

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

BUD SELECTION IN EUREKA AND LISBON LEMONS AND PROGENY TESTS OF BUD VARIATIONS

13y A. D. Shamec, priacipal physologist, C'. A. Iombisos, associate pomologint, nad K. li. ("suri, formerly assistant pomologist, Division of Fruit and Vegetable Crops and Diseases, Burcen of Plant Industry

CONTENTS

1tage		73ngo
1 ;	Sariations of tho beishan varimg-ionti.	
	Striperi strifn.	,
2	Thornless [mbradertsasirime	6
'	Ohagr strikinge varimitans	17
$\underline{8}$	trabery tests of telnon tha varian mans	17
3	Proseny berformance rorotis. ..	16
-	broselly didn an Euretan strains.	具
-	Progeny daxa on Lisbunstrains.	37
人:	Probleantion of varlitions in gatants of crob.	3
1	Commurexine suality of eraps of difereal strains	3
4	Scasog of maxinata praduction in armerent	
3	strains	a
16	Telalice informe stablits of ditfermit tress.	3
111	Ingation of inherentis suthle strams ---	dil
$1 \pm$	Fitmbation oftamerends infriorstrainj rees.	16
11	Commereial inamartamen of lemon fat selor-	
12		11
17	Sumburss.	11
1.	bitronture cib	13

INTRODUCTION

The commercial colture of the lomon (Cilras limonia. Osbeck) in Eie lonited States is largely coofined to the southern counties of Calfornia. The introduction of the Lishom variety into that State from Australia in 1874 and the origin of the Eurcka variety at Los Angeles in 1877 marked the beriming of the development of this important industry. In 1887, the firs yeur of avaiable records of carlot shipments of lemons trom (ibiliforma, 12 carloads were mariseted; in the season of 1034-35- a total of 19,604 earionds were slipped.

The Eureka and Lisbon varielies are now almost miversaly planted for the production of the Califomin lemon crop. A few trees of the Vhlafranca variety are propagated occasionally, and a few old trees
of the Genon, Bonnie Brac, and other less well-known varieties are still in bearing, but their total production is of relatively small importance. The Eureka variety is largely grown in the interior lemon districts, and the Lishon variety is more generndy planted near the const.

The fruits from the Eureka and Lisbon trees are packed and marketed without varietal segregation, the crops as athole being known commercially simply as lemons. The charucteristics of the trees of these varieties are quite distinet, particularly in the vigor of growth and thorminess of the trees and the season of musimtim frait production. Marked varintions also have been found in the foliage and fruit characters, as shown by some entire trees in each variety as well as by staitiver varintions in individund limbs in some trees.

The investigitions reported berein were undertaken for the purpose of determining the nature and frequeney of the occurrence of bud rariations in the fruits and foliage of trees of the Emreka and Lisbon varicties. The first phase of the investigations was carried on through systematic: individual tree-performane records in established citrus ormards of full-bearing trees over a poriod of years beginning in 1911. Statements of the early phases of the bud-variation studies were made in 1911 (5,6$),^{1}$ and further reports of the progress have been presonted from time to time ($1,2,3,4,7,8,0,10,11,12,13,14,15$). The detailed results of the first studies with Eureka and Lisbon lemons up to June 1917 were reported in $1920(18,79)$.

The second phase of the investigations has been the stady of the performance records ol progeny trees that were propagated from carcfully selected ir rent trees in the original performance-resord plots and from bud variations lound in and near those plots.

This bulletin contains the results of some ol the performancerecord studies of these progeny proparations and deals primarily with the degree of perpetuntion of the characteristics of the outstanding variations. The performanee-record period during which the progeny trees have been studied began with their planting in 1918 and was continued until May 1934. A number of trees were removed from the progeny test plots early in 1933 , so the tabulated datu. presented herewith cover the period from the first fruiting of the trees in the fall or winter of $1920-21$ to Deember 1932, inclusive.

bUD Variations in eureka and lisbon varieties

The striking variations of fruit and foliage previously reported in trees of the Furekn and Lisbon varieties may be grouped into two classes, (1) those occurring as limbs on otherwise normal ${ }^{2}$ trees, and (2) as entire trees differing from the normal in one or more clearly defined characteristics. In addition, individual fruits have been found in some of the lemon trees under obsorvation that differ markedly from the other fruits on the same tree in one or more characteristics. These individual-fruit variations in some cases closely resombled those borne by the limb and entire-tree varintions that have been studied in these investigations.

[^0]Fruit variations are sometimes clearly correlatod with foliage variatious, but on acrount of the obrious economic importance of fruit variations and the practicnbility of obtaining defnite data regarding them they have been given primary consideration in the present stadies. Where unmistakable and econonically important correlations of fruit and folige characteristics fave been observed they have been recorded and deseribed.
Lemon varintions may be further classified as affecting (1) the commercial quality of the fruit, (2) the quantity of fruit, and (3) the season of maximum production. In most instances the commercial quality of the fruits borne by the progeny trees that were propagated from the parent-limb or entire-tree rariations is correlated with the quantity of fruits produced by these sume trecs.

Variations of fruits include those having characteristic shape, size, texture and color of rind, and number of seeds. Foliage variations include those showing characteristic habits of growth of the trees, density of foliage, color, shape, size, aud thickness of leaves, number and size of thorns, and season and chavacter of blossoms.

Tree-estimate records in some of the older lemon orchords in southm Culifornia in addition to those where the individual tree-performnace record studies were made showed that limb and entire-tree variations were present in all of them. In some instances this variability was mieh more pronounced than in others, but typieal cases of striking bud variations were found wherever observations were made.

The early discovery that the fruit and folinge characteristics of limh varintions were very similar to those of some of the entire-tree variations in established orchards indicated that the entire-tree variations had been unintentionally propagated from similar limb sports. The subsequent studies of progeny trees propagated from typical limb rariations and their comparison with the entire-tree variations in the older orchards have proved beyond reasonable doubt that the origin of the entire-tree variations was linib variations in the trees from which the buds were obtained to proparate the orehard trees.

The varations described in this bulletin must be clearly distingruished from those due to soil, climate, rootstock, cultural, or other envirommental influences. Fhuctuating variations and chances, such as modifieations in vigor of growth, size of trees, size of fruits, or differences in the color of the lenves or fruits resulting from changes in soil, climate, cultural practices, unsuitable rootstocks, or other causes that are not inherent and are not perpetuated through bud propagation, hare not been considered in this publication except as indicating the eflect of envirommental factors upon tree and fruit development.
Some of the limb and entire-tree rarintions found in these studies; were uniformly abnomal in their fruit or foliage characteristics. In other instances more than one type of varintion from the normal was found in a single tree, either normal fruits and foliage with the abnormal ones, or two or more distinctly differont types of abnormal folinge or fruits.

The uniform limb and entire-tree variations have been found through progeny propagation tests to perpetuate the characteristies of the parent, wrintions, whereas those that are not uniform have transmitted their chamacteristics with about the same condition of varinbility as appeared in the pareat limbs or entire trees.

The uniform limb and entire-tree variations have heen termed inherently stable ones, and those lacking in uniformity have been called inherently unstable oues, as shown by their periormance in progeny tests.

FRE QUENCY AND SIGNIFICANCE OF BUD VARIATIONS

From thes economie viewpoint the variations in Eureka and Lisbon lemon trees as observed in these investigations may be classed as desirable when they are more satisfactory for commercial culture than the normal, and undesirable when less valuable than the normal for the production of proftable crops.

In the Eureka lemon orchard where the striking variability of the trees of this variety was discovered, 2,200 trees out of a total of 16,000 , or about 14 percent, were found to be undesirable entire-trce variations having exceptionally vigorous vegetative types of growth, it condition that was found to he correlated with an inferior commercial quality of fruit and light yiclds. Thesc laxge unproductive trees with characteristienly spreading habit of growth and dense and abundant foliage were called "shade trees" and "dense unproduetive" trees. A subsequent study of the orchard from which the buds had been obtained for the propagation of the trees under investigation showed that only about 5 perent were of the Shade-Tree or Ciproductive strains. The explanation of this condition was found to the that the bud entters in securing propagating material found it easier to obtain budwood from the vigorous-growing vegetative trees than from the less vigorous productive ones. There were many more regetative branclies, commonly enlled suckers, in the vegctative type of trees than in the normal productive ones, consequently the natural tendency was to sccure more budwood from the rank-growing trees than from the more fruitful ones.
In addition to the entire-trec Shade-Tree and Linproductive rariations, limbs having leaves and fruits typiral of theso strains were found in otherwise apparently normal Eureks trees in both the pareat, orclard and the younger one that was propagated from it. Some of the juffrior strain trees in the younger orchard doubtless resulted from the cutting of budwood from sum limb variations in the parent trees. More than 25 perecnt of the trees in the younger orehard were found to be entictetre varintions differing from the normal in me or more charucteristics, particularly in the habit of growth of the trees, density of foliage, shape of leaves, season of production of fruits, shape, texture, and size of fruits, number, shape, and size of seeds contained in the fruits, structure of flowers, and guantity of production.

