

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

EARLY DEVELOPMENTAL STAGES OF NEMATODES OCCURRING IN SWINE

By
JOSEPH E. ALICATA
Iunior Zoolosist
Zoological Division
Bureau of Anlmal Industry

United States Department of Agriculture, Washington, D. C.

EARLY DEVELOPMENTAL STAGES OF NEMATODES OCCURRING IN SWINE

Jyy Joselir E. Aurcata
Junior zoologist, Zoological Division, Burcau of Animal Industry
CONTENTS

lifistorical risume
General remurks ou lite historics of groupls stutlifet
(t)n--

Abbreriations and symbols i....................... trations.
Aormblogical and experimental data Siftrjuc.

Gongytonema putchrum Molin, SSF.
Axcarops stronyyina (1zudalphi, 1819) Aficala hutl Melatosh, 1033 .
Phpsacephatus serututus (Molin, 1560) Diesing, Jsit
MetrstrougyIIdne
Mchatrongytus snimi Gedoulit, jow.
Netustrongytus elongathe (D 1 f hordin. 1846) Raillide and llenry, $1011 . .$.

Chnctostronghits puadr modofectrs (Wostokow, M(105) Skrjulufu, 109.

Pafe	Norpholopienl and experimental data-(\%on.	luge
$\frac{1}{3}$	Aschrjutre.............---............	W
2	- Aycaris suzm Goez	1
4	Trichuris suis (Schrank, 1758) A. sinith, tyos.	
5	I'richostrongylidue.	5
5	Hensiromoturs ravides (\#nssuli nil	
5	Stiles, [S82) Hali, [52	bt
3	Strongylidue	$0{ }^{6}$
21	Orsophtorostomum dentatem (Ki (jolphi, 1803) Molin, 1801.	0
.	Strphanuras dentatuy Diesinge, 183il.	73
27	Strongs doddidue. Stronontoides ranomi Schawariz abid	70
33	Alicata, 1980,...... . . . - .	
33	Comparntive morphology of eges and thirt-	
37	Stago larsto of some nomatodes necursing,	
		85
41	S,Itersaturg ciled	87

INTRODUCTION

The object of this bulletin is to present the results of an investigation on the carly developmental stares of nematodes of common occurrence in domestic swine. Observations on the stages in the definitive Jost of two of the nematodes, Gongylonema pulchrum and Myostrongylus rubidus, are only briefly given, however, since little is known of these stages in these nematodes. The nomenelature of cacle parasite, its host relationship, geographice distribution, morphology, and bionomics of its early stages are discussed.

In addition to the scientific interesti attaching to the new findings presented here, there is an cconomic nispect of considerable importance in that a knowledge of the life history nol bionomies is essential in formulating control measures for these parasites, many of which are distinctly pathogenic.

Uniess otherwise stated, all work was done in the laboratories of the Zoological Division at Washington, D. C.

[^0]
historical resume

The existing knowledge concerning the development and bionomics of swine nematodes has been accumulated within less than a century. One of the early life-history studies was that of Trichinella spiralis. Leidy (1) ${ }^{2}$ in 1847 observed encysted larvae of T. spiralis in the body musculature of the pig; these encysted larvae were described, however, in 1835 by Owen (85) from similar findings in the human muscle. The cysts of T. spiralis were first found in human muscle by Tiedman in 1822 and by Peacock in 1828. According to Cobbold (18), Tiedman probably saw the calcified cysts of T. spiralis. Experiments on the transmission of T. spiralis were performed by Herbst (46,47) in 1851 and 1852, Virchow (2, p. 480) in 1859, Leuckart (58,59) in 1860 and 1866, and Zenker (142) in 1860.

The first investigation relative to the development of Ascaris eggs was undertaken by Schubart and Verloren in 1854, cited by Küchenmeister (56), on the dog ascarid, Toxocara canis. Richter in 1854, cited by Küchenmeister (56), and Davaine (2S) in 1859, were apparently the first to note the development of the ascarid of man.

Numerous investigations have been carried out on the resistance of Ascaris eggs to various environmental conditions. The ascarids of man and of swine were reported to be resistant to low temperatures by Davaine (23), Leuckart (60, v. 2, lfg. 3), Yoshida (139), Martin (72), Cram (22), and Raffensperger (89). The resistance of ascarid gggs to various chemicals has been noted by Galli-Valerio (31), Yoshida (199), Wharton (186), Kobayashi (54), and Ransom and Foster (97). The resistance of ascarid eggs to dryness has been recorded by Ross (102), Ransom and Foster (97), Martin (79), and others. Reports that ascarid eges remain alive for long periods, even for several years, were published by Brown (18), Lenckart (60), Epstein (24), Morris (78), Ransom and Foster (97), Füllebom (2S), Martin (73), and others.

According to Linstow (68) in 1886, the myrinpod Julus guttulatus and the closely allied species Polydesmus complanatus probably served ns intermediate hosts for Ascaris lumbricoides. Stewart (126, 127, 12S, j29) in 1916-18, reported that larvae of A. lumbricoides migrated to the lungs and appeared in the mouth or feces of the rat or mouse. He surmised that these larvaegot on to the food of human beings from these hosts, and when swallowed with such food the larvae completed development in the intestine of the definitive host. Ransom and Foster (95,96) in 1917 and 1.919, and Ransom and Cram (98,94) in 1921, contriny to Linstow and Stewart, demonstrated that the life history of Ascaris was direct.

One of the earliest investigations on the development of Trichuris egrs was made in 1858 on those of T. trichiura by Davaine (28). Leuckart (60) in 1876 showed that infection with T. ovis and T. suis followed after a feeding of embryonated eggs of these parasites to their respective hosts. Raillict (91) in 1884 obtained similar results with T. vulpis in dogs, and Grassi (38) in 1887 noted similar results with T. trichiura in man.

With reference to the life history of Gongylonema pulchrum, Stiles (131) in 1892, was of the opinion that this nematode was heteroxen-

[^1]ous. It was not until 1915 that Ransom and Hall (98) reported that dung beetles served as intermediate hosts for this parasite. They also noted that the life history of Gongylonema was strikingly similar to that of Spiroptera obtusa which, according to Leuckart (60) and Marchi (71), required the meal worm (larva of Tenebrio molitor) as the intermediate host.
The life histories of Physocephalus sexalatus and Ascarops strongylina, involving various species of dung beetles as intermediate hosts, were elucidated by the findings of Seurat (115, 116, 117), in 1913, 1915, and 1916.

The life histories of the swine lungworms Metastrongylus elongatus and Choerostrongylus pudendotectus were unsolved until recently. Leuckart (60) in 1876, believed these lungworms to be heteroxenous and suggested that an insect or snail might serve as the intermediate host. Several writers, vamely, Von Linden and Zenneck (62) in 1915, Herms and Freeborn (48) in 1916, and Zebrowski (140, 141) in 1922 and 1925, were of the opinion that the swine lungworm larvac developed into a free-living generation. It was not until 1929 that Hobmaier and Hobmaier (49,50) reported that earthworms served as intermediate hosts of M. elongatus and C. pudendotectus. Their work was confirmed by Schwartz and Alicata (109, 111) in 1929 and 1931, and by Von Schuckmann and Zunker (106) in 1930. In the work reported in this bulletin the present writer has found that Metastrengylus salmi, another swine lungworm, also requires earthworms as intermediate hosts. Alessandrini (s) noted that long ago Cobbold considered earthworms as possible intermediate hosts.

The first observation on the preparasitic larval stages of Stephanurus dentatus was made in 1900 by Tayler (183), who gave a brief description of the hatching and morphology of these larvae. More extensive investigations on the developmental stages and bionomics of S. dentatus have been reported by Bernard and Bauche (11) in 1913 and 1914, Schwartz and Price (112, 119, 114) in 1928, 1929, and 1931, Ross and Kauzal (100, 101) in 1929 and 1932, and Spinclier (124, 125) in 1931 and 1933.

There is very little literature relating to the life cycle of Ifyostrongylus rubidus. Schang (104) in 1927 attempted to trace the larval development of this parasite, but from his description and illustrations it is evident that be had confused larvae of H. rubidus with those of free-living nematodes. Goodey (37), in the same year, gnve a brief but accurate description of the preparasitic larval stages nad bionomics of H. rubidus, in spite of the fact that he was dealing with very limited numbers of larvae. His finding showed that the preparasitic larval stages of H. rubidus were similar in general to those of other known strongyles.

Literature concerning the life history of Oesophagostomum dentatum is also very scarce. An accurate description of the preparasitic larval stages of this parasite and a discussion of their bionomics were given by Goodey (36) in 1924.

With reference to Strongyloides ransomi, Schwartz and Alicata (110), in 1930, noted that eggs derived from parasitic females developed either to strongyliform larvae or to frec-living sexundly mature worms, the progeny of the latter developing into strongyliform larvae capable of infecting the host.

GENERAL REMARKS ON LIFE HISTORIES OF GROUPS STUDIED

The nematodes known from swine include representatives of several large groups of parasitic nematodes. As would be expected in view of this fact, a considerable variety of life histories was found in the writer's investigation.

The nematodes discussed in this balletin include seven families, and on the basis of life history they may be subdivided into the heteroxenous and monoxenous groups.

The heteroxenous group includes the families Spiruridae (represented by Gongylonema pulchrum, Ascarops strongylina, and Physocephalus sexalatus) and Metrstrongylidre (represented by Metastrongylus salmi, M. elongatus, and Choerostrongylus pudendotectus).

The life history of the heteroxenous group may be of the following type: Adult male and female in definitive host; embryonated eggs outside of definitive host; first-, second-, and third-stage larvae in intermediate host; third- and fourth-stage larvae and adult males and females (firth stage) in definitive host. Each larval stage except the first one is separated from the previous stage by a molt; two molts occur in the intermediate host, and two in the definitive host. The sherth of the secend molt in the members of the Spiruridae is completely cast of ${ }^{\prime}$, apparently because these larvae are protected in the body of the intermediate host by a cyst wall. In the third-stage larvae of the Metastrongylidae, the sheath of the second molt is retained.

The monoxenous group includes the families Ascaridae (represented by Ascaris szum), Trichuridae (represented by Trichuris suis), Trichostrongylidae (represented by Hyostrongylus rubidus), Strongylidae (represented by Oesophayostomum dentatum and Stephanurus dentatus), and Strongyloididae (represented by Strongyloides ransomi). Larvae of the monoxenous group show considerable variation in their mode of development before entering the host.

The eggs of the Ascaridac and Trichuridae are deposited with the feces of the host, and after becoming fully embryonated are capable of producing an infection when ingested by suitable hosts. The Ascaris embryo molts once while in the eggshell and is not infective until after this molt.

The life history of the Trichostrongylidac and Strongylidac families may be as follows: Adult, mate and female in host; segmenting eggs and first-, second-, and third-stage harvae outside of host; third-and fourth-stage larvae and adult males and females (fith stage) in host. The preparasitic larval stages are separated by two molts, the sheath of the second molt being retrined in most cases so that third-stage iarvae are usually enclosed within a sheath. The parasitic stages also are separated by two molts.

The Strongyloididae group of nemntodes has a heterogonous lif history. In Strongyloides ransomi, larvae derived from eggs of parasitic females pursuc one of two cycles of development, direct or indirect. In the direct cycle, the larvae develop as in the Strongylidae. In the indirect cyele, the larvae develop into frec-living adults; the progeny of the latter develop as in the Strongylidne.

Throughout this bulletin the writer has followed for the most part the classification of the parasitic nematodes of vertebrates as given by Yorke and Maplestone (158). The lists of synonyms, hosts, and location and distribution of the various parasites discussed, havo been taken for the most part from Fall $(42,48)$.

ABBREVIATIONS AND SYMBOLS USED IN ILLUSTRATIONS

adop, anterior chorsal horly papilla
ao, anal opening
amph, amphid
ungl, anal ganglion
b, base
be, buceal cavity bep, buccal capsule
clgl, cephalic lateral ganglion
ep , cervieal papilla (deirid)
esdgl, cephalic subdorsal ganglion
csvgl, cephalic subventral yap-rion
cstwl, cyst wall
cutb, enticular bosses
dbp, dorsal body papilla
dgl, dorsal ganglion
cssh, egg shcil
epc, epithelial cell
cs, esophagus
excmu, excretory cell mudeas
exgl, exeretory gland
exp, exerctory pore
exs, exeretory sinus
fgp, female genital primordinm
gc^{1}, first giant cel!
ga^{2}, second giant cell
gc^{3}, third giant cell
ge ${ }^{4}$, fourth (genital) giant cell
gp, genital primordium
gere, germinal eell
gon, gonoduct
gub, gubernaculum h, hook
insmut, insect muscle
int, intestine
lgl, lateral ganglion
lbgl, lumbar ganglian lv, larva
mgp, male genital primordium
mthelev, month clevation
nr, nerve ring
orop, oral opening
ov, ovary
orj, ovejector
p, papilia
pdibp, posterior dorsal body ptapilia
plgi, postero-lateral ganglion
prbep, provisional bureal sapsule
pres, procsophagus
ptes, postesophagus
pegl, postero-ventral ganglion
rgel, rectal gland
reh, rachis
rygl, retrovesicular ganglion
sv, scminal vesicle
sdgl, subdorsal gamglion
stip, subdorsal papilla
sp , spicule
spa, spienle primordium
spr, spear
sugl, subventral ganglion
syp, subventral papilla
t, tail
tp, tail process
tel, telamon
ts, testis
ut, interus
v, vulva
vdf, was deferens
vo, vas efferens

MORPHOLOGICAL AND EXPERIMENTAL DATA

SPIRURIDAE

gongylonema pulchrum molin, lrsf

(Figs. l-9)
Synonyms.-Gongylonema fliforme (?) Molin, 1857; G. spirale (?) Molit, 1857; Fitariu labialis Panc, 1864 ; Spiroptera schthtn Müller, 1869 ; F. scutath (Mïler, 1864) Lenckart, 1873; (f. scutatum (Müller, 1869) Railliet, 1892; Afyzomimm, scutatus (Mäller, IS69) Stiles, 1892; G. ursi (?) (Dujardin, 1845) Nemmant, 189:; G. confusum Sonsino, $1896 ;$ G. subtite Alessumdrini, 1914; Ci. hominis Stiles, 1921 ; G. ransomi Chipin, 1922.

Hosts.-Definitive: Sheep, goat, ox, camel, fallow deer, buffalo, zelsu, chevrotain, pis, wila boar, lomse, donkey, bear(?), macaque, Aleles sp., Pithecus entelhus, man, white rat, guinea pig, and rabbit. Intermediate: Coleoptera (Aphodius coloradensis, A, distinctus, A. femoralis, A. fmetarius, A. granariks, A. rubcolus,
A. vittatus, Blaps appendiculata, B. emondi, B. strauchi, Caccolius schreiberi, Oniticellus fulvus, Onthophagus hecate, O. pennsylvanicus, O. taurus(9), Sphaerius sp., and Sphaeridium sp.); and Orthoptera (Blatclla germanica). Intermedinte hosts reported for Gongylonema sp., probably G. pulchrum: Aphodius haemorrhoidalis, Gymnopleurus sp., Blatta orientalis, and Periplaneta americana. Accidental: Mammals; nematode larvae collected by A. McIntosh from the stomach wall of a mole (Scalopus aquaticus aquaticus) were identified by the writer as third-stage larvac of Gongylonema sp.

In addition to the above-mentioned intermediate hosts the following insects have been found by the writer to serve as intermediate hosts for G. pulchrum: Aphodius lividus, Dermestes vulpinus, Parcoblatta sp.

Location-- Adults in mucosa of esophagus, tongue, and oral cavity of definitive host; third-stage laryae in body cavity of intermediate host.

Distribution.-Africa, Asia, Australia, Fhrope, and North America (United states).

Description of Egg, Embryo, and Larval Stages

NGG
Egg elliptical in shape; shell about 3μ thick, with simooth surface (fig. 1, A)Under high-power magnification, a faint line can le made out at cach pole, repre. senting the operculum. In a series of measurements involving about 50 eggs, length 57μ to 59μ, width 30μ to 34μ. Each egg contains a well-developed embryo at time of oviposition.

NableYo
Embryos (fig. 1, F), obtained by crushing severai cggs on a slicie under a cover slip, $2 \cdot 40 \mu$ to 250μ long by 13μ in maximum width. Einbryo does not undergo additional development before being ingested by intermediate host. Morphology of embryo corresponds to that of young first-stage Jarva.

FIIRST-NTAGE 1ARVA
Shape and size.-Newly hatched larva slender and of same width for most of length. As it grows during this stage, posterior half grows more in width than cloes anterior half, giving larva a club-shaped appearance (fig. 2, A and B). Anterior end broadly roundeci, posterior portion tapering slightly and ending in a rounded extremity. Size of larva depends on degree of development (table 1); before molting, first-stage larva sometimes attains a length of 540μ and at width of 38μ.

Cuticlc--Very thin, transparent, with very fine transverse striations; anterior end of ventral portion with 1 spine ard 2 small hooks of various sizes arranged longitudinally (fig. $1, B$ and C). When viewed with oil-imnersion Jens, spine appears as a small shining body; anterior hook, about 1μ long; posterior hook most conspicuous, approximately V-shaped, about 3μ long; posterior to these hooks, cuticle armed with about 20 parallel rows of very minute spines cueireling anterior portion of larva for a distance of about 16μ from anterior end; spires jarger and more prominent on dorsal than on ventral surface (fig. 1, B); spines of posterior rows hecoming gradually smaller, fast row very difficult to see. Tail (Gig. J, B) with a row of about 8 to 10 small refringent points encircling tip; there striactures were pointed out by Stiles (131) in embryonie forms, and this character is diagnostic for first-stage larvac.

Alimentary tract.-Oral opening leading into a transparent esoplagus 167μ to 243μ long and extending to a distance of slightly less than one-half of length of worm. Intestine also transparent, apparently composed of about 5 anterior large cells extending about two-thirds of length of intestine, and a posterior group of about 6 cells connecting with a very short rectum (fig. 1, D).

Nervous system.-Difficult to determine in living specimens. After larva is stained with aqueous methylene blue, nerve ring appears as a band surrounding posterior third of esophayus, 45μ to 110μ from anterior end, and surrounded hy several muclei of nerve cells.

Excretory system.-Excretory pore, 60μ to 145μ from :unterior end, Jeads into it short dilated excretory duct (ige. 1, D); excretory duet opers from a glandalar excretory cell possessing a large nucleus.

Genital primordium,--In living specimens hardty distiaguishable from large muscle cells of borly wall.

Table 1 shows the rate of development of first-stage larvac of Gongylonema pulchrum in an intermediate host (Blatella germanica),

FIGUREI,-VARIOUS STAGES INTHE DEVELOPMENT OF GONG YLONEMA PULCHRUM.
Embryo: A, Fully devolonet, in exs; F, faly devolopen, ohtanad by trushing the eggsitell.
 hont t thys aftor wxperimental infectiont E, tull, hateral vew.

the meastrements having been made on different days after experimental infection.

Tables 1.-Principal measurements of 6 first-stage larvac of Gongylonema pulchrum at rarious periods of development in the rooch

!tetn	\dagger Period of development and measurements of larva no. -					
		2	3		古	6
	1	2	4		116	${ }^{1} 10$
	243	334 :	372	372	480	$5+0$
Maximum width of body..--........... .--- . ${ }_{\text {do. }}$	15	15 :	15	15	34	38
	45	107	178	172 58	190	243
Distance of excrenary joro fronamaterior end. .ido...	+0		160	58 183	150	110 145
Lenghi of hail............................ . . .do..	46		37	${ }^{53}$	53	${ }_{60}^{148}$

a Lava undergoldg firse molt.

SbCOAD-STARE BAFYA

Shape and size.-Youg form similar in shape and size to older larva of first stage. As larya grows, it loses its chib-shaped apparanee and becomes more or less uniform in width, except for tapering anterior and posterior portions (fig. 2. C). Young specimen about 842μ long by 45μ wide; older specimen about 2.01 mm long by 53μ wide (table 2).

Cuticle.-Without amotare or hooks at anterior portion and without refringent points cuciucling tip of tail (fig. 1, I) ; faint transverse striations prescnt.

Alimentary tract.-Oral opening leading imto eavily surrounded by poorly developed buceal capstate, 36μ to $3 \mathrm{~S}_{\mu}$ long; capsule more distinct in older harva of this stage than in newly molted form; entrance to lumen of buceal cavity surrounded by a thin cutieularized ring, fitttened haterally (fig. 1, G and H). Esophagus well devoloped, less transparent than that of prevons stage, and occupying about one-half of bodr length; esophagus slender, more or less umiform in width in young larva of this stage, but in okder larra beroming diferentiated into procsophagus-an anterior, comparatively short slender muscular portion, 53% to 240μ long-and postesophayus-a posterior and wider glandular portion, 441μ to $1,150 \mu$ long; esophagus opening into a long slender intestine composed of many cells having poorly defined walls; posteriof portion of intestine opening into a large rectum surrounded by large rectalghands, 2 subventai and 1 dorsal.
Nervous system. - Nerve ring 109_{μ} to $12 \ddagger_{\mu}$ from anterior cad, distinctly visible as a band surounding anterior portion of esophagus (fig. 2, C); details of nervous system most evident in late second-stage larva, and very similar to those of thirdstage larya.

Excrotory system.-As in previous stage. In living suecimens, muchens of excretory cell not so conspicnuus as in previous stage, owing to greater thickness of euticte; excretory pore opening 150μ to 200μ from anterior end.

Genilal primordium.-This developing organ best seen in living speomens of older larva of this stafe, appearing as ta small ellipsoidal body, ventral in position, 53μ to 342μ from tip of tail, the distance devending on size of harva.

Table 2 shows rate of development of second-stage larvae of Gongblonema pulehrum in an intermediate host (Blatellit germanica) the measurements having heen made at diferent days after experimental infection.
'iable: 2.-Principal metsurements of if second-stage laruac of Gonjplonema pulchrum al wrions periods of dewlopmen in the voach

Iten	Periot of develofment that metsormente or larsa no.					
	1	2	3	4	5	
Period of develonment days. din	18	23	27	27	129	132
1, ength of body........................	$8{ }^{1}$	1,015	1,138	1,407	1,200	2,010
Maxtmum what of hety do.	45	6	± 3	${ }^{73}$	53	13
Eength of protsobhakns.... . do			53	6.9	220	290
Cength of pratesophagus.....tlo			[41	880	810	1,250
Total iengh of esophingus.... . dia...	3 CO	311	194	850	1,010	1,380
Distance of nerve rimg frontaterior ent .da...				104	114	12 L
	13	171	174		152	200
Distance orgenhal primordiom fram posterion end						
Leugth of tafl... da.	洮	83^{-1}	$\begin{gathered} i 80 \\ 89 \end{gathered}$	48	03	1×1

[^2]

FIGURE 2.-FIRST. AND SECOND-STAGE LARVAE OF GONGYLOMEMA PULCHRUM.
First-stagn larva A, hatern! vioss; Be undergolng fist molt.
 tarva undergolng second molt.

THIRD \rightarrow STAGE LARVA

Shape and size-Body of larva slender and of same width for most of length, tapering slightly at anterior portion and rather abruptly posterior to anus.

FIGURE 3.-THIRD-STAGE LARVAE OF GONGYLONEMA PULCHRUM.

 0 , interil view of hrva.

