The World's Largest Open Access Agricultural & Applied Economics Digital Library # This document is discoverable and free to researchers across the globe due to the work of AgEcon Search. Help ensure our sustainability. Give to AgEcon Search AgEcon Search http://ageconsearch.umn.edu aesearch@umn.edu Papers downloaded from **AgEcon Search** may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C. | ڰڗڰڿڗڰڝڿڰڰۿڿؠ؞ڮڿڮڿڰڰۄڰڮڎڰۅڰٷٷٷٷٷٷٷٷٷڿڎڔ؋ڿڮۼڡڰڮڝۮ؞ڝڰڿڮڎۼڟٷڝڟڟڰڛڟ؋؞ڟڎۼۻڰۼ؞ڰۼۼڰۼۻڰۼ | Control of the second s | (1995年) [1995] | recommendation and the property of recognition of | |--|--|--|--| | 建设在收款 医多元性结合性 经通货的 化二氯甲基酚 医皮肤病 化二氯二氯甲基酚 经股份 化二氯 | 도 하는 사람들이 있는 것이 되었다. 그 사람들이 가득하는 것이 되었다. 그 사람들이 다른 사람들이 되었다. | "好"的,我们都在1975年前,我们就是是1770年的,我们就被选择了第二年,提供1980年。 | and a transfer of Market Constitution of the American | | | Company of the state of the best of the state stat | たまえ はそだしておし かいしんめいかん たいみん じちょっ | At the control of the property of the control th | | * [†] =TB 560 (1937) 'USDA | ** PERHATEM ABOUTERANS: | | 889年-李 昭尼DHYH 88681 (*) | | | الراكي في الأراب والمنوق سوانيات يكتر ولاية المناهدية والمترارية الرابية والمناقب والمناقب والمناقب والمار | 起去了他。 电传传递 化甲醛二唑 医甲醛二甲酚 机电流电流电流 | The second section is the second second second | | **YIELD. STAND, AND VOLUM | catonice topscuthing | Name of the Column of the Care | | | と言うなほとしいたこう このれい きょうれい ミャンヒリカ | EXINDLES FUR CYCNTHUC | O DECEMBE OF ELECTS | 建 设式 使发展 医生活病 医抗血病
经 有效 经产品 | | · 表现是明显,这些主义是一个人,是否是不是一种的的一种的的。 | KIRPALAMAN KANTAN KANTAN MALAMAN | 「北美 277年前の北部第2 200 8年)の北部をジャンルと、ディーと、アプル | 50 (大学) 現る 400mm 100mm | | CONTRACTOR LEGISLAND AND AND AND AND AND AND AND AND AND | 必能性的"微数"(大石型)有"大型",并从第4次),均量的"适宜 | 一一一种的现在分词是是 是一个 一个人,这一个人的一个人。 | 2. (1995年2月20日 1995年1957年1957年) | | | | | | # START MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS-1963-A # YIELD, STAND, AND VOLUME TABLES FOR EVEN-AGED UPLAND OAK FORESTS By #### G. LUTHER SCHNUR Azsociate Silviculturist Allegheny Forest Experiment Station Forest Service United States Department of Agriculture, Washington, D. C. ### UNITED STATES DEPARTMENT OF AGRICULTURE WASHINGTON, D. C. # YIELD, STAND, AND VOLUME TABLES FOR EVEN-AGED UPLAND OAK FORESTS By G. LUTHER SCHNUR Associati illuiculturist, Allegheny Forest Experiment Station, Forest Service #### CONTENTS | | Page | | Page | |--|----------|--|----------| | Introduction The upland oak forests The yield tubles | 3 | The yield tables—Continued. Effect of density and species composition on yield | - | | Basic date. Elimination of plots. Yield analyses. | 10
11 | The stand tables. Discussion and application of stand tables. The volume tables. | 40
54 | | Accuracy of the yield tables. Use of tables for yield prediction in under- | 33 | Literature cited | 86 | | stocked stands | 24 | | | #### INTRODUCTION The upland oak region comprises 100 million acres, or one-fifth of the commercial forest area of the United States. It contains 43 billion cubic feet, or one-third of the total stand of hardwoods; and furnishes 2% billion cubic feet, or 40 percent, of the annual cut of such species. In addition, it is favorably located in respect to the great industrial regions and centers of population. "It is recognized as the great center of the Nation's hardwood resources" (26),2 There are two principal forest types in the region (26),3 the chestnutchestnut oak-yellow poplar type, and the oak-hickory type (fig. 1). These have been further divided (27) into 21 cover types, practically all of which are represented in this study. Forest management in this extensive region has been dependent on a number of volume and yield studies (6, 8, 9, 12, 18, 29, 30) based on local data, some of which were very meager. Since the advent of the chestnut blight (Endothia parasitica), oak stands in the eastern part of the region have lost one of their fastest-growing components. has altered the growth capacity of many stands and accordingly lessened the usefulness of some of the earlier yield tables. Recently, yield tables (15) and yields for the average site (1) for oak in Pennsylvania have been published Maintained at Philadelphia, Pa., in cooperation with the University of Pennsylvania. Italic numbers in parentheses refer to Literature Cited, p. 86. Shants and Zon's oak-pine type was not included in this study because of the low percentage of oak that generally occurs and the resulting higher percentage of the faster growing pines. The present study, begun on a somewhat local basis more than 10 years ago, was expanded in 1928 to include all portions of the upland oak region. The yield, stand, and volume tables presented 5 were FIGURE 1.—The upland oak forest region, showing location of temporary sample plots. One or more plots were obtained in each designated locality. computed from measurements obtained on sample plots and from trees cut on logging operations throughout the region. technique. ⁴ Prior to 1921, W. W. Ashe, F. W. Besley, E. H. Frothingham, Russel Watson, and W. D. Sterrett worked on different phases of an oak growth study. Some of the results were published in 1931 (9). In 1923, however, the present study grew out of the former and was undertaken by Frothingham and E. F. McCarthy at the Appalachian Forest Experiment Station. It was intensified by the establishment of a large number of plots, but was limited to the southern Appalachian Mountain region. Five years later it became a joint project of the Allegheny, Appalachian, and Central States Forest Experiment Stations, under the direction of McCarthy, at that time director of the Central States Forest Experiment Stations, under the direction of McCarthy; supervision the field data were collected and the preliminary analyses and compilations were made. When McCarthy left the Forest Service, the project was assigned to the Allegheny Station for completion. ⁴ The volume tables were computed under the direction of Donaid Bruce and L. R. Reineke by their alinement chart method (\$t). The yield and stand tables were computed under the direction of the author, who is indebted, however, to F. X. Schumacher for invaluable aid in outlining the study and in selection of technique. #### THE UPLAND OAK FORESTS The upland oak forests are mostly second-growth sprout stands; the author estimates the remaining areas of virgin upland oak to be 350,000 acres, or only about 0.3 percent of the total upland oak area. A great number of tree species make up the forest. The average percentage composition and frequency of occurrence of the various species, as found in the present study, are shown in table 1. Although the 15 species of oak and 50 associated species found in the region occur in innumerable combinations, from pure stands to mixtures including a great number of species, the five important oaks—white, black, scarlet, chestnut, and red—make up an average of 83 percent of the stand basal area. Table 1.—Stand composition and frequency of occurrence of species on sample plots [Composition and frequency of occurrence on the plots] | | All plots | 3 | Sit | e 40 (35- | 44) | Sit | e 50 (45- | 54) | Sit | e 60 (55- | 64) | Sit | e 70 (65- | 74) | Sit | e 80 (75- | 84) | |---|--|---|--|---|---
--	--	--	--
--	--	---	---
composition Stand composition Frequency of courber of trees Stand composition Stand composition Frequency of courber of trees courber of trees Stand composition Frequency of courber of trees Stand composition Frequency of courber of trees Stand c	Stand composition Frequency of occurber of trees Number of area Number of trees tr	Stand composition Frequency of occurber of trees Stand composition Stand composition Frequency of occurber of trees Basal ber b	Stand composition Frequency of occurrence Basal area Num- Stand composition Frequence Occurrence Control area Num- occurrence Control area Num- occurrence Control area
--	--	--	--
the Society of American Foresters (28). Plot surveys were made with a staff compass and steel tape. The diameters of all trees 0.6 inch diameter breast high,7 and larger were measured with a diameter tape.8 Heights were measured with an Abney hand level, and ages were counted on cores obtained with a Swedish increment borer. #### PRELIMINARY COMPUTATIONS For each plot a tabulation of basal area, number of trees, and volume in each of four units (total cubic, merchantable cubic, International, and Scribner board feet) was made by species, crown class, and diameter breast high. These values were punched on cards so that the various sortings, countings, and summations necessary for the yield analyses could be made on automatic machines. were obtained from tables, constructed for this purpose, which will be explained and presented later. Dlameter breast high, 4.5 feet above average ground level. On some plots, established in 1923, a 2.6-inch lower diameter limit was used. However, the errors involved are relatively small, as most of these plots are in the older age classes having few trees under 2.6 inches diameter breast height. inches diffractor creast neight. The following tabulation shows the species for which the various volume tables were used. Only small errors are likely to result from using substitute tables for species for which no tables are available, because the percentage of the stand volume involved is very low, as shown in table 1. Even though the errors are small, some of the selections are subject to criticism. For example, it would be more logical to use the red, maple volume table for such tolerant species as beech and sugar maple: #### Volume table and other species for which table was used	•	White cak	All unknown species.