The condition of raiability of the trees of the Lisbon variety regarding both entire-tree and limb varintions in the orchard where performance-record studies were conducted was found to be similar to that observed in the trees of the Eurcka variety.

[^1]
VARIATIONS OF THE EUREKA VARIETY

The Eureka lemon has been determined as having been first propagated as a type in 1877 at Los Angeles, Calif. (18). This propagation was from a superior seedling which was one of a lot that had been grown from seed taken from Sicilian lemons secured in New York City in 1858.

The original Eureka performance-record investigations were carried on from July 1911 to June 1917, inclusive, in an orchard planted at Corona, Calif., in the spring of 1904 by the National Orange Co. and owned by that company at the time of thrse studies. It is now owned by the American Fruit Growers, Ine.
The important variations of the Eureka lemon variety are described in the following sections under the classifiention of typical strains, and some of the less common but striking variations are also included. All of the variations discussed are of importance from the standpoint of the scientific study of the phenomenon of bud variation in the lemon and in the selection of suitable propagating material for the growing of commercial mursery trees.

Fugher 1,-Fruits of the Eureka strain of the Eureka lemon from a progeny iree propagated from a 4 phiena tree of this strain in the ordgtal Eureka performance-record plat. Oorona, Dulf., April 1933.

EUREKASTRAIN

Tree medium size, medium vigor, spreading, open; trum smooth; hud union usually badly overgrown on sour orange (Citrus curantitm L.) but usunlly smooth on sweet orange (C. sinensis Osbeck) rootstock; branches medium size and number, practically thornless; leaves rather sparse, medium size, broadly elliptical, bluntly rounded, crenate, color deep grecn; blossoms abundant during suping ancl fall but develop throughout the entire year, perfect, fairly large; fruits very uniform, oblong, medium size, riud thin, sinooth, color deep green, rag tender, juice abundant and of relatively high acidity, seeds few; rate of growth of truits medium; largest picks during spring und fall; high quantity of production; excellent commercial quality:

An undesirable characteristic of the trees of this strain is that there is a tendener. for the fruits to sumburn in some locations, owing to the onen habit of growth and aparse foliage. A desirable characteristic of these trees is their tendency to hear throughout the entire year, with a fair summer production. Typicai fruits of this strain are illustrated in figure 1 aut a typicalleaf is shown in figure 2, 4.
small-open strain
Tree medium to small, medium vigor, somewhet spreading, open; trunk slightly fluted, smooth; bud union usually bady overgrowth on sour orange but
smooth on sweet orange rootstook; branches medium to small size and number, practically thornless; leaves rather sparse, medium size, brasdly elliptical, bluntly rounded, crenate (fig. 2, B), color durk to deep green; blossoms abundant during spring and fall, but develop throughout the entire year, perfect, medium size; fruits very uniform, globose, slightly shorter than those of the Eureka strain and with a tendency for crescent-shaped creases at blossom ends, rinds thick to

medium, smooth, color deep to dark green, rag tender, juice abundant and of relatively ligh acidity, seeds few; rate of growth of fruits medium; largest picks during apring and fall; slightly less quantity of production than comparative Eureke strain trees; good commereial quality.

The most important differences between the Small-Open and Eureka strains are the shape and size of fruit, the globose shape of typical Small-Open strain
fruits rendering them somewhat less suitable for packing than the obliong shape of the typical Eureka strain fruits. The darker green color of the Small-Open fruits and their slower curing are also distinguishing cbaracteristics. Typical fruits of this strain are shown in figure 3.

PEAKLSHAPE STRAIN
Tree large, with tendency to produce many suckers, erect, dense; trunk normally smooth; bud union somewhat overgrown on sour orange but smooth on sweet orange rootstock; branches many, small, giviug the tree a brushlike appearance, practically thorules; leaves abundant, small in size, ovate, obtuse, crenate (fig. 2, D) in whorls at ends of branches, light-green color; blossoms abundant in midwinter and few at other seasons, small, wcak, perfect but with small amount of pollen of deficient vitality, mainly on tips of branches; fruits very uniform,

Fugune 4.- Fruits of the bear-shape shrmin of the Eurekit lemon from a progeny tree propagated from a

pyriform, frequently with elongated or bottle-neeked stem ends, small to medium gize, rind very thin and of smooth texture, color light green, rag tender, juice abundant and of relatively low acidity, seeds very few; rate of growth of fruits medium; jargest picks duriug fall; medium quantity of production; inferior commercial quality.

The Pear-Shape fruits shown in figure 4 are of inferior commercial value, and established orchard trees of this strain should be top-worked or replanted.

SHADE-TREL STIAAIN

Tree very large, very vigorons, wide spreading, dense; trunk smooth; bud union sinooth on both sour and sweet ornnge rootstocks; branches dense with considerable sucker growth, pructically thoraless; leaves abondant, elliptical and large, tapering with a tendency to acuminate tips, und thate and cruate (fig. 2, E), deep-green color; blossons abundunt during spring, large, weak, many with pistils imperfeet or alssent, falling shortly after blooming; fruits very uniform, oblong, very large, rind coarse and rough, very thick, dark green, wag coarse and very abundant, juice seant, lavking acidity, seeds very few; rate of growth of fruits rather rapid; most production during fall; low guantity of production; inferior commereial cuality.

The outstanding characteristios that distinguish the Shade-Tree from the Eureka strain inelude the development of many impericet flowers that drop shortly after the bluom appears, large, aculety pointed leaves, fruits of very large size and oblong shape, and partionlarly the vigor of the vegetative growili, which results in very large, "anspiewons trees that can be casily seen from a considerable distance in the grelineds. Typical fruits of this strain are shown in figure 5. It also has impertect flowers similar to those iflustrated for the linproductive strain of the lishon lemon (fig. 133.

 typical tree of this strain in the urigital Eureki performante-record plot. Gorona. Calif. May ldzs.

ENPRODUCTIVE STRAN

Tree large, vigorous, erect, very dense; trunk smooth; bud union smooth on both sour and sweet orange routstoeks; branches dense, few small thorns; leaves abunclant, kmaller than those of the Shade-Tree strain, elliptical and tapering with strong tembency to acuminate (ips, crenate (fig. $2, P^{\prime}$), anark-green color; blossons abludant durimg spring, barge, weak, very many imperfeet with pistils rudimentary or lacking and with seant pollen of low vitalit:; fruits fairly uniform, oblous, large, rind eoarse and rough, thick, dark areen, rag tough and abundant, juice sempl, poor flavor and of low acidity, seeds very few; rate of growth of inits fairly repid; most production daring batl; sery low quantity of production; inferior eommercial quality:

The low production of poor commercial quatit. and the dense, wect growth of the trees are the most importatht distinguishing characteristios of this strain. Typical funits of this strain are shown in figure f .

(OHLRUGATED STKAAN

Tree large, medium vigor, rather epmarling, somewhat dense; trunk smooth; bud union budy overgrown on moni orange rootstock; branches ratlier large and many practically thombes; many leaves, harge, braadly elliptical, bluntly rounded, crenate, solor deap green; blossoms abundant during spring, many imperfect, mecium size, along laranehes at fenf axils; fruits uniformly corrugated, oblong, large, rind thick, deeply corrugated, eolor yellow when mature, rag coarse, juice lacking in quantily and of low acidity, seeds few; rate of growth
of fruits medimm; largest picks during fall und winter; ligh quanity of production; commercial quality poor.

This stran bas been eliminated from wommerein propugation, and frees in bearing orchards should be fop-worked or replanfet.

Klaben stanaic

Tree medium size, medinm vigor, open and mather upright; trunk smooth; bud union slightly overgrown on wour orange rootstock; branehes medium to large, few, practically thomless; leaves mathey sparse, small, oval and blantly rounded, endeney to crumple, color green; blossoms farly abundant in spring, many small, imperfect; fruits oblong, ovoid, ribbed with temeneney to deeply fluted characteristic, rind thin, ridged, and somewhat rough, deep green, rajs tender, juice abundant and of medium acidity, seeds few; rate of growth of fruts rapid; largest pieks during fall and winter; low quantity of production; poor commercial guality.

