

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTION TEST CHART NATIONAL GUHCAU OR STANQARDS. 1963-A

MICROCOPY RESOLUTION TEST CHART national burcau or standaros-1963-a

STUDIES OF THE CULTURE AND CERTAIN VARIETIES OF THE JERUSALEM ARTICHOKE

By Vieron R. Thoswedl, principal horticulharist, C. E. Stuinbaver, associate physiologist, M. F. IJabr, agent, Division of Fruit and Vegetable Crops and Diseases, Bureat of Plant Industry; W. L. Borlison, head, Department of Alpohomy, Illintis Agricultural Experiment Station; W. H. Aldenman, head, Deportment of Iforticalture, Minnesota Agricultaral Experiment Station; ant II. A. Scnotn, agronomist, Division of Forage Crops and Diseases, Burcau of Plan Industry, coperating with the Oregon Agricultural Experiment Station
(The Burcau of Plant Industry in Cooperation with the Agricultural Experiment Stations of Illinois, Minnesota, and Oregon)

CONTENTS

	Page		Paga
Inirothaciton	1	Depth of planting.	23
Plan of hivest gralon	2	Planting distanees.	31
Pbyirummental conti	3	Ear vesting tops as for silago.	51
Suntistical nambests of	5	Eradication of volunteer growth.	69
Sturlies of yarieties	7	Summary and conte.rsions.	63
Sizo of cerd fuect	14	Brlef tultural recommentidions.	69 61

INTRODUCTION

Although the Jerusalem artichoke (Helianthus tuberosus L.) is nalive to North America and its culture has been developed on a rather Inrge scale in some parts of Europe, the crop in the United States has remained unimportant except in a few localities. A widespread interest in the plant has developed in this country only within the last decade or so, and largely as a result of its possible value as a source of raw stock for the manufacture of levulose and of alcohol.

The interest in tho crop and the seemingly immediate future possibilitios have resulted in some unfounded and overenthusiastic optinism and in a number of rather ill-fated commercial ventures. The misfortunes accompanying ecrtain unsuccessful crop-production projects were doubtless due (1) to limited demand and inadequate market facilities for the crop, and (2) to an almost complete lack of information concerning the yiclds reasonably to be expected, the
adaptability of the crop, soil and climatic requirements, cultural methods, and particularly the labor requirements. The culture of the Jerusalem nrtichoke appears to offer no more possibilities for ensy prolit than numerous farm crops that are extensively grown at present. With the commercial outlet as limited as it is at this writing (1936), growers should carefully determine in advance of planting how their crop can be marketed.

The present interest in the crop and the necessity of obtaining sound basic information in preparation for possible future developments have denanded that certain studies be made. These studies were designed to furnish a basis for developing an economical nod efficient system of culture and to prevent as far as possible costly and even disastrous experiences of farmers and others. It is doubtless meres iniportant to understand the limitations of a "new" arop than to know merely what a few unusually successful persons haye accomplished with it.
In addition to providing immediately valuable practicnl informaLion on the growing of the Jerusalem artichoke, this cooperative program of study has offered an opportunity to add to the knowledge of the response of plants to different environments. The results are of fundumenta! as well as practical interest.

Since the history, description, and present uses of the Jerusalem artichoke are extensively treated in a previous publication (6), ${ }^{1}$ the present bulletin will deal chiefly with the cooperative experiments and their relation to crop production.

PLAN OF INVESTIGATION

Tho Buresu of Plint Industry and a number of State agricultural experiment stations had conducted independent investigations on the Jerusalem artichoko for a number of years prior to 1930 . In Inte 1930 plans were developed jointly by representatives of the Burcau and of the experiment stations of Ilinois, Louisiana, ${ }^{2}$ Minnesotil, and Oregon for conducting comprehensive studies according to a procedure as nearly uniform as possible for all locations. The Bureau furnished the planting stock of numerous varieties so that all workers would be using identical plant material.
Tho Middle Atlantic, Mikldle West, South, North, Great Plains (Wyoming), and the Pacific Northwest were the regions selected for these stuclies, in an effort to cover the country as thoroughly as practicable with the limited resources available. These several regions arc characterized by widely differing conditions of soil and climate, and to such an extent that in the instance of certain studies a uniform method of procedure was not adapted to all locations. Plot sizes and certain other details necessarily departed from the prearranged plan at some of the locations, on account of previously established systems of field management or culture. The northern locations obviously aflorded less opportunity to vary times of planting and of harvest than did the more southerly places. All cooperating arencies experienced reductions in funds available for the work, after it was started, so that the original plan could not be carried out completely.

[^0]These uncontrollable conditions resulted in incomplete series of data, which greatly increased the task of analyzing the results and which also tend to limit the dependability of broadly applicable conclusions. Despite these difficulties, there was a very distinct agreement in the trend of results in most of the studies regardless of location or slight differences in procedure imposed by local conditions. On account of this almost complete agreement in trend of results of the several studies, the generalizations that are reached are believed to be safe.

The original plan outlined for each location a 3 -year study of the following problems:
(1) Varictal adaptahility (20 varicties grown).
(2) Effect of size of seed piece upon plant development and yield and size of tulbers.
(3) Effect of depth of planting upon yield and distribution of tubers.
(4) Effect of time of planting upon yield and size of tubers.
(5) Effect of epacing in the row and between rows upon yield per plant and per aere, and upon size and number of tubers.
(6) Relation of time of cutting tops for silage to crude-fiber content of tops, and to yield, size, sud number of tubers;
(7) Method of eradicating "volunteer" phants.

The individual plot data obtained by the several writers, together with notes and comments, were sent to the senior writer, who prepared the tables, made the statistical analyses, and prepared a rough draft of a report, which was then jointly worked into form for publication. This phan insured uniformity of treatment of the material and at the same time enabled each investigator effectively to bring out important local observations and interpretations of results.

ENVIRONMENTAL CONDITIONS

Bricfly, the principal features of the environment to which the several crops were subjected at the several locations were as follows.

ILLNOLS

The plots were located at Urbana, which lies at approximately 40° north latitude and 730 feet above sea level. The artichokes were planted on grassland soils common to central lllinois. The soils varied in texture from silt loam to clay loam; in color, from light brown to black; in underdrainage, from moderate to slow. The average growing season is about 176 days, as determined by the average date of tho last killing frost (Apr. 25) in the spring and of the first killing frost (Oct. 18) in the fall. The normal rainfall is about 20.7 inches for the period from April to September, inclusive, the heaviest precipitation occurring in May. There is frequently a deficiency of rain in summer, resulting in some retardation of crop development. The mean monthly temperatures range from $50.7^{\circ} \mathrm{F}$. for April to 74.9° for July and down to 66.6° for September.

The weather for the scasons of 1931 and 1032 was not far from normal, but 1933 was very hot and dry, with very low yields resulting.

minnesota

The plots were located at Excelsior, about 25 miles northwest of St. Paul, at approximately 45° north latitude and 1,000 feet above sea level. The soil is classified as Hayden loam and is a fertile,
moderately heavy soil with a slight tendency to bake. The average growing season is about 142 days, with May 10 the average date of the last killing frostin the spring and September 30 tho first in the fall. The normal rainfall is 17.87 inches for the period from May to September, inclusive, the heaviest precipitation occurring in June. There is frequently a deficiency of rain in summer, resulting in some retardation of crop development. The mean monthly temperatures range from $57.7^{\circ} \mathrm{T}$. for May to 72.3° for July and down to 61.4° for September.

The weather for the season of 1931 was ideal for the growth of the Jerusalem artichoke, but both 1932 and 1933 were hotter and drier than normal, with medium low yields resulting.

UREGON

The plots wero located at Corvallis, some 50 miles from the Pacific Ocean, at approximately $44^{\circ} 30^{\prime}$ nom latitude and 255 fect above sea level. The soil is classified as Nowberg sandy loam and is a fertile, faiablo soil admirably adapted to the culture of the Jerusalem artichoke. Tho average growing season is about 213 days, with April 10 the average date of the last killing frost in the spring and November 10 the first in the fall. The normal rainfall is about 11 inches for the period from April to October, inclusive, the heaviest precipitation occurring in April, May, and October. The seasonal distribution of rainfall is fairly uniform. The mean monthly temperatures range from $50.4^{\circ} \mathrm{F}$. for April to 66.0° for August and down to 53.1° for October. The climatic and soil conditions in this part of Oregon are as noarly idcal tor the culture of the Jerusalem artichoke as in any place known in tho United States, and are much superior to most regions.

WASHINGTON, D. C.

Washington, D. C., near which plots were located, lies at approximately 39° north latitude, on tidewater. The plots were situated at clevations varying from about 10 to 100 feet above sea level. In 1931 tho plots wero located at tho Arlington Experiment Farm, Rosslyn, Tha, on sandy loam soil, and in 1932 on a silt loam soil of arbificial origin that had been formed by dredging from the Potomac River. In 1933 the plots were near Beltsville, Md., on soil classified as Sassafras sandy loam. The average growing season in the vicinity of Washington, D. C.; is about 189 days, with April 17 the average dato ol the last killing frost in spring and October 24 the first in the foll. The normal rainfall is about 26 inches for the period from April to October, inclusive, with heaviest precipitation occurring in July. The seasonal distribution is usually fairly uniform. The mean monthly temperatures range from $53.3^{\circ} \mathrm{F}$. for April to 76.7° for July and down to 57.4° for October.

The wenther for 1031 and 1032 was nearly normal for the area, but hotter and much below average in rainfall in 1933. The 1933 yields were quite low.

wYOMING

The plots were located nbout 6 miles west of Cheyenne, at approximately 41° north latitude and 6,200 fect above sea level. The soil is classified as Cheyenno loam, heavy phase, which is a moderately fertile soil of medium texture. The average growing season is about

115 days, the last killing spring frost occarring about May 22 and the first killing fall frost about September 15. Since the normal rainfall for the year is but 14.04 inches, these investigations were ronducted on irrigated land. Amplo irrigation water was available, and about 18 to 20 acre-inches was applied for the season, at such intervals as were required. The mean monthly temperatures rango from $48.3^{\circ} \mathrm{F}$. for May to 67° lor July, down to 57° for September.

Despite fertile soil and adequate irrigation water, this region is not very suitable for the culture of the Jerusalem artichoke on account of the short season.

STATISTICAL ANALYSIS OF DATA

The original plan would have provided a wealth of data on ench problem studied if it could have been carried through completely, since it called for cuadruplicate plots of ench treatment (in many cases involving three varieties) for 3 years in five locations. Such data, collected from a uniformly conducted series of treatments and plots, are well adapted to statistical treatment by Fisher's (\mathscr{V}^{2}) method of analysis of variance. In order to use this method of analysis satisfinctorily in a study involving several criteria of ciassification, data must be avaiable for Ω complete tabulation relating to the various factors being studicd. In other words, in determining the variance due to each of several causes of variance, each class must consist of data relating to exactly the same components as does every other class. Also, part of the annlysis will fail unless each component of each class (and the entire chass) involves equal or proportionate Frequencies or numbers of individual items that enter into the class or its components. Methods have been developed for dealing with disproportionate frecuencies in classes, but they are very laborious and tho results are only approximate. Therefore, in analyzing the results of the present studies, ouly those comparisons were made which permitted the use of equal frequencies in all components of all classes.
The unavoidable deviations from the original plan obviously made it impossible to set up complete tabulations for all locations in analywing the results of many of the studies. Consequently it was necessary in many instrances to make several individual tabulations necording to diflering bases of classification for but one, two, or more locations at a time, in order to observe the trend of results for all loantions where data were obtained. Since this so greatly increased the number of tables required for summarizing results for more than a single location, it is impracticable and perhaps undesirable to present them all in detail. Although only 42 such tables are presented, the results of 94 separate annlyses of variance are shown. About 200 such annlyses wore carried through incidentally to the preparation of this bulletin, but about half were omitted, as they only confirmed the results and trends presented and would have altered none of the following discussions matcrially.

It is recognized that in the annlysis of many of the tables (as 10, $13,20,22$, and others) dats have been incluted which make impossible an identification of the several sources of variation that contribute to the varinnce for "tests." It is true that the combining of results invoiving old varicties and the varying numbers of years and
places prectude the determination of variance due to variety, to year, and to place. However, in many instances in this preliminary work it appears to be more important to know the response to treatment and the extent of the variance among a large number of widely (listributed tests (and the interactions between treatments and tests) than to know in cletail the variances of the several factors contributing to the variance for a much smaller number of tests.

It should be stated that before tabulating together certnin groups of tests, as in the tables mentioned, analyses had been made, for the several groups separately and in different combinations, that permitted determination of variance due to variety, to place, and to other factors. These results, when considered with varinnces due to treatments, were so consistent that it was evident that responses due to treatments were generally of the same order regardless of place, variety, or year. This cvidence thoroughly justifies the use of data and methods of analy, ing the data as hercin presented. The combining of rather hetcrogeneous data has buried variances due to certain sources of variation in the large variance for "tests", in some instances, but at the same thme it has the very important advantage of including valuable results from many additional places, years, or varieties that otherwise would have been excluded from consideration.

The primary purpose of this bulletin is to determine how the Jerusalem artichoke responded to specific cultural practices over the wide range of conditions observed. Aithough it is highly desirable to develop interpretations of varintions in response that, are as complete as possible, it is here considered undesirable to attempt to develop such interpretations on a limited amount of data and largely at the expenso of valuable additional data. Even though more detailed interpretations might be possible, they might be more limited in scope and applicability (because of limited data) than the broader conclusions drawn from a greater number of places and tests.

A very useful discussion of these methods of analysis, together with convenient F^{\prime} tables for determining significance of differences in rariance, have been published recently by Snedecor (7).

In the interest ol brevity and simplicioy o." tabular form the sums of squares and values of F for significance of differences have been omitted from the tables of amalysis of variance. Many F values of importance are mentioned in the discussions of the numerous tables. If the F values lie between the 5 -percent and 1 -percent points or if Whey exceed the 1-percent point it is so indicated in the tables. In all these instances the F values involve the "errors" indicated in the respective tables. If the sums of squares are of interest to the reader, they are easily obtained by multiplying the mean square (abbreviated as V in many tables) by the corresponding number of degrees of freedom (abbrevinted as (f)).

Numerous tables of analysis of variance will be noted which contain figures in parentheses. These figures represent values which, in the course of the analysis, were found to be quite insignificant when compared with the corresponding residual variance (error) or remainder and which are included in the remainder (error) that appears in the table. The parenthetic values had no statistical significance when referred to their residual errors, and so may be considered on the one hand as only "error", and therefore as components of a new residual error with a larger number of degrees of freedom. This new remainder
error is the one shown without parentheses. On the other hand, the variances in parentheses are frequently important for comparison with the values for other factors that contribute to total variance, and so should not bo huried in a complex remainder.

In the interest of brevity, the tables of analysis of variance of the more complex tables of results list only those factors and interactions that aro considered really essential to tho discussions as presented. An eflort hats been made to aroid burdening the tables with pointless or confusing details. The varianees due to replication, in practically all tables, aro not shown but are included in the error because they were so nearly zero values. Alter all, there is no good reason why, in cases involving soveral treatments, years, and places, there should be noy correlated variation among tho various replications that were distributed and numbered lor tubuation purely nt random. There is good argument for leaving these infinitesimal values in remainder error.

Tho magnitude of differences between menns required for signifirance is calculated as twice the standade error of a difference.

STUDIES OR VARIETIES

About 1920 D. N. Shoemaker, formerly horticulturist of the Division of Fruit and Vegetable Crops and Disenses of the Bureat of Phant [ndustry, began a rather extensive colisetion of Jerusalem artichoke tubers and seeds from both domestic and European sources in an effort to obtain superior carieties and stocks. Ho made tuber selections from mixed slocks, and also grew some 15,000 seedings in continued eflorts to obtain high-yielding materials that would be rdapted to commercial culture. large size, comparative smoothness, and limited spread of tubers in the soit were sought, as well as high yield and high Jevalose content. Of several hundired lots grown in row tests over a period of years near Washington, D. (., about 75 numbers appear to be worth firther trial and study. To determine the probable range of adaptability, a number of small lots of tubers were sent to W. L. Burlison in lllinois in 1931 and to H. S. Schoth in Oregon in 1032. ['nfortumately, jelentical lists were not sent to both workers, so datnare a vailable for only 20 varieties grown in llimois, Oregon, and nerar Washington, D. C. These varicties represented a wide range in growth habit, luber shape, tuber color, and yield. Three of these rarieties- Blane Ameliore, Clicago, and Waterer-had been chosen as the experimetal material for tho cultural studies reported herein. They were selected not for their high-yideding capacity (they are only medium) but because of their marked diflerences in growth habit and tuber character, to determine whether growth habit would affect the response to different conditions ol culture.

Materidley

The Blane Ameliore variety is the only one of the list of 20 discussed here that was reecived under a varietal name. Chiengo and Waterer were so maned by D. N. Shoemaker beause of the soure of the stocks as ohtained by him. It is very doubtiful if these "varietics" can be obtained anywhere in commercial guatity, with the exreption of Blanc Ameliore. It is probable that on account of lack of widespread commercial importance the seedsmen and grow-
ers who furnished most of the original samples from which these 20 stocks were increased havo not retained control of the particular parent stocks from which they were supplied. The Burean of Plant Industry is maintainiry very small plantings of all these numbers and somo 50 others to prevent their identity from being lost.

Some of the principal characteristics of the 20 numbers referred to, together with the sourees of the stociss, are listed in table 1. These meager data are far short of a thorough varictal description, but at present such a description is hardly necessary.

METHODS

Thio varieties were planted in single-row plots varying in length in the different tests, but plots of all varieties were the same length in a single test. Plots in Oregon were 40 feet long; in 1llinois, 160 fect; and nour Washington, D. C., 132 feet.

Table 1.-Principal characteristics of $\mathscr{2}$ varieties and stocks of Jerusalem artichoke

Y1ELDS

Table 2 presents the mean yields for each location and for all locations where grown．It is clear that although the varieties do not show exactly the same order in yielding power at the three locations，the tendency to do so is pronounced．The varieties finally ranked as＂good＂are good in all tests，and those ranked＂poor＂are rather consistently low．

Thbla 2．－Metan yichls per acra of 20 varielies and stocks of Jerusalem artichoke yroun for $\$$ years at thbuna，Ill．，Corvallis，Oreg．，and near Washington，D．C．

Varlety or atecssion no．	Ytekl per atre				flank
	$\begin{aligned} & \text { Urbana, } \\ & \text { inl. } \end{aligned}$	Corvaliss Ores．	Washtag ton，D．C．	Мени	
	Tons	Tbut	Tons	Tons	
Ihane Amelloto．	63．43	18.42	7． 18	10． 28	Medium．
crimago．．	＋1．98	10．68	8． 48 8.88	13.22	
21594.		16． 71	3．${ }^{\text {en }}$	10． 50	Mredian．
260 $26 . .$.	6． 36	20.60	8.32	10.90	Do．
20092 ．．．．	6.63	16．02	8.60	10.35	Do．
$27(6) 2$ ．．．．．	5.11	18.29	8.54	10.1510	Do．
23007.	8.11	${ }_{15.62}$	0.55 8.60	12.10	cood． Modiura．
27003.	8.81 6.89	15． 14	6.00	6.54	Do．
270842．．．	0． 23	15．10	0.47	10， 30	Da，
270\％）．	6． 5.5	14.67	8.40	0．${ }^{1}$	Do，
$27015 .$.	7.07	18．68	11． 13	12．29	Caoti．
27 Cha ．．．．	1.05	8.71	7． 8.30 8.32	10.30	Mredium．
W708S．．．．	6.01	17.11	7.41	6.01	
2759 ．．．．	10.45	20.78	14．40	14.38	Claod．
27585，．．．	4． 80	9.60	9．76	8.17	${ }^{1} \mathrm{cor}$ ，
	B． 8.65	19．08	10.01	11.75	Meusm．
Mean．	6.58	18．73	8.74	10.69	

The analysis of variance（table 3）shows that for all locations com－ bined the interaction between variety and place is significant with referene to residual error，indicating that the varieties rank some－ what differently in the different locations．This can be observed also in table 2，but the differences in rank are not great．

Thanee 3．－Analysis of mariance of data for table 2

［ lace mat sourca of varation	1）watees of free－ Uom	Mesn \＄quato	Thate mat smure of varfation	Deprees of tree－ dom	Menn square
Hilinois，Oregon，and Wasth－			Washington，D．C．：	50	10.843
helon，13，C．：		32． 145 ！	Hetweon vatiotes．．．．．．．．．．	19	5.202
Hetwegramietha．．．．．．．．	16	137.1001	Betwear years．．．．．．．．．．．．．	2	1382.027
Betweorn jhaces．．．．．．．．．．	2	11，714．513	Error（varletlas \times years）．	38	3.443
Between yoars．．．．．．．．．．．	析	1165.819	Intopis：	50	
Virfuthes \times places ．．．．．－	淮	111.203 8.123 1.8		111	11．415
Yarielius x yents．．．．．．．．	4	139604	Between years．．．．．．．．．．．．	2	1270.702
Frror（varletles \times places X years） \qquad	5	万．ass	Error（varletles \times years）．	38	7，247
Oregmit：	59	9n， 031			
Butwoun varbites	10	133.038			
Hetweon years．	2	$1{ }^{2} 585$			
Error（varieties \times y ${ }^{\text {arsi }}$ ）	3				

[^1]Consitoring tho varictal means for all locations, there aro practically infinite odds that there are diflerences in yidel among the varieties. The manace duo to variety is signifientily greater than that for internetion between variely and pheo (observed $h^{\prime \prime}=2.4$; 5 -perent point is less than 2.04), thas indienting that certain varieties are consistently superior in all threo loentions whero observed.