dominant stand, so that it was impossible to construct height-diameter curves directly. A careful analysis of the height-diameter relation and a special technique for the construction of the curves were worked out by B. Lucas at the Central States Forest Experiment Station in 1930. The average dominant height of each study plot was first computed by averaging the height of each trees measured. The plots were then combined by 10-foot average height groups, and height-diameter curves drawn for each group. As much as 15 feet difference occurred between trees of the same diameter in different groups. These groups were next subdivided by crown classes and new curves drawn. This time not much difference resulted between the dominant and codominant classes or between the intermediate and suppressed classes, but considerable difference was noted between the 2 groups. Comparisons between species showed very little difference. On the basis of these findings 2 sets of harmonized curves were made for the various average height groups, 1 for the dominant and codominant classes and 1 for the intermediate and suppressed with these harmonized curves as guides, the height-diameter curves for individual plots were drawn by superimposing the actual height-diameter measurements for the plot, plotted on transparent graph paper, on the harmonized curve representing the same average height class. Since the harmonized curve were made for 10-foot average height classes only, interpolation was necessary when the average height of the plot was not an even 10-foot value. This was accomplished graphically by raising or lowering the superimposed sheet the required number of units. Since the individual plots varied in density, a shifting the left or right was then necessary to get the best fit to the plotted points. If a plot was below average density, the diameters tended to be somewhat larger for the same height, and if above the average dominant and codominant oak, as determined from measurements of the actual stand in question, over the age of the stand and reading the site index value from the curve passing nearest to this point. More exact readings can obviously be obtained by interpolation. Table 5.—Total height of average dominant and codominant oak	Total age (years)		al heigi
by age and site index is shown in table 7. A good sample with respect to both site and age is indicated, though a weakness above 80 years is apparent. Considerable difficulty was experienced by the field parties in finding fully stocked plots in the older age classes. Plot distribution by site index-Total Total age (years) 30-30 40-40 50-50 60-69 70-7980-89 90-99 Num-Num-Num-Num-Num-Num-Number ber ber ber ber ber ber 10 15 5 30 54 76 84 68 54 25 2 20-29 30-39 5 25 33 ī 1 35 40-49.... 50-59.... 316 10 28 2 17 19 28 1 1 7 2 12 183 1 404 Table 7.—Plot distribution by age class and site index #### NUMBER OF TREES Yield data for the total stand were based on all trees 0.6 inch d. b. h. and over. The average curve of number of trees over age was plotted on semilogarithmic graph paper, in effect using logarithm of number of trees over age. Use of this type of paper contracts the curve at the younger ages, where number of trees is great, making a decidedly less pronounced curve than on arithmetic paper and facilitating fitting the curve to the points. The series of curves for number of trees on different sites was obtained by a combination of mathematical and graphic methods of correlation. A multiple linear correlation between logarithm of number of trees, age, and site index was computed. The equation is: Log (number of trees)=-0.01431 age-0.01113 site index+4.12427 This was modified by using Bruce and Reineke's (4) alinement-chart method to take care of the curvilinear relation between log (number of trees) and age. The net regression of log (number of trees) on site index showed no curvilinearity. The resulting values read from the modified alinement chart are shown in table 8 and pictured in figure 4. The curves shown in this figure have the usual form, dropping rapidly in the younger age classes, then gradually flattening out. Thus, an average site has approximately 4,000 trees at 10 years of age, 1,000 at 30 years, and 500 at 50 years. ¹³ It was found a good plan to replot this curve on arithmetic paper to be sure of a smooth trend. FIGURE 4.-Number of trees per acre showing trends with age by site index. Table 8 .- Total number of trees per acre 0.6 inch d. b. h. and larger	Total age (years)	Tre	es per i
2.6 3.4 4 5.3 6.2 6.9 7.6 3 8.9	60	Inches 5, 2 5, 5 5, 8 6, 1 6, 4 6, 7 6, 9 7, 1	Inches 0. 1 6. 5 0. 9 7. 2 7. 5 7. 8 8. 1 8. 4 8. 7
Bd. ft. 13, 900 15, 800 17, 700 19, 500 21, 200 22, 900 24, 500 26, 100 27, 650	Bd. ft. 18, 609 20, 900 23, 100 25, 200 27, 250 29, 150 30, 950 32, 700 34, 400		
64 103	96 140	133 178	75 80
showing trends with age by site index. #### MEAN ANNUAL GROWTH The relations of mean annual growth, in the first four units, to age and site are shown in figures 12, 13, and 14, and the tabular values, including those in cords, are presented in tables 26, 27, 28, 29, and 30. Culmination of growth in total cubic volume occurs at 50 years on all sites. This is the point at which the yearly growth reaches its maximum. The decline on both sides of the point is so gradual, however, that there is only 1 percent difference between the ages of 40 and 60 years. Culmination for the merchantable stand, FIGURE 13.—Mean annual growth per acre in cubic feet of merchantable stand including bark, to a 4-inch top outside bark, showing trends with age by site index. which is of more practical value, takes place at 55 years on the best sites, and at 90 years on the poorest. The trend here also is gradual after the point of culmination is reached, as shown in table 31, which expresses the mean annual growth as a percentage of the maximum for each site. This fact permits considerable leeway in determination of the rotation age when considering only the volume production. The growth rate is within 5 percent of the maximum for a period of approximately 50 years on any site, the best site arriving at this point at about 45 years and the poorest at 70 years. FIGURE 14.—Mean annual growth per acre in board feet, International rule, 1/6-inch kerf to a 5-inch top, inside bark, showing trends with age by site index. Table 26.—Mean annual growth per use in cubic feet, entire stand, excluding bark; all trees 0.6 inch d. b. h. and larger included	Total age	Ann	ual grov
Cords 0.00 .00 .01 .05 .11 .16 .20 .23 .25	Cords 0.00 .02 .04 .21 .28 .32 .35 .35	Cords 0,00 .03 .10 .24 .42 .46 .50 .52 .54	Cords 0. 01 .06 .21 .50 .57 .61 .65 .67
--	---------------------------------	--	--
--	--		Auto (Moore)
		-------------	--
--	--	--	--
हैं। विभाग के देवा के किया			
SI 580 800 1,035 1,277 1,570 2,090 2,830 8,970 8,00 8,00 8,00 8,00 8,00 8,00 8,00 8,	3,925 4,059 1,059 1,169 1,169 1,169 1,169 1,169 2,556 2,556 3,760 3,555 3,760	4, 225 4, 390 1, 390 1, 080 1, 345 1, 610 2, 180 2, 748 3, 035 3, 325 3, 570 3, 819 4, 959	4, 505 4, 080 930 1, 200 1, 752 2, 045 2, 920 8, 233 5, 530 3, 705 4, 045 4, 325
a number of species having different growth characteristics and varying in their tolerance and their adaptability to the site have distributions with several modes. Obviously, such stands must be separated into their component parts and each analyzed separately, since no two stands have the same composition. Because it was impracticable to analyze each species separately, some grouping was sought. Inspection of a number of stand tallies showed the white oaks to be somewhat smaller in size than the black oaks on the same The associated species also were found to fall, perhaps more pronouncedly, into two groups, one of small trees of tolerant species and the other of large trees of intolerant species. Four groups were, therefore, set up as follows: (1) The white oaks; (2) the black oaks; (3) the other intolerant species; and (4) the other tolerant species.²² A test showed the mean stand diameters (mean of the diameters) of these groups to be significantly different while each individual group seemed to be fairly homogeneous. The mean of the differences of the group means from the plot means (diameter) and their standard errors are given in table 35. They are all significant. Each group mean was also found to be very significantly different from each other group mean, the ratios between the differences and their errors ranging from 18 to 108. Previous investigations (17, 24) show that correlation of the diameter distribution characteristics with mean stand diameter largely eliminates the effect of age and site, so stand analyses are generally based on mean diameter. Since these groups differ significantly in mean diameter, they are considered sufficiently different to require separate analyses. Table 35.—Mean differences between diameters of species groups and plot	Species group	Mean difference of diameters from those of entire plot	Standard error of the dif- ference
