

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREALJ OF STANDARDS-1963-A

MICROCOPY RESOLUTION TEST CHART NATIONAL BUEEAU OF STANDARDS-1963-A

THE FLOUR BEETLES OF THE GENUS TRIBOLIUM

By Newner E. Good
Assiatant entomologist, Division of Cereal and Forage Insect Investipations; Bureas of Entomglogy and Plunt Quarantine ${ }^{1}$

CONTENTS

P保豆
Lntroduction.
Synouymles and techafal descroptinn of the economically importisnt specteg of Tribalisgn_

The genus Tribnjum 3inctavi-
Epy to the spectey of Tribiolivim-
Symonymies and descriptions
Existors and econgmic importance of
the genur Tribolium.
Common: namen -
Plitce of urigin of the trealis-a--
Diatribution:
Historical notex.
Mnterials Iniested,
1

Life bistory of Tribulitm. castanemm

The eger
The liarval
The paph
The ndult
Interrelation with other anfmals.
Medicell tinporsance
Eneming of Trifoliant buecter
Tritulium as a pradistor

Control in floar mills_
Control of flour becties in Dousesi-

Page
$\frac{93}{43}$
$\stackrel{43}{25}$
34
36
34
4
4
44
44
46
$4!$
47
49
49
49
51

INTRODUCTION
Flour and other prepared products frequently become infested with small, reddish-brown beetles known as Hour beetles. These beetles, although very similar in size and appearance, belong to the different though related genera Tribolium, Frnathocerus, Palorus, and Latheticus, of the family Tenebrionidae. Of these. by far the most abundant and destructive are the contused flour beetle, Tribolium confusum J. du V., and the rust-red flour beetle, T. castaneum (Herbst).

These insects are very hardy and able to subsist on any of a wide variety of foodstuffs, and through a world-wide commerce have been

1 The writer acknowiedgen ints indebteiness to the following persong for their cooperation
 the problem and for the general oversight of the work throurhout its promreas; ro B, T.

 tion reparding this apocieg and the synonymy of T. cestancum; to J. C. M Gardner, of India, for ypechmeng of T. indicum now in the U. S. Nalional Musenm; to fut late A. M Lea, of Anstrallu, for information regntifir T. myrmecophiluw; to I. A Hyalup for meny of the distributivit revords and some of the recurds on foolis; to Fanf Burtach; E:A, Chapin, and H. S. Brober for much helpful criticism regarding the tanonomic portion of the bolledn; and. to E. B. Bradford for the fine drawings.

$$
14695^{\circ}-36-1
$$

transported to regions which otherwise they might never have reacked. Thus there are today not only records of their occurrence but numerous references to their destructiveness from practically every civilized country in the world.

SYNONYMIES AND TECHNICAL DESCRIPTIONS OF THE ECONOMICALLY IMPORTANT SPECIES OF TRIBOLIUM ${ }^{2}$

THE GENUS TRIBOLIUM MACLEAY

SYNONYMY OF TEE GENUS

1825. Tribolitm MacLeay (67) ${ }^{9}$ Genotype, Colyilium onstancum Herbst (1797), type by subsequent deslgnation, Latas, 1855.
1833. Margus dejean (97)
Genotype, costaneus Sch. (- :ustancum Herbst), type by subsequent designation, Good, 1936.

MacLeay's description of Tribolium is sufficiently clear to leave little doulst that he was dealing with a specimen of the species treated as Tribolium castancum in this bulletin. One disturbing factor is the designation of all tarsi as five-jointed. This cannot in itself be taken as constituting grounds for the rejection of the name Tribolium, since many mistakes were made by the early Coleopterists in regard to the number of tarsal joints. Concerning MacLeay's description of Tribolium Wollaston (104, p. 491) says:

MacLear, who was the first to characterize the group (in 1825), described it as pentamerous and placed it amongst the Necrophapa, which was clearly however an error-perhaps parthally to be accounted for by the fact of inis having but a single specimen to judge from.

Wollaston goes on to say that he had examined MacLeay's type specimen which was still preserved in the East India Co.'s Museum in London, and, "*** the careless manner in which it is mounted conceals the hind tarsi altogether from view * * *"
It seems clear that MacLeay proposed his genus Tribolium for the true Colydium castaneum of Herbst (1797) and not for any other species the name of which he might have incorrectly synonymized with it. At the head of his description of the genus he says, "Genus TRIBOLIUM, Nobis. Colydium Herbst." He calls his species castancum, and puts Colydium castaneum Herbst at the head of his synonymical list. Of the other synonyms, only one, Trogosita fermoginea Fab., is included without a question mark. But, since Colydivom castanevon Herbst (1797) antedates Trogosita ferruginea Fab. (1801), and since T. ferruginea Fab. had never been associated with the genus Colydium, and since he calls his species by the same name

[^0]as that of Herbst, there is no question but that MacLeay would have designated Colydium castaneum Herbst as the type of his genus Tribolium, if it had been customary at that time to designate a genotype, which unfortunately was not the case. Furthermore, the first definite designation of a type for the genus Tribolium is that of Lucas (66, p. 259), who stated in 1855 "L'espèce type représentant ce genre, est le Tribolium (Colydium) castaneum, Herbst, Nature. Insect., tom. 7, p. 282, $\mathrm{N}^{0} .3$, pl. 112, fig. 13 E (1797)."
The name Margus was first used by Dejean in 1833 (87) in the following manner:

Margas Dejean.

$$
\left\{\begin{array}{l}
\text { Ferrugincus Fab. (Trogosita) India orient. } \\
\text { castaneus Sch. (Tenebrio) Galla. }
\end{array}\right.
$$

He_{c} considered castaneus Sch. as a synonym of ferrugineus Fab. This entry was repeated in his 1837 catalog. In 1842 William Redtenbacher (88) used the name Margus as the generic name for what he considered a new species, Marguts obsoubrus, but which later was found to be a synonym of Tribslium madens Charp. In 1845 L. Redtenbacher (81) separated Murgus from Tenebrio in a descriptive key without mention of any species, and in 1849 (82) he gave a description of the genus Maryus and of the species ferrugineus Fab. and madens Charp., which he listed under this genus. There can be no doubt that Kargus of Redtenbacher is the Tribolium of this bulletin. The name Margus has since been used in a number of instances, especially in France, in treating of Tribolium. However, the writer has been umable to find a designation of a genotype for Marguse in any of the literatare dealing with this genus. There is, therefore, the choice between fermugincus Fabricius and castaneus Schönherr, which Dejean thought to be synonymous. Since Tencbrio castaneus Schönherr (1806), as conceived by Schönherr, is a complex, embracing several species, the writer now restricts this name (since this has not been done before) to the fraction which Herbst called Colydium castancum in 1797. Likewise, since Margus of Dejean (1833) embraces two species (ferrugineus Fab. and cabtaneus Sch.) the writer hereby selects castaneus Schönherr (=castaneum Herbst) as the genotype of Margus Dejean.
Regarding the Stene of Stephens (95) the writer is convinced from a study of Stephens' description that the specimens he had before him, and from which he made his description, were the Tribolium castanerom Herbst of this bulletin. However, since Stephens erected his genus for the Tenebrio ferrugineus of Fabricius, there is no alternative but to consider Stene ferruginea Stephens as a synonym of Tenebrio ferrugincus Fab. Since Stene is the first nonpreoccupied generic name for this species, Stene ferruginea (Fab.) becomes the valid name of the species originally described as Tenebrio ferrugineus by Fabricius in 1781. This species is now known to the writer only by the type specimen, which is considered a cucujid by prominent English coleopterists.

DESCRIPTION OF THE GENUS

[^1]sides and front of bend from eye to eye. Eyes rather large, emnrginate or neacly divided by genae. Antennae 11 -jointed, always enlarged toward tip, os clubbed; club 3 - or 5 -jointed or gradual, but never 2 -jolnted. Labrum short, transverse; mandibles short, equal in the two sexes. Prothovax dearly equare or alightly wider than long, weakly bisinuate at base, rounded on sides, punctate or rugulose. Legs sparsely hairy, front tibia shghtly enlarged toward tip; tarsi slender, middle cosa without trochantin. Elytra punctate-striate, sonietimes ragulose, the intervals more or less raised in sharp cariune; epipleurne very marrow at tip. Wings present, usually functionall. Ventral burface of abdomen weakly punctate. Length 3 to 6 mm .

KEY TO THE SPECIES OF TRIBOLIUM

1. Some or all of elytral intervals more or less raised or carinate; terminal joint of antennae either square, rounded, or largest at base; body not broad and rounded \qquad Subgenus Tribotium-
All intervais of elytra smooth and flat; terminal joint of anteunae small and in the shape of an inverted trlaugle; body brond and rounded._ Subgenus Lecmam
2 (1). Bods uniformly ferruginous
Body black, maroon, or dark castaneous
3 (2). Length 3.0 to 3.9 mm ; punctation moderate, prothorax smooth and shiny ; intervals of elytra moderate-
2.

Length 5.0 to 5.5 mus; putctation coarse and close; prothorax rougitened and dull; elytral intervals ralsed into rather sharp carinie \qquad with a distinct three-jointed club; sjace separting eyes ventrally equal to dianmeter ot eye; eyes not margined above; genae fairly prominent. costanoum.
Antemnae gradually entarged; space separating eyes ventrally equal to bree times the dianeter of eye; eyes margined above; gema very jrominent \qquad confusum.
5 (2). Bukly dark maroon or dark casteneous; antenuae tradually enlarged or with an indistinct five-jointed club; space separating eyes ventrally not more than wake the dianeter of eye; eyes murgined above
Body linck, appentages redaish; antemae with a distinct threejointed club; space separating eyes ventrally equal to about three times the diameter of eye; eyes not marginel above................adens.
6 (5). Length 4.5 to 5.5 mm ; color dark maroon with apnendages lighter; first and second intervals of cach elytron smooth; prothorix not ragulose; space semarnting eyes ventrally equal to nearly two times the rimmeter of eye
Jength 3.2 to 4.2 mm ; color uniformly dark castaneons; all elytral intervals raised into sharp carinae and very prominent; prothorax rugulose; space separatiog eyes ventrully slightly less than the

7 (1). Tibiae stout; hind tarsi robust, first joint sloort, somewhat triangular; apex of prothorax aarrower than base; scutellum very small, semicircular; space separating eyes ventrally equal to one and two-thirds times the diameter of eye; lengtil 4.3 to 4.6

SYNONYMIES AND DESCRIPTIONS

TRIBOLIUM CASTANEUM (HERBET)

GYNONYMY

1797. Cotgatiom castancum Herbst (50, pt. 7).
1798. Tcnebrio castancu» Schönherr (90, p. 163).
1799. Phateria custanea Gyllemhal (49).
1800. Uloma ferruginea Dejean (SG).
1801. Tribolitm castuncum MacLeay (67).

18i3. Матgu* वанtanсия Dejean (S7).
1839. Stene ferrufinea Westwod (102).
1854. Tribotium fcrrugincum Wollaston (104).

A list of the names usually cited as synonyms of T, castaneum (Herbst) but which de not refer to this species is given in table 1.

Tabis 1.-List of names wrongly synonymized with Tribolium castancum (Horbst)

Data	Namb and atuther	Hylitat	Oollection of	Remarks
1775	Dermestes navalis Fab.-.	New 7ealand	Banks	Probably a dermestid. See D. nanalis Fah, 1781 and 1787 , and $L y c t u s$ nopalis Fab. 1775 and 1787.
1781		.-.tl0--.-	din	Tent same as D. navalis Fab. 1775 and 1787.
1781	Tenebrio ferragineus Fab	Efuatarinl Africh.	.do	Cucujidae, teste Waterh. 1890, Champ. 1896, Blair 1913.
1787	D			Text same as D. naralis Fbb. 1775 and 1781. See Lyctus nazalia Fab. 1792.
1787	Tenebrio ferrugiseus P	Saxory	Hymmer...	Houlonym of T, ferrupineds Fab. 1782.
2792	Trogas	Equatorial Arica.	Banks...	Syoenymo of Tenebrio ferrugineus Fab.
1792	Lyctus navalis	New	do	ennal club 2 -fointed. Synonsm of
1792	Dermestes navalis Her			D. navalit Fab. 1787, teste Fab. Synonyin of D. naxalis Fab, 1775, 1781,
1792	Ips cinnemomea Herbst.		156H1	1787, tesio Herbst.
1795	Thenebrig ferrugineus ollvier.	Equatorial africa.	Banks	Synonym of T. ferrupizieus Fah. 178I, 1787, Linn. 1790 bed Trogosila ferru- ginea Fgb. 1792 teste ollvier.
${ }^{7} 98$	Ips testaceat Fab....-....-	Enslern India.....	Daldort.	See Trogosita ferrugizea F'ab. 1801 ,
1801	Troposita ferruginea Fsb.	India.		Synony'm of T. ferrupinet Fab. 1702, Lyctus natalis Fab. 1782, Ips testacea Fah. 1798, texte Fab.
1800	Tenebrio ochraceus Melsh	Penngylvania.		Catalog referevce only.
1812	Tenebrio bifaveolatus Duft.	Austrín.......	Durtschroid.	Length 2\%f mm. Patores texte Chapin.
1332	Skene ferrutjinea Stephens	England.	Stephens-	Genus stene created by Stephens for Tenebrio ferrapineus Fab.
1830	Vfome ochyacea Knnech.	North 1 merica.		alog reference
1836 1840	Uloma rubent Dej. Dlomar rubers Cast	Nor		Lenth Do. $03 / \mathrm{mm}$, width $21 / 3 \mathrm{~mm}$. Prob-
1847	Margus ferrugineas Kusior.	Europe		nbly Utoma. Senth 236 mim, widtli 39 mm . Probably Palortx.

The species Tribolium castancum, has been generally known in North America and elsewhere as Tribolium ferrugineum Fab. (1781 or 178%), but it is very evident that the name ferrugineum Fab. cannot be retained. The type of Tenebrio fervugineus Fab. (1781) was examined by Waterhouse (100) in 1896 and found to be quite different from the insect known as Tribolium fermogineum Fab. In this type specimen, in addition to other characteristics excluding it from the Tenebrionidae, all of the tarsi were four-jointed, and Waterhouse placed it among the Cucujidae. Champion (16) and Blair (9) also examined this type specimen and corroborated the opinion of Waterhouse that it was a cucujid. Champion, Waterhouse, and Blair, all seem satisfied that the specimen in question is the identical one described by Fabricius in 1781, and, although the identity of any specimen is, at best, very uncertain after 115 years, the concerted opinion of these three eminent coleopterists as to the specimen's jdentity and its proper classification seems of sufficient weight to insure its acceptance. Since 1896 the description of Tenebrio ferrugineus Fab. (1787) has been generally accepted as the original description of the species. However, this name is an exact homonym of that of the 1781 insect and could not be used even if Fabricius had been dealing with another species. Whether Fabricius really
was dealing with another species is not certain although Blair (0) thinks not. He.says:

The description of Trogosifa, forruginea, Ent. Syst. I, 1792, quite disposes of this possibllity, for here it is definitely synomymised with the Tenebrio ferregineus of the "Mantissa", and Fabricius continues: "Habitat in Africa requinoctiani Mus. Dom. Banhs, in Americe Insulis Dr. Pflug," the words in talies being obviously quoted from the Species Insectorum, 1751. It is perfectly clear, therefore, that Fabricius supposed that he was dealing with one nat the same species in these three instances. Furthermore, this conchasion is borne out by Sherborn's "Index Animitinn" which quotes Troyosita fermone (1792) as synonymous with Tenchio fermoinew (1781), and in the "Epitome Futomologiae Fabricianae", by Berastrisser, p. 1s, where trofmaita fertuginea is the only one that appears. From luse fucts, then, it is evident that the mane formpineum, F. as applien to the 'ribolimm, can have no locus standi whatever.

Dermestes nawalis Fab. (17t5) has been thought by some nuthors to refer to the present species. The listing of Lyctus navalis as a synonym of Trogosita fernuginea by Fabricius in 1801 may be the basis for the use of the name nanalis by Reitter in 1911. That this cannot be eorrect is evident for several reasons. The description states that it is of the form of Dermestes murinus but one-fourth smaller, which very evidently does not refer to a Tribolium. In 1792 Fabricius described a Lyctus navalis with a 2 -jointed club on the antemna and synonymized it with his third description of Dermestes navalis (1787). His three descriptions of Dermestes navalis (1775, 1781, and 1787) arc almost identical in wording, name habitat, and collection, except that no habitat or collection is given for the 1787 description. From this it seems perfectly evident that Fabricits was dealing with the same species and perliaps the same specimen in all four of his descriptions of mavalis, and that it camot be the present species is certain becanse he described it as having a 2 -jointed club on the antema instend of a 3 -jointed one.