It appentred monatageons to present separate andyses for each of the thre locations, since the signifinat interartion between varictips and phaces indiented some differenees in relativo volue of varioties in the various phaes. ['miortumately, but littlo was ganed by this procedare on arcount of the extreme varintions in yied from year to vear, intured by unforomblo conditions, und tho very small number of tests. Is mensured by tho individual errors of tho respective locntions or of all bentions combined (table 3), ouly tha (regon tests revealed significant variebn differenes for a singlo location. Despito
 near Whshington, D. (C., and in flinosis, tho Lemfences are consistent with those erident, in the Orgon tests. Tho aremmative results of all tests have a definte waba for tho individan koration berate of the proved consistent superionity of perfinh mombers, regardess of phe

The mens for all borations show that nos. $27.574,20944,27095$, and 27007 aro rather outstanding. A difference of 2.19 tons is culculated to represent sighilimnes. Tho bighest yield (14.38 tons) was from no. 2757 , tho other thren varieties lying within or approsimating tho limits set by this varicty and tho maximum yisk that can bo considered sighifiomty lower than the highest yidding lot. Contrati"ise, no. 27asm is a definitely inforior variety sine it les withen a similar range established by tho lowest yedding varioty, no. 27096 . No. 27002 yodded nhmst exam the memn yiek of the 20 varieties. Only the iwo highest, 2757.4 and 26044 , signifiemtly paced this, while only 270 an and 27585 are signiferanty interior.

No. $2 \overline{7} 574$ is of provelar interest also on areomet of its high lavalose content, whish will be pointed out in tho next seetion of this diseussion of varieties.

Even this short list of varielies shows definitely that the question of the proflucing capacity of varieties is one of major importance and must rexeive carefal hat theroum attention before lateresealo production is modertaken. . Whough it foperas that high-yioding variaties may be expected to setain high mank oxer a wido range of conditions, the matter of admptability is of some importanee.

JEYHOSE AND TOTAL NUCALE CONTENT

Sthongh no stadies of the chemical composition of the tubers were included in the rooperative work reported in this bultelin, it may bo well to present at this point certain hitherto unpublished datat on matieles grown near Whehngton, D. ('. Invesfigators in the Burean ol Standards of (he C'nited States Department of Commere (3,1 , have stadied the derusalem artidhoke tuber for some years in comedtion with their work upen the prepatation of levalose. Over a period of years they have mode many humdeds of ambyses of single samples of individuat varieties and storks obtained from the collection grown by D. N. Shomaker, fomerly of the Burem of Pmat Industry. Tho anatyses reported in table 4 wero taken from dath furnished by the Burent ol Stambards and represent amomes of sugars determined
after conversion or hydrolysis．These represent but a fraction of the data available，but are presented as an indication of the probable performanco of the 20 virioties listed in table 2.
＇Tabla 4．－Content of tohal sugars and levulose cquitalent in percentage of fresh weight of fertisalem artichole tubers grown near IW a shinglon，D．C．

Firlety in accession ino．	$\begin{gathered} \text { November } \\ 1025 \end{gathered}$		$\underset{\substack{\text { jeconber } \\[923]}}{ }$		November1927		$\begin{gathered} \text { Novuraber } \\ 1030 \end{gathered}$		$\begin{aligned} & \text { Noyember } \\ & 10030 \end{aligned}$		$\underset{1032}{ }$		Mean	
	Total	I．av1－	Total	$\begin{gathered} \text { Lava- } \\ \text { busse } \end{gathered}$	＇rotal		＇T＇etal	$\begin{array}{\|c} \text { Luvu- } \\ \text { iosese } \end{array}$	Total	$\left.\begin{gathered} \text { Lavil- } \\ \text { lose } \end{gathered} \right\rvert\,$	Total	$\begin{array}{\|c\|c\|} \hline \end{array}$	Totat	$\begin{aligned} & \text { Levil- } \\ & \text { foso } \end{aligned}$
Blune	12.20	12.01	13． 10	8． 61	J．4， 88	12.6	15.80	11.00	23.00	19，20	13，08	0.10		12． 21
Chle	17． 11	32，78	14． 617	13． 80	IN． 31	14.87	15． 01	15.20	21． 50	18.80	15．10	11．40	17．82	14． 17
$2101-1$	13． 710	10． 50	13.30	11.15	15． 01	［1． 30	10．F．0）	13.10	22.10	21.00	13． 40	0， 20	16． 77	12． 72
$22^{6} 1183$	1s．	11． 29	12．19	b． 0^{0}	1．1．00	14． 21	11.40	0． 46	21．00	18． 19	1．1． 20	10．30．	14.53	11．85 8
20.1281	3．61	13． 211	1．${ }^{16}$	12.16	13．cid	13．1．${ }^{\text {（1）}}$	17．00	15，00	23． 40	20.10	14.30	10.06	10.84	14． 17
$21 / 2 x^{2}$	1．4．3	12．${ }^{14}$	11．3t 3	8.3	15．95	4． 2.28	15	12， 31	20． 010	19．00	13． 40	9． 16	15．67	12． 13
47002 ，	12， 6	10， 3 H	13． 019	10．4	12．35	14．82	15， 03	12.80	23． 10	21． 40	13． 100	4， 30	1.1 .88	12．34
27007 \％．	13．201	11． 24		11．81	17．Stif	13． 76	15． 60	12． 10	22． 20	15． 10	13． 510	9． 00	15．92	12． 74
270711	15．089	14． 76	10． 26	126	10.36	15． 00	liti． 10	12.19	24．似	21.40	16，县	11.60	18． 40	1.108
2751041	15． 10	12． 5.5	15． 12	11．011	15．85	12． 06	15．60）	12， 810	22． 60	10． 70	12． 60	8， 40	117． 10.0	12.90
27022．	1108	1．1．${ }^{24}$	13． 40	11.70	10． 50	10， 016	113． 10	1it． 20	21.70	111． 81	15． 10	10.70	17，＋24	1．t． 07
2－70．0）		11．4．6	12． 41	10． 8	18．75	1：19	15． 10	12.100	21.30	13.30	12． 56	21． 10	15． 16	12.81
2tor	15． 27	13，10	15． 30	［2，	20．2．	tor 32	19． 6	15． 10	21.10	17.0	［1．1． 70	10．	17，43，	1．1． 21
27034．	11．nita	11．75	18 （ 0	11.81	17． 80	11，81	1710	13，70	$2{ }^{2112}$	17． 71	12.80	8． 710	16． 5 ¢	13． F \％
27098	Jib， 40	If， 15	15，니	11， 5 is	IS． 65	56． 27	17.10	13．S0	21，（0）	18． 70	（3． 90	！1， 7	17．61	12． 86
Waturer	17．14	15． 23	$1{ }^{8}{ }^{2}$	［3． 12	14.45	15． 5	32.70	17． 10	骂，（1）	12． 19	13.10	8． 36	17．48	14． 4
2757．1．．．	15． i ，	Iti， 4	16． 515	13.32	18．16	16.17	21， 1.4	17， 80	23.00	21． 20	15．64	11． 50	13． 01	14． 48
2758\％．．	13．82	11． Ph $^{\text {d }}$	1it． 153	13．40	17， 12	11.5	（11． 10	9． 20	21． 010	18.	1.4 .00	2． 50	15． 41	1．77
97432.	12． 81	10．70）		10． 10	13． 15	0．188	15， 20	10． 10	2：1． 70	20.5	11.00	8.30	14． 138	11．73
Wwis．	13． cis	11.00	130	10.	14.37	11．10	H．	11.	2，50	IS．	14． 20	10． 10	15.	12．21
Henn	15	12.72	14， 3	． 39	10．4．tif	23． 64	10.31	13． 12.	21.08	19．32	13.73	9， 81	101， 38	13．33

The figures in table 4 represent practically the entire range in per－ contage of lovulose and total sugar that has been found among vari－ eties that produce moderate or good yields of tubers of medium or larger size．Certnin sorts that produce very small and commercinlly worthless tubers inny show a much higher percentage of levulose and total sugar．

It will be noted in table 4 that the analysis of the tubers of individual vnrieties varicd quito widely between seasons．Unfortunately，infor－ mation is not a vailable by which these diflerences can be definitely explatined．Tho yone 1930 was very dry，possibly aceounting in part for the high levilose content that year．The 1032 analyses were mate in thmary，hater in the season than in any of the previous yenrs．Trmab and others（ S ）have shown that tho levalose and dex－ trose content of the tubers ino highest in November，decreasing through the winter．It thus appears that lateness of analysis wifl purtly explain the low results ol 1032 ．
＇Tho Inst two columins of table 4 present the 6－year mean levilose and total sugar content for ench variety．The 6－yenr mean for all varieties is 13.33 perent of levoloso and 16.38 pereent total sugars． Using the ligure for cron shown in table 5 ，it is calculated that a （i－year mean diflerenco in levulose between 2 varieties must be as great as 1.50 pereont if it is significant．Upon this basis it wild be noted that there are 3 varieties，Chicago，no．27079，and Waterer， that show levulose amayses insignificantly lower than tho best vari－ ety，no．27574，which showed 15.88 pereent．Sixteen varietios are signilicantly inferior to tho best．From another standpoint，there are

9 varioties that appear significantly superior to tho poorest of the lot which is no. 27632 with only 11.73 percent levulose. In addition to the 4 good varietios mentioned above, these latter 9 include nos. 26984 , 27082, 27095, 27096, and 27098. Al of these show analyses that are above the mean for the whole table, but only Waterer and no. 27574 are significantly superior to the mean value of 13.33 percent.

TABLE 5.-Amalysis of variance of data for table \&

1 Drieals 1 -gurtent poinh.
A differenco in total obainablo sugars betwoen two means unst bo as great as 1.60 percent to bo signifient. There is such a closo refutionship between quantitios of total sugars and of levulose that the comments in tho preceding paragroph, with reference to differonces in lovuloso anong varicties, hold also for total sugnrs, in general. Fifleen varietics are significantly inferior to the best. Chicago, no. 27070, and Waterer are again insignificantly inferior, as also is no. 27095. No. 27081 and the sume 9 superior varicties listed in the preceding parugraph are significantly superior to no. 26083, the lowest in total sugars.
Only variety no. 27574 is consistently high in both levulose and total sugar content and in yield. Considering thio maveed tendency for poor yield and tuber character to be associnted with high levalose content, whis is an unexpected and most encouraging indication of what might be hoped for in the dovelopment of superior commercial stoeks.
These data indiento a mean lovulose equivalent of approximately 4,350 pounts per acre for no. 27574 in contrast with 2,650 pounds for the entiro group of varioties and only 1,400 pounds for no. 27090. It should bo borno in mind, however, that these figures are only relative and do not indicato probable absolute yields of levuloso. At this writing, Ω harge-scale commorcial manufacture of lovuloso from Jerusalem artichokes has not becomo a reality. If it does become a reality one cannot expect a factory yidd of 100 percent of the lovilose found upon analysis of raw stock. These relativo amounts also aro calculated from yields of smail experimental plots that indiento good rathor than average results to be expected under genoral farming tenditions.
The figures for total sugars are of importnnce in viow of a recently revived interest in the possiblo value of this crop as a raw material lor othyl alcohol manufacture. Assuming that 1 pound of sugars will yiedel onc-balf pound of alcohol, the following varietal differences may be calculated: No. 27574 produced tho equivalent of about 395 gallons per acre, the menn for all 20 varieties about 250 gallons, and
no. 27096 only about 145 gallons. In terms of yield per ton of raw stock the differences are not so great. For example, no. 27574 would yield about 27 gallons, an average variety about 24 gallons, and such varieties as nos. 26983 and 27632 only about 21 gallons. Again, it is emphasized that these are only estimates, based on chemical analyses and upon relatively high yielding experimental plots. Actual yields of tubers harvested under average conditions probably would be but 50 to 65 percent of these experimental results, and alcohol yields will of course be below the theoretically possible yield per ton of raw material.

SIZE OF SEED PIECE

METHODS

In preparing stock for the studies upon size of seed piece the following procedure was used when cut and whole tubers were to be compared: Thubers were sorted from a large quantity of field-run material and weighed rapidly, one at a time, on a torsion balance. Those deviating in weight not more than 10 percent, plus or minus, from the desired sizo were retained for planting. For the cut tubers, specimens of twice the required weight of seed piece were selected and cut in half as accurately as the eye could judge. Tests in which cut and wholo pieces were not compared were planted with a mixture of cut and whole pieces of the indicated sizes. Pieces weighing $1 / 2,1 / 2,1$, and 2 ounces were used.

Individual plots consisted of single rows 40 feat long with rows 4 feet upart and hills 2 feet apart in Minnesota. Near Washington, D. C., and in Oregon and Wyoming similar rows were 5 feet apart; the hills were 2 feet apart in the row except in Oregon, where they were 4 feet. Plots were in duplicate in Oregon and in quadruplicate at the other locations. The results of the Oregon tests are not combined with the others on account of the larger sizes of seed piece used. They wero 2, 3, and 4 ounces in size, of the same range of sizes as is commonly planted locally. In all tests one seed piece was planted in each hill.
Before harvest, the number of stalks per hill was recorded, then the plots were harvested by hand. The weight and number of tubers per plot were recorded.

RESULTS

cut Versus whole seed
Before considering the offect of size of seed piece upon yield and ruality of the crop, it is of interest to inquire whether there is any marked difference in behavior of cut and whole seed. This is of special importance in the following discussions, since many of the plots were planted with mixtures of variable proportions of both kinds. Furthermore, the question is of great practical interest.

Trable 6 presents comparisons of whole and cut tubers of four sizes of seed piece, carried on for 3 years near Washington, D.C., and 1 year at Cheyenne, Wyo. It is evident in the mean yields for Washington that there was no great difference between cut and whole seed, and this is further substantiated by the insignificance of the variance between them (table 7). A single senson's results at Cheyenne, however, showed the whole seed to be superior. This possibly may be
explained by the tendency for the cut pieces to be dried out more seriously under arid conditions of high elevation than in the more humid regions, which are at low elevation, resulting in a greater difference in behavior between the cut and whole seed.

Table 6.-Effect of cut 0 . whole seed pieces of different sizes on yield per hill of Jerusalem artichokes grown near Washington, D. C., and at Cheyenne, Wyc.
[Quadrupilcate plots]

Place bind year	Ytold por hall from seed pleces of Indicated size and condition							
	35 ounce		Kounce		1 ounce		2 ounces	
	Cut	Whola	Cut	Wbolo	Cat	Whole	Cut	Whole
	Pounds1.007.081.44	Pounds1.606.061.76	Pounds1.756.551.05	$\begin{gathered} \text { Pounds } \\ 1.88 \\ 9.60 \\ 1.97 \end{gathered}$	Pounds 2.20 7.18 1.68 	Pounds2.388.492.19	Pounds2.208.112.15	Pound 2.017.20 2.41
Mead	3.37	3.14	3.32	3.47	3.75	3. 68	4.10	3.87
Mann (cut and whole)..	3.26		3.30		3.72		4.01	
Choyonne, Wryo: 1033.........	1.54	-... .-	1.07	3.00	2.95	3.70	3.72	3.60
Mean (crtt and whole) '....-			3.05		3.63		3.94	

1 Based on totaly for 2 locations.
Table 7.-Analysis of mariance of data for table 6

Place and source of varkation	Degrecs of fresdon:	Mean Squars	Fluce and source of turiation	Deprees ol freedom	
Washington, D. C.: Total.	45	5.075	Washington, D.C., and Cheycnno: Total.	05	4.858
Between trantments.	1	293	Between treatmonts	1	745
Between yerrs.	2	1202.192	Between tests--	3 2 3	183.783
Matween slzes.-...		${ }^{1} 2.773$	lietween sizes	${ }^{2}$	${ }_{1}^{1-243}$
Treatments \times years (tests)	87	$\begin{array}{r}11.853 \\ \\ \hline\end{array}$	Treatments \times tests.	3 2 2	${ }_{1}^{1} 2.378$
			Sizes \times tests.....-	${ }^{6}$	${ }^{1} 1.697$
Cheyenne: Total.	31	1. 280	Error (remainder) ------.......	78	. 387
Betweon treatments.		18.778			
Metween sizes---\%.	3	15.387 5.594			

t Exccects i-percent point.
36, 1-, and 2-ounce pfecos only.
; Between 5 -percent and 1 -percent jolata.
Although the mean yields jor Washington, D. C., and Cheyenne together suggest a superiority of whole over cuts seed, the analysis of variance (table 7) shows the difference to be significant. One year's data at Cheyenne are inadequate for reaching a decision on this point.

AFFECT OF SIZE OF BRED PLECE ON YIELD

Since the Oregon tests were mado with seed pieces of 2,3 , and 4 ounces, a range of sizes different from the others, the results are presented separately. Table 8 shows very little difference in yield
per hill from different sizes of sced piece. The analysis of variance (table 9) shows the variance due to size of seed piece to be barely significant with reference to residual error. The required magnitude of a significrat difference between the 2 -year means is 0.63 pound and for the 1 -year means, 0.89 pound. From this it appears that the small superiority in yield (about 10 percent) of the 3 -ounco piece over the 2 -ounce piece is significant in the individual years and for the 2 years together. In no case is the 4 -ounce piece superior to the 2 -ounce. The menns for the 2 years show that the 4 -ounce piece produced yields significantly lower than the 3 -ounce and essentially the same as the 2 -ounce. It is sugrested that the profusion of stems, stolons, and tubers produced by the largest piece resulted in such a crowded condition within the individual hill that optimum top and tuber development was slightly retnrded. However, the mean number of stems for the three successivo sizes of seed piece was but 1.9, 3.1 , and 3.8 , respectively. The ptants of the 4 -ounce plots tended to be a few inches taller, and the tubers per hill were greater in number but smaller in size.
'lable 8.-Eficel of size of seed piece on yield per hill of different varictics of Jerusalem artichoke grown in Oregon
[Duplicute plots]

Yenr nod varlety		Yiold ger hall from seed pleces of indlented size		
		\because ounces	3 ounces	1 Ofices
Phar Anelfore.	1433	Pounds	Jounds 13. 今人	Pounds 11.35
chicugar...		9.34	10.18	11.00
Waterer.....		0. 59	12.80	11.65
Menn.		10.82	11.57	11.31
Bland Ammelora	11.13			
chistuge.		8.37	4.34	8.34
Hitherer	\cdots.	7.73	8.32	- 713
Mpath.	. .	9.81	10.42	0.85
Atemer for yers		10.33	11.15	10. ${ }^{\text {s }}$

Tamor 9.-Analysis of variance of data for table \mathcal{S}

	Source of cartation	Degrees of frecdom	Mean stifure
Total		35	f. X \% 5
ferwern mats of sterd pleco.		4	12.103
Betwrea varmete		$\underline{2}$	${ }^{2} 56.254$
Hetwern gears.		1	115.151
furleles \times staes of seed piece		\pm	1. 181
artasies x years			516.615
		3 31	(${ }^{213} 80$
Error		4	- S13

[^2]Under Oregon conditions the 3 -ounce picce gave an increased yield over the 2 -ounce at the rate of 1,786 pounds per acre in return for an additional calculated 136 pounds of seed. The desirability of seed pieces larger than 3 ounces is not indicated. It is not to be concluded that these results are applicable under other conditions of culture, but rather the opposite. The very high yields obtained in Oregon indicate a set of conditions particularly favorable for this crop, which are found in but few regions.
The data on yields resulting from the use of different sizes of seed piece in Minnesota, Wyoming, and near Washington, D. C., are presented in table 10 and the analysis of variance in table 11. The means of all tests show a progressive increase in yield as the size of piece is increased from one-fourth ounce to 2 ounces. Variance due to size of piece is very highly significant when referred to residual error. Despite this fact, the residual error is of such magnitude that the difference between mean yields for the $1 / 1 /$ and y-ounce pieces is not significant. (Observed $=0.19$ pound; calculated required $=0.46$ pound.) All other differences are significant.