-----------------------------	------------------	-----------	-----------
groups and age—Continued Site index 60-average site			
13 2 5 3	14 4 4 2	13 6 4 2	11 9 3 1
inches		0,25 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	
----------------	-----------------		Outside bark
39	18	2	
the Yale Forest School, Allegheny and Central States Forest Experiment Stations, and others, in Connecticut, Maryland, Michigan, New York, Ohio, and Pennsylvania. Prepared by the alinement chart method by B. R. Lexen in 1929. Volume computed from tree graphs by the planimeter method. Stumps 1.0 foot high cubed as cylinders, Aggregate deviation: Table 0.10 percent high. Average percentage deviation, 7.3. Henvy lines indicate limits of basic data. Table 48 .- Total cubic-foot volume table: Yellow poplar 1	Diamete bigh (ii		
5 41, 2		33 33	
the alinement chart method by J. H. Buell in 1928. Volume computed from tree graphs by the planimeter method. Stump height, 1.9 foot. Agreesta deviation: Table 9.66 percent low. Average percentage deviation (297 trees, 5.0 inches and over), 8.14. Heavy lines indicate limits of basic data. Table 56. - Merchantable cubic-foot volume table: Hickory	Diameter breast	٦	Volume
	10 30 32		9
International (%-inch) rule: Scarlet oak 1 | Dismeter breast (Inches) | high | Volume (| to a 5.0-inc | d i top Insid | e bark), by | r total hel | ghi in fect | Dasis: | |--------------------------|----------------|---------------|---------------|----------------------|---------------|---------------|---------------|--------------------| | Outside bark | Inside
bark | 40 | 50 | 50 | 70 | 80 | 00 | Number
of trees | | | | Board
feet | Board
feet | Board
feet | Board
feet | Board
feet | Board
feel | | | 3 | 6. 4
7. 3 | 9 | 11 i
25 | 20
36 | 27
46 | 35
56 | | 43 | |) | 8.3 | 19 | 38 | 52 | 65 i | 78 | 95 | 32
32 | | 10 | 9. 2 | 20 | 52 | 69 | 85 | 102 | 124 | 41 | | 11 | 10, 2 | 38 | 65 | 85 | 107 | 126 | 151 | 49 | | 12 | 11. l | 47 | 78 | 104 | 128 | 150 | 184 | 70 | | 14 | 12.0
13.0 | 56 | (14 | 12L | 140 | 179 | 219 | 41 | | 5 | 13. 9 | | 109
125 | 140
161 | 175
202 | 210
240 | 254
202 | 28
12 | | 6 | 14.8 | | 140 | 155 | 230 | 274 | 332 | ii | | ! 7. | 15. 8 | | 160 | 210 | 260 | 310 | 377 | 5 | | 18 | 16.7 | | | 234 | 200 | 345 | 420 | ı | | 19 | 17. 6
18. 6 | | | 259 | 319 | 382 | 460 | 2 | | 21 | | | ^ | 287 | 355 | 423 | 510 | 7 | | 22 | 19, 5
20, 4 | | | 315
343 | 300
425 | 402 :
502 | 560
610 | i | | Deste (Access) | | | | | | | | | | Basis (trees) | |] 9 | 54 | 110 | 134 | 50 | 13 | 370 | ¹ Mensured by the Allegheny and Central States Forest Experiment Stations in Connecticut, Indiana, Maryland, New Jersey, Ohla, Pennsylvania, Tennessee, and West Virginia. Prepared by the alinement chart method by V. A. Clements in 1930. Scaled in 16-foot log lengths with trimming allowance of 6.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.34 percent high. Average percentage deviation (257 trees, 9.0 inches inside bark plus) 11.7. Heavy lines indicate limits of basic data. Table 66 .- Board-foot volume table International (%-inch) rule: Chestnut oak 1 | Diameter breast
(inches) | high | Valu | ıme (to a | 5.0-inch | top Insid | le bark), | by total | l height i | n feet | Basis
Num | |---|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------| | Outside bark | Inside
bark | 30 | 40 | 50 | no | 70 | 80 | l)O | 100 | ber of | | | | Bourd
feel | Board
feet | Board
feet | Board
feel | Board
feet | Board
feet | Board
feet | Board
feet | | | | 6.0 | Ů. | 3 | 12 | 19 | 24 | 29 | | |] ; | | | 6, 9 | 3 | 14 | 24 | 31 | 37 | 44 | !
! | 1 | | | | 7.8 | 11 | 24 | 33 | 42 | 51 | 60 | | | [] | | · | 8,7 | 19 | 31 | 43 | 54 | 66 | 78 | •••• | | 1 | | !
? | 0.6
10.5 | 25
31 | 39 | 53 | 68 | 82 | 90 | 113 | | | | | 11, 4 | 31 | 47 ± 56 | 65
77 | 83
98 | 101
120 | 119
143 | 137
163 | | ļ | | | 12.3 | ٠, ١ | 66 | 90 | 116 | 141 | 167 | 103 | (··· | ĺ | | | 13. 2 | | 77 | 105 | 134 | 163 | 194 | 224 | | ı | | | 14.1 | | | 121 | 155 | 189 | 223 | 258 | 1 | 1 | | *************************************** | 15, 1 | | | 137 | 176 | 215 | 254 | 293 | | 1 | | ; | 15, O I | | | | 198 1 | 241 | 287 | 330 | ! | ĺ | | | 16. 9. | | • | | | 270 | 320 | 370 | | | | | 17.8 | | | | | 300 | 355 | 412 | 465 | 1 | | · | 18.7 | | | | . , | 332 | 392 | 455 | 515 | | | | 19.7 | | | | | 365 | 432 | 500 | 565 | | | | 20, 6 | | | | | 400 | 473 | 545 | 622 | | | | 21.4 | | | | | 438] | 520 | 600 | 680 | | | Basis (trees) | | 3 | 52 | 173 | 138 | 40 | 6 | | | 4 | ¹ Measured by the Allegheny, Appalachian, and Central States Porest Experiment Stations in Connecticut, Maryland, New York, Ohio, and Pennsylvania. Prepared by the alinement chart method by E. R. Martell in 1928. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.6-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.48 percent low. Average percentage deviation (342 trees, 8.0 inches inside bark plus) 14.0. Heavy lines indicate limits of basic data. Table 67 .- Board-foot volume table International (%-inch) rule: Red oak 1 | Diameter breast
(inches) | high | Volum | o (to a 5. | 0-luch to | p inside | bark), h | total he | lght in f | æi | Basis: | |-----------------------------|----------------------------------|---------------|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------|-----------------| | Outside bark | Inside
bark | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | ber of
trees | | | | Bourd
feet | Board
feet | Board
feet | Board
feet | Board
feet | Board
feet | Board
Seet | Board
feet | | | | 6, 3 | 2 | 7 | 13 | 18 | 24 | | | | 10 | | · | 7. 2 | 9 1 | 18 | 24 | 31 | 39 | 47 | | | 24 | | 0 | 8. 1
9. 0 | 16
24 | 25
34 | 34
46 | 44
58 | 54
72 | 06
87 | 79
104 | 125 | 40
3 | | 2 | 10. 0
10. 0 | | 43
54 | 58
71 | 73
89 | 89
110 | 110
134 | 130
159 | 157
190 | 2 | | 3.
4.
5. | 11.9
12,8
13.7 | | 65
77
89 | 85
100
117 | 107
126
146 | 131
156
180 | 160
187
220 | 190
225
260 | 230
271 | 2 | | 6
7
8. | 14. 7
15. 6
16. 6 | ******* | | 135
154
173 | 108
192
218 | 210
240
270 | 252
288
325 | 302
344
390 | 315
360
414
470 | 1 | | 9
0 | 17. 6
18. 0
19. 6 | | | 195
219
242 | 245
274
303 | 301
338
372 | 568
468
454 | 440
490
540 | 530
588 | | | 2
3 | 29. 0
21. 0
22. 5 | | | | | | 500
545
590 | 592
650
708 | 650
715
785
860 | | | 5 | 23. 5
24. 4
25. 4
26. 4 | | | | | | | 770
830
900 | 930
3,010
1,095 | ******* | | 9 | 27. 4 | | | | | | | 980
3,050 | 1, 195 | • | | Basis (trees) | | | 9 | 00 | 103 | 50 | 30 | 16 | 2 | 27 | ¹ Measured by the Aliegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Virginia, and West Virginia. Propaged by the alinement chart method by J. H. Bueil in 1928. Scaled in 18-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 18-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 1.03 percent low. Average percentage deviation (262 trees, 8.0 inches inside bark plus) 11.87. Henvy lines indicate limits of basic data. Table 68.—Board-foot volume table International (%-inch) rule: Hickory 1 | Diamoter breast
(inches) | high | Volu | ше (lo я | 5.0-inch | top insid | le hark), | by total | helght in | fect | Basis:
Num- | |-----------------------------|----------------------|----------------|----------------|-----------------|-------------------|-------------------|-------------------|---------------|---------------|-----------------| | Outside bark | Inside
bark | 40 | តថ | 60 | 70 | 80 | 90 | 100 | 110 | ber of
trees | | | | Bourd
feel | Board
feel | Board
feet | Board
feel | Board
feet | Board
feet | Board
feet | Board
feet | | | 6
7
8 | 5.3
6.1
7.0 | 0 3 | 1 | 9
28 | 17
34 | 24
41 | 29
48 | | | 28
31 | | 9
10
11 | 8. 0
8. 9
9. 9 | 14
25
33 | 28
40
50 | 39
52
65 | 49
64
81 | 58
77
96 | 67
90 | | | 36
20 | | 12.