Ips cinnamome Herbst (1702) is sometimes given as a synonym but certainly cannot refer to this specios because Herbst (50, pt. 4) begins by saying that it has exactly the fom bat not the size of the first (Ips quadripunctata), which certainly differs very greatly from a Tribolium, and because from the figure given one needs to stretch his imagination considerably to place it anywhere near Tribolium.

The description of Colydiam castancum. Herbst (1797) fits the present species very well with one exception. His description of the tarsi (50, pt. 7) states " dic Fiisse sind wie gewohnlich", which is four joints for atl of the tarsi in the genus Colydium. However, as has been stated, the designation of any certain mumber of tarsal joints to a beetle, especially a tenebrionid, by these early coleopterists should not be taken too scrionsly. In this respect it is significant to note that MacLcay, in proposing his genus Trabotium for the Colydium castaneum of Herbst, which was originaly described as having all the tarsi 4 -jointed, nevertheless designated all the tarsi as 5 -jointed. Apparently, because of imperfect lenses, neither of these authors was able to determine the exact namber, and neither suspected that his insect might be heteromerous. Furthermore, Herbst states that his insect was taken as a moseum pest, damaging insects in a collection. After eliminating the dermestids, to which the deseription cannot possibly refer, there are left, in addition to this Tribotium, so few iusects known to be museum pests that it is an easy matter to see that
none but T. castanewin fits the description. Finally, Herbst's illustration of his Colydium castanewm (fig. 1) is sufficiently clear to be recognizable as referving to T. castancum, even without the description or food record; and when considered in comnection with the description and especially with the remark as to its food in this particular instance, all question as to its identity is removed.

slightly below lateral margins of hody except caudad of third abdominal segment. Wings fully dereloped, functional. Legs rather sleuder, front tibiae slightly widened apically, fore and middle tibiae moderately serrate on outer margins; all tibtae with two slrort terminal spines; all tibiae and tarsi sparsely ciliated.

Abdomen finely punctate over entire surface. Lateral margins of first and second segments smooth, parallel ; third slightly convergitg, with a very smath rounded projection on each shde at apex ; fourth short, also more contracted laterahly, with a small, rounded projection on each side at two-thitws the (ifstance from base to apex; fitth semicircular, the projections slightly larger than on fourth segment and situated near base, with a slight indentation imnediately to the rear of these projections. Sutures letween all segments parmiel, except at lateral margins. Fourth semment hardly more than one-half the length of the second; inird turee-fourthis the length of the secoud.

Length 3.00 to 3.73 mm , average 3.323 will ; width 0.97 to 1.26 mm , average 1.143 mm .

Figule 2.-Tribolikm castanetum: Adult, $\times 28$.
Habitat.-Cosmopoitan, in cereal products, etc. Type locality,--East Indies.

TRIBOLIUM CONFUSUM JACQUELIN DU VAL

Brinonrax
1854. Tribolium ferruginowm Molsant, (70).

186S. Tribolium :onfosum Juç. diu Val, (56).
1891. Tribolium (Stene) confusum Scidlitz, (91).

Mulsant in 1854 misidentified the present species, calling it Tri-

was applied to this has therefore no status as far as its antedating the present name is concerned.

The name Stene was incorrectly used by Seidlitz in 1891 (91) and 1894 (92) as a subgeneric name for T. confusum J. du V., which he separated from T, castaneum Herbst and T. madens Charp. on the basis of antennal characters. He disregarded the fact that Stephens' Stene actually referred to T. castaneun and so could not be used as he suggested even if, as was shown in the discussion of the synonymy of the genus, this name was not entirely thrown out of the group for nomenclatorial reasons.

Bravin 3.-Tribollum confusum; Adult, $\times 28$.
DEACRITMION
(FHg. 3.)
Color fairly uniform, reidish brown or ferruginous.
Head: Genae in front of edes distinctly widened, jutting out at nearly a right angle with them and, with the ciypens, forming a thin, shelflike profection around front of head, the expanded clypeas rounded anteriorly. Eyes decidedly emarganate, the emargination extending backward to middle of eye. Epleraniun sharply margined immediately above the eye, forming a horizontal earina slightly juiting out over the eye. These characters make the cyes upperr much smalle: than in castaneam. Viewed from below, the eyes are rounded, the space between the eyes beltg nearly three times the observell width of the eye. Antennae gradually enlarged toward tip, the expansion

```
12005 - 36-2
```

taking place mainly in the serenth to tenth joints, but the pinth ouly slightly larger than the eighth. Termital joint roumb or transversely rounded. Antennae sparsely hairy. Mouth parts similax to those of castanemm.

Prothorax widest at apien thirid, distinctly wider at front matgin than at rear margin; front angles sharmy rounded, projecting slightly anterior to the straight line forming the remainder of the front mateita; hind angles usuatly right angles, rear margin weakly bisinatic. Seatellan senihexagonal. Diytral intervals fairly promineat, usually more notiacoble than the lines of pundures. Margins of the epipleurae neaty condiaing with hose of the sternites. Wisigs fully developed. Legs similar to those of costonewn.

Abdomen similar to that of eastancm but wit' the projections on the third, fourth, and fith segments slightily more pronounced.

Length 3.09 to 3.8^{2} man; average $3.4 \overline{5} 7 \mathrm{~mm}$; width 1.08 to 1.26 mm ; avemge 1.179 mm .

Habitat.-Cosmopolitan, in cereal products, etc.
Type locality,-Fratice.
TREBOLIUM MADENS (CHARPENTIER
STKUNYMY
1825. Tcnebrio matens Charwentier, (on).
1832. Uloma madens Krynicki, (6I).
1842. Marytts obscurus Redienbacher, (8 s).

Deschitrion
(Fig. 1.)
Color of body dull hack ; lexs, antemute, and mouth parts reddish.
Bead closely but finely punctate unitiormly over the dorsal surface, the pits shatlow and usunly elongate. Ventral surface moderately punctate with fine pits. Clypeus concave alome center of front wargin, the sides directly fibuve the Lase of antennae also slightly concare and raised. Clypeus sepmiated from genae by an indistinct suture but not sepmated from firons. Frons smoothly rounded or slightly arched. Genae searecly projectag froul curvature of the eyes. Eyes divided by genae for only :bbout one-foulth of their kensth. Epteraniun not at all matroined nbove eyes. Eyes vontraliy sman tad rounded. Space separating them usially $21 / 2$ to 3% times the dimmeter of eye. Antentate with a very ilistinct three-jointed elul as in ? castancum, dilemal joints narrow up to eighth, wheh is shightly wher than long, ninll, tenilh, ind deventh flatemed and much wider than long. Termimal juint litge, ans broad as tenth and truncate on cold. Labrum trmasperse but rounted on Cront. Last joint of maxilhary palni stender. Width of head across eyes 0.03 to 0.74 mim; width across gemae scarecty any greater.

Prothorax one and one-ibird times is brond as long, somewhat flattened. Falrly eventy punctate over entire dorsat surface, but sotnewhat more densely so toward sides; pits lexagonal. More deeply and conrsely punctate than that of T. casfanenm. Front natrin very sliglitly and evenly howed forward. Margins of front angles slighty but detinitely jutting forward. Sides of prothorax rather sharply margined. Side margins convex to one-third from frome angles thence converging reguharly to hind angles which are shlghty ohtuse, litar margin feebly bisinuate. Base of prothorsix impressed on each slde of center. Ventrat surfice of prothorax closely and dephy punctate. Scutelluan brondy semibexamonal. Elytra sonewhat broater in proportion to length than in T. cusfoneum. Broatest at one-third from abex. First and second intervals smooth, thiral and fourth slightly mised, fifth, sixth, and seventh blightly carinate, eighth less so, minth and tenth nearly smooth. Finely aud closely punctate, msially with two rows of pits hetween each interval, those on the disk indistinct. Epijheura murrowing kraduaty from base to apex. Margins of epipleurt nearly coinciding with those of sternites. Wiags well developed, functional. Legs similar to those of T. custmanm but with sermthons of front and midelie tibiae absent or mearly so. Tibial spines strabght.

Abdomen evenly and finely phactate over entire ventral surface. Lateral rounded profections more reduced than those of It castancum. Fifth segment: with a shallow impression on each side of center, Average length of abdominal
segmenty : first, $0.44 \mathrm{~mm} ;$ seconx, 0.35 mm ; thirel, 0.32 mm ; fourth, 0.24 mm ; fiftly, 0.32 mm; total length of abolomen 1.67 mm .

Length, 3.6 to 4.4 mem; width across elytra, 1.2 to 1.6 mm.
Habitat.-Europe, North America, Egypt. Under bark and in rotting logs, oceasionally in flour and seeds.

Type locality.-Silesia.

Figure 4.—Tribolium madcng: Adult, $\times 28$.
TREDOLIUM DESTRUCTOR UYTTENBOOGAART

- GNON工MY $^{\text {Y }}$

1933. Triboliam dratructor lytlonl). (\%/, pp, sti-alii)
descmitton
($\mathrm{Fl}_{5} \mathrm{~g}, 5$.)
Color of body dark maroon shininf; apmendages lighter and more reddish.
Head fairly strongly punctate, the pits elongate ind often ruming together, especially on frons, to form minute, crooked groopes. Veatral surface of head
spursely and finely punctate. Clyneus truncte in front, sides rounden, separated from getme by antwre, bat not separated from lioms. A stailow transverse imprestion runing across the head from front of one eye to the other, ant another, incomplete, shalow transverse impression between frons and anex. Dyes divided by the geatite for about three-fifths of their length; marrowly margined above. Yentratly modemte in size, the space separating them being equal to from $11 / 2$ to 2 times the dinmeter of each eye. Antennue gradually enlarged or with a very indistinct 4- of 5 -jofnted club which is sparsely hairy. First folnt ont antenme concealeal by clypeus, joints 1 to 5 marrow, the sixth bendike, the seventh and eighth progressively broater, the ninth and tenth twice as broad as loug, termimal joint broadiy romuded to oblong. Labrum short and yery transverse; hafry. Mindibles large, bifla, and pointed at tip. Maxillary patpilarge, broatly oval. Whath of heal across gene 0.52 to 0.99 mm ; witth acruss eyes 0.80 to 0.93 mm .
μ^{\prime} rothorax 1.00 to 1.25 mm long, 1.25 to 1.65 mm broad; closely and coansely manctate or pitted, luat with the portions between pits smooth and shining. Ifits hesagonal or thamond shaped. Upper starface of potborax moderutely arched, sides rounded, bruadest one-third from apex; sides of prothomx marpined, more strongly so at the front ingles. which profect forward rather prominently; rear angles nbinse, rear margin bisintate. Two prominent longitudimal demressions extend slightity forward from the base, one on euch side of the midpoint, half way between It and the rear angles. Ventral surface of poothoms closely nud conssely punctate. Ventral surface of mesothornx and metathorax moderately punctate. Seutelum broally seminexaronal. Elyera more rounded than those of T. cusfancum. Whe first two intervals between the rows of pits nearly fat and withont carinae, the third elevatel at base but less so toward the apex, the fourth, fifth, had especintly the sixtlo and seventh interyals distinctly carinate, the eighth less so, and the ninth nearly flat. Disk of elytra with indistinet rows of pits torether with a general panctation amb smatier pits. Rows of pits between fouth and seventh intervals distinct and consisting of a central distinct row of pits tugether with an accompanging row of pits mather sitle directly at base of each carina. Epipleurne moderately broad hack to base of the last ablominal segment, thence very garrow. Margils of epipleume nearly colnciling with sides of abolominal segments. Wings well develoned. Legs similar to those of T. chstoneum, but with serrations of tront anil middle tiline absent or nencly so and with the ventral groove of the prothoracie femma more pronounced. All tibite terminnted by two staight splnes, the :anterior spine of prothoracie timate much larger than the others.

Abdemen morerately pitted arer entire ventral surface. Length of first sesment with intereexsl proeess 0.46 to 0.58 mm , second sagment 0.40 to 0.43 man, of thid segment 0.36 to 0.59 mm , of fonth segment 0.26 to 0.29 mm , if fitth segment 0.38 to 0.43 mm , total lensth of abiomien 1.8 to 2.1 mm . Murgtos of ablominn segments differing from those of 7 . castancum in that the literal rounded projections are thsent or very mucl reduced on the third and fourth segments and reduced on the fifth.

Length 4.3 to 5.4 mm , widel across olyira 1.4 to 1.8 mm .
Mabitat.-Recently found to be a pest in seeds and various cereal prodlucts in Germany and the Netherlands.

Type locality.-Erfurt, Germany.

HISTORY AND ECONOMIC IMPORTANCE OF THE GENUS TRIBOLIUM

COMMON NAMES

The flour beetles are known by a varicty of common names. Millers refer to species of Triboliwm and other closely related beetles of similar appearance as "flour beetles", "flour weevils", "red weevils", or "bran bugs." Grain insjectors know them as bran bugs.

The upproved common name for 7. confusum, is "the confused flour beetle." It has also bees referred to by one of the carlier American entomologists as "the pollard weevil", while in Germany this
species is commonly called "the American rice-flour bectle." The name "confused flom beetle" is the matural outgrowth of its scientific name which was chosen by Jacquelin du Val because the species had until then been confused with the very similar T. castaneum. The accepted common name of the latter is, "the rustred flour beetle", which is appropriate considering the insect's color but does not differentiate it from its many similany colored relatives. Other common names for this species found in less recent American literature are "wee flour beetle", "red flour beetle", "ferriginous flour beetle", "brown grain beetle", and "the weevil." In Germany it is commonly called "the ret-brown rice-flour brette."

The common names by which T. modens has been canted are" the black flour weevil ", a name given to it by Johnson in 1897 (58), "the black flour beetle ", by Chittenlen in 1911 (30) and "the black-brown rice-flour beetle", by Zacher (108) in 1927. The first name is inappropriate, however, as none of thi: group have any relation to true weevils. Of the other two names the writer prefers the black flour beetie, a mane which adequately describes the insect and also is in harmony with the names given to other Tribolium and elosely relaked beetles, which are all known as flour beetles.
No common names have as yet been proposed for the other species of Tribolum, but since these species, with the "xception of T. destructor Uytenb., are

Figent 5-Tvimathm destructor: Acint, $\times 12$. of no economic importance, there is no need for common numes by which to desigmate them.

PLACE OF ORIGIN OF THE GENUS

As with most stored-produce insects, the question of the place of
 tion by commerce has long since made them cosmopolitan. There is only one definite record whid throws any light on the subject. Andres (3) records the finting of specimens of Tribolium in a Phamonic tomb of about 25010 B . C. At that time commerce, the only neans by which these insects are distributed, was largely restricted to the Mediterrancan region and southern Asiat. Another hint is given by Blair (10) in evidence showing that 7 . castancum is commonly found in the wild state in wood in India. It is also found in such situations in North America and elsewhere, but not at all commonly. In the same articie Blail described a closely related species, T. indicum, from the same country and with the same habitat; which does not occur in stored products. From these facts it seems probable that these beetles originated somewhere in the general region comprising India, southwestem Asia, and the eastern Mediterrancan lands.

The fact that T. gebieni was described from Paraguay and so far has not been recorded elsewhere has no meaning whatever so far as its origin is concerned. It was not described until 1933, and there is no indication of its habitat or food habits. It seems quite probable that T. gebieni is a native of some other country where it still awaits discovery and that it has been transported to Paraguay by commerce.

Another species, T. myrmecophilhm, is known only as an inhabitant of ants' nests in southeastern Australia and cannot fit into any present theory as to the origin or original habitat of the genus. It may be that later this species will be discovered in other localities and with other habits, or may be placed in a separate genus, but at present the writer does not propose to offer any explanation for this seeming discrepancy in his theory.