Table 10.-Effect of size of seed piece on yield per hill of different varicties of Jerusalem artichoke grown in Minnesola and Wyoming and near Washington, D. C.
[equadrupalienta phoss]

4 Cut ceral piveris.
1 Wholeseel pieces.
TABLE 11.-.inalysis of variance of deta for table 10

[^3]Since the variance due to size of piece is significantly greater than that duo to interaction between size of piece and test ($F=19.2$; 1 -percent point less than 4.3) it is concluded that size of seed piece significantly aflects yield under all conditions of these studies. Since n wide range of conditions is represented, it is safe to say that, in general, the seed piece should be at least 1 ounce in weight, and preferably 2 ounces. Uncler conditions similar to those in the coastal counties in Oregon, pieces as largo as 3 ounces can profitably be planted.

In the interests of economy in publication additional tables of analysis of yields as aflected by size of seed piece are omitted. It should be stated, however, that the data for Minnesota and for Washington, 1). (., were tabulated and analyzed separately and also the datis for' the Blanc Ameliore voriety alone for all locations. In all cases, variance due to size of piece was significant. The differences in the Minnesota tests were greater and of higher statistical significance than those in the Washington tests. The mean yields in pounds per hill of the Blanc Ameliore variety, for the four successive sizes of piece were: For Minnesotn, $3.18,3.90, \pm .25$, and 4.62 ; for Washington, $3.16,3.68,3.97$, and 4.94. The mean yields of the several varieties grown in Minnesota were, for the four successive sizes of piece, 2.95, 3.30, 3.62, and 4.21. The greatest source of variation in all instances (except in Oregon) was seasonal differences. The remarkably similar conditions for the 2 years of the Oregon tests gave such a low variance due to year that it was exceeded by the variance due to variety (table 9).

Since the variances due to factors other than size of seed piece were small and relntively unimportant, only the mean values for the six Orefon tests need be given. The numbers of stems per hill from $2-3-$, and 4 -ounce seed pieces were $1.87,3.05$, and 3.82 , respectively. 'The analysis of varitnce (table 12) shows these differences to be very highly significant.
fabsa 12.-Anabysix of manace of data relating to effect of size of secl piece on number of stems per hill nf Jerusalem artichates grown in Oregon ${ }^{1}$

Similar data for the plots in Minnesota, Wyoming, and near Washington, D. (C., ire shown in tables 13 and 14 . A glance at the latter shows that with relerence to residual error the variances due to size of piece, to test, and to interaction berween size and test, all are ligrhly signilicant. Furthemore, variance due to size of piece is highly significant when referred to the interaction between size of piecr and test. (Observed $F^{\prime}=16.0 ; 1$-percent point $=5.95$.)

Thus, from tables 12,13 , and 14 it may be safely conchaled that the increase in number of stems accompanying increaso in size of seed piece, up to the limit observed, is a practically universal occurrence with this plant.
Table 13.-Effect of size of seed picce on number of stems per hill of Jerusalem artichokes grown in Minnesota and Wyoming and near Wrahinglon, D. C.
[Quadruplicate plats]

Year anal mace	Sterss per hith from seed pleces of indicated sizo			
	'4 ounce	36 nunco	1 mance	2 ounce: ${ }^{\circ}$
	Number $\stackrel{72}{2} 03$	Nomber 3.13	N゙timber 3. 63	Number 4.28
Whahlngton. D. C.		2.86	4.510	
\qquad				
Washington, D. C........ Do.................	1.40	2.05 1.73	2.01 3.20	4. 10
Wyotitige................- 1933	2.10	2.20	2.85	3.15
Melm	1. 70	2.39	3.56	4.75

Pable 14-Analysis of marinnce of data for table 18

	Source of varmion	Degrees of Preedons	$\begin{aligned} & \text { Mann } \\ & \text { Statare } \end{aligned}$
Total		20	2. 189
Between sizes of seet priore..		3	:35.389
Betwecrs mats.		1	15.653
Sizes of sput pleco \times lests		12	${ }^{2} 2.216$
Etror (remainder)		\%	. 296

1 Exceeds i-percent point.
EFFECT OF SLZA OE SEED PLECE ON WEIGHT OF HAMVESTED TUBERS
From the number and weight of tubers harvested per plot, the mean weight per tuber was calculated for all tests shown in table 10 . Since the differences in tuber size accompanying the use of diflerent sizes of seed piece were so slight throughout the detailed tabulation, only the mean values for the 15 tests need be given. Seed pieces weighing $1 / 4$, $1 / 2,1$, and 2 ounces yielded tubers weighing respectively $1.56,1.55$, 1.67 , and 1.51 ounces. A glance at these figures raises doubt as to the significance of a difference between any two means. From table 15 one may determine that the variance due to size of piece is insignificant with reference to residual error. None of the internctions are significant.
Table 15.-Anulysis of variance of data reluting to efrct of size of seed piece on mean weight of harecsted tubers of Jerusalem artichokes grown in Minnesola and Wyoming and near Washington, D. C.

[^4]It thus appears from 15 tests involving several varieties in 3 locations and seasons, that size of sced piece of 2 ounces or smalier is without consistent effect on size of tubers harvested. The Oregon data indicate, however, that seed pieces above 2 ounces in weight result in a decreased size of tuber. Unfortunately, data are not nvailable for Oregon for seed pieces below 2 ounces in weight, nor above 2 ounces for the other locations.
Tho mean tuber size harvested from 2-, 3 -, and 4 -ounce seed pieces was $3.54,3.22$, and 2.7 ounces, respectively. The analysis of variance (table 16) shows that the differences are significant (required difference $=0.24$ ounce), but this decrease in size is probably no disadvantage sitice such very large tubers (or multiple tubers) are involved.

Tables 16.-ithalysis of rariance of data relating to effect of size of seed picce on size of hatersted tubers of ferusalem artichokes grown in Oregon 1

Sourre of varintlon	Degrees of fretuont	Mrenn stuaro
'fotal...	17	0.3570
Huwern stzus of seed plece.	2	71.0331
Rewwern yenrs -	I	, 5033
Breor (remarinder)....	2	${ }^{1}$ 1. 2297

$\downarrow 3$ varletles drown In 2 Seatsons.
${ }_{3}$ Fxemerds -pereent proint.

TIME OF PLANTING

METHODS

The plots in the tests relating to date of planting in Illinois were single rows 136 fect long, while at the other locations they were 40 feet long. The plots were in duplicate in IHinois and Oregon, and in quadruplicate in Mimesotn, Wyoming, and near Washington, D. C. All plots at a single location were planted at a uniform depth and spacing, given uniform cultural conditions, and were harvested by hand. The tubers of each plot were counted and weighed.

In determining beforehand the dates for making experimental plantings, the carliest diate on which soil and weather normally permitted lield work was considered as A, i. e., as the first planting, regardless of calendar date. An effort was made to plant on or very near this earliest date. Subsefuent plantings were to be spaced at intervals for as long as seed stock could be held in good condition or until it was apparent that the shortness of the remainder of the growing scason would not permit satislactory tuber development before frost.
It may appear that such variations in time of planting would preclude fuir comparisons and combinations of results for reaching a generalized conclusion. On the contrary, carliness or lateness of planting cannot properly be evaluated on at calendar basis alone, but must be considered in pelation to length of growitg season available and to the characteristies of the prevailing weather of each region.

Thus, the earliest possible planting time is always indicated as A and the latest, as E, regardless of length of time from A to E. In a region of fairly long and mild spring, followed by a long growing season, there supposedly would be a greater range of time over which phanting might be expected to be satisfactory. In northerly regions or those where unfavorable weather conditions occur fairly early, one would expect a rather short successful planting period. The medium planting date is mazked C, regardless of number of plantings or length of possible planting range. The indicated planting dates are thus relative and should not be considered apart from tho local conditions of the several tests. The actual dates of the several plantings are shown in table 17.

Trable $17 .-$ Detes of phanting of the rarions plots in the studies of effect of time of
 and near Hashington, D. C.

HESULTS

FPFEGT OF that of planting on gield

On account of umavoidable irregularities in number and dates of plantings at the several locations and in the different years, it is possible to combine results of but few tests involving more then two planting dates. A large number of tabulations have been made so as to include as many tests as possiblo in observing the yield difierences accompanying diflerences in planting time. In many tests unequal frequencies were involved, thus limiting the number of sources of variance that can be evaluated when the tabulated data are analyzed.

The most extensive data were obtained in the Washington, D. C., tests and these are presented in tables is and 19. It will be noted that allhough there is hight significance for variance due to time of planting in the experiment as a whole, there is no significunt difference in yield between any two of tho first three plantings. (Maximum observed'mean difference for all tests $=0.22$ pound; caleulated required $=0.41$ pound.) The third and fourth phantings resulted in -ry marked successively lower yields, each being quite signifionntly lifferent from all the others.

Table 18.-Effect of date of planting on yield per plant of Jerusalem artichokes grown near Washington, D. C.
[Tripilcate plots]

Year nnd variety	Y leld per plant Irom planting $1 \rightarrow$				
	A	B	C	D	E
1032	Pounds	Pounde	Pounca	Pounds	Pounds
1 linne A moliore	7.00	6. 60	5.51	4.49	2.08
Chimpo....	6.22	7.47	7.74	6.73	3. $\mathrm{BI}^{\text {d }}$
Walerer...a.	5.01	5.07	4.18	3.41	1.70
Mean	6, 08	6.41	6.80	4. 55	2.80
Flane Anselioru.............	n 68	2.77	2.60	1.08	
Chlatgo.. .-.a.	2.03	1.53	1. 89	1.08	1.37
Whaterer.	1.70	1.43	1.18	1. 40	L. 05
Nutit.	2, 13	1.91	2,09	1.70	1.21
	4, 10	d, 16	3.91	3. 17	2.05

1 Phathing a was made nppoximately on Apr. 1; suceossive jlantings wero made at mppoximately 2-week hatervats.

Tabla 19.—Anulysis of variance of data for table 18

Source of vartation	Degreas of freedolu	Mean stluars
'rotil.	80	4.581
Hotween dates of jlmnting.	4	1 14, 4148
Elatweers Yeltrs	1	1240.115
Between vnrietics.........	2	115.348
Dates of plantimg \times yerrs	4	${ }^{1} 5.80$
Dates of jolauting \times varioties	8	. 603
Virjetles \times yenrs	2	17.011
Error (remaindor) .-.	08	. 424

1 Exceeds d-percent puint.
Comparisons of the values in table 19 will show highly significant variances due to season (years), varieties, and interactions involving season, when these are referred to residual error. The variance due to time of planting is not significantly different from that due to interaction between planting date and year. (Observed $F=2.47 ; 5$-percent point $=6.39$.) Thus, although, in general, delay in planting reduces yieids as indicated, this response varies from year to year, depending upon conditions. A 2-week delay in planting in some instances may result in no loss hut even in an increase if the earlier planting should happen to have been made when soil conditions were temporarily bad or the temperature unusually adverse.

In the Oregon tests including three varieties, two plantings were made each season. The results, together with data for comparable plantings in Illinois and Minnesota and near Washington, D. C., are shown in tables 20 and 21 . The two plantings at Oregon were approximately 3 weeks apart ench season, which represents a longer interval than between the B and C plantings in any other instance. However, the interval is too short to be rated as B to D. The classifiention is admittedly rough, and this must be borne in mind when noting the very severe reduction in yield that resulted from the later planting. The results are doubtless exaggerated as compared with uther B and C plantings.

Table 20.-EEfect of time of planting on yield per hill of Jerusalem artichokes grown in Illinois, Minnesola, and Oregon and near Washington, D. C.
[Duplicate plots]

Place	Varlety	Yeat	IFeld jer hill from plantlag	
			π	C
	(Jianc Ameliore.	1035	Pounds 14.03	Pounde 7.50
	Chlorgo.-.	1932	11.20	4, 00
	Waterer \ldots....	1082	11.89	5.34
	binne Atneliore.	1933	13. 64	11,00
	Chlcago......	1033	9,35	5.65
	Watorer...	193:3	8.32	6.21
	Menn.		11.42	6.77
	CBana Amollore.	1038	7.05	5. 80
	Chlcugo.....---	1932	7.61	8.13
	Watorer-......	1932	5.09	4. 17
	13\|anc Amoliore.	1083	2.35	2. 44
	Chicago	10.43	1.17	1.60
	Walerar.....	1033	1.13	1.44
	Menn-an		4.07	3.89
	Mean (12 tests)		7.75	6.33
	(Blano Ameliore.	1931	3.05	2. 83
	\^ıип........-	1031	3.00	4. 25
	poolle...	1031	3.83	3. 15
	[Slaric Ameliore	1932	2. 70	1. 03
	- .-. do $_{10}$	1033	8.72	0.04
	++++ ${ }^{\text {do. }}$	1931	2. 47	1.46
Mean (28 losis).			0.57	4.71

I Soe table 17 for sectal destes.
Table 21.-Analysis of variance of dala for table 20

[^5]For Oregon, alone and also together with Washington, table 21 shows a high interaction between planting date and year, as observed for Washington alone in tables 18 and 19. Although the significanco of deerease in yiek accompanying later phanting is very high over a period of years, theso studies show that perfectly consistent results are not to be expected every year, since variance due to planting date is not significantly greater than that of planting dates \times years. (For Oregon, observed $F=0.4 ; 5$-percent point $=161.4$. For Oregon and Wishington, D. C., observed $f^{\prime}=21.8 ; 5$-percent point $=161.4$.) Despite the marked differences in yields of the three varieties that can be compared in the 1932 and 1933 crops in Orcoon and neat Washington, the varietal response to time of planting is very consistent. In both cises the interactions of these two factors were quite insignificant when refered to residual error. (Observed $F=1.0$ or Jess than 1.0; 5 -percent point $=3.0$ or more.)

C'onsidering the entire 18 tests shown in tables 20 and 21 , the differences in yiok due to planting date are very highly significant (reguired differenee $=0.50$ pound). The interaction between dates of planting and tests is also lighly significant. Despite the very great oddes that delay in planting gives diflerent results in different tests, the varime due to time of planting in all locations combined is grenter than that for the interaction just mentioned. (Observed $F=0.74 ; 5$-percent point $=4.45$.) It thus appears safe to predict an appreciable reduction in yield from such a 2 -week delay in most places over a period of a dew or severat years.

It is also of interest to noto the response to further delayed planting in severnilocations. Trables 22 and 23 present yield data for plantings made at times ($: 1$, and E for 2 years in Minnesota and 2 years near Washington. The means for the 10 tests show, as in the previous tables, in consistent decrease in yield as planting is delayed. As in the ollow tables, analyzed rariances due to date of planting, to test, fund to interaction between these two, are all highly significant when refered to residablerror. Likewise, variance due to date ot planting is higher than interaction between date of planting and test (observed $f=15.5 ; 1$-perent point $=(6.01)$, permitting generalization on the bisis of theso results.

TAnte 22.- Liffer of time of phaming on yiche per hill of Jerusalem attichokes grokn in Minnesota and near liashington, D. C.
[Triplimente pots;

Phace and marlety	Year	Yetil jeer hill fromplatims-		
		C	D	E
Minumern:		Pounts	Puonds	Pounds
	1032	3. $\mathrm{E}=\mathrm{t}$	${ }_{3} 9.29$	1. 1.4
Whituer	${ }_{1032}^{1632}$	¢ 1.02	1.70 180	${ }_{\text {1. }}^{1.81}$
Iblate tmelloro.	1932	5.34	4.80	2, 98
Walerer	1093	112		1.76
mblate thethar	1193	2.69	1.00	1.31
Chatare.	${ }_{1}^{1433}$	1. 1.50	1.498	1.37 1.45
Mean..		3.71	3.5	${ }^{2} 17$

Talle 23.-Analysis of variance of data for table 22

Source of variation	Degrees of fredom	Mena squars
7'otal.	80	4.10
Detween dates of planting-2	9	120075
Hetweilt tests -..........	2	12. 373
Delween repsichlions.a....	18	$1{ }^{1.243}$
Dites of pluntnge \times Erests.....	58	. 14 id

1 Exceeds i-perverit point.
Although details are omitted here, it should be stated that additional tubles have been construeted and summarized in table 24, bringing together all data that can be properly combined for a total of 9 tests of B, C, and D plantings in Illinois, Minmesota, and near Washington, D. C.; 13 tests involving only C and D phanting dates in those sume locations, and 13 tests of O and E phanting dates for Minnesota, near Washington, and Wyoming. Twelve of these lastmentioned 13 tests involved 4 groups, each consisting of the same 3 varieties, and oceurring once in Minnesota, once in Wyoming and twice near Washington. This part of the C and E tests, indicated as Y in table 24 , permitted a determination of the variance due to varicty. In every set of comparisons (table 24) successive delays in planting resulted in suceessively lower yields. In every case the variance due to phanting was significant when referred to either the residual error on to the interaction between phanting dates and tests (table 25).
'T'alsis: 24.-Kummary of form unpublished tables showing effect of time of planting on yield per hill of Jernsulem arlichokes grown in four localions
[1 lots in dughleste or triphicnted

'rabla	Lomatin of comblited tests	Jotal tests	Y'ield per hill from phanling-			
			4	C^{\prime}	1)	E
W.	[hifots, Mimesota, and Wathington, D, ('. Mlatreatn und Washington, D, C-- Alnnesola, Wyothing, aud Wustiffotion, D. ('. ... do. \qquad	$\left\|\begin{array}{r} \text { Number } \\ 9 \\ 18 \\ 12 \\ 3 \end{array}\right\|$	$\begin{array}{r} \text { Pountrs } \\ -1,4 ; \end{array}$	$\begin{aligned} & \text { Poundis } \\ & \text { i, in } \end{aligned}$	Pounds 3. 11	Pounds
$\boldsymbol{\pi}$				3.12	2.85	
Y.				2.04		. 51
..				3.31		1.81

Table 25.-Analysis of eariance of duta for tables summarized in table g/r

Sourte of variallon	Table ${ }^{\text {W }}$		Table ${ }^{\text {N }}$	
	$d r$	V	d	${ }^{\prime}$
'rutal.	53	¢. 178	51	4. 14.1
Betweon chats of plarting.	2	${ }_{1}^{18.140}$	1	1.1 .219 116.078
Betweenteststs	10		12	- 10.1010
Putes of phanimg \times tests	10		1	23.84
	3	. 5	25	. 317

Table 25.-Analysis of variance of data for tables summarized in table 24-Con.

Source nt vartation

2 Execols i poreont joint.

${ }^{2}$ A droup of tests conalsts of 3 varlet as at a shagio location in a single seasou that is compurablo with other similar gromps of the gmee 3 variaties in other locat lons and sensons or the same location in of har seabous.

Thus, although it has not beon possible to set up all data relating to time of planting in a single table for analysis, consistent results are observed for the several partial summaries. With the exception of the tests near Washington, it is shown that all plantings following the carliest one actually planted yislded successively less. In general, these results hold also for Washington, D. C., but a few exceptions occuryed. It is, therefore, safe to recommend the earliest practicable planting. The data also show that delays early in the planting season cause relatively less decrease in yield (and sometines absolutely less) than a similar delay later on.