13. | 10.9
11.9
12,9 | 41
40
58 | 60
71
84 | 70
94
110 | 97
118 | 117
142 | 111
137
168 | | | 20
15 | | i5 | 13. 8
14. 8 | 66 | 96 | 129
150 | 140
165
190 | 170
200
230 | 200
235
275 | 275
315 | 360 | 3
5 | | 17 | 15.8 | | 126 | 172 | 220 | 268 | 312 | 380 | 420 | 2 | | 1819 | 16.8
17.8 | | | | 250
285 | 305
340 | 355
405 | | | | | 2122 | 18.8
19.8
20.8 | | | | 320
355
395 | 385
435
485 | 460
515
580 | | •••• | | | 23 | 21.8 | | | | | 100 | 4300 | | | 1 | | Basis (trees) | | 13 | 44 | 51 | 41 : | 14 | 1 | | 1 | 165 | ¹ Measured by the Yale Forest School, Allegheny and Central States Forest Experiment Stations, and others, in Alabama, Arkansas, Connecticut, Indiana, Kentucky, Maryland, Missouri, New York, Ohio, Tennessee, and West Virginia. Prepared by the alimement chart method by Y. A. Clements in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot. Additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.15 percent high. Average percentage deviation (100 trees, 8.0 inches inside bark plus) 14.4. Heavy lines indicate limits of basic data. Table 69 .- Board-foot volume table International (1/2-inch) rule: Virginia pine | Diameter breast high | (Inches) | Volume (| o a 5,0-inc | h top insid | le bark), b | y total heir | ght in feet | Basis: | |----------------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|--------------------| | Outside bark | Inside
bark | 40 | 50 | k u | 70 | 80 | 90 | Number
of trees | | | | Board
feet | Board
feet | Board
feet | Board
feet | Board
feet | Board
feet | | | 8 | 6.4
7.3 | 10
20 | 17
31 | 25
42 | 33
54 | | | 33
22 | | 9 | 8. 2 | 30 | 45 | 60 | 75 | 90 | | 14 | | 10 | 9. 2 | 42 | 61 | 79 | 98 | 114 | 130 | 4 | | 11 | 10. 1 | 53] | 75 | 98 | 118 | 138 | 157 | . 6 | | 12 | 11.1 | 66 | 92 | 116 | 140 | 162 | 182 | 5 | | 13 | 12.0 | 78 | 107 | 134 | 160 | 184 | 208 | 8
10 | | | 13.0 | 91 j | 123 | 153 | 180 | 209 | 234 | 10 | | 15 | 14.0 | 105 | 140 | 171 | 203 | 23(| 259 | 1 | | 16 | .15. 1 | | 155 | 159 | 223 | 254 | 283 | | | Basis (trees) | | 22 | 34 | 33 | 15 | ı | | 105 | I Measured by the Central States Forest Experiment Station, W. D. Sterrett, and
others, in Maryland, Ohio, Pennsylvania, Virginia, and West Virginia. Prepared by the alignment chart method by V. A. Clements and L. H. Reineke in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height, 1.0 foot. Aggregate deviation: Table 0.5 percent high. Average percentage deviation (49 trees, 8.0 inches inside bark plus) 11.5. Heavy lines indicate limits of basic data. Table 70.—Board-foot volume table International (1/8-inch) rule: Chestnut 1 | Dinmeter breast high (inc | ches) | Valume | (lo & 5.0- | inch top | inside ba | rk), by to | otal heig! | nt in feet | Basis | |---------------------------|----------------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------------------| | Outside bark | Inside
bark | 40 | 50 | 60 | 70 | 90 | 90 | 100 | Num
ber o
trees | | | | Board
feet | Board
feet | Board
feet | Board
Jeel | Board
feet | Board
feet | Board
feel | | | | fi, 4 | 3 | 8 | 13 | 19 | 24 | | | , | | ~~~~~ | 7.3 | 8 | 19 | 27 | 33 | 40 | 48 | | ! ; | | | 8. 1
0. 0
0. 9 | 19
28
36 | 31
42 | 40
54 | 49
66 | 58
78 | 70
01 | | | | | 10.8 | 45 | 53
66 | 68
84 | 82
100 | 95
117 | 112
139 | 130
160 | | | | 11.7
12.6 | 한
원 | 78
92 | 99
117 | 119
140 | 140
167 | 168
199 | 193
225 | | | | 13. 5
14. 5 | 75 | 107 | 137 | 165 | 196 | 230 | 260 | | | | 13.4 | | 124
143 | 159
184 | 191
220 | 225
255 | 260
300 | 302
340 | | | | 16, 4
17, 4 | | 163
185 | 208
232 | 245
275 | 285
320 | 340
375 | 382
428 | | | | 18.4 | | 205 | 255 | 305 | 357 | 415 | 462 | | | | 19. 4
20. 3 | | | 282
315 | 338
368 | 390
425 | 450
485 | 505
550 | | | | 21. 3 | [| | - 340 | 403 | 400 | 530 | 505 | | | | 22.3
23.3 | | | 370
398 | 435
460 | 495
530 | 570
600 | 640
675 | | | | 24. 3 | | | 430 | 195 | 560 | 048 | 710 | | | | 25. 3
26. 3 | , | | 455
482 | 525
560 | 600
640 | 680
720 | 750
798 | | | Basis (trees) | | 5 | 62 | 180 | 227 | 92 | 7 | | 5 | ¹ Measured by the Central States Forest Experiment Station, Frothligham, Schwarz, and others, in Connecticut, Kentucky, Maryland, New York, Ohio, and Tennessee. Prepared by the allnement chart method by V. A. Clements in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height, 1.0 foot. Aggregate deviation: Table 0.56 percent high. Average percentage deviation (332 trees, 10.0 inches inside bark plus) 10.5. Heavy lines indicate limits of basic data. Table 71.—Board-foot volume table International (1/2-inch) rule: Red maple: | Diameter breast high | (Inches) | Velume (| to a 5.0-inc | h top Insid | e bark), by | total heig | ht in feet | Basis: | |----------------------|----------------|------------|--------------|-------------|---------------|------------|------------|--------------------| | Outside bark | Inside
bark | 40 | 50 | 60 | 70 | 80 | 90 | Number
of trees | | | | Board feet | Board feet | Board feet | Board feet | Board feet | Board feel | | | 7 | 6.6 | 5 | 14 | 22 | 25 | 35 | | 55 | | | 7. 5
8. 4 | 16
25 | 28
37 | 34
46 | 42
55 | 50
65 | | 66
43 | | * | 9.3 | 34 | 46 | 53 | 70 | 82 | 93 | 25 | | 10 | 10.2 | 42 | 57 | 70 | 85 | 100 | 117 | 21 | | 12 | 11, 2 | 52 | 60 | 88 | 106 | 126 | 144 | . 11 | | 13 | 12. 2 | 62 | 83 | 104
122 | 128
151 | 152
181 | 177
212 | К | | 14 | 13, 2 | 72 | 96 | | 180 | 210 | | 1 2 | | 15 | 14. 1 | | 115 | 147 | 212 | 255 | 1 300 | | | 10 | 15. I
16, I | | 133
153 | 170
199 | 245 | 300 | 350 | | | 17 | 10, 1 | | | | · · · · · · · | | 1 | | | Basis (trees) | | 11 | 85 | 117 | 40 | δ | İ | 239 | ¹ Measured by the Yale Forest School, Allegheny and Central States Forest Experiment Stations, and others, in Connecticut, Maryland, Michigan, New York, Ohio, and Pennsylvania. Prepared by the allowment chart method by B. R. Lexen in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.32 percent low. Average percentage deviation (115 trees, 8.0 inches inside bank plus) 13.5. Heavy lines indicate limits of basic data. Table 72. -Board-foot volume table International (15-inch) rule: Yellow poplar 1 | Diameter
high (inc | | , | Yolume (| to a 5.0-l | neh top i | nside bai | rk), by t | otal heigi | it in feet | | Basis:
Num- | |-----------------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------------| | Outside
hark | Inside
bark | 30 | 40 | 50 | 60 | 70 | S 0 | 90 | 100 | 110 | ber of
trees | | | | Hoard
feet | Boord
feet | Board
feel | Hourd
feet | Board
feet | Board
feel | Board
feet | Bourd
feet | Board
feet | | | 6 | 5. 5 | 0 | ŋ | 0) | - 5 | 12 | ¹ | | | | 3 | | 7 | 6.4 | G | 0] | 11 | 18 | 25 | 31 | | | | 23 | | 8 | 7.3 | 7 | 15 | 22 | 30 | 38 | 46 | | | | 32
24 | | 9 | 8. 2 | 16 | 24 | 32 | 42 | 52 | 64 | | | | 29 | | 10 | 9.2 | 24 | 32 | 42 | 54 | 08 | 82 | 95 | | | | | 11 | 10. 1 | 31 | 40 | 52 | 68 | 85 | 105 | 122 | 136 | | 29 | | 12 | 11.0 | | 40 - | 64 | 83 | 104 | 130 | 152 | 170 | 185 | 20 | | 13 | 12.0 | | 58 | 76 | 98 | 127 | 159 | 187 | 208 | 225 | 21 | | 14 | 12.9 | | | 87 | 114 | 148 | 154 | 218 | 241 | 260 | 18 | | 15 | 13.8 | | . , | 98 | 131 | 169 | 214 | 250 | 280 | 304 | 7 5 | | 16 | 14.8 | | | | 140 | 190 | 242 | 285 | 320 | 350 | ە. ا | | 17 | 15.7 |
 | | • | <u> </u> | 214 | 272 | 320
300 | 362
405 | 392
440 | | | 18 | 18.6 | · · | ¦ | | | | | 395 | 442 | 480 | l i | | 19 | 17.5 | | | | 1 | *** | | 430 | 180 | 525 | l ' | | 20 | 18. 5 | 4-4 | | | | | | 430 | | | | | Racie | (trees) | - | 3 | 17 | 70 | Í 93 | 22 | 3 | 5 | | 213 | [!] Measured by the Appalachian and Central States Forest Experiment Stations in Ohio and West Virginia. Prepared by the alinement chart method by L. I. Barrett in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0-foot. Aggregate deviation: Table 0.044 percent high. Average percentage deviation (151 trees, 8.0 inches inside bark plus) 10.4. Heavy lines indicate limits of basic data. Table 73.—Board-foot volume table International (1/8-inch) rule: Red gum1 | Diameter
high (inc | | <u> </u> | Volume | (to a 5 | .0-Ineh t | op insjd | le back) | , by tot | al heigh | t in fee | ŧ | Basis:
Num- | |-----------------------|---|---------------|---------------|---------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|--------------------------|--------------------------|--------------------------|--------------------| | Outside
bark | Inside
bark | 40 | 50 | 60 | 70 | 80 | 100 | 100 | 110 | 120 | 130 | ber of
trees | | | - | Board
feet | Hourd
feet | Board
feet | Board
feet | Board
fect | Board
feel | Board
feet | Board
feet | Board
feet | Board
feet | | | B | 7. 1 | G. | 6 | 16 | 26 | 36 | <u>{</u> | | | | | 18 | | 9 | 8, 1 | 5 | 17 | 31 | 45 | 55 | 65 | | | <i>-</i> | | 14 | | 10 | 9. 1 | j 14] | 31 | 48 | 65 | 80 | 93 | 100 | <i></i> | | | 10 | | 11 | 10. 1 | 22 | 44 | 85 | 85 | 101 | 118 | 129 | 140 | , | | 21 | | 12
13 | 11, 1
12, 1 | 32 | 57
73 | 82
100 | 105
129 | 123
152 | 143
175 | 157
192 | 170
208 | 222 | - | 25
34 | | 14 | 13.0 | | 80 | 120 | 154 | 181 | 211 | 232 | 250 | 270 | | 27 | | 15 | 14.0 | | | 140 | 180 | 218 | 245 | 275 | 300 | 320 | 340 | 19 | | | [4. 9 | | | 160 | 208 | 245 | 288 | 320 | 340 | 365 | 395 | 23 | | 17
18
19
20 | 15. 9
16. 9
17. 6
18. 7
19. 7 | | | 185 | 240
270
308
340
380 | 285
320
362
410
460 | 330
375
420
480
540 | 360
415
465
530
595 | 390
450
510
580 | 420
490
550
630 | 450
525
595
670 | 22
12
9
7 | | 22
23 | 20. 0
21. 6 | | | | 420
465 | 500
500 | 597
650 | 650
720 | 705
790 | 695
765
850 | 745
825
990 | 9
3
2 | | 24 | 22.6 | | | | \$25 | 625 | _ 725 | 800 | 880 | 950 | 1,010 | 5 | | 25 | 23.6 | i | | | 505 | 675 | 790 | 880 | 950 | 1,030 | 1, 110 | | | Basis (| rees) | 4 | 10 | 16 | 24 | 63 | 61 | 71 | 14 | 3 | | 266 | ¹ Measured by the Central States Forest Experiment Station and Chittenden in Indiana, Missouri, and South Carolina. Prepared by the alinement chart method by J. H. Hanley in 1829. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.0-inch log. Stump height 1.0 foot. Aggregate deviation; Table 0.34 percent low. Average percentage deviation (214 trees, 10.0 inches inside bark plus) 12.1. Heavy lines indicate limits of hasle data. Table 74 .- Board-foot volume table International (%-inch) rule: Black cherry 1 | Diameter breast
(inches) | hlgh | Volu | olume (to a 5.0-inch top inside bark), by total height in feet | | | | | | | | | |-----------------------------|---------------------------|---------------|--|-----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------------|--| | Outside lark | Inside
bark | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | Num-
ber of
trees | | | | | Board
feet | Board
Jeet |
Board
feet | Board
feet | Board
feet | Board
feet | Board
feet | Board
feet |
 | | | | 5. 7
0. 8
7. 6 | 0
(U
17 | 0
15
24 | 11
20
31 | 14
25
38 | 17
30
45 | 20
34
52 | 58 | | 111 | | | ō | 8. 5
9. 4 | | 34
47 | 45
60 | 54
74 | 64
87 | 73
100 | 82
114 | 126 | 1 | | | 12
3 | 10. 4 1
11. 3
12. 2 | | 58
73 | 75
95
123 | 92
120
150 | 412
141
173 | 128
150
195 | 142
175
215 | 150
192 | 11 | | | 5 | 13, 2 ;
14, I | | | 154
190 | 184
225 | 212
255 | 235
280 | 257
302 | 232
275
320 | 14 | | | 6
7
8 | 15. 0
16. 0
16. 9 | | | 228 | 262
302
340 | 295
335 | 320
362 | 342
383 | 362
405 | | | | 0 | 17, 9
18, 8 | | | | 375 | 375
410
442 | 400
438
470 | 425
400
492 | 444
480
510 |
 | | | Basis (trees) | · | | | 26 | 30 | 7 | 44 | 18 | | 125 | | ¹ Measured by the Aliegheny and Central States Forest Experiment Stations in Ohio and Pennsylvania. Prepared by the alinement chart method by G. L. Schnur in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 5.6-fach log. Stump height 1.0 foot. Aggregate deviation: Table 0.14 percent low. Average percentage deviation (125 trees) 12. Heavy lines indicate limits of basic data. Table 75 .- Board-foot volume table Scribner rule: White oak 1 | Diameter breast (Inches) | blgh | Volut | ne (to sr | 8.0-inch | top losk | de bark), | , by total | height i | n feet | Basis:
Num- | |--------------------------|----------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-----------------| | Outside bark | lnside
bark | 40 | 50 | 00 | 70 | 80 | 90 | 100 | 110 | ber of
trees | | | | Board
feet | Hoard
feet | Board
feet | Board
feet | Board
feel | Board
feet | Board
feet | Board
feel | | | 0 | 9, 1 | [0] | 1 | 9 | 22 | 33 | <u> </u> | | | 41 | | 11 | 10, 0 | 2 | 10 | 34 | 46 | 57 | 67 | .77 | | 36 | | 12 | 10. 0
11. 8 | 14 | 30
53 | 53
71 | 66
88 | 80
103 | 93 .
