average percentage deviation (115 trees, 12.0 inches inside bark plus) 18.89. Heavy lines indicate limits of basic data.

Table 79.—Board-foot volume table Scribner rule: Red oak 1

Diameter breast (inches)	bigb	Volum	Volume (to an 8.0-inch top inside bark), by total height in feet								
Outside bark	Inside bark	40	50	60	70	80	90	100	110	ber of trees	
		Board feet	Board feet	Board feet	Board feel	Board feet	Board feet	Board feet	Board feet		
12	10.9 11.9 12.8 13.7 14.7 15.6 10.6 17.6 18.6 20.0 21.0 22.5 24.4 25.4 25.4 27.4	34 54 70 84	52 71 88 104 110 134 151 188 208	67 97 105 123 141 161 181 203 220 252	81 102 123 143 168 190 215 240 270 300	96 118 142 167 195 223 254 318 358 398 440 487	112 138 167 198 231 265 301 340 380 428 474 528 581 940 765 830 765	103 108 236 276 317 380 408 455 512 570 633 700 765 840 920 995	487 545 618 780 340 920 1,005 1,180 1,180	31 21 22 14 15 9 7 7 7 4 3 3	
Basis (trees)			7	41	37	32	16	2		185	

¹ Measured by the Allegheny, Appalachian, and Contral States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Virginia, and West Virginia. Prepared by the alinement chart method by J. H. Buell in 1928. Scaled in 16-toot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 1.98 percent low. Average percentage deviation (135 trees, 12.0 inches inside bark plus) 12.02. Heavy lines indicate limits of basic data.

Table 80 .- Board-foot volume table Scribner rule: Chestnut 1

Diameter breast high (inc	Diameter breast high (inches)			kime (to an 8.0-inch top inside bark), by total height in feet							
Outside bark	Inside bark	40	50	60	70	80	90	100	Num- ber of trees		
		Board feel	Board feel	Board feel	Board feet	Board feet	Board feet	Board feet			
11	9.9 10,8	12 25	22 30	30 53	38 66	46 79	54 91		30 82		
18 14 15	11.7 12.6 13.5	34 : 43 51	53 65 79	70 86 163	87 107 128	104 127 149	119 145 170	134 161 192	59 42 37		
16	14.5 15,4		92 108	120 138	147 169	174 200	201 230	225 280	30 28		
18 19 20	16. 4 17. 4 18. 4		119 134 150	155 175 196	190 215 240	227 255 285	260 295 328	293 330 370	23 11 5		
21 22	19, 4 20, 3		165 183	217 239	207 293	315 348	365 408	418 462	5 3 8		
23	21.3 22.3		200 219	260 288	320 355	382 425	450 500	δ15 505	3		
25	23. 3		240	313	387 422	467 510	545 600	625 680	2		
27	24. 3 25. 3		260 283	340 ] 373	465	550	655	750			
Basis (trees)	<b></b>		3	72	165	92	7		339		

¹ Measured by the Central States Forest Experiment Station, Frothinghem, Schwarz, and others, in Connecticut, Kentucky, Maryland, New York, Ohio, and Tennessee. Prepared by the alinement chart method by V. A. Clements in 1929. Scaled in 16 foot log lengths with voluming allowance of 0.3 foot, additional top sections scaled as fractions of a 10-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 6.1 percent low. Average percentage deviation (200 trees, 12.0 inches inside bark plus) 11.6. Heavy lines indicate limits of basic data.

Table 81 .- Board-foot volume table Scribner rule: Yellow poplar !

Diameter breast (inches)	high	Volu	Volume (to an 8.0-inch top Inside bark), by total height in feet									
Outside bark	Inside bark	40	40 50 60 70 80 98 100 110									
		Board feel	Board feet	Board feet	Board feet	Board feet	Board feet	Board feet	Board feet			
10	9. 2 10. 1	29 33	32 37	37 42	42 51	48 66	55 78	82		10 26		
12	11.0	38	43	52	71	94	109	115	119	20		
13 14 15	12. 0 12. 0 13. 8	43 48	50 60 72	68 84 99	93 112 131	120 147 169	140 168 198	148 177 289	158 185 217	21 18		
10	14.8		84	114	150	196	239	243	2,51	1		
17 [8 [9	15. 7 16. 6 17. 6 18. 5		95 108 119	129 146 161	170 192 215 240	223 253 282 318	261 297 332 370	277 313 350 389	289 327 365 405	1		
21	19.4				265	348	408	430	445	!		
د	20. 4				200	382	445	470	488			
Basis (trees)			2	18	GE	19	3	5		108		

I Measured by the Appaiachian and Central States Forest Experiment Stations in Ohio, Pennsylvania, Virginia, and West Virginia. Prepared by alinement chart method by L. I. Barrett in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 6.57 percent high. Average percentage deviation (46 trees, 12.0 inches inside bark plus) 10.2. Heavy lines indicate limits of basic data.