An undesirable strain for commercial culture. The miformity of type of fruits in the wees of this strain is very marked.

VAt?

Tree sumall, weak vigor and slow growing, ered, opxil; tranh shanh; bur? whon bakes lage wempowle on sour omage rotstock; folitge particularly suserpible to sumbra and frest injuries; buneloss sman, few in mumper and

 colored, oheres mearly entimely gren with sharnly mated areas of two or three shakes and mont of them partly green and ceam color; bossoms almadant during spring, wilh heary dron, many smatl, imperfet; froits owid, small, rind very thin, slightly ridged, color shijed when immature and yellow when mature, mag
 mamer; rate of growit of ruits medium; harest bioks cluring spring and fail;

The trees of this stain are used to some extent for ormamental puposes, owing to the striking appearance of the leaves and rruits. Fruit and foliage of this
 has been found (lig. 7) whimh has pinkish-colored ilesh (tit).

Slomped stilain

 bud mion slight! overgrown on som crange footstock; brancles large, may
practicsily thornless; leaves many, medium to small, oval, crenate, color light green; blossoms very abundant during spring, mostly perfect, large; fruits oblong, ovoid, medium size, medium rind, smooth with slight ridges where striped. color dark green striped longitudinally, rag coarsc, juice abumant and of low acidity, seeds few, rate of growth of fritits medium; largest pieks during fall; same tree often bears, in addition to striped fruits, those typical of the PrarShape strain and romd ones; medium quantity of prodaction, poor commercita quality.

An interesting ind variation, but of no commereial value.

 trec. Wtirmak, (alif., Ajril ifkl.

CRUMILED-LEAF STHAIN

Trec small, weak growing, open; trunk smovth; badly overgrown bud union on sour orange rootstock; branehes few, medium to small, practically thormess; leares few, median size, broadly elliptical, rounded, crenate, crumpled (fig. $2, C$), color green; his isms few and mainly during spring, many small, imperfect; fruits oblong, unifun, medium size, rind thick, rough, color bright yellow when mature, rag eoarse, iniee fairly abundant and of medium acidity, seeds janany; rate of growth of fruits riatare tiv; largest picks during spring and fall; low production; medium commerciul 4 . ${ }^{+}$

The char; ; jes that distinguish the trees of this strain from those of other strains are the crumpled leaves and the relatively stand size of the trees.

VARIATIONS OF THE LISBON VARIETY

It has been determined that tive Lisbon variety was introduced into Califormia through two separate importations of nursery trees from Australia in 1874 and 1875 (19). It is probable that the trees in the orchard where the Lisbon performane-record studies wero begun were descended from the North-Bumham introduction, which was made in 1875 in the Riverside district.

The original study of Lisbon lemon variations was carried on in the Corona district in an orchard then owned by the Corona Lemon Co. and now owned by the Jameson Co. This orchard was planted in 1893, and the performance-record studies were made from July 1913 to June 1917, inclusive. A number of very striking entire-tree variations were observed in this orchard about a year after beginning the studies of the Eureka variety, and several limb variations were found which were apparently similar in foliage and fruit characteristics to some of the entire-tree variations. Aiter the 4 -year period of individual-tree performance-record studies in that orchard, propagations were made of selected limb and entire-tree variations, and the resulting progeny trees have furnished the material for the Lisbon lemon studies reported hercin. Descriptions of the most important und of several minor strains are presented herewith.

dISBON STPAAN

Tree large, vigorotss ereetand somewhat spreading, semiciense; trunk somewhat ridged; bud union slightly overgrown on sour orange but smooth on sweet orange ruotstock; branches dense, thorns few, snall; jeaves abundant, medium size, oval olstuse, slightly crenate (fig. 8, A), color deep to dark green; blossoms abundant, medium size, strong, perfect, occurring throughout the tree and develaping large proportion of inside fruit; fruit very uniform, with very small percentage of ofttypes, oblong to oval, medinm size, rind thin, smooti, deep- to light-green color rug tender, juice abundant with strong acidity, seeds few; fruits rapid growing; production high, with heaviest craps during spring; commereal quality excellent.

The vigor of growth and density of the foliage, large proportion of inside protected frift, and high yields of uniformly good fruit distinguish most clearly the Jislon from the other strains of this variety. Typical fruits of this strain are shown in figure 9.

DENSE STRABN

Tree very large, very vigorous, spreading, dense; trunk ridged; bud union overgrown; branches dense, somewhat resistant to wind and other stresses, thorns many, large; leaves abundant, very Large, oval, acutely pointed, crenate (fig. 8, B), color light to decp green; blossoms abundant, large, strong, perfect, located thronghout trec; fruits oblong, neeked, large, rind very thick, rag abundant and tongh, juice scant, lacking jas seidity and flavor, seeds few; rate of fruit growth very rapid, uniformity poor, many offtype fruils and freghent limh variations: ghantity of yield high, with hetiviest production during spring; commercial quality poor.

The very large size of tree, thorniness, deme growth, extremme variability of fruits, and their harge size and necked shape serve 10 distinguish the Dense strain trees from those of sther strains of the Listoon varicty. Typieal fruits of this strain are shown in figure 10.

OPEN STRAIN

Trec mediun size, medium vigor, spreading, open; trunk usually smooth bud. oceasionally slighty ridged; hud union slightly overgrown on sour orange bud smooth on sweet orange rootstuck; folisge and fruit suseeptible to danage from sumburn; branches few, piving the trees an open appearance, thorns very few and yery small; leaves few, medium size, ovate, obtuse, slighty crenate (fig. 8, C), light- to decp-green color; blossons medium to abundant, rather small, fairly strong, isually perfeet, oceur nearee to tips of loranches than in the Jisbon strain; fruits uniform, oval to oblong, medium size, rind thin, smooth, light green, ras tender, juice abundant with sirung acidity, seeds few; rate of fruit growth slow; medium cuantity of production; commercial quality excellent nost of the year, but on account of slow fruit growit a larger proportion of the crop is held on the trecs nutil summer than in the Lisbon strain, with a conseguent production of a relatively high proportion of tree-ripe, weak fruits diuring that scason; heaviest production in spring.

The open habit of tree growth and tendency to bear fruits throughout the entire year distinguish this from other lisbon strains. Typical frutits of this strain are shown in figure 31 .

 J), Cormpateti; E, Unproductioe. Corona, C'nlif., May lo3:3.

UNPRODUCTIVE STRAIN

Tree very large, very vigorous lut inherently of yery weak growth, spreading, very dense with many suckers and upright vegetative branches; trunk ridged; bud union somewhat overgrown on wour orange bat even on sweet orange rootstocks; branches very dense, yory susceptible to dumage from wind, climatio hatards, and other stresses, thorns many, long, sharply pointed; leaves very abmadant, lurge oval with acutely pointed tips, crenate, somewhat crumpled (fig. 8, F), deep-green color; blossons few, mostly at tij)s of branches, some small, weak, with femule parts abuormal; fruits unifurm, very poor, oblong,

flattened at blossom end, with very short to very long necks, medium to large, rind thick, coarse, rough, ridged, color dark green, rag abundant, tough, juice scant with low acidicy, seeds very few; rate of fruit growth very slow; quantity of production very low, largest proportion produced during winter; commercial quality of fruit very poor.

Figure 12,-Fruits of the Unproductive struin of the Lishon lemon fram a progeng tree propagnted from a tspical tree of this strain in the orighal hisbon perfortante-record plot. Coroma, Calit., May 1933.

The outstanding characteristies of the trees of the Unjroductive strain include vigorous but very weak vegetative growth, dense appearance, extreme thorniness, and very low production of fruit of very inferior connuercial quality. The weak character of the wood makes it difficult to top-work these trees, and replanting has been found the most satisfactory macthod to rephace them. Typical fruits of this strain are stown in figure 12, and illustrations of the variable flower forms are presctted in figure 13.

HIEBED STRAIN

Tree medium size, medium vigor of growth, spreading, medium deuse; trunk smooth; bud union only very slightly overgrown on sour orange rootstock; branches semidense, thorns many, large; leaves abuadant, medium size, oval, scutely pointed, crenste, deep-green color; blossoms few, medium size, weak, perfect, located throughout trees; fruits obovoid, collared, smail, rind thick, coarse, more or less strongly ribbed, light-green color, rag abundant, tough, juice scant, lacking in acidity, very poor fiavor, seeda few; rate of fruit growth slow, slight, tendency for production of normal appearing fruits; quantity of yield low with heaviest production during winter; commercial quality poor.