122 | 105
138 | | 33
23 | | 14 | 12.8 | 44 | 63 | 96 | 111 | 133 | 156 | 175 | * | 29 | | 15 | 13.7 | 71 | 83 | 109 | 137 | 163 | 190 | 213 | 241 | 15 | | 18 | 14. 6 | | 98 | 130 | 162 | 192 | 224 | 252 | 287 | 15 | | 7 | 15.5 | | 116 | 154 | 192 | 226 | 264 | 297 | 338 | 13 | | 18 | 19. 5 | | 134 | 178 | 219 | 266 | 303 | 342 | 390 | 5 | | 19 | 17.4 | | 154 | 203 | 252 | 208 | 350 | 395 | 449 | 2 | | 20 | 38.3 | | | | 287 | 342 | 400 | 450 | 510 | | | 21 | 19. 2 | | | | 324 | 386 | 450 | 505 | 574 | 1 | | 22 | 20, I | | | | 302 | 430 | SANI | 560 | 640 | | | Basis (trees) | | | 33 | 76 | 24 | 47 | 40 | 3 | | 223 | ¹ Measured by the Aliegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Tennessee, Virginia, and West Virginia. Prepared by the alinement chart method by R. K. Day in 1928. Scaled in 18-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.0 percent high. Average porcentage deviation (145 trees, 12.0 inches inside bark plus) 16.07. Heavy lines Indicate limits of basic data. Table 76.—Board-foot volume table Scribner rule: Black oak 1 | Diameter breast (inches) | Voluz | Volume (to an 8.0-inch top inside back), by total height in feet | | | | | | | | | |--------------------------|-------------------------|--|----------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------| | Outside hark | Inside
bark | 40 | 50 | 60 | 70 | 80 | 90 | 300 | 110 | ber of
trees | | | | Board
feet | Board
feel | Bonrd
feet | Board
feet | Board
feet | Board
feet | Board
feet | Board
feet | | | 10
11
12 | 9.0
9.9
10.9 | 0
0
1 | 0
4
14 | 4
20
50 | 13
45
73 | 30
63
92 | 47
80
100 | 61
93
127 | | 27
51
45 | | 13
14
15 | 11.8
12.7
13.7 | 4
10
21 | 36
54
70 | 72
90
107 | 05
116
140 | 116
144
173 | 140
173
208 | 164
202
240 | | 34
13
19 | | 16 | 14.7
15.6 | | 84
96 | 125
144 | 163
167 | 203
233 | 240
277 | 278
321 | 318
367 | 12
12 | | 18 | 16, 6
17, 5
18, 5 | | | 163
184
206 | 214
240
288 | 263
295
335 | 312
352
394 | 362
409
456 | 418
472
625 | 7
10
6 | | 21
22 | 19. 5
20, 5 | | | 228
250
272 | 292
328
358 | 365
461
442 | 435
480
528 | 507
560
615 | 584
644
708 | 4 | | Basis (trees) | 21,4 | | 12 | 46 | 81 | 74 | 31 | 1 | 708 | 245 | I Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New Jersey, New York, Ohio, Tennessee, and West Virginia. Prepared by alinement chart method by J. H. Buell, R. K. Day, E. R. Mertell, and G. L. Schnur, in 1928. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.6-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.19 percent high. Average percentage deviation (164 trees, 12.0 inches inside bark plus) 14.78. Heavy lines indicate limits of basic data. Table 77 .- Board-foot volume table Scribner rule: Scarlet oak 1 | Diameter breast high (incl | Volume | Volume (to an 8.0-inch top inside bark), by total
height in feet | | | | | | | | |----------------------------|----------------|---|---------------|---------------|---------------|---------------|-------------|--|--| | Outside bark | Inside
bark | 50 | 60 | 70 | 80 | 90 | of
trees | | | | | | Board
feet | Board
feet | Board
feet | Board
feel | Hoard
feet | | | | | | 9. 2 | 8 | 14 | 30 | 51 | 69 | 38 | | | | ********* | 10.2 | 22 | 45 | 00) | 82] | 95 | 45 | | | | | 11. I
12. 0 | 57
79 | 77
94 | 92 1
113 | 108
133 | 127
157 | 70
41 | | | | | 13. 0 | 95 | 113 | 134 | 159 | 188 | 2 | | | | | 13. 9 | 110 | 131 | 156 | 185 | 219 | ī | | | | | 14, 8 | 127 | 152 | 180 | 212 | 250 | 13 | | | | | 16.8 | 145 | 174 | 206 | 241 | 285 | | | | | | 16, 7
17, 6 | | 197
219 | 232 | 273 | 319 |] | | | | | 15.6 | | 213 | 258
285 | 303 | 352
398 | | | | | | 19. 5 | | 208 | 312 | 364 1 | | • | | | | ****************** | 20, 4 | ****** | 201 | 339 | 394 | 420
453 | | | | | Basis (trees) | | 10 | 67 | 110 | 48 | 13 | 25 | | | ¹ Measured by the Allegheny and Central States Forest Experiment Stations in Connecticut, Indiana, Maryland, New Jersey, Ohio, Pennsylvania, Tennessee, and West Virginia. Prepared by the alinement chait method by V. A. Clements in 1930. Scaled in 16-foot log lengths with triuming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.6-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.64 percent high. Average percentage deviation (201 trees, 10.0 inches (uside bark plus) 16.0. Heavy lines indicate limits of basic data. Table 78 .- Board-foot volume table Scribner rule: Chestnut oak 1 | Basis
Num | Volume (to an 8.0-inch top inside bark), by total height in feet | | | | | | | | | Diameter breast high
(Inches) | | | | |--------------|--|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------------------|----------------------------------|--|--|--| | her o | 110 | 100 | 114) | 80 | 70 | 60 | 50 | 40 | Inside
bark | Outside
bark | | | | | - | Board
feet | Banrd
feet | Board
feet | Bourd
feet | Board
feet | Bourd
feet | Board
feet | Board
feet | | | | | | | | | 56 | 77 | 34 59 | 21 | 29 | 0
18 | U 0 | 8. 7
9. 6 ⁻ | 0 | | | | | ·- | | 130
162 | 105
135 | 94
108 | 65
85 | 48
65 | 33
48 | 18
32 | 10. 5
11. 4 | | | | | | - | | 197 | 184
194 | 133
158 | 107 | 83
101 | 62
77 | | 12.3
13.2 | · | | | | | - | | 234
270 | 226 | 185 | 128
148 | 118 | 92
107 | | 14. 1
15. 1 | + | | | | | - | | 309
347 | 263
290 | 210
240 | 172
194 | 136 | 101 | | 16. 0 | | | | | | | | 387
426 | 324
359 | 268
296 | 219
241 | | | | 16. 9
17. 8 | | | | | | ·] | 544 | 470 | 396 | 328 | 269 | | | | 18.7 | | | | | | | 595
052 | 515
562 | 434
475 | 360
395 | 296
325 | | | | 19. 7
20. 6 | | | | | | 1 | 712 | 813 | 520 | 430 | 357 | | | | 21. 5 | | | | | | 2 | | <u> </u> | <u>1</u> | 13 | 47 | 108 | 37 | 1 | | Basis (trees) | | | | ¹ Measured by the Allegheny, Appalachian, and Central States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, and Pennsylvania. Prepared by the slinement chart method by R. K. Day in 1928. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.69 percent high. Average percentage deviation (115 trees, 12.0 inches inside bark plus) 18.89. Heavy lines indicate limits of basic data. Table 79.—Board-foot volume table Scribner rule: Red oak 1 | Diameter breast
(inches) | bigb | Volum | Volume (to an 8.0-inch top inside bark), by total height in feet | | | | | | | | | |-----------------------------|--|----------------------|--
--|---|---|---|--|---|---|--| | Outside
bark | Inside
bark | 40 | 50 | 60 | 70 | 80 | 90 | 100 | 110 | ber of
trees | | | | | Board
feet | Board
feet | Board
feet | Board
feel | Board
feet | Board
feet | Board
feet | Board
feet | | | | 12 | 10.9
11.9
12.8
13.7
14.7
15.6
10.6
17.6
18.6
20.0
21.0
22.5
24.4
25.4
25.4
27.4 | 34
54
70
84 | 52
71
88
104
110
134
151
188
208 | 67
97
105
123
141
161
181
203
220
252 | 81
102
123
143
168
190
215
240
270
300 | 96
118
142
167
195
223
254
318
358
398
440
487 | 112
138
167
198
231
265
301
340
380
428
474
528
581
940
765
830
765 | 103
108
236
276
317
380
408
455
512
570
633
700
765
840
920
995 | 487
545
618
780
340
920
1,005
1,180
1,180 | 31
21
22
14
15
9
7
7
7
4
3