It is almost certain that before the advent of civilized man the members of this group hived under bark and in old logs. In that case

Figuna G.-Distribution of Tribolion castanerm as glown bs records of the Burenu of Datomolosy and l'innt Quarantine, United States Department or Agriculture. In the Unitred States enclinfested State is represcnted by a dot, the infestation betng bhowa more in detall hathgure 8 .
their food habits were probably those of scavengers, but of this there is no certainty. With very tew exceptions, the beetles of the subfamily Ulominac, of which Tribotium is a member, occur either as pests of stored products or else under the bark of trees and in rotting logs. It seems very probable that the members of this group originally lived in the latter habitat and that the flour-feeding species have since become adapted to their present mode of life. The genus Tribotium presents ail gradations between the two. T. indicum lives under bark only, T. maden.s usually occurs there but has been taken in seeds and in meal on a few occasions; while T. confusum and T. castancum are essentially pests of stored products, although sometimes found under bark, and T^{\prime}. destructor has so far been recorded only from seeds and other stored products.

DISTRIBUTION

Tribolium confusum, and T. castancum, are cosmopolitan, occurring all over the world wherever stored cereal products are to be found (figs. 6, 7, 8, and 9). As they live inside of buildings and may easily
be carried from place to place in small quantities of foodstuffs, these beetles are likely to be recorded from practically any part of the world. The fallure of the world-distribution maps to show any appreciable difference in the northerly distribution of the two species

EToDER 7.-Diatributton of Tribolfum confusum an stown by recorde of the Burean of Entomology and Plant Quarantine. Tintted States Department of Agriculture. In the United States ench infegted State is represented by a dot, the infegtation being shown more in detaid in figure 9 .
is due to the fact that either species may be introduced and become established in heated buildings in climates much colder than they could ordinarily tolerate. Records in the United States indicate that

Figore 8.-Distribution of Tribollum caataneam tn the Unsted Statea.
temperature has guite an effect on distribution. 2'. castancum is essentially an insect of warm climates, and, although sometimes recorded from Canada and other northern countries, it is evidently not a permanent resident north of the fortieth parallel in eastern

United States except in heated buildings. T. confusum, on the other hand, is more frequently found in the northern part of the United States than in the southern part. From 37° to about $40^{\circ} \mathrm{N}$. both species occur commonly, while south of 37° confusum gradually

Fiauki 9.-Distribution of Tribolium confarum In the United States.
becomes less common and in the Gulf States is largely replaced by castaneum.

The localities from which 7 . madens has been recorded are shown in figure 10. It would appear to be of more northerly distribution

Figute 10.-Recorded world distribution of Tribolium madent.
and able to withstand greater extremes of cold than any of the other species of Tribolium. In this connection it should be remembered that the majority of the records of T. madens are from specimens taken out of doors, while all of the records of T. castaneum and
T. confusum from northerly localities are from specimens taken indoors in heated buildings.
T. destructor is fomd in Germany and the Netherlands; T. indicum. has been recorded from India, Seneral, and possibly from Abyssinia; T. myrmecophilum is known only from southeastern Australia; and T. gebient Uyttenb. is recorded from Paraguay (fig. 11).

- - T.DESTRUCTOR UYTTENE. O-T.INDICUM BLAIR
$\Theta-$ T. GEBIENI UYTTENB. ©-T* (LEANUM)MYRMECOPHILUN* LEA
 indickm, gebieni, atrd marmerophlam lowing ludicated ly syabols.

historical notes

DISCUSSEONS OF TRIBOLIUM CASTANEUM AND T. CONFUSUM

Perhaps the most interesting record concerning Triboliwn, is one that goes back over 4,400 years. Andres (3) gives the following account:
Mr. An. Alfieri has supplied me with the followng interesting facts in emmnection with Tribohum thetles found in atu ancient burim memument. The beetles were found in a jat which pronahy comained erains or four in a pharamict tomb of the fith Dymisty (alynut 2,500 years A. C.). Although these
 Whey belong tof ferrugineum or confusam awing that legs anm antemate are missing. In any case it is futcresting to note that the gellus tribolimen existed in the Nile Valley since that thme and canme the consilered of a recent introduction into the country through fimportation.

There seem to be no other records antedating the description of 7'. castancum, by Herlss in 1797. It was first recorded in North America in 1835 by Thomas Say (88) under the name Uloma fermugineat Fab. A grood description was given by Wollaston (104) in 1854, Lucas (66) in 1855 , gave a good account of its metamorphosis, while Schiddte (89) gave a fine description of the larva in 1878. In 1854 Mulsant (rO) gave a grod description of T. confusum under the name of T. ferruginewn.

The first to notice a varialion in structure of his specimens was Wollaston (105, p. 490, footnote) who evidently had specimens of
both castaneum and confusum before him, but thought confusun to be the male of castaneum instead of a new species. His account follows:

It every diagnosis to which I have had nceess (including my own, in the "Ins. Mad.") the sexes of Tribolizm are regarded ats perfectly similar (extermaly) inter se. But an accurate inspection has lately convinced me that such is not, in reality, the case,-oue of them (which I presume to be dle mate) being not only less opatse and with jts mothorax apprecinbly marrower behind, but having likewise its gene just perceptinly more prominent and angular in front of either eye, and its antennal club much less abrupt, or more gradually formed (occastoned by the subclaval juint, or joints, being wifler).

Four years later Jacquelin du Val (55) correctly interpreted this variation as constituting a new species and described it as T. confusum, the name being chosen because this species had until then been confused with castaneum.

One of the first important contributions to the biology of Tribolaum, and the first from the North Americun continent, is that of Dugés (39) (1883), from Mexico. The first from the United States is that of Lintner (65) in 1885, in which he gave an account of the synonymy of T. castaneum and its distribution and damage, particularly in New York. Another important contribution to the biology of T. castaneum was by Kessler (59) in Germany. Some of the earlier American records on T^{\prime} castanewm are those of Cook (31) and of Weed (101) in 1891, and Bruner (13) in 1893, all of which were seneral accounts concerning this species in various parts of the United States.
T. confusum was not recorded in North America as a distinct species until 1886 when Champion (15) recorded it from Mexico. It was recognized in the United States as distinct from T. castoneum in the fall of 1893 . In 1895 the records of damage by \vec{r}^{\prime}. confusum were numerous.

From 1895 to 1897 Chittenden ($26,27,28,29$) gave the first really important contributions on the genus including data on the biology, distribution, and injury clone by all three of the American species. Johnson published many records of injury by these insects begrmning with a paper (56) in 1895. Quaintance in 1896 (\%0) and $1899(80)$ published accounts of the biology of both species in Florida. The majority of the numerous short accounts of Tribolium between this time and that of Chapman's article in 1918 (17) are copied from Chittenden's papers. Good discussions on synonymy were given in 1896 by Champion (16) and Waterhouse (100) and by Blair (9) in 1913, while very acceptable descriptions of the three known species, with keys for identification, were given by Desbrochers des Loges ($38, p p .27-30$) in 1902. T. castoneun was recorded in Hawaii by Kotinsky (60) as living in bee cells, as feeding on lac in India by Imms and Chatterjee (54) and by Roubaud (87) as doing considerable damage to peanuts in Senegal. Herrick (51) cited several in stances of damage by these insects together with a shor discussion of their biology. Barnes and Grove (() in 1916 gave notes on the bology of several stored-grain insects in India including T. castaneum, and also presented work on chemical experiments, respiration, effect of humidity, and remedinl measures.

Chapman (17) in 1918 made one of the most important contributions to date concerning the biology of 7^{\prime}. confusum, including a good
original accouat of the life history, fool, relative infestation of wheat flour and whent-flour substitutes, and methods of control.
Short articles on both species appeared in a bulletin by Back' and Cotton (5) in 1922, a short account of the life history of \tilde{T}. confusum was given by Felt (4^{9}) in 1921, while the effect of T. confusum on four was discussed by Payne (r6) in 1925.

The more important recent articles on the biology of Tribolium are those by Burkhardt (14) and Kunike (62), giving good accounts of the biology of T. confusum in Germany; by Brindley (12), which gives much data on the life history and many measurements on the various stages of these beetles; by Good (47), in an article intended as preliminary to this bulletin giving a summary of biological experiments on both T. confusum and T. castaneum; and one by Park (75) in 1934, presenting an enlightening and critical analysis of all of the recent important pupers on T. comfusum as well as considerable valuable orjginal data.

The subject of nutritional requirements has been investigated and discassed by Chapman (19) and by Sweetman and Palmer (97), while the effect of nutrition on sex is discussed by Holdaway and Smith (53).
The subject of ecology, and especially that part relating to growth of populations, has received considurable attention within the past few years. In this field, as in many others. the pioneer has been Chapman, whose articles on environment and increase of populations appeared in 1928 (20), 1929 (21), 1931 (22), 1933 (23), and 1934 (24). Allee (2) in 1931 discussed the growth of populations of T. confusum, basing his discussion largely on Chapman's work. A mathematical study of the growth of populations of T. confusum, also based on the work of Chapman, is presented by Gause (46), while Stanley (93, 24) gives more extended mathematical treatises on this subject. Original investigations as well as analyses of previous work were presented in two papers by Park in 1932 (73) and 1933 (74) on the factors regulating initial growth of populations of T. confusum. The effect of moisture on the growth of populations was very well discussed by Holdaway (52) in 1932.
An article by Blair (70) gives valuable data on food and distribution as well as the original description of another species, T. indicum, and Uyttenboogaart ($O 8$) has presented a revision of the genus and a description of and data concerming T'. destructor.
Laboratory studies of the effect of low temperature on T. confusum were reported by Payne in 1926 (77) and 1927 (78), while work on the resistance of T. castaneum to heat was given by Yokoyama in 1925 (106) and 1927 (107).

Much emphasis has been placed on the control of these very injurious beetles, but, as would be expected, very little of the work on control concerns Tribolium alone. On that relating mainly to T'ribo7ium may be mentioned articles by Chapman (17), Lelmman (64) on the use of paradichlorobenzene and naphthalene, DeCoursey (35) on trapping in corrugated paper, and by Richardson and Hans (84) on the use of pyridine and nicotine. Under the heading of Control Measures ($p .4 \overline{\text { i }}$) will be found references to the more practical discussions by recent investigators.

HIETORY OF THIBOLIUM MADENS CHARP.

The first reference to Tribolium madens is the description by Charpentier (25) in 1825 of a specimen taken from a beehive in Silesia. Redtenbacher's description of Margus obscurus in 1842 (83) seems to be of this same species. His specimen was taken in Austria. There are various other records of T. malens in Europe, but it has usually been taken in rotting wood or similar situations where it was of no economic importance, althongh it has been recorded as doing damage to flour and cereal products in Russia. Descriptions of 7. madens have been published by Seidlitz (22) and by Des Loges (38, p. 29).
The first American record for T. madens seems to be a catalog reference by LeConte (69) in 1860. Chittenden ($\% \%$) gave a number of records for this species in the United States, but none of these concern cereal prodnets, and he expressed the opinion that it was not found in such situations. Johnson (57, no. 7), however, cited a case where it was abondant and causing considerable trouble in a flour mill in Utah in the summer of 1895 and recorded in 1897 (58) receiving it in flour and mill products from the States of Montanal and Washington. Two specimens in the collection of the United States National Museum were, according to the label, taken in ground cereal in a flour mill at La Grunde, Oreg., in August 1897. Other specimens from Bomner, Mont., were taken in meal and cereals. Essig (42) referred to it as "another cosmopolitan species" which "occurs in cerends in the west", and from Egypt Andres (3) recorded it as being "cosmopolitan in stores." Specimens collected at Newton, Utah, in October 1933 were sent in by G. F. Knowiton with the report that they were very abomelant in stored wheat. All the specimens in the lut were fontid to be T. madens.

MATERIALS INFESTED

The flour beetles are known to attack surel a wide rariety of foods that they can be said to be practically omnivorous. They have been found feeding in over 100 different foodstuffs. The list comprises mainly grain and seeds of various kinds, flour, meal, and other cereal products, but also includes animal matter, wood, vegetables, and various drugs and spices.

FLOUR

Flour is the material principally infested by Tribolizun. Practically any kind of flour may be infested, and whole-wheat flour seems especially liable to attack. The flour beetles have been considered second to the Mediterrancan flour moth in the damage done in flour mills but at present are undoubtedly the most abundant and injurious insects found in such situations. However, they are usually less of an annoyance than the moth to millers because they do not spin welbs that clog up the pipes and machinery. Where these pests are present in numbers the flour becomes grayish and discolored and will mold more quickly than clean flotr. Sometimes the disagreeable, pungent odor given off by the seent glands is imparted to the flour, giving it a disgusting taste and odor.

OTHER CEREAL PRODUCTE

Meal and many other ground products of grain are favored foods, and practically any kind of commercial breakfast food, stale bread, cakes, and cornstarch and other starches may be found to contain these pests. They often become very annoying in grocery stores, and if they become abundant they will get into every article of food in the place, sometimes almost ruining the merchant's business until he thoroughly fumigates the entire store. They are among the worst of pests on ships carrying edible produce of any kind because they will breed continuously and infest practically every foodstuff on board.

GRAIN AND OTHER SEEDS
The species of Tribolium cannot feed on entire, undamaged grain because their mandibles are not strong enough to chew through the tough outer coating. Practically all lots of grain, however, contain a certain percentage of broken kernels, so these beetles may be found infesing almost every known kind of grain. They are very common in grain shipments, usually occurring with either Sitophilus or Rhizopertha, at first more or less in the role of scivengers, but as the grain becomes more and more damaged they are able to do considerable injury of their own accord.

Grain waste and cracked grain products such as chicken feed are especially liable to attack. Quaintance reported com in the field as attacked by Tribolium castaneum, but of this the writer is inclined to be very doubtful.

Excepting the grains, peas and beans of all kinds scem to be the seeds most commonly attacked. Cacao beans are often infested, and several instances of injury to cottonseed have been reported. There are many scattered references concerning injury to varions seeds, and it seems likely that Tribolizm will feed on practically any kind of seed, the only prerequisite being that some of the seeds be cracked or otherwise damaged.

NUTS

Although these insects are mable to penetrate the shells of most nuts, they will readily breed in any kind of cracked nuts and nut kernels. Persian (Enclish) walnuts seem to be a favorite food, and peanuts are often infested and instances of serious damage to them have been reported (fig. 12, A).

DRIED FRUITB

Dried fruits of various kinds are often infested, but these flour beetles can hardly be said to be a major pest in such proflucts. However, they occasionally do serious damage to raisins.

FOREST PRODUCTS

Since, as has already been shown, the original habitat of Tribolium appears to have been in rotting logs and under bark, it seems natural that all species of the genus should occasionally be found there at present. There are quite \mathfrak{a} number of references showing them to
have been bred from various trees, especially from ash and pine. It seems probable, however, that they act as scavengers in such situations and do not feed on the wood itself. They have also been recorded from slippery elm and from resin, and the writer has observed that they sometimes riddle corks in the laboratory (fig. 13). Experiments on slippery elm and on cork indicate that they are unable. to subsiv. n these products alone but use them only as auxiliary foods. It seems very unlikely that they could breed in resin.

Figera 12.-Dhemage to fuodstiffs lay thour beedes: A, leanain Infented by Tribalum
 T. confuatm fecdisg in a yeast eake.

SPICES

Several kinds of spices are attacked by the flour beetles. The writer was able to breed T. confusum in cayenne pepper with some difficulty and found that they would feed and survive for months on nutmeg and ginger. They have also been reported as feeding in mustard and cinnamon.

OTHER PLANT PRODUETS

These beetles have been reported in snuff and orris root, and the writer's experiments indicate that they are able to breed in both of
these products. Baking powder is an acceptable food. They will also survive for some time on brown sugar but will not breed in it,

The beetles have several times been reported as feeding on yams, garlic, and other vegetables, but there are no records of their having been bred from these products. Herbarium specimens frequently suffer from their attacks. There are a few records of feeding on cured tobacco and dried cornstalles, but there seems to be no danger that these beetles will become a pest in tobaceo.
They seem to have a liking for milk chocolate and will readily breed in it. However, this commodity tends to become sticky during hot weather, especially in the presence of the beetles, and they easily become entangled and perish. The writer has observed them breeding in yeast cakes in large numbers (fig. 12, B). Although no other food but the yeast was available, the beetles were exceptionally large and active, indicating that yeast provides a very satisfactory food.