EFFECLI OF THME OF PLANMINQ ON SIZE OF TUBER ILAIFESTED

Tables 20 and 27 show that delayed planting brings about a decrease in the size of the tubers harvested. The tuber size appears to be distinctly though nothighly correlated with reative yields. Meantuber size in the Washington, D. C., plots decreased 28 percent between the A and E plantings while the yields for the same plots decreased 50 percent. In Minnesota, size decrersed 49 percent between D and E piantings, and yield decrensed 40 percent.

Considering tho Minnesota and Washington, D. C., data either separately or in combination, the variances due to date of planting are min highly significant with reference to residual orror and also to interaction between date of planting and test. The differences are obviously so great that it is unnecessary to present the F values. In the Oregon plots very striking differences were observed between the two plantings. The mean tuber sizes for planting dates B and C for all tests combined were 3.29 and 2.44 ounces, respectively, representing a relativo decrease of 26 percent. The decrease in yield was 41 percent.

VAILETAL UESDONEE TO TIME OF PLANTINQ

Reference to tables 19, 21, 23, 25, and 27 will reveal no instance in which there was a significant interaction between date of planting and varioty. It will be recalled that the three varieties compared throughout these studies were chosen for their marked differences in growth habit and time of maturity, or apparent cessation of activity
in the fall. Despite marked consistent differences in yield, as shown by high variance due to variety, they behaved alike in response to planting time.
Tanha 26.-Effcet of date of planting on mean weight of harvested tubert of Jerusalem artichoke in Minnesola and near Washington, D. C.
[Triplleate plots]

1'lace ntwi varlety	Year	Welght of tubers from plantiog 1-					
		4	13	${ }^{\prime}$	D	k	
Washngton, D.C.:		Ounces	$\begin{gathered} \text { Oances } \\ 1.13 \\ 1.20 \\ \text { i. } 27 \end{gathered}$	$\begin{gathered} \text { ounces } \\ 1.01 \\ 1.73 \\ 1.18 \end{gathered}$	$\begin{gathered} \text { Ounces } \\ \text { O.P5 } \\ \text { O. } 15 \\ .02 \\ .02 \end{gathered}$	$\begin{gathered} \text { Onлcez } \\ 0.83 \\ 1.10 \\ .70 \\ \hline \end{gathered}$	
Caneago -		(is2					
Waterer							
Mean		1.39	1.30	1.30	1.11	91	
Blane Amelloro.	$\begin{aligned} & 1938 \\ & 1903 \\ & 10303 \end{aligned}$			$\begin{aligned} & 1.701 \\ & 8.07 \\ & .06 \end{aligned}$	$\begin{array}{r} 1.42 \\ .07 \\ .58 \\ \hline \end{array}$	$\begin{array}{r}1.49 \\ .47 \\ \hline 17 \\ \hline\end{array}$	
Whicuga.....							
		${ }_{1.20}^{13}$	1.08	1. 1.22	1.80	. 02	
Hinnesetn: Blane 人melloro Chicneo \qquad frateres.	$\begin{aligned} & 1932 \\ & 1932 \\ & 19322 \end{aligned}$			2.221.301.10	$\begin{array}{r} 1.40 \\ .84 \\ .83 \end{array}$.81 .01 .05 0	
		.-...					
		--.-....					
Mam			1.51	1.02	. 70	
Mean (0) test				1.33	1.4	. 87	

 interyals.

Table 27.-Analysi of variance of data for table 26

Place and sourco of variation	Analysis:		Analyst 2	
	d	V	4	V
Washtagton, D. C'.	86	0.1833	80	0.1833
Botwen ratas of planting		1. 3778	4	${ }^{2} .3758$
Betweon vartatlas.........	$\stackrel{2}{1}$	14.3803		
Jotweon ycars-			8	31.064
Butweon tests	8	. 032		
Dates of manting \times varist	4	. 0471	-	
Varlattes \times sears.	2	${ }^{1}$ 2,8580	20	4.0935
Dates of plarting \times (ests	8	.63\%	60	. 0172
Minnesola!	28	\$. 2300		
Betweon dutas of planding.	2	'1.3338		
[itutwen tests ..-.-...-.	4	1.2432		
Pates of plantigg \times tests	18	$\xrightarrow{\cdot .0392}$		
			80	.1561
Trotaln..................-	80	. 1701	80	, 1
Between dates of planting -		1. 1.438 .4	2	11.1844
Between varletlos.	2	11.0504 .0784		
Letween yrouys of lests.			8	T.1877
Betwean induruan testiot		. 018		
Dates of phanting \times vates of phanting \times testa.	4	1. 1204	18	1.125s
Varieties \times tests \times.-...	62	. . .05389	54	. 0248
Eror (rmalndur).				

[^6]The data for both Minnesota and Washington, D. C., in table 20 were analyzed by another break-down (not shown) in addition to that presented in table 27, in order to determine whether there were significant interactions of planting date and variety with reference to size of tubers harvested. A barely significant interaction ($F=5$-percent point) appeared in the single season's results from Minnesota, but in neither the Washington results not those of the combined locations. In all of the varieties observed thus far an appreciable decrease in size of tubers resulted from delayed planting and in all to about the same relative extent.

DEPTH OF PLANTING

METHODS

All plots to be compared with reference to depth of planting the seed piece were planted on the same date at any one location in a single year. Furrows were opened to such a depth that the seed piece would be covered to the desired depth when the furrow was closed. Special care was.taken to drop the pieces at the same level in the furrow, then they were carefully covered by hand and the row leveled off. Efforts were made to change the contours of soil surface as little as possible in cultivating the plots, to avoid the addition or removal of soil from the immediate vicinity of the plants. Some difficulty in this connection was encountered where irrigation was necessary, and those results will be found rather at variance with the others.

At harvest time the tubers of five typical hills of each plot at Washington, D. C., and in Wyoning were carefully removed, one at a time, to successive depths, the number and weight being recorded for successive 2 -inch depths for each plot. The number and position of stolons were also noted on these plants. The object was to determino whether planting depth influences the depth of the tubers to be harvested or the depth of origin of the stolons on which they are borne. After the removal of the tubers from the selected hills, the remainder of the plot was harvested by hand in the usual manner.

The plot sizcs in the several locations were the same as those described for time of planting (p.20). The number of plots was as follows: In Oregon and Illinois, duplicate; near Washington, triplicate; in Wyoming, quadruplicate. Certain of the plots in Wyoming were damaged, reducing the number for which complete data are available. All yields were recorded on an individual plot basis, but certain of the data on responses other than yield have been compiled from means of plots in a single test. The final mean values are not a flected, but the estimated errors, of course, are higher than if calculated on an individual plot basis.

resulus

EFFECT OF DEITII OF PLANTING ON YIELD

The most extensive set of data upon depth of planting was obtained in the Oregon tests. Although but a singlo location is involved, these data are of sufficient interest to be presented and analyzed separately from those of other tests. Tables 28 and 29 show the response of three varieties to planting at depths of 3, 4, 5, and 6 inches in 1932 and 1033. The results are not very consistent either among
the varieties or for the 2 years. Despite these fluctuations, the 2 -year means for all varieties show a generally best yield from the 4 -inch depth, and the difference is significunt. (Observed minimum difference between means $=1.27$ pounds; calculated required difference $=$ 1.03 pounds.). The mean for the 6 -imeh depth is significaintly lower than for the $\overline{5}$-inch and approximates a significant difference frem the 3 -inch depth.

TAule 28.-Effect of depth of planting on yield per hill of S varieties of Jerusalem artichoke at Cortallis, Oreg.
[Duplleate plots]

Year and variety	Yiedd from planting of Indealed depth			
	3 inches	4 Inches	3 Inctus	8 inches
Blatic Andiforo.- 1032	Pounds 12.70	Pounds 18. 23	Pounds 13. 4	Pounde 13.41
Chucergo.........	12.174	12.83 13.40	15.21 7.73	
Mean.	11.73	14.89	12.12	11.68
Jthac Amelforc.	1230	13.01	12. 814	12.84
Whaterer	11.40	10.09	11.71	8. 01
Morn.	10.85	10, 54	10.73	9.27
2-yeur mean	11.30	12.30	11.43	10.54

Table 29.-Analysis of variance 4 f data for table $\boldsymbol{2}^{2} 8$

Source of variation	Degrecs of frectorn	Mean Stquire
Total	47	8.647
Between planting Coptis.		19.421
Hetween years.	$\frac{1}{2}$	1 1 180.267 180
Hotween varietites.....ione	$\frac{2}{6}$	111.004
Plawting deptlis \times varletles.	产	${ }^{2} 6.057$
Varleties \times yoars..........	(2)	(3. 1.22)
Hematuder-.--------	22	(1. 596
Error.-...		1.390

${ }^{1}$ Exceade 1 -percont point.
2 Hetween b-jorcent and 1 -percent palnts.
Valuw in parontbeses are combined to glve the value identiled as orror.
Table 29 shows significant variances due to variety, year, and the interactions planting depth \times variety and planting depth \times year. Significant differences in yied between these three varieties will bo noted throughout these studies. The variance due to planting depth is not significantly greater than either of the two interactions in volving deptii. Therefore, with these limited data no definite conclusions as to varietal response can be reached. In the light of observations reported later, it would seem that many of the varietal differences in response are due merely to chance. It can only be said that, in the long run, 4 inches is the best planting depth and that 6 inches is definitely too deep.

In tables not presented here were combined the results of all tests in Oregon, Wyoming, and near Washington, D. C. Since the same varieties were not planted in all places, determination of varietal response, unfortumtely, is precluded. Again, as for Oregon alone, the 4 -inch depth was found to be the best (8.95 pounds per hill), 3 and 5 inches neatly equal (7.91 and 8.16 pounds) and next in order, with the (j-inch depth definitely inferior to those of 3 and 5 inches (7.48 pounds). The vaniance due to depth was highly significant with reference to residual error (observed $F=22.4$; 1-percent point $=4.31$) but not with reference to the interaction of planting depth and lest (obsecved $F=1.68$; \tilde{j}-percent point $=2.90$). The interaction was significmat with reference to residual error (observed $F=13.5$; 1 -perernt point<2.29). In this instance the factor of test involved buth variety and place, so that causes of the variations in results could not be determined. The conclusions reached are the same as for ()regon alone.

When the data from triplicate plots near Washington are analyzed alone, the yields for the suceessive 3-, 4-, 5 -, and 6 -inch depths, respertively, are round to be $3.23,3.58,3.46$, and 3.10 pounds per hill. Mthough the trend of the results agrees with those of the Oregon phot, the rariance due to depth of planting is not significant (observed $F=2=2$; 5 -pereent point=202).

Since the combination of all the Oregon data with the less extensive Wyoning and Washangton, D. C., data (see second paragraph nobove, diseussing tables not presented) might produce a table topheary with results from Oregon, tables 30 and 31 are presented.

Tanse 30- Effat of depth of phanting on gichl per hill of Jerusalem artichokes grown in Oregon and W'yoming und netar Washinyfon, D. C.

DDuplicate plotsl

Prace	Variety	Year	Yield from jlanting of ladicated depth			
			3 fncties	4 inches	5 inches	0 inches
Oragor	shans Amelioro.	1933	counds	Pounds	Pounds	Pounds 13. 68
			1936	13.91	12. 80	13.84
Winshagton, 5. (c)	do	1939	5.5	2. 12	6. 2.4	1.60 5.40
			2.18	2. 213	2.07	1. 88
$W_{\text {yoraing }}$	Whterer. ...----.......----1 1933		1.75	2.073	2.51	2.32
د¢ma.			0.es	7.57	6.36	6.32

Thnan 31.-. 1nalysis of artiance of data for table 30

	Soutce nf mataton	Derrees of freeston:	$\begin{gathered} \text { Mell } \\ \text { Stquar } \end{gathered}$
Total		47	29.278
Buturen pimathg ciestios.		3	15.176
Hetmere texts	3	1294.606
Ilmbiny depths \times etevs		15	1.1.988
Ftar trenmandert.		2	. 334

The data for 2 years in Oregon and for 3 years near Washington, D. C., all relate to the Blanc Ameliore variety. The Wyoning figures were obtained upon Waterer. Removal of part of the dominating effect of the high Oregon yields results in more striking rekative differences in yicld at the diflerent planting depths.

As in other tables referred to, tablo 30 shows that the 4 -ineti depth gave distinctly the highest yidd. The significance of variance due to depth (table 31) is very high, as is also that due to interaction of planting depth \times test. Again, variance due to planting depth is not significantly greater than that of phanting depth $<$ test. (Observed $f^{2}=2.67$; 5 -pereent point $=3.29$.) For comparing the men yidds of the six tests, a diffrence of 0.47 pound is calculated to be significant.
In a further eflort to analye the data in a way that woud permit drawing definite conclusions as to the specific applicability of the results obtained in general, the values for a siagle variety, Blane Ameliore, were amalyed for 2 years eath in Oregon and near Washington, D. ('. No additional information was grined.
In the flinuis studies of depth of phanting, tubers were phanted at 3,5 , and 7 inches in 1931 and 3%, $5 \frac{2}{2}$, and 7 inches in 1932 . In analyaing the data, the 3 -and 3 binch deptlos were tabulated in the same column, and the $\overline{5}$ - and $\overline{5}$-inch together. In 1032 the yieds from the threo depths were ahost identical, being 2.71, 2.70, and 2.73 pounds per linit, respectively. In 1931 they were less close together, yieding $3.05,3.15$, and 9.75 pounds per hill, respeetively. Since only a single variety was used, involving a total of but 12 plots, significance cond not bu expected for such small differences in yield. Variance due to depth was 0.036 , and when referred to a residuat error of 0.031 was obriously insignificant. Nevertheless, planting at a depth of less than 4 inches or more than 6 inches tended to be inferior to that at the moderate depth of 5 to 5 y inches.
One year's results in Wyoming indicated the desirability of rather deep planting (ä inches), but this was exceptional and based on a single set of quadruplicate plots. It is pussible that planting at a depth less than $\overline{5}$ inches under semiaricl, high-alitude conditions resulted in insuficient moisture in proximity to the seed pieces, which are easily desiccated.

Regrardiess of the depth of planting of the seed piece, practically no stolons were found to emerre from the stems of the plants more than 6 inehes below the soil surface. This finding is only what would be expected. since no seed pieces were purposely planted deeper than 6 inches.

Under Wyoming conditions depth of planting seemed to be without effect upon the position of origin of stolons. The figures for Wyoming in table 32 represent means of 10 records taken for each planting depth histed. Table 33 shows that for Wyoming the variance due to phanting depth is practically identical with that due to residual error. There was much more variation among replications than among treutments. These results are discussed hater.

Table 32.-Effect of depth of planting on depth of stolons at point of origin upon the nain stem of ferusalem artichokex grown in Wyaming and near Washinglon, D. C.

Pluce	Year	Stolons 1 mising at depth of 0 to 4 Jnches fromn seed piecoos planted at ladicated depth			
		3 Inches	4 incles	5 3nchex	8 inches
		$\begin{array}{r} \text { Percent } \\ 80.0 \\ 100.0 \end{array}$	Percent 53.0 740 74, 0	$\begin{array}{r} \text { Percent } \\ 50.3 \\ 6.8 . \end{array}$	Percent 43,7 57.0
			00.0	56.4	50, 9
	1033.....-.....................-	$\begin{aligned} & \text { Inches: }{ }^{1} \\ & 3.71 \end{aligned}$	Inches: 3.90	$\begin{array}{r} \text { Inchea } \\ 3.50 \end{array}$	Inches: 3. 76

1 Bxpreswed us qercentrifo of total number of stoloth on phat.
15 plants jer plot: tripilente plots.

Tables 33.-Anulysis of variance of dinta for lable 59

Pate and source of vartation	Degrees of frectorn	Mean sfuaza
Wrashington, D. CT:	23	307.303
Thetwent tests...		11, 127.584
- Elotwend plantime ieptis.	3	$11,8401.315$
- Eerror (remminter) planting	3	12. 5.54
wyoming: Totin	10 30	115.307 .291
Welweon mhantug depthy.		
Hotweell rephentions....	${ }_{3}$	3,8\%
1-rtar (remainder) ...	3	. 337

t Fxacerts d-peraratit jreltid.

In 1932 a windstorm so damaged the plots near Washington, D. C., that attempts to study stolon and tuber distribution were useless. After heavy rain, the full-grown plants were literally "tipped over" soon before haryest, lifting large clumps of tubers from the soil on the windward side of the plants. Tubers and stolons were so greatly disturbed that their normal positions could not be determined. The crop had to be promptly harvested or soil shoveled over the exposed tubers to prevent damage by rodents and by desiecation.
Somo yery interesting data were obtained, however, in 1931 and 1933. Since over 98 percent of the stolons arose within the upper 6 inches of soil, the clifferences between 100 and the values in the first part of table 32 represent fairly accurately the percentage of the stolons arising in the 4 -inch to 6 -inch soil zone.

The stolons arising at depths greater than 6 inches were on stems apparently arising from pieces accidentally placed deeper than 6 inches or on stems that came from the lower side of the seed pieco and that grew downward slighty before curving to a straight upward position. Excessive covering of the row may have occurred in a few
cases. It will be noted first that the stolons were deeper in 1931 than in 1933. The reason for this is not clear since the plots were on light, sandy loarn soils both years; if any difference existed, the soil was lighter in 1933 than in 1931 . The loss of the 1932 material wats very unfortunate, since those plots were on much heavier, silt loam soil and would have aforded a valuable comparison.

Table 32 shows that as the planting depth incrensed the depth of stolon origin tended to increase in the Washington, D. C., plots. The 2-year means indicate 90 peremb of the stolons in the first 4 imehes for the 3 -inch planting depth, deeressing consistently to 51 percent in tho (i-inela planting depth. The variance due to depth of planting (table 33) is highly signifient, as is also that due to test. However, the interaction of depth x test is practicaly negligible, indieatiug a very high degree of dependability of the rersults under the conditions of thisis study.

Thble 34 shows the mean sizes of tubers harwested for each test. Alloough it appents that the tubers from tho 4 -inch planting depth are considerably hager than those from the other treatments (see monn for 10 tests), the amalysis of varime (table 35) shows that differences between plantiug depths are not signifieant when referred to residual error. Despite the lack of significance of differences, the fendeney for tuber size to vary with tuber yidd is of interest.
 salcm יrlichohex grown in Ortgon and I'yoming atad near Wowhington, D. C.

[^7]
EFFECT OF DEHTH OF PLANTING: ON DISTEIBUTION OF TUBELG

Only rather fragmentary data were obtuined relative to the effect of depth of planting upon the distribution of tubers in the soil at harvest time. 'T'wo years' data were obtained near Washington, D.C., and I year's in Wyoming. Although not extensive, they are of considerable interest and appear in tables 36 and 37. Results are presented both on the basis of weight of tubers and number of tubers.

It may be noted first that the percentage of the total number found in a single soil zone is essentially the same as the percentage of the total weight found in the same zone, indicating no great difference in size of tubers from the yariots zones. The significance of this observation is hardly clear, since it is based on such limited data, but it would seem to indicate that stolon and tuber development are initiated at the various soil depths at about the same time and that tuber enlargement proceeds at an approximately similar rate regardless of tuber depth.

In tho Washington, D. C., tests in both years there was a defnite tendency for increasing depth of planting to increaso the depth of the tubers harvested. The percentage of total found in the 4 - to 6 -inch layer of soil increased in 1033 from 1 percent in the 3 -inch planting depth to over 38 percent in the 6 -inch plots. In 1931, on somewhat henvier soil, about 13.5 pereent of the thbers were found in the 4 - to 6 -inch level of the 3 -inch plots and 34 percent in the corresponding level of the 6 -inch plots. Table 37 shows that the variance due to planting depth is very highly significant.

[^8]BASED ON WEROHT OF TCRERS HARVESTED

HANED ON NEMAER OF TYBERS ITARVESTED

Tables 37.-Analysis of variance of data for table 86
BASED ON WEIGHT OF TUBERS HARVESTED

Source of variazlon	Wishlngeon, D. C., iubers from $0-4$-ineh depth		Wyonting, tubers from indicated depth					
	$d f$	V	O-W inches		1-6 loches		Balow 6 maches	
			d	V	df	v	df	v
'rotak.	15	3001. 673	7	311. 220	7	221. 189	7	447.050
Hetween phuntigg depths.	$\begin{gathered} 3 \\ \left.=\begin{array}{c} 3 \\ 312 \end{array}\right) \end{gathered}$	$\begin{array}{r} 1 \mathrm{I}, 255.072 \\ (75.072) \\ 60.348 \end{array}$	$\stackrel{3}{1}$	$\begin{aligned} & 310.410 \\ & (1-1.000) \\ & 311.930 \end{aligned}$	(1)	$\begin{aligned} & 3 \times 2.597 \\ & (13.595 \\ & 1+0.132 . \end{aligned}$	(1)	$\begin{aligned} & 383.975 \\ & (58.681) \\ & 49.681 \end{aligned}$
Error (remmilder)-..								