Table 82.—Board-foot volume table Scribner rule: Red gum 1

Diameter breast (inches)	high	Volu	Volume (to an 8.0-inch top inside bark), by total height in feet								
Outside bark	Inside bark	50	50 60 70 80 90 100 110 120							Num- ber of trees	
		Board feel	Board feet	Board feet	Board feet	Board feet	Board feet	Board feet	Board feet		
1	10.1	14	20	27	35	<b>4</b> 3	50 -	59		20	
2	11. 1	28	41	55	38	81	04	102		2	
3	12.1	43	62	79	95	110	125	139		3	
4,	13. 0	58	79	98	117	136	152	172	190	27	
5	14. 0		97	119	141	162	187	209	230	19	
6	14.9		115	142	176	195	220	250	278	2	
7	15.9		136	167	198	230	263	204	828	2	
8	18.9 17.8		158	193 220	230 260	269 305	302 350	344	380	1	
Ö	18.7			250	298	350	398	392 448	439 500	3	
1	19.7			280	340	394	450	510	563		
2	20.6			320	380	448	510	575	640		
3	21. 0			360	430	500	570	645	720		
4	22, 6			400	480	560	840	720	800	ı	
5	23.6			442	530	620	710	800	900		
Basis (trees)			3	9	57	60	71	14	3	217	

¹ Measured by the Central States Forest Experiment Station and Chittenden in Indiana, Missouri, and South Carolina. Prepared by the alinement chart method by J. H. Hanley in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.16 percent low. Average percentage deviation (160 trees, 12.0 inches inside bark plus) 13.8. Heavy lines indicate limits of basic data.

Table 83.—Board-foot volume table Scribner rule: Black cherry 1

Dismeter breast high		Volume (to an 8.0-inch top inside bark), by total height in feet								
Outside bark	Inside bark	50	60	70	80	96	103	Number of trees		
		Board feet	Board feet	Board feel	Board feet	Board feet	Hoard feet			
1	10.4	50	85	78	90	97	106	2		
2	11.3	85	97	111	122	133	144	1		
8	12. 2	108	122	140	153	168 202	182 218	1		
·	13. 2	130	148	108	185			_		
Ş	14. 1	150	172	193	212	232	250 290			
<u>6</u>	15.0	175	200 228	222 253	248 279	268 302				
7	10.0	<b></b>					368	·		
B ¹	10.9		258	287	315	342	308			
Basis (trees)		i	LO	7	42	18		77		

¹ Measured by the Allegheny and Central States Forest Experiment Stations in Ohio and Pennsylvania. Prepared by alinement chart method by G. L. Schnur, in 1929. Scaled in 16-foot log lengths with trimming allowence of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.6 percent low. Average percentage deviation (78 trees) 13. Heavy lines indicate limits of basic data.

Table 84.—Check of basic data against volume tables 1

	Total cub	ie volume		Merchantable cubic volume		International board foot volume		Scribner board foot volume	
Species	Aggregate deviation	Average percent deviation	Aggregate deviation	A verage percent deviation	Aggregate deviation	Average percent deviation	Aggregate deviation	Average percent deviation	
Wb'te oak Black oak Scarlet oak Chestnut oak Red oak Hickory Virginia pine Chestnut Red maple Yellow ppiar Red gum Black cherry	Percent +0.30 +.73507142700340 +.1094 +.3006	Percent 8, 03 8, 17 7, 10 8, 70 7, 68 8, 90 8, 30 7, 40 7, 30 0, 30 8, 10 7, 15	Percent +0.16 10 +.12 73 06 20 25 20 22 +.39 +.03 +.03	Percent 8, 67 9, 50 7, 10 9, 77 8, 14 10, 29 8, 60 7, 70 8, 50 10, 00 8, 08	Percent -0.3855 +.54 -1.03 +.15 +.50 +.5832 +.04	Percent 13. 87 14. 70 11. 78 14. 00 11. 87 14. 40 11. 50 18. 50 13. 60 10. 40 12. 10 12. 90	Percent +0.90 +.19 +.04 +.69 -1.98 10 +.57 60	Percent 18, 07 14, 78 30, 00 16, 89 12, 92 11, 50 10, 20 33, 80 13, 90	

The average percent deviations are not exactly comparable. (See individual tables.)