ANIMAL MATTER

In insect collections Tribolium may do as much damuge as the dermestids, and collectors must be continually on

 fusum, $\times:$ the lookont for their depredations. Although they cannot climb glass or smooth metal containers they can easily climb an insect pin, apparently by clutching the pin with their claws, and thos reach the mounted specimens. Hides and bird skins often become infested and ruined by these little pests. One record reports feeding on hog's bladder. Although not nomally predacions, they have been observed to attack Ephestia larvac. However, it is donbtful whether this is of frequent occurrence, and experiments by the writer indicate that only the dying or diseased Ephestiac larvae are subject to such attacks. Reports from India show that they also feed on lac. They have been found in the cells of bees in Hawaii but undoubtedly fed only on the pollen and did not otherwise molest the bees. Dried buttermilk and milk powder have been shown to be very satisfictory foods for these bectles.

LIFE HISTORY OF 'TRIBOLIUM CASTANEUM AND T. CONFUSUM

THE EGG

The egers of Tribotium confusum, (fig. 14) are oblong in shape averaging 0.60 mm in length by 0.35 jum in width. The eggs of T'. castancum are indistinguishable from those of T'. confurum. The egge of both species are whitish or colorless and nearly transparent.

The shell is smooth, unmarked, rather thin and pliable, and is covered with a sticky substance that aids in attaching the eqgs to surfaces and causes small particles to adhere to them. Thus, eggs which are laid in flour or other finely ground substances are almost invariably couterl more or less thickly. This makes it very difficult to detect the eggs in flow.

The egess are placed directly in the flour or other foodstuff in which the adult is living. They may lie free in the flour or be attuched to the surface of the container. The adults have ustally been said to lay their eggs in cracks and crevices, but observations indicate that they show little preference for such places, the presence of ford being the main consideration, and the eqges are placed anywhere in the fool material.

INCUBATION PERIOD

Since external conditions have a very marked influence on the incubation period of most eggrs, various conditions of temperature, humidity, and light were experimented with in order that the duration of the egg stage under different conditions might be determined. The majority of these experiments were natde with eggs of T. castaneum. Eggs of this species placed outdoors in November in Washington, D. C., at temperatures ranging upwards from only slightly above freezing all failed to hatch. Other egrgs placed in a refrigerator at $6^{\circ} \mathrm{C}$. failed to hateh. No constant temperatures between 6° and 25° were availathe so neither the killing point nor the minimm inembation temperature is known. Eygs kept at 35° likewise failed to hatch, while at 32° mortality was high but development rapid. Thirty degrees scems to be close to the optimmm incubation temperature for eggs of this species. A lot of 137 egess kept at this temperature hatched in from 3 to 5 days, with an average of 4 days. The records of some of these are shown in table 6. $\mathrm{At} 27^{\circ}$ eqgers hatched in a period averaging 5.2 days (table 3) and at 25° the period was from 5 to 7 days, averaging 6 days (table 5). Thirty-one eggs kept at room temperature in April required an average of 8.8 days to
hatch (table 4). Here the temperature ranged from 18.5° to 28.5° and averaged 22° while the humidity ranged from 22 to 43 percent and averaged 32 percent. Twelve eggs kept at room conditions in November required 8 to 11 days with an average of 10 days. Here the temperature ranged from 18° to 29° and averaged 24°, while the relative humidity ranged from 27 to 47 percent and averaged 36 percent. All these experiments were carried on in continuous darisness to eliminate the variable factor of daylight. Continuous light slightly accelerates development.

The incubation period for $T_{\text {. confusum seems to be slightly longer }}$ than for T. castaneum. At 27° C. 37 eggs hatched in an average period of 6.8 days. The effect of light was tested in this case. Seventeen of these eggs were kept in continuous light and 20 were kept in continuous darkness. Those in continuous light had an average incubation period of 6.5 days, while those in continuous darkness required an average period of 7 days. An average of 12.8 days was required for the hatching of 40 eggs kept where the temperature averaged 21° and the relative humidity averaged 34 percent.

Fratien 15.-Tribotium rastancum: Mature larva, $\times 20$.

PERCENTAGE OF VIABLE EGGS

Records on the hatching of several hundred eggs show that under favorable conditions approximately 90 percent of the eggs laid by young females will hatch. Very old females may lay infertile eggs for considerable periods, sometimes months, before oviposition finally ceases.

THE LARVA

GENERAL DESCRIPTION OF MATURE LARVAE AND CHARACTERIZATION OF THE GENUS TRIBOLIUM MACL.،

Length, 6 to 7 mm ; color mostly white, tinged with yellow, with dorsal mart of head capsule, tips of claws, and terga of all segments slightls darkened, urogomphi and tips of mandibles testaceous. Form elongate cylindrleal, about eight times as long as wide; dorsally convex, ventrally slightly lattened; ninth abdominal segment subquadrate in shape, bicornute; head and terga of all segments clothed witi yellowish tacthe hairs; boly provided with a few long, thin, yellowish setae, those on ninth abdominal segment more numerous. Dorsal half of head eatsuie convex, not punctate, fromtal angle not ralsed or produced. Ocelli, represented ly two transverse groups of pigmented opthatinie siots on ench side of hend, sometimes indistinct. Antenial articles with tirst slightly longer thun wide; second about twice as long as wide, nearly twice as long as first article, distally bearing a minute supplementary appendix; third (apical articie) small, elongate, cylindrical, about as long as first. Clypeus bearing two setae near each side murgin. Labrum without trangyerse elevation or

[^2]serles of spines across medtan area, the fatier provided with two promment setate cach side; along antero-lateral margin ventrically, three short spinelfe setac. Mandibles of right and left stdes differing in shape slightiy; both aphcally biftd, etach with dan tulltionat tooth atong dorstil margin of cutting edge between njex nad molat mart; tooth of right mandithe phaced near apex, that of left near molar pate ; ventrally with cutting edge deeply excavated; exterlor surface distally rotimed, proxtminly sibghty exeavated, without membranorn elevation and withont tubertle netu tossa ; usually bearing three setac on forsm side, one phaced distatly about midway betweon npex and fossa, one phacet moximally nent tossn, ind the other usumply placed ainout equifistant between them. Wpiphurvax wihn minute mirel hooks on soll-skinnet portion. Hypopharyngeat sclerome ithsent, region membrmous. P'potheracic legs onty sitghty larger than mesothoracie thet metathoracie pats. Spiracles annular, with eircutar mouth piece. Ninth aixomtnal segment distinctly shorter than elghth

 witer than long ; arogomplizi directed upwart and hackwath (not hoop shaped) ; shle matrys withont short spmelike setne: whth stemm bearmg a few setac. Amal nspubloperls distince, quite long, cylintricat in shate.

FIELD IDENTIFICATION

The larvae of Triboliam may be readily distinguished from the somewhat Similar apperring larvae of Grathocerues, I^{\prime} dilorus, or Alphitobius by the prominent two-pointed or forked temination of the last boly segment (figs. I5 and 16). In ach of the other genera mentioned. the body termimates candally in a single. point. In Tenebrio there is a small fork, somewhat intemediate between that of Tribolium and the singlepointed temmation of Gratthocerus, etc.

NUMBER OF LAItVAL INSTAIAS

Actual comes of the number of larval instars in T. confusum have previously been made by Chapman and by Brindley. Chapman (17) gives the idea that there are always 6 instars, but later shows that external conditions, especially food, may increase this number to as many as 12 . In order to determine the exact number of larval instars, the writer phaced eggs of both species of L'ribotium, in separato small vials and observed them each day intil the individuals emerged as adults. One hundred and thirty individuals were thas observed. Various conditions of temperature, hmidity, and food were covered in these tests. After each molt the exuvine were removed and recorded. Through these observations the writer has determined that there is no fixed number of larval instars, the nomber ranging from 5 to 11 or more, and that the asual mumber is 7 or 8 instead of 6 . This
variation is due to both external conditions, such as food, temperature, humidity, etc., and to individual characteristics entirely apart from external influence.

DURATION OF THE LARVAL INSTARS

Detailed results of the work on the life cycle of Tribolium are given in tables $2,3,4,5$, and 6 . As shown in these tables, the larval period ranges from 22 to over 100 days, according to the temperature and food. The period for T. confusum is somewhat longer than for T. castaneum. The optimum temperature for the development appears to be 30°. for both species. Growth is rapid in such foods as whole-wheat flour, middlings, bran, and corn meal, but very slow in white flour.

Table 2.-Developmental data on Tribolium confusum at $27^{\circ} \mathrm{C}$.

Table 3.-Developmental data on Tribolium castaneum at 270 C.

TABLe 4.-Data on development of Tribolium castaneum at rọm temperatures in Washington, D. C., in 1980

Indiridual no.	Date ege laid	Date egr hatched	Incubation period	Date of first molt	$\left\|\begin{array}{c} \text { Length } \\ \text { of } \\ \text { first } \\ \text { instar } \end{array}\right\|$	Date of second molt	Length of second instar	Date of third molt	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { third } \\ \text { instar } \end{gathered}$	Date of fourth molt	Length of fourth instar	Date of fifth molt	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { filth } \\ \text { instar } \end{gathered}$	Date of sixth molt	$\begin{gathered} \text { Length } \\ \text { of } \\ \text { sixth } \\ \text { instar } \end{gathered}$	Date of seventh molt
			Days		Days		Days		Daj3		Days		Days			
$\frac{1}{2}$	Apr. 1	Apr. 10	9 9	Apr. 12		Apr. 20	$\begin{array}{r}\text { Pr } \\ \hline 8 \\ \hline\end{array}$	Apr. 27	Da,	May 2	Dag ${ }^{5}$	May 7	Pays ${ }^{5}$	May 13	Days	
3	-do....	-do.	9	- -10.-.	3	Apr. 23	10	Apr. 29	6	May 4	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	May 9	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	May 14	6 5	
$\begin{aligned} & 4 \\ & 3 \end{aligned}$	A pr. 2	Apr. 11	9	Apr. 14	3	A pr. 20	12.	May 2	6	May 8	6	May 14	B	May 21	7	June 1
6	--do.-	--do	9	Apr. 13	2	Apr. 21	8	AMr. 27 Apr. 26	6	May 2	5	May 6	4	May 10	4	
7	- do	--do.-	9	-..do.	2	Apr. 21	8	A ${ }_{\text {¢r. }} 27$	6	May 2	5	May 7	5	May 12	5	
	-do.---	- do	9	...do....		-do	8	Apr, 2s	7	do. ${ }^{\text {do }}$	4	May 6		May 14	8	
10	do	--do	9	Apr. 14	2	Apr. 22	9	A pr. 29	7	May 4	5	May 8	5	May 15	6	May 23
11.	do	--do	0	${ }_{\text {Apr. }} 13$	2	${ }^{\text {Apr. }} 23$	9	Apr. 30	7	May 5	5	-do.---	4	May 13	4	May 21
12	10	-.do.	9	Apro	2	Apr. 24	9	- $10--3$	8	May 6	6	May 11	5	May 20	9	June 3
13	do	-do.	9	- do..--	2	Apr. ${ }^{4}$	11	May ${ }^{6}$	12	May 13	7	May 23	10	June 3	11	June 11
14.	do.	.-do..-	9	- do.	2	Apr. 25	12	Apr. 30	6	May 5	5	May 11	6	May 17	6	May 26
15	Apr. 3	-	8	A m . 14	3	Apr. 21	15	May 3	8	May 9	6	May 17	8	May 26	9.	June 3
16	do -	Arr. 12	9	Арr. 15	3.	A pr. 27	12	May ${ }^{\text {May }}$	8	May 14	7	May 22	8	June 2	11	June 8
17	Apr. 2	-rilo...	10	Apr. 16	4	A $\mathrm{pr}_{2} 22$	0	Apr. 29	$\frac{9}{7}$	Cio.--	8	-do--	8	June 1	10	Do.
18	Apr. 3	Apr 11	8	Apr. 13	2	Apr. 21	8	${ }_{\text {Apr. }}{ }^{\text {a }}$	6	May ${ }_{\text {May }} \mathbf{2}$	5	May 9	5	May 17	8	
19	-.do.-	-.do.--	8	Apr, 14	3	- .do....	7	-.-10-_-		May 2	5	May 6	4			
20	-.do	\ldots-do	8	.-do....	3	Apr. 22	8	Apr. 23	0		5	May May	5	May 14	7	
21	- do	Apr. 12	1	-..do....		Apr, 21	7	Apr. 27	6	May 1	4	May 5	4			
22	.-.do..-	-do.-..	1	...d0.-.	2	...do_...-	7	\rightarrow do....	6	May 2	5	May 6	4			
23.	- - do	-do.-.-	8	*-do.-..	2	--do.-..	7	\ldots	${ }^{1}$	-do.--	5	May 7	5	May 12	5	
25.	Apr.-4	--do.--	8	- + do.-*-	2	Apr. 23	9	Apr. 29	6	May 11	5	May 9	5	May 14	5	May 24
26.	.-do.-	--do--.-	8	Apr. 15	3	\cdots	9	Aluy 2	9	May 0	7	Mny 20	11	June 3	14	June 14
27	-do	Apr. 13	9	Apr. 16	3	Apr, 27	11	Mas 4	9	May 13	9	May 28	15	June 11	14	June 18
28.	-do	Ajr. 12	8	Apr. 11	2	Apr. 22	1	Any 29	18	June 2	18	Juna 14	12	June 22	3	June 20
20	-do	-+do.-..	8	Avr, 15	3	Apr. 24	0	Apry ${ }^{\text {A }}$	11	Mny ${ }^{\text {Má }}$	8	May 28	$2!$	June 21	21	July 3
30	$\cdots \mathrm{do}$	Apr. 13	0	-dn...-	2	Apr, 23	8	May ${ }_{\text {M }}$	0	Mny 30 May 11	25	June 25 June	$\stackrel{25}{25}$	July 22	27	
	do	*. ${ }^{\text {do. - - }}$	9	do	2	Aprr. 21	9	May - 5	11	Mny 20:	15	June 3	14	June 15	12	June 29

Individual no.	Length seventh instar	Date of eighth molt	Length of eighth Instar	Date of ninth molt	$\begin{aligned} & \text { Length } \begin{array}{l} \text { of } \\ \text { ninth } \\ \text { instar } \end{array} \end{aligned}$	Date of tenth molt	Length of tenth instar	Date of pupation	Length of last instar	$\begin{array}{\|l} \text { Longth } \\ \text { of } \\ \text { larral } \\ \text { perlod } \end{array}$	$\begin{gathered} \text { Date } \\ \text { emerged } \\ \text { emolt } \end{gathered}$	$\begin{aligned} & \text { Length } \\ & \text { of } \\ & \text { perlod } \end{aligned}$	Lenth of de mental period	Food	Ster
	Days	Days		Deys ${ }^{12}$	$\begin{gathered} \text { naye } \\ 65 \end{gathered}$	Bran....-.........									
$\frac{1}{2}$								May 2	15	43	June 7	10	67	-.-do.-..---..---	Female.
								May 27	13	47	June-	11	87	\cdots	Mate.
1.	11	June 7	8	-....----				Jne May 28	11 12		June 3	12	82	Whole-wheat four-	Do.
								Ma	16	41	-do...	12	62	--do.......-.-.-	Female.
8								May 24	12	43	${ }^{\text {June }}$ Ju	12	64	-.-.do	Memale.
8								Muy ${ }^{\text {Mane }}$	113	65	June 14	0	73	-....do................	Do.
10.	8							June 3	13	63	June 11	8	70	- do.-......-	Do.
11	14							June 18	15		June 25	7	84	Corn meal-	Male.
12	8							yune 12	17	${ }_{62}^{68}$	June 19	$\frac{7}{7}$	87		Do.
13	$\stackrel{9}{8}$							June it	8	61	do...	8	78	…-.do..-........-	Male.
	${ }_{0}$	June 14	6					June 23	9	73	June 29	0		-...-do.......--...	Female.
16	7							June 19	11	68	June 25		83 73	--...do	
17								June ${ }^{\text {M }}$	19	${ }_{34} 4$	May 27	12	54	Middings	Do.
19								Juno 1	18	51	June 9	8	67	..-.-do.-..- --...-	
20								May 19	11	38	June 1	13		-...do	Female.
21							Mny 12	7	${ }_{33} 3$	May ${ }^{\text {Ma }}$	$1 \begin{aligned} & 11 \\ & 11 \\ & 1\end{aligned}$	5	--.-.do	Male.
22								May 23	11	41	June 4	12	62	- - .	Do.
24	10							June 7	14	53	Tune 15	8	73		Female.
25	11	June 21	10	july 7	13	3uly 21		Aug. 20		130				Oatmen.	
26		June 20.		July 4		July 14		July ${ }^{\text {a }}$ [${ }^{3}$	9 9	102	Aug. ${ }^{\text {J }}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 115 \\ & 124 \end{aligned}$	-...do.-..........	Do.
28	12	July 28	23	Julg. ${ }^{\text {J }}$	(1) 7	Juls 23				10				White fonr	
								Ang ${ }^{\text {Juig }} 10$	16	115 88	Aug. 19 July 18	8	108	---do............	Female.
	…슨	July 18	19					Aug.	20	116	Aug. 13	0	131do........-...-	Female.