1 Execods i-purcent potnt.
Valuea in parenthesw mre factucted in the valum klemtited as error.
J Between b-pcrcent and t -furcent polats.
Unfavorable conditions interfered somewhat with these tests in Wyoming. The values in the table represent menns of duplicate plots but are of doubtful signifieance on account of great discrepancies between duplicates. The reason for these discrepancies has not been determined. The behavior of the 6 -inch depth of planting is not at all in conformity with the trend of the other Wyoming plots or with the Washington, D. C., results. Among the $3-4$-, and 5 -inch plots, however, there appears to be a tendency for deeper planting to result in deeper tuber development. The analysis of variance (table 37) shows none of these apparent trends to be significant.

With reference to the lack of influence of depth of planting on depth of stolon formation and of tubers in the Wyoming tests, the following possible explanation is suggested. Cnder irrigation, it may be that there is a comparatively narrow soil zone within which moisture conditions are conducive to stolon and tuber development. Application of water by the furrow method produces a temporary high water table in the rows, beneath the plants. Such repeated applications may prevent origination of stolons at depths as low as those found in certain nonirrigated places where the soil-moisture conditions are subject to less drastic change.

The data are too meager to permit drawing very definite conclusions, but they indieate that planting as acep as $\overline{\bar{j}}$ or 6 inches will materially increase the labor of tharvesting by inducing deep tuber development.

PLANTING DIS'TANCES

METHODS

Plots for the studies of the eflect of planting distance on yield and development of the Jerusulem artichoke, for a single loration and season, were phanted all on the same diay. Size ol' sed piece was as nearly the sume as possible for all plots in a single test, but differed in diflerent locations. In the Oregon tests 2- to 3 -ounce seed pieces wero planterl at a depth of about $\overline{\mathrm{a}}$ inches; in the other tests, 1 - to 2-ounce seed pieces were planted at a depth of about 4 inches. Plots lor studies of the eflect of distance between liills in the row were pinnted in rows 4 fect apart in Illimois, Alinnesota, and Wyoming. In Oregon nad near Washingtom, D. (., the rows were i) Seet apnet. In the studies of the efteet of distance between rows, the hills were 2 lect aphit in the row exeept in Oregon, where they were 4 feet apart on account of the enomous top growth normally made there. Bach plot was harvested by hand the liills counted, and the tubers counted and weighed.
Calculations of all yielfs were made on a yield-per-acre busis.

As in the other studies reported, variations in phanting plans at the various locations have necessitated the examination of the results by an overhuping series of tables instead ol by a single table combining all data. Despite the disadvantages of such a procedure, some conclusions can be drawn from the dita berein presented.

Table 38 shows the yields obtained by planting at 12, 24, 30 , and 36 inches between hills, in Wyoming und near Washington, D. C. For both locations, atone and in combination, the variances duo to distances between hills are all so much greater than these representing residund aror that mere inspection indicates their significance (table 39). Thace are also significant interactions between tests and planting distances, indicating distinctly variable responses among the several tests. Although fill these interactions are quite signifieant, the varinomes due to plamting distance are all still significantly greater than the interactions. (For Wishington, D. (.: Observed $F^{*}=16.2$; 1-percent point $=4.87$. For Wyoming: Observed $F^{\prime}=7.6 \cdot 5$-percent point $=4.76$. For combined data: Observed $F^{\prime}=3.8$; \bar{j}-percent point $=$ 2.02.) Thus, despite local and seasonal variations in response in these two locations, it can be concluded safely that yields per acre are materially jnfluenced by the distane between lifls in the row. Table 38 shows no real difference between 24 - and 30 -inch spacings near Washington, D. C'., but the differences for Wyoming and for all other spacings in beth places are relatively great. As a basis for determining the signifirnare of diflerenees in comparing individual means in the table, the calculated diferences required for significance are: For Whasharton, D. ($1,0.84$ pound: for Wyoming, 2.23 pounds; and for the combined results, 0.53 pround.

Table 38.-Effect of distance behween hills on yield per acre of Jerusalem artichokes grown near Washington, D. C., and in Wyoming

Quadruplicate plats]

TPETS NEAR WASHINOTON, D. C.

Tear anti varioty	Yeld per acre from piantings at madicated distance between hlils		
	I2 inches - 24 inches	30 lnches	30 Inehes
Banc imeliore..............	7one Q. 21 Tons in	толя 4. 1 N	Jons 3.14
11332			
3lame Ameliore.	23.34 18. 20	18. 22	18.24
Whathger.....	21.01	13. 08	15.14
Waterer......	21.24 4.27	1.4.83	11. ${ }^{\text {W }}$
Blanc Ameltore. ... ${ }^{1033}$	8.03 ¢.6i		
Chicasa... ${ }^{\text {a }}$	7.73 8.7.1	12. 01	5. 73
Waterer..	6. 65 \% 6.13	4.89	4. 71
Sverling $30 . .$.	10.05 - 8.55	8.61	6. 78
Me.un.	13. $\mathrm{6d} 10$ 10.03	0.515	S. 91
	UMIN:		
1483			
thane Amplore	12. 419 9,69	3.73	4.52
(hitergo.. .	\% 41 : 0.73	5.65	4.87
Waterer...	(1.141: i .35	I. 615	1.31
Mean.	9,051 - 501	5. 3	4.67
	$12.30 \mid$	8.	7.78

Placs and sourcu of variation	$\left\lvert\, \begin{gathered} \text { Degrees of } \\ \text { freedonn } \end{gathered}\right.$	$\begin{gathered} \text { Mcan } \\ \text { Siquart } \end{gathered}$
Wrshinghat, id.	127	42. 149
betweerimistances between htils		
betwent replientions . .	3	1312. 707
Retweris tests.... - .-	7	${ }^{5} 6 \underline{2}$
Tests X dsptanme Joctsem nills.	㫛	17.75
fuatx \times replicathons...	21.	18.841
Errar trematader).............	T21	$2 . \mathrm{Ci7}$
Wyemalter: 'Totat.	47	\%.003
Helwom tistances between hills..	3	15.50 .637
Jteswen tests (crarlutius)	3	192.12
	1	17.06
Eirur (rehaintert.-..............		2. $2+3$
Wathington, 1). C., and Wyoming: Tothl.	13	35.401
between distanees betwern hills.	3	1107.142
lietwern replications....	3.	135,874
between itsts..............	[9]	1356.103
'estis \times distances betwenn mils.	330	
Error (rematinder)	129	i. 101
Gurletal diflerencw: Tolal.	$1.8!$	
Bntwend distanex) hetwern bills.	3	1501.368
18elween yardides..	2	$1(2) .850)$
Bewern tests..		11.703.723
bintwen replications.	3	111.041
Frethes \times distorees between fills	${ }_{4}$	1. 515
forieties \times Lests.	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	${ }^{6} 9$
Truts \times tarleties \times dillatames	12	
Fircor (rumaider)	165	1.324

The hast part of table 39 shows the analysis of variance of the three varieties that occurred uniformly near Washington, D. C., in 1032 and 1933 and in Wyoming in 1933. It is of particular interest because it shows that despite enormous variances due to other factors and interactions there was no significant interaction between varieties and distances. Since no significant reaction appears between planting distance and such diverse varieties as Blane Ameliore, Chicago, and Waterer, under the conditions indicated for these tests, it seems to bo perfectly reasonable to group together for analysis individual tests involving disproportionate varietal frequencies. Obviously, such a procedure precludes identification of the effect of the varietal component of the factor for tests, but that is relatively unimportant in the present stadies. Lack of uniformity of plot procedure, insofar as the varicty planted is concerned, should not detract from the validity of the results.

Variance due to replication is presented in table 39, since this was one of the rare instunces in these studies where it was significantly greater than residual error. Most of this effect was due to a steep and consistent gradient in the field where the Washington, D. C., plots were located 1 year.

Tablo 40 presents data for $12-, 18$-, $24-$, and 30 -inch spacings in Illinois and Minnesota. 'The trends of the yields are similar to those presented in table 38, but the differences are less striking. In these particular tests the number of plots was rather small and the dilierences grat between some of the tests. Under such conditions only tow odds of significance and sonewhat questionable conclusions can be expected. Nevertheless, variance due to planting distance (table 41) is significant with reference to residual error, although it is not signilicantly greater than interaction between phanting distances and tests. (Observed $F=1.63 ; 5$-percent point $=3.56$.) The calculated required diflerence for simpificance between menns is 1.35 tons. The 30 -ineh spacing thus yieded definitely less than tha 12- or 18 -inch; and the 24 inch tess than the 12 -inch. More comprehensive data on the $12-$, $18-$, and 9 -inch spacings in Minnesota cast doubt on the validity of the particular Mimesotar results shown in table 40.

Table to... hifect of distanee betucen hills on yith per acre of ferasulem artichokes grown in Illinois und Minnesotn

Table 41.-Analysis of variance of data for table 40

Source of varintion	Degrees of readom	Muan
Totul.	31	24. 396
Between distances between hifls.		17.558
Between Laills...........	3 9	${ }^{2} 929.073$
'Tusts \times distanees between hills	16	
Ertor (remaindor)..........	10	1.82

' Rutwoen b-percent and 1 -percent goints,
2 lixcepils 1 -furcent print.
Table 42 presents the results of six tests in Minnesota involving a number of varieties over a period of 3 years. It will be seen that no important difference in yield existed between the 12- and 24 -inch distances, although the 18 -inch plot appears much lower than either. The variance due to planting distance for the table as a whole is not significant when referred to residual error and is even smaller than tho interaction of tests and planting distances (table 43). It thus appears that within at planting-distunce range of 12 to 24 inches, under Minnesota and Illinois conditions, yields per acre are not greatly affected; certainly they huve not shown any consistent behavior in these studies.

Tabiak 42.-Effet of distance between hills on yield per acre of Jerasalem artichoken grown in Minnesota
[Quadrupileste plots]

Ytaremen mardaty	Yied per atere from plantings al indfented distanco betweon hills		
	12 tuehes	18 fuchens	21 Inches
1983	Tond	Tous	Tons
Matrmoth Fronel whilde.........	10. 10	17, 43	16. 80
. ${ }_{\text {Do. }}$ + +.......... .	19.16	10.43	15. 11
1632			
Minmmoh Fremeh White.	6. 2.24 8	200	11.199
1033			
Chicngo.anc.a......	9.38 7.48	8.79 6.16	8. 70 6.62
Mann...	16.72	9. 32	10.41

I I'Inntenf In rows 3 feat ajarl; othor tests phanted in rows 4 feet apart.
Table: 43.-Analysis of variance of data for table 42

Source of varintion	Dasrees of freedurn	Meant stpuare
Total.....	71	33. 550
getmben distances between hills.	2 3	8.347 142.712
Thetwoen tests,う.ils	10	1 to. 639
Error (rormander).	54	3. A3\%

[^9]If the duta presonted for the $12-, 24-$, and 30 -inch spacings (tables 38, 40, nund 42) are placed in a single table for analysis as a whole, the results shown in table 44 are obtrined. In the interest of economy of space the tabulation of tho yiclds is not repented. In 18 tests involving 7 different varieties grown in 3 different years on duplicate plots, the ment yields were $10.97,9.59$, and 8.19 tons per acre from plots planted in rows 12,24 , and 30 inches apart, rospectively. Despite the tendency toward an insignificant or variable effect of planting distance on yicld in Mimesotis and Illinois, the consistent response in other Loentions outweighs it, resulting in signifiennt differences between the moms shown. The varianco due to distance between hills is obviously highly siguifient with reference to residual arror and to interaction between tests and distances between hills. This interaction also is significant with reforence to residual error. Thus, in genern, within the rango of conditions represented, 12 -inch spacing gives slightly higher yields than 24 -inch and both 12- and 24 -inch spacings yiedd substantially more than 30 -inch spacing.

Tabus 4.-- Anolysis of variatere of data relatitg to affet of distance betwaen hills on zideld of tubers per acte of ferusalem artichokes grown in Illinoin, Minnesota, and Wyoming and new I'ushinglon, D. C.

On aceount of the enormous top growth normally made under westem Oreqou conditions, tho derusalem artichoke is usurlly planted at anch wider spacing in Oregron than in most other places. In these studies, therefore, spacings in the row were established at 24, 30,36 , and 48 inches. The 48 -inch spacing is common practice where tho Oregon tests were made. The results with threo varieties for 2 yours are shown in tubles 45 and 46 . It will be noted that planting closer than 4 feet produed no significant difference in yield. The varianco due to distanco betwem hills was very low add not significantly greater than the tesidual error by cither ol the two methods of breaking down the data. The chicf soure of variation was in anicties grows. Intractions between years and spacing, between rarictics and spacing, and between varieties and yenrs were all significunt with reference to residual error, and of greater (though not significantly greater) magnitude than the variance due to spacing. Apparintly, such a large plant development is attaiued at 4 -foot spacmig under these comditions, which are so favorable for the plant that eloser sparing only erowds the plants, permitting no groater total development per unit of aref.

Table 45.-EEfect of distance between hills on yield per acre of Jerusalem artichokes grown in Oregon
(Dupileato plots)

Farlety maty yer	Yiekl per nero from phantings at indicated dlytares between hills			
	24 Inches	30 helias	30 snches	48 inctes
Bhac Ambliara				
1033.............			${ }_{15.45}^{10.57}$	
Mean,	13, 08	13.67	10,0i	15. 50
Chlento:				
1033.-	12.05	12.02	4, 43	12. 20
Maxn.	13.27	12.13	11.50	11.71
Wuterer:				
1033.	10.30	8.78	8.80	8.75
Monil.	11. 18	0.46	11.04	10.21
Mean for $\frac{1}{\text { tests. }}$	12. 51	14.72	12.87	12.40

Tabla 40.-Analysis of rovande of data for lable 15

Aundysit			Analysis 2		
Sourco of variatien	Degreos of freddom	Men sçuaro	Saureo af varlatlon	Deprees of free doun	$\begin{aligned} & \text { Moan } \\ & \text { squaro } \end{aligned}$
Total	17	6. 545	Total,	47	0.645
Fletwendistancy dutween hitfs.	5	12. 815	Hetween distraces betwean hills.-	5	2.815
	4	267.172	Tests \times dstances hetween hims...	16	
Yarlotes x distances hetweun bllls.	${ }^{4}$	16.258	Ersor (remmintlet) .-.................	24	. 438
Varteltes \times years,......---......	2	228.201			
Years \times dishatcos betwean mills. Errot (tomalater)	30	$\begin{array}{r} \sqrt{17.171} \\ 1.050 \end{array}$			

1 Tsocwean s-purceat andithercumt polals.

- Exceots i-gerconk mint.

EFFECT OH DLSTUNER UETWEEN HILLA ON NOMEEA AND YIELD ON TUDEJ\&S PER HILL
From tho data on number of hills and number and weight of tubers per plot were calculated the mean numbers and weights of tubers per hill. These figures aro of interest as an indication of the mean sizes of tubers doveloped and also becsuse they emphasize more clearly than yields per unit area the effects of competition among plants of this erop.

T'able 47 shows that in four tests in Minnesotr, involving spacings of 12,18 , and 24 inches, each successively greater spacing resulted in a greater number and greater weight of tubers per bill, without exception. In table is the marnitudes of variances due to spacing are so great in comparison with orror that reference to F values to show significance is unnecessary here.

Table 47.-Effect of distance between hills on number and yield of hubers per hill of different variefies of Jerusalem artichoke grown in Minnesota

1 Planted In rows 3 feot apart; all athers In rows 4 foet apart.
Table 48.-Analysis of variance of data for table 47

Source of variation	Number of tubers		Yleld of tubers	
	df	V	d	v
Total.	47	269.13	47	2.091
Totween tistances between hills.-.	2	1 $\begin{array}{r}13880.07 \\ 3.301 .16\end{array}$	${ }_{3}^{2}$	18.795 129.241
	0	${ }_{1} 11215$	${ }^{3}$ (8)	(.393)
Error (remainder) .-...........-.	30	37.41	42	. 261

1 Exceets 1-percent polnt.
; Botweon 5-percent and 1 -parcent points.
3 Values in parcentheses are included in the values identhed as ertor.
Tables 49 and 51 show the tuber number and tuber yield, respectively, per hill, in response to spacings of $12,24,30$, and 36 inches for several varieties and locations. There are but few tests in which the number or yield of tubers per hill at any stated spacing fails to exceed that of closer spacings. The response is distinctly more consistent than for yield per unit area. Tables 50 and 52 present the analyses of variance for the data in tables 49 and 51 , respectively. They show in all instances such large variances due to distance between hills and such small values for error that inspection alone is sufficient to reven the high significance of the former. It may be of interest, however, to present the calculated required differences for significance to facilitate comparisons. They are as follows:
Thebers
For means of Wyoming tests in table 49 3. 9
For means of Washington, D. C., tests in table 49 3. 6
For means of all tests in table 49 3. 3
Pounds
0. 51
For means of Wyoming tests in table 51
38
38
For means of Washington, D. C., tests in table 51 32

TABLE 40.-Effect of distance between hills on number of tubers per hill from Jerusalem artichokey grown in Minnesota and Wyoming and near Washington, D. C.
[Quadruplicate plots]

Year	Plact	Varlaty	Tubers per hill trom plantlags at indicsted distance between hills			
			$\begin{gathered} 12 \\ \text { inehes } \end{gathered}$	$\stackrel{24}{\text { fuches }}$	$\begin{gathered} 30 \\ \text { Lnches } \end{gathered}$	$\begin{gathered} 36 \\ \text { fnehes } \end{gathered}$
1931........		Blane Ameliors	Number 53.0	Number 72.0	Number 84.6	Number 105.
1035........		(.-.do.	20.6	32.1	26, 0	25.0
	W yowlige.-....-..........	Onjeago	13.0	18.4	22.5	20.6
		Waterer.	10.3	18. 2	14.9	17.0
		Mean	16.6	22,9	21.1	21. 1
1831...-..........	Wasilughon, D, C......	Bhanc Ameliore. . .---.....	24.8	27.6	39.5	38.6
1032.			53.1	78.4	97.2	104. 1
			48.6	68.7	70.0	83.0
		Blanc A meljore	15, 3	20.3	24.3	28.2
		Chicsgo......	25.2	37.0	38. 5	45.3
1033		Waterer.	37.1	48.5	58.0	69.3
		20723-30.	20.7	32 B	38.5	38. 4
		Menn.	34. 2	46.5	56, 2	62.5
		Mean (12 tests) .-..-	31.3	42, 8	49.8	55.7

Table 50.-Analysis of variance of data for lable 49

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Source of variallor} \& \multicolumn{2}{|l|}{$$
\begin{aligned}
& \text { Washington, } \\
& \text { D. C. }
\end{aligned}
$$} \& \multicolumn{2}{|r|}{Wyoming} \& \multicolumn{2}{|l|}{Minnesata, Wyoming, and Wastington, D. C.}

\hline \& $d /$ \& v \& $d f$ \& V \& df \& V

\hline Totail \& 127 \& 630. 77 \& 47 \& 53.24 \& 191 \& 742.44

\hline Between distances botween hills. \& 3 \& ${ }^{1} 4,887.45$ \& 3 \& ± 86.58 \& 3 \& 15,253.74

\hline Butweon tests........... \& 7 \& ${ }^{1} 7,882830$ \& 2 \& 1633.40 \& 11 \& 1971.48

\hline Betwean rupilcations \& 3 \& 1 1957.70 \& ${ }^{1}(3)$ \& (15.21) \& 3 \& 1350.71

\hline Tosts \times distnnces hetween hills \& 21 \& 1382.05 \& (6) \& (36. ${ }^{\text {a }}$) ${ }^{\text {a }}$ \& 33 \& 1269.31

65.