Lateral border of mouth projecting ontward and elevated above surrounding surface of head (fig. 3, B); head surrouthed by outer circle of 2 subdorsal and 2 subventral papillae and 2 laterat amphids; also an imer cirele of smaller papillac, 2 pairs subdiorsal, 2 pairs subventral, and'1 pair lateral (fig. $3, C$; 2 small lateral
cervical papillae (deirids) projecting from cuticle slightly posterior to midway between anterior body extremity and nerve ring; 2 additional papillae on dorsal. surface of larva, the anterior one slightly postequatorial and the posterior near region of base of esophagus (A gs. 3, G and $4, G$). Tail conical, usually terminating in 4 small digitiform processes, 2 subdorsal and 2 subventral, the subventrals in some specimens scarcely visible or entirely lacking (fig. 3 D, E, and F); visible

FIGURE A.-THIRDSTAGE LARVAE OF GONGYLONEMA PVLGHRUM.
 antertor portion showlng features of nervous system, vontril ybw; t, portion of larva showing fomale
 portion oflarva, lateml vieu; O, portion of larvashowliga dorshl body pusplit; D, posterlor portion oflarva, ventral viow.
processes about 2μ Jong. Larvac from 1.9 to 2.45 mm long by 50μ to 68μ wide; according to Seurat (11) , larvbe from 3.4 to 4.2 mm long by 72μ to 77μ wide; according to Ransom and Hall (99), larvae 1.9 mm long by 60μ wide.

Cubicle.-With prominent transverse striations.
Alimenlary tract. -Oral opening, in en face view, elongated dorsoventrally, rectangular, with concave margins (fig. 3, C); aperture leading into a siender mouth cavity. In optical section, walls of month cavity appear as two long rods
differing slightly in length，the corsal rod about 20μ long and the ventral one about 28μ long；width of these rods，about 2.5μ ．Esoplagus about three－fourths as long as body，differcutiated into a procsophagus， 258μ to 308μ long，and a postesophagus 1.07 to 1.26 mm long．Intestine n short tube occupying about onc－ifif of body length，connected posteriorly to rectum．Reetum about 35μ long，surrounded by 3 large reetal glands， 2 subventral and 1 dorsal．

Nervots systom－Rendily visible，especially in specimens stained in acid carmine．Nerve ring appears as thick ring encircling csophagus， 114μ to 136μ from anterior end ；according to Seurat（117），nerve ring 140μ to 160μ ，according to Ransom and flall（99）， 125μ ，from anterior end．Anterior to nerve ring， 4 strands of well－stained nuelei present，probably representing the nuclei of 2 subdorsai and 2 subventral cephalic ganglia（fig．4，A, C and E ）；nuclei of cells of the lateral ganglia not obscrved．Posterior to nerve ring， 2 lateral ganglia，each connected posteriorly to another group of colls，the posterolateral ganglin；dorsally， one nucheus probably representing the cell of the dorsal ganglion；ventrally，the subventral ganglia fused into one large group of cells（fig．4，C）．Posterior to exeretory sinus，the posteroventral ganglin represented by seven cells of which only the puclei are visible；slightly，posterior to excretory pore，a group of cells forming the retrovesicular ganglia（fig．4，A and C ）are present；surrounding the anal region and extonding posteriad to the rectal glands，a small group of nuclei representing the cells of the lumbar ganglin（fig． $4, F$ and $I N$ ）．

Excretory sysiem．－As in previous stage．Exeretory pore 190μ to 228μ from anterior end；according to Scurat（177），excretory pore 215μ to 250μ aceording to Ransom and Hali（99）， 210μ ，from anterior end．Excretory duet opening into a triangular excretory sinus possesses a large nucleus in its walls（fig． $4, C$ ）．

Genilal primordium．－As observed by the writer，male genital primordium （fig．4，B）clliptical in shape， 30μ to 34μ loug by 10μ to 15μ wide，located on ventral side bewween loody wall and intestine， 345μ to 375μ from posterior end of body，and composed of 2 large epithelial cells enclosing a group of about 6 or 7 nuclei of germinal cells．Female genital primordiun（fig．4，D ）somewhat elliptical， 30μ long by 10μ wide，attached to yentral side of body wall as noted by Senrat（ $118,11 \theta$ ）；attachment by means of a large cell about 8μ long located 260μ to 275μ from tip of tail．Measurements giver in table 3 indicate that the female genital primordium is closer to the posterior end of the larva than is that of the male．
Table 3 shows the measurements of third－stage larvae of Gongylonema pulchrum in an intermediate host（Blatella germanica）．

Table 3．－Principal measuroments of 10 third－stage larone of Gongylonema palchrum at earious periods of development in the roach

Iten	Perind of dovelopment ank measuroments of－									
	Male no．					Fetinde no．－				
	1	2	3	4	¢	1	2	3	4	5
Proriot of devoiopment．．．．．．ini－dnys．－．	d2	砐	35	ds	12	32	32	30	38	12
Iength of bouly－－．．．an milimeters．＋	1． 40	${ }^{2} \mathrm{OS}$	2.20	2． 25	2.27	2.05	2． 10	2.28	2.30	2.45
Maximum whth of body．．．．nterons．．－	73	${ }^{6} 3$	53	5	53	50	06	64	63	的
Lenteth of butcni cavily．．．．．．．．．do．．．．	${ }_{385}^{28}$	28	29	28	${ }^{23}$	20	28	28	28	30
fength of postesophakus．minimolers．．	1.17	1.28	1， 17	1．12	－281	1．088	$\stackrel{258}{1.04}$	300	2210	308
Distunco of nerve ritng from anteriar									1.25	1.20
cnd－．．．．．．．．．．．．．．．．．．．．．mikrous．－	11.4	19.1	130		129）	130	130	130	150	13 湤
		223	220	216	2 20	220	228	220	228	20
Distance of cersictal mapilae froman＊			－1）	－			2	22	225	2
Lerlor ents－－．．．．．．．．inicrons．．	76	30	36	86	80	$0 \cdot 4$	80	80	9.	102
Distance of dorsa！botiy prpilloe from										
Anterior papilla．＋．．．．．．－tricrons．－	1900		1．000	1，©030	1， 100	1，050				
Posterfor papilla．－．－．．．．．．．．．do．．．－	57.		700	170	780	700				1800
Distance of gental jurimordiam fruti posterior ond．．．．．．．．．．．．．．．．milerons．							200	280	275	2 s
Length of tall．．．．．．．．．．．．．．．．．．．	Us	11.1	1.4	114	：18	05	11.1	11.4	11.1	104

DIFFERGECEG IN FIRGT THREF BTAGDS

The outstanding differential features of the first three developmental stages of Gongyionema pulchrum are as follows:

First-stage larya-Cuticle at anterior end provided with 1 spine and 2 hooks longitudinally arranged; posterior to these hooks, about 20 parailel rows of very minute spines encircling the cephalic portion; tip of tail blunt, surrounded by a row of small rofringent processes.
Second-stage larva.-Cuticle without armature present as in previous stage; anterior and posterior ends bluntly rounded.

Third-stage larva.-Cuticle as in second stage; lateral border of mouth raised above surrounding surface of head and projecting outward; tail provided with 4 small digitiform processes, 2 subventral and 2 suldorsal, the subventral ones frequently only barely visible or entirely lacking.

Development in Intermbdiate Hobt

Kggs of fongylonema pulchrum were obtained by chopning up gravid female worms in a few drops of distilled water. This material was then transferred to small pieces of bread and introduced into a 300 -ce Erlenmeyer flask in which there were placed about a dozen roaches (Blatella germanica). The roaches had been previously starved for about 24 hours. The top of the fask was closed with a layer of chessecloth. In order to learn the approsimate time required for larval development, the roaches were allowed to feed on the infested bread for about 5 hours, after which they were transferred to a clean flask containing food not contaminated with eggs.

Roaches dissected about 24 hours after they had ingested the eggs already had empty eggshells in their crops and intestines, an observation which was reported by Ransom and Hall (98, v. 2) in their first extensive paper on the life history of this parasite. At this time there were also foumd several newly hatched larvae still adhering to the wall of the crop and apparently ready to invade the body cavity of the rouch. No larvae were found in the lumen or wall of the intestine, a fact which shows that possibly hatching took place in the crop and that the larvae found their way into the body cavity by piercing the wall of the crop. About 48 hours alter ingestion of eggs, firststage larvae were found in the body cavity of the roach, usually more numerous in the thoracic region than elsewhere. At the end of about, 15 days, the wandering larvae bad doubled their original size and appeared very plump. At this time the first cuticle had begun to loosen at the anterior and posterior ends (iig. 2, B). These observations are in agreement with the findings of Ransom and Hall ($98, v .2$), who state that these Iarvae were on the verge of a molt in the intermediate host 2 weeks after experimental infestation. The first molt did not take place, however, until about the ninetrenth day, when some larvae are already in the second stage.
The second-stage larvae also wandered in the body cavity, especiaily in the abdominal region, where they increased considerably in Jength, in about 27 days the larvac were 1.13 to 1.5 mm long by 53μ wide. At this time they usurlly penetrated the muscles of the body wall, especially those of the ventral portion of the abdomen. In henvy infestations the larvae may invado the walls of the crop and intestine and the muscles of the coxae. Partial encystment has been observed to precede the second molt. Larvae undergoing the second nolt were found 20 to 32 days after experimental infection,
and larvae which had completed the second molt and were in the third stage were found 32 days after infection. These findings agree with those of Ransom and Hall (98, v. 2), who state that at the end of about a month the larvae were encysted, that is, in the final larval stage. The writer's observations are also in agreement with those of Lucker (68), who, in dissecting experimentally infested roaches 34 days after infoction, found encysted larvae which produced an infestation when fed to pigs.

Encysted Gongylonema larrae were studied both by gross dissection and in cross sections of infested roaches. The observations made indicated that each encyited larva was embedded within the sarcoplasm surrounding the muscle fiber. The nuclei in the sarcoplasm surrounding the cyst wall of the larva were very distinct in stained sections (figs. 5 and 6). As the cyst became well formed it was some-

Figune 5.-Cross section of a ronch (istoteta getmanica), showing Gomytonema larwa encysted in tha body wall.
times pushed out into the body cavity until its attachment to the muscle was merely by a thin strand (fig. 3, if). At this time most of the nuclet in the cyst wall became degenerated, so that in stained sections of these cysts only a few nuelei were visible at the place of the attachment of the cyst. The onter portion of the cyst did not stain well and had the appearance of cloudy degeneration as observed in vertebrate tissue.

Developmext is Definimite host

The stady of the third and fourth stages in the definitive host was advantageously carried out in the guinea pig, an experimental animal which can be easily and thoroughly examined post mortem. Though this animal is not a normal host for Gongylonema, it is safe to assume that the same mode of larval development and migration takes place in it as in the more usual hosts, mamely, cattic, sheep, and swine.

Tables 4 and 5 show the measurements of third- and fourth-stage larvae in different periods of development. As shown in table 4, in 12 days after infection the larvae still in the third stage had practically doubled their length. In a guinea pig killed 9 days after experimental infection, there were found larvac at the begiming of

the third molt (fig. 7, A-D). The most outstanding morphological feature of these larvae, as shown in figure 7 , is the development of the genital primordium. In the males, the genital system appeared as a slender tube about 550μ long, with its posterior portion about ready to connect with the rectum; in the females, a short ovejector and two divergent uteri were present.

Table 4.-Measurements of 6 third-stage larvae of Gongylonema pulchrum in various periods of development in guinea pigs

Item	Perlod of development and imeasurements of.-					
	Male no.-		Fermale no.-			
	1	2	1	2	3	4
	3	-19	: 8	3	10	112
	2.50	- 59	2.5	2. 38	3.60	-1. 45
	76 78 8	78	${ }^{73}$	70	8	98
	343	312	38 243	230	$\begin{array}{r}38 \\ 326 \\ \\ \hline\end{array}$	388
Iength of postesoghagus .-.-.-..-........-milimmeters..	1.01	1.78	4.03	1.	$\begin{array}{r}326 \\ 1.87 \\ \hline\end{array}$	2309
Distance of nerve ring from anterior end....ntcrons.		171	138	-1.13	1.6	216
Distnnce of exeretory pore from anterior cod...do...-			2335 108	198	231	319
Distance of genital primordium from posterior end			168			121
Lenth ortail microns..	452		310		421	450
	1035	15 t	100	129	102	$1: 12$

Table 5.--Measurements of 9 fourth-stage larvae of Gongylonema pulchrum in various periods of devclopment in guinea pigs

Itam	Period of developmeat and mearurements of -								
	Male no.-				Female no. -				
	1	2	3		1	2	3	1	:
Periol of development. . .-. minimeters	$4{ }^{12}$	- 16	${ }_{12}^{127}$	${ }_{12}^{131}$	- 12	${ }_{8}^{10}$	15.27	${ }_{1}^{197}$	${ }^{1} 31$
Saximum tidth of holy .-......... mimerons	4, (i)	\%. 90	11.00	1200	- 5.85	8. 190	15. 39	1ヶ,00	20.60
Length of baecal curitr.................. do...	38	4	4.5	$\begin{array}{r}121 \\ 4 \\ \hline\end{array}$	90	114	121	131	156
fength of presophagus..t. do	235		3.4	+102	3.30	3:0	402	$4{ }_{4}$	465
Length of postesophargus minime ers.	1.45		2.40	25	$2{ }^{2}$	2.10	2.65	3. ${ }^{\text {4 }}$	3.06
Distance of derve ring from nateriar and						- 10	2.6	3...	3.0
Dtshance of exerctory nore from antetior end	152	124	19.4	290	180	263	195	¢1	256
	2;s		364	33.4	349		385	4.40	
Distance of cervient paplun fromanteriorend									
Distance of dorsal bocls papiline from nos-	115	123	...	[1313	114		136	14	15.5
lerior end:									
Anterior bapilm-...... .--millmeters_-	2.5	4.80	6. 213		3.10	5. 36	10.9		
Posterior papilha	1. (c)	2. 1519	3. 53		25	3. 10	[. 3		
Distane of valva restion from fosterior end micrens					510	\$26	1. 270		
Lengih of tnil.................-do...	121	163	178		141	1.79	154	16i\%	1s:

- Larva umbergoims fotarla mat.

In a guinea pig killed 12 days after infection, some farvae already in the fourth stage were found. Measurements of these larvac are given in table 5 . The outstunding features of this stage are the following: The nnterior end of the farvae retains to some extent lateral and outward directed elevations (fig. $\overline{7}, F^{\prime}$ and G) similar to those present in the previous stage. The cuticle in roung fourthstage larvac does not show bosses on the anterior portion, but these structures are gradually formed as the larvae grow older (fig. 7, H). In males, the posterior portion of the vas deferens is alveady connected with the rectum, and at the time of the fourth molt males have welldeveloped spicules and eaudal papilhe have formed (fig. 7, J). The females have a long ovejector with ono uterus extending anteriory and the other posterionly (fig. 7, L). The trils of boch sexes at this stage are rounded and lack the digitiform appendages found in larvae of the previous stage. Fourth-stage larvae grow considerably in length, the males apparently not growing so long as the females. In 27 to 31 days after infection, the males nre 11 to 12 mm long,
whereas the females are 18 to 20 mm long. At this time both males and females undergo the fourth or last molt, and this cuticle is not actually cast of until 37 days after infection. The fifth stage, which represents adult forms, is easily differentiated from the previous

worms just beginning oviposition, also obtained from the esophagus of the guinea pig referred to above, had the following measurements: Length, 55 and 60 mm ; maximum width, 235μ; jength of proesophagus,

655μ and 672μ; length of postesophagus, 5 and 5.2 mm ; lengily of tail, 250μ and 202μ.

Mrghtion of Lahmate in Depintite Most
During the month of April 1933, encysted thircl-stage larvae of Gongylonema pulchrum, obtained from experimentally infected
cockroaches, were fed with the aid of a pipette to five guinea pigs weighing from 135 to 150 g . These guinea pigs were kept without food for about 24 hows before tho infective larvac were fed. A description of these tests and the results are as follows:

Guinea pig 1 was given 9 infective larvae and was killed one-half hour later. The tongue, esophagus, and stomach were then dissected and removed from the borly. The stomach was opened and washed in a Petri dish containing physiologic saline solution. Most of the stomach was cut into pieces about 2 cm square, and cach piece was pressed between two glass slides and examined with the aid of a binocular microscope. The esophagus, together with a portion of the anterior part of the stomach, was examined as a whole. Press preparations were also made of the tongue, palate, and oral linings. By this method larvae were easily detected whenever they were present. Seven larvae were recovered from this guinea pig, 2 larvae being embedded in the esophageal wall about 2 mun from the gastroesophageal junction, i larva in the cardiac portion of the stomach wall, and 4 exeysted larvae in the stomuch contents. The other 2 larvae which had been fed were not found.

Guinea pig 2 was fed 12 infective larvae and was killed 1 hour later. Most of the larvae were found at the junction between the stomach and esophagus, I larva in the esophageal wall slightly above this junction, and 2 in the wall of the esophagus about 2 mm from the junction. No larvae were found in the stomach wall or its contents or in the tongue or oral lining. The other larvae which had been fed to the guinca pig were not found.

Guiner pig 3 was fed 12 infective lary ne and was killed 18 hours later. Six larvae were found embedded in the wall of the esophagus, scattered about 1 to 3 mm from the gastroesophageal junction, and 1. larya was found about 2 cm from this janction. No larvac were found in the stomach wall or its contents. The esophagus was sectioned (fig. 8) at the points where embedded larvae were found. Figure 8, A, shows a larva embedded in the epithelium of the esophagus not far from the gastroesophageal junction, and figure $8, B$, shows a larva also in the epithelium of the esophagus; the later larva was located about 2 cm from the base of the esophagus of the guinea pig. The other larvac which had been fed to the guinea pig were not found.
Guinea pig 4 was fed 45 infective larvae and was killed 3 days later. Three larvae were found about 3 cm from the base of the esophagus, and 5 larvae in the posterior portion of the tongue; other larvae were probably present in this region, but were not sought for as the writer was concerned only with the portions of tissues infested. No harvae were found in the stomach wall or its contents.
Guinea pig 5 was fed 45 infective larvae and was killed 10 days later. Two larvae were found 4 cm from the base of the esophagus, several larvae in the walls and lateral portions of the tongue, and 1 larva in the wall of the hard palate. No harvae were found in the stomach or its contents.

These observations indiente that encysted larvae of Gongylonema pulchrum excyst in the stomach of guiner pigs and may invade the esophagus within one-half hour after feeding. The observations suggest also that the path of entry of these larvae to the esophagus is through the tissue at the junction of the stomach and esophagus, as the larvae are usually most numerous in that area. This may be
due to a lack of resistance of this tissue or to a chemotixis or other tropism. In figure $8, A$, the large arrow points out the possible mode of entrance of the larvae into the esophagus. Larvac may migrate to the esophagus also by first entering the wall of the stomach, but this possibility is apparently rare as in only 1 out of 5 feedings was even 1 larve found in the stomach wall.

After the larvae have penetrated the esophagas, they migrato upward and invade the walls of the oral cavity 3 days after experimental feeding. These larvac may migrate promptly to any part of the walls of the tongue (fig. 9), palate, or lining of the buccal cavity. In observations other than the ones given, laryac have been found to develop to maturity in any of the tissues which hare been mentioned as being invaded. It is of interest to note that the wandering larvac are found only in the epithelium of the structures invaded (figs. 8 and

Ficune g.-Section of tonghe of a painea pig showing Gonghonema pufchrum larvoc embedded in tho evithelium, 31 diys after experimental infection.
9). No extensive lesions have been found associated with infestations with these laryne. This is in agreement with the opinion of Ransom and Hall ($\because 8, v .2)$ who, in comparing this worm with Gongylonema neoplasticum (described by Fibiger and Ditlersen (25), in 1014, as inducing the production of noplastic changes in stomachs of rats) state that G. scutatum ($=G$. pulchrom) cma be regareded as probably an imocuous parasite.

Ongeryamoss on Ifpegers of linvthonmbaty

On Tebruary 17, 1933, several thousand eggs of Gongylonema pulchrum were mixed with sterile sand and translered to 3 small glass tubes about 5 cm high and 8 cm in diameter. Enough water was added to this mixture to give the sand a moist apperrance. These tubes were phuged with eotton and phaced in two 1 -pint frait
jars, 2 tubes being put in 1 jar and 1 in another jar; the tubes were held straight on the bottom of the jar by fitting absorbent cotton around the tubes. In order to prevent drying of the sand, water was added to the jars to a height of about 3 cm . The jars were then covered with moist paper hand towels and a few holes were made at the top of the paper with the aid of a dissecting needle. The jar containing two tubes was placed outdoors (Washington, D. C.) under shelter so as to prevent rain or snow from falling upon it. On June 17, 1933, 4 months later, one tube was removed from the jar. Some of the eggs were examined and found to contain viable embryos. The eggs were then separated from the sund with the aid of a screen, placed on a piece of bread, and fed to six roaches. About 40 days later the roaches were examined, and all were found to contain Gongylonema laprac encysted in the body cavity.
Data in connection with the outside temperatures ${ }^{3}$ during the 4 months' exposure of the eggs are as follows: Minimum, $-6.6^{\circ} \mathrm{C}$.; maximum, 37.7°; total time during which temperature was 0° or fower, 66 hours, and from 1 to 10°, 1,002 hours. The egrs were thus kept in cold and sometimes freezing temperntures 37 percent of the entire period of outdoor exposure without being killed.

ISONCidVITY OF EGGS AT ROOM TEMPPRATUTE

The jar contuining one tube was kept indoors at a temperature of from 22° to $24^{\circ} \mathrm{C}$. The tube was examined in 4 months and was found to contain eggs with viable embryos. The eggs wero separated from the sand and fod to six roaches in the same manner as in the experiment previously described. The roaches were examined 40 days later and were found to contain encysted Confylonemu larvac.

ASCAROP'S STAKONGYLINA (RUDOLPHI, IGIG) ALICATA AND McINTOSH, LIM)

(Figs. 10-1i)

Synonyms.-Spiroptera strongylina Rudolphi, 1819 ; S. strongyliformis de Blainville, 1828; Fils riat strongylina (Rudolphi, 1819) Schncider, 1806 ; Arthenna strongylina (Rudolphi, 1819) Raillict and Henry, 1911; Inabronema stronglina (R1dolphi, 1819) Ostertag, 1932.

Ilosts,-Definitive: Swine, rabbit, witd boar, cattle, guinen pig. Intermediate: Coleoptera (Aphodius mfus, A. castaneas, Gymnopleurus sp., Scarabaeus sp.) And Odonata (Anax parthenope). Accidental: Mammals, birds, and reptiles for third-stage larvae; Alicata and McIntosh (θ) have found these larvae encysted in the stomachs of bats captured in Washington, D. C.

In addition to the above intermediate hosts, the following insects have been found by the present writer to serve ass intermedinte hosts for A. strongylina: Passalus cornutus and Aphodius gronarius
Location.--Adults in stomach of definitive host; third-stage larvac in body
cavity of intermediate host, and wall of intestine or mesentery of aceidental host.
Distribution.-Africa (Algeria), Asia (Cochin China, India, Plilippines,
Turkestan), Australia, Europe (France, Germany, Hungary, Italy, Rumanin),
$\begin{aligned} & \text { Central America (Nictragum, Panama), Norih America (United States), South } \\ & \text { America (Argentima). }\end{aligned}$

> Description of Egg, Embhyo, and Lahyai, Bpages egg

Egg somewhat ellipiceal in slape, sightay fattencel at each pole (fig. 10, A); shell about 2μ thiek, with mamerous small panetations on surface; under high-

[^3]power magnifieation each pole with a small plugike thickening. In a series of measurements involving about 50 eggs, length 41μ to 45μ, width 22μ to 26μ;

FIGURE 10.-VARIOUS STAGES IN THE DEVELOPMENT OF ASCAROPS STPONGYLINA.

 infection; h, herva mutergoing arst molt
 Inryanderkoma second mol, Interal view: κ, meral view of hrva.

 wrli-developed embryont time of ovipusition.

AMBHYO

Embryos, obtatined by crushing severat aggs an a slide under a eover slip, 110μ to $[15 \mu$ long by $7 . \dot{\mu} \mu$ in maximam width. Embryo does not andergo further development before being ingested be infermedinte liost. Morphology of embryo corresponds to that of young first-sitige larva.