Tabre 5．－Data on developmental period of Tribolium cutatanem at $95^{\circ} \mathrm{C}$ ．in whole－wheal four

Individual no．		Duration of larval Instars 1												Eex
		萿		$\begin{aligned} & \stackrel{\rightharpoonup}{E} \\ & \stackrel{\rightharpoonup}{E} \end{aligned}$	$\begin{aligned} & \text { 氧 } \\ & \text { 号 } \end{aligned}$	気	$\frac{\stackrel{y}{6}}{\infty}$	$\begin{aligned} & \text { 듷 } \\ & \text { 荡 } \end{aligned}$	$\begin{aligned} & \frac{\pi}{3} \\ & \frac{1}{4} \end{aligned}$	$\underset{\rightrightarrows}{\leftrightarrows}$				
	Day：	Days	Days	Days	Davis		Daya	Days	ays					
	7	2	6	4		5	7			8	38		${ }_{50} 5$	Male．
	7	114			5	6	${ }^{8}$			11	12	8	57	Femate．
	5	2	7	3	5	5	10			12	44	10	59	Do．
8	5	2	6\％	314		6	85	－		13	45	9	59	Do．
5	7	$11 / 4$	${ }_{6}$	4	${ }^{6}$	B				12	42	13	62	Do．
6	${ }_{6}$	2	58	4122	7	${ }^{5}$	8	8	5	9	54	6	06	Do．
	6	2	8	4	5	${ }_{6}$	10	9		11	53	7	${ }_{6}^{6}$	Mule．
9	${ }_{6}^{6}$	152	8	4	7	－	8	7		${ }^{9}$	$\stackrel{5}{53}$	7	66	Do．
10	0	2	71／2	41／2	B	7	8	8		12	55	6	67	Do．
	B	2	7	5	5	7	9			20	61	0	76	Female．

${ }^{1}$ The fractions are upproximate，and the full iarval periods have bean rounded to whole days．

Table 6.-Dala on development of Tribolium castaneum at $30^{\circ} \mathrm{C}$.

WIDTH OF THE HEAD CAPSULE

It was found possible to determine accurately the instar of a larva by measuring the width of the head capsule. There is considerable individual variation but practically no overlapping of the measurements of an individual of one stage with those of the next until after the sixth instar. The figures for T. confusum in table 7 will be found to differ from those of Chapman (17) and Brindley (12), both of whom based their data on larvae which completed their development in six instars.

Thbels T.-Mfasurements of Tribolium confurum

HABYTS
The larvae of Tribolium are fairly active and may be found in any of the foods listed under the heading Materials Infested. They usually shun the light and live more or less concealed in the food, in which they bury themselves if disturbed. In flour mills and warehouses they may often be found in cracks and in dark places, but more often they live directly in a quantity of flour or meal, feeding near the surface or under any piece of paper, wood, or other material that may be placed on the surface.

THE PUPA

pupation

When fully grown, the larva comes to the surface of the material in which it has been feeding, or to some sheltered space or crack, and there the change to the pupa takes place. As with many Coleoptera, the pupa of Tribotium is naked and without protection of any kind (figs. 17 and 18). Vacated pupal cells of the Mediterranean flour moth are favorite places for pupation when they are available, several Tribolium pupae often being found in one cell. At first the pupa is entirely white, but within a day or two it acquires a yellowish tint which gradually turns darker. Likewise, the eyes soon turn black, and the claws and the tips of the mandibles and of the urogomphi turn to a dark brown.

appearance of the pura

The eyes in T. confusum are nearly, but inot completely, divided by the genae, while those in T. castaneum are only slightly emarginated. In both species the antemac, elytra, and legs are free but closely pressed against the body, the tips of the elytra reaching the middle of the fifth abdominal segment. The prothorax is rather thickly covered with short, stiff spines arising from tubercles. The front and side margins of the prothorax are fringed with setae; those along the side margins and the sides of the front margin are long, those near the center of the front margin much shorter.

The abdominal segments, excepting the eighth, ninth, and tenth, are provided laterally with characteristic irregular projections. In T. confuasum these lateral processes are provided with 3 hairs, 1 rather long hair arising from the anterior lobe and 2 shorter hairs from very small median lobes. In T. castancum 1 hair arises from the large anterior lobe and a shorter hair at a point one-third from the posterior serrate margin. The ninth segment is provided with 2 rather long urogomphi.

difference in appearance between males and FEMALES

The appearance of the ventral surface of the terminal abdiominal segment of the pupa differs greatly in the males and females. It is on this difference only that the sexes may be distinguished externally, since the appearance of the two sexes in the adult is identical. The form of the genital segment is shown in figure $17, B$. The chief characteristic of this segment in the male is a flat disklike depression, whereas in the female two conelike appendages, similar in appearance to the urogomphi, but much shorter and relatively thicker, may be distingnished.

SEX RATTO

Of 800 individnals of T. confusum reared on whole-wheat flour at $30^{\circ} \mathrm{C}$. 52 percent were females and 48 percent were mates.

Figeri: IT. - Iapa of Triboliun cactant'km: A,
 mimal sexments of a male pıja. Two hundred pupae of T. castancum reared under similar conditions gave a sex ratio of 59 percent females and 41 percent males.

SIZE AND WEIGHT OF PUPAE

Measurements for T. confusum are given in table 7. Sixty pupae of T. castancum, averaged 3.35 mm in length, not including the urogomphi, and 1.17 mm in width through the elytra. Females averaged slightly larger than males. The head capsule widths of 35 individuals averaged 0.707 mm .

Six hundred and fifty pupae of T. confusum were weighed on an anylitical balance in lots of 50. Three hundred male pupae averaged
2.13 mg eacl and 350 female pupac ayeraged 2.49 merech. There appeatred to be only slight varitaion in the size and weight of individuals. Of 125 pupae of T. chstancum. in mades averaged 1.77 mg each, while 72 females averaged 1.89 mir each.

PUPAI PEHIOD

The duration of the pupal priod soems to be less affected by external comedituons than that of the eqeger tarma periods. hecords on the pupal period are given in tables 2. 3. 4. it and o. (adelitiomal pupal records

 were obtainet, and the stmanary of all putate abserved is at follows:

Ol pinper af 7 . romfinkm kopt at éa ('.. 3 l kept in conlinnome dark-
 loom t to do days. with th1 aratige of sita dixs: and $4 ; 3$ kept in continuous light ramered in frome 10) 9 tixs with an arerare of 7.9 days. One hanbred and iwolve pupae al" T. castane"m kept at en . liver the mont part in comtimanus darliness. hatd a pubal purios of fron (tu! days, wimh an atrerag

 to gitas with an aromge of 5 days. Elex口len kept at 2.0^{2} (morrerel in liom (j to ID days with an average of 8.8 days, ami 32 krgh at mom tomperather during the araty summer had a perjod ranging from to to 14 days, weraginge 8.5 days.

THE ADULTT

Adtates of both these specise of Triholium are small. reddish-hrown beetles, about 3.5 mm in langll, and will the elytra siated (figs.
 with the aid of a mierosoper the differenes in the eys and antennae

 genitafia by a slight pressime on the abdonen.

F!,IGITT

Both species have woll-dereloped wings. but only 7 . castaneum has
 only oxeasionally. lathe laboratory fae lomgest perion durine which.
 probable that in the open it could stay in the air for somewhat longrer
periods. It condd not fly from one flour mill to another uniess the mills were very close together and the flight were aided by wind, but it could pissibly fly from the hold of a ship to a pier. It has been seen to fly so seldom. however, it appears unifkely that an infestation wodd spreat often in this manner. I' confusum, although possessing well-developed wings, has never been taken in flight. and attempts to indure it to fly have always failed.

ACTIVITY

Abuh four beetles are mather active, guickly running to eover or lurying themselves in the four if disturbed. Ordinarily they live conceated in the flour or under any suitable object which maty be neat their food supply. They do not always try to hide themselves, however, and numbers may isunally be fotind crawling around over flour or grain in mills or stores (fig. 19). They move abont readily inside a buiding and soon infest every articte of frod in the place. Their small size and flat bexiess enable them to fore their way into all hat the tightest boses or containers.

FFFECT ON FLOUR

Light infestations of flour beeties usually wond pass momoticed except for the beetles themselves, as they scem to do less perceptible dimage to their foolstuff than do most insects. But if the beeties are present in quantities, a certain diseoloring of the four takes place, and in time it turns to a dirty grayish mass.

SCENT GLANDS

The scent glands of these beetles are rather well developed and contuin a vile-smelling fluid which is cjected as a means of defense, often imparting a disagreeable, pungent odor to the food. It is often released when the beetles are excited by the stirring up of the flour in which they are feeding, or when a beetle is crushed between the fingers. Functional scent glands are possessed by the adults of both species but not by the lurvae.

SEASONAL HISTORY

Since the flour beetles nearly always live in protected situations, and often in buildings heated the year round, there is no very marked seasonal variation in their activity. When they are exposed to cold weather for long periods their activities are retarded, and those in the less resistant stages of their life cycle may succumb. It may also be noted that in very hot climates the insect's activities are speeded up, and life is much shorter than in cool climates. In heated flour mills and warehouses Tribolium breeds the year round, and all stages may be found at any time. In unheated mills this is not the case. Some authors have stated that these beetles do not live over the winter in unheated mills but die out with the coming of cold weather: and the mills are reinfested in the spring from neighboring heated mills. Inspection of several unheated mills in Maryland ard northern Virgina during February revealed many adults of T. confusum in a semiclormant condition, but no living larvae or pupae. As the adults may live over a year it is evident that in unheated mills in this area the winter is passed in the adult stage, and breeding begins with the approach of spring. In the Gulf States breeding probably continues throughout the year, while in the extreme northern States and Canada the species may not be able to survive the winter except in heated buildings. T. castaneum seems to be less resistant to cold than T. confuswm.

LONGEVITY

The developmental stages of Tribolium are comparatively short, but the adult life is among the longest recorded for the stored-prodnet insects. Previous estimates of the adult life have ranged from 3 months to a year, but the writer's observations on 25 pairs each of 7'. confusum and T. castaneum, which were used in oviposition experiments, and results from an experiment run for this specific purpose show that the maximum length of adult life may be over 3 years.

Early in 1930 an experiment was started in which 50 adults of T. confusum of known sex and usually of known parentage were segregated on emergence and examined periotically to deternine the maximum. length of life for this species. The beetles were put into 16 by 50 mm vials, lightly stoppered with cotton, and kept in darkened pasteboarl boxes at room temperature. A variety of different foods was used. The numbers of these individuals decreased gradually, the mortality being somewhat greater during July and August of cach year, owing, no doubt, to the excessive heat. The data on seven of these individuals that survived for more than 2 years and 11 months ure given in table 8 :

Table 8.-Some camples of extreme adult longevity in Tribolium confusum, Waskington, D. C.

Individual no.	Sex	Fool	$\begin{gathered} \text { Date } \\ \text { adult } \\ \text { omerged } \end{gathered}$	Date alult died	Alult age at death
			1930	1093	
	Male.	Wholewheat flour	Jan, 27	Mar. 14	3 years, 46 days.
2		do	Feb. 7	Nov, ${ }^{3}$	3 years, 271 days.
3.	Femato		Feb. 10	Mry 20	3 years, 99 days.
	Male		Mar. 18	Apr. ${ }^{5}$	3 years, 20 days.
δ	Fermale	Whaterwheut	Mar. ${ }^{\text {Mrat }}$	${ }_{\text {Apr. }}{ }^{\text {AR. }} 7$	23 yeltrs, 17 days.
0.-.	Male	Ontment	May 10	Aug. 28	3 years, 110 days.

All the adults used in oviposition experiments were likewise segregated and examined periodically to determine the length of life of each. These were kept in smaller vials (11 by 40 mm) and under various conditions. Of the 25 pairs each of T. confusum and T. castaneun, 14 individuals survived for more than 2 years as shown in table 9 .

Tıble 9.—Adult life of it indiviluals of Tribolitom, Wishington, D. O.

Triknllum confusum			Triooliuth casiarerm		
Paif DO.	Ser	Adinlt life	Palr no.	Sex	Adult life
25	Male.-	3 years, 208 disys.....--	I5	Male.	2 yents, 159 days.
21	--do..	2 years, 327 dasg.	8	do.	2 years, 151 days.
23	Fernaia.	2 years, 217 days........	17	-to....---.-.	2 years, 80 dnys.
22	- $\mathrm{M}^{\text {da }}$	2 years, 212 days.......-	9	-to.....---....	2 years, 77 disys.
13	Made....	2 years, 189 deys $\ldots-$			
23	----do.	2 yearg, 169 dsys.......-			
24	-.+-do.	2 years, 133 dajs $-\ldots .$.			
13	..--.do..	2 yuarg, pr disys. $\ldots \ldots$.			
14	Fenclo...				

It should be mentioned that each female in this case laid several hundred eggs, while those given in table 8 never mated. It is also interesting to note that all the individuals in the oviposition experiment that survived more than 2 years were fed on whole-wheat flour, although five other foods were used in the experiments. From these tables and other data it seems that T. confusum live somewhat longer than T. castaneum and likewise that males live somewhat longer than females.

From the life-history data of tables 10 and 11 it may be found that the average adult life of males of T. confusum is about 634 days, and of females, 447 days. For T. castanewn the average for males is 547 days, and for females, 226 days.

FERTILITY OF VERY OLD BEETLES

Experiments have proved not only that these beetles live to a comparatively graat age but that males of T. confusum may be fertile even when they are 3 years or more of age. Male no. 2 was twice placed with virgin females, first at the age of 3 years, 64 days, and
again at 3 years, 76 days; while male no. 7 was mated with n virgin female when the former was exactly 3 years of age. In all these cises normal offspring were produced. Females, however, have never laid fertile eggs when more than 1 year and 94 days old.

RESIBTANCE TO STARVATION

The length of time flour beetles can live with no food whatever is greatly influenced by the temperature, resistance to starvation increasing inversely with the temperature. 'Also a relative humidity of about 60 percent is more favorable for survival than one of 30 percent or less. Several experiments on starvation were made by placing adults or larvae of known age in individual vials with no food and keeping them at the desired temperature and humidity. These were examined daily until the last judividual had died.

Adults of the two species seemed equally resistant to staryation. At $30^{\circ} \mathrm{C}$. adults will survive for about 2 weeks, the longest period any of 25 individuals of both species survived being 18 days. At ordinary room temperatures during the winter the longest period recorded was 23 days; at 15° some survived for 27 days, ut 10° several individuals lived over 40 days, and one adult, T. confusum, for 51 days. Larvae seem to be slightly more resistant to starvation than adults. At 30° the longest period recorded for a larva was 23 days. At ordinary room conditions in winter one individual survived 46 days, and at 15° the last larva was not dead until the fifty-fourth day.

Larvac without food will molt and change to pupae and adults nearly as readily as those with food. Those individuals that changed to adults during the experiments lived as long as, and sometimes longer than, those that remained in the larval stage.

MATING

Among pairs kept moder olservation mating occurred rather frequently. It usually began within a day or two aftor emergence and probably continued at frequent intervals throughout life. Frequent mating is not necessary for the production of fertile ergs. In certain instances females have been known to continue laying viable eggs for a period of 5 months after being segregated from males.

oviposition

The study of oviposition in Tribolium seems to have received very little attention. However, when it is considered that the oviposition period may last more than a year and that it is almost impossible to locate the eggs in the flour, it is not surprising that more work has not been done along this line. In the experiments made by the writer 25 pairs of each species were segregated on emergence and placed in different foods and under different conditions of temperature and humidity. Small vials, lightly stoppered with cotton, were used as containers. A pair of adults was placed in each vial and changed to another vial every day. Various methods of locating the eggs were tried, but it was found that the methor, first advocated by Chapman (17), of counting the larvae rather than the eggs was
more accurate. It was found by an actual count of both the eggs and the resulting larvae, that approximately 90 percent of the eggs of young females were viable. As the females increased in age the percentage of viable eggs gradually decreased. Thus the actual number of eggs laid is at least one-ninth greater than indicated by the figures given in tables 10 and 11, which represent only the eggs that hatched.