3 | | | Basis (trees) | | | 7 | 41 | 37 | 32 | 16 | 2 | | 185 | | ¹ Measured by the Allegheny, Appalachian, and Contral States Forest Experiment Stations in Connecticut, Maryland, New York, Ohio, Virginia, and West Virginia. Prepared by the alinement chart method by J. H. Buell in 1928. Scaled in 16-toot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 1.98 percent low. Average percentage deviation (135 trees, 12.0 inches inside bark plus) 12.02. Heavy lines indicate limits of basic data. Table 80 .- Board-foot volume table Scribner rule: Chestnut 1 | Diameter breast high (inc | Diameter breast high (inches) | | | kime (to an 8.0-inch top inside bark), by total height
in feet | | | | | | | | |---------------------------|-------------------------------|------------------|-------------------|---|-------------------|-------------------|-------------------|-------------------|-------------------------|--|--| | Outside bark | Inside
bark | 40 | 50 | 60 | 70 | 80 | 90 | 100 | Num-
ber of
trees | | | | | | Board
feel | Board
feel | Board
feel | Board
feet | Board
feet | Board
feet | Board
feet | | | | | 11 | 9.9
10,8 | 12
25 | 22
30 | 30
53 | 38
66 | 46
79 | 54
91 | | 30
82 | | | | 18
14
15 | 11.7
12.6
13.5 | 34 :
43
51 | 53
65
79 | 70
86
163 | 87
107
128 | 104
127
149 | 119
145
170 | 134
161
192 | 59
42
37 | | | | 16 | 14.5
15,4 | | 92
108 | 120
138 | 147
169 | 174
200 | 201
230 | 225
280 | 30
28 | | | | 18
19
20 | 16. 4
17. 4
18. 4 | | 119
134
150 | 155
175
196 | 190
215
240 | 227
255
285 | 260
295
328 | 293
330
370 | 23
11
5 | | | | 21
22 | 19, 4
20, 3 | | 165
183 | 217
239 | 207
293 | 315
348 | 365
408 | 418
462 | 5
3
8 | | | | 23 | 21.3
22.3 | | 200 219 | 260
288 | 320
355 | 382
425 | 450
500 | δ15
505 | 3 | | | | 25 | 23. 3 | | 240 | 313 | 387
422 | 467
510 | 545
600 | 625
680 | 2 | | | | 27 | 24. 3
25. 3 | | 260
283 | 340]
373 | 465 | 550 | 655 | 750 | | | | | Basis (trees) | | | 3 | 72 | 165 | 92 | 7 | | 339 | | | ¹ Measured by the Central States Forest Experiment Station, Frothinghem, Schwarz, and others, in Connecticut, Kentucky, Maryland, New York, Ohio, and Tennessee. Prepared by the alinement chart method by V. A. Clements in 1929. Scaled in 16 foot log lengths with voluming allowance of 0.3 foot, additional top sections scaled as fractions of a 10-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 6.1 percent low. Average percentage deviation (200 trees, 12.0 inches inside bark plus) 11.6. Heavy lines indicate limits of basic data. Table 81 .- Board-foot volume table Scribner rule: Yellow poplar ! | Diameter breast
(inches) | high | Volu | Volume (to an 8.0-inch top Inside bark), by total height in feet | | | | | | | | | | |-----------------------------|----------------------------------|---------------|--|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------|--|--| | Outside bark | Inside
bark | 40 | 40 50 60 70 80 98 100 110 | | | | | | | | | | | | | Board
feel | Board
feet | | | | 10 | 9. 2
10. 1 | 29
33 | 32
37 | 37
42 | 42
51 | 48
66 | 55
78 | 82 | | 10
26 | | | | 12 | 11.0 | 38 | 43 | 52 | 71 | 94 | 109 | 115 | 119 | 20 | | | | 13
14
15 | 12. 0
12. 0
13. 8 | 43
48 | 50
60
72 | 68
84
99 | 93
112
131 | 120
147
169 | 140
168
198 | 148
177
289 | 158
185
217 | 21
18 | | | | 10 | 14.8 | | 84 | 114 | 150 | 196 | 239 | 243 | 2,51 | 1 | | | | 17
[8
[9 | 15. 7
16. 6
17. 6
18. 5 | | 95
108
119 | 129
146
161 | 170
192
215
240 | 223
253
282
318 | 261
297
332
370 | 277
313
350
389 | 289
327
365
405 | 1 | | | | 21 | 19.4 | | | | 265 | 348 | 408 | 430 | 445 | ! | | | | د | 20. 4 | | | | 200 | 382 | 445 | 470 | 488 | | | | | Basis (trees) | | | 2 | 18 | GE | 19 | 3 | 5 | | 108 | | | I Measured by the Appaiachian and Central States Forest Experiment Stations in Ohio, Pennsylvania, Virginia, and West Virginia. Prepared by alinement chart method by L. I. Barrett in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 6.57 percent high. Average percentage deviation (46 trees, 12.0 inches inside bark plus) 10.2. Heavy lines indicate limits of basic data. Table 82.—Board-foot volume table Scribner rule: Red gum 1 | Diameter breast
(inches) | high | Volu | Volume (to an 8.0-inch top inside bark), by total height in feet | | | | | | | | | |-----------------------------|----------------|---------------|--|---------------|---------------|---------------|---------------|---------------|---------------|-------------------------|--| | Outside bark | Inside
bark | 50 | 50 60 70 80 90 100 110 120 | | | | | | | Num-
ber of
trees | | | | | Board
feel | Board
feet | | | 1 | 10.1 | 14 | 20 | 27 | 35 | 4 3 | 50 - | 59 | | 20 | | | 2 | 11. 1 | 28 | 41 | 55 | 38 | 81 | 04 | 102 | | 2 | | | 3 | 12.1 | 43 | 62 | 79 | 95 | 110 | 125 | 139 | | 3 | | | 4, | 13. 0 | 58 | 79 | 98 | 117 | 136 | 152 | 172 | 190 | 27 | | | 5 | 14. 0 | | 97 | 119 | 141 | 162 | 187 | 209 | 230 | 19 | | | 6 | 14.9 | | 115 | 142 | 176 | 195 | 220 | 250 | 278 | 2 | | | 7 | 15.9 | | 136 | 167 | 198 | 230 | 263 | 204 | 828 | 2 | | | 8 | 18.9
17.8 | | 158 | 193
220 | 230
260 | 269
305 | 302
350 | 344 | 380 | 1 | | | Ö | 18.7 | | | 250 | 298 | 350 | 398 | 392
448 | 439
500 | 3 | | | 1 | 19.7 | | | 280 | 340 | 394 | 450 | 510 | 563 | | | | 2 | 20.6 | | | 320 | 380 | 448 | 510 | 575 | 640 | | | | 3 | 21. 0 | | | 360 | 430 | 500 | 570 | 645 | 720 | | | | 4 | 22, 6 | | | 400 | 480 | 560 | 840 | 720 | 800 | ı | | | 5 | 23.6 | | | 442 | 530 | 620 | 710 | 800 | 900 | | | | Basis (trees) | | | 3 | 9 | 57 | 60 | 71 | 14 | 3 | 217 | | ¹ Measured by the Central States Forest Experiment Station and Chittenden in Indiana, Missouri, and South Carolina. Prepared by the alinement chart method by J. H. Hanley in 1929. Scaled in 16-foot log lengths with trimming allowance of 0.3 foot, additional top sections scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.16 percent low. Average percentage deviation (160 trees, 12.0 inches inside bark plus) 13.8. Heavy lines indicate limits of basic data. Table 83.—Board-foot volume table Scribner rule: Black cherry 1 | Dismeter breast high | | Volume (to an 8.0-inch top inside bark), by total height in feet | | | | | | | | | |----------------------|----------------|--|------------|------------|------------|------------|------------|--------------------|--|--| | Outside bark | Inside
bark | 50 | 60 | 70 | 80 | 96 | 103 | Number
of trees | | | | | | Board feet | Board feet | Board feel | Board feet | Board feet | Hoard feet | | | | | 1 | 10.4 | 50 | 85 | 78 | 90 | 97 | 106 | 2 | | | | 2 | 11.3 | 85 | 97 | 111 | 122 | 133 | 144 | 1 | | | | 8 | 12. 2 | 108 | 122 | 140 | 153 | 168
202 | 182
218 | 1 | | | | · | 13. 2 | 130 | 148 | 108 | 185 | | | _ | | | | Ş | 14. 1 | 150 | 172 | 193 | 212 | 232 | 250
290 | | | | | <u>6</u> | 15.0 | 175 | 200
228 | 222
253 | 248
279 | 268
302 | | | | | | 7 | 10.0 | | | | | | 368 | · | | | | B ¹ | 10.9 | | 258 | 287 | 315 | 342 | 308 | | | | | Basis (trees) | | i | LO | 7 | 42 | 18 | | 77 | | | ¹ Measured by the Allegheny and Central States Forest Experiment Stations in Ohio and Pennsylvania. Prepared by alinement chart method by G. L. Schnur, in 1929. Scaled in 16-foot log lengths with trimming allowence of 0.3 foot, additional top sections