Shape and size.-Newly hatched larva slender and of same width for most of length (fig. 10, G). As it grows during this stage, posterior half of body grows more in width than does anterior half, giving larva a club-shaped appearance. Anterior end broad and rounded, posterior portion tapering slightly; tip of tail ending in characteristic short conical structure about 1.5μ long (fig. 10, E). Size of larva depends on degree of development (table 6); before molting, first-stage larva sometimes attains a length of 530μ and a width of 35μ.

Cuticle.-Very thin, transparent, and with very fine transverse striations; ventral portion of anterior extremity with two hooks of diferent sizes, arranged longitudinally (fig. 10, D). When viewed with oil-immersion lens, the most anterior hook appears very minute; posterior hook most conspicuons, upproximately V-shaped, about 1.7μ long; posterior to these hooks, enticle armed with about 17 parallel rows of very minute spines encireling anterior pertion of larva for a distance of about 16μ from anterior end; spincs larger and more prominent on dorsal than on ventral surface (fig. 10, B, C, and D); spines of posterior rows becoming gradually smaller, the last row being very difficult to see.

Alimentary tract,-Oral opening leading into a long, transparent esophagus 80, to 190μ in length and extending about one-half of length of worm, lenget of esophagus depending on degree of developthent in intermediale lost. Intestine transparent, apparenitly composed of many eells; intestine commecting posteriorly with a very short rectum surrounded by three rectal glands.

Nerwes system.-Difficult to determine in living specimens. In larva stained with acheous methylene blate, nerve ring shows as a band encireling esophagus, 50μ to 75μ from anterior end, and surrounded by several nuelei of nerve cells.

Excretory sysfem.-Excretory pore 60μ to 45μ from anterior end, leading into a short dilated duct, this duct onening into a large excretory cell possessing a large nuclens ($\mathrm{fg} .10, G$ and L).

Genital primorditum- Hardly distinguishable from large musele cells of body wall.

Table 6 shows the rate of development of that-stage larvae of Ascarops strongplam in an intermedinte host (Aphodius gronarius), the measurements having been made on afferent days after experimental infection.

TגHLE (j -Principhl measurements of 5 first-stage lorbap of Ascarops stronghlina at varions perions of druelnpment in ditug bectes

Shape and size.-Young form similar in shape and size to older larva of first stage. As larys grows, it loses its ehab-shaped apparance and beeomes more or less uniform in width, exeept for tapering anterior and posterior portions (fig. 10 , K). Tip of tail rounded, having lost the conical structure with shedding of first enticle. These specimens about 720μ to $1,650 \mu$ long by 41μ to 62μ wide, clepending on degree of development (table 7).

Cuticle, Without armature in anterior portion; faint transverse gtriations present.
Alimentary tract. Oral opening leading into a buecal capsule 35μ to 38μ long; capsule more distinet in older harva of this shage than in newly molted forms. Esophagus slender, 210μ to 436μ long, oceupying about one-third of body length,
more or less uniform in width in young larva of this stage, but in older ones becoming differentiated into proesophagus-an anterior, comparatively short slender portion-and postesophagus-a posterior, wide portion about five times as long as proesophagus; esophagus opening into a long slender intestine composed of many cells having poorly defined walls; posterior portion of intestine opening into a harge rectum surrounded by large rectal glands, 2 subventral and 1 dorsal in position.

Neruous cystem.-Nerve ring $S 0 \mu$ to 14μ from anterior end; details of nervous system most evident in Jate serond-stage larvae and very similar to those of thirdstage larvae.

Excrelory system,-Structure as in previous stage; opening of exeretory pore 80μ to 167μ from anterior end of hody.

Genital primordium.-Small ellipsoidal body, ventral in position, 362_{μ} to 530μ from tip of tail, the distance depending on size of harva; best seen in living speciwens of older harva of this stage.

Table 7 shows the rate of development of second-stage larvae of Ascarops strongylina in the intermediate host (Aphodius granarius), the measurements having been made on difterent days after experimental infection.

Tabцe: 7.-Prifteipal mocasurements of isecond-siage larvae of Ascarops strongylina at varions periods of development in dung bectles

Shape and size.-Body slender, of same width for most of its lenath, tapering slightly anteriorly and rather abruptly posterior to antas (fig. 10, M); anterior end with characteristio dorsoventral liplike elevations (fig. 11, C). Head surrounded by outer circle of 2 large and 2 smaller subdorsal papillae, with corresponding subvertral papillac; 2 lateral amphids present; an immer circle of smaller papilac, 1 pair subdorsal, 1 pair subventral, and 1 pair lateral (fig. 10, J); 2 small lateral asymmetrical cervieal papilae (deirids) present; papilla ou right mod left sides, 159μ to 105μ and 91μ to 132μ from anterior encl, respectively. Tail conical, termimating in a characteristic small smooth knol) 7μ to 8μ long (fig. 11, G). Larvac 1.91 to 2.32 mm long by 53μ to 91μ wide; according to Setrat (/ty) 1.9 min long by $\mathrm{S} 0 \mu$ wide.

Cuticle.-With prominent trinsverse strintions.
Alimentary tract.-In en face view, oral opening is somewhat hexagonal and elongated dorsoventrally, the aperture leading into a slender moutlo cavity. In optical section, walls of mouth cavity appear as 2 rocks, each 53μ to 70μ long. Esophagus about one-third as long as body, differentiated into a provsophagus 114μ to $200 \mu \mathrm{long}$, and a posteosphagus 500μ to 800μ long. Intestiac about two-thirds ats long as body, eomected posteriorly witle rectam. Rectum 30μ to 40μ long, surroutded by 3 large rectal glands, 2 subvertral arnd 1 dorsal in position.

Nertars system.-Readily visible, cspecialiy in specimens stained in acid carmine. Nerve ring appears as a thiuk ring encireling the esophagus 129μ to 152μ from anterior end; according to Senrat ($1 / 7,154 \mu$ From anterior end. General
structure of nervous system (fig. 11, C, E, F, G, H), similar to that of third-stage larvae of Gongylonema pulchrum, except that in Ascarops strongylina the cells of subventral ganglia, ventral and posterier to nerve ring, are divided into two groups.

Excretory sysiem. -In general, as in previous stages. Excretory pore 150μ to 205μ from anterior end, its duct opening into a triangular excretory sinus, the sinus wall possessing a single large nucleus.

Genital primordium.-As in Gongylonoma pulchram, sex can be differentiated at this stage. Male genital primordium (fig. $11, B$) 15μ to 18μ long by 9μ to 11μ

FIGURE 11.-Third-stage Larvae of Ascarops strongylina.

 anterior portfon of harva showing fenlurgi of hersous systom, ventral vou: 5 , region of nerve ring, dnesal fiew; θ, posterior fartion of larve, lateral view; H, , pesterior gartion, ventral view.
wide, located ventrally between body wall and intestinc, 600μ to 750μ from posterior end of body, composed of 2 large epithelial eap cells enclosing about 7 germinal cells. Female genital primordium also elliptical, 15μ to 18μ long by 9μ to 11μ wide, attached to body wall on ventral side by means of a large cell (fig. 11, D) 700μ to 835μ from tip of tail.

Table 8 shows the mensurements of third-stage larvae of Ascarops strongylina in an intermediate host (Aphodius granarius).

Table 8.-Principal measurements of 9 third-slage larvae of Ascarops strongylina at various periods of development in dung beelles

Itom	Period of development and measurements of inrvao								
	Malo no.-					Fomalo no.-			
	1	2	3	4	5	1	2	3	*
	29	${ }^{23}$	35	35	40	35	35	40	40
Length of body .-.---..-...--millmaters.	1.91	1. 117	2.11	2. 20	2.30	1. 27	200	2.30	2. 32
	${ }_{5}^{65}$	60 53	${ }_{60} 6$	72	83	${ }^{64}$	60	${ }^{760}$	91
Length of proesophabus...................do...-	182	144	170	125	200	175	165	${ }^{60}$	70
C.ength of postesonhacus....-...........do...-	580	6180	6×0	710	286	689	000	760	${ }_{800}^{174}$
Distanceotner vering from amterior endi io...-	120	13 h	$1 \cdot 14$	1.44	552	14.4	138	144	152
Distana of cxerotory jord ford amterior ensl-	I82	11/S	190	10.5	20.5	150	150	159	205
Distance of cervical paphliae from anterior end:)	15	15	20.
	182	180		175	100		153	170	
	95	103		106	126		01	$1{ }^{1} \times$	132
istanace of genital frimorolam from pasterior 	670	6 mo	750	760	700	700	709	82	88.5
Length of tnil.-...................................	83	76	96	87	83	51	01	83	81

MrmbRENCRS IN FIHST THEED STAGES
The outstanding differential features of the first three developmental stages of diccurops stronyylina are as follows:

First-stage larva.-Cuticle at anterior end apparently provided with 2 longitudinally amranged hooks; posterior to these hooks, about 17 parallel rows of very minute spines encireling the eephalic portion of larva; tip of tail conical.

Second-stuge larva.-Cuticle without such armatare as in previous stage; anterior and postruios ends bluntly rounded.

Thive-stage larvi-. Catiele as in second-stage larvi; anterior und with 2 dorsoventral elevations; tip of tail possessing a smooth knoblike process.

Development in Inthimpmate Host

Egrs of Ascarops stromplinu were obtained by chopping up gravid female worms in a few drops of distilled water. This material was transferred to small pieces of blotting paper and introduced into small glass tubes about 2 cm in diameter and 5 cm in height. In erch of these tubes, there were placed six dung beetles (Aphodius aranarias). The beeties had been collected from sheep manture, and when many of them were dissected previous to infection none were found to harbor a nataral infestation with Ascarops stromgyazn. Glass tubes containing eggs and beetles were kept outdoors under shelter.

Beetles (Aphodius aranarius), dissected 24 hours after they had been exposed to infective eggs, contained a few first-stage larvae in the abdominal portion of the body eavity. Young larvac, t to 2 days after infection, were 158μ to 160μ long by 9μ wide. About 15 days after infection, most first-stage larvae were found eneysted in the walls of the Malpighian tubules. These cysts were usually spherical and thin-walled, and, besides the Inrva, a cyst contained several rounded bodies, possibly fat cells (fig. $10, F$). At the end of about 17 days, several Iaryae were noted undergoing the first, molt (fig. 10, L), and 2 days later soveral larvae were alroady in the second stage. Larvae undergoing the second molt (fig. 10, $I T, I$) were found 28 days after experimental infection, and third-stago larvae
were found in beetles dissected 1 day later. During the development of the larya the cyst increased in size, being about 524μ to 936μ in its greater diameter and 420μ to 700μ in its lesser diameter when fully developed. Completely formed cysts were usually found free in the abdominal portion of the body cavity of the beetle, frequently being interlaced superficially by small tracheal tubules of the insect (fig. 11, A).

Orsfirvations on Effects of Environmint

IENHLSTANCE OF EGGS TO LOW TEMPERATCRES

On February 17, 1933, about 1,000 eggs of Ascarops strongylina were mixed with sterile sand, and the mixture was placed in two smanll glass tubes. Enough waier was added to this mixture to give the sand a moist appearance. These tubes were plugged with cotton and placed in a refrigerator. On March 9, 20 days hater, the tubes were removed from the refrigerator. The eggs were separated from the sand, placed on pieces of blotting paper, and tho blotting paper and eggs put in a tube containing several dung beetles (Aphodius granarius). These beetles were examined int intervals of from 10 to 20 days after their exposure to infestation, and each was found to contain several young larvae of Ascarops strongylina.
The temperature range during the 20 days' exposure in the refrigerator was as follows: Minimum, $-4^{\circ} \mathrm{C}$.; maximum, 2°. The total time during which tho temperature was 2° was 48 hours; $1^{\circ}, 24$ hours; $0^{\circ}, 48$ hours; $-1^{\circ}, 24$ hour $3 ;-2^{\circ}, 216$ hours; $-3^{\circ}, 24$ hours; -4°, 76 hours. The eggs were thus kept at freezing or below-freezing temperatures for 85 pereent of the entire period of refrigerator exposure without being killed.

LONGEVITY OF EGGS AT IROOM TEMPERATORF

On Februnry 17, several thousand eggs of Ascarops strongylina were mixed with sterile sand and put in two small glass tubes. These tubes were plugged with cotton and placed in a pint fruit jar. Water was put in the fruit jar in order to retain moisture in the jar and thus prevent drying of the sand. The jar was covered with moist paper hand towels, and a lew small holes were made through the paper at the top of the jar. These jars were kept at room temperature $\left(22^{\circ}\right.$ to $24^{\circ} \mathrm{C}$.) until June 18, 1933, about 4 months, when the tubes were removed from the jar, and the eggs were separated from the sand and fed to dung beetles (Aphodius granarius). These beetles were examined 10 and 20 days later and each was found to contain several lervae of Ascarops strongylina. These observations show that eggs of Ascarops strongylina at room temperature are able to survive for a period of about 4 months.

PHYSOEEPHALUS SEXALATUS (MOLAN, 1868) DHESING, 1861

(Figs. 12-13)
Synonyms.-Spiroptera sexulata Molin, 1860; 5. strongulina suis labiata Molin, 1860; Filaria scxalala (Molin (?), 1860) Perroncito, 1891; S. slrigis (Linstow, 1877) Seurat, 1915 ; Habronema sexalata (Molin, 1860) Ostertag, 1932.

Hosts.-Defnitive: Swine, wikl boar, white-lipped peccary, tapir, cattle, horse, ass, dromedary, Intermediate: Colcoptera (Canthon lacins, Gcolrupes douci, G. stcrcorarius, \dot{G}. stercorosus?, Gymnoplearus siturmi, G. sinnatus, Onthophagus bedcli, O. hecale, O. nebulosus, Phanaeus carnifex, P. vindex, Scarabaeus
sacer, S. variolosus). Accidental: Mammals, birds, reptiles, and amphibinns for third-stage larvae; the writer (4) has found these larvae encysted in the stomachs of bats captured in Waslington, D. C.

In addition to the above intermediate hosts, the following Coleoptera have been found by the writer to serve as intermediate hosts for P. sexalatus: Ataenius cognatus and Passalus cornutus.

Description of Egg, Embryo, and Laryal Stages

EGr

Egg (fig. 12, A) similar to that of Ascarops stronghina. Ciures (17) clescribed a pluglike protuberance at one pole of the egg: Foster (26) was unable to confirm Ciurea's finding. The writer's observation explains the discrepancy in the findings of the above investigators, since the pluglike protuberance is conspicuous in a shell not completely developed but is not recognizable in a well-devoloped shell (ifg. 12, 4 and B). In a series of measurements involving about 50 eggs, length 41μ to 45μ, width 22μ to 26μ; according to Ciures (17), length 39μ, width 17μ; according to Foster (26), length 34μ, width 15μ. Egg contsins a welldeveloped embryo at time of oviposition.

FMERYO

Embryos, obtained by crushing several egge on a slide under a cover slip, 102μ to 107μ long by 6μ in maximum width. Embryo does not undergo further development until ingested by intermediate host. Morphology of embryo resembles that of youne first-stage larva.

FIRST-5TAGE LAKV:

Shape ond size.-First-stage harva similar in shape to that of Ascarops strongylina (fig. 12, F, H, and $/$; before moliting sometines attains a length or $4.4 S \mu$ and a width of 38μ (table 9); according to Seurat ($/ 7 \pi$), 420μ in length und 40μ it width.

C'uficle--Cuticular structure and armature as in first-stage larva of Ascarops strongylina, but with the following differences: Powteribr of two anterior hooks ffig. 12, C and E) alont 3μ long, or about twice the length of correspondiug hook of 1 . strongylina; rows of spines surrounting anterior portion of body about 10 in number and exteoding about 14μ from anterior end; spines of each row more widely spaced than corresponding spines of A. Strongylima; each row of spines possessing one large spine dorsally (fig. 12, C and $D H_{\text {, a feature lacking }}$ in A. stronghlima (fig. 10, C).

Alimentary tract.-In general similar to that of first-stage larm of Ascurops strongylina, Esophagus 76μ to 144μ long, depending on degree of development in intermediate host.

Nernous sysfem.-As in first-stage larva of Ascarops strongylina. Nerve ring, 42μ to 60μ from anterior end.

Excretory systcm.-Wacretory pore 45μ to $G S \mu$ from anterior end, leading into n short dilated duct, this duct opening into a large exeretory eell possessing a large nucleus.

Genital primardium-In living specimens, hardly distinguishable from large muscic cells of body wall.

Table 9 shous the rate of development of first-stage larvae of Physocephalus sexalatus in the intemediato host (itaenius cognatus), the measurements having been made on different days after experimental infection.

Taria 9.-Pincipal measurements of ofirst-stage larwe of Physocephalus sexalatus at various periods of decelopment in dung beelles

[^4]
BFGOND-STAGE LARYA.

Shape and size.-Larva similar in shape to second-stage larva of Ascarops strongylina, but tip of tail more rounded in Physocephalus sexalatus (fig. 12, G). Larvae albout 456μ to 1.3 lmm long by 40μ to 60μ wide, the size depending on degrec of development (table 10.)

Cuticle.-Cutiele withont armature at anterior end; fainat transverse striations present.

Alimentary tract.-In general similar to thatio of corresponding larvace of Ascarops strongylina; esophagus 146μ to $54 \bar{\mu} \mu$ long.

Figure 13.-Third-stage Larvae of physocephalus sexalatus.

 erat viow of larva (original).

Nervous system,-Nerve ring, 60μ to $9 \mathrm{~S}_{\mu}$ from anterior end; details of this system similar in general to that of third-stage larva.

Excretory system.-As in previous slage. Necretory pore 0 is μ to 115μ from anterior end.

Genital primordinn--More easils recognized in older larvae of this stage, appearing as a smat ellipticnl borly; in a specimen 1.3 mon long, wenital primordium 425μ from postarior ent.

Table 10 shows the rate of develomentent of second-stare larvae of Physocephalus sealatus in the intemedinte host (:1taenines cognatus), the measurement having been made on different days after experimental infection.

Table 10.--Principal measurements of 4 second-slage larvae of Physacephalus sexalatus at various periods of development in dung beetles

Item	Perion of develomment and mansureneents ol larvn no.-			
	1		3	4
Period of dovelotnent...................................duys...	20	20	20	134
Length of boty	446	462	619	1,308
	1.46	40	46	${ }^{618}$
	110	1109 03 0	$\bigcirc 10$	548
1)istunce of excretory fore from anterior end.............. do.	G5	7	55	115
Pistance of genital zrimordidm from josterior end.... to				129
Length oftali.-----.......------+- do	30	33	4 S	70

I harva undergoing second moll.

Shape and size.-General shape and structure (fig. 13, A-D) of harva similar to that of corresponding stage of Ascarops strongyina, with the exception of the position of cervical papilla and tip of tail. Cervical papilla (deirid) on right side of body opposite to eseretory pore, 131μ to 170μ from anterior end; cervical papilla (deirid) on left side netar region of base of buccal eavity, 68μ to 80μ from anterior end; tip of tailending in a characteristic small knob, about 7μ to $8 \mu \mathrm{long}$, bearing about 20 to 23 smail digitiform caticular processes (fig. 13, C). Larver 1.35 to 1.6 mm long $19 \mathrm{y} 00 \mu$ to 68μ wide; according to Scurat (1/7), 040μ to 1.81 mm .

Cuicle- With prominent transverse striations.
Alimentary bract- - In general as in Ascarops strongylina, witi the exeeption of the lengith of the buctal cavity. Buccal cavity compratively long, 72μ to 106μ long (fig. 13, D and B); procsophagus 80μ to 102μ tong; postesophagas 436μ to 585 μ long, extending posteriorly ahost to equtator of boff; rectum 3. μ to $3 \mathrm{~S}_{\mu}$ long.

Nerthos system. General structure as in corresponding stage of Ascerops strongylina (fig. 13, $C_{1} D$, and E). Nerve ring 100_{μ} to $t: 10 \mu$ (rom anterior end.

Exeretory sysiem.-Exeretory pore 129μ to 167μ from anterior end; according to Scurat $(1 / 7), 145 \mu$ from anterior cand. Diet or exeretory pore opening into

Gental primordium.-As in Congblonema padehrum and Ascarops strongylina, sex can be differniated at this stage. Mate gental primordium elliptical in shape, about 15μ long and 9μ wide, loented ventanly between body wall and intestine, 320μ to 340μ from posterior end; as in A. strongyling, composed of 2 large epithelial ceils enclosing a group of gemminal colls. Female genitat primordime also somewhen elliptical, about 11μ long and 7μ wide, attached to body wall ventrally by means of as edl, $42 S_{\mu}$ to 460μ from tip of tail. Measurements given in tatide in indicate that the female genital primordiam is closer to the posterior end of the harva than the genital primordium of the mate.
Table 11 gives the measurements of third-stage larrae of Physocephalus sexalatus in an intermediate host (Ataenius cognatus).
Tables 11.-Principal measurements of of hivi-stage larvac of Physocchatus. sexulatus al enrions periods of demolopment in alung bectles

Hest	Triot of development that motsurpmerns of tarvas sef.					
					54	61
Periot of deverment.thys	$3{ }^{3}$	35	30	:0	F.0)	(i)
fength of bety trillimeters.	1.83	2. 819	1.42	1. 15	1. $3: 9$	1. 60
	6	69	62	60)	66	ds
	32	8	81	\%	45	106
Lenten of postesopharas. .-.....................to..	434	, 63	4.10	, $1+12$	08	102
Plstance of ner ve ring from naterim endda...	110	110	118	125	180	SS\%
Distance of excretory pora from anterior cunl. .ido.	1010	3.0	13:	148	1.18	180
Distance of eervital pmpilma fromanterior ent:						181
	131	16	138	118	150	170
	6s	72	72	7\%	75	8
	138	+ ${ }^{\text {d }}$	320	36		4673
\%ength or bil.....the	3	in	57	50	昭	as

differences in first three stages

The outstanding diflerential features of the first three developmental stages of Physocephalus sexalatus are similar to those already noted for Ascarops strongylina, except that in the former the knob at the tip of the tail in the third-stage larya possesses several digitiform processes, whereas in the latter the knob is smooth.

Develohment in the Inthlamplate Host
Eggs of Physocephalus sexalatus were obtnined and fed to dung bectles (Ataenius cognatus) as described for Ascarops strongylina. Beetles dissected 24 hours after experimental infection showed several newly hatched first-stage larvac in the body carity. About 16 days after infection, first-stage larrae, about 448μ long, were found encysted in the Malpighinn tulules of the beeties and were undergoing the first molt (fig. 12, J). The cyst wall at this time is very thin, and in addition to the larva, it encloses 2 or 3 smail cells, probably fat cells. Second-stage larvac were noted 20 to 26 days after experimental infection; larvae undergoing the second molt were noted in beeties 34 days nfter infection; third-stage larrae were noted in bectles 36 days after infection. During the development of the larya, the cyst wacreased in size, being about 300μ to 650μ in greater diameter and 420μ to 700μ in lesser diameter at the time the cyst was fully dereloped (fig. 13, A). Completely formed eysts were found either attached to Malpighian tubules or liee in the abdominal portion of the body cavity, frecuently interlaced superficially by small tracheal tubules of the insect.

Hobmaicr (52) in his study of the larval stages of Physocephabu; sexalatus, shows in his figures that the Jarva molts four times in the intermediate host; Scurat ($11 \overline{0}, 116,1 / 7$) and the writer find that the lara undergoes omly two molts in the intermediate host. The later observations are in harmony with the known facts of nematode development.

On Pribunty 17, 1933, about 1,000 egres of Physocephalus semblatus were mixed with sterile sand, and the mixture was placed in two small glass tubes. These tubes were pluged with cotion and placed in a refrigerator. On March 9,20 days hater, the tubes were removed from the refrigerator. The ergss were separated from the sand, placed on pieces of blotting paper, and the bloting paper and egres put in a tube contnining seraral dumg beelles (itaenius cognatus). These beetles ware examined at various intervals from 10 to 20 days aiter exposure to infection, and each was found to contain several young larvae of Physocephalus sesalatus.