PREOVIPOEITION PERIOD

The length of the preoviposition period may range from 4 to an indefinite number of days, depending on the temperature. Mated females of either species placed in the incubator at $27^{\circ} \mathrm{C}$. usually began to lay viable eggs within 1 week after emergence. Adults emerging late in the spring or in the summer likewise began to oviposit within a few days. Those adults which emerged during the winter, however, and were kept at room conditions usually did not begin ovipositing until the approach of warm weather late in March or in April.

DURATION OF OVIPOAITION PERIOD

The flour beetles have a very long oviposition period. The average period for a number of females of T. castaneum in laboratory tests was 148 days at $27^{\circ} \mathrm{C}$. and 174 days at ordinary room temperatures. For T. confusum the average oviposition period at 27° was 235 days and at room conditions 277 days. The longest oviposicion periods recorded are 308 days for T^{\prime}. castaneum and 432 days for T. confusum. loth of these individuals were kept under ordinary room conditions.

ante of ofiporimion

In no case were more than 13 viable eggs laid in 1 day by a single female. and the average was only 2 or 3 per day. Under optimum conditions Brindley (12) records 18 viable eggs in 1 day and a much higher daily average than indicated by the author's records.

NUMHER OF DOQS LAID

The total number of eggs laid seems to depend mainly upon the food. Under the various conditions of temperature and food of the oviposition tests the average number of viable eggs laid by individual females of T. castaneum was 327 and of T. confusum 458. The greatest momber of viable eggs laid by T. castanewn was 956 , while 976 was the greatest number laid by $\tilde{T}_{.}$confusum.

Tables 10 and 11 give data on the oviposition and longevity of the two species.

Table 10.-Data concerning oviposition and longevity of Tribolium castaneum
$4 z=24=$
${ }_{1}$ Only the viable eggs have been counted. Many infertile eggs are laid after the last viable egg, but these are not considered in this table. 2 Taken in copulation.
Escaped.
Room temperature.

	Date last viable egg laid			$\begin{aligned} & \text { Svp Jed pict } \\ & \text { sEse olybla osbreay } \end{aligned}$	Date male died	Date female died					Food
Days	1930		Num-	Num-							
	June 4	119	149	1.25	Nov. 14, 1930	June 12, 1930				27	Bran.
9	Aug. 23	187	283	1. 51	Feb. 12, 1931	Sept. 6,1930	14	369	210	27	Do.
7	July 1	136	273	2.01	Feb. 6, 1931	July 2, 1930	1.	363	144	27	Do.
10	Sept. 9	203	643	3. 17	Nov. 3, 1931	Sept. 23, 1930	14	632	227	27.	Whole-wheat flour.
8	Oct. 7	232	572	2.47	Mar. 12, 1931	Oct. 8, 1930	1	396	241	27	Do.
6	July 30	160	593	3. 57	Dec. 20, 1931	July 30, 1930	0	680	172	27	Do.
12	July 11	140	438	3.13	June 23, 1931	July 21, 1930	10	499	162	27	Do.
8	June 28	131	178	1.36	July 12, 1932	July 11, 1930	13	884	152	27	Do.
11	July 21	151	206	1.36	Apr. 26, 1932	July 22,1930	1	807	103	27	Do.
9.	July 17	149	477	3.20	Feb. 16, 1931	July 30, 1930	13	372	171	27	Middlings.
6	May 2	76	153	2.01	Sept. 15, 1030	May 7, 1930	,	218	87	27	Do.
4	May 6	82	161	1.98	Jan. 3,1932	May 14, 1930	8	692	94	27	Do.
56	Sept. 18	164	323	1.97	Aug. 23, 19303	Sept. 24, 1930	8		226	(4)	De.
46	July 27	121	281	2.32	June 26, 1930	Aug. 9, 1830	13	135	180	(c)	Do.
32	Sept. 26	194	608	3.13	July 21, 1032	Oct. 2,1930	6	889	232	(a)	Whole-wheat flour.
40	Aug. 28	150	528	3. 38	Oct. 26, 1931	Sept. 3, 1930	6	618	202	(4)	Do.
37	July 30	131	408	3. 11	Mny 8, 1932	Aug. 1, 1930	2	816	170	(4)	Do.
64	June 12	57	21	. 37	Feb. 20, 1931	June 16, 19303		373		(4)	White flour.
89	Aug. 9	89	17.	. 19	Mar. 16, 1931	Jan. 12, 1931	158	397	334	(4)	Do.
63	Feb. $18{ }^{\text {s }}$	303	103	. 53	- (3) 1930	July 15, 1931	117		518	(1)	Oatmeal.
50	Dec. 19	260	131	. 50	Dec. 16, 1931	Mar. 16, 1931	87	672	397	(4)	D0.
40	Sept. 8	168	74	. 44	Dec. 27, 1931	Oct. 25,19303		683		(4)	Do.
42	Jan. $8{ }^{5}$	286	956	3.34	Mar. 3, 1931	Jan. 23, 1931	15	382	343	(c)	Corn meal.
47	Sept. 22	171	412	2.41	Oct. 15, 1931	Jan. 10,1931	110	608	323	(4)	Do.
30	Aug. 21	156	134	. 86	Mar. 9, 19303	Sept. 19, 1930	29	-----	215	(4)	Do.

Table 11.-Data concerning oviposition and longevity of Tribolium confusum

Pair no.	Date male emerged	Date female emerged	Date mated	Date first riable egg laid		Date last $\mathrm{\nabla}$ able egg laid				Date male died	Date female died				흘 蔦 E E	Food
					Days		Days	No.	No.			Days	Days	Davs	${ }^{\circ}{ }_{0}^{C}$	
	Dec. 3, 1929	Dec. 8, 1929	Dec. 0, 1929	Dec. 20, 1929	12	Oct. 10, 1930	294	169	0.57	July 8, 1031	Nov. 10, 1930	31 139	582	337	$\frac{27}{97}$	White flour.
2.....	Dec. 14,1929	Dec. -1929	Dec. 16, 1929	Dec. 21, 1929		Dec. 2, 1930	346 334	161	. 47	Aug. 4, 1931	Apr. 20, 1931	139 88	598		27	Do.
	(2) ${ }^{2}$		do	Dec. 23,1029		Nov. 20, 1930 June 26, 1930	334 185	230	. 69	Nov. 8, 1930 Aug. 4,1931	Feb. July 16, 7	88 11			27	Do. Ostmeal.
	Dec. 18, 1929	Dec. 18, 1029	Dec. 19,1929	do	5	Mar. 21, 1930	88	125	1.42	Jan. 8, 1930	$\begin{array}{ll}\text { July } & 16.1931\end{array}$	482	21.	575	27	Do.
	Dec. 28, 1929	Jan. $\quad 2,1930$	Jan. 4, 1930	Jan. 23, 1930	21	May 1, 1930	98	270	2.76	Feb. 10, 1931	DIay 7, 1930	6	409	125	27	Middlings.
	(1) ${ }^{\text {(2) }}$	(2)	Dec. 16, 1929	Dec. 21, 1829		Aug. 2, 1930	224	209	. 93	Sept. 18, 1930	Sept. 16, 1930	45			27	Bran.
	Dec. 16, 1929	Dec. 26, 1929	Dec. 27, 1929	Jan. 6, 1930	11	Aug. 10, 1830	216	331	1.53	Mar. 17, 1931	Aug. 19, 1930	9	456	236	27	Do.
	Jид. 27, 1930	Jan. 27, 1930	Jan. 29, 1930	Feb. 3, 1930	7	Oct. 8, 1930	247	412	1.66	Jan. 9,1931	Jan. 20, 1931	104	347	358	27	Do.
10	-...do....-.	J...dodo-...-	.-do	7	Nov. 12, 1930	282	424	1.50	Jan. 8,1931	Jan. 5, 1931	54	340	343	27	Do.
11	do.	do	do	Feb. 1, 1930	5	Dec. 27, 1930	329	342	1.04	May 2, 1931	Jan. 6, 1931	10	460	344	27	Do.
12	do	-do	,	-..do-----	5	Nov. 17, 1930	288	282	. 97	Apr. 28, 1931	Jan. 9,1931	53	456	347	27	Do.
13	do.	do	${ }^{\text {do. }}$	Jan. 31, 1030	+	July : 31, 1030	181	328	1.81	Aug. 3, 1932	Dec. 16, 1931	503	919	688	27	Whole-wheat flour.
14.	do	do	do	Feb. 2, 1930	0	Nov. 18, 1930	289	905	3.13	Apr. 5, 1932	Dec. 1, 1930	. 13	799	308	27	Do.
	$\stackrel{\text { codo }}{ }$	do.	do	Feb. 6, 1930	10	Oct. 9, 1930	245	330	1.35	May 2, 1932	Oct. 3, 1931	359	826	814	27	Do.
	Feb. 8,1930	Feb. 7, 1930	Feb. 13,1930	Feb. 17, 1930	10	July 28,1930	161	389	2.42	Feb. 25, $1930{ }^{3}$	Jan. 2, 1032	523		694	27	Do.
	Feb. 7.1930	Feb. 8,1930	---..do.---.-.-	Feb. 18, 1930	10	Oct. 26, 1930	250	677	2.71	Jan. 30, 1932	Oct. 30, 1930	4	722	264	27	Do.
15.	Feb. 12, 1930	Feb. 10, 1930	Fsbo	--.do......-	8	Aug. 17, 1930	180	491	2.73	Nov. 14, 1931	Aug. 20, 1930	3	640	191	27	Do.
	Jan. 27, 1930	Feb. 4, 1030	Feb. 6, 1930	Apr. 25, 1930	80	---do...-.	114	521	4. 57	July 29, 19303	Aug. 26, 1930	9		203	(t)	Do.
-do.	Jan. 30, 1930	Feb. 3,1930	Apr. 27, 1830	87	Sept. 19, 1930	145	596	4.11	Oct. 27, $1930{ }^{3}$	Sept. 25, 1930	6		238	(4)	Do.
	-	Jan. 27, 1930	Jan. 29, 1930	Feb. 4, 1930	8	Apr. 12, 1931	432	882	2.04	Dec. 19, 1932	Feb. 22, 1932	316	1, 057	756	(1)	Do.
	Jan. 29, 1930	Jan. 29, 1930	F-do	A pr. 6, 1930	67	Feb. 17, 1931	317	563	1.78	Oct. 4, 1030	Aug. 28,1932	558	248	942	(4)	Do.
	Jan. 27, 1030	Jan. 30, 1930	Feb. 3,1930	Mar. 19, 1930	48	May 12, 1931	419	945	2.25	July 14,1932	Sept. 3, 1932	480	889	947 535	(4)	Do.
	Jan. 30, 1930	Fan. 31, 1930	Feb. 6,1930	Mar. 22, 1930 Mar. 17, 1930	50 41	Nec.5, Nov. 24,1930	258	729 976	2.83 3.87	June 28, 1932 Nov. $5 ; 1933$	July Jan. 20, $\mathbf{8}, 1931$	227 45	883 1,375	535 338	(4)	Do. Do.
1 Only the viable eggs have bec n counted. Many infertile eggs are laid after the last viable egg, but they are not considered in this table. 2 Taken in copulation. ${ }^{3}$ Escaped.																

INTERRELATION WITH OTHER ANIMALS

MEDICAL IMPORTANCE

Flour beetles have never been considered of medical importance, although it is known that many live larvac, and other stages as well, are accidentally swallowed in the eating of uncooked breakfast foods, dried fruits, nuts, or chocolate.

In an article treating of infestation of human beings by the cestode Hymenolepis dimimuta Rud., in Japan, Monma (69) lists Triboliun ferrugineum in a series of insects which have been determined by Hongo to be intermediate hosts of this tapeworm in that country. He also states his belief that infestation of humans is due to the accidental swallowing of an infested individual of any of that series of intermediate hosts.

ENEMIES OF TRIBOLIUM BEETLES

PROTOZOAN DISEASES

One disease, caused by a coccidian of the genus Adelina (Park (75)), is of rather common occurrence among species of T^{\prime} ibiblium. This clisease was first reported by Riley (85) in 1921 in Minnesota and mentioned in 1922 by Riley and Krogh (86), both of these references being merely records of the observance of the disease.

The parasite invades the fat cell of the host. The larvae, pupae, and adults are affected, and within a few months the disease may practically exterminate an entire culture of beetles. During the present investigations the author often noticed that numbers of larvae and beetles would die from some disease. Specimens were given for examination to G. F. White, who reported them to have died from this protozoan infection. To date the disease has been reported only in Tribolium confusum and T. castancum.

Another protozom diseatse of these flour beetles was described briefly by White in 1923 (103). The causal protozoan is a neosporidian which invades the fat body of the larva, and may also be found in the pupa and adult beetle. Late in the course of the disease the sick larvae may be less active, slightly distended, and more opaque. After a few months most of the diseased insects have died.
It is not known whether these diseases can le used in the artificial control of these flour beetles.

MITES AfFECTING TRIBOLIUM

The most common parasite of the flour beetles is the mile Acarophenax triboliz Newstead and Duvall (fig. 20). This tarsonemid was described from Tribolium confusum and T. castaneum in wheat from Australia (\%थ), but the beetles may have become infested in England. Newstead and Duvall also reported the mite from Triboliuin in "Plate maize." These mites were first noticed in North America by the author in 1930 and were identified by H. E. Ewing. Specimens were recorded from the District of Columbia, Virginia, Mississippi, and Texas, and specimens, tentatively identified by the author as the above species of mite, were found on Tribolium adults
in Kansas and Oklahoma. Holdaway (5S) also reported this mite from T. confusum in Minnesota. The author has found these mites also on Gnathocerus cornutus Fab., Palorus ratzeburgii Wissm., and Latheticus oryzae Waterh. A description and full account of their life history is given by Newstead and Duvall (72). These mites cling to the body of their host and draw their nourishment from it, and it seems that they do little more than irritate the adult beetles. Adults sem to be more heavily infested, but all stages may be attacked. Many egge are destroyed by the gravid female mites that attack the beetle's eggs a few days before the young mites are ready to come forth. Then the mother dies, and the young mites emerge, leaving her body an empty shell.
Another mite, the common Pediculoides ventricosus Newport, sometimes infests the immature stages of Tribolium, killing all individuals that it attacks. Pediculoides was obseryed in the laboratory in rearings of Tribolium castaneum and T. conyusum in 1930, but it appeared that these beetles were not preferved hosts and were not bothered when sufficient lepidopterous larvae were present.

HYMENOPTEROUS PARASITES

Two hymenopterous parasites, both in the family Bethylidae, have been bred from Tribolium. Only one of these, Rhabdepyris zeue Tumer and Waterston (fig. 21), has been recorded in nature as a parasite of the flour beetles. Gahan (44) gives records of Rhabdepyris as a parasite of Tribolium in Indiana, Louisiuna, and possibly from Tribolium in a shipment of

Figuta: ton. - a flonf beetle (Iriholiam ctistuneam) witht several miten (aterroph chate tribotit) athatheet 10 the rentral burface, x grain from West Africa to England. Specimens in the United States National Museum from Texas and Florida also belong to this species.

The other bethylid, Sclerodermus immigrans Bridweil, was experimentally bred from T'ribolium in Hawaii by Bridwell (11) in 1920 but has not been recorded as attacking it in nature.

PREDATORS

COLBOPTEFA
The cadelle, Tenebroides mauritanicus L., has been reported as attacking flour beetles by Johnson (57, no. 4), Washburn (99), and Durrant and Beveridge (40). These observations concern mainly the adult cadelle attacking flour beetle larvae. The experiments of Back and Cotton (0) show that cadelle larvac are not nomatly predacious and will attack other insects very infrequently and then usually do not feed on the carcass of their victim. In recent experiments in the laboratory, callelle larvae showed no tendency to attack farvae, pupae, or adults of Tribolium.
"A species of Rhizophagus" has been reported as preying on Tribolium castaneum by Muller (41) in peanuts arriving in London from Sierra Leone.