The strongly ribbed fruits distinguish this strain most ciearly from uther Lisbon strains.

corrugated strain

Tree mediam to sman, weak growth, drooping, medium open; trunk ridged; bud union overgrown on sour orange rootstock; branches semidense, thorns many, small; leaves medium number and size, oval with acute to obtuse tips, crenate, mostly crumpled (fig. 8, D), light-green color; blossoms few, largn, strong, mostly perfect, located throtyenont trees; fruit oblong, medinm size, rind thick, deeply corrugated, some fruis normal in appearance, light-green color, rag abundant and coarse, juice seant, lacking in acidity, insipid, seeds few; rate of fruit growth slow; quantity of yield very low, heaviest production during fall and early winter; commercial quality very poor, worthless.

The most striking characteristic of this strain is thes decply corrugated fruits, as shown in figure 14.

 May 1 gat.

COLIAREL STEAIN

Tree medinn to small, medium vigor of growth, drooping, denes; trunk smooth; bud union overgrown on sour orange routstock; branches dense, thorns few, small; leaves abuudant, medium size, oval, acute, erenate, deep-green color; biossoms medium number and size, strong, perfect, located throughout tree, fruits long, oblong and with large collarlike projection at stem end; some fruits normal in appearance, mediun size; rind thick, coarse, color light green, rag abundant and very tough, juice scant, lacking in acidity, poor flavor, seeds few; rate of fruit growth very rapid, uniform; quantity of yield low with heaviest production during winter; commercial cuality very poor.

The most striking characteristic that distinguishes the Collared from other strains of the Lisbon variety is the large proportion of long, collared fruits as shown in figure 15.

striped Sthain

Tree large, vigorous, spreadiay, semidense; trunk ridged; bud union overgrown on sour orange rootstock; branches semidense, thorns few, small; leaves abundant, medium size, mostly lanceolate, acuminate, create, light-green eolor; biossoms

few, large, what, perfect, locnted mostly near tips of branches; fruits oval, medium size, rind sometimes ribleed or corruraied, striped alternate yelow and green with some specimens fiomal in charactert, rat aboudant, comese, juice abundant with hith acidity, sedodo mediumgnuber; rate of fruit growh meditum, gusutity of

The striped frutes with atternate longitudimal vellow and ereen stripes are the nost strikit p^{\prime} chepgenteriotigs of this strain, as shown in fignre la.

THOILNLESS INPRODLCTIVE STRAIN

Tree large, vigorous, spreating and drooping, dense, suscertible fo injury fros. wind and other stresses; truak sideed; Ind unien overgrown on sour orange rootstock; branches dersi, no thorns; Jews abuntant, medinm siac, oval, acute to ohtase, deep-greer color; blowsoms few, small, many imperfect lacking polter, hecated near tips of braneher; fruits oblong, with blunt blassom ends, mediam to small size, shooth, light-green color, rag mediom anombi, juice abundant wit! strong acidity, seeds none or rery few; rate of frait growth slow; very uniform
fruits, very few offtype; quantity of production tow with leaviest crops during winter; commercial guality of fruit poor.

The outstanding eharacteristics of the trees of this stran are their thoroless branches and weak and easily jnjured growth.

The Thornless Unproductive strain originated as a bud variation in an Unproductive strain tree that had many harge, sharp thorns. It is of particilar interent because it is the only one of the Lisbon strains ander investigation in which the trees do not have thorns and that indicates the manner in which thornless vegetative strains arise.

OTHER STRIKING VARIATIONS

Variegated-branch varmions of Lisbon trees have been observed that are quite similar in appearance to the variegated varintions of the Eureka variety, but owing to limited planting space no attempt has been made to propagate them. Them is every reason to believe that this variation of the Lisbon trees can be perpetuated through budding, as has been the case with the varegnted Eurck rarintions.

Individual lemons having well-cleveloped navels have been found from time to time in trees of both the Furckn and Iisbon varieties. However, no limb or entire tree bearing a number of navel lemons has been discovered in these investigations. The navel lemons studied do not differ materially from the normal fruits from the same parent tree except in the presence of the navels.

Lemons with longitudinal sections strikingly different from the normal in color, texture, and thicleness of the rind, commonly called sectional chimeras, have been found rather frequently, but by reason of limited opportunities for studying such phenomena little attention has been given them. Some trees seem to produce more of such varintions than others, and usually these trees are of the less desirable commercinl strains.

One of the interesting vegetative variations in the Lisbon lemon is that of the number and size of thoms produced by the trees. The trees of some strans have many large, shmply pointed thoms which are dangerous to the fruits through scratebes and punctures which result in blemishes and oltentimes lead to decay and loss of fruits on the trees or during storage and marketing. Such tborns are also a hazurd to fruit pickers. The trees of other strains have usually but a few small thoms. In minstance previously mentioned a Jisbon tree of the Toproductive stain developed a thomless limb variation, in which the thoms are entively absent. This occurrence of a thomless variation indicates the posstbitity of devoloping a desimble thornless strain in whith the trees have very few and very small thorns.

Many other fruit and foliare rariations have been observed in the parent and progeny lemon trees in these investigations, but on account, of their minor commerem importame but litule systematie study has been given them. It is probable that some of these varintions may be of considemble inderest in the investigation of the phenomenon of had varation, and it is fhe intemion to stuly them from this proint of view when the opportmity is favorable.

PROGENY TESTS OF LEMON BUD VARIATIONS

In order to determine wheller or not the characteristies of the limb and entire-tree variations discorered in the course of these investigations are perpetuated through budding, buds were obtained from
many of the variations in May 1916 and propagated at Riverside, Calif., in cooperation with and on the grounds of the Citrus Experiment Station of the University of California. Sour orange rootstock was used for these propagations, as it was the one commonly used in commercinl operations at that time.

The resulting progeny nursery trees were transplanted in May 1918, one set of 471 being planted in the Citrus Experiment Station orchard st Riverside and another set of 1,146 on an 11-acre tract in the commercial orchard of the Jameson Co. in the Corona district. Charts of these two phantings are presented in figures 17 and 18. The two sets of progeny trees in different loca-

Figene 17-Chare of the preganylemat fiot at liverside, Catif.. willa tress of varions strajns imlicated hy qymbers as follows: γ_{2}, Fureka strain, joldens: ©. Nmall-Ormen Eurekn, 10 trew, E, F'ear--ibaple Firrda, 10 treds; (a, SiskeFrea burcka, ik tretes; \otimes. [nfiractuctive inurokn, is Irees: D. bisimn stmia, t2 trees; [7]. Onum Lisiona. 2t
 bent trotres. The trees in the mamarked stancus were extituled from the zenern! thtahaved recores for varions reasums.
tious made possible the study of the performance of the progeny trees under somewhat different envirommental conditions. The parent-limb and entirc-tree variations were located in orchards in the Corona district, so it has been practicable to study the performane of the progeny trees in the same locnlity as thatin which their parents were grown and under similar entural conditions.
la the Citrus Experiment Station orchard the progeny trees were planted in rows spaced 20 feet apart and the trees in the rows were spaced 10 fect apart. The close planting in the rows provided for the planting of double the number of progeny trees otherwise possible and was done with the purpose of removing every alternate tree in the rows when the trees reached sufficient size to interfere with normal growth and fruiting. The taking out of the filler trees in this orchard was found necessary in 1923, at which time every altemate tree was removed. The arrangement in planting was such that the tree remorals reduced by practicaly one-half the number of trees in each progeny test but did not reduce the number of progeny tesss.
In the dimeson orchard at Coron the progeny trees were planted with the usual spacing for lemon treesin this orchand, the rows being spaced 22 feet apart with the trees 20 feet apart in the rows. In this larger planting a greater number of propagations of apparently commercially valuable variations were planted than could be includedin the (itras ExperimentStation planting.
In both phots the progeny trees were planted on land where only unirtigated winter grain crops lad been grown provously. The soils in leoth locations were typical of the districts in whin the phantings weremade. Very little fertilizer has been applied to the soil in either orchard, although it is believed that somewhat larger applications would have been beneficial through increasing the amount of fruit produced. The usual irrigation practices in these districts lave been followed. The trees were protected from frost at critical periods by orchard henters, but some loss of crop was experi-
enced through damage to the llossoms and small immature fruits by low temperatures. Fumigation was used in both orchards for the control of scale. The development of the trees in both locations has been about equal to that of the commercial orchards in these districts.