scaled as fractions of a 16-foot, 8.0-inch log. Stump height 1.0 foot. Aggregate deviation: Table 0.6 percent low. Average percentage deviation (78 trees) 13. Heavy lines indicate limits of basic data. Table 84.—Check of basic data against volume tables 1 | | Total cub | ie volume | | Merchantable cubic
volume | | International board
foot volume | | Scribner board foot
volume | | |---|--|---|--|---|--|---|---|--|--| | Species | Aggregate
deviation | Average
percent
deviation | Aggregate
deviation | A verage
percent
deviation | Aggregate
deviation | Average
percent
deviation | Aggregate
deviation | Average
percent
deviation | | | Wb'te oak Black oak Scarlet oak Chestnut oak Red oak Hickory Virginia pine Chestnut Red maple Yellow ppiar Red gum Black cherry | Percent +0.30 +.73507142700340 +.1094 +.3006 | Percent 8, 03 8, 17 7, 10 8, 70 7, 68 8, 90 8, 30 7, 40 7, 30 0, 30 8, 10 7, 15 | Percent
+0.16
10
+.12
73
06
20
25
20
22
+.39
+.03
+.03 | Percent 8, 67 9, 50 7, 10 9, 77 8, 14 10, 29 8, 60 7, 70 8, 50 10, 00 8, 08 | Percent -0.3855 +.54 -1.03 +.15 +.50 +.5832 +.04 | Percent 13. 87 14. 70 11. 78 14. 00 11. 87 14. 40 11. 50 18. 50 13. 60 10. 40 12. 10 12. 90 | Percent
+0.90
+.19
+.04
+.69
-1.98
10
+.57
60 | Percent 18, 07 14, 78 30, 00 16, 89 12, 92 11, 50 10, 20 33, 80 13, 90 | | The average percent deviations are not exactly comparable. (See individual tables.) ## LITERATURE CITED (1) Aughanbaugh, J. E. 1934. YIELD OF THE OAK-CHESTNUT-HARD PINE FOREST TYPE IN PENNSYLvania. Jour. Forestry 32: 80-89. (2) BAKER, F. S. 1923. NOTES ON THE COMPOSITION OF EVEN AGED STANDS. Jour. Forestry 21: 712-717, illus. (3) BRUCE, D. method of preparing timber-yield tables. Jour. Agr. Research 32: 543-557, illus. 1926. A - and REINEKE, L. H. 1931. CORRELATION ALINEMENT CHARTS IN FOREST RESEARCH: A METHOD OF SOLVING PROBLEMS IN CURVILINEAR MULTIPLE CORRELATION. U. S. Dept. Agr. Tech. Bull. 210, 88 pp., illus. —- and Schumacher, F. X. 1935. FOREST MENSURATION. 360 pp., illus. New York and London. (6) DUNLAP, F. 1921. GROWTH OF OAK IN THE OZARES. Mo. Agr. Expt. Sta. Research Bull. 41, 28 pp., illus. (7) Forbes, R. D., and BRUCE, D. 1930. RATE OF GROWTH OF SECOND-GROWTH SOUTHERN PINES IN FULL STANDS. U. S. Dept. Agr. Circ. 124, 77 pp., illus. (8) FROTHINGHAM, E. H. 1912. SECOND-GROWTH HARDWOODS IN CONNECTICUT. U. S. Dept. Agr., Forest Serv. Bull. 96, 70 pp., illus. (9) -1931. TIMBER GROWING AND LOGGING PRACTICE IN THE SOUTHERN APPALACHIAN REGION. U. S. Dept. Agr. Tech. Bull. 250, 93 pp., illus. (10) HAIG, I. T. 1932. SECOND-GROWTH YIELD, STAND, AND VOLUME TABLES FOR THE WESTERN WHITE PINE TYPE. U. S. Dept. Agr. Tech. Bull. 323, 68 pp., illus. (11) ILVESSALO, Y. 1920. [UNTERSUCHUNGEN ÜBER DIE TAXATORISCHE BEDEUTUNG DER WALDTYPEN, HAUPTSÄCHLICH AUF DEN ARBEITEN FÜR DIE AUFSTELLUNG DER NEUEN ERTRAGSTAFELN FINNLANDS FUSSEND.] Acta Forest. Fennica 15, 157 pp., illus. [In Finnish. German summary, 26 pp.] (12) KITTREDGE, J., and CHITTENDEN, A. K. 1929. OAR FORESTS OF NORTHERN MICHIGAN. Mich. Agr. Expt. Sta. Spec. Buil. 190, 47 pp., illus. (13) Korstian, C. F., and Stickel, P. W. U.S. 1927. THE NATURAL REPLACEMENT OF BLIGHT-KILLED CHESTNUT. Dept. Misc. Circ. 100, 15 pp., illus. (14) McArdle, R. E., and Meyer, W. H. 1930. THE YIELD OF DOUGLAS FIR IN THE PACIFIC NORTHWEST. Dept. Agr. Tech. Bull. 201, 64 pp., illus. (15) McIntyre, A. C. 1933. GROWTH AND YIELD IN OAK FORESTS OF PENNSYLVANIA. Pa. Agr. Expt. Sta. Bull. 283, 28 pp., illus. (16) MEYER, W. H. 1928. RATES OF GROWTH OF IMMATURE DOUGLAS FIR AS SHOWN BY PERIODIC REMEASUREMENTS ON PERMANENT SAMPLE PLOTS. Jour. Agr. Research 36: 193-215, illus. (17) -1930. DIAMETER DISTRIBUTION SERIES IN EVEN-AGED FOREST STANDS. Yale Univ. School Forestry Bull. 28, 105 pp., illus. - (18) PATTON, R. T. 1922. RED OAK AND WHITE OAK: A STUDY OF GROWTH AND YIELD. Натvard Forest Bull. 4, 38 pp., illus. - (19) REINEKE, L. H. 1927. A MODIFICATION OF BRUCE'S METHOD OF PREPARING TIMBER-YIELD TABLES. Jour. Agr. Research 35: 843-856, illus. - (20) -1933. PERFECTING A STAND-DENSITY INDEX FOR EVEN-AGED FORESTS. Jour. Agr. Research 46: 627-638, illus. - and Bruce, D. (21) -N ALINEMENT-CHART METHOD FOR PREPARING FOREST-TREE VOLUME TABLES. U. S. Dept. Agr. Tech. Bull. 304, 28 pp., illus. 1932. AN - (22) SALVOSA, L. R. 1930. TABLES OF PEARSON'S TYPE III FUNCTION. Ann. Math. Statis. 1; 191-198. - (23) SCHNUR, G. L. 1934. DIAMETER DISTRIBUTIONS FOR OLD-FIELD LOBLOLLY PINE STANDS IN MARYLAND. Jour. Agr. Research 49: 731-743, illus. - (24) SCHUMACHER, F. X. 1928. YIELD, STAND AND VOLUME TABLES FOR RED FIR IN CALIFORNIA. Calif. Agr. Expt. Sta. Bull. 456, 29 pp., illus. - (25) -1930. YIELD, STAND AND VOLUME TABLES FOR DOUGLAS FIR IN CALI- - (26) SHANTZ, H. L., and ZON, R. 1924. NATURAL VEGETATION. U. S. Dept. Agr., Bur. Agr. Econillus. (27) Second of the Agr. Agr. Agr. C. U. S. Dept. Agr., Bur. Agr. Econ., 29 pp., - (27) Society of American Foresters, Committee on Forest Types. 1932. FOREST COVER TYPES OF THE EASTERN UNITED STATES. Forestry 30: 451-498. - COMMITTEE ON STANDARDIZATION OF VOLUME AND YIELD TABLES. 1926. METHODS OF PREPARING VOLUME AND YIELD TABLES. Forestry 24: 653-666. - (29) Spaeth, J. N. 1928. TWENTY YEARS GROWTH OF A SPROUT HARDWOOD FOREST IN NEW YORK: A STUDY OF THE EFFECTS OF INTERMEDIATE AND REPRO-DUCTION CUTTINGS. N. Y. (Cornell) Agr. Expt. Sta. Bull. 465, 49 pp., illus. - (30) TELFORD, C. J. 1927. A MANUAL OF WOODLOT MANAGEMENT. III. Nat. Hist. Survey Bull. v. 17, art. II, pp. [101]-194, illus. (31) United States Department of Agriculture, Forest Service. - 1929. VOLUME, YIELD, AND STAND TABLES FOR SECOND-GROWTH SOUTHERN PINES. U. S. Dept. Agr. Misc. Pub. 50, 202 pp., illus. ## ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED | Secretary of Agriculture | HENRY A. WALLACE. | |--|-------------------------| | Under Secretary | | | Assistant Secretary | | | Director of Extension Work | | | Director of Finance | | | Director of Information | | | Director of Personnel | | | Director of Research. | | | Solicitor | | | Agricultural Adjustment Administration | | | Bureau of Agricultural Economics | • | | Bureau of Agricultural Engineering | | | Bureau of Animal Industry | • • | | Bureau of Biological Survey | , , | | Bureau of Chemistry and Soils | | | Commodity Exchange Administration | | | Bureau of Dairy Industry | | | Bureau of Entomology and Plant Quarantine_ | • • | | Office of Experiment Stations | | | Food and Drug Administration | | | Forest Service | | | Bureau of Home Economics | | | | | | Library | | | Bureau of Plant Industry | | | Bureau of Public Roads | | | Resettlement Administration | • | | Soil Conservation Service | | | Weather Bureau | WILLIS R. GREGG, Crief. | ## This bulletin is a contribution from | Forest Service | FERDINAND A. SILCOX, Chief. | |-------------------------------------|-----------------------------| | Allegheny Forest Experiment Station | R. D. FORBES, Director. | 88 ##