\hline Ertor (ramainder) ...-............ \& 93 \& 51.35 \& 42 \& 23.21 \& 141 \& 65.50

\hline
\end{tabular}
[^10]Taitle 51.-Effect of distance between hills on yield of tubers per hill from Jerusalem artichokes grown in Minnesola and Wyoming and near Washington, D. C.
[Quadrupllcate plots]

Table 52.-Analysis of variance of data for table 51

Source of variation	Washingtom, D. C.		Wyoming		Mlanesata, Wyoming, and Wasbington, D.C.	
	d	V	df	V	df	v
Totul.	127	6.333	47	0.612	191	5. 769
Hetween distances hetween hills.		138.059 18.24	3 0	$\begin{aligned} & 12.092 \\ & +1.815 \end{aligned}$	11	1 1 1 72 1.483
Butween terts	7	+13.240	2		(3)	(1.100)
Butweend replichtions.a....	21	1. 1.700	i (i)	(.503)	33	12204
Eirur (rymuinder)................	43	. 578	42	. 34	144	. 622

I Fixcueds I-percent print.
1 Between sprercent and I-percent points.

- Valuas in frarentheses are inchuded in the values identified as error.

Although but a single year's results are available for Wyoming, there is a strong indication that at the 24 -inch spacing the plants make the maximum development possible under those conditions and that at wider spacings lack of competition among plants is of no bencfit with reference to individual plant development.

The data relative to mean size of tubers per plot are summarized in table 53. There it will be seen that as spacing is increased from 12 to 24 inches there is an apparently substantial increase in mean tuber size, but that wider spacings produce no further increase. In table 54 the variances due to spacing, for the three different groups of tests, are all significantly higher than those of residual error. Despito these highly significunt values, the mean tuber size of the 12 -inch spacing is the only one significantly different from the others.

The calculated difference required for significance in the different tests and groups of tests are as follows:

Ounce

For means of Washington, D. C., tests
09
For means of all tests
08
Table 53.-Effect of distance between hills on mean weight of harvested tabers of ferusnlem artichokes grown in Minnesota and Wyoming and near Washington, D. C.
|Quadruphicate plots|

Placo	Tests	Mean welght of tubers from pluntings at indicuted distance between hills			
		12 inches	24 inchas	30 tuches	3 n inches
	Number ${ }_{1}$	Ounces	Ounces, 1.29	Ounces	Ounces 1.27
W yoming	3	1.71	2.02	1. 44	2. 00
Washinglou, 1). C'.	8	1.15	1, 20	1.31	1. 26
Mearn.		1. 29	1.15	1.48	1. 45

'Tabtes 5.1-Analysis of variance of data for lable 53

Phace nud source of variation	Degress of freedoll	$\begin{aligned} & \text { Mein } \\ & \text { square } \end{aligned}$
W yonhny:		
Tuelweun inistances.	4	1. 2323
Between testa.....	2	1. 1.4310
Frror (raminiter).	42	. 012 H
Washnglon, J. C..	127	. 1023
Fletween distunces.	3	1. 1384
Hetween tests	$\frac{7}{7}$	12. 8613
	17	. 0340
Mancouil..................	191	. 2417
Between disturies..	3	13634
	$1 \frac{11}{77}$	13.5318 .0392
Error (rematader).	177	.0392

1 Exteeds I-gercual proint.
It is recognized that these data on mean tuber size illustrate but a part of the status of tuber development. Detailed data on frequency distributions of various tuber sizes are needed in order to draw sound conclusions as to the effect of cultural practices on market quality or grate of product. One of the writers ${ }^{33}$ is making studies of effects of certain cultural practices on size clistribution of tubers.

Despite the incompleteness of the diata on tuber size, number, and yield per plant, it appears that size of tuber is reduced only by extreme crowding. Apparently, at spacings of 2 feet and further, tho development of larger tops is accompanied by a more or less proportional increase in number of tubers set, this number being kept in balance or proportion with top development, so that the mean size that ean be developed by tho arailable elaborated foods remains nearly constant.

[^11]

In general, the effects of distance between rows on yield were much the same as those of distance between hills. When phanted with 2 feet between hills, rows which are $3,4,5$, and 6 feet apart have the sume number of hills per acre as rows uniformly 4 feet apart but with hills spaced at 18, 24, 30, and 36 inches. Under similar conditions the yields might be expected to be similar for equal rates of planting.

On necount of limited facilities, fewer data were obtained relative to row distance than to hill spacing.

Table 55 presents the results of row spacing studies near Washington, D. (י, and in Wyoming. Although a rather consistent decrease in metn yields per acre accompanied increased spacing from 3 feet to 4 and 5 feet, the g-foot spacing yielded practically the same as the 5 -foot planting. In a number of individual tests, the 6-foot yied slightly exceeled the s-toot yied. These discrepancies doubtless were due to plot heterogeneity, since there is no evident reason why these row spacings should produce responses fundamentally different from those of other simila tests and of hill spacings.

\{1)upliate plata\}

Place, yant, nud wariety

Wrashinkton:
1633, [latac Aumbitra
103\% ${ }^{\text {a }}$ 'hicamo'.
1033, Waterer ! . .
Menn.... Whan for laki
W'youting:
20L3, 1finne Amelore.
1933, Chitumit
1235, Waterer.
Sfem
Sman for in jumbs

In table ab, annlyse of varinnce of portions of the data entering into table 5 ante presented separately and for different combinations. In all five analyses, the varimere due to row spacing is siguificant with reference to residual error. Only in the Wyoming tests is the interaction between raricties and row distances signifieant with reference to residual error. In this case variance due to spacing is not significontly greater than the interaction in question. (Observed $F=2.74$; \bar{b}-perent point $=4.76$.) In all the other comparisons, the lack of significane of interaction shows that the decrease in yield accom-
panying inereased row distance can be counted on regardless of variety or test. The calculated difference required for significance between means for the entire table is 0.49 ton. Other required differences can be calculated from the mean squares shown for residual errors.
'Table. 50,-Analysis of variance of dath for table $\overline{0}$

Samren of varlathat	1933 datator WeshIngion, 5. ('.		Totialates for WasiingtoIn, D. C.	
	df	\checkmark	4	1
Potal.	17	0.538	31	0.928
ligheen distances between rows	3	12, 738	4	1. 805
Belweer vardetive...	$\stackrel{7}{7}$			
Butwen repltations	3	1.96t	1	. 026
	$1{ }^{-1}$	11.045	3	4.751
		1,685	(0)	(24i)
Birror fotmainter)	3	. 116	3.4	. 370
Sumes af xatation	1633 dats dar Wyotnims		1033 datn for W_{5} omitig and Washinglon, D. C.	
	$d f$	V	df	v
'Total...	23	2091	17	1.301
Delween distunces betweeth rows.	3	10.304	3	10.780
Hetweell varielles.................		$1 \mathrm{I}_{6} .2105$	2	2. 2.51
Detwern maces.			1	3 0.003
1 baces \times distances botween rows.			3	, 8.50
Fardetes \times distantes between rows..	${ }^{0}$	123016	(0)	(1,515)
Firsor (rumatathert.			38	. 8.4

Sutree of variation	All data combiner	
	tf	v
Trami.	5	1.951
frelwe	3	110.38
dotween lests....-........	0	18.001
	(tis	$\xrightarrow{(420}$

Excrais trpmerent joint.

- Between s-prercent abd i-purcent pohnts.

Tables 57 and 58 present data for Illinois and Minnesota which are similar to those juit discussed Tor Washingron, D. C., and Wyoming but which involve fewer tests and varieties. The Wrashington and Wyoming data were tabulated separately to permit a determination of the elfects of variety. The menns for the four tests in table 57 show differences of approximately the same order as those for Washington and Wyoming, exeept that the decrease in yield continues to the 6 -foot spacing. The relative derrease in yield is approximately 20 percent, necompanying a 50 -pereent decrease in number of plants per acre.
'Table 57.-EEfect of distance between rows on yield per acre of Jerusalem artichokes in Illinois and Minnesota
[Duplicate plots]

Tablea 58--Analysis of variance of tata for table 57

Sourco of variation	Jlifnols		Minnesota		Illinuls natil Minnesota	
	df	$\%^{\prime}$	df	V^{\prime}	df	V
Trotul	15	9. 102	15	3.375	31	18.222
Hotween distanas belween rows Helwien duphlares.	3		3 1		3 1 1	
Intweym dexs	1	181.400	1	-13,112	,	1.85 .581
Tests \times distances betweon maxy					.	13.110
Error (remainder)	10	1.36	10	. 833	15	.780

1 Fxateds l-parcent point.

The vartances due to row spacing are significant with reference to ressinaal error for Illinois and Minnesota separately and combined. The interaction between row spacings and tests for the combined data is significant with referenco to residual error. The variance due to row spacing is also significmatly greater than the interaction just mentioned. (Observed $F=4.05$; 5 -pereent point $=3.86$.) Thus, nlthough there is variation in degree of response to row spacing, the results in these two States indicate that lower yields will aecompany wider spacing with reasonable certainty.
Table 50 gives the analysis of rariance of combined data from tables 55 and 57 involving it total of 11 tests in 4 regions. The mean yidhis were $9.03,8.11,7.40$, and 6.68 tons per acre for $3-, 4-, 5-$, and if-foot rows, respectively. The variance due to row spacing is highly signifirant with reference to both residual error and the internction between tests and spacings. The interaction is also signifieant with relfernee to residual error. The diflerences between all the variances are so grent that inspection indicates the relatively high F values in comparisons.

It will be recalled that, in the Oregon tests, at constant row spacings and varying intervals betwen hills the results were contrary to those in other locations. The yields were practieally the same for $24-$ - $30-$,

36 -, and 48 -inch intervals between hills. Table 60 shows a similar result for clifferent distances between rows, again contrary to the results from other places. In 1932 the mean yieids from rows spaced 4,5 , and 6 feet apart remained nearly constant, but in 1933 the wider spacings showed suecessively higher yields. The 2-year menns show but a slight increase in yield of the 6 -foot over the 4 -foot plots, approximately 10 percent.

Pable: 59.-Analysis of mariance of data relating to effect of distance beheecn rou's on yicl? per acre of Jerusalem artichokes ${ }^{1}$

1 Comblued clata for tatiles 55 turl $\$ 7$.
1 Exceeds l-pereeal point.
Table 60.-Effect of distance between rows on yield of 3 varietics of Jerasalem artichokes grown al Corvallis, Orcg.
[Duplleate plots!

Yeur und varisty	Yiekl per acro front plantlngs nt Indimated illstanco butween rows		
	1 fent	5 feet	0 feol
Blane Amplipro. 10.13%	Tons 1.18	Tons ${ }_{\text {15, }}$	Tons 15.65
Clicuro... -.. .	9.08	8.72	10.24
Wuteror.	17.11	15. 24	14.43
Menn	13.45	12.09	13.41
Hinae smaliuse 103:	11.7	12.17	
Mhane Amelime	8. fH	0.38	10.67
Waterer.......	8. 66	0, 52	10.82
गlefin ...	1. 52	10. 30	11.75
2 -gear mome.	16.41	11. 73	12. 58

Table 61 shows the varianco due to spacing to be significant with reference to residual error but not with reference to any of the interactions iisted. Despite the significance of the differences between the 2-yenr means for 4 -and 6 -foot spacings (observed $=1.09$ tons; calculated recquired $=0.75$ ton) and that of variance relerred to residual ecror, the lack ol ngreement in the two separate years should be borne in mind. Two tesis are hardly sufficient to justify conclusions which are diametrically opposed to all other locations and which are not in conformity with other Oregon results. It is not very probable that the 6 -foot spacing consistently outyielded the 4 -foot and 5 -foot spacangs. Ilowever, the conclusion can be very safely drawn that neither the 4 - nor 5 -foot spacing outyields the 6 -foot, under these Oregon conditions. These Oregon results are the more remarkable when it is
recalled that in tho bill-spacing studies the rows were 5 feet instead of 4 feet apart, as elsewiere; and the hills in the row-spacing work were 4 feet instead of 2 fect apart.

Thbles 61.-Analysia of nariance of data for table 60

Thus, in Oregon, increasing the area per plant from 16 to 24 square fect in the row studies and from 10 to 20 square feet in the hill-spacing triais resulted in no significant decrease in yield from approximately 12 ions per acre. In contrist, at other locations quite significant yield decreases accompanied much smaller relative increases in space, and this was at closer planting distances wherein competition might be expected to play a greater part than here.


```
                            [HLIs
```

As in the tests on effect of distances between hills, increasing the distance between rows greatly inereased the number of tubers and yiedds of tubers per hill. The results are so similar to those already presented that there is little point in tabulating them in detail here. Bight tests involving three different locntions (Minnesota, Wyoming, nad Wrshington, D. C.) resulted in mean yields of $1.75,2.17,2.55$, and 2.84 pounds per hill, in rows $3,4,5$, and 6 fect apart, respectively. The differences are all highly significant.

In addition to yield datn, information on number of tubers per hill is of interest, but only indirectly, insofar as it has a bearing on the size of tubers produced. Instend of giving detailed data upon tuber number, the matter of size will be considered.

Tables 62 and 63 show a slight tendency for the mean size of tubers to increase as the distance between rows is increased. This tendency, however, is pronounced only in rows 4 feet apart as compared with those 3 leet apart. Although the means for all tests show the mean tuber size for 5 -foot rows to be 1.54 ounces, compared with 1.48 and 1.30 ounces for 4 -loot and 3 -foot rows, respectively, the apparent superiority in size is quite insignificant (required for signitieance, 0.163 ounce) exect over the 3 -fool spacing. Table 63 shows that among the thre locations the variance due to spacing is signifieant with reference to residual error only in the Wyoning tests. The differences in those tests have sufficient weight to reveal significatae in the combined Wyoming and Wastangton, D. C', data.

Table 02.-Effect of distance between tows on mearl weight of tubers of Jerusalem artichokes groun in Minnesota and Wyoming and near Washington, D. C.
[Dupdicate plots]

Place nind year	Varioty	Weight of tuhers from plantlags ar indienled distunor between rows			
		3 teet	1 feet	5 teet	0 feet
Miuntura, 19:3		$\begin{array}{r} \text { ouncer } \\ 1.30 \\ 2005 \end{array}$	$\begin{gathered} \text { Ounces } \\ 1.54 \end{gathered}$ 221	Onnces 1.28 2.65	$\begin{array}{r} O_{u n c e} \\ 1.4 \\ 2.15 \end{array}$
Mear		1.80	1.87	1.46	1.81
	Sistane Ameliore	1.41 1.73 1.69	+1.45	2.03 2.3 2.14	1. 100 2. 03 203
Mcati.		1.61	1. 37	213	1.40
Washington, 17. Co, totas.		. 97	1.22 .108 .81	1.04 .883 .83	1.12 1.00 .02
		. 83	. 90	. 11	1.01
Meat for Wyoulng and WashIngton, D). ('4.		1.2.4	1.43	1. 62	1.60
Wailington, 1), C'., wixt.......... .	Blane Amolore-....- 84	S5	. 81	. 82
Aram for 4 tests, wastimetom,		. 87	. 95	. 89	, 1
Mrantor totat ot ${ }^{\text {dusis. }}$		1.39	1.18	1.54	1.50

'TABLA 63...-inalysis of varianer of data for table 02

Sourte of variution	Mtrine-	Wyoming	$\left\lvert\, \begin{gathered} \text { Woshing } \\ \text { ton } \\ \text { iv: } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \text { Washing } \\ \text { ton, D.C., } \\ \text { thesis } \end{gathered}\right.$	Wyoming fand Wrashington, D. C', 103 ${ }^{\prime}$	「Cotal, nll tests	
	w) 1	di 1	d $\%$	df ${ }^{\prime}$	$d f V^{\prime}$	$d f$	\cdots
'rotal	$15: 0.25$	$25^{5} 0.010$	4 0.081	31, 0.023	47.0 .383	75	0.328
Sotwhin distunces latwems fuws	3 , 01	3. 1.342	31.020	${ }_{3}^{98}$	3f ${ }_{5}^{4}$		1. 207
hetarin tests	$3{ }^{1}+1.819$	$\stackrel{\text { Br }}{ }$	B1 .00n		$1{ }^{1}$	2	
	St (0x	12.109	[12 6020	16.020	2.1000	35	. 000

Hetwern imprond innd d-jnercern points.
1 Pxemeds l-|x+ccent jatnt.
A reconsideration of the data in table 53 is particularly interesting nt this point. 'The hill spacings listed there are equivalent to $4,8,10$, and 12 scuare feet per plant. No interease in size of tuber is noted in spaciurs above 8 square feet. In table 62, the spacings represent 6, S, 10 , and 72 suasure feet per plant, and again no increaso in tuber size is found for plots having more than 8 square feet. Furthermore, the fout final means of table $\overline{3} 3$ are remarkably similar, respectively, to thosie of table 03 .

Hadvesting tops as for silage

Refereners in the literature ($\%, 0$) to the value of harvesting the above-rround portions of the Jousalem artichoke plant for silage have

quality of the tubers. Obviously, the effect on the tuber crop will depend largely on the timo that the tops are harvested. Schoth (5), working in Oregon, presented limited data showing that when the tops wero removed, September 25, the yields of three varieties were but 0.8 to 0.9 ton per acre, while leaving the tops undisturbed until allter frost resulted in yields of 5.5 to 6.5 tons. Likewise, the suitability of tops for silage depends on their stage of clevelopment, sineo they become quite woody und lose their leaves as maturity approaches.

METHODS

Studies were conducted for one season in Illinois, two seasons in Minnesotu, and three seasons near Washington, D. C. From 1 to 3 varietics were included in the plots at each location, giving a total of 12 tests during the progress of this work.

Bherks of one or more yaricties were planted emy to provide a supply of as uniform material as could be obtuined. Individual plots were 40 fect long and consisted of single rows 4 feet apart planted with hills 2 foct apart except near Washington, whero the rows wero 5 feet apart. In llinois duplicato plots were provided, and triplicato plots of each variety in the other locations.

It has been suggested that the optimum time of harvesting the tops, in order to get maximum yield of silage and to avoid excessive woodiness of the material, would be about or just after the time of flowering. This stare, then, was arbitrarily considered as medimm (C), and harvests wero made bolin earlier and later as well as at that stage. In the Illinois studies, one enrly harvest (4) was made about 7 weeks before C, nad one 4 weeks after, at maturity (E). The A harvest was much earlier than in the other tests and is not strictly comparable. In Mimnesota also three hatryests were made (A, C, and E), at intervals of about 3 weeks. Near Washnggton, five harvests were made at intervals of 12 days, except the last (E), which followed D by approximately 4 weels. The e harvests in all locations involved practically mature phants that had lost a large proportion or most of their leaves. Table 64 shows the dates upon which the tops were harvested from the several plots.

TABsel 64.- Dates on which tops of Jerusalem artichokes were harecsted

Praco ami year	Dite of indeatex farsest of tops				
	A	B	C	b	E
thinots:					
Minamestar	Aug. 12		Oct. 5		Nov. 2
634...	Scpt. 14		Oct. n		
1932.	Seyti 19		, ¢10....		Oet. is
Wishitgton, t). ('.:	Ang. 31				
142	Aut. ${ }^{2}$	sept.	spete.	(60...	Nov. 10
1033	..tto....--	Sipl.	sept. is	(ex. 2	Oet. 31

The tops were cut near the soil surface, the green weight was determined per plot, and the number of harvested hiths recorded. In the Minnesota and Washington, 1). C., tests tho tops from several typienl hills were chopped into a composite sample which was thoroughly
mixed and from which samples were drawn for the determination of moisture and erude fiber.
The tubers in the hills from which the tops were removed were left in place until the time of harvesting all plots, when the weight and number of tubers per plot were determined.
Moisturo and crude fiber were determined by the recommended procedure of the Association of Official Agrieultural Chemists (1 , pp. 280-281).