The lemon progeny trees in both locations were used for two purposes: (1) a study of the heritability of the variations propagated from the parent-limb and entire-tree rariations, and (2) the demonstration of the importance of the systematic selection of budwood in commercial mursery practice. These phantings lunve been visited

by many citrus growers eade yenr since they were phated and have fumished an important demonstration of the value of bud selection in the propagation of lemon trees nad the eemomie production of the lemon crop.

PROGENY PERFORMANCE RECORDS

The periormance-record duta of progeny lemon trees reported in this bulletin include the continuous picking records of these trees for a period of years together with studies of the commercial quality of the fruit. These data are the basis from which conclusions have been drawn as to comparative strain and individual tree behavior. In addition, continuous ohservation of the trees and close contact with them during the performance-record period have led to an intimate knowledge of the fruit and folinge characteristics of the trees, which is important from the standpoint of these studies.

The progeny performance records were obtained by counting or weighing the fruits borne by each tree as they were pricked. Where the actual weights were not ohtaned the fruits were comted as they were picked and their weight was determined from the average weight of typical samples of fuit of the same sizes.

The number of trees in each progeny was limited by lack of orchard space, but in the opinion of the writers enough trees were avaifable for study so that reliable conclusions can be drawn from their records.

In commercial lemon handling the most desirable fruits are those that remain green in color until they have reached a certain determined picking size. Pickings are normally made 10 to 12 times a year, and the minimum size for green fruit at ench picking is determined by seasonal and market conditions. Fruits that ripen on the trees are less desirable for commercinl marketing than the green fruits, and they are usunly picked when or shortly before they are fully mature, depending upon climatic and market conditions.

In the progeny plot in the Jameson orchard a uniform monthly picking size of 28_{32} inches was used previous to October 1926. Since that date the same size has been used ench time as was being used for the commercial picking on that ranch. In the progeny plot in the Citrus Experiment Station orchard the picking size was maintained at 2_{32}^{8} inches throuqhout the performance-record period except for 2 months when certain conditions made it desirable to change this standard slightis.

In the progeny pints it was plamed to make pickings at monthly intervals, as had been attempted in securing the data in the parent plots, and this practice was carried ott except when rains or irrigations caused delays or omissions. In the plet in the Jameson orchard only five monthly picks were missed after the trees came into regular bearing, and only one was omitted in the Citrus Experiment Station plot. This practice of freyuent picking resulted in the arcumulation of a great amount of data from the studies of the progeny trees.

The performance records of all of the sets of progenies of the most important variations observed in the course of these investigations are summarized herein, and the entire data are avalable for study. Furthermore, the progeny plantings, the methods of obtaining performance records, and the living parent trees as well are open to observation and study by those interested in this subject.

progeny data on eurefa strains

The average amman production and aremge total production per tree of the progeny trees of the five strains that were formerly most commony present in commercial Eureka orchards are shown in table 1. These data cover the period from the first production of the young trees in the fall or winter of 1920-21 to December 1932, inclusive. It will be noted that the production rank of the various strains is the sume in both progeny plots as it was in the parent plot for the earlier (i-year period, July 1911 to June 1917.

Table 1．－Production of progeny trees of important strains of the Fureha lemon propagnted in May 1916 from selected parcnt trees and planicd in May 1918

Athongh lemons are grown at Riverside to only a limited extent it will be seen from this table that harger yieks are recorded from the trees of the Eurek and Small－Open strains in the plot at Riverside than from those in the Corona plot．This is owing partly to the fact that in the Riverside plot the hruit that dropped from the trees between jicking periods was recorded as a part of the tree yields during the entire record period，as had been done in the parent record plet，whereas in the Corom plot it was found impracticable to record the dropped fruit alter the trees cime into full production，because of the amount of additional work required in obtaining that data from the latge number of trees．In general the type of fruit produced by the parent tees has boen perpetunted very closely in the progeny
trees. Figure 19 shows fruits from a parent tree of the Pear-Shape strain and similar fruits from a progeny tre propagated from this same parent tree.

Table 2 shows data from the progeny plots for the percentages of

 Ayril ioz
green fruits (the most desirable part of the crop), the percentages of variable fruit, and the average number of seeds per fruit, for the most important Eureka strains, with similar data for the parent trees during the earlier periods in whith they were studied. In all these characteristics the progeny trecs and parent trees show very close agree.
ment except for the pereentage of green fruit in the Riverside plot. All the strains showed a smalley proportion of green fruit at liverside than at Corom, doubtless owing to climatic conditions which matured the fruit more rapidly, resulting in a lessened percentage of green fruit.
Table 2.--therage parcentages of areen fruit and rariable faits, and wamber of seeds per fruit, in the crops of the proyeng and parent trees oj important strains of the Eurcka lemon

The seasonal yiolds of total cops are shown in table 3 , in wheh the monthly percentige of frut prodnced by the trees of each of the more important Farekis strains is tabulated. In general, the progeny trees in the Coronfa plot follow fairly cheoly the data from the parant trees during the empler period. Variations in climatic conditions in the diflerent years would have a considerable aftert in changing seasomal production, so that no very exaetsimilarty is tobecepertedin these monthy recorts over different periods. In the progeny phat at Riverside the ratidtions from the parentplot records are more marked, this condition doubtless being due to the grenter climatio varintions betweca the two districts. A gruphic representation of the monthly percentaye of

 production for the Eureka stram as shown in table 3 is presented in figure 20. This emphasizes the hews proportions of fruit produced on the Riverside photin the fril and winter months, which are usually
the seasuns of lenst consumer demmid and lowest market prices. This winter-bearing habit is an important reason why tho liverside district in general is not particularly fivvorable for lemon growing.
Table 3.--Percentages of that annual production by mowths fram trees of important strains of the Eureka lemon in progeny and parenl recort plots
 3 yoars from duly thit to Nome 1915, fucinsivel

The averuge circumferenes of the trunks of the progeny trees of important Eureka strains in the Corma progeny plot at two periods 2 years apart are shown in table 4. These data show the Pear-Shape trees to be considerably larger than those of any other strain and indicate a lack of correlation of size of tree trunks and crop production for this strain. Iowever, other studies have shown that within the separate strains there are rather high corchations for these characters.

TAale 4.-Average circumference, about t inches aboue bud mion, of trunks of progeny trees of importand strains of the Eurchat lemon whe experimental phat in the Jameson orcharid at ('ormut, ('alif.

Records of the ammon production of progeay trees propagnted from several similar limb variations found in Eureka trees are given in table 5. All of these are forms that are of satherinfrespent orcurrence and of minor commercial importance, though they are of great, scientific interest. Some of them are shown to have been unstable in their inheritance in varying degrees, while the Variegated strain as here studied was very stable. In the Crumpled-Leaf strinn the fruits are normal in appearanes, but the nbomomal leaf character was very evident in the progeny trees.

Table 5.-Records of annual production of progeny trees propagated in May 1916 from several limb varialions of minor strains in trees of the Eureha strain of the Eureka lemon

Cable 5.-Records of annual production of progeny trees propagated in May 1916 from several limb variations of minor strains in trees of the
Eureka strain of the Eurcha lemon-Continued

PROGENY DATA ON LISBON STRAINS

The average total production per tree for the progeny trees of the most important Lisbon strains is presented in table 6. The rank of these strains by yield is the same as in the jarent record plot except for the two highest, the Lisbon and the Dense strains, and the difference between these is small for a 12 -year period. In the parent plot the difference between these was only 9 pounds per year in favor of the Lisbon strain, or about $1 \frac{1}{2}$ percent greater, and the data included the dropped fruits. The Lisbon strain trees have more drops than do the trees of the Dense strain, and if these drops had been recorded during the entire period of the progeny records it is probable that the totals for the Lisbon and Dense trees would be more nearly equal than is shown by the datn.

Table 6.-Production of progeny trees of important sirains of the Lishon lemon propagated in May 1016 from selected parthe trees and planted in May 1918

The sinilarity ol type of lruits in the purent and progeny trees is shown in ligures 21, 22, and 23, illustrating fruits from parent and progeny trees of the Lisbon, Dense, and Open strains.

The percentages of green fruit and of variable fruits, with the average number of seeds per fruit, from the progeny trees of the im-

 1ก27.

 iree that protheed the frults at A, showhy purpelantion of conrse texture und undesirable shape. C'orasu, C'ulit, if prit 1427 ,

Culle., A Mrll 192.
portant Lisbon strains are shown in table 7. These data show a frirly close agreement between the progeny and parent trees except for the low percentages of green fruit at Riverside, and that condition is similar to the records for the Eureka strains as shown in table 2.