## LITERATURE CITED

(1) Aughanbaugh, J. E. 1934. YIELD OF THE OAK-CHESTNUT-HARD PINE FOREST TYPE IN PENNSYLvania. Jour. Forestry 32: 80-89.

(2) BAKER, F. S. 1923. NOTES ON THE COMPOSITION OF EVEN AGED STANDS. Jour. Forestry 21: 712-717, illus.

(3) BRUCE, D. method of preparing timber-yield tables. Jour. Agr. Research 32: 543-557, illus. 1926. A

- and REINEKE, L. H. 1931. CORRELATION ALINEMENT CHARTS IN FOREST RESEARCH: A METHOD OF SOLVING PROBLEMS IN CURVILINEAR MULTIPLE CORRELATION.
U. S. Dept. Agr. Tech. Bull. 210, 88 pp., illus.
—- and Schumacher, F. X.

1935. FOREST MENSURATION. 360 pp., illus. New York and London.

(6) DUNLAP, F. 1921. GROWTH OF OAK IN THE OZARES. Mo. Agr. Expt. Sta. Research Bull. 41, 28 pp., illus.

(7) Forbes, R. D., and BRUCE, D. 1930. RATE OF GROWTH OF SECOND-GROWTH SOUTHERN PINES IN FULL STANDS. U. S. Dept. Agr. Circ. 124, 77 pp., illus.

(8) FROTHINGHAM, E. H. 1912. SECOND-GROWTH HARDWOODS IN CONNECTICUT. U. S. Dept. Agr., Forest Serv. Bull. 96, 70 pp., illus.

(9) -1931. TIMBER GROWING AND LOGGING PRACTICE IN THE SOUTHERN APPALACHIAN REGION. U. S. Dept. Agr. Tech. Bull. 250, 93 pp., illus.

(10) HAIG, I. T. 1932. SECOND-GROWTH YIELD, STAND, AND VOLUME TABLES FOR THE WESTERN WHITE PINE TYPE. U. S. Dept. Agr. Tech. Bull. 323, 68 pp., illus.

(11) ILVESSALO, Y. 1920. [UNTERSUCHUNGEN ÜBER DIE TAXATORISCHE BEDEUTUNG DER WALDTYPEN, HAUPTSÄCHLICH AUF DEN ARBEITEN FÜR DIE AUFSTELLUNG DER NEUEN ERTRAGSTAFELN FINNLANDS FUSSEND.] Acta Forest. Fennica 15, 157 pp., illus. [In Finnish. German

summary, 26 pp.]
(12) KITTREDGE, J., and CHITTENDEN, A. K. 1929. OAR FORESTS OF NORTHERN MICHIGAN. Mich. Agr. Expt. Sta. Spec. Buil. 190, 47 pp., illus.
(13) Korstian, C. F., and Stickel, P. W.

U.S. 1927. THE NATURAL REPLACEMENT OF BLIGHT-KILLED CHESTNUT.

Dept. Misc. Circ. 100, 15 pp., illus. (14) McArdle, R. E., and Meyer, W. H. 1930. THE YIELD OF DOUGLAS FIR IN THE PACIFIC NORTHWEST.
Dept. Agr. Tech. Bull. 201, 64 pp., illus.

(15) McIntyre, A. C. 1933. GROWTH AND YIELD IN OAK FORESTS OF PENNSYLVANIA. Pa. Agr. Expt. Sta. Bull. 283, 28 pp., illus.

(16) MEYER, W. H. 1928. RATES OF GROWTH OF IMMATURE DOUGLAS FIR AS SHOWN BY PERIODIC REMEASUREMENTS ON PERMANENT SAMPLE PLOTS. Jour. Agr. Research 36: 193-215, illus.