I2 $2 H E L T S$

Tho most extensive data upon the effects of early top removal wero obtained near Washington, D. C. In 1931 but one variety was prown, while in 1932 and 1933 theo were studied. Table 65 presents The results for the Blane Ancliore variety as grown near Washington for 3 years. Without exception, successively later top removal resulted in markedly increased numbers and yields of tubers per hill. Referenco to table 60 shows that the variances due to time of top removal are so very much greater than residual ecror that they are of practically infuito odds of significunce. Thoso variances are also significantly greater than interaction between dites of removal and yents. (For number of tubers: Olserved $F=7.1(1 ; 1$-percent point $=$ 7.01. For yield of tubers: Observed $F=5.46 ; 5$-pereent point $=3.84$.) Thus, one muy confidently expert such results, consistently, yeur niter yen, within the range of conditions of these observations. The dillerences between 3 -year means are all highly significant (minimum ohserved $=0.30$ pound ind 4.5 tubers; caleulated required difference $=$ 0.30 pound and 4 .t tubers), with one exception-the difference in yield of tulbers between the A and B harvests. This exception serves to emphasize what is apparent in the table. Up to and including the second hurvest (Sept. $0-9$) the tubers had hardiy begun to enlarge, uvernging only about 0.018 to 0.024 pound in size, or 40 to 50 per pound; and ylelding only about a half pound per hill, or about oneninth of their ultimate yield. Even at the supposed optimum time [or top catting, the yield of tubers was but 25 to 30 percent of the ultimate yield.

Tanmes bis-EDect of time of top remoral on number and yied per hill of ferusalem urlichoke tubers of the Blenc Ameliore varicty grown near Washington, D. C.
[Triplleate plots]

[^12]Table 66.-Analysis of variance of data for table 65

Source of varlation	Number of tubers		Yied of tuturs	
	${ }^{4}$	v	$d f$	v
Total.	44	788.24	4	4. 853
hetwean dites of removal.		12,000.59		
	$\stackrel{2}{8}$	$\begin{array}{r}18,798.59 \\ 1803 \\ \hline 8.8\end{array}$	$\stackrel{2}{8}$	
	30	4.00	30	. 14

1 Excoods l-percont point.
Table 67 presents data for three varieties for 1932 and 1933. The final means in table 67 are in very close agreement with those of table 65 for the Blane Ameliore variety. An inspection of the detailed results for the Waterer variety indicates that its tubers develop somewhat later than do those of the other varieties. It is a late variety. The significant interaction of date of top removal \times variety (table 66) emphasizes this varietal difference. Although Chicago "matures" distinctly earlier than Blane Ameliore, it does not appear to develop its tubers any earlier. Earliness of flowering and dropping of leaves may or may not be associnted with early development of large tubers.
'Tanas 67.--Effect of time of top removal on number and yield per hill of tubers of three varieties of Jerusalem artichokes grown ncar Washington, D. C.
[Triplicate plots]

Varloty ami y yr	Yield of tabers per hili after top romova!'									
	4		B		C		D		E	
thane Amoliors: 1032,	Number	Pounds	Number	Pounds	Number	Pounda	Number	Poundid	Number	Pountak
	35.0	0.71	30.1	1.10	68, 8	2.82	91. 3	8.01	98. 2	7.79
	10.3	, 42	14.5	. 20	16.8	. 69	21.0	1.30	29.3	2.31
Mtean.	22.8	.47	20.8	. 73	42.8	1. 75	50.2	3.150	63, 2	5.05
Chameas										
1982	29.9	+600	32, 9	+87	51.2	2.08	75. ${ }^{\text {4 }}$	5.82	822	0.bi
15833	8.8	. 15	12.1	, 22	21.6	+ 50	31.0	1.3.3	38.7	1. 05
Mean.	17.0	. 32	22.5	. 54	37.1	1.29	53.2	3.58	90.5	4, ${ }^{\text {d }}$
Waterer:										
lifis.	25,0 32.1	- 19	28.3 10.4	.70 .22	38.3 21.6	1.22 .35	50.0 38.2	3.01 .48	67.7 60.1	5, 75 2,03
10363	32.1	. 13	10.4	. 22	20, 3	+ 3	3.2	. 98	60.1	2, 03
Merni-	18. 13	. 31	22.8	. 50	33.1	+81	44.1	2. 00	63.5	3.01
variether...	19.8	. 37	24,0	. 50	37.4	1. 28	51.2	3.0s	02.5	4. 418

 axplanation,

Table 68 shows that variances due to time of top removal are practically infinitely significant with reference to residual error and very highly so with reference to the interaction of varieties X dates of removal. (For number, observed $F=114.1$; for yield, observed $F=$ 64.1 ; l-percent point $=7.01$.) The kind of response shown may well be expected regardless of variety or year.

Table 68.-Analysis of variance of data for table 67

Source of variation	Number of tubers		Ytold of tubors	
	d ${ }^{\text {d }}$	V	df	V
'Iutal...	89	810.01	80	4.803
Totwoen dater nil removal.	4		4	155.933 18.220
Between virlitles...	1	${ }^{1} 10,205.50$	1	1110.047 116.305
Yutrs \times dates of relluvil.	$1{ }^{(8)}$	(51.20)	8	1. 108
Vurfothay \times dites of tomoval.	-	12,462.61	2	13. 130
	76	${ }^{1} 2,80.08$	68	. 207

t Exceels 1-porcent polnt.

- Vulues in paronthesay fire facloded in the values identified as error.

Data relating to three dates of top removal in Illinois and Minnesota are presented in table 69. Again, as in the more extensive Washington, D. C., tests, there is observed a very marked reduction in yield of tubers as a result of carly top removal. The earliest removal (A) resulted in but about one-third the yield obtained when tops were cut at the supposed optimum time (C), and this in turn represented but about 60 porcent of the ultimate yield. Table 70 shows the variance due to time of top removal to be very highly significant with reference both to residual error and to interaction between tests and dates of top removal. (Observed $F=11.7$; 1-percent point=8.65.)
'Cablet 60.-Effect of time of top removal on yield of tubers per hill of Jerusalem artichokes grown in Iltinois and Minnesota
[Tripileste plots]

Plate and varlety	Year	Yield per hill of tubers aiter top		
		A	C	E
Ellingls:	1881	$\begin{array}{r} \text { Poundis } \\ 0.74 \end{array}$	Pounds 2.50	Pounds 3. 71
Manosotn:- ${ }^{\text {a }}$				
13 lung d moliore.	1032	.80	1.37	2. 18
chleago......	${ }_{1032}^{1032}$. 32	.78 .72	1.77 1.08
Monn.		. 38	1.73	2.75

Tablin 70.-Analysis of variance of data for table 69

Suturce ol varlation	Degroes of frocdom	Menn squaro
'rotal.	14	2.050
Retween dates of removal.	4	17.625 18.618
Welween tests.......-...	8	11.510
Teats \times datus or removal.	30	, 234
Error (recratudor)........--		

EFFECT OF TEME OF TOP REMOYAL ON YIELD OF TOPS

As stated under Methods of this section, efforts were made to so time the removal of tops that the C or medium date would represent a high top yield and still avoid the disadvantages of too advanced maturity. Table 71 presents the green and dry weights of tops per plant, harvested from the Washington, D. C., plots.

Table 71.-Effect of time of top removal on yield per hill of green and dry tops of Jerusalem artichokes grown near Washington, D. C.
[Triplicate plots]
GREEN WEIGHP

arghmapon,
It is a bit surprising that in two of the three seasons the highest green woight was obtained from the earliest harvests, while in the other year the C harvest yielded slightly more than tho first two. The cause of this rather unexpected finding was not determined, but it is probably due to loss of lower leaves before the time of the B and C harvests. Tho loss of leaves that had occurred after the Charvest was quite noticeable. At the E harvest of the Washington, D.C., plots, the branches were practically bare. The 3 -year means show a slight and statistically insignificant decrease in green weight from the A, through the B, to the C harvest. (Observed differences from $A=0.14$ and
0.22 pound; calculated required $=0.67$ pound.) However, the D and E^{t} harvests show very marked and significant losses in green weight. The variance due to time of removal is very highly significant with reference to residual error and to interaction between tests and time of removal (table 72). The interaction is so small as to be insignificant, with reference to residual error. Therefore, top cutting later than C not only yields older, woodier plants but a markedly lower green weight of material.

Tanle 72.-Analysis of variance of data for table 71

Source of vatintion	(ireen wethht		Dry wolght	
	df	V	$d f$	v
Total.	10,	11. 109	101	0.721
Between shates of removal		${ }^{2} 113.348$	t	1.8809
Tetween tests	${ }^{6}$		2.4	
Tests \times dates of remben.	70	1.175	70	. .1850

: Execets l-jereunt pohat,
The values for dry weight of tops, of course, affer from the foregoing, but they also show a significant increase in dry weight from the A to the C harvest, followed by a decrease in the later ones. This decrease is doubtless chielly due to loss of leaves, but there may also be a heary loss of claborated foods by transiocation to the tabers. Table 72 shows the variance che to time of top removal to be very highly significant with reference to both residual error and interaction between tests and time of removal. The calculated required difference lor signifirance between means for the seven tests is 0.14 pound. Thus, there are signifieant difforenees between any and all means. The C havest is seen to yield significuntly the greatest amount of dry matter per plant. But it should be recalled that top cutting at this time results in a serious reduction in the yield obtainable from undisturbed plants.

Trble 73 shows the green and dry weights of tops harvested at three stages of development in Illinois and Minnesota. The effect of time oi harvest upon green weight will be seen to be very similar to that observed for the Wrashington, D. C., plots. The dry weights also decrense rather consistently from the earliest harvest, in three of the five tests, but the data are rather limited and may not be representative of responses to conditions in those regions. It is possible, however, that in Minnesotis, whero the lower dry weights occurred at tho O harvest, harvest timo should be rated as D rather than O, on account of the brevity of the autumn season. It appears evident that it that time the plants were more nearly mature than was supposed beforehand. Negardless of the explanation, there appenrs to be no chance of obtaining a good yield of tops without reducing the tuber yield to a mere fraction of the ultimate yield.

Table 73.-Effect of time of top removal on tricld of green and dry tops per hill of feruaclem artichokey grown in Illinois and Minnesota
[Duplicate plots!

Placa nad year	Vuriety	Yeeld of tops per hill atter top removal 1					
		A		${ }^{\prime}$		E	
		Green	Dry	Oreen	Dry	Green	Dry
nllinots:	Blanc Ameliore.	Pounds $\begin{gathered}\text { 276 }\end{gathered}$	$\begin{gathered} \text { Pounds } \\ 0.38 \end{gathered}$	$\begin{array}{r} \text { Pounds } \\ 2.92 \end{array}$	$\text { Pounds } \begin{array}{r} 0.71 \end{array}$	$\begin{array}{\|l\|l} \hline \text { Poundr } \\ \hline 0.53 \end{array}$	$\begin{gathered} \text { Pounds } \\ 0.35 \end{gathered}$
Miniestata:							
to.	$\begin{aligned} & 7.17 \\ & 4.73 \\ & 5.18 \\ & 3.34 \end{aligned}$	$\begin{aligned} & 1.53 \\ & 1.55 \\ & 3.41 \\ & 3.41 \end{aligned}$	$\begin{aligned} & 5.34 \\ & 4.81 \\ & 3.83 \end{aligned}$	$\begin{aligned} & 1.32 \\ & \text { An } 92 \\ & 1.56 \end{aligned}$	4.352.013.203. 402.4	1.25
	$\mathrm{c}_{\text {chicla }}$						
1902.............	Wisterer........						
Mem.		4.83	1.87	4103	1.41	2.30	1. 02

${ }^{1}$, rupresents turlleat removal; B, second eartiost; C, medium; D, medium late; E, late. Seje p. 52 for explanation.

Table 74 shows for green weight a variance due to date of top removal that is highly significant when referred to residual error or to interaction between dates of removal and tests. The interaction, however, is not significantly greater than residual error, but is even insignificantly smaller. (Observed $F=1.23 ; 5$-percent point $=3.12$.) Variance in dry weight due to date of removal is significantly greater than that of residual error but not greater than the interaction of tests \times dates of removal. (Observed $F=3.33$; 5 -percent point $=4.46$.)

Tabla 74.-Analysis of variance of data for table 73

Somere of varinifom	Creen welght		Dry weight	
	d/	V	$d f$	V
Total.	20	2.741	$2]$	0.698
Between shites of retmoval....		14.820	2	11.820
Dotween lexts........	4	110.055	4	12.161
Testa \times dintis of Yemoval	8 +8	. 652	8	'. 517
				. 121

1 Exceeds l-percent joint.
Table 75 presents the analysis of variance for a summary of the combined data for the A, C, and E harvests shown in tables 71 and 73. For the 12 tests, the mean yields of green and dry tops per hill were 6.41 and $1.74,5.91$ and 1.82 , and 2.41 and 1.28 pounds after top removals A, C, and E, respectively. Note first that variances in both green and dry weights are of very great significance with reference to residual errors; they are also significant when referred to the respective interactions between tests and dates of removal. (Observed F for green weight $=25.8$; for dry weight $=5.29 ; 5$-percent point=3.44.) Thus it can be safely concluded that the response shown in the first part of table 73 can be expected with a high degree of probability. The maximum green weight of tops is obtained just before blossoming time and declines rapidly thereafter. The maximum dry weight, however, appears to be reached just after blossoming and before the dropping of leaves becomes noticeable.

Table 75.-Analygis of variance of data relating to effect of removal of tops of Jerusalem artichokes on yield of green and dry tops per hill grotun in Illinois and Minnesota and near Washington, D. C. ${ }^{\text { }}$

Srurce of varintion	Green welght		Dry weight	
	$d /$	v	df	V
Total.	71	8.787	71	0. P14
Hotween dates of removil.	2	${ }^{1} 113.040$		${ }^{1} 2.048$
isetweent tuats............	11	+ 31.053	${ }_{22}^{11}$	12.077 $\pm .395$
Testa \times dates of removal	38	1.1182 .082	36	+.081
Etror (femainder).				

5 Juplkate plats.
5 Exceeds l-jkitcont iolat.

CRUDF FIBER CONTENT OF TOPS IN RELATION TO TIME OF HALVEST

Limited data (5) on composition of artichoke tops both dried and as silage show that they may compare favorably with corn stover and silage, respectively. Obviously, overmaturity and dropping of leaves must bo guarded against if this favorable composition is to be obtained. In the present studies, estimations of crude-fiber content were made to obtain a rough index of change of feeding quality as the tops approached maturity.

Table 76 shows the crude-fiber content of tops from the successive harvests from the plots near Washington, D. C. The crude-fiber content showed but little change, on the dry-weight basis, from the A to tho D harvest, but the E lots were very much higher. As suggested earlier, this doubtless was due to heavy loss of leaves, with little more than the woody stems and branches remaining at harvest. On the fresh-weight basis crude fiber increased steadily from A to D from ubout 5 up to 8 percent, then very abruptly to about 25 percent in the last harvest. The fresh-weight values are of the greater importance here, because they better illustrate the nature of the product at the different times of harvest.
Tabsa 76.—Effect of time of top removal on crude-fiber content of tops of Jerusalem attichokes grown neat Wrashington, D. C.

DHY'WEIGHT BASIS

[^13]T'abla 76.-EIfect of time of lop removal on crude-fiber content of lops of Jorusalem artichokes grown near Washinglon, D. C.-Continued.

FRESEL-WEIGILT BASIS

Varlety	Year	Crude-fluer content of tops after top removal				
		4	Is	C	D	E
Rlane Amellore.	1932	$\begin{gathered} \text { Itercent } \\ \text { A. } 10\} \end{gathered}$	$\begin{array}{r} \text { Perecnt } \\ 5.8 i \end{array}$	Percent 3. 40	$\begin{array}{r} \text { tercent } \\ 2.10 \end{array}$	Perccuit 31.14
Chlosto.......	1392	6. 18	7.28	8. 04	$\underline{9.37}$	31.89
Waterer--.	1962	5.75	3.40	7.50	7.45	- 32.80
Matn.		5.73	6. 84	7.35	7.49	32. 94
Blane Ameltare.	1933	4, 58	5. ${ }^{2} 8$	5.31	7.4	17. 11
Chluse.	1033	5.76	6.03	7.20	7.00	17.71
Whterer-	1813	5. 30	0. 80	7.05	8.40	15.18
Ment.	\ldots	5.21	8, 60	6. 72	7.97	16.67
Stan for 0 tests		5. 47	6. 43	7.04	7, 4	
Hane Ambllors.	1631	4.33	6. 5.4	5.87	0. ${ }^{\text {\% }}$	31, 15
Mean for 7 tusts.		6.31	0.30	0. 87	7.84	25. 71

The first part of table 77 shows that for both the dry-weigit and the fresh-weight basis the variance due to time of harvest is highly significant with reference to residunl exror and to interactions between varieties and times of harvest. Variance due to variety is yery small, being no greater than remainder error. The interactions involving years and time of harvest gave variances of siguificance when referred to residual error. On the dry basis, variance due to lime of harvest was significantly greater than this interaction (observed $F=11.4$; 5 -pereent point $=6.39$), but on the fresh basis it was not significantly greater (observed $F=5.78 ; 5$-percent point $=$ 6.39). Apparently, the high moisture content and the probably somewhat less mature stage of 1032 samples of the E harvest is responsible for this very high interaction between years and time of harvest. In other respects the data for the different yoars agree very well.

Table 75.-- inalysis of variance of duta for lable 76
DATA FOR 1932 AND IM3

Sourca of varintitat	Dry-weight basis	Presh-weiqhe brsis	
	df:	$d /$	\ddagger
'total.	29 . 48.962	20	68.107
Fetween intes of harvest...		-1	${ }^{2} 387.155$
nelseen y ${ }^{\text {ars. }}$	$1{ }^{1} 67.265$	1	1 103. 515
fetween yarietles.	3 - 3 21	2	5. 518
Fbarg x dates of harvest.	$1) 12{ }^{2} 3(8)$	4	148.8136
Verlotios \times thatts of har vest	$5 . \quad 3119$	8	dids
Comas \times varleties...	2 12t. 37	2 (2)	(.1kat
Firor (rematader)..	311.059	10	2. 453

TORAL DATA FOR 3 YEARS

\% Fxeceds i-percent polm.

1) Wifucs in parenthestes aro Inctudel in the vabte fientifted as error.

Although there are no significant differences among the 2 -year neans of crude-fiber content (dry-weirht basis) among the first four havests, the lower content of the fot appronches a signifieant diflerence wion compared with that of B. A simitar low content for the (olot will be noted in table 78, which shows the Mimesota results. Although the evidence is menger, there is an indication that blossoming (whieh oceured at or som before the C harvest) is acompmind or followed shortly by such an increased efficiency of synthesis and storage of chaborated food reserves that the proprotion of erude fiber is slightly lowered for a time. Cooler weatior at this time may also be a fuctor by reducing the rate of respiration and translocation to a greater degree than synthesis of food manterials.

The valhes for means of fresh weight for six tests show no decrease in crude fiber at any harvest, but it will be noted that the increase from 13 to ${ }^{?}$ is distimetly less than for other consecutive harvests. Tho culculated rectured dimerence for significance between means is 3.0 prerent, which woudd east doubt upon the importance of the surcessive increnses in crukle fiber were they not so consistent in relation to timo of harvest.
The Mimesota results differed from the Washington, D. C., results whelly in lower crude-fiber content at the last havest. Within the NEmasobin lests, fowever, the same grucral observation can be mato as diserused above. Table 78 contains the results of crudefiber estimations made by E. F. Dailet, of the Minnesota Agriculturai Bxperiment Station, and tabie 70 presents the analyses of varance of those data. It will be moted that although the clata are rather limited the results are quite consistent, yiclding low errors and showing highty signifient differenes between means of harves's.
 in ruthion to time of harresting

Tralaz 79.-Analysis of variance of data for table 78

Source of varlation	Data for 1031				A und Edata for 1931 and 1032			
	Dry-welght		$\begin{gathered} \text { Fresh-weight } \\ \text { bnyld } \end{gathered}$		Dry-welght		Fresh-welyht busls	
	d	V	d!		/	V	$d f$	V
Toter,	5	6, 14		3.212	9	17.853	9	k. W
Between dimens of har vest.	2	11.05	$\stackrel{1}{4}$	${ }^{13} .023$	1	${ }^{1} 518.131$	1	: 30.041
	1	+1. 5.59	1	15, 312	4	123.014	t	75. 681
lirror (tosts \times dates of harvest).	2	1,05!	2	. 1.13	4	3.731	$\stackrel{1}{4}$, 2t ${ }^{\text {c }}$

As mentioned previously, it is of considerablo interest that crudefiber content (on the dry-weight basis) for the C harvest was lower than that for the i haryest. (Observed difference $=2.25$ percent; calculated required for significance $=1.68$ percent.).