T'sbles $\overline{\text { a }}$ - Ancrage percentages of grex't fruils and of variable fruits and number of seeds per fruit in the erops of the progeny ond parent lrees of important strains of the Lixbon lemon

Strain	SNo trew of the Donse strabi were planted in the progeny phot nt fiverside)						
	Sireen prade iruit			Variable fruits		Sewls jer frait	
	Jrageny trews, 1? yeurs, tiky-32				Prant trees, f yunr", Jaly 1013 to Jant (1) Corona	Jroxeny trews. 1 yenar, Seprethent 113250 入1: p:9世 10R:3, Coroma	Furemt trees, :3 Yeurs, July 1313 to Jane Iflle. Coronas
	Riversute	carson					
Lisbon.	Percent 70.7	Precent 80.1	Prrcent bit. 2		Pracent 1.2	Nutaber 5.8	Number ${ }_{\text {4.7 }}$
Dease		83.4		$\cdots 3.4$	1.5	5.0	4.3
()pers …e.	60. 6	70.0	72.9	10.1 , 3	10.0	5. 3	5.1
- mprotuctive..	51.7	82.3 ?	95, 5 -	1003.6 L(x). 0	16\%. 0	2.7	1.2

The monthly yieds of tobal erops are shown in table 8, in which the pereentuge of fruit produced by months is shown for the important Lishon strains. The progeny trees in the Corona plot follow fairly dosely the production of the parmat trees, even though the data for the two plots cover antirely different periods and monthly production is inflicanced to an considetable degree be climatic rondilions. in the progeny plotat Riverside the heavier proturtion in Pearuary and March was similar to the production trendin the Eurcka strains, us shown in table 3 and figrure 20 , and is dombtless caused hy dimatie variations betwen the wo districts. A erraphic representation of the monthy perceatage of

production for the Lishon stam is shown
in figure 24. This emphasizes the variation between the Riverside and the Corona progeny plots and the close agreement between the Corona progeny plot and the parent plot, which was also at Corona.

Tahle B.-Percentages of total annual production by months from trees of importunt strains of the Lisbon lemom on progeny and purent record phats
 a years from July [ith lo Jute 19nन + inclusived

The aserate circumferences of the trunks of the progeny trees of important hisbon strains in the Corona plot at two periods 2 yen's aphrtare presented in table 9 .

TABles 9,- Irerage circumfersuce, aboul i inches above bud maion, of tranks of progety fress of importunt siraius of the Lisbon lemon in the experimental plot in the fatmesom orchard at Corona, (atif.

Records of the ammal production of progeny trees propagated from several similar limb rariations which were found in Liston trees are given in table 10. These are all varintions of minor commercial importance though they are very striking in eharacter and of great scientifie interest and value. Nost of these forms show an unstable inheritance; i. e., the progeny trees produce both normal fruits and those like the limb variation (fig. 25) and with greatly varying proportions of the abmormal fruits.

 uli. 1 and C. C'orma, Calif., Aprit Itait.

Table 10.-Records of annual production of progeny trees propagated in May 1916 from limb variations of some of the minor Lisbon strains

		Sotree of buts	Fruits produced by progeny trees												
Prugeng tree no.	Parent tree no.	Limin	('marimer	1121 1022	1923	1024	1025	1926	1027	1428	1929	1930	1931	1932	Total
24.	184	Striped vanition in tree of Vupomitatisp	Ariphed ${ }^{\text {chaprodmetive }}$	Yo. NO. 0 0 1 0	No, 0 1	$\begin{array}{r}10 . \\ 139 \\ 35 \\ \hline\end{array}$	$\begin{array}{r}\text { 人0. } \\ 82 \\ 82 \\ \hline\end{array}$	150 496 105	No. 785 12	No. 194 23	No. 907 134	$\begin{array}{r} \text { No. } \\ 41 \\ 21 \end{array}$	$N 0$. 145 101	$\begin{aligned} & 10 . \\ & 358 \\ & 39 \\ & \hline 98 \end{aligned}$	No. 3, 467 616
			Total	10	1	17.	164	533	797	217	1, 131	62	540	457	4.083
2\%	224	10	$\left\{\begin{array}{l}\text { Striped } \\ \text { dense lnproductive }\end{array}\right.$	1 0 1 0	0 1	138 60	63 019	417	809 8	246 35	1,083	$\begin{aligned} & 73 \\ & 13 \end{aligned}$	637 175	334 114	3,821
			' Total	20	1	204	153	461	817	301	1, 288	86	812	448	4, 573
21-24.	22	do : $\quad \cdots$	(siriped 1 ense lnprobuctive	0 3 0 1	4	46.4 59	181 13	323 41	864 81	328	1,810 192	150	605 63	857 57	$\begin{array}{r}5,626 \\ 582 \\ \\ \hline 882\end{array}$
			Tota	0 4	52	523	104	304	945	375	2,002	167	668	914	6,243
${ }_{2 \rightarrow 10}^{2-10}$	215	Peareshaped yariation. do..	l'ear-Sh do	$\begin{array}{c\|c} 21 & 7 \\ 10 & 11 \end{array}$	113 10	419 328	101	4,070	748 806	497 493	1,492	60 23	1,204	1,201 869	6,933 5,804
			Total	31.18	153	947	173	1,705	1.554	90	2, 951	83	2,057	2,070	12,827
$2-12$	20	Vantimu hearing pear-shapen, ridged truna	$\left\lvert\, \begin{aligned} & \text { Peor-shape } \\ & \text { Norman }\end{aligned}\right.$	$\begin{array}{l\|l} 1 & 1 \\ 0 & 0 \end{array}$	${ }^{7}$	$\begin{array}{r}10 \\ 336 \\ \hline\end{array}$	205	85^{6}	0.8	$\begin{array}{r}76100 \\ \hline\end{array}$	[$\begin{array}{r}7 \\ 1,435\end{array}$	0 147	1,297	94 ${ }^{0}$	$\begin{array}{r} 43 \\ 7.020 \end{array}$
			Total	1.1	35	346	296	813	950	701	1,442	147	i, 209	047	7, (163)
			$\left\{\begin{array}{l} \text { pear-Shane and } \\ \text { Ridged. } \end{array}\right.$	0	32	146	140	604	589	438	860	58	561	364	3,822
2-13	230	do.	Normal	010	21	351	117	607	326	151	S14	21	559	238	3, 257
			Total	011	53	497	257	1,231	015	559	1,683	82	1.120	651	7,079
$21-20$	231	ter...	$\left\{\begin{array}{l} \text { Pear-Shapo and } \\ \text { Rormed. } \end{array}\right.$	$\begin{array}{\|l\|l\|} \hline 1 & 1 \\ 0 & 1 \end{array}$	70 15	552 41	200 27	427 43	786 34	234 25	868	150	1,051	(${ }^{1}$	4,352 221
			Tota!	11	-ss	503	233	470	820	269	872	161	1.074		4,5.3

Seo foot notes at end of table

Table 10-Records of ammal production of progeny tres propugated in May 1 nhtiffom limb eariations of some of the minor Lisbon strains-

I None of the fruts on this iree were ridged.

- Tree remoted early in 1034 bemuse if was disensed. Tree died in January 1940 .

		is	103	191 ?	709	6, 5 \%		321		059	161	374
1		15		21	15	21	9	14	5	23	17	161
0	9	s 3	109	220	724	B4S	51	5	507	42	1,078	6, 637
3	0	47	323		4.		201	1,	58	37	1. 101	378
1	,	65	2617	146	114	0 H	36.3	904	73	601	1, 138	713
1	0	33	170	213	46	757	24	983	67	624	1,116	, 105
\#	0	114	T	4101	1.7	2.	\$2\%	2, 451	109	1,062	3.355	St
$\mathfrak{1}$			- 0	01	10				109		(1)	
1	0	12			216	, 4.3			12	1,103	1,652	4, 804
4	0	13	307	602	1.305	1.441	458	1, 0381	8	1, 174	1,306	114
1	11	31	-	331	610	. 12	459	1,070	140	5.536	1,031	, H / m
1	1	124	4 L	fit	1.160	017	445	2,120	4	1.4100	1,3146	8, 801
5		240		1.611	15	2.76		5, 120	25	A. $n 0$	3, 043	22,523
11	0			0			0		,	0	0	2
1	.	45	2311	483	4,in	90%	46	1,550	160	1, 172.	1,051	, 051
0	1	85	330	43	53	095	407	1,551	160	2	081	. 053