ERMIFTPRA

Several species of predacious Hemiptera frequent flour mills, but none has been definitely associated with Tribolium except by Roubaud (87). In April 1933 numbers of a small anthocorid were observed by the author in a breeding jar containing no other possible host but T. confurum feeding in cracked grain and flour that had

Fiacus 21.-Rhabdepyrie zeae, a byouenopteraus parabtte of tive flour beetles: Adult remale, $\times 27$.
been collected in a flour mill in Washington, D. C., in December 1932 and had not been molested since that date. Specimens were identified by H. G. Barber as Xylocoris cursitans Fallen, which is generally predacious on small, soft-bodied insects and in this case was undoubtedly attacking the small larvae.

MISCELLANEOUS ENEMIRS

Mice ($\mathbb{M} u s$ musculus) may also be considered as enemies of Tribolium, as they sometimes eat these beetles, as well as many other kinds of insects.

TRIBOLIUM AS A PREDATOR

There are several records, more or less definite, of Tribolaum beetles preying on larvae of the Mediterranean flour moth and other insects.

A note by Johnson (56) is interesting, although more humorous than practical. He says:
A miller \ln California called my attention to the fact that he had zeen thls beetle feeding on the larve of the Mediterranean flour moth (Ezpheatia kühwiella) and even contemplated the erection of a plant where he could breed the beetle, so he could turn them loose on the terrible flour moth, which everywhere flled his mill.

Washburn (99, pp. 36-37, 44) states:
Tribolium confusum * * has been known to devour the pupe of the flour moth. The so-called "bolting-cloth beetle" (Tenebroides mawritaniows) of California eats larya and papa of the flour noth and larva and adult of Tribolium. * * It [T. confusum $]$ is said to attack and eat the larve of the Mediterranean Flour Moth.

Alden and Farlinger ($1, p .48$) state:
The rust red flour beetle [Trihotium ferrugincum Fab.] also fed on Sitotroga [cereatella] eggs and the dead bodies of the adults.

The author has never observed Tribolium actually attacking any other living insects and does not believe that it does so normally, except perhaps in the case of eggs and very young larvae. However, it has been frequently observed that in cases where Tribolium and other species of insects are present in the same breeding jar the Tribolivem will soon crowd out the other insects. Whether this is due to the killing of the other insects or to mechanical crowding is a matter of conjecture. It is probably due mainly to the breaking of the eggs and the killing of the young larvae by the adult flour beetles is they run around over the flour and, to a lesser extent, to the actual devouring of eggs and young larvae by these flour beetles. This same reduction in the number of eggs is found in unmixed lots of Tribolium and is undoubtedly caused by the mechanical breaking of the eggs by the movements of the adults.

Kotinsky (60) records Tribolium castarerm as an enemy of the harmful leaf-cutting bee Megachile palmarum Perkins in Honolulu. He was not certain whether the Tribolium actually preyed on the bee larva or merely fed on the pollen in the cells, but in either case the bee larva died.

In India, T. castaneum has been noted associated with the lac insects (Tachardia) by Mahdihassan ($68, p .69$) and by Imms and Chatterjee (54) who state:

We have also dissected this insect from among the chambers of the lac where its larval stage is sipent. * * * It is probable that it feeds only on the lac and not on the Tachardiae, but it is to he regarded as one of the more important Coleopterous enemies of lac.

CONTROL MEASURES

CONTROL IN FLOUR MILLS

Flour mills are open to infestation from three main sources, (1) the grain stream, (2) returned infested flour, and (3) used bags and second-hand machinery. As has already been stated, Tribolium beetles cannot live in perfectly sound grain, but nearly all lots of grain are damaged to a certain extent, either through rough handling
or becanse of the work of the true grain weevils, and so any Tribolium present can live until they reach and infest the four mill.

After a flour mill is once infested with these beetles, two satisfactory methods of control are by fumigation or superheating. Other methods, such as cleaning out the machinery regularly, local fumigating. and spraying can be used in conjunction with the above methods. Sa far biological control has not proved practical.
Perhaps the most satisfactory, and certainly the most widely used, fumigunt for flour beetles is hydrocyanic acid gas ($4,7,3: 3$), Although this gass is deadly to human life it can be handled with comparative safety by well-trained fumigators. Chloropicrin (34, 20) is also used as a mill fumigant, and when properly applied is quite edfective. Owing to its lachrymatory eflect it has not become so pophlar a mill fumigant as lyydrocyanice acid gats.

 Jirge manbers of beetes hatre cratwed out of the cracks atad died on the floor. (Back.)

Control by heat ($4,18,32,38,34,48$) is practiced to a certain extent (fig. 22), and this method has the advantage of being barmess to the operater:

Prepared fours and eereals put up in package form are frequenty infested by flour beedes. Such prodtects should be sterilized by heat derived from stean, hot air, or electricity, and should pass directly from the sterilizer to the packer where the cartons are packed and sealed. This process, if properly carried out will insure a prodact free from insects. Electrical machines are now on the market for sterilizing small packages of prepared cereals by disruptive discharge (45). This method shows considerable promise.

CONTROL OF FLOUR BEETLES IN HOUSES

The method used for the control of these insects in flour and cereals in dwellings are necessarily quite different from those adrocated for use in mills and warehouses.

These pests, in practically all cases, are originally brought into the house throngh infested flour or breakfast cercals. and when such material is allowed to stand for some time the infestation may spreacl to nearly every article of food in the house. Whenever there is any reason to suspect the presence of beetles, larvale, or ergrs, the safest and simplest procedure is to place the product in a shallow pan and heat it in an oven for a time with a very low fire. This treatment will kill all stages of the insects without injuring the fiour or cereal, and is especially useful in the frequent cases where, although no beetles or larvae are to be found. eges may have been deposited in the food, which later would develop into larvae and beetles. The exposures shown in table 12 will kill all stages of these insects.

Table 12.-Tempcratures and time of exposure nccessarll to hill all stages of the four bectles in four, ment, or cercals

Temperatares below $72^{\circ} \mathrm{C}$, are now likels to injure flour or cereal, but 80° and above may scorch flour and so shotld be a voided. Breakfast cereals may. however, be heated to about 90° without being injured. Further data on oven heating to kill flour beetles is given by Chapman (17).

When these beetles have already become established in a pantry or flour bin the best procedure is to destroy all foodstuffs known to be infested, sterilize by the foregoing methool all those that may be infested and give the entire kitchen and pantry a thorough cleaning, including scalding of all cracks with boiling water.

In cases where it is impossible to rid a place of insects without fumigation, the directions piven in the articles referred to should be studied and carefully followed.

SUMMARY

The confused flour beetle. Tribotiam. confusum. J. du V.. and the rust-red flom beetle, T ', castaneum. (Hbst.). are by far the most abundant and destructive leetles infesting flours and other prepared cereal products. These insects are cosmopolitan and are now recorded as pests in practically every civilized country of the world.
A partial revision of the gems Tribolium is giveth, in which the name castanoum Herbst is shown to be the correct name for the species commonly known as forrugineum Fub. Seven species are in-
cluded in the genus. These are castancum, confusum, madens, destructor, gebicni, indicum, and myrmecophilum.
These beetles, excepting mypmecophilum and gebieni, are probably native to the region comprising southwestern Asia and the eastern Mediterranean lands. Their or ginal habitat was under the bark of trees and in rotting logs, where they probably lived as scavengrers.

Both T. confusum and T. castaneum are cosmopolitan, but T'. confusum is more common in temperate regions, and T. castoneum is more of a subtropical insect. T. madens has been recorded from North America. Europe, and Egypt, and 2'. destructor from Germany and the Netherlands. T. indicum, T. gebieni, and T. mypmecophilum apparently have a very limited range, the first being recorded from India and northern Africa, the second only from Paraguay, while the last is known only from southeastern Australia. Most of the many references to these beetles in literature atre records of the damage done by them.

The flour beetles are particularly injurious in flour mills and in other establishments that prepare cereal prodects. They are nearly omivorous and have been reported breeding in and damping flour and all other prepared cereat products, grain and seed, animal mattet and especially dry insects specitnens. yeast, nuts. drimed fruits. chocolate, certain spices, and other miscellaneous plant products.
The eggs, which are laid directly in the flour or other food material. are covered with a sticky substance that callses the foolstuffs to adhere to them and often completely cover them.

The incubation period for T. castaneum a veraged 4 days at $30^{\circ} \mathrm{C}$. 5.2 days at $27^{\circ}, 6$ days at 25°, and about 8.8 days at rocon conditions where the temperature averaged 22°. The incubation period for T. confusum averaged 6.8 days at 27°, and 12.8 days at room conditions where the temperature averaged 21°.

The number of larral instars ranges from 5 to 11 or more. the usual number being 7 or 8 . Environmental conclitions, especially food and temperature. influence the number of instars considerably. However, there may be considerable individual yariation in the number of instats of larvae reared under identical conditions.

The duration of the larval period ranges from 22 to over 100 diyss according to the influence of environment and the effect of individual variation. The optimam tenperature for development sems to be close to 30° C. for both species. Of the forols used. whole-wheat flour was most favorable for development, followed by middings, bran, corn meal, and white flour in the order named. Measurements for the various stages and for the larval instars, including the width of the hearl capsule, are given.
The average pupal periods were, for Z^{\prime}. castaneum at $30^{\circ} \mathrm{C} .5$ days, at 27°, 7.1 days, at 25°. 8.8 days, at rom temperature in carly summer, 8.5 days; and for 7 . confusum at 27°, 7.9 days in continuous light and 8.7 days in contimous darkness. Adult males and females are so nearly alike in extemal appearance that they are dificolt to separate, although the sexes can be eadily recornized in the pupal stage by the chamateristic shape of the venter of the last abrlominal segment.

Adults of 7. eastancum can fly short distances, but adults of T. confusum, although provided with wings, have never been observed
to fly. Adults of both species possess seent glands that give off a pungent odor.

Breeding continues the year round in heated buildings, but in unheated mills in the Northern and Central States only adults are present during the winter.

Adults have been known to live as long as 3 years and 271 days. The average longevity of the adults used in the oviposition experiments was as follows: T. confustm, males, 634 days, females, 447 days; T. castaneum, males, 547 days, females, 226 days. T. confusum, males have proved fertile at 3 years, 76 days of age. The greatest age at which a female laid fertile eqge was 1 year and 94 chays.
Resistance to starvation varies inversely with the temperature, and the two species seem equally resistant. The longest survival periods for adults without food are as follows: At $30^{\circ} \mathrm{C}$. 18 days, at room temperature, 23 lays, at $15^{\circ}, 2 \overline{7}$ days, at $10^{\circ}, 51$ days. The longest survival periods for larvae withont food were 23 days at 30°, 46 days at ordinary room conditions, and 54 days at 15°.
The longest oviposition periods recorled were 432 days for T. confusum. and 308 days for T. castaneum. The average oviposition period for T. confusum was about 8 months, while that of T. castanoum, was about $\overline{5} 1 / 2$ months. The average number of egrs laid per day during the entire oviposition period of any female was 2 or 3 , and the highest number recorded in 1 day was 13 . The greatest mumber of viable egys laid by a single female during its entire oviposition period was 976 for \tilde{T}. confuswn and 956 for T. custuncum. The average number had by T ' confusum females was $4 \overline{5} 8$ while that of T. castaneum was 327.
T. castaneum has lyen experimentally proved to be one of the intermediale hosis of the tapeworm Hymenolepis diminuta in Japan.

A disease callused by it coceidian. Adelina sp., is often found in the rearings of Tribolium and kills large nambers of the insects. The mite Ararophonaar tribolii is the most common parasite of these beetles. Another mite, the common Pediculoides wentricosus, sometimes attacks Tribolium. The hymenopterous parasites Rhabilepyris zcae and Sclerodermus immigrans have been recorded from Tribolium but seem to be rather rare. Predators attacking Tribolium are the hemipteron Xillocoris cursitans and adults of the cadelle, Tenebroides mauritanicus. Adults of Tribolium may themselves be predatory to a certain extent.
Control methods include fumigation with hydrocyanic acid gas or chloropicrin, and the use of heat.

LITERATURE CITED

(1) Almes, C. It., and Faminger. D. F.
 MiNCTM. Jour, Econ. Wit. 24: 480-483, illus.
(2) Allies, W. ©.
 jilus. Chictagu.
(3) Aivims, A.
 Erypt (土. s. 15) 24: 74-125.
(4) Back, E. A.
1920. ingect conthol in flour milis. U. S. Depl. Agr. Buil. 872, 40 pa. Hilus.
(5) ——and Corton, R. T.
1822. storei-Gbain pastr. U. S. Dept. Agt. Farmers' Buil. 1260, 4 itp, illus.
(6) ——and Cotion, R. T.
(7) ${ }^{\text {1926. Thy caderle }}$ U. S. Dept. Agr. Dept. Bull. 1428, 42 pp, illus.
-and Corton, R. T.
1032. hydhucyanto acid gab ab a fumigant fok debthoytig hougehold insects. U. S. Dept. Agr. Farmers' Buld. 1670, 21 pp., illus.
(8) Barnes, J. H., and Grove, A. J.
1916. the ingeots atacking storyd wheat in the punidb, and the methode of combatiog them, includino a chapter on the chemistay of resimation. India Depl. Agi. Meht., Chem. Sey. 4: [165]-280, illus.
(9) Blair, K. G.
1913. thiboliom gastaneum, herbstmperrvaneum, auct. (nec fab.). Ent. Monthly Mag. 49: 222-224.
1930. the indin bpecies of palohus, muly. (col.eortera: tenebbionidabl and bome absociated metlis. Imilian Furest Ree. 14 (5) : 1-20 (133-152), illus.
(11) Bhidwele, J. C.
1920. somp notes on hawailan and other methlytidae (hymenoptifa) Witil the deschiption of a new genue and bpecies. 2nd papeh. Hawaifat Ent. Soc. Proc. (1919) 4: 291-314.
(12) Brindley, T. A.
1830. the obowth and hevidopaent of ephestal kuehnifila zellet (LEPDidorttera) and tribolium confusum denal (COLFOPTEIA) unimit controlled conitions of tempeiature and relative humidity. Ann. Ent. Soc. Amer. 23: 741-757, Hilus.
(13) Bruner, L.
1893. beport of the miomologibt. ingect enemjes of the small geatins. Nehr. State Bd. Agr. Am. Rept. 1892: 360-466, fllus.
(14) Bubkhabidt, F.
1929. betthioe zurn hologe von tribolium navale fabb. (femiugineum Fabre) Ztscher. Wiss. Insektenbloi, 17 : 1-3, illus.
(15) Cilampion, G. C.

1884-9\%. bhologia centillitamehicana, ingecta. colfoptera, v. 4, pt. 1, hetteomera. 572 mp., illus.

(17) Chaplan, R. N.
1918. The confured fiour metlee (tribotiom confugum buyal). Mibin. State Ent. Rept. 17: 73-94, Hlus.
1921. inbrets infesting stored food products. Mint. Agr. Expt. Sta. Bull. 198, 78 pp., flus.
1924. NUTRITIONAL stLDins on mib Confoset hiour hehtie tribolitua
1928. the qJantitative analysin of envibonmental factohs. Ecelogy
$9: 111-122$, intus.
(21)

1929, motio fotenttal, envibonmentil babibtance and ingict abun-
1831. animal. booldogy, witi bsiggal. reference to inbects 464 pp ,
1933. The caubza of rludtuations of popithtions of insmets. Hawailan Eitt. Soc. Proc. 8: 279-[297], ilfus.
(24)

- 193 and MATRD, I

1934. tep hiotic conbtante of tribonidm confesum nuval. Jour. Expt. Zool. 68: 203-304, illus.
(25) Chagpentier, T. DI
1935. LOLAE ENTOMOLOGIOAE, ADJDCTIS TABULIG NOVEM COLORATIG. 205 pp ., flus. Wratislavie.
(20) Cuitienden, F. H.
1936. TIE YORE IMGORTANT INSECTS INJURIOUS TO BTORED GRAIN. U. S. Dept. Agr. Yeurbook 1894: 977-29, jllus.
(27)
1937. ON THE DISTRIBUTION OF certain IMHobted hebtics. Insect Life 7 : 326-332.
(28)
1938. Insects aftegting cempalis and other dey veretande foong. U. S. Dept. Agr., Bur. Ent. Bull. 4 (n. s.) : 112-1;1, illus.
(29)
1939. bome insexta injurioltg to stobed grain. U. S. Dept. Agr. Farmers' Bull. 45, 24 pp., jllus.
(30)
1940. DAPERS ON INBECTS AFFECTING GTOLED PBODUCTS. A LIAT OF INBPCTS affecting gtoned cereair. U. S. Dept. Agr., Bur, Eit. Bull. 96: 1-7.
(31) Cook, A. J.
1941. the wee flour neptee. Miclı. Agr. Expt. Sta. Ami. Ibupt. 1891-92: 183-134, illus.
(32) Denn, G. A.
1942. Methoins of controliting mill ang groned ghain ingects, togethen WITH THE HABITR AND LIFE HIBTOHIES OF THE COMMON INFESTING species. Kims. Agr. Expt. Sta. Bull, 189, pp. 139-930, islus.
(i3)
1943. FURTIER DATA ON HEAT AB A MEANE OF CONTROLLING MILL JNAECTS. Soher. Erom. Ent. 6: 40-55.
(34) Bud Schenk, (;
1944. THE CONTHOL OF stobed gikain and fiot'r islle insects. Fourth Interuatl. Cons. Ent., Ithacn, Trans. 2: [203]-229, Illus.
(3, D) Decoursey, J. D.
1945. A METIIOD of trapping tile confuged floctr heetle, tribolius conFUSUM DUVAL Jout. Econ, Ent. 24 : 1079-1081.
(30) Deiean, P. F. M. A.
1946. CATATOGUE DE LA COLLECTION DE COLEOFTELEG DE M. LE BARON DEJEAN. 136 pp. Faris.
(37)
 merean. 443 pi. Piris.
(i8) Dre Iages, T. D.
1947. LE FHELON. v. 2. 192 pp .
(3!) Duaft, E.
1948. METAMÓRFOBIS DET, TRIBNITYM FERRIGINFUM, FABRICIUS. N:ItUraleza (Mexico) 0: [8)41-997, jllus.
(-10) Dublint, J. H., bit Brigerimef W. W. D.