The determinations of crude fiber for both locations suggest that harvesting tops in late as O results in practically as good gitality of raw product, for silage purposes, as does earlier harvesting. Apparently, even some little delay of harvest beyond C, before leal fall becotnes setiots, woukd be accompanied by no great deterionation of tho materin!. However, it shouk be borme in mind that harvests as late as (yield less green matter and in some cases less dry matter than earlier harrests. Still hater harvests involve quite appreciable losses of both green and dry matter. And, of paramount importance to the grower who expects to harvest a crop of tubers, C harvests of tops result in tuber yields 40 to 60 percent lower than if the tops were undisturbed until frost, and D harvests 25 to 35 percent lower. It seems improbable that satisfactory yiedds of both forage and tubers can beobtained from the same plants. The most substantial increases in tonnage of tubers appear to occur after the optimum stage for havest for forage is past.

eradication of volunteer growth

Since it is pructically impossible to remove all small tubers from the soil at harvest time, varying numbers and sometimes quite considerahle quantities reman to sprout in the spring following the crop year. The large number of sprouts that usually appear emphasizes the diffeculty of a really thorough harvesting of this crop. This volunteer groseth is not easy to dispose of. Early plowing and sowing of some spring crops may break off or thoroughly cover the young tops that are showing at planting time, but the tabers have a remarkable resprouting eapacity, so that a second set of sprouts will emerge to infest the spring crop sown on the land. Furthermore, even if most of tho volunteer phans are killed and a few escape hero and there over the fiedd, they must be destroyed before August lest they form tubers which will sprout the following year.

No extensive or exhaustive stadies were earyied through in regard to this problem of cradication ol voluntece growth, but some limited data were obtained and a number ol trials and observations made that doublless are worth reporting here.

METHOLS

In 1931, near Washington, D. C., a field was used which had grown artichokes in 1030 and which showed a heayy volunteer growth. Five treatments were applied on single plots (each of eight rows 43 feet loner) in this feld of volunteer artichokes, beginning June 13 when the plants were 2 feet high. The trentments were as follows:

Plot 1.- Plants hoed off at soil surface and later sprouts removed at 7 -day intervals.
l'ol 2.-..-blants boed of at soil surface and later sprouts removed at 10-day intervals.

Phot 3. - Phants plowed under deeply and eompletely without previous entling.
Phot 4.- Phants hoed olf at soil surfuee and plot cultivated with ordinary row ealtivatar at 10- to $1 \bar{\sigma}$-day intervals.

Plot 5. - - Mants hoed bif at soll surine and turned under as thoroughy as possible.

The efficary of the cmadiention treatments was measured by counting the number of sprouts per row (or for the whole plot where it ford been plowed) before the treatments were applied, and at intervals subsirguest to the treatments. The number of sprouts appenring after treatment was then expressed as a percentage of the origmal number present per row or per plot.

In lilinois and Mimmesota, various times of plowing under, disking, and planting of diflerment crops were tried, and the results were evaluated by inspection. The methods used in those instances will be mentioned in the discussion ol results.

RESULLTA

WASHINGTON, D. C.

It was found that turning the plants completely under when they wero deathigh gavo firirly good control. Three weeks later, less than 1 pereent of the original spronts had been replaced by new ones. Four works after plowing there was a replacement of about 600 sprouts per acre, nome of the new sprouts being over 4 inches tall. It appears that planting a quick-growing hay crop alter plowing under in middane would crivo praclical control, for the small sprouts woudd be shaded out. If not shaded out entively, the few survivors could be hand pulled.

Hocing of the tops before plowing resulted in less efficient eradiration than carelul plowing under without hocing. Four weeks nferplowing there was arplacement of about 2 , 500 sprouts per acre, Which is considered rather far from satisfactory control. That number of survivors in competition with another crop wouk no doubt bo very troublesome. It is probable that the loose tops on the soil surface so interfered with thorough plowing that a large number of tubers escaped deep cowering.

Atempted control by haeing off the tops and following this by cultivation at 10- to 15 -hay intervals approximates probable conditions in the coltare of an early plinted row erop immediately after artichokes. This method was still less efficiont than either of the wo just deseribed. Two weeks after hoeing of the phants there Whs an approximately 50 -pereent pephacement, equivatent to about 7,700 spronts pre acre bour weeks after hoeing fofter thre cultivations) there was still a 20 -pereent repacement of sprouts, so this methoil ramot be considered eflective.

Plots i and 2 wero hoed repeatedly to determine how many crops of sprouts need to be removed before the tubers finally becomo exhatusted and further sproating prevented. The results of repeated removals at 7 - and 10 -duy intervals are shown in table 80 . It will be seen that the second and first hoeines in the respective plots were followed by increases in sprout number. This was doubtless the result of multiple sprouting of tubers rather than appearame of origimat sprouts from tubers not previously sprouted. Remornls at 7 -day intervals were in genemal less effective than at 10 -day intervals, as shown by the values after the second removal. It requited sixremovals at 7 -day intervals to arcomplish the same results as five momovals at 10-day intervals, although the elapsed time was a little less. These data show clently that merely chopping off spronts is a poor method of control or even of riddang a field of the ocasionnt plants that survino the more effechentmethods. Hand puling is far better. Hocing or sprout cutting alone, as a method of eradiation, is entirely ioo expensive of time and labor.

Tabse so, Iffect of repeated removal of aprouts by hodint on rephacement of sprouts of Jrevsalem urtiehokes grown wheler fifld conditions

HALSORS
In an effort to detemine what erops should follow artichokes in the rotation, the following crops were grown in 1031 on groumd whirh hat grown athery frop of artixhokes in the tose souson; Goybenas for hary, Sudan grass, oats, and com. The rherk plot was summerEnllowed. Nome of these erons was successul in smothering ont the artichokes, athough there was a constiderable difference in the degree to wheh the artichokes were suppressed. The plot that was fallowed
 (985). Of the erops, soybens and corn appere to be the least successfal in tho mation following artichokes.

Artichoke dubers start developing during hturast, and the com and soyberns ramot be remored in time to start erationtion. The eom and soybons were so learily infested with ardedokes in 1932 that no rephs cond be serumed. lit was necessary to lathow during most of the summer to prevent the artiehoke tabers from maturing. The ents were semoved when malne nad the ground whe plowed hagnst it. It was persible to rop this plof in inge, but some ham weeding was
required. One plot was seedral to Sudan grass on May 15. The first erop of hay was removed and the plot plowed on August $\overline{0}$. Another plot was seeded to Suclam grass on June 15: תnd the first crop of hay removed und ground plowed by August 20 . These plots were cropped in 1932, but some hand weeding was required to prevent volunteer artichokes from maturing.

A rapidly growing hay crop, such as Sudan grass is the most successful crop in a rotation following artichokes. A small-grain crop is next best. Tt is necessary to remove any crop and plow the ground curly and to practice exceptionally dean cultivation throughout the remuinder of the season.

minvesota

The Minnesota trinls, observations, and conelusions regarding eradimation of volunteer growth from the 1930 artichoke crop may be summarized as follows:

Tho plot was allewed to stand untouched until about June 1, when the young plants were about 12 to 18 inches high. It was gone over then wery thoroughly with a heavy double tractor-drawn disk harrow. . Woont the middle of Jume the plots were again thoroughty disked and worked with it spring-tooth harrow: At that time new sprouts had come up mal were stamding about 8 inches in height. The disking or lancowing destroyed nearly all of these sprouts, atal an examination of the tubsers indiated that they were rapidly deteriorating-becoming soft, and in some cases decaying. About July 1 the ground was plowed as dexply ns possible, the plow ruming 8 to 9 inches deep. It that time there were still a grood many sprouts showing, although tho number had been greatly reduced. This was followed by disking and harrowing until the ground was in good condition, when it was phanted to Sudan grass. This male a very rank heavy growth and practically smothered out all the weak sprouts that cane ap after the first of Jily. Any tubers which survive this treatment and send up as spout the following year can easily be removed by hand digging, sine there will be surh'a small number that a man can easily go over an arro in an hour or so. If a hoed crop such as corn were placed on the land the year following the Sudan grass, there would be no difficulty at oll in taking care of any stray sprouts that might remain. If the land shomal be planted to small grains the year after Sudangrass there would still be no diflieulty, as the spring oats or similar crop woukd greatiy dismomge the growth of the artichokes and the crop would be cut belore the tubers would form.

summary and conclusions

This bulletin reports the results of the cooperative investigations of 20) varieties and certain cultural practices relating to the growing of the Jomsinmartichoke. The studies were earried out at the following locutions by the agencies namod: (1) Near Washington, 1). C. by the Division of Fruit and Viaretable Crops and Diseases of the Burtan of Plant Lndustry, [inter States Department of Agriculture; (2) at Crbam, Jh., by the Ihinois Agricultural Experment Stationt (3) nt Excelsior, Alinn, by the Mimesota Agricultural Experimen; Stution; (4) at Corvallis, Oreg., by the Division of Forage Crops and

Diseases cooperating with the Oregon Agricultural Experiment station; and (5) at Cheyeme, Wyo, by the Division of Fruit and Yegetatle ('rops and 1)iserises.

The various problems receiving consideration at two or more of the locations named were as follows: (1) Yarietal adaptability; (2) effect of size of sed piece on phant development, yield, and size of tubers; (3) eflect of depth of planting on yided and distribution of tubers; (4) effect of time of phanting on yidel and size of tubers; (i) effect of spacing in the row and between rows on yied per phant and per acre and on size and number of tubers; (0) relation of time of cutting tops for silage to crode-fiber content of tops, and to yield, size, and number of tubers; and (7) eradication of voluntere phats.

Wil plots except those relating to certain varietal studies were repliented at ench place euch your.

Sth dath exerpt those relating to erasiention of rolunteer growth were subjected to statisticnl study by Fisher's method of analysis of variane ats adapted by Snedecor (7).

Of 20 warieties grown in llimois, (Oregon, and near Washington, D. ('., for 3 years, three varieties were outstandingly superior in yiek in all torations, namely, nos. 27574,27095 , and 27007 , followed closely by no. 26944. High-yiflding varieties tended to be so in all locations, and the comerse was also true, athough the order of superiority was not ithenticnl for all locations. These fats indicate a very wide range of ataptability of ertain superior sorts but also show that differences in regiomal athptation among varicties should be given consideration in selecting a watety or stok for commercial culture.

Analyses of levalose content of hundreds of stocks and rarieties (made by the Buralu of Standards, Laited States Department of ('ommerer, in cooperation with the Bureau of Piant Indastry, Cnited States Department of Agricultare) have shown a disconcerting negative correlation betwen tuber-yielding capacity and levulose content. Despite this high negative correhtion, no. 27574 , referred to as the highest yisiding variety, showed the higlest 6 -year mean percentage of levelose and total sagars of the 20 varieties discussed in this bulletin. Thus, the seareh for high-yiedang, high-amatysis rarieties is an entirely reasonable one which should yield further valuable results.

In comparing yiek produced from sed pieces 4,3 , and 2 ounces in weight, ins Nimmesota and Wyoming and near Washington, D. C', fach sucessively larger piece producd successively hager net yiedds. (Not yield equals botal harvesi minus amount refuired for phating.) In ()regon, seed pieces greater than 2 ounces in weight produced no areater yied des than did 2 -ounce pieces.

Inereasing the sizo of sed piece was consistenty uccompanied by iarrease in number of stalks per hill, regardess of location or season. Fach bill was plated with a single seed prece.

Increasing the sige of the sed piece was not accompanied by increase in mean sia of tubers harested. In Oregon, very large seed pieces, 1 ounces in weight, produced a smatler menn size of tuber than did 2 -omene or 3 -ounce pieces, but wheh tubers were still of grood size.
in ane of these studios eould any phantings partionbly be mode
 subsequent phating. Alhough in the Washington, D. C., tests there
was no significant difference in yield of plantings at any time during April, the results from all other locations (whero weather conditions necessitated later planting) showed very marked decreases in yield for every planting efter the first one made under those conditions. With apparently "everything to gain and nothing to lose", the earliest possible planting is to be recommended, regardless of variety or location.
dime of planting appears to exert on size of tubers harvested an effect more or less comparablo with that on yield. If the yield is depressed by delayed phanting, so is the mean tuber size. These results apply to ail varieties observed.

Athough the different planting depths studied have far less effect on yide than certain other factors considered in this work, there is a slight but consistent difference in favor of the 4 -inch depth over the $3-$, $5-$, or 0 -inch depth in the hamid regions. In the Wyoming tests only (irrigated) was the 5 -inch depth superior to the 4 -inch depth. In all locations, 3 inches and 6 inches gave consistently inferior results.

In Wyoming, phanting depth was apparently without eflect on depth of stolon origin, possibly on account of the narrow zone within which favomble moisture conditions were maintaned by irrigation. Nenr Washington, D. C., however, successively deeper plantings resulted in suceessively greater percentages of tho stolons arising from the stem nt a depth befow 4 inches. As no seed pieces were purposely phanted deper than 6 imhes, very few stolons arose at depths greater than that.

Depth of planting wis without effect on size of tubers harvested, but it had a marked effect on depth of tubers harvested in tho Wiashington, D. C., studies. Brased on either number or weight of tubers, suecessively derper phantings resulted in successively deeper tuber formation. Fow tubers were found below a depth of 6 inches, but the percentage of the total harrest that came from the 4- to 6 -inch soil zone incrensed very signifonnty with deeper planting. Deep planting thas inmenses the difheulty of harvesting.

In all locations except Oregon planting distances between hills gratiy affected the yields. lit genemi, the 12 -inch spacing gave higher yields than the $18-, 24-30$, or 36 -inch plantings, but there were exceptions. In ()regon 2-, 3 -, and 4 -fook spacings yiedded equalty well.

The 12 -inch spacings producel tubers of significantly lower mean whight than did the wider spacings, but there were no differences among the others. Cifortunately, size distribution of the tubers of the crops at the several stations cond not be detemined, but only toln weight and number of tubers. Thus there is some question as to the advisability of recommending a 12 -inch spucing for eastem and midcontmental regions, even though the mean total yields per acre were in genem! the highest by about at ton. Pending further information on this point, spacings of 2 feet in the row are recommended exept for conditions similar to those of the Oregon tests, Where 4 feet is aldegute.

Stulies of row distanes of $3,4,5$, and 0 fect with the plants 2 feet apurt in the rows showed consistently the highest yields per acre From the $3-$ ford distance in all locations cxept Oreron. Fhere, 4-, $\overline{2}$-, and 0 - foot sparimes with the phants 4 feet apart in the row gave no significant elifferences in yield per acre.

In all locations the effects of rate of planting on number and vield of tubers per hill were guite consistent. As distances between hills or betwen rows were increased, the number and yield of tubers per hill inereased. Only in Oregon, however, was the increase in yield per bill great enough to result in a practically constant yield per aero for all planting distances ofserved.

In Minnesota and Wyoming and near Washington, D. C., the 12inch row interval and the 3 foot row spacing both resulted in mean sizes of harvested tubers significantly smaller than any of the other planting distunces in the respective studies. There were no significant elferts of spacing on tuber size among distances of planting that resulted in 8 sepuare feet or more of ground area per plant.

Maximum yiedd of green tops were obtnined by burvesting just prion to blossoming, but maximum yiedds of dry matier of tops resulted from harwesting just alter blossoming. Top harvesting delnyed beyond this hatier time results in great losses of both green and try mater on aceomet of dropping of fenves, and also, possibly, very maked food translocalion to the tubers.

Remoral ol' tops at sude time as to obtam maximum yields of dry matler very seriously interrupts tuber development, reducing the otherwise ultimate tuber yideld by 40 to 60 pereent. Harvesting tops carly enough to obtain muximum green weight decreases tuber yields (6) to 75 percent. Even the very fatest top harvest likely to produce formere of even mediun guality and yield reduces tuber yields about 30 pereent.
Thare is a gradual increase of erude fiber in the tops in percentage of freshls weight, from the earliest probable top harvest until appre(inble lent laill begins, after which there is a much more rapid incrense. After many lenves are lost, the tops are apparently of only mediocre vallue as fornge. On the dry-weight busis, crude fiber remains nearly constant from the carliest harvest of tops until herf fall becomes npprecinble, then increases greatly.
IL seens very improbmble that renlly satisfactory yields both ol tops for forage and of tubers con be obtained from the same plants. A given acreage or phot should be grown for but one purpose.
Fohntere growth eanot be efliciently controlle by merely chopping or cutting of tops or sprouts, since it requires at lenst a half duadn treatments to be effective. Deep, very thorough, hate spring or endy summer plowing, after the volunter growth has attuined a height of about 1 "feet, is yery eflective, purticularly if followed immedintely by a guick-grewing hay crop that forms in dense cover to shatie out the lew suryiving sprouts. Any survivors should be hond pulled or destroyed, incidentai to harvest of the hay erop, before tuber lormation in August.

briff cultural recommendations

Grow only strains known to be high-yideding and of acecptable composition, color, nad shape.
Fse only good, sound seed tubers that are free from injury and discuse.

Phat as carly as the soil can be properly worked in the spring.
Plant sed pieres approximately 2 ounces in weight, preforahly whole, but ent if neecesary.

Exeept in unusually favorable regions for the crop, as in the semihumid, western part of Oregon, plant in rows 3 feet apart with seed picces 2 feet, apart in the rows, In localities comparable to Corvallis, Ores., phat in rows 5 to 6 feet apart with seed pieces 3 to 4 feet apart in the rows.

Cover the seed pieces to a depth of 4 inches excopt in certain arid regions at high altitude where the surface soil dries out quickly. Under such conditions plant 5 inches deep.

If the erop is grown for its tubers, leave the tops undisturbed until they are kifted by frost.
follow artichokes next season with a late-sown, guick-growing hay crop or cultivated crop. Plow deeply and thoroughly when volunteer arithokes are a toot or more high. Hand-pull the survivors, unless they will be destroyed by harvesting the crop in which they are growing before August.

LITERATURE CITED

1030. offichan and tentative methode of anahats. complled hy raf
 illus. Washington, D. C.
Fimisis, R. A.
 emb, 307 pe, illes. Edinbarghand Toudon.
(3) Jwкson, R. F., Shlsaek, C. (i., and Proffitt, M.J.
 Chem. tit: 1200 1251.
(1, -.... Susare, C. (.., um! Paormpr, M. J.
1926. The prershathon of mevelose. E. S. Ibept. Com., Berr. Standards Wis. Papers $\overline{0} 10,31 \mathrm{p}$.
(9) Scmom, H. A
 illis.
(6) SHotmakza, 1). N.
 Teeh. Bnhl. 33, 32 pm, illus.
(7) Smbator, (i. W.
 covaranis. of pe. Ames, fowa Llown State Col. Div. Indes. sici. Monograjh (.)
(א) Tharb, H. P., Thom, C. J., Whaman, J. I., am! Ohmer, R.
 Phant Physiol. 4: 123 13.1, illus.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

This bulletin is a contribution from

Buteau of Plant Industry
Division of Frnit and Vegetable Crops and Diseases.
70

> Frederick D. Richey, Chief. E. C. Auchter, Principal Horticulturist, in Charge.

[^0]:

 thta of valins. However, llag rooperation of ahostation i: neknowtedged.

[^1]: I Fexeds ligerent faime．

[^2]:

[^3]: \pm Exceers 1 .pereent paint.

[^4]:

[^5]: I Dourrees of frectioth.
 ${ }^{3}$ Between 5 -percent and 1 -percent points.

 - Alearn sepmre (vartarice).
 - Excerds I-purcetat noint.

[^6]: Execents l-jereent Dolnt.

[^7]: No rembituliots

 1 I erinty. 3 years. trpliente plots.

[^8]: Tabsue 36.-Efect of depth of planting of Jerusalem artichokes on distribution of tubers harvested, sapressed 'ts percentage of total weight or number of tubers harcested that were then from carious soil deph.h

[^9]: 1 Exceeds I-jorcent jwiat.

[^10]: 1 Exceods 1-percent point.
 Between 5-purcent and 1 -percont points.
 1 Valueg in parentheses are Included in the values identified as error.

[^11]: +C. F. Steinbuner.

[^12]: expilabution.

[^13]: exphanation.