The trees listed at the end of table 10 are of special interest because it was a propagation of a similar nature to this (fig. 25), early in the study of the inheritance of lemon variations, that showed the importance of avoiding, in commercial propagation, the use of budwood from any part of a tree that bore an undesirable limb variation. Trees $2-28,2-29$, and $21-6$, recorded near the end of table 10 , were propagated from a Corrugated limb variation, bearing only Corrugated fruit, in a tree of the Dense Lisbon strain, and are shown to be unstable in inheritance, producing a large proportion of Corrugated strain fruits with some normal fruits. The last eight trees listed in this table were propagated at the sume time as the three just mentioned, but the budwood for their propagation was taken from aimb on the opposite side of the parent tree from the Corrugated limb, and it whs bearing only normal Lisbon strain fruits and liad produced only normal fruits during the 2 preceding years, during which performance records had been secured from it. Two of the eight progeny trees from this normal propagation, 21-12 and 30-28, are shown to hare borne nothing but normal Lisbon fruits, as they would commonly: be expected to do; four of the eight progeny trees from this same propagation, $12-15,12-16,12-17$, and $21-13$, have borte nothing but Corrugated fruits like those produced on the limb variation in the parent tree; and two of the eight progeny trees, 21-11 and 30-29, have produced both Corrugated and normal Lisbon fruits, as did the progeny trees propagated from the Corrugated limb variation. In commercial propugations it is of course desirable to produce only typical trees of the desired variety. The possibility that abtoomal trees may develop from normal budwood from a free that has an abnormal limb, as happened in the case just deseribed, shows the importance of taking commercial budwood only from frees that have been stadied earefully and found free from any undesimble limb or single fruit variations.

PERPETUATION OF VARIATIONS IN QUANTITY OF CROP

The importatat strains of both the Eureka and lisbon lemons produce characteristicully different amonots of fruit anmatly under comparative cultural conditions, as shown by records ol the progeny trees in tables 1 aud 6 . In some instances fhe strains hating athatimally high or low yields have foliage chameteristies that are upparently correlated with the quantity ol produetion, sum as density. shape, or color of the leaves and vigor or habit of growth of the trect.

COMMERCIAL QUALITY OF CROPS OF DIFFERENT STRAINS

In some instances the lemons probuced by the various entinetree and limb wariations and the progeny trues propagated from these variations differ in commereinl quality to a marked degree; in other cases they are so similar in appearance as to be indistinguishable. The most striking and clenrly apparent of such eharacteristics include the shape, size, and color of the lemons, the thickness, texture, and smoothness of the rinds, the amount of rag, the abundance and acidity of the juice, and the number of seeds.

The oblong to oval shape of typieal Eureka and Lisbon strain lemons is considered to be best suited for parking and handling operations. The pear, bottle-neck, round, or other abnormal shapes that are
characteristic of typieal fruits of some of the variations of the normal strains are less desirabie than the oblong to oval shape both from the standpoint of packing and of other phases of handing.

As lemons are picked when they reach a predetermined size, there is ordinarily little danger of obtaining fruits that are too large for market porposes. However, the trees of certain strains tend to produce a considerable proportion of fruits that do not grow sufficiently large for the best results. While the development of undersized lemons is largely duc to unfavorable climatic, soil, or cultural conditions, the inherent tendency of certain strains to produce small lemons has also been proved as a result of these progeny tests.

Fruits that reach picking size while still green in color are the most desirable ones. It lars been found in these studies (tables 2 and 7) that some of the variations tend to produce a larger proportion of deep- or light-green fruits than others.

SEASON OF MAXIMUM Production in different strains

The tendency of the trees of all of the lemon strains in these investigations is to develop the maximum nomont of bloom during the months of March, April, and May. The trees of a few strains bloom to a greater or less extent during all seasons of the year, so that blossoms and small and large fruits are to be found on the same trees at all times. However, there is a rather marked varietal difference in the season of maximum production of fruits of picking size, and similar marked differences characterize several of the strains.

The trees of the Eureka strim of the Eureka variety and the Open strain of the Lisbon variety, us shown in tables 3 and 8 , tend to produce lemons throughout ail seasons of the year, although the largest, proportion of the bloom and set of fruit occurs during the spring months. The trees of the Shade-Tree and Unproductive strains of the Eurela variety tend to bloom heavily during both the spring and autumn seasons, but many of the blossoms are imperfect and do not set fruits. The fall blooms of these trees are the ones that ordinarily develop the crops produced duming the foll of the year following the blooming.

The trees of al the strains of the Lisbon varicty, except those of the Open strain, temi to produce their crops most heavily during late winter and spring.

Differences have been ubserved in the seasom of bhoming and of maximmm fruit prodaction of individan trees of a strain and to a less; extent of different bramehes on the same trees. An investigation as to the possibilities of perpetuating these characteristies through badding is being made, hut the available data are considered to be insufficient at this time to warrant final conclusions.

RELATIVE INHERENT STABILITY OF DIFFERENT TREES

The performance records of progeny propagations of carefuly selected lemon trees have shown that the characteristics of some of the parent trees have ben perpetuated much more uniformly than others. Where buds have been taken from normal branches of parent trees having one or more limb variations the progeny trees have shown great variability in fruit and foliage characters, as shown by the records of progeny trees from parent tree 212 in table 10. In a few instances the progeny trees of apparently normal parent trees have
been quite variable, indicating that the parent trees were inhorently unstable.

As a rule, parent trees lanving limb or individual fruit varintions are almost certain to transmit tendencies to such variations to the progeny trees that have been propagated from the normal parts of such parents, whereas the progenies of parent trees having no marked variations of fruit or foliage tend to be uniformly like the parent trees. Such uniform progenies are considered to be inherently stable, and when the quantity and commercial quality of their fruits are superior to the average for the variety they are suitable for commercial propagation.

The progeny test of selected parent trees is a relisable method or determining their relative inferent stability. While it is oftentimes possible to estimate the inherent stability of selected trees through a study of their performance records for a period of yeurs and from a study of the fruits on the trees, the progeny test jeveals the actual relative inherent stability of the parent trees as well as of the progenttrees. The mont seriois objection urged against the use of the progeny test, in commercinl bud-selection pactiee is the lengtl of time reguired to obtain necessary data and information from which safe conclusions can be drawn. ln some instances this period can be materially shortened through top-working established older trees, using buds from the selected parent trees for this jurpose. With nursery progeny trees, jerformance records covering at period of 4 or 5 yeurs of orcherd growth and production are ordinarily thought to be adequate for mosti purpases.

ISOLATION OF INHEREN'TLY STABLE STRAINS

The isolation and propagation of inherently stable and superior stroins ol' the commerejal varieties of Jemons is an important factor in prolitable lemon growing. The studies that have been carried out in this investigntion indicate that through the selection of budwood from parent trees found through progeny tests to be inherently stable, such as are showa in figures 21,22 , and 23 , it is commercially practicable to isolate and propagate strains in which the trees strongly tend to the production of uniformly desirable lemons. In this fundmmental way the proportion of first-grade fruits can be inerefsed withoat any added cost of production.

Stadies of second-generation progenies that werc propagated from the best producing trees of superior progenies indicate that continuous improvement of the population of hemon strains is possible through the systematio selection of budwood based upon the performance records of inherently stable progeny trees and the use in commercial propagation of buds from only the best progeny trees.

ELIMINATYON OF INHERENTLY INFERIOR STRAIN TREES

The results of the lemon progeny tests reported in this bulletin, as well as others that are being carried on by growers, indicate that through careful bud selection based upon the performance records of progeny trees it is practicable to avoid the propagation of trees of inferior strains.

In established bearing orchards the inferior-strain trees can be eliminated profitably through top-working or replanting. Both of these mothods have been deseribed in a previous publication (17).

The elimination of inferior-strain trees results in increased and improved production and reduces the losses due to the work of assorting and disjosing of the undesirable fruits that are borne by such trees.

COMMERCIAL IMPORTANCE OF LEMON BUD SELECTION

Without eareful and systematic bud selection in propagation, commercial lemon plantings lead to become inefficient through the presence of trees of inferior strains that have been uninteationally propagated from undesirable limb and tree yariations. This condition is due to the fact that withont the intelligent selection of propagating material from superior parent trees undesirable limb and tree varintions are likely to bo perpetuated to an ever-inereasing degree in young orchards, so that the proportion of the trecs of these inferior strains may soon become sufficient to impuir seriously the efficiency of the varieties for profitable lemon production.

The trees of certain strains of the established lomon varieties are better adapted to the local environmental eonditions of some eitrus districts than are those of oher strains. In commerean propagation it is importants to select budwood of the partiectar strains best adapted for culture ander the conditions where the trees are to be phanted.