The temproture range during the 20 days' exposure in the refrigerator was as follows: Ninimum, $-4^{\circ} \mathrm{C}$; maximum, 2°. The total time doring which the temperature was 2° was 48 hours; $1^{\circ}, 24$ hours; $0^{\circ}, 48$ hours; $-1^{\circ}, 24$ hours; $-2^{\circ}, 216$ hours; $-3^{\circ}, 24$ honrs; -4°, 76 hours. The eggs were thus keptat freczing or below-freezing temperntures for about sa percent of the entire period of refrigerator gaposure without being killed.

METASTRONGYLIDAE

METASTRONGYLUS SALMI GEDORLST, 19켜

(Figsis 14-10)
Synonym.-Metastrongylus elongatus Salm, 1918, not Rnilliet and Heury, 1911.
Hosts-Definitive: Swiuc. Intermediate: Lumbricus terrestris and Helodrilus caliginosus var. trapezoides.

Location:-Adults in trachea, bronchi, and broncitioles of definitive host; third-stage larvac in circulatory system and in walls of alimentary tract (usually esophagus) of intermediate liost.

Distribution.-Arrica (Belgian Congol, Asin Wava, Philippine Islanls), Europe (Spain), and North America (United States).

heg

Eggshell thick and elliphial in shape, possersing rough surface with the appearance of small mammilations (fik 14, 4); incompletely deveioped egysheli showing a thin eovering, and within it an imer vitelline membrane enclositur ambryo (fif. 14, B). Before the egg is deposited by the female worm the shell appears to undergo considerable hardenity and contraction, this process possibly giving rise to the unevenness found on the surface of the fully developed eggshell. In a series of mensurements involving about 50 fully developed eggs, leugth 43μ
 33μ to 40μ. Egg contains a well-developed embryo at time of oviposition.

The egres of Metastrongjlus salmi, as well as those of M. elongatus and Choerostrongylus pudendotectus diseussed in this bulletin, contray to reports of some other investigators, usually pass out of the host whatehed. Hatehing usually does not ake place until the egge are taken into the boly of a susceptible intermediate host.

1シM131290)

Limbryos, obtained be pressing several cmbryonated eggs ander cover slip, $2 \overline{7} \mu$ to 295μ long by 12μ in masimum width; possess nmmerous and somewhat large gramules; usually tightly coiled within egesshells as shown in figure 14, A. When etabryo is mechanically removed from eggsheh, posterior half of body is coiled ventrad, giving embryo apparamee of open figure 6 (fig. 14, D). Embryo as found in egg in freshly passed feees of swine usuatly does pot leave eghshell nor undergo additional development before being ingested by intermediate host.

FtIST- AND SECOND-STAGE LARVAE
First thre larval stages of this parasite not distinedy separated from one another as are those of most strongyle larvae. Soon after catiele of first molt becomes separated from anterior end of body, a second mole is crident (fiy. I4, $E, G)$. First cuticle ustatly shed before eutiele of second molt becones completely dietached from body of larva; secend euticle is, however, retained thronghont life of larva in intermediate host; period of second stage is then possibly represented by short period from time that first and second molts are evident, that is, sceond stage is represented by a moli, but is otherwise more or less suppressed so far as a distinet existence for a definite period is concerned. Differentiation of various larval molis in Metustrongylus salmi involves essentially the state features as those pointed out by Schwartz and Alicata (111) for laryace of M. clongahus and Chocrosirongylus pudendotechas.

Shape and size.-Larvac of the first and second sfages slencter, with tapering anterior and posterior portions. Anterior end (fig, 14, (C) of young first-stage larva rounded and slightly set of by a small constriction, which is not evident in older larva of first stage, In first-stage larva, posterior cond (fig. 14, D) hats a broad rounded tip turned ventratl; after ihe first molt, ipp of tail more pointed (fig. 14, F). First-stage larvac 1 day after infection, 275μ to 300μ long ty 12μ wide; at titue of first molt, larvae 500μ to $52 \overline{2} \mu$ long by 22μ to 26μ wide; undergoing second molt, 550μ to 610μ long by 26μ to $2 S \mu$ wide (titble 12).

Cuticle.-Very thin, transparent, with fine transverse striations; cutiele, in contrast with that of other heteroxenons nematodes discussed in this bulletin, with no armature.

Alimentary tracl.-Oral opening leading into a short tripartite buccal cavity lined with three longitudimily arranged ammes; these anmules best distinguished in third-stage larva (fig. $1 \overline{5}, D$). Esophagus 110μ to 160μ long, slender, with a

FIGURE IA. -VAHIOUS STAGES IN THE DEVELOPMENT OF METASTRONGYLUS

 closely packed with harge dark-brown granhlas; intestine commecting with a short and narrow rectum.

Nervous system.-Larfa sthitard with actuens methylene bine, showing merve
 nerve cells.

Exeretory system.-Excretory pore 58μ to 80μ from anterior end; its duct connecting posteriorly with exerelory glands.

Genital primordiwn--Represented hy small ellipmoidal group of eells, ventral in position, 160μ to 330μ from anterior end.

Tahla 12.-Principal measurements of 10 first- wad second-stage larour of Metastrongylus salmi at various periods of development in earthworms

- Jarsa molergolite flest moli.

Thabe 12 shows the rate of development of hetastrongmlus selmi in the intermedinte host (/folodrihus caliginosu.s var. trapezoides), the measwements having been made on difierent days after experimental infection.

Shape and size.-Shape of larra, mostly ats in previous stages (fig. 15, R), Each lateral half of head, in col face view, apparently surrounded by 3 smali elevations (fig. 1.5, (2), probably representing the begiming of the formation of the 2 lateral trilobed lips of the adult worm. Head with an onter cirele of 2 subdorsal and 2 subventral papilhe and 2 laterat amphids; an inter cirele of 2 subdorsal and 2 subventral small papilae ako apparently present. Tail tapering, terminating in a pointed tip; just above dip, hateral view, 2 dorsal noteles somewhat indistinct: (fig. $1.5,13$ and F). Latrva 550μ to 630μ long, enclosed in sheath of last molt.

Cuticle.-Will prominent transvorsestriations.
Alimentary tract.-Orat opening leading into a tripartito buceal cavidy about. ia long, lined with threctmaitudinaly arranged anmoles (fig. In, D). Disophagus strongyliform, 150μ to 170μ loag. Intestine stender, lying, for the most part, close to ventral side of harly wall, and ojening into al harrow rectum about 22μ long.

Neroous system.-Nerve ring 64μ tr $7 \underline{g}_{\mu}$ from anterior end of body. Ja stained specimens, 6 nerve strands thterior to therve ring, forming papillary nerves, 2 subdorsal, 2 subventral, inel 2 lateral. Pusterior to nerve ring, 2 large iateral ganglin, eath connected posteriorly to the posterolaterat panglion, tho lateer extending midway between nerve ring and end of esophagus. Dorsally and ventrally, groups of nuelei of nerve cells, possibly representing dorsal and ventral ganglia. Excretory duct surrounded by in group of nuelei of nerve eells; slightly posterior to it, retrovesieular ganglion represented ly a group of nuelei of nerve (c)ls.

Excretory system.-Wscretory pore $7 \mathrm{Z}_{\mu}$ to 80μ from anterior end, leading into long exaretory glands extending posterior to reetum (fig. $1 \bar{i}, E$).

Genital primordizm.-In about same pesition as in previonts stages, 300μ to 345μ from anterior end.

Table 13 shows the measurements of third-stage harvae of Melastrongylus salmi in att intermediate hose (Helodrilus coliginosus yar. trapezoides).

Tabla 13.-Principal measurements of \bar{j} third-stage lareae of Motastrongylus salmi at various periods of development in carthworms

11 en		reriod of derelopment and mensuremenls of larya no.				
		1	$\underline{\square}$	1	1	5
Perlod of devolofmenti. .	\ldots. in ys.	18	18 i	310	30	30
1-ength of body	mierums.	$\underline{160}$		fiv	5is	9
Maximum whith of trody...	do	26	第	26	4	31
lengtly of esophngus .-		170	170	150	180	175
Distince of nervertry from antertar end. . .		04	B4	64	tis_{8}	72
Ditatico or exeretory nurs frona anterlor end.	dr.	39	73	710	78	30
Distanco of genfal jrimordiam frond anterine emal		315	305	300	325	345
Lenght of tall	10.	50	40	10	40	4.5

FIGURE 15.‥THIRD-StAGE LARVAE OF METASTRONGYLUS SALM:

The ontstanding differentin! features of the first three developmental stages of Aftastrongy/us salmi are as follows:

First-stage larva.-About 275μ to 380μ long by 12μ to 18μ wide; anterior end conical and somewhat set off by a small constriction; cuticle at anterior end conical when loosened in preparation for first molt.

Second-stage laryn.-About 500μ to 525μ long ly 22μ to 26μ wicle; anterior end slightly flattened.

Thiri-stage larva.-About 550μ to 630μ long, enelosed in a sheath fommed be cutise of second stage; sheath flattened at anterior end (fig. 14, E); tail with \bar{z} somewhat indistinet dorsal notches when viewed daterally.

Devbrof hent in Inteimediath Host

Eggs of Meiastrongylus salmi were obtained by chopping up.gravid female worms in a fow drops of distilled water. This material was then transferred to a 250 -ce beaker and mixed with a small ganntity of soil; several live earthworms (Helodrilus caliginosus vnr, trapezoides) were put in this soil. In order that the earthworms used should be free from natural infestation with this parasite, they were collected from the yard of a city dwelling. Earthworms were allowed to remain overnight in the soil containing the lungworm egrss and were then transferred to a beaker containing soil free from lungworm eggs. These experiments were carried out at room temperatures (22° to $24^{\circ} \mathrm{C}$.).
Earthworms dissected about 30 hours after being exposed to infection in soil contained several first-stage harvae in the wall of the esophagus, especially the posterior part of this organ. In earthworms dissected nbout 13 days after infection, several larvae were undergoing the first molt (fig. 14,F); earthworms dissected 2 days later contained laryae in the process of the second molt, while still enclosed in the cuticle of the first molt (fig. 14, R and G), the larvac having 2 shenths at this time. Completely developed third-stage larvae were recovered from the esophngeal wall and hearts of entilworms 18 dnys after infection.

Observations on Effrcts of Envimonment

On March 24, 1933, 4 earthworms which were experimentally infected with Metostrongylus salmi were placed in a large, tightly nailed, wooden box containing soil. This box was placed outdoors, partially underground, and was covered to prevent rain from falling upon it. On July 24, 4 months Jater, only 1 earthworm was Jound in the box; apparently the others had died. This enthwom was found to harbor 4 hird-stage larvac of Metastrongplus salmi, 1 larva in the esophageal wall, and 3 larvate in one of the hearts. These larvae, after being isolated from the earthworm and placed in water, showed considerable activity. The above experiments shows that larvate of Metastrongylus salmi may remain in the body of the intermediate host for at least 4 months.

METASTRONGYLUS ELONGATUS (DUJARDIN, 1845) IEALLLIET AND HENFY, J9II
(Figs It-17)
Synonyms.-Gordins pulmomalis apiri Ebel, 17a7; Ascaris apri Gmelin, 1789; A. filformis Schrank, 1788 ; Fusaria apri Zeder, 1803 ; Strongylus suis Rudolphi, 1809; S. paradoxus Mchlis, 1831; S. elongolus Dujardin, 1845; S. Longivaginatus Diesing, 1851 ; Meiasirongylus paradaxus (Mehlis, 183 i) Molin, 1860; Filaria trachealis Cobbold, 1864 ; S. apri (Cmelin, 1789) R. Blanchard,' 1895 ; Cloacinn octodactyla Linstow, 1906; M. apri (Gmelin, 1789) Railliet and Henry, 1907.

Hosts-Definitive: Switue, cattie, sheep, goat, deer, roe deer, man, and, by experimental feeding, dog, as reported by the writer (b). Intermediate: Helodrilus foetidus, H. caliginosus var. (rapezoides, Lambrichs terrestris, L. rubellus, Bimastus tenuis.

Location.-Adults in trachen, bronehi, and bronchioles of feefinitive host; third-stage larvae in circulatory system or wall of intestine or, usually, esophagus of intertnediate host.

Distribution.-Alrica (Belgian Congo), Asia (Amman, China, Japan), Australia, Europe, North America (Brtish West Jndies, Pnerto Rteo, Mexico, (Tnited States), South America (Argentima).

Descmiption of Eft, Embiyo, and Labvat Grages

EgG
As in Metastronaylas salmi, egg, fully developed, with thick shell, clliptical in shape, und with a corrugated surface (fig. 16, A). In a serics of measurements involing about 50 eggs, length 45μ to 57μ, width $3 \$ \mu$ to 41μ; according to Gedoelst (82), fength 51μ to 54μ, width 33μ to 36μ; according to Zebrowski (140), Iength 5 fie to 80%. Egy contains a well-developed embryo at time of oviposition.

Embryos similar th those of Metastrongylns salmi (fig. 16, R), 27 is, to 305μ long by 12μ wide.

Shape and size- Shape of these larvan same as in corresponding stages of Helastronghlus salmi. Newly hatehed harvac 275μ to 305μ long by 12μ wide; at time of first molt, 520μ to $\delta 40 \mu$ kong by 22μ wide; undergoing second moit, 560μ to 650μ long by $26, \mu$ to 28μ wide (tablie 14).

Cuticle.-Thin, with fine transwerse strintions.
Ahimentary tract.-Morphologicaly, as in Metastomaylus sulmi; esophagus 114μ to 160μ long.
Ncroous system. -As in Metastrongylus satmi; nerve ring 52μ to 76μ from anterior end.

Excrelory system.-Exerctory pore 58μ to 89μ from anterior end, its ducl connecting posteriorly with exeretory ghands.

Genilal primordiem,-Small, ellipsodal, nud ventral in position, 160μ to 365μ from anterior end.

Table 14 shows the rate of development of first- and second-stage taryae of Metastrongplas clongotus in an intemediate host (IFelodrilus coliginosus var. thopezoides), the measurements having been made at diflerent days after experimental infection.
 strongplus clongmise at rarions periods of treetoment in cortheorm.

Item										
	1- ..-..... -								
,										
Period of development................ days.		,	1	9		115	79			219
Length of hatytievans.	29	305	312	5201	56	(fta)		H5	0 \%	
Asommam whlthol heryy............ do.	12	12 ':	15		231	2)	280	28	$3{ }^{3}$	
Lemph of esophatis	11.4				138	H5	14S	163	11/月	
Distance of nerve ring from antetior end mberoms					68			7	if	
bistanco of excretory goro fremm naterior trni										
Distance of gental primorduan fromantertor										
enti.......................	160 :						338	3\%		
lemgth or tafl........... . do	2				as	38		48 !		

[^5]
THIIRD-STAGE LARVA

Shape and size.-Shape of larva resembles that of corresponding stage of Metastrongylus salmi (fig. 16, D-G); int lateral view of posterior portion, notches

[^6]Altmentary tract.-Morphologically, as in Melastronoylus salmi; esophagus 155μ to 177μ long.

Nervous system.--In general, as in Metastrongblus salmi; nerve ring 72μ to 80μ from anterior end.

Escretor:/ system.-Excretory pore 80μ to 87μ from anterior end, leading into long excretory glands extending posterior to rectum (fig. 16, G).

Genital primordium.-Position resembles that of previous stages; 340μ to 390μ from anterior end.

Table 15 gives the measurements of third-stage larvae of Metastrongylus elongatus in an intermediate host (Eelodrilus caliginosus var. trapezoides).

Table 15.-Principal measurcments of 5 third-slage larvae of Metastrongylus elongatus at various periods of devclopment in eartherorms:

The outstanding differential features of the three developmental stages ol Metastrongylus elongatus are as given for M. salmi.

Development in Inthempdath Host

Earthworms (Helodrilus califinosus var. trapezoides) were exposed to soil containing eggs ol' Metastrongylus elongatus, in the same manner as described for M. salmi. Earchworms dissected about 16 hours aiter being exposed to infected soil contained several furst-stage larvae in the wail of the esophagus. In earthworms dissected 15 days after infection, several larvae were undergoing the first molt (fig. 16, C). Earthworms dissected 4 days later contained larvae in the process of shedding the second cuticle, while still enclosed in the cuticle of the first molt. Completely developed third-stage larvae were recovered from the esophagus and hearts of earthworms 20 days after infection (fig. 17, A and B).

Occasionally, larvae which had not yet undergone the first molt were found in the circulatory system, especially in the hearts of the earthworm. In this comnection Schwarta and Alicata (109) pointed out that the migration of the larvae of Metastrongylus elongatus and Choerostrongylus pudendotectus in the blood vessels of the intermediate host was not in essential feature in the development of the larvae, since complete larval development may take place in the walls of the digestive tract.

The time of occurrence of the various molts seems varinble; Hobmaicr and Hobmaier (49) in referring to the development of Metaslongylus elongatus in earthworms, state that a molt took place 10 days nifer infection. Schwartz and Alicata (109) reported that evidence of first and second molts was found on the eighth and ninth days, respectively, after infection.

Observations on Erfects of Enyhbonment

On December 20, 1932, 15 earthworms (Helodrilus caliginosus var. trapezoides) which had been experimenially infected with Metastrongylus elongatus were placed in a box outdoors, as described for M. salmi. On September 20, 1933, 9 months later, only 2 earthworms were recovered from the box; apparently the others had died. One of these earthworms harbored 2 larvae in the esophageal wall and 3 larvae coiled in one of the hearts; the other earthworm harbored 2

 rows) in heatis and esophtureul wall 30 days after experimortal infection; B, herwt of earthwarm anelosing Jarvice of Mr elongatius (indiested hy arrows).
larvac in the hearts. These larvae showed considerable activity when isolated and placed in water. These observations slow that third-stage larvae of M. elongatus were able to survive in the tissues of the intermediate host for at least 9 months, including the winter and summer seasons.

CHOEROSTIEONGYLUS PUDENDOTECTUS (WOSTOKOW, 19DS) SKRJABIN, 1921
(Fis. 18)
Synonyms.-Melastrongplus pudendotectus Wostokow, 1905; M. brcoivapinatus, Railliet and Henry, 1907; Choerostrongylus brevinaginatus (Eaillict and Henry, 1907) Gedoclst, 1923.

Hosis,-Definitive: Swine. Intermediate: IIclodrilus foetidus, H, caliginosus var, irapezoides, Lumbricus terrestris, L. rubellus.

Location.-Adults in trachea, bronchi, and bronchioles of definitive host; third-stage larvae in circulatory system and in walls of alimentary tract (usually esophagus) of intermediate host.

Distribution-Africa (Relgian Congo), Asia (Annam), Europe, North America (British West Indies, United States), and South America (Argentina).

Descmiption of Egg, Embryo, and Laryaí Stages

bag

As in Metasirongylus salmi, egg fully developed with thick shell, elliptical in shape, and with a corrugated surface (fig. 18, B). In a series of measurements involving about 50 eggs, length 60μ to 64μ, width 43μ to 45μ;according to Gedoelst (32), length 57μ to 63μ, width 39μ to 42μ; according to Zebrowski (140), length 70μ to 100μ, width 50μ to 80μ. Zebrowski's measurements indicate that he was measuring eggs with incompletely developed shells. Egg contains a well-developed embryo at time of oviposition.

BABRYO

Embryos similar to those of Metastrongylus salmi (fig. 18, D), 300 to 315 long by 12μ to 14μ wide.

FIRST- AND SECOND-STAGE LARVAE

Shape and size.-Shape of these larvae similar to that of corresponding stage of Metastrongylus salmi (fig. 18, D). Larvaenewly hatched, 300μ to 310_{μ} long by 12μ to 14μ wide; at time of first molt, $\delta 25 \mu$ to 548μ long by 22μ wide; undergoing second molt, 580μ to 630μ long by 26μ to 28μ wide (table 16).

Cuticle.-With fime transverse striations.
Alimentary tract.-Morphologically, as in Metastrongyles salmi; esophagus, $117 \ldots$ to 160μ long.

Nervous system.--Nervous system as in Metastrongylus salmi; nerve ring, $\bar{i} \underline{2}_{\mu}$ to 76μ from anterior end.

Excrciory syslem.- Excretory pore 64μ to 86μ from anterior end, its cluct connecting posterionly with excretory glands.

Gental primordium.-Simali and ellipsoidth, 164μ to 355μ from anterior end.
Table 16 shows the rate of development of first- and second-stage larvae of Choerostronoylus pudendotectus in an intermediate host (Elelodrilus caliginosus var. trapesoides), the measurements having been made on different days after expermental infection.

Table 16.-Principal measurements of 3 first- and secomi-stage lartac of Chocrostrongylus pudeniotecins at varions periods of devclopment in earthworms

Item	Period of development mat nemsurements of hran ng.							
	11	2		f	3	1)	7	.
Period of development..................................introns.	1) 1		3	114	115	:18	${ }^{1} 18$	
	304	315	355	325	345	350	590	63t
Mrximam widh of body-.-....................dlo....	12	14		$\xrightarrow{22}$	92	36	${ }_{28} 8$	3
Length of esophngus.-........................ do...-	117	120	122	125	130	140	140	1×2
Distance of merve ring fromamerior end.- to...		5		66	20	20	72	76
Distance of excretory yoro fromanterior ead. do....-		70		73	76	80	83	里
	163	170	215	2019	296	315	330	3in
Iength of tnil...........-----.-..................-do..-	$\stackrel{1}{3}$	30			10	17		

${ }^{1}$ Earva undergoing first moit.
${ }^{2}$ Larva undergoing second moll.

THHRD-STAGF LARYA

Shape and size. Larvae resembling in shape those of corresponding stages of Metasirongylus salmi (fig. 18, C' and E). In lateral view, notches on tip of taif usarlly as in M. salmi, but not so prominent as those of M. clongatus (fig. $1 S, G$), the findings of the writer being contrary to those of Fobmaier and Ffobmaier (51), who state that the notches at the tip of the tail of Chocrostrongylus pudendoteches
are deeper than those of Metastrongylus clongatus. Larvac 600μ to 655μ long by 26μ wide, enclosed in sheath of hast molt.

Cuticle.- With prominent transverse striations.
Alimentary tract- Morphologically similar to that of corresponding stage of Metastrongylus salmi; esophagus, 160μ to 150μ long.

FIGURE 18.-VARIOUS STAGES IN THE DEVELOPMENT OF CHOEROSTRONGYLUS
Wcy: A, Showing incomplets formed shell; B, with fully developerl shell and embryo.

Thirchatage larva: C_{i}^{\prime} Dosierfor portion, lateral wew; E, interior portion, lateral vew; G, variations noted in tuil.

Nereous system. - In general, as in Mettentratgylew andmi; nerve ring 72μ to 82μ from anterior end.

Excretory system.- Waretory pore $\$ 4 \mu$ to $\$ 7 \mu$ (rom anterior end, leading into long exeretory glands extending posierior to rectum (fig. 1S, C and E).
Genital primordium.-In approximately the same position as in previous stage; 312μ to 300μ from anterior end.

Table 17 shows the mensurements of third-stage larvae of Choerostrongylus pudendotectus in an intermediate host (HIelodrilus caliginosus var. trapezoides).

Table 17.-Principal measurements of 5 third-stage larvce of Chocrostrongylus pudendolectus at various periods of development in earthivorms

Itern	Period of development nal measurements of larva no.-				
	1	2	3	\pm	5
Perion of development.---.....................dnys.-	19	15	19	25	25
	\$00	62.5	040	850	095
	26	± 3	20	29	20
Jengt li of esophagtis.-.......-------....................... do...-	1, 0^{2}	100	120	175	180
Distataco of nerva ring frominaerior elid.-........ . . . do...-	72	75	75	80	82
Distnnce of exeretory pore from anterior end.............. do...-	84	84	87	87	87
Distante of genita! primordiutn from anterior end. do....	342	300	380	730	3 SH
Eength of thin .-.-........-do..--	\$5	60	55	00	6

The outstanding differential features of the three developmental stages of Choerostrongylus pudendotectus are as given for Metastrongylus salmi.