 Jonr, Ros. Army Merl, Coris $50:$ [615]- 534 , Ittus.
(41) Fntobotogicai. Socifty of Lonion.
 $275-276$.
(42) Essio, 15. 0.
1949. INGECTS OF WFSTFIS NORTII AMERICA; A MANDAD, AND TEXTHOOK FOR
 COUNTT, STATE, AND FBMFRAL ENTOMOLOGIFTS AND AGRICURTULISTS AS WFIL, AS FOR FORESTERS, FARMERS, GARIDENEIS, THAYELERS, AND Lovers OF^{+}Nattre $1035 \mathrm{pl} .$, illus. New York.
(H3) Fert, E. P.
 Thill. 247-248, 129 mi., tllus.
(4)

Gablan, A. 8.
1030. BYNONYMICAL AND HYGCRIPTIVF NOTES ON PARABITJG HYMVINOPTERA, U. S. N'ut. Mus. Pruc. 77, no. $2831,12 \mathrm{pt}$.

54 TEOHNICAL BULLETIN 498, U. s. DEPT. OF AGRICULTURE
(45) Garman, P.
 Conn. Agr. Expt. Sta. Bull. 327 : $540-547$.
(46) Gaubs G. F.
1831. the influence of bcologionl factors on the biyd of population. Amer. Nat. 65 (696): 70-76, iltus.
(47) Good, N. E.
1933. biology or the flour meetlea, tribolium conmusum duy. and t. ferruainbom far Joht. Agr. Reseatch 40: 327-334.
(48) Gbossicha, E. F.
1931. hidat treatment mor controlling thim ingbet pests of btoney corn. Fla, Agr. Expt. Stu. Bull, 239, 24 pi, Illus.
(49) Gylumintal, L.
1810. insecta bubcica . . . clabsis i colnoptera bitt miebtbrata. v. 1, pt. 2, 66 pp . Scaris.
(50) Herbast, J. F. W.

1792-97. natursystem aller bekannten in- tind aublandischen inbekten, alb eine fortietzuna deze vom bupponschen naturaesohichte . . . der käfer pts. 4, 7, ilus. Berin.
(51) Hebrtok, G. W.
1914. insects injuriovs to the houbehold and annoying to man. 470 pla, itus. New York.
(52) Holdaway, F. G.
1932. an exierrmentat, atudy of the chowtio of topulations of the
"flouk beftile" tribolium confusidy puyal, as affected bx atmospheric molsture Ecol. Monog. 2: 261-304, flus.
(53) and SAITH, IF. F.
1983. altehation of bex batio in the "hloul bejith; teibohidm confubum duvai, fodioning stabyation of newiy hatched lahear. Aust. Jourt. Expl. Biol. and Mel. Sci, 11: [35]-43, iltus.
(54) Imms, A. D., imd Chatiekses, N. C.
1915. on the bthucture and mology of taghardia lacoa, kebr, witil obseavationa on certain inaEctis prejacboub or parasitlo upon it. Indian Forest Mem., Forest Zool, Ser., v. 3, pt. 1, 42 pp., thlus.
(55) Jacquestiv du Val, [IP. N.] C.

18\%3-68. manuet entomologique; oenean dis congopytris debubop, comprenant leut classifioation 3 , and calalogue, pp. [125]-200, (1808), Ifus. Paris.
(50) Johnson, W. G.
1895. ingects in flour and gimin. Amer. Miller $63: 33$, illus.
(57)

1890-06. answfre to qoerife. and notes on insect indurtes in mitis. Nos iv, vir. Amer. Mhler 23: 601, illtas., 1895 ; $24: 32$, illus.,
1896. 1896.
(58)
1897. nores on gome little jnown ingects of economic importance. U. S. Dept. Agr., Div. Ent. Jult. 9 (n. s.) : $83-85$.

Kessier, H. F.
1891. Dit entwicket.ungrgesohichte von tanolitum prahugineum fabm, Ber. Ver. Niatarbmade Kassel 30-37: 109-114.
(80) Kominsky, J.
1006. thisolitub fehrugineum (fabr) [Cor..], an enemy of mfoachile

(61) Krynioki, J.
1832. enumetatio coleomterohum robsiad meridionatis et prafoipue in UNIVEHBITATIS CAEBAREAE CHARKOVIENEIS CIRCUIO ODVENIENTIUM, QUAD ANNORUM 18:7-1831 spatio observavit. Bull. Soc. Imp. Nat. Moscow 5: [64]-179, illus.
(62) KONIKE, G.
 Mitt. Gesell. Vorratsschuiz E. V. 7: 8-11.
Lexonte J. I.
1860. Litg of the conzoptera of nolty ambich, pt. I: Smithsn. Mise Coll., v. 6, art. 3, 78 pp,
(64) Lehman, R. S.
1930. A gOMPARIEON OF THE TOXICTTY OF PABA-DICHLOBOBFNEENE AND NAPIthalene to the confoged floue bestle (txiboliun confobum dev.) (Colpoptera). Jour. Econ. Ent. 23: g58-960, illus.
(4) Lintwer, J. A.

188u. SECOND beport of the injurious and other ingects of the btatn or new yobk. N. Y. State Ent. Rept. 2, 262 pl., illus. Albany.
(c6) Ludag, H.
18j5. obsemvations sub hes metamobrfoses de tribolitu castaneun
 Ann. Soc. Ent. Frince 3: [249]-259, 1lus.
(G7) Macleat, W. S., and Foisfield, T.
1825. ANNOLOSA JaVANiOA, or an attempt to mhustante the naturat, affinities and analogies of the insbets collected in jaya by тномas horsfieid . . . 50 pp ., filus. Jondon.
(68) Mahminabsan, S.
1023. clasbification of lad insects frob a piysionogical, htani-point.
 [Abstract in Rer. Appl. Fit. (A) 12: :5-6. 1924.]
(60) MOMmA, K.
1928. on a cabe of hymenolepsis dminuta rud, 181p. Am. Trob. Mef. and Parasitol. 22: 1-3.
(70) Mulsant, \mathbf{D}.
 jp. Paris.
(71) Nederlanische Entomozogiscite Veaeenigino.
1933. verehag van de zes-en-zegtioste wintehveroadering, Tljdechr. Ent. 76 (1-2) : 1-xlit.
(72) Newitead, R., and Dovali, H. M.
1918. monomit morpholooical and eoonomic report on the acabids of stores oman and flotr. Roy. Soc., Lombon, Rents. Grain P'est (War) Comm. no. 2, 41 m., illus.
(73) Patk, 7 .
1032. studies in porulation physionge: the bethtion of numbeas to initial population growth in the flour beetie tbibolide confoedur butir. Ecology 13: 172-181, illus.
(74)

19B3. studes in polulation phybiongay in. factobs negutatino twittat. ghowth of rhiblidm confugua portuations. Jour. Expt. Zool. (65: $76-42$.
(7)

19B4. observations on the generat, biology of time flouk bebthe, tbibonium confusum. Quirt. Rev, Blol. 9: 36-ist, illus.
(i6) Pay:7e, N. M.
1925. some effycts of thborium on fioun. Jon'. Econ. Eht. 18: 737ift, illus.
(77)

192G. Filezing and sumival, of ingeots at low temperatobes. Quart. Rev. Biol. 1: 270-28.
(78)

1!27. two factors of heat meagy involubi in ingect cond mabdinebs. Ecology 8: $10 \leq 190$.
(79) Quaintance, A. L.
 Agr, Expt. Sta. Bull. 36, pD. [358]-385, illus.
(80)

1S9S. some injunfous nsects. Fla. Agr. Expt. Sta. Ann. Rept. 180s:

(81) Redtentacher, I.

1S45. die oattungen teb bedtbchen kaepet-fauna nach der analyTISCIIEN METHODE BEABIETTET, NEMST HINEM KDRZ GEFASBTEN leitfaden, zum stifidiom diesee zweiozs der entomologie. 117
(82) po., Mus. Wien. 1819. mana austhaca, dig kifzar. 883 pp. When.
(83) Redtendacher, W.
1842. quiaedaic genera et bricies coleoptehohum abchiducatob austhae yondit pescriptadu. 31 pp. (Disg. Inaug. Vindobonae, Ueberreuter.) [Not seen.]
(84) Riofardoon, C. H., and Habs, L. fi
1932. the heiative toxicity of pyimbine and nicotive in the oagboug condition to tribolium coniuguar duval. Iowa State Col. Jour. Sci. 6: 287-298, illus.
Rhegr, W. A.
1!2z1. mivision of hatomology and bconomic zoology. Minn. Agr. Expl. Sta, Ann. Rept. 29: 55-60.
1922. a coelonic cocctidin of triboliuns. (Abstract) Anat. Rec. 23: 121.
(87) Roubapd, E.
1016. leb insectes et ia degenforescence des atachideg at bengegal. Ann. et Mem. Com. litud. Hist. et Sci. Afr. Occ. Françaje. 76 pp., illus. [Abstract in Rev. Appl. Ent. (A) 5: 338-339. 1917.]
(88) SAY, T.
1835. Descriptions of new nolth american colmopterous ingfits, ant obbervations on some alrmady described. Bost. Jour. Nat. Hist. 1(2): 151-203. [Also in LeConte, J. £., ed., The Complete Writings of Thomas Say on the Entomology of North America, y. 2, p. 659. New York and Lotdon.]
(89) Schispte, J. M. ©.

1S78. ine afetamorphosi eleutheratontm observationis: mithat til fnsektelanes dotholingshistorie. Pars 10, pl. 479-598, ilus. Kypoenhavi.
(90) Scbünherr, C. J.
1806. GYNONYMIA ingdetorum, oder: versuche etier gynonymie aller bisher biginnten ingecten; nach fabrigil byetema ecebtheyatordja georbnet. v. 1, 293 pp, illus. Stoekhom.
(91) Seiblitz, G.
 Provinzen bogslands. Auft, 乌, nell benrb., 818 mp, illus., Königsberg.
1894. natcrgeschichte der inshcten, coldoptera. v. 5, lief. 3, pp. 401-608.
(08) Staniey, J.
1932. A arathematical theory of the gnowth of populations or the flowe raztle, thiboliva confusum, buv, Cintd. Jour. Researeh 6: 632-671, illus.
(94)
1032. a mathematical theory of the orowth of populations of tage floue beyiles, thibolivm confubom, duv. in. the dibthenution ify aozs in the bably stagee of popolation ghowte. Canad. Jowr. Resenreh 7:426-433, illus. [Correction of nbove, p. 550, illus.]
(95) Stephent, J. F'.
 dheenous insders . . . 11 v., illus. London.
(9) StRAND, A. L.

10\%6. oblobopictin. new fumionnt for mill and hougebold ineects. Minn. Agr. Ext. Div. Spec. Bull. 102, 19 pp., illus.
(97) Sweetman, M. D., and Palaffu, L. S.
1928. ingedis as teat animals in hitamin researoht. I. fitamin reQUIREMBNTS OF THE FLOUR BEETLE TBIBOLIUM CONFUBUM DJVAL. Jour. Biol. Chem. 77: 33-52, illus.
(98) Uytienboogatit, D. L.
1934. revision pes oenus triboluym (col. fen.) Ent. Blitter 30: 20-31.
(99) Wabhbobn, F. L.
1904. innurious ingbicts of jgus. Minn. State Ent. Ann. Rept. 9: 36-37, 43-44, hlus.
(100) Watashoute C. O.
1896. NOTE ON TENERRIO MTRRUGINFUB, FABE, IN THE BANKBIAN COLIECTION of consoritres. Ann, aud Mag. Nat Hist. (6) 15: 230-931.
(101) Wesp, H. E.
1891. INGDCTS IFJURIOUS To ETORED GRAIN. Misg. Agr. Expt. Sta. Bull. 17, 16 pp. , iltus.
(102) W上erwoon, J. 0.

18\%9. AN INTHODUCTION TO THE MODERN CLABSIFICATION OE INBECTS: FOUNDED ON THE NATUEAL HABITS AND CORBYBPONDING OBGANIZA-

(103) Whith G. F.
1923. ON A NGOSPORIDIAN INFECTION IN FLOUR HEbTLss. (Abstract) Anat. Rec. 28: 359.
(104) Wormaston, T. V.
1854. TNGECTA MADERENBIA; BEING AN ACCOUNT OF THE INAECTS OF THE iblands of the maderban grour. 634 ply. illus. Lonton.
(105)
1864. catalogut of the coldoptezious ingects of the canarids in the OOLLDCTION OF THE bRITISH MUEEUM. 646 p . Londion.
(100) Yokоуама, K.
1925. RESISTANCE TO HEAT IN DERMESTES COARGEATUS IT, AND TRIDOIIUM Firmbeineuk fan. Imp. Stric. Expt. Sta. [Jopan] 'lech. Ikept. 7 (2) : 119-167, Hus.
(107)
1027. EXPRAYMENTE ON THE BESIGTANCE OF DERMESTES COARCTATUS HAROLD
 Tmpleratura: Bull. Imp; Seric. Expt. Sta. [fapan] 2: 108-117, Illus.
(108) Zachir, F.
 векӓм(PFONG. 366 pp., HItas. Berlin.

ORGANTATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

This bulletin is a contribution from

Bureat of Entomology and Plant Quarantine_.. Lky A. Strong, Chief. Ditision of Cereal and Forage Insect In- P. N. Ansakn, Primeipal Entovestigations. mologist, in churye.

[^0]: ${ }^{2}$ The manusctipt for thin bulletin as ordginally mubmitted to the Burenu of Entomology in Minrch 10334 contantied a complete revision of the genus Triboliust, consinting of the synonymies and debcriptions of the 5 opecles previouply known to tise author, together with the description of 1 apparently new speclep. While the manuacript was beipg reviewed, a paper by Uyttenborgarit (fB) appeared that covered much of the eystematic work of thit manuscript. Tribolitm deatructor Uyttenb. was found to ve the asme apecies as the npparently new one described in the origimal manuscript of this bultetia, 80 Uyttenbooprant's name was sybstituted as that of the describer. In the bulletin ns now frisued the gy: tematic portion has been IImited to the economicaliy important specles, to the apecies T.
 treated here.

 FItalte numbers in parentheseg refer to Literature Cited, p. $\mathbf{8 1}$,

[^1]: Sexes externally alike. Color usually ferrugnons, chestnut brown to black, sometimes with portions reddish. Body rather flattened or depressed. Clypeus mach enlarged and with gense forming a shelfike projection extending axound

[^2]: 4By R. A. St. George ; bisell on larvae of Triholfum castancum. Ilbst, and \%. confuam J. du V. in the colfection of the U. S. National Museum.