As a yesult of tree recorels obtained in these investigntions it seems probable that scions from the trees of some of the strains make a more congenial bud union with eectuin rootstocks than is the case with the scions from the trees of other strains. Therefore it is important to use rootstocks that are known to make satisfuctory bud unions with the particular strains to be propagated.

The adoption of the varieties now used for the production of the lemon crop in the southwest resulted from long-continued commercial experience. These proved varieties constitute an invalunble asset of the lemon industry, and the maintenance of their efficiency for lemon production is a matter of primary importance. In a like manner the use of the best strains of these virieties, the trees of which are particularly adapted to low soil, climatie, rootstock, and other environmental ronditions, is a matter seend in importane only to the adoption of the most suitable varieties. These results can be most economisaly and certainly achieved hrough the use of buds for propagation that have been selected from the best parent trees of the superior strams known to be suitable for the loculity where the resulting orchard trees are to be planted. At the present time the commercial supply of selected buds used for the propagation of lemon trees in the Southwest is secured largely through cooperative organizations of growers, and to a less extent from large individual growers and nurserymen.

SUMMARY

The lemon industry is a rather recent commercial citrus development in the Southwest. Two varieties are grown in this distriet, the Eureka and the Lisbon, the fomer having originated from a selected lemon seeding in Los Angeles, Callif, in 1877, and the latter being an introduction from Australin with importations in 1874 and 1875.

Bud variations in the trees of these varieties have been found to occur more frequently than is commonly supposed, and the uninten-
tional propagation of some of these variations has led to the development of a number of strains that differ in lubit of growth and foliage characteristics of the trees and in the quantity and commercinl quadity of the fruits.
These bud variations have been found to oceur as individual fruit, limb, and entire-tree variations. Progeny tests of limb und entire-tree variations have been carried out to determine whether or not their charucteristics are perpetuated through bud propagation. Performance records of the progeny trees have been obtained continuously since they began bearing. These individual-tree records and systematic notes on vegetative characters provide a reliable hasis from which conctusions can be drawn as to the degree of heritahility of the parent bud variations. The data obtained in these individual progeny tree-performance record studies, together with it discussion of the results, are presented in this bulletin.

The progenics of the limb and entire-tree variations have been showing consistently large or small yields, depending upon the relative quantities of fruits borne by the jurent limb or entire-tree variations. The trees of the high-yielding progenies have shown mocierate vegetative growth with an abundane of oval-shaped, deep-green leaves.
The trees of some of the progenies have tended to bear most of their fruits during the spring, others during autum, while in other instances there has been a rathor marked tendency to the production of more uniform quantities of lemons throughout the entire year.

The commercial quality of the lemons produced hy the different progenies, including their shape, size, texture and thickness of rind, juiciness, and acidity of the juice, has been very similar to that of the fruits borne by the parent variations.

The progeny trees of the limb and entire-tree variations have produced uniform crops of fruit in those cases where the parent variations bore uniform lemons, while those that were propagated from variations that produce valuable fruits have borne crops with about the same degree of variability as the parent variations. The uniform parent variations have been considered inberently stable ones, whereas those that are variable have been classified as inherently unstable ones.

The results of the progeny studies strongly indicate that through bud selection based upon performance records it is possible to isolate and propagate inherently stable and commereially superior struins of the Eureka and Lisbon lemon varieties.

The elimination of the commercially inlerior and inherently unstable strains can be accomplished through systematic bud selection and the use of buds in propagation from only the inherently stable and superior parent trees as shown by progeny tests. In established orchards the inferior strain trees can be replaced with desirable strain trees through top-working or replanting.

The results of these investigations show that the heritability of observed variations in the fruit or vegetative characteristics of lemon trees can be definitely determined through the use of the progeny-test method.
The individual progeny trec-pertormance record studies are of value in the consideration of the degree of inheritance of the characters of the parent variations and are sometimes of commercial importance through obtaining reliable information as to sources of inherently stable and commercially superior budwood for propagation.

LITERATURE CITED

(1) Pomeloy; C. S.
1915. Min mporms in aciacumulab. Calf. Pruit Growers' Conv. Prec. (1014) 45: 253257 , illus.
(2) \qquad
 (irower 11 (29): $10,3 \overline{3} \cdot 37$, jllus.
(3) \qquad
 SELECTED BEDWOOD W THE PROPAGAXION OF TREFS. Citris Leques $2(3): 1-3,8,24$, illas.
(4)
 Ton ro phogeny romes. Citrus beaves 3 (3): 80.
(a) Sinambl, A. I).
 Girowers Cuns. Pres. 30: 80. 107.
(6) \qquad
 semervion, I., S. Dept. Agr., Bur. Plant Indus. Circ. 77, 19 pp, illis.
(7)

(S)
 441478 , ithes.
(9)
 48: 516 5 $58,548 \cdot 543,580-581$.
(10)
 Fruit (irowers Conv. Proe (1914) 45: 257-206, illas.
(11) \qquad正
(12)
 Calif. Citrogr. 2 (1): 14-16, ilhus.
 Ton as vel orance, Calf. Jruit Grwers' Conv, Proc. (1915) 47: $158 \quad 175$, lihs.
(13)

(i.) \qquad bug, illus.
1917. 3H1 Vamatmen mbmans. Jumr. Heredity 8: 75-81, illus. Albo is Calif. Citrogr, 2 (4): 6, 7, 16, ilhus.
(13)
1920. cooldramive mprovenent of frous varieties. t. s. Dept. Agr. Yearbook 1919: 243-275, ihus.
(16)
1932. A mink-mumbe lemon. Jour. Heredity 23: 23-27, imus.
(17) --... l'omenor, C. S., and Canyb, R, L.
1925. CITRES FRUTR GHOWING IN rhe SOUmWEAT. E. S. Depi. Agr. Farmers' Buil. 1447, 42 ppe, illus.
(18) - Scont, E. В., Pomeroy, C. S., nidi Dren, C. L.
1020. cITRES-FRETE IMPROVEMENT: A STUDY OF BCD VAMATION IN TAE eereka femon. 〕. S. Dept. Ayr. Buhl. $813,8 \$$ pp., ilhs.
(19) - ... Srotr, L. B. Pombror, C. S., and Drer, C. I.
1920. (TRMUGFRUTT AMPHOVEMENT: A STUDY OF BUD VAMATION in the usbun bemon. i S. Dept. Agr. Buil. 8 Lj 70 pp., illus.

organization of the united states department of dgrictlitere When this plbidcation was last phinteb

Sccrotar!/ of 1griculame
('nder Siecretary
Assistant Secrelary
Director of Extension 11 ort
Director of Fintuce.
Director of informotion
Dircctor of Personmel
Director of hesearch
Solicitor \qquad
S Gricultural Adjustmeni. Ifmintstrabion
Burctut of itgricultural Licnnomies
Bureau of igricultural Ingincering.
Burcau of Animal Indusiry.
Burcau of Siological Surevy
Burcou of Chemistry and Soils
Commodity Exchanga Administration
Bercau of Dairy Itridustry--
 Offec of Experimenl Stations
Food and Drug idmintistration
Forest Service.
Burcau of /lome Isconomics Library-.
Burean of Hant Industry
Burefu of Piblic forits
Soil (onscrmalion sirraice'
Hrather Burcau

Hexity A. Wialiace.
REXHORD (: Trowelt.
M. 1. WHases.
C. W. Wanatigton.
W. A. Jisur.
M. A. Eiscranwer.

Tames T. Jstodne:
Masmis G. Whete.
H. 12. Tollev, Idminisirutor.
A. G. Buatк, (hicf.
S. H. Mc-CRORY, (Hiff.

Jome R. Momblin, Chivf.
Iba N. Gabublasos, (hicf.
Hankr G. Kations, chide
J. W. T. Jotvel, (therf.
(1. Fi ReEn, (thif.

LEE A. Strowa, (thiof.
JAmes T. Ahrmate (hicf.
Wistere (i. Cimphemi, (houf. Femosiand A. Stlo ox, (hiof, ladose Stantofy, (hiof.
Clabibels R. Barsert, /ihrarion. Fredenter D. Racher, (hicf.
 I. II, BENXWTM, (hiff Wilats R. (ikgeati, (bivf.

Whim imatletin is a contributian from

[^0]: ${ }^{1}$ Italic mumbers in parentheses refer to hiterulure Clug. fr. 16 ,
 ${ }^{2}$ The word "norman" is ased hare and elsemhere in this buledin in the sense of latsiug the charateristics uf the typital or normal strain of the varlety.

[^1]: in this repine to the ono wart "anjorathelve."

 perpetanton througli funf propagation.