Devenapanat in (xpermendate Hosw

Earthworms (Helodrilus caliginosus var trapezoides) were exposed to soil containing eggs of Choerostrongylus pudendotectus, in the same manner as described for Metastronghlus salmi. Earthworms dissected about 30 hours after exposure to infected soil contained several firststage laryae in the wall of the esophagus. In earthworms dissected 14 days after infection, several larvae were undergoing the first molt (fig. 18, F). Earthworms dissected 4 days Inter contained larvae in the process of shedding the second cuticle, while still enclosed in the cuticle of the first molt. Earthworms dissected 19 days after infection contained fully developed third-stage larvac. As in M. elongatus, larrae which had not yet undergone the first molt were found in the cireulatory system, especially in the learts of the earthworms.

Obselevations on Effects of Envinomment

On December 20, 1932, 15 earthworms (IIelodrilus caliginosus var. trapezoudes) which had been experimentally infected with Choerostrongylus pudendotectus were placed in a box outdoors, as deseribed for Metastrongylus salmi. Nine months later, only 1 carthworm was recovered from the box; apparently the others had died. In this earthworm there were found 4 third-stage larvae, 2 larvae in the esophageal wall and 2 larvae in one of the hearts. These larvae showed considerable activity when isolated and placed in water. These observations show that third-stage larvae of Choerostrongylus pudendotectus were able to survive in the tissues of the intermediate host for at least 9 months, including the winter and summer seasons.

ASCARIDAE
 ASCARLS SUUM GOEZE, 1782

(Fig. 19)
Synonyms.-Ascaris lumbricoides Linnactus, 1758, of authors; A. suilla Dujartin, 1845.

Hosts--Definitive: Swine, sheep, catke, orang-utan, squirrel. Since Ascaris suum is morphologically identical with A. lumbricoides, so far as the literature indicates, the reports of iscaris for the above-mentioned hosts other than swine, the
type hosi of A. suum, are possibly reports of A. suum and possibly of A. lumbricoides. Larval forms of A. suwin in gont, guinea pig, mouse, rabbit, rat, and probably many other mammals.

Location.-Adults in small intestine usually, but sometimes as wandering parasites in esophagus, stomach, cecum, respiratory passages, liver, gall bladder, pancreas, kidneys, and possibly other parts of the body.

Disfribudion.-Cosmopolitan.

Deschution of Egg and Embryo

宛列

Egg usually rounded or elliptical; shell thick, covered with am albuminots cont irregularly mammillated (fig. 19, 1), and usually stained yellowish brown by imtestinal contents. It has been pointed out by many authors, namely, Miura
 Keller (53), that miertilized Ascaris egiss are oceasionally fomat in host feces; such eggs are usuaty thin-shelled, elongated ovoid, and frequently asymmetrical, the albuminous covering present or absent. Otto (53), in examining $\overline{9}, 329$ eges of A. lumbricoides, noted that 15.9 percent were infertile.

It a series of measurements involvint 50 egge, length 68μ to 84μ, width 50μ to 76μ; aceording to Foster (27), length 56μ to 73μ, width 46μ to 56μ Egg usially unsegmented when oriposited and on appeamace in feees; when embreo within shedl is fully formed and molted, development apparenty ceases until egg is swallowed by suitable host.

EMBATHO
Wully developed embryos (fig. 19, G), obtained by erushing severat embryonated $\mathrm{cggs}, 23 \overline{5} \mu$ to 266μ long by 11μ wide; according to Ransom and Foster (9%), 200μ to 300μ long by 13μ wide; body nearly uniform in diameter, anterior end with small knob conposed of 1 dorsal aurd 2 subsentral lips (fig. $19, B$) a feature first pointed out by Stiles (I 90), lips surrounded by outer cirele of 2 subdorsal and 2 subventral double papillac and I pair of lateral single papilace; an imer circle of papillae also present, composed of 1 pair of large papillae on cach lip (fig. 19, B), 1 amphid present laterally on each subventral lip. Esophagus 95μ to 102μ lons, occupying about one-thitch of entire length of worm. Intestine very gramular, ronnecting posteriorly with a slender rectum. Genital primordium not visible in living specimens. Tail conical, usually pointing dorsad, 21μ to 25μ long; aceording to Ransom and Foster (97), 40 μ long. Fully developed embryos are enclosed within a sheath (fig. 10, (A) indicating that they have molted once while within the shell.

Deyelopments anti Infrectivity of Eabhyo

Although voluminous data are available in the literature on the development of Ascaris eggs, there are certain peculiarities in connection with the infectivity which are not yet understood. The references to "embryonated eggs" commonly found in the literatire presumably refer to infective egess, but observations of the writer indicate that the so-called "embryonoted egrs" are not ahways infective. Apparently an egge is not infective until the embryo within the shell has undergone a first molt. The time required for this molt depends on the temperature at which the egg is incubated.

That larvao of Ascaris mulergo a molt while in the egg has already been noted by Ransom and Foster (97); these writers do not specify, however, that the molt, is essentinl before the ergy is infective. They report that some eggs cultured by them at from 33° to $34^{\circ} \mathrm{C}$. contained "fully developed embryos in 10 days", but they give no information to show that these egrs were actually infective. To obtain information on the development and infectivity of embryos of A. summ, the author made the following experiment:

A large number of Ascaris cergs obtnined from the uteri of gravid females were cultured in Petri dishes in 1-percent formalin solution at various temperatures, namely, 22° to $24^{\circ}, 30^{\circ}$ to $33^{\circ} \mathrm{C}$. When the
eggs contained young embryos, such as is shown in ligure 19, F, about, 4,000 of the eggs were fed to 1 or 2 young guinea pigs weighing about 140 g each; feedings were continued thereafter daily until the eggs

 embryo later in develament; c; will an linfective rmbryo.

 on verge of first troll.
fed contained embryus which liad molted, Molting of the embryos was best observed hy placing the egres under a cover slip and then lapping the latier sharply with the handle of a dissecting needle until
most of the embryos became liberated from their shells. The guinea pigs were killed 5 days after feeding; the lungs were examined for gross lesions and were also chopped insmall pieces and placed in a smail Baermann apparatus. The results of the observation of the Inrve cultured at 33° and of the feeding experiments are shown in table 18.
 al 3$)^{\circ}$ (:

Table 18 shows that aggs of Ascuts swom incubated at $3.3^{\circ} \mathrm{C}$ contained fairly well-dereloped embryos in from 12 to 15 drys after incubation (fig. 19, F), and that the egres renched the infective stage nt the time the embryos had molted (fig. 19, G), which was 16 days nfter incubation.

Eggs which were incubated at 30° and at 22° to 24° C. (room temperature) contained some molted mbivos 18 and 28 days, respectively, after the cultures were made. Previous to the molting of the embryos, these egrgs failed to produce lesions when fed to guinea pigs, and no davae ware recovered from the lumes; lesions and dscaris larve were noted, howerer, in the lungs of guiner pigs which were fed the eggs it the time the ambryo began to molt.

TRICHURIDAE

THEHI'RIS SIIN GSCHRANK, TRKL A. J. SMITH, 1HMS

- Fig. :n (
 rretatus Rudolphi, 1 sog.

Hosts.-Swine, wild boar, and wild pir wins bengolensis.s.
Lacalion-Adults in eecmin and colon.
Disifibution.-Cosmojolitan.

Denchathos or Ega and lemaro

ECO

Eggshell usually barrel shaped, thick, dark brown, and provided with a clear knols at each pole (fig. 20, , 1). In a series of measurements involving about 50 eggs, length 60μ to 68μ, width $2 \mathrm{~S} \mu$ to 31μ; according to Hall $1 / 1 /$, length 52μ to 56μ. Egh waregmented when passed in feces. Development of embry proceeds outside the host until embryo is fully formed; subsequently developinent apparently ceases until egg is ingested by suifable host.

EMISRYO
Fully formed embryos, obtained by crushiny several embryonated eggs, 136μ to 163μ Jong by 11_{μ} wide (fig. 20, $I-\hat{K}$). Body tapering slightly at anterior and posterior portions; anterior end rounded, bearing a amall lancet-shaped spear, the latter sometimes protruding from mouth cavity and sometines retracted within cavity; spear connecting posteriorly with a sman!, slender, dark base. Füleborn (30) has reported a similar spear and dark base in embryos of Trichuris trichiurn and stated that this base, callecl by him "Lanzen-Sehaft', is fixed to the digestive tract; when the embryo of 7 . smis is yewed laterally, the spear appears to lie slighty oblicpue to the longitudimal axis of bods. Esophagris 60μ Jang, poorly. defned, extending slightly less than one-half entire length of embryo; posterior to esophagus an undifferentialed mass of gratuules extending to posterior end of body, most of this representing the intestinal tract. Tip of tail ending in a characteristie rounded knob (fig. 20, K).

Derblopment of tha Embryo

The development of the embryo of Trichuris suis within the eggshell is apparently dependent upon the environment. Considerable information is available with reference to the time necessary and other factors essential for development of the eggs of several species of Trichuris. Davaine (93) reported that Trichuris eggs isolated from feces of man and cultured in water requirod s.j months to become embryonated. Railliet (91) noted that eges of Trichocephalus depressiusculus ($=$ Trichuris vulpis) required about 6 months to embryonate when cultured in water. According to Fülchorn (29), eggs of Trichuris thichiura cultured at $26^{\circ} \mathrm{C}$. were embryonated in about $3 \not / 2$ weeks; Hasegawa (45) also found that some eggs of T. trickiura were embryonated in 28 days at from 28° to 30°. Cort and collaborators (19, 20, 21), in a field survey of helminthic infestation in southwestern Virginia, l'anama, and China, noted that infestation with T, trichiura was high in regions where shade, warmth, and abundance of moisture prevailed; in some cases, however, where the incidence of Trichuris infestation was high, these investigntors found that climatic and soil conditions were not the primary determining factors in the distribution of this parasite. Spindler (122) suggested that a considerable quantity of moisture was probably necessary for the development of the whipworm of man. The same writer (123), in a study of temperature and moisture requirements in the derelopment of Thulpis, found that eggs cultured in water at 30° became embryonated in 16 days, whereas those cultured at 37° became embryonated in from 12 to 15 days; eggs on wet soil and those in a saturated atmosphere at 22° and 30° developed nomally, whereas on dry soil at $30^{\circ}, 98$ percent of the eggs failed to become embryomated and were no longer viable after 29 days. In field sindies of the trichurid of man in Lovisiana, Otto (82) concluded that hoary rains in addition to long warm seasons and shade proved ideal for optimum culture conditions of Trichuris eggs. Nolf (80) has also noted that the eggs of whipworms of man require highly saturated atmosphere for development of the embryo.
The writer obtained eggs of Trichuris suis from feces of a heavily infested pig and cultured them in water in an incubator at 37.5° and $33^{\circ} \mathrm{C}$., and in charcoad and feces at room temperature (22 to 24°), and outdoors puderground. The ment temperature in Washington, D. C., during the period of the outdoor experiment from Mareh 16 to October 12, 1933, was as follows: March, $6.1^{\circ} \mathrm{C}$.; April, 7.3°; Mny, 19.6°; June, 23.7°; July, 24.5°; August, 24°; September, 21.6°; October, 16°.

Figure 20.-Eggs and Emaryos of Trichuris suls.

 fully developed embryo
Embryo: f, Obtained hy crushing the equshell; J, anterior end of embryo; K, prsterior enel.

Eggs cultured in water were first isolated from pig feces by the method outlined by McCoy (70). The eggs were then placed in sh small glass receptacle containing water to a depth of about 3 mm . In order to avoid excessive evaporation the receptacle was placed within a $100-\mathrm{ce}$ beaker containing moistened cotton at the bottom. The beaker was then covered with a thick layer of cotton and placed in the incubator. The small glass receptacle containing egres was removed from the incubstor from time to time and the development of the egrg recorded.

For observitions on the development of egrgs at room temperature and outdoors, the hog feces containing trichurid eggs were mixed with animal charconk up to one-third of the mass of feces. This mixture was slighty moistened with water and transferred to large specimen bottles about 12 cm high and 5 cm in ditmeter; the bottles were covered with a paper cap through which many minute openings were made. Specimen bottles containing the feces-charcoal mixture were kept at room temperature for observation, the bottles being placed under bell jars. Within ench bell jar was placed a large culture dish contaning water, the purpose of which was to keep the moisture content of the jar as high as possible. The bottom of the bell jar was raised above the surface of the table to a distance of about 2 mm in order to allow free air circulation. For observations on the development of egys under ontdoor conditions, the specimen bottles referred to were covered with ahuminum caps in which several small openings were made; these botles were then taken outhoors nad placed upside down in sheltered areas about 2 inches underground. Alter the desired lapse of time, each bottic was removed, and exgs were recovered for exammation by the salt-flotation method.

The results of the observations on the development of reges and embryos of Trichuris suis are given in table 19.
 chitrcond madia
[1)ate of incubation Mar. in, 1aks]

Table 19 shows that temperature is one of the important factors in the development of the embryo．Eggs cultured at $37.5^{\circ} \mathrm{C}$ ．were embryonated in 18 days，wherens some eggs culured at 33° were embryonated in 22 days．At room temperature（ 22° to 24° ）some eggs became embryonated in about 54 days，and of those kept out－ doors underground at temperatures of from 6.1° to 24.5° some eggs became embryonated in 210 days．It was also observed that whereas practically 100 percent of the eggs incubated at 33° and 37.5° became embryonated，about 30 percent of the eggs at lower temperatures appeared to be in the process of degencration．The observation on the development of the egrss outdoors may give some clue as to what takes place under field conditions．

TRICHOSTRONGYLIDAE

HYOBTRONGYLUS RUBIDUS（HASSALL，AND STILES，189？）HALL， 1921

（Pigs，zl－26）
Synonyms．－Strongylks rubidhs Fassall ancl Stiles，1892；Haemonchus rubidus （Hassall and Stiles，1892）Sluiter and Swellengrebel，1912；Osteriagia rubida （Hassall and Stiles，1892）Travassos，1918；Trichostrongylus rubidu＊（Hassalt and Stiles，1802）Ficbiger， 1923.

Hosts．－Swine and，experimentaly，guinea pig．
Location－－Adults in stomach of host．
Distribution－－Asia（Philippine Islands），Europe（England，Germany，and Hingary），Gentral Ameriea（Pmanan），North Amerieal（「nited States）．

bgg
Eggshell thin，transparent，and oval in shape，with poles usually unequai，one leing less convex thath the other（fige．2t，4）．In a series of measurements involving about 50 eggs ，length 60μ to 76μ ，width 31μ to 38μ ；aceording to Sk rjabin and Bekensky（ 127 ），length 71μ to 78μ ，width 35μ to 42μ ．Egy containing an early tadpole－stage embryo when deposited with the feces of the host．

FMBしです
Embry，when saty to hateh，resembling first－stage larva；abont 280μ to 300μ long by ifu wide．

Shape and size－Lherva resembling corresponding stage of related strongyles； body slender and cylindrical for most of its length，tapering slightly anteriorly and more so posteriorly（fig．21，F）；anterior end wilh 6 mivute ele vations，possibly representing 2 subdorsal and 2 sulbventral papillae，and 2 fateral aniphids（fir． 21，C）；posterior portion terminating in a long，sleuder，pointed tail．Newly hatched larvae 290μ to 315μ long by 17μ wide；berare molting，first－stage larvae attuin a length of about 540μ to 554μ and a width of 22μ（table 20）．

C＇vicle．－Thin，transparent，and with very fine transuerse striations．
Alimentary Iract．－Oral opening feading into a eylindrical buecal cavity， 11μ to 15μ long．Esophagus rhablituid，the anterior part，or corpus，separated from posterior bablb by a constriction，the isthous；buits possessing the usuat Y－shaped valve；base of esophagus with cefls representing primordium of esophagetal intes－ i．inal valve．Intestine somewhat frammar，composed of 8 dorstal and 8 ventral cells；melei of these edls alternatimg with one another，cansing eells to bulge out into lumen of infestim，siviug the fater at aqgag or serpentine apperance when viewed laterally；intestine comecting posteriorly with a fine slitlike canal about 15μ long，lined with a thin cutieularized membrume．

Nervous sysiem．－Nerve ring appenring as a band encircling esophagus 75μ to 91μ from tite anterior end；ring surrounded by several nuelei of nerve cells．

Freretory systcm．－Excretory pore opening yentrally 80μ to $9 \bar{\mu}$ from anterior （nod．

Gental primordium.-Represented by a small elliptical botiy, composed of 2 epithelial cells enclosing 2 germinal cells, 165μ to 275μ from anterior end, ventral in position, and near junction of fourth and ffth intestinal cells. As is pointed
 First-stage larva: C, interior ponl; F, lateml riew:

Thirdestape larvat B, Abterlor enfl, bn face vew; fa nuterior portion showng shato of buccal cavity; H, lateral viek of haryu; X, tsil.
out inter, the sex of some specimens of Hyostrongylus rubidus cun be determined in this stage.

Table 20 shows the rate of development of first-stage larvae of Hyostrongylus rubidus in water-charcoal feces medin at room tem-
perature (22° to $24^{\circ} \mathrm{C}$.), the meastrements having been made at different periods after the preparation of tho cultures.

T'abls 20.—Principal mensuremonts of is first-stage larvae of Hyostrongylus rubudus at various periods of devclopment

lem	Period of develoftrent and methrirements of larva no-				
	1	2	3	4	\%
Period of devolomment haness..	2	2	60	174	174
	4	317	186	546	55
	17	17	19	32	$\stackrel{22}{25}$
tenith of osopthagis...do	s	87	05	117	110
Distance of merve rimg from naterine end..dm..	73	75		91	87
	s0	82		95	
Distance of genital jrimortian fram nnterior chal . -tio..	130	166	2 a 5	205	275
Enugit ofthin . - .-.-....... . .de.	5	so	105	121	125

${ }^{1}$ harva hatergnity frib moll.

$$
\text { SBronib-STAGE bA!\}vA }
$$

Shape and size-Second-stage larya similar in shape to Jarva of first stage (fig. 21, (f). In this stage the larva grow consiterably, and before the second inolt attain a Jeng th of abont 702_{μ} to 748μ and a widta of 26μ (table 21).

Cuticle. With fine trunsverse striations.
Ahmentary fret.-Buceal cavity as in first-stage larva, but in the transition to the next stage anterin partion of lamen marrowing gradually (fig. 21, E); nitimately one-haif of original lumen left open posterions, bumen of buccal carity then being shaped like a spearhead. Esophagus rhablitiform, 117μ to 133μ long; intestine as in first-stage larva.

Nerbous system.-In general, as in first-stage larva; norve ring 97μ to 106μ from taterior end.

Excrelory system.-Exeretory pore 102μ to 117μ from anterior end.
Gicnithl primordium.-During most of second larval stage, composed of group of 4 cells as in first stage, during transition to third stage, epithelina cells increasing to about 10 or 11 in mumber.

Table 21 shows the rnte of development of second-stage larvae of Fyostrongylus rubidus in water-charcon-foces modia at room temperature (22° to $24^{\circ} \mathrm{C}$.), the measurements having been mado at different periods after preparation of the culture.

Tabse: 21.-Principal measurcments of 5 second-stage larvac of Myostrongblus rubidus al verious periods of devclopment

1 Heut	Pertad of development and measurements of harmano-				
	1	$\underline{3}$	3	1	3
	85	0.8	09	122	122
	57%	68.1	670	702	7.18
	15	$\frac{24}{15}$	${ }_{15}^{29}$	28	${ }_{15}^{26}$
Lemgth of esopingus... to...	117	125	120)	133	133
1) Starico of nerve ring from anterior enal... .. . do..		100	102	97	192
Distatee of excretory pera from materior endde .	102			106	117
	275		285	357	388
	12	1.4	129	127	130

I Larya nadergolug second moth.

> THA?RD-STAGE DARYA

Shape and size--Body similar in shape to that of previous stage, but more slender (fig. 2L, l), heard surroutded by outer circic of 2 subdorsal and 2 subventral pupillae, and 2 Jaterne amphids (fig. 21, B); tail conical and shorter than that of provious siages, ending in at characteristic short digitiform process (fig. 2I,
1). Due to reduction in size of tail, third-stage larva shorter than some larvae of previous stage, those of third stage being 715μ to 735μ long by 22μ wide (table 22).

Cuticle.-With prominent transverse striations.
Alimentary trach.- In en face view, oral opening oval, being slightly elongated dorsoventrally (fig. 21, B). Mouth aperture leading into a narrow lumen connecting posteriorly with a characteristic spearhead-shaped cavity about 8μ long

Figure 22.-.-THIRD- AND FOURTH-STAGE LARVAE OF HYOSTRONGYLUS RUBIOUS.

 of harta, ventral vew.

Fourth-shage larva: A, Anterior end enfore fiew h, anderiot portion showing brovishomal buccal capsulet

 soing fourth moll.
representing remuins of buecal envity of previous stage (fig. 21, D). Gsophagus strongyliform, nore slender than in that of previous larval stages, and 130μ to 148μ long. Intestine composed of 8 dorsal and 8 ventral cells, and less gramular than that of previous larval stages; posteriorly, intestine connecting with a slender rectal camal.

Neruous system.-Ciosely related to that of other strongyles, such as Ancylostoma duodenalc, Hacmonchas contortus, Trichostrongylus instabilis, nnd T. douglosi, described by Looss (67), Veglia (155), Mömig (76), and Theiler and Robertson
(184), respectively. In stained specimens, nerve ring appearing as a light band surrounding the esophagus, 97μ to 106μ from anterior end. Anterior to nerve ring, 6 papilary nerves, of which 2 subventral, 2 subdorsal, and 2 lateral (fig. 22, C, F, G). Posterior to nerve ring, 2 lateral ganglia extending almost to base of esophagus; a group of ventral nuclei, posterior to nerve ring, probably cortesponding to cells of subyentral ganglion; posterior to nerve ring, a dorsal and a subdorsal ganglion. The posteroventral ganglion apparently represented by the group of nuclei of cells surrounding excretory canal; retrovesicular ganglion silightly posterior to posteroventral ganglim and at level of base of esophague; the 2 lumbar ganglia located near region of anns (fig, 22, H).

Excretory system.-Excretory pore, 117μ to 125μ from anterior end; exeretory pore connected with a eanal leading backward and becoming indistinguishable in passing between cells of nervous system.

Genital primordium.-Location as in previous stages; 368μ to 395μ from anterior end; primordium composed of a group of nbout 12 or 13 cells, 2 of these germinal cells and the others epithelial cells. A further discussion of the genital primordia of this and other larval stages is given on page 59.

Table 22 gives the measuroments of thirl-stage larvae of Hyostrongylus rubidus.

TAbse 22.-Measwements of 5 hirt-stage larme of Ifyostrongylus rabitus ${ }^{1}$

The outstanding difierential features of the first threo harval stages of IIyostrongylus rubidus are as lollows:

First-stoge low directly to the exterior; esophagis rhabolitiform; tail long and pointed. Larva 290μ to $55-1 \mu$ long by 17μ to 22μ wide.
Sceomb-stage laria-Bucent cavity, esophagus, and tail is in first-stame larva. Larya 577μ to 745μ Tong by 24μ to 26μ wite.
Third-wlage larm- Buceal envity short, spearhend-shaped, and opening anteriorly by anarow lumen; esophagus strongyliform; titil short and conicat, termimating it a small digitiform process. Latrvi. 715μ to 785μ lotg by 22μ wide.

The method of obtaining egrgs and studying the various developmental stages was in some respects similar io that described by Schwart\% (108) in contection with a study of the preparasitic development of Monodontus phlebotomus ($=$ Bustomum phlebotomum). The eggs wero obtained by cutting up gravid females of Hyostrongylus rubidus, which liberated most of the eggs from the uteri. In order to separate the eggs fromi the fragments of tissue, the chopped-up worm material was put in a sieve of fino mesh placed over a small porcelain dish, and a gentle stream of water was played on it. The
water passing through the filter carried most of the eggs into the porcelain dish. This water was then centrifuged, and the eggs recovered from this sediment wero placed in tro small Petri dishes. In one dish was put just enough water to cover the bottom, and in the other dish was put a small quantity of large gramules of washed animal charcoal to which were added about 3 drops of filtrate from boiled hog feces. The dish containing only water served for noting the development of the eggs and to obtain first-stage harvae for morphological study; the other dish containing charcoal-and-leces medium served for noting the development of first-, second-, and third-stage larya and to enable the writer to stady the morphology and process of development of these larvac. The reason for using small quantities of water in these cultures was that in a large quantity of water larvae would disintegrate before reaching the second or third stage.