(17) -1930. DIAMETER DISTRIBUTION SERIES IN EVEN-AGED FOREST STANDS. Yale Univ. School Forestry Bull. 28, 105 pp., illus.

- (18) PATTON, R. T. 1922. RED OAK AND WHITE OAK: A STUDY OF GROWTH AND YIELD. Натvard Forest Bull. 4, 38 pp., illus.
- (19) REINEKE, L. H. 1927. A MODIFICATION OF BRUCE'S METHOD OF PREPARING TIMBER-YIELD TABLES. Jour. Agr. Research 35: 843-856, illus.
- (20) -1933. PERFECTING A STAND-DENSITY INDEX FOR EVEN-AGED FORESTS. Jour. Agr. Research 46: 627-638, illus.
- and Bruce, D. (21) -N ALINEMENT-CHART METHOD FOR PREPARING FOREST-TREE VOLUME TABLES. U. S. Dept. Agr. Tech. Bull. 304, 28 pp., illus. 1932. AN
- (22) SALVOSA, L. R. 1930. TABLES OF PEARSON'S TYPE III FUNCTION. Ann. Math. Statis. 1; 191-198.
- (23) SCHNUR, G. L. 1934. DIAMETER DISTRIBUTIONS FOR OLD-FIELD LOBLOLLY PINE STANDS IN MARYLAND. Jour. Agr. Research 49: 731-743, illus.
- (24) SCHUMACHER, F. X. 1928. YIELD, STAND AND VOLUME TABLES FOR RED FIR IN CALIFORNIA. Calif. Agr. Expt. Sta. Bull. 456, 29 pp., illus.
- (25) -1930. YIELD, STAND AND VOLUME TABLES FOR DOUGLAS FIR IN CALI-
- (26) SHANTZ, H. L., and ZON, R.

  1924. NATURAL VEGETATION. U. S. Dept. Agr., Bur. Agr. Econillus.

  (27) Second of the Agr. Agr. Agr. C. U. S. Dept. Agr., Bur. Agr. Econ., 29 pp.,
- (27) Society of American Foresters, Committee on Forest Types. 1932. FOREST COVER TYPES OF THE EASTERN UNITED STATES. Forestry 30: 451-498.
- COMMITTEE ON STANDARDIZATION OF VOLUME AND YIELD TABLES. 1926. METHODS OF PREPARING VOLUME AND YIELD TABLES. Forestry 24: 653-666.
- (29) Spaeth, J. N.
  1928. TWENTY YEARS GROWTH OF A SPROUT HARDWOOD FOREST IN NEW YORK: A STUDY OF THE EFFECTS OF INTERMEDIATE AND REPRO-DUCTION CUTTINGS. N. Y. (Cornell) Agr. Expt. Sta. Bull. 465, 49 pp., illus.
- (30) TELFORD, C. J. 1927. A MANUAL OF WOODLOT MANAGEMENT. III. Nat. Hist. Survey Bull. v. 17, art. II, pp. [101]-194, illus.
  (31) United States Department of Agriculture, Forest Service.
- 1929. VOLUME, YIELD, AND STAND TABLES FOR SECOND-GROWTH SOUTHERN PINES. U. S. Dept. Agr. Misc. Pub. 50, 202 pp., illus.

## ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

Secretary of Agriculture	HENRY A. WALLACE.
Under Secretary	
Assistant Secretary	
Director of Extension Work	
Director of Finance	
Director of Information	
Director of Personnel	
Director of Research.	
Solicitor	
Agricultural Adjustment Administration	
Bureau of Agricultural Economics	•
Bureau of Agricultural Engineering	
Bureau of Animal Industry	• •
Bureau of Biological Survey	, ,
Bureau of Chemistry and Soils	
Commodity Exchange Administration	
Bureau of Dairy Industry	
Bureau of Entomology and Plant Quarantine_	• •
Office of Experiment Stations	
Food and Drug Administration	
Forest Service	
Bureau of Home Economics	
Library	
Bureau of Plant Industry	
Bureau of Public Roads	
Resettlement Administration	•
Soil Conservation Service	
Weather Bureau	WILLIS R. GREGG, Crief.

## This bulletin is a contribution from

Forest Service	FERDINAND A. SILCOX, Chief.
Allegheny Forest Experiment Station	R. D. FORBES, Director.

88

##