At the time of their removal from the uteri of female worms, eggs were in most cases in a well-advanced morula stage, though the range in development was from one cell to the early tadpole stage. At room temperature (22° to $24^{\circ} \mathrm{C}$.), the majority of eggs contained coiled and moving embryos after a period of 24 hours. Hatching was observed 39 hours after incubation. Newly hatched harvae moved very slowly, but as they began to feed they became active and moved in a series of wriggling jerks. The period of activity and growth was followed by the first lethargus, during which the larvae were inactive and began to shed their first cuticle. The first lethargus was observed 103 hours after incubation, and complete shedding of the cuticle occurred 10 hours later. Second-stage larvae moved even more actively than those of the previous stage. This period of activity was again checked by the second lethargus, which occurred 161 hours after eggs were placed in culture; 7 hours later ensheathed or third-stage larvae were seen moving actively in the dish.

Third-stage larrae of H. rubidus wriggled very actively in serpentine movements. Another peculiarity noted was the attempt of these larvac to rise when in water; if a small Petri dish hall full of water and containing larvae was slightly agitated, the larvae would be quickly carried up by the water currents and would be scen swimming upward for a considerable period, the anterior end of a larva during this time being very close to the surface of the water. The writer has found this peculiarity very helpful in differentinting these larvae from those of other strongyle larvae encountered in hog feees.

The following tabulation shows the time required for the development of larrae to the third stage in a moist charcon-and-feese medium at room temperature (22° to $24^{\circ}\left(^{\circ}\right.$):

Develoiment of Parabitte Stages in Final Host

As already reported by the writer (7), infective larvae of Hyostrongylus rubidus develop to maturity in the stomachs of guinea pigs. These animals were used throughout the investigation on the parasitic stages of IT. rubidus. Young guinca pigs weighing between 130 and 150 g were used; these animals were kept without feed for about 24 hours before they were fed third-stage larvae of Hyostrongylus.

In guinea pigs fed enshenthed third-stage larvac and killed 15 minutes after infection, the larvac had exsheathed and were adherent to the mucosa of the stomach; this observation was made by first washing the contents of the stomach and then examining the scrapings of its inner lining. These larvae were found to remain in the stomach

 arrows) and erosion of the gastric epithelíum.
and to develop to maturity there withont any extensive migration in the tissues of the host, as in the case of the hookworm and some other strongyle larvac. In the process of development the harvae penetrated the epithelind folds of the mucosia and frequently caused uleeration of gastric glands and blood vessels (fig. 23); large masses of coagulated blood have been found in the stomach contents of such guiner pigs.

As shown in table 23, the rate of development of mate and femate third- nad fourth-stage latera in the fimal host is approximately the same. Some laryuc of both sexes were found in the third molt 5 days after experimental infection, and larvae which had completely shed the third euticle were noted 3 and 4 days later. Fourth-stage larvace of both sexes were noted undergoing the fourth or finul molt 13 days after experimental infection (fig. 22, E, I, and K). Completely formed adult males and females were noted 17 and 19 days, respectively, after experimental infection. The outstanding morphological features during the developrient of third- and fourth-stage larvae in the final host are as follows:

Third-stage larzae--Larvae grow in size, and at the time of the third molt male larvae attain a length of 925μ to 1.12 mm (tnble 23); the genital primordia have undergone considerable differentiation, the primordia of the future testis and ducts being recognizable (fig. $24, K)$. At this stage female larvae have also increased in size, and at the time of the third molt are about 889μ long (table 23); the female genital primordia have also undergone considerable differentiation, the primordia of the ovary and ducts being recognizable (fig. 26, I).

Fourth-stage larvae. - These larvae have a provisional buccal eapsule (fig. 22, B). Male larvae are 1.38 to 3.1 mm long by 30μ to 60μ wide; the tail, which will form the future bursa, becomes distended (fig. 22, K); the primordium of the vas deferens is connected with the rectum. Female larvac are 1.01 to 3 mm long by 26μ to 45μ wide; the genital primordium is definitely attached to the body wall ventrally and the future vulva is recognizable. Further discussion of the development of the genital primordium of the larval stages is given on page 59. Table 23 shows the development of $/$ Hyostrongylus rubidus in a final host (guinen pig), the measurements having been made on different, days after experimental infection.

TAbse 23.-Principal mensurcments of thirt- and jourth-staye larrace nud whath (fifth-stage) Hyostrongylns rabidus in Herions periots of denclopment in the guinea pit

Sex Differentiation of Prepabasitic Larvab and Generdi, Development of Phimaley Remponuctive Orgass
Although sexual dimorphism in the preparasitie larval stages of strongyles has not been reported previously, so far as the writer can ascertain, such differentintion has been noted in early stages of freeliving nematodes and in spirurid larvae. Mapas (7/) found that in third-stage larvae of Rhabditis causaneli the genital primordium was composed of a long cylindrical body in the center of which was a group) of small cells which gave rise to the uterus and the oviduct in the fourth stage. Pai (86), in studying the life cycle of Anguillula aceti, noted sex diflerentiation, based apparently on differences in size of the early larval forms. Pai does not specily sex in the larval stages, but states that in newly hatched larvae the genital primordium of the 2 sexes appeared identical; in larvae 2 or 3 days old the morphological fentures of the male and female sex primordia appeared difierent. Pai also mentions that the female worms of A. aceti reached sexun] maturity in 6 or 7 days, wheres the males reached this condition in 9 days. Seurat (118,119) pointed out that third-stage larvae of Gongylonema scutatum ($=$ G. puldorum) which later developed into females already showed the genital primordium attached to the body wall in the third stage. The writer has confirmed Seurat's observation and has also noted a similar atachment of the genital primordium in third-stage larvac of two other spirurids, Physocephalus seralatus and Ascarops strongylina. The male genital primordium in these cases is not, attached to the body wall but lies in the ventral region between the body wall and the intestine. Yokogawa (187), in his observation on larval development of Heligmosomum muris ($=$ Nippostrongylus muris), could distinguish sex in thite-stage laryae soon after they entered the host. Yokognwn's bases for sexual diflerentiation were: (1) The posterior migration of the genital primordium in larvae that develop to lemales; (2) structural differences in the caudal region in the 2 sexes; and (3) differences in the shape of the genital primordia in the 2 sexes. As is shown later, all these changes have been noted by the wrifer in the parasitic third-stage larvae of Hyostrongylus rubidus, but sexual dimorphism has also been noted in the preparasitic stages of these larvae.

According to olservations by the writer, sex in preparasitic larval stages of $I T$. rubidus may be determined by the position of a large nucleated cell, referred to later as the genital ginat cell, close to the genital primordium. A cell apparently similar to this one was mentioned by Looss (67) as oceurring in larvae of Ancylostoma duodenale, and by Momig (76) in larvae of Trichostrongylus instabilis and T. ruyutus, and was also figured by the writer (5) in Iarvae of Obeliscoides cuniculi.
On several occasions, while studying stained specimens of thirdstage larvae of H. rubidus, the writer observed that the genital giant cell was sometimes anterior to the genital primordium and sometimes lateral or posterior to it. Studies of the parasitic stages of the third and fourth stages of this parasite indicated that larvae having the genital giant cell anterior to the genital primordium developed to males, and those having the genital giant cell lateral or posterior to the genital primordium developed to females. The general development of the male and female genital systems and the probable significance of the genital giant rell are discussed later.

In a recent abstract, the writer (δ) pointed out that the genifal giant cell has been found to be the posterior cell of a group of 4 giant celles situated in the body cavity approximately equidistant from one another and for the most part ventral to the intestine (fig. $22, F$). Each of these giant cells is about 5μ to 8μ long by 3μ to 6μ wide and is the primordium of each of 4 giant cells found in the body cavity of the adult worms. Four similar giant cells have been reported by Looss (67) in third-siage larvar of Ancylostoma duodenale and are referred to by him as "cells of unknown sigmificance."

In the study of the detailed organization of the genital primordium the writer used Looss's (67) method, which, consisted of staining the larvac with acid carmine. This stain bringes out the struetural details which are described in the following paragraphs:

MATHES
First-stage laren.-Genital primordime of hyostronghlus rubudus, like that described for several mematode arvae of first stage, compospel of 4 edils, of which 2 are epithelial cells enelosing the other 2, which are petminal ealls; in bewly hatehed larwae, the group of 4 eells is arranged nt right angle to main usis of body (fig. 24, fi). As larva becomes older during this stage, genital primordium rotates almost 90° to lic parallel with body wall ffig. 24, B and (\because; at the thac genital primordium has rotated about 90°, genital giant cell lies anterior and close to genital primorelium. Posilion of this giant cell asmally differentiates male from female; in what are considered female first-stage larvec, genital giant cell latersl to genital primordium; in male larvae ciant cell anterior to genitai primordium. In early first-stage larvae giant cell, in some cases, sligitly lateral and slightly anterior to genital primortium; in these transitional cases, impossible at present to differentiate sex. In late first-stage larvae, location of giant cell appears to be more dearly constant, cither anterior to genital primordium in maic larvae, or lateral to genital primordium in female lariae.

Sccond-stage larva-Genital primorritum during most of chis stage composed of 2 germinal cells and 2 epithelial cells, corresponding to that of late first-stage larva. At time of transition to third stage, epithelial cells of genital primordium increase by cell division to about 11 , whereas the 2 germimal cells do not divide. Gental giant cell still remains athterior and usually close to genital primordium (Gig. 24, D and E).

Third-stage lorva (preparasitic).-Ciental primordium composed of about 11 epithelinl cells surrounding 2 germinal eclls fig. 24 , F_{1}, located $32 \overline{5} \mu$ to 343μ from posterior end; genitat giant cell still anterior to genital primordimm.

Thirt-stoge larva parasifici--In larvac 48 hours after infection, most epithenial cells of genital primordium rearranged so that the two germinal cells lic in posteriur portion of epithelfal-cell group (fig. 24, G). Genital giant cell sill anterior and elose to genital primordiam, which is 3.5μ to 360μ from posterior end of larva. Four days after experimental infection, epithelial edels of genital primordiun inceasing in size, apmarenty accompanied by movement of entire penitat primordium directed tonard changitu ends atud reversing origimal pomition of structure (fig. 2. $1, A$ and J : In 3 or 6 days after infection, in late phase of third slage, genial primordinom has completely remped former mosition (fig. 2ts K and L); during this rotation no division of either epithelial or perminal cells observed. At this time genital primordiums whoms somenbat defimite diferentiation; anterior portion containing perminal ecells represents primorditum of testis; "neck" region, composed usuatly of three epilbelial cells, destined to form seminal vesicle; posteriar portion, tiso epithelint in nature, is primordium of male gonodact. Gluital primordian 310μ to $31 \bar{m}$ from posterior ent. Meversal of position of made genital primordinm in M. rubidus resembles simitar rotation of male genial primordium of developing farrar or Anguilhba aceti, a free living mematode, as determined by Pai (6 on in in rubidus, gerifal giant cell up to thirel molt is stil! anterior to genital primordinm (fig. 2A, L).
Fourth-stage larea and adull.-In 9 to 11 ciays alter infection larvat shows furt her differentiation of various genital structures (fig. 24, M and N), and further sell division, involving loth epithelial nud germinal celis (fig. 22, $\%$. Genital piant cell far removed from anterior portion of genital primordimm and shighty more anterior to latter (fig. 24, O) than in third-stage larva. Fintire genital primordium
during early part of this stage grows considerably in length, and by the thirteenth day after infection its long and siender posterior portion becones united with the rectum; when the vas deferens shows defmite connction with the rectum,

FIGURE 24.-PHASES IN THE DEVELOPMENT OF THE MALE GENITALIA AND POSITION of the Genital giant Cell in hyostrongylus rubidus.

D and E, Gemind mimordham of second-shato harva at that of secumb moth.
 pig 2 days after expermental infectlon; H, h, and J, of larvae recovered frona nathen big I days afler

 experiatenten indection (genital giatil eeth nok showns.
 and genitalia.

larva begins to disard fourth or last larval caticle (Gy. 22, K); various portions of genitalia, corresponding to those of adalt (fig. 25, R, now easily differentiated. Adult genital system (fig. 25, E) similar to that of related strongyles, consists
of an anterior porition, the testis, followed by the seminal vesicle, a thin- and transparent-watled tube containizg three nuclei, followed in turn by the gonothet

FIGURE 25.-YOUNG ADULT WORMS (FIFTH STAGE)OF HYOSTRONGYLUS RUEIDUS.

shender and solid longitudimn eore from which radiate the grminal ceils; this core probably corresponds to the rachis fig. $25, D_{1}$ a struciure which has been mentioned by several writers as occurping in - lscaris lumbricoides Strongyloides

The fate of the gitat cells in the adul $/$ hyostromglas rubilus is discussed below.

FEMABES

First-stage larua.-Genital primordium of first-stage larva composed, as in maie, of 2 cpithelial cells nad 2 germinal cells (fig. 2!, 4); in position and arrangement these cells similar to those of corresponding mate first-stage larva. In somewhat late femaie first-stage larva, genital giant cell slightly lateral to genital primordimu; in some early first-stage larya, as aiready mentioned, giant edil slighty anterior to genital primordium; in such cases sex of larva cannot ije asecrtained.

Second-stage lara.-Cells of genital primordium similar in momber and position to those in second-stage make larva; gimat cell usumy lateral to genital primordium.

Third-stage larve (prepurasitio).-Cenital prinordhan eomposed of about 10 epitheial eclis caclosing 2 germinal ceils (thg. $29, b$); in position, this developing organ corresponds to that of thirdistage larvn of male, being located 320μ to 338μ from posterior end. Genital giant mell usandy lateral (fig. 26, B), and sometines slighily posterior to genitat primordimen (fig. 26, C).

Third-stage larve (parasidic).-In 48 hours after infection, epithelial and germinat cells have becone rearanged, so that gemmal cells are one at cach end of genital primordimm (fir. 26, D_{1}, whieh has migrated slighty and is more posterior than in corresponding male larva; in fenate, genitat primorditm 330μ to 340μ from posterior end. Genital gimm echl asually lateral to genital primordimm unlike that of male, female genital primorditum thes not reverse position but simple clongates anderiorly and posteriorly, earying along at each end one germinal eell. In 4 davs afier infertion, slight constrietion at madede portion of genital primordium (fig. 26, /b; in $\overline{5}$ days after infection, genital primordian has migrated farther postoriony than that of corresponding mate larsa, primorsinm fin female being 200μ from posterior end. At time of third molt genital primorditna 109μ from posterior end and on verge of atachment to ventral side of bexy wall (fik. 26,3 .

Fouth-stage herta and minhl-- Genital pmombum in general same as in previons stage, exept that there is a matiplication of cpithelial and germinm colls fig. 29. Ky; it also beones defanitely attached to body watl as a resuit of prolferation of cefls of wody wall which commetwith these of genial primordina ffg. 26, $/ 2$. Genital gimit eell has been fomd during fourth stage nemr end of anterior osarian mimordinn (fig. 26, L); in young addelt this cell not far from primordim of anterior uterine duet (fig. 25, A) ; sen becomes remote from ovary because latier grows anteriorly and extends as far forward as posterior portion of esophagus.

The four giant cells in the adult specimens of $1 / y / 0$ strongh/us rubidus are notregularly armared but are placed more or less equidistant from one another throughont the anterior half of the worm. Each of these giant cells in the adult worm is somewhat elongated dorsorentrally and sends ofl severn branches from its periphery (ig. $24, \rho$). In shape these giant cells resemble cells firured by N゙ussonov (79) in the body cavity of Strongn/us paraloras ($=$ Ietastrongylus clongatus) and referred to by him ats the "phagocytie orgnn." Other steltate or branching structures have been reported in the body carity of nematodes, notably by bojanus, ciled by Sehneider (105), Bustiun (10), Shipley (120), Jamam (44), and Looss (65).

The close association of one of these gitant cells with the genital primordium indicates that it might have some relation to the genital system. Chitwood and Chitwood (16), in studying the anatomy of the adult Cephalobellus papilliger, have found in its body cavity twocelled structures refered to by them as "x-bodies", which are assocated with the ronads. They expressed the opinion that these x-bodies might function as endocrine whands. Since little is known about such cells in the body cavity of nematodes, the writer is not
certain whether the giant cells in Hyostrongylus rubidus represent phagocytic cells or x-bodies, and whether or not these cells have any connection with the genital system.
In connection with the study of sex differentiation in stained specimens of II. rubidus, the male third-stage larvae appeared to be more numerous than the females. An actual count of 100 third-stage

FIGURE 26.-PHASES IN THE DEVELOPMENT OF FEMALE GENITALIA AND POSITION OF GENITAL GIANT CELLS OF HYOSTRONGYLUS RUBIA AND
A, Gentind primorditan of first-stake tarva,

larvae taken at random showed that the number of males was slightly more than twice that of females, males constituting 68 percent and females, 32 percent. However, in a count of 150 fourthstage larvae recovered from a guinea pig 10 days after an experimental infection, 46.6 percent were males and 53.4 percent were females.

Obsemvathons on Effects of Envilonment

ATTEMITS TO NDDEE SKIN PENETRATLON

This experiment was conducterl in accordance with the technic described by Goodey (85). The skin of a 2 -day-old rat was stretched, hair upward, on a cork ring, flonted in a beaker containing warm physiological salt solation, and kept in an incubator at at temperature of 37° C. A small drop of water containing about 150 larvae was placed on the piece of skin and then allowed to evaporate in an incubator. Ono hour after the drop containing the larvae had evaporated, a drop of water was placed on the rat skin and removed to a slide by means of a pipette. Microscopic examination revealed many enshenthed larvae. No larvae were found in the salt solution. The rat shin was then fixed in 70 -percent alcohol and superficind lnyers were mechanically separated from the deeper layers. These byyers were then clenred in an alcohol-phenol misture. Several ensheathed laryae were found on the surface of the skin, but there were no harvo in the subcutaneous lnyers. these findings agree with those of Goodey (37), who tested eight IIyostronophus rubidus larvae by the cork-ring method previously described and noted that these lavae failed to penetrate the skin.

In another experiment about 200 infective larvae were placed on small areas on the skin of two young guinca pigs, the hair having been clipped from these arens. The guinea pirs were kept under restraint until the water eraporated. An hour later, a few drops of water were placed on the skin area of one gainea pig where the larrae had been placed, and after the water had remained on the skin lor a short time it was transferred to a glass slide for microscopic examination. Practically ald the larvae that were originally placed on the skin were recovered. The skin of the other guinen pig wis thoroughly washed with water and the animal was put in a clean eage. Ten days later this animal was killed, and no larvae were recovered from the skin, lungs, or stomach.

These observations indicate that infection with these larvae does not take phace through the intact skin. In their failure to penctrate the skin these larvae resemble those of other trichostrongyles, such as Thaemonchus contortus nccording to Veglin (185) and Cbeliscoides cumiculi according to the witer ($\overline{0}$). Howerer, some trichostrongyles, namely, Trichostronqylus calcaratus according to Stoll (182) and Nippostrongylus muris according to Yokognwa (187), have been found to be skin penetrators.

REACTION TO COLD
The ability of nematode larvae to withstand low temperatares is variable. According to Cameron (15), third-stage larvae of Monodontus trigonocephalus do not revive after being frozen for a few minutes. Ransom (92) noted that third-stage Larvae of Haemonchus
contortus remained alive in sheep feces niter an exposure outdoors to temperatures ranging from 21.6° to $-13.8^{\circ} \mathrm{C}$. for 85 days. Schwartz (108) reported that infective larvae of Bustomum phlebotomun ($=$ Monodontys phlebotomus) frozen solid for about 15 hours, became active when thawed. Third-stago larvie of Stephanarus dentatus, according to Schwartz and Price (119), can withstand a temperature of -19° Tor 6 hours, but are killed when exposed to this temperature for 9 hours. Third-stage larvae of Trichostrongylus spp, according to Mönnig (7\%), were still alive after an exposure to 0° for 14 days. Ortlepp (S/) noted that infective larvae of Triodontophorus tenuicollis could withstand freezing in an ice chest overnight. De Blieck and Buadet (12) noted that infective larvae of Strongylus oulguris, S. cdentatus, and Cylicostomum spp. in a culture of water and feces could withstand at temperature of 0° for 15 days. Raffensperger (90) exposed horse manare contrining infective strongyle larvae of various species to Montam wather conditions for 20 months; some larvae did not succumb despite the fact that in the course of the experiment the temperature ranged from -18.3° to -38° for a period of 26 days in January and February 1929.

The effects of rarious low temperatares on the infective larvae of Ifyostrongylus rubidus are shown in table 24. Each record is based on observations involving alout so infective larvac. The larvae were placed in small glass tubes containing moist animal charconl, and the tulbes were phaced in a refrigerator and removed from time to time for cxnmination. The tubes remaned at room temperature for about 4 bous before each examination. In case the larvae showed no motility they were kept under observation for 4 more consecutive diays before boing declared dead.
 rubidus, cnch cultur incolving about so havar

In this experiment the Iyostrongylus larvae were resistant to a temperature of from 3° to $5^{\circ} \mathrm{C}$. for 144 hours, but not to a temperature of from -5° to 1° for 720 hours. Temperatures during this second period of exposure lasted as follows: $1^{\circ}, 24$ hours; $0^{\circ}, 408$ hours; $-1^{\circ}, 24$ hours; $-2^{\circ}, 216$ hours; -5°, about 42 hours. A temperature of -20° for 0 hours destroyed the vitality of the larvae.

HESISTANCE TO URJING

Infective larcae of strongyles vary considerably in their ability to resist desiccation. Louss (67) reported that infective larvae of Stronghtus spp. and Cibficostomum spp. ean resist desiccation in a

Petri dish for 14 days: Raffensperger (90) reported that 10 percent of infective lavne of Strongylus spp. withstood desiccation in an incubator at $26^{\circ} \mathrm{C}$. for 4 months. According to Ransom (92), infective larvae of Haemonchus contortus which had been dried in feces for 35 days, revived after being moistened. Ortlepp (81) found that infective larvae of Triodontophorus tenuicollis revived after they had been dried in an incubator overnight at 26°. In contrast to these observations, Looss (67) pointed out that larvae of Ancylostomo duodenale perish as soon as therr surroundings become dry. Goodey (95) also found that largae of Necator americanus fail to revive after a few minutes of desiccation. The following experiments were conducted to determine the resistance of Hyostrongylus larvae to desiccation:

A small drop of water contaming a mumber of third-stage larvae was placed on each of several glass slides. At the moment the water evaporated, the time was noted, and the slide remnined exposed at room temperature for various periods, as shown in table 25 . At the expiration of the various periods of time, a few drops of water were added to the dried larvae and the preparations were examined at intervals for about 24 hours. The results of these observations are given in table 25. The table shows that Ifyostrongulus larvae are not very resistant to drying, since a 240 -minute exposure proved fital.
 strongylus rubidus to air drying at room temperature (20 (.)

On November 26,1932 , a number of third-stage harvae of IIyostromgylus rubidus were placed in a small glass receptacle contnining tap water to a depth of 2 mm and also containing severallarge granules of washed animal charcoal. The glass receptacle was then covered with a glass slide and was placed in a large Syracuse dish which contained moistened cotton. A cover was placed on the Syracuse dish and sealed with petrolatum. The experment was conducted at room temperature (22° to $24^{\circ} \mathrm{C}$.). Larvae in this condition were found to be somewhat active on February 10, 1933. When examined on March 15, the larvae were dead and somewhat disintegrated. Apparently third-stage larvae will survive in water, with some charcoal added, for a period of $2 \frac{1}{2}$ months but not for $31 / 2$ months, at room temperature.

STRONGYLIDAE

OESOPHAGOSTOMUM DENTATUM (KUDOLPH1, 180.1) MOLIN, 1861

(Flg. 27)
Synonyms.-Strongylus dentalus Rudolphi, 1803; Sclerostoma dentatum (Rudolphi, 1803) Rudolphi, 1809; Oesophagostomum subulatum Molin, 1861; Strongylus follicularis (?) Ostertay, in Olt, 1808.

Hosts.-Swine and wild boar.
Location.-Adults in large íntestine.
Distribution.-Arrica (Zanzibar), Asia (China, Philippines, India), Europe, North America (British West Iudies, Puerto Rico, United States), South America, and Oceania (Tonga Island).

Deschiption of Egg and Prbpalasitic Larval S'tages

bgG
Jggshell thin, transparent, and usually elliptical (fig. 27, A). In a series of measurements involving about 50 eggs , Jength 61μ to 83.5μ, width 38μ to 53μ. Eggs in an early cleavage stage, containing from aboutt 8 to 16 cells, when passed in feces.

EMRRYO
Embryo, when ready to hatch, resembling first-stage larva.

FITST-STAGE JARVA

Shape and size.-In shape (fig. 27, C and b) first-stage larva similar to corresponding stage of Ihpostrongylus, rubidus. Larvae, soon aiter hatching, 304μ to 311μ long by 15μ wide, and before first molt 425μ to 433μ long by 19μ wide (table 2G).

Cuticle.--Thin with very fine transverse striations.
Alimentary tract.-In general, same as in first-stage larva of Hyostrongylus rubidus. Buecal cavity 11μ to 15μ long; esophagus rhabditiform, 83μ to 97μ long; intestine slightly granular, with a sinous lumen.

Nervous system. Wiverve ring appearing as a banci ancireling esophagus 76μ to 85μ from anterior end.

Excretory syetem.-Excretory pore inconspicuous in young larva of this stage, about 90μ from anterior end.

Genital primordium.-Small elliptical body, 155μ to 225μ from anterior end.
Table 26 shows the rate of devolopment of first-stage larvae of Oesophagostomum dentatum in moist charcoal-feces media at room temperature (22° to $24^{\circ} \mathrm{C}$.), the measurements having been made at different periods after preparation of the culture.

Tahle 20.-Principal measurements of \tilde{i} first-stage larmae of Onsophagostomum dentatum at various periods of detelopment

Item	Perion of deve	opmentan an larvin		menstrements nt		
	1 2	3 :	4		${ }^{6}$;
Pertot of dovelopment....... hmurs.						
Length of botytithay		${ }_{19}^{4100}$	${ }_{10}^{10}$			
1ength of biecal envity.................... . 10	1110	15	15			
	采: ${ }_{\text {d }}$					
	159\% 162				215	
Length of tail...................-......... th	3^{3}					

SEGOND-STAGE LARYA

Shape and size--In slape (fig. $27, D$) similar to second-stage larva of $H y$ ostrongylus rubidus. Larvac 440μ to 655μ long by 21μ to 32μ wide (tatble 27). Cuthole.-With very fine transverse striations.

FIGURE 27.-VARIOUS STAGES IN THE DEVELOPMENT OF OESOPHAGOSTOMUM A, Egg.
First-stage larva: $C_{\text {, }}$ Newly hatehed, lateral view; B, fateral view of fully grown larva.
D. Second-stned larva, laternl view.

Third-singe Inervat B, Anterior end, showing features of buccal cavity (irom Gopdey (in24) slightly modi-
 tion of lirva; j, laterai view of harvi.

Alimentary lract.- In gencra!, as in aecond-stage larva of Hyostrongylus tubidus. Buceal cavity 15μ long; esophagus rhablitiforim, 102μ to 130μ long; intestine slightly granular and similar to that in first-gtage larya.

Nerbons system.-Ni - ve ring 85μ to 95μ from enterior end.

Excretory system.-Excretory pore 95μ to 121μ from anterior end. Genital primordium.-As in first-stage larva; 225μ to 330μ from anterior end.
Table 27 shows the rate of development of second-stage larvae of Oesophagostomum dentatum in moist charcoal-feces media at room temperature (22° to $24^{\circ} \mathrm{C}$.), the measurements having been made at different periods after preparation of the culture.
Table 27.-Principal measurements of 7 second-stage larvae of Oesophagostomum dentatum at various periods of development

Itom	Perfact of development and mealsurements of larya no.--						
	1	2	3	4	5	0	7
	42	42	60	65	66	1100	
	440	497	509	521	024	1639	1 100
	91	24	${ }^{5} 24$	521 28	162 30	139 30	055 312
	15	115	15	15	15	15	15
	162	110	115	112	12!	121	130
	85	190	190	80	105	595	05
Distance of genital primordiam from anterlor end...do...-	95 $\times 25$ 23	102 255	110	105	114	117	121
	$\underline{325}$	255		205 125	310 132	322 152	3330

1 ifarva madergoing second molt.

THIRD-STAGE LARVA

Shape and sizc.-In general, body similar in shape to that of previous stage (fig. 27, J). In en face view, head with 3 inconspicuous lips, 1 (iorsal and 2 subventral; dorsal lip with 2 subdorsal papillae; each subventral lip with 1 subventral papila and 1 lateral amphid; aninner circle of 2 minute papilae apparently present on each of the lips (fig. $27, H$). Tail of larva somewhat conical, ending in a characteristic, somewhat pointed tip (fig. 27, G). Characteristic sheath surrounding third-stage las va, showing many evenly arranged folds throughout most of its length (fig. 27, I). Larva, excluding sheath, 500μ to 532μ long by 20μ wide; according to Goodey (S6), larva (including simeath) 660μ to 720μ long by 30μ wide.

Cudicle. With fine transverse striations.
Alimentary tract.-Oral opening leading into strort narrow jmmen conneeting posteriorly with modified portion of buccal cavity; cuticular lining surrounding buccal cavity, as observed by Goodey (36); lining apparently drawn out into thin strands of fibens, the fibers spreading ont and interlacing, forming a complex network (fig. 27, B), Esophagas strongyliform, 144μ to 152μ long. Intestine composed of 8 dorsal and 8 ventral cells, connecting posteriorly with a slender rectal canal.

Neronus systom.-Tn general, corresponding to that of Hyos/ronghlus rubidus; nerve ring 91μ to 95μ from anterior end.

Excretory system.-Excretory pore 98μ to 110μ from anterior ead; pore connect. ing with a camal bading backward and becoming indistinguishable in jassiog between cells of nervous system.

Genital primordium.-Loctation as in provious stages; 273μ to 318μ from anterior end.

Table 28 shows the theasurements of third-stage larvae of Oevophafosfomum dentatmm.

Tabra 28.-Principal measurements of 6 third-stage larvae of Oesmphugosiowntm dentatum'

Tterl	Period of development and measurements of marin no.					
	(180	2	3	4	5	6
		6	6	t	0	8
\}engli of body		(rat)	516	520	530	[5\%
Afaxmam feidth of hody.-....................... dio..--		2t 218	20	20	26	20
		1.18	144	552	152	159
Distance of exeretory pore fram anteriar end....dio...-		¢102	105	05 102	118	\%
Distance of genital irmmordium from nnterior entl		162	102	102	104	116)
		$3 \mathrm{~K})$	2413	298	311	418
		46	19	10	31	54

[^7]
DIFFERENCHS IN EIRST THREE STAGES

The outstanding differential features of the first three larval stages of Oesophajostomum dentatum are as follows:

First-stage larba.-Buecal cavity long, with parallel rod-shaped walls, opening directly to the outside; esophagus rhabditiform; tail long and pointed; larvae 304μ to 433μ long by 15μ to 19μ wide.

Second-slage larva.-Buccal cavity, esophagus, and tail as in first-stage larva; larvae 440μ to 655μ long by 21μ to 32μ wide.

Third-stage larsa--Buecal cavity short, with cuticular walls drawn out into thin strands of fibers spreading out and interlacing into a complex network; buccal cavity opening to outside by narrow lumen; esophagus strongyliform; tail short, conical, terminating in a rounded tip. Larvac 500μ to 532μ long by 26μ wide, and surrounded by sheath of second molt, sheath possessing numerous evenly arranged folds throughout most of its length.

Development of Prepabasitic Larval Stages

Little information is arailable in the literature as to the time required for the development of the various preparasitic stages of Oesophagostomum dentatum. Goodey (36) noted that from 18 to 20 hours after being passed with the feces of pigs, eggs of this parasite contained an embryo which was apparently approaching the tadpole stage.
The writer has cultured eggs of O. dentatum in a moist charcoalfeces medium as described for IIyostrongylus rubidus. The results obtained at room temperature (22° to $24^{\circ} \mathrm{C}$.) are shown in the following tabulation. It is noted that the movements of third-stage larvac are somewhat slow in contrast to those of I. rubidus.

Hours after incuthtion	Deyrce of detsionment
0	1-cell to about 16-cell stage.
18	Majority of eggs containing fully developed entaryos.
23	Eggs hatching.
41	Majority of larvae in first stare.
50.	First lethargus in progress.
65.	Few larvae in second stajse.
89	Majority of larvae in sceond stage.
123	Second lethargus in progress.
137	Few larvac in second molt ($=$ thiml stage).

Obsenvathons on Eqfects of Envihonmene

ATTEMPTS TO INDUCE SKIN PENETRATION

The writer has confumed the findings of Coodey (36) that thirdstage larvae of Oesophagostomum dentatum fail to penetrate the skin of young rats when the skin is stretched on a cork ring and floated on a warm physiologic saline solution.

KEACTION TO COLD

There is no information in the arailable literature with reference to the reaction of third-stage larvae to cold. The writer made such a stady, and the results of the observations are given in table 29. Each record is based on observations involving about 300 third-stage laryae. These larvae were piaced in small glass tubes containing moist animal charconl; larvac were removed from the culture from time to time for examination. Before the larvae were examined microscopically, the tubes were kept at room temperature for 6 hours, and the larvae were examined on the same day and for the next 4 consecutive days. The data in table 29 show that some third-stage
larvae of O. dentatum were somewhat resistant to low temperature. Some of the larvae still showed signs of life when exposed to - 19° to $-29^{\circ} \mathrm{C}$. for 10 days, but their vitality was destroyed when kept at temperatures of -15° to -29° for 31 days.
Table 29.-Effects of low lemperalures on the infcctive larvae of Oesophagostomum denlatum, each culture involving about 300 larval

C'ultare ma,	Period of refrigera lion $\begin{aligned} & \text { Tomprarnture } \\ & \text { of ruftigerator }\end{aligned}$	Condition of iarvae after exposura to refrigeration
		All active. Matority aclue; few sllghty nctive.
	- 20.10	Matority pelve; few sitghty netive. 15 moved slowly, others responded to hent only. About 10 moved slowly and abont 50 percent re
		About 10 moyed slowiy, mad aboth 25 percent re-
		spondet to hent; others dearl. About 8 respmbiteil to henti others deaci.
		2 respondel to heat; others fiend.Alldend.
	31.	

JBACTIGN TO DFSICCATFON
Goodey (36) reports that third-stage larvae of O. dentatum, when dried in ghass capsules for 1 or 2 days, revived on the addition of water. The writer, however, could not confirm Goodey's observation. Larvae in a small drop of water were placed on each of several glass slides, and the water was allowed to evaporate. At the moment the water evaporated the time was noted, and the glass slide then remained exposed at room temperature for various periods, as shown in table 30. At the expiration of the desired lapse of time, a few drops of water were added to the dried larvae, and the preparation was examined microscopically at viuious intervals during about 24 hours. The results of the observations are given in the table which shows that some larvae died after being desiccated for 30 minutes, but that one larva showed signs of life even after 20 hours of drying. All the larvae were dead ifter 22 hours of drying.
Table 30--Resulls of observations on the resistance of third-stage larcae of Oesoph"gostomem dentatunt to air drying at room temperature ($22^{\circ} 1024^{\circ}$ (.)

LONGEVITY OF LARVAE IN WATFIR A'E ROOM TEMPERATURE

On November 26, 1932, third-stage larvae of Oesophagostomum dentatum were placed in a small glass receptacle containing water and animal charcoal, as described for Hyostrongylus rubidus, kept at room temperature (22° to $24^{\circ} \mathrm{C}$.), and exmmined at least once every month. The last examination was made on September 15, 1933, at which time the larvae were still active and appeared normal.

STEPHANURUS DENTATUS DIESING, 1819

(r゙is. 28)
Synnyms.-Scleroxtome dentatum (Diesing, 1839) Leidy, 1856, not Rudolphi, 1S03; S. pionuicola Vervill, 1S70; Strongylus dentatus (Diesing, 1839) Dean, 1874, not Radolphi, 1803; Stephanurus nattereri Cobbold, 1879 ; Strongylus pinguicola (Yerriin, 1570) Malgamaes, $189 \ddagger$; Sclerostomam renium Drabble, 1922; Stephoturas morai Almeida, 1928.

Hosts.-Swine, eattle, and, experimentally, guinca pig.
Location-Adults in kidncy fat, kidneys, treters, urinary bladder, hugs, pleural cavity, lumbar maseles, spleen, and spmal canal.

Distribution-Africa (Belgian Congo, Dahomey, French Congo), Asia (InctoChina, Java, Philippines, Sumatra), Austrain, Europe (Spain), Central America (Xicaragna, Panama), North America (British West Indies, Cuba, Mexien, (Jnited States), South America (Argentima, Brazil, Yrugany), and Oceania (Cook Istands, Gume

Descmption of Egg and Preparasitic Lahval Ffages

EaC:

Egg with thin, tramparent, oval shelf; poles usualiy unequal, one usually more convex than other (fir. 2s, A); abhormatities in shape of shell occasionally yresent. one or both extremities boing somewhat ilat instead of romaded. In as series of measurements involving 50 eg egs, leugh 91μ to $11 . \mathrm{H}_{\mu}$, width 53μ to 65μ; seg-
 possibly represents an abnomatity; according to Bernard and Bauche (1)) eggs 100μ to 130μ long by 55μ wide, secording to Ross and Kmazal (100) most typical eges 104μ to 136μ long by 56μ to $6 \neq \mu$ wide. When deposited in urine of host, egs advanted in deavage and composed of from 33 to 64 cells.

ENABRTG
Embryo, just before hatching, resembling first-stage farva.

> FlkST-STAGE LARVA

Shape and size--Wh shape (fig. 25, F) first-stage larva similar to corrosponding staye of Hyostrongyhas rudidus; anterion end sonewint roumbed in lateral view; head papillae not very distinct. Three hours after hatching, larvae 4.10μ to 421μ Jong by 24μ wide, attaining a length of about 530μ and a width of 26μ before molting (table 31).

Cuticle--Thin and apparentiy without transverse striations.
Atmentary tract.-In general, as in first-stage larya of hyostronghlus radidut. Buccul cavity 11μ to 15μ long; csophages rhaidditiform, 90μ to 14μ long. Infextine more grantar than that of any other first-stage larya of a swine nemat tode; walls of intesimal cells ineonspicuous; fumen of intertine sinous in outline.

Nereons systen.-Nerve ring appearing as a band elecirching cwophagn, 6fon to 01μ from anterior end.

Excretory system.- Excretory pore inconspicuous in young harva of thas siape, $8 \overline{5} \mu$ to 98_{μ} from anterior end.

Genital primordian--Represented by a small elliptical body ventral in pe, ition, 215μ to 273μ from anterior end.

Table 31 shows the rate of development of first-stage larvae of Stephanurus dentatus in moist charcoal-feces media nt room temperature (22° to $24^{\circ} \mathrm{C}$.), the measurements having been made at different periods after the preparation of the culture.

FIGURE 28.-VARIOUS STAGES IN THE DEVELOPMENT OF STEPHANURUS DENTATUS.

P, Sccond-state larso, latoral vies.
 anterior portion, laterat vies; G, posterior portion, hateral viow; $/ 1$, lateral wew of larva.

Table 31,-Principal measurcments of 5 first-stage lamode of Stephanurus dentatus at varions perionls of development

: Laryo undergenfif first moll.
sECOND-STAGE LAICVA
Shape and size.-In shape (ig. 28, F) similar to second-stage larva of Hyestrongplas rubidus. Papilac of anterior end not very distinct. Larvac 300_{μ} to 580μ long by 20μ to 28μ wide (table 32) ; according to Ross and Kanzal (101), 540μ long by 27μ to 32μ wide.

Cuticle--Transverse striations not visible at this stage,
Alimentary tract.-In generat as in second-stage larvae of Hyostromphes rubidus. Buccal cavity 15μ long; esophagus riabditiform, 110μ to 136μ long: intestine somewhat granular.

Nerbous system.-Nerve ring 83μ to 91μ from anterior ond.
Excretory system.-Excretory pore inconspictuous, 91μ to 102μ frotn anterior end.

Genital primordium.-As in first-stage larva; 250μ to 304μ from anterior end,
Table 32 shows the rate of development of second-stage larvae of Stephanurus dentatus in moist charconl-fees media at room temperature (22° to $24^{\circ} \mathrm{C}$.), the measurements having been made at diflerent periods after preparation of the rulture.

Table 32.-Principal mersurements of a secont-stage lariae of sitephaturtes dentatus at rarions periods of development

16 m		leriod of development and mumserporments of harta no.-				
				.		\cdots
		1	\because	3	I	i
	--.				.	
Perind of devetopment.	lughrs	41	41	41	6is	:70
deamen of baty...	miments	840	33.5	535	[in ${ }^{\text {d }}$	3 Sc
Maximam widit of hody*...	do	20	26	25	9f	3
lenpth of buctal mirity- .	d)	is	1.5	15	$1{ }_{1}$	It
Jenpth of esopthupus	do	110	114	13.	11.1	k:m
Jisennca nif tersaring fromi nnterior conl.	- dir	91	37	51	51	(1)
J)istance of excreingy fore frotrl anterider end	ind		$!1$	95	㧒	1013
1ishaticu of genital primordinam Iromb anterior gad.	- 10	35	$\underline{5150}$	25	突1	8108
Length of taft. -.. ..	. 10	102	10 H	11.1	129	11%

[^8]
THIRD-STAGE IAAHA

Shape and size.-In general, body similar in shape to that of previous stage, but more slender (fig. 28, $/$ I). In en face view, head with 3 jacornspicnous lips, 1 dorsal and 2 subventral; dorsal lip with 2 subdorsal papillac; cach subventral lip with \mathcal{I} subsentral papilla and 1 lateral amphid; an inner circle of 2 minute
papillae apparently present on each of the lips (fig. 28, B). Number of lips as noted by the writer is at variunce with that reported by Ross and Kauzal (101) who found 4 inconspiettous lips, 2 dorsal and 2 subventral. Tail of larva somewhat conical, ending in a characteristic rounded tip (fig. $28, G$). Owing to reduced length of tail, larrac $\overline{5} 18 \mu$ to 610μ long by 24μ to 26μ wide; according to Ross and Ktiugal (101), 607μ long by 28μ wide.

Culicle.-With fine bransverse striations.
Alimentary tracl-Oral opening leading into short narrow lumen connecting posteriorly with characteristic spiudle-shaped buceal cavity (fig. 28, C); in optical section cuticular lining of cavity apparently sending out a pair of short, laterally directed fibers at anterior portion of cavity. Esophagus strong.liform, its base characteristically broader than that of corresponding stage of other larvae of swine strongyles. Intestine less gramular than in previous larval stages and with 10 dorsal and 16 ventral cells; intestinc connecting posteriorly with a slender rectal canal.

Neruous system.-In general, corresponding to that of Ihyosirongulus rubidus; nerve ring 85μ to 92μ from anterior end.

Excretory system.-Excretory pore 91μ to 105μ from anterior enrl; pore connecting with a canal extending backward and becoming indistinguishable in passing between celis of nervous system.
Genilal primordium--Location as in prevons stages; $28 S \mu$ to 342μ from anterior cad.

Table 33 gives the measurements of third-stage larvae of Stephanurus dentatus.

Table 33.--Principal measurcments of is third-stage larvae of Stephanurus dentalus ${ }^{1}$

1 Mensurements do not indade sthoth.

The outstanding differential fentures of the first there larval stages of Stephanurus, dentatus are as follows:

First-stage larea--I3nceal cavity lone widh paratlel rod-shaped walls, opening directly to exterior; esophagus riabditiform; intesthe very dark and granular; Lat long and pointed; larvae abont 410μ to 0.30μ luseg by 24μ to 26μ wide.

Second-stoge tarda.- Bueral envity, esophatus, intesinie, and tail as in first stage larvac abont 530μ to 550μ lolig by 26 to 25μ wide.

Third-strge larma-- Buceal envily short, spinde-shaped, openits anteriorly by a narrow lamen; esophagus strongyiform; intestine less darla and granular than in previons slages; dail shorl, emical, terminating in a robnded tip; larvac ais μ to $610 \mu \mathrm{long}$ ley 24μ to 26μ wide,

> Deverormext of Prepaleastre Labyal Bquies

Considerabie information is already arailable concerning the development of the preparusitie stages of Stephonurus dentatus. Bermard and Bauche (/f) noted that cegrs cultured in animal charcond and wine hatched in ?t hours and that the thided stage was reached is days later. Schwart\% and Price (118) reported that at a tempera-
ture of about 26° to $27^{\circ} \mathrm{C}$., Stephunurus eggs batched in 24 to 48 hours, and third-stage larvne were present in 5 to 6 days after the culture was prepared. They found that low temperatares retarded the development of the eggs and the harvac; thus, at a temperature of about 10°, the egrs not only faijed to develop, but their vitality was destroyed in 10 days. Ross and Kauzal (101) noted that when eggs were cultured at 25° to 27.5° in a medium contrining water with a few drops of filtered decoction of pig feces, the larvae inatched in 24 to 36 hours; the first molt occurred 16 to 30 hous after hatching and the second molt 36 to 48 hours after the commencement of the second stage; the third stage was usually reached 95 to 120 hours atter culturing of the egrys, but in exceptional cases, at, 30° the thircl stage was reached in $8 \overline{5}$ hours.
The writer cultured eggs of S. dentatus in a moist charcoal-feces medium, as described for Hyostrongylus rubidus. The results at room temperatures (22° to $24^{\circ} \mathrm{C}$.) are given in the following tabulation. It was noted that the movement of third-stage larvae in moist charcoal medium was more active than that of the sluggish third-stage Oesophayostomum larrac, but slightly less active tham that of third-stage larvae of Hyostrongylus rubidus.

	Honts after incturtion
$0 \ldots$.	
23.	-
40...	.
43.	. -
64.	.
8S...	. .
93....	.
112.	.

Dtegree of decelophent

1 -eell to advanced morulta stage. Eges hatehing. Najority of larvac in first starge. First lethargus in progress. Few larvae in second stage. Majority of harvae in sccond stage. becond lethargus in progress.
Feve larvae ing second molt ($=$ third stage) .

Information concerning the ability of third-stage larvac of Stephomurus to penctrate the skin of the final host has aroused considerable discussion among some parasitologists. Bernard and Bauche (1) stated that they infected piss experimentally with Stophemarus dentatus as a result of skin penetration by third-stage darac. Schwartz and Price (112, 1/8, 114) on the other land, in hil extensive investigation regarding skin penetration, conchaded that when Stephanurus larvae are placed on the intact skin of pigs they are incapable of penetrating it; these writers showed, however, that if the skin of the pig were scarified, the larvae worid. penetrate and develop in their usual location. Ross and Fauzal ($1 / 0 /$), however, stated that they produced an experimental infection of kidney worms in pigs by placing larvae in feces and mud on the intact skin of live pigs or guinea pigs. Lately, Spindler ($22 \bar{j}$) cleared up the diflerence of opinion with reference to skin penetration of Stophanurus harvae. He confirmed the findings of Schwartz and Price to the ellect that thirdstage larvae in water when placed on the intact skin of pigs are unable to infect these animals, and confirmed the findings of Ross and Kauzal to the effect that infection occurs readily when charcoal and feces or soil and feces cultures containing third-stage larve are sprend on the intact skin of pigs. Spindler expressed the opinion that traction
probably plays a part in aiding the laryae to penetrate the intact slin.

In two cases the writer, using Goodey's (35) cork-ring skin-penetration method, failed in attempts to bring about the penetration of Stephanurus larvae through the skin of 2-day-old rats, results which are in harmony with the findings of Schwartz and Price (118) and Ross and Kauzal (101).

> REACTION TO rOLD

Infective Stephanurus Iarvae are not very resistant to low temperature. Schwartz and Price (113) showed that at a temperature of $-19^{\circ} \mathrm{C}$, the vitality of the larvae was destroyed in 9 hours, but that 6 hours' exposure to this temperature was not fatal. Experiments conducted by the writer on the resistance of harvae to a temperature of -19° confirmed the finding of Schwartz and Price (113).

> HESISTANCE TO DBSICCATION

Infective harvac of Stephanurus dentatus are not very resistant to desiccation. Schwart\% and Price (11S) noted that when larvae were air-dried at room temperature on a slide, their vitality was destroyed in about 30 minutes, but shorter periods of exposure did not prove fatal to all larvae. Ross and Kauzal (101) ascertained that some laryne exposed in bright sunshine ($43.3^{\circ} \mathrm{C}$.) resisted 5 to 10 minutes of desiccation, but ail were found dead in 15 minutes. Practically the same resulis were obtained by De Jesust who found that Stephanurus larvae in dust exposed to bright sunlight for 5 or 10 minutes remained alive, whereas an exposure of 15 or more minates proved fatal.

The writer has dried larvae on glass slides at room temperature and has noted that only a few larvae survived an exposure of 30 minutes. Drying for 20 minates proved fatal to some larvae, but all of them succumbed to an exposure of 1 hour or longer (table 34). These findings are in agreement with those of Ross and Kauzal (101) who foum that at few larvae survived an exposare of 30 minates, but that an exposure of 1 hour was fatal.

T'ables 34.-Results.s of observations on the resistance of third-stage lurone of Stephanurus dentalus to air drying at room temperature (24° (.)

1.HTvite usca! (mimbler:	femsthof expositre	Comditamorlarve afler uthtition of water	[atrine bised! (mushher)	Exengthof exjhbsture:	comitilon of larvare after athlithon of wister
		** -	-	. .. :	-..
	Minmis			Minticis	
23..	is	A1] netive.	36	$33!$	4 nctice: 2 diternd.
20.	10	to.	突		All deths.
㕠.	15	W).	35	191:	1)
25	2)	th netiver its detar.			

Aceording to Ross shal Kauzal (101), the longevity of infective larvae vaties considerably in the different media used. In soil and feces media they recovered most of the larvae alive up to the one hundred and eighth day. Beyond this period the nomber of live

[^9]larvae which they recovered diminished progressively; on the one hundred and fifty-fouth day only a few larvae were nlive. These authors also noted that in liquid medium few harvae survived more than 50 days, and in agar all larvae degencrated in 28 days. De Jesus ${ }^{5}$ reported that when third-stage larvae were placed in a layer of dust about 3 mm deep, about half of them died after 47 days, and by the fifty-fifth day all the laryae were disintegrated.

The writer has kept infective larvae of Stephanurus in a moist charcoal-and-feces mixture for 40 days at room temperature, and after that period several active larvae were recovered with the aid of the Bremamanaputus.

Strongyloididar

STHONGYLOIDES RANSOMI SCHWART\% AND AGICATA, 1930

> (Fliss. \$2-30)
> Host.-Simise.
> Localion:-Adults in small intestine.
> Disfribution.-North America (Vnited states).

Lanyaz Staght and Devemopment

Egrss of Strongyloides runsomi derived from parasitic female worms give rise to embryos which after hatching pursue one of two cyeles of development, diret or indirect. In the direct eyde, the larvae grow and after two molts, aceording to Lacker (69), transform into thirdstage (strongylitum) larvac capable of infecting the host. In the indirect cyele the larvae grow and after four molts, aceording to Lucker, develop into adolt frec-living males and females; the fembles give rise to embryonated egres which hateh, the harval woms molting twice and developing to third-stage strongyliform harvac capable of inferting a suitable host.

The number of molts observed by Latker in Strongploides ransomi is at varinnce with the number reported for other species of Strongyloides. Various writers, namely, Grassi and Parona (39), Perroncito ($8 S$), Luteknti (61), Grassi and Segri (40), (iolgi amd Monti (33), Zim (148), Lechtenstem (57), Gonder (34), and Kreis (55), mention only one molt in the direct cyele of development of Strongyloides stercoralis and other species of Strongyloides.

Bayay (cited by Schummans Stekhoven (107)) and (Oudendal (84) state that young first-stage larvae of S. stercoralis molt in the intestine of the host before passing out with the feces. Tnfortumately there is no che as to whether larvae seen molting in the intestine are of the direct or indirect cycle of development; however, such a molt may exphin why many investigators have noted only one molt in larvac which followed the direct cycle of development, the explanation being that one molt had already oceurred during the passage of the larvac through the intestine to the outside world.

According to Looss (67), larvae of S. sterroralis pursuing the indinerd cyele molted only one before reaching sexuat maturity. On the other hand, Lueker reports four molts in the corresponding cycle of \mathbb{S}. ransomi. The progeny of the free-living forms of S. steroralis and S. ransomi, according to Looss $(66,67)$ and Lacker, respectively, molt twice before reaching the strongliform stage ($=$ third stage). The writer also hats noted two molts in the eourse of development of eggs from free-living females to strongyliform larvae.

[^10]

EGG (FROM l'ARASITIC FEMALE)
Eggshell thin, transparent, and usunlly sinptical (fir. 20, i). In a series of measurements of 50 eges, length 53μ to 57μ, width 30μ to 34μ; usually in late tadpole stage when passed with feees of host.

Figure 29.-VARIOUS
A Fitas, at reowered from fresty deposited fetes.

 end of hrva matersoles speond mode.

 larva.

EMDily

Jubt before oviposition, embryo fairly well develoned, resembling first-stage larva; just before hatehing emiryos 228μ to 235μ long by 15μ wide; morphotogy of fully developed embryo as in first-stuge larva.

F!RSTMELAGE LARICVA

Shape and size-- Body eyimorical for most of its length, tapering slightly anteriorly and more so posteriorly (fig. 2n, I and,); anterior cud with 6 minate elevations possibly representiog 2 subdorsal and 2 subventral papillae and 2 iateral amphids. Abont 2 hours after hatching, larvae 228μ to 265μ long and 13μ to 15μ in maximbu widh; posterior portion terminating in a long, stender, pointed tail, 41μ to 57μ long. According to Lucker, larvat, as a rule, still in first stage when about 325μ long,

Cuticle- - Very thin, transparent, and without transverse striations; apparently set off from body at anterior end by a small constriction (fig. 29, D).
Alimentary tract-Mouth nperture leading into a cyindrical buecal cavity; its walls, in optical section, appearing as two sharp refringent rods (fig. 29, D); a shott and fobrous structure (fig. 20, D) interpolated posterior to buectal cavity and anterior to esophagus. Exophagus rhabditiform and very muscular, 64μ to 95μ long in larvae about 3 hurs after hatehing. Intesthe somewhat granalar, its inditiduat eolls not easily differentiated; lamen of intestine in luteral view ustally straight (fig. 20, N), diftering in this respect from corresponding larvae of strongyles, which usually have thanch with a shous outline; intestine comected posterionly with a short rectum.

Nertous system.-Nerve ring metreling marow portion of esophagits; 41μ to 60μ from anterior end in larcae athont 3 hours fifter hateling.

Excrefory system. - Excretory pore 6.4μ to 68μ from anterior end and lending into a short, narrew duct.

Genital primordinm.-Depresented by a smath ehiptical body ventral in position, near equator of body; 117μ to 140μ from anterior end ins larvac about 3 hours after hatching. Aeeorting to Lucker, genital primordium 10μ to 15μ long al fine of first molt.

Genmal morphotogy of second-stage harva presumably similar to that of first-stage larate. Ducker states that size at anam by these fatrat is variable, depending to some extent mon envirommental eondition during the period of feding and growth; ordinarily maximum leagth is about 450μ to brop daring proce os of second mold. (ienital primordiam 10μ to 17μ Jong.

Shrepe and size.-Body very slender, tapering slighty anteriorly and more so posteriorly (fig. 29, N); head end ampering wey light in color, the color setting it off from the more granalar posterior portion of the body' (hig. 29, (i). The extremely small size of the larva has led several investigators to speemite on the structure of the head. Perroncito (Si) and it rummans Stekhoven (10\%) were of the opinion that the strongyliform larva possesses 3 lips. Kreis (j of states that the strongeliform larra of S. simiae possesses 4 indistincty developed lips. Aecording to the observations of the writer, the en face view of the head of S . ransomi shows 2 lateral slighty raised clevations, surromeded by 2 subdorsal and 2 subuentral papiliae and 2 latem amphids (fig. 20, $/ 7$). Tail shorter than in previous stage, 65β to 76μ long and Lerminating it the characteristic 3 small processes, 2 dorsal and 1 ventral (tig. 29, L and $A 7$); the latter observation is in opposition to that of previous feports in which the tip of the tail of third-stage Strongyleides larvae is described as nothed, with ony 2 processes

Si\%e of third-stage larvae is apmarently dependent on the matritive properties of the median in which thes grow. Sehwarta and Alicata ($1 / 10$) reported that when these laryae were grown in a feces culture, they were 504μ to 635μ long by 15μ to 10μ whe; in a culture containing a smatl quanity of water and very little fecal deeoction, the writer found thast they were 405μ to 420μ long by 13μ wide.

Cuticle--Thin, transparent, with very fime transverse striations.
Alimentary lrach.-Oral opening elongated dorsoventraily (itg. 29, H), openimg into n marrow lamen connecting posterionly with a small and distinet buceal cavity (fig. 29, ${ }^{\text {(i) }}$. Esophagus slemder and strongyliform, 250μ to 235μ long, occupying about one-hall the entire length of body; inconspichons sphineter at union of esophagus and intestine. Intestinal cells slighty gramaiar, edl walls inconspicuons; intestine comerting posteriory with a short rectum.

Nermos system.-Nerve rimg very inconspicuous, entirchag esophagns at union of anterior and middle thirds, 87μ to 90μ from anterior ead.

Exrectory spotem--Exerctory pore very inconspicuous, lo2 w be 114μ from anterior end.

Genital primortium.-Somewhat ellipticni in shape, about 17\% long, and 310 to 330μ from anterior encl.

Deschption of Laryal Stames Undergono Indmect Devblopment

FIRST-STAGE EAIRYA

First-stage larva presumably rhabditiform like corresponding larva of direct cyele. According to Lucker, larvae distimguishable from first-stage larvae of direct cycle by possession of 2 large genital primordium, 10μ to 26μ long in larvae 230μ to 350μ long. Cuntrast in size of genital primordinm in first-stare larvae of the two eycles of development previously noted be Schumrmans stekhoven (10~) in harvac of Strongyloides stercoralis.

SECONO-STAGU bAtzvA

Sceond-stage harva presumably rhabditiform and similar in shape to firststuge larva. According to Lucker, larvac, tentatively determined by him as second-stage larvae, 300μ to 450μ long $1 \mathrm{y} 20 \mu$ to 25μ wide. Genital primordimm 25μ to 70μ long; tail 60μ to $i \$ \mu$ long.

PMTHD-STAGF LAJFA

Third-stage larva presumathy rhablitiform and similar in shape to those of previous stages. Accorthing to Lucker, lamme, tentatively determined by hin as third-stage harvac, 420μ to 550μ long by 25μ to 31μ wide. Genital primordium 60μ to 160μ long; tait 70μ to 80μ long.

Fourth-stage larsa presumably rhaleditiform amd simihar in shape to previons stages; aceording to Lacker, sex can be differentinted at this stage. Males about $7 \overline{50 \mu}$ Jong, possessing a completely formed spicular apparatus; females 750μ to 875μ Jong just preceding last molt; uterus and ovaries at this stage more ar less completely formed.

Male-Acoording to Sehwarto and Alientat (110), males (fig. 30, D) S08 to 899μ long; smalker specimens -48μ long by 38μ wide also seen iny writer. Boty nearly equal in dianeter for most of its length, tanering towned thterior and posterior ends. In en face view, head with 2 laturaliplike elevations, each possessing I subdorsal and I subventral papilla and a lateral anphid (fig. 30, A). Aceording to Sc!unrmans Stekhoven (lOn), frec-living adalts of Siromgyluides stercoralis with 3 lips; this investigutor did not study head in en faee view. Head of S . ransomi, in lateral view, flistinctly set of from rest of body by shallow constriction (fig. 30, B). Oral opening leading into wide bureal cavity lined with then walis (fig. 30, B and C), A short fibrous strueture 9μ Iong interpolated anterior to esophagns and set off from it by a constriction. Fsophagns very maseular, Thabritiform; in a male specimen 7 is μ long, esophagus 121μ long. Two spicules present; according to Schwarta and Alicata, euch spicule 26μ to 29μ loug, shaped like a curved blade (fig. 30, F and (i :. Gubernaculum 18μ to 22μ long by 9. q $_{\mu}$ wide- Several papilhe present at posterior portion of body, namely, 2 phirs preamal and 3 pairs postamal; also I papibitaike elevation present above coacal opening (fig. $30, F$). Tail somewhat sleader and pointed, 83μ to 90μ long.

Fumale-Aecording to Schmart\%and Alieata ($1 / 0$), females (fig. 30, G) 1 to 1.1 mmi long by $62 \mu \mathrm{in}$ maximum width; specimens 0.8 to 1.3 mm long also observed by the writer. Shape of body and struchere of head and digestive tract as in frec-living adult mates. Valva with salient lips, betated aear ecjuator of berdy. Gravid females containh several shelled eges in varions degreess of segmentition. Tail somewhat slender and pointed, 150μ to 158μ long.
 Inving Genthation

Batc
Shape of eges similar to those of marasitic females. in a seride of measurements involving 20 eggs, length 45μ to 60μ, width 26μ to 34μ; nsualy embryonated
when deposited by gravid females; frequently old fcmales fail to oviposit and their eggs hateh in the uterus.

embryo

Embryo morphologically similar to embryo derived from egg of parasitic female.

 lateral view of temmie.
FIHST', SFCOND-, AND THMD-STAGF LARVA家

These three larval stages, aecording to observations by Lacker, morphologically similar to corresponding stages in direct cycle.

Develobment of Strongylodes Ransom Outshe the Host

The development of the various stages of Strongploides ransomi outside the host, in aceordance with information obtained by Lacker, is as follows:

DIRECT DEVEGOMMENG OF THRRD-STAGE TAHVAE FHOM EGGS OF RARASIPGS frasees

At room temperature (22° to $24^{\circ} \mathrm{C}$.) eggs of parasitie females hatelin from 4 to 18 hours and the larvac undergo the first molit from 12 to 18 hours later. Second-singe larvae, after a period of growth, molt a second time in less than 48 hours after incubation (fig. 29, K); after the second mott the larvae are in the third stage.


``` FKGS OF I'AltASITIC FEMATRES
```

At room temperature (22° to $24^{\circ} \mathrm{C}$.), eggs of parasitic females hateh in from 4 to 18 hours nad larvac undergo the first molt about 10 hours after hatehing (fig. 20, B and E), Second-stage haryac, after a period of growth, undergo a second molt from 12 to 14 hours after the first molt. The time reguired for the third and fourth molt is not stated; however, Ineker noted adnlt fre-living males and females from 36 to 48 hours after incobation.

DEVBLOPAENT OF THMD-STAGE LARVAE FHOM EGGS OF FREE-LIMNG PEMABES
Eggs deposited by free-living females usually hateh in 12 hours. The first molt in a water medium is apparentiy variable, and may require about 48 hours, especially when food is scarce. Second-stage larvae apparently molt from 48 to 60 hours after incubation, as that was the period when tuird-stage larvae were noted by ducker in water cultures.

Orshbyations on Effects of Envimonmbar
skin phevetiation
Lucker has shown that third-stage larvae of Stronoyloides ransomi are capable of penctrating the skin of live pigs and rabbits, this resulting in an intestinal infestation.

HESISLANCE TO DESICCATION

A small drop of water containing a number of third-stage larvae was placed on each of several ginss slides. Ab the moment the water evaporated, the time was noted, and the slides remained exposed at room temperature lor various periods as shown in table 35. At the expiration of the desired lapse ol time, is few drops of water were added to the dried larvae, and the preparations were examined at various intervals for about 24 hours.

J'able 35 shows that exposure of 5 to 10 minutes to air drying destroyed the vitality of most larvae, and a 20 -minutes' exposure proved fatal to all larvac.
Tarle 35--Results of observations on the resistance of thirt-stage larvae of Strouglbides ransomi to nir drying at room lemperature (21 ${ }^{\circ}$ ()

Number of lasciae used	Dumtion of exposura	(tomlition of laryme uftur athition of water	Sumber of !arvac used	Durntion of exposSuff	Combilion of tarvan mfter nddition of whter
$\begin{aligned} & 10 \ldots \\ & 10 \ldots \ldots \end{aligned}$	Minater ${ }^{2}$	All netive. 8 dead; 2 showed slight mosement nfter 10 mimetes, that were dead atter 24 hours.	11) .. . 3	Minule: 10 20	9 dead; 1 showed slight novement affer 10 minates, but was dend nfer 24 hours. All derd.

reaction to colo

Observations were made on the effects of various low temperatures on the third-stage larvae of Strongyloides ransomi. Erch record is based on observations involving about 1,000 larvae. During the course of the experiment the larrae were kept in glass tubes containing moist animal charcoal. The results are given in table 36, which shows that exposure of 6 hours to $-15^{\circ} \mathrm{C}$. destroyed the vitality of some larvae, and an exposure of 25 hours to that temperature destroyed all the larvae.
Table 36,-Effects of low temperature ($-15^{\circ} \mathrm{C}$.) on the infective larvad of Strongyloides ransomi, each culture involitity abo ith 1,000 larvac

$\begin{aligned} & \text { Chiluture } \\ & \text { no. } \end{aligned}$	Period ofrefris. eration	Condition of Inrwat aterminntion of exposure	$\begin{aligned} & \text { Culture } \\ & \text { no. } \end{aligned}$	Period ofreiris. cration	Condition of laryan and ternindiation of exposure
1.	[10urs	```Majorlly of larvae moved slowly. About bo percent show ed slight1 movement; others temy.```	3. 4.........	$\begin{array}{r} \text { Fours } \\ 22 \\ 25 \\ 25 \end{array}$	About 50 purcent shossed slight moventent; others dead. All larvae dend. Be.

General observations have indicated that the life of third-stage larvae of Stronghloides is somewhat short. Bruns (14) found that he could keep third-stage larvae of Strongyoides alive for 20 days. Schuurmans Stekhoven (107) reported that under favorable conditions of humidity and temperature, the longevity of S. stercoralis did not exceed 3 to 4 weeks. In 2 cases the writer has noted that the length of life of S. ransomi in swine feces kept in 1-quart glass jars did not exceed 11 to 13 days. This indicates that the life of the third-stage larva under field conditions is probably short. Such short duration of life is not surprising, however, since these larvae are not protected by a sheath as are third-stage larvae of most strongyle nematodes.

COMPARATIVE MORPHOLOGY OF EGGS AND THIRD-STAGE LaRVAE OF SOME NEMATODES OCCURRING IN SWINE

As already indicated, the eggs and third-stage larvae of each of the various species of nematodes parasitic in swine can be differentiated from one another in most cases. The various differential characters are given in tables 37 and 38 .
Tsble 37.-Comparison of eggs of some swine nematodes soon afler eggs are deposited
megs whicil ustahay do not matcit outsibe of host

Noutatorle	Atomburchatits of ers	Characteristres of espshelt	Depree of development and clanncteristios of egt when deposited
Gomovinnetur puthrmat.	aficrons Fan by 30-3.1..	Slighty thick, sumoth, coloricss.	Whth fully formed embryo. Cephalle norspines; anterior ernt of central portion will 2 suthll fooks; posierior book abors 3 $\boldsymbol{\mu}$ lotag.
Ascarops xirongylina...--...--	41-45 by $22-20 .$.	Thick; surfuty witit simall punctations; colorless.	cept justerlor hook nobat 1.7μ long.

Table 37.-Comparison of cggs of some swine nemalodes soon after cggs are deposited-Contimued
EQGS WHICLI USUALIYY DO NOT मATCFI OUTSIDE OF HOST-Continued

Nematode	Mrensurements of egs	Characteristios of egyshel!	Degree of devolonmant and eharacteristies of egty when deposited
Physocephatus seraiatas...	Ticronts 41-45 by 22-2f...	Thick; surface with small	
Mrtastrongutus salm	43-57 by 38-41...	punctations; colorless. ${ }^{T}$ Thick: surfoce stertis	As in G. pulchrum.
Vetastrongutas clongutas.......... (hoeroakrongula.s pudendotecths. . Isearis sum?		mammilatace slightly ${ }_{i s h}$	With fully formed athbryo; Splines or hooks insent.
	$45-\overline{2} \overline{1}$ by $25-41 \ldots$ 60-64 by 43-15 88-84 by $50-50$		-
		Thick; surface usuaily	Do. t'suanly to 1-ecil stake.
Trichuris muis	(i0-68 by 23-31...	compsely mammilated; Thiok; surface smooth; lemon slanpud; dark brown.	tol 1 -cell stuye.
EGGS WHICII HATCE OUTSIDE OF HOS'I			
I/yastrongyins rubidus.... Oerophngostomum denatum Nephaharias temtatus. Strongyfeides ransomi.			Iti enrty tadpale staxe. Usually wilh 8 to 16 cells. Wth nbout 32 to 3 cells. In late tadpole stage to carly vermiform embryostage.

Tarla 38.--Comparison of third-stage (infective) larvae of some nematodes occurring in swine

SUMMARY

A study was made of the early developmental stages of the following nematodes parasitic in swine: Gongylonema pulchrum, Ascarops strongylina, Physocephalus sexalatus, Metastrongylus salmi, M. elongatus, Choerostrongylus pudendotectus, Ascaris suum, Trichuris suis, Hyostrongylus rubidus, Oesophagostomum dentatum, Stephanurus dentatus, and Strongyloides ransomi. For two of the nematodes, however, G. mulchrum and H. rubidus, observations on the stages in the definitive host are also discussed briefly. The nomenclature of each parasite, its host relationship, geographic distribution, morphology, and bionomics of its early stages are given.

When fed to roaches, eggs of Gongylonema pulchrum hatched within 24 hours and the larvae developed to the infective or third stage in about 32 days. These larvae encysted within the sarcoplasm of the muscle fibers of the insect host. When fed to guinea pigs, third-stage larvae promptly penetrated the tissue at the junction of the stomach and esophagus, usually entering the wall of the esophagus in this region, and migrated under the linings of the esophagus and of the oral cavity. Under these linings the worms were found sexually mature 70 days after experimental infection. Eggs of G. pulchrum contained viable embryos after 4 months' exposure to outdoor-conditions at from -6.6° to $37.7^{\circ} \mathrm{C}$, and after being kept 4 months at room temperature (22° to 24°). Three new intermediate hosts for this parasite are reported in this bulletin, namely, Aphodius lividus, Dermestes vulpinus, and Parcoblatta sp .
When fed to beetles, eggs of Ascarops strongylina hatched within 24 hours, and the larvae cleveloped to the infective stage in about 29 days. Eags of this parasite contained risble embryos after 20 days' exposure at from -4° to $2^{\circ} \mathrm{C}$., and after being kept 4 months at room temperature $\left(22^{\circ}\right.$ to 24°). Two new intermediate hosts are reported in this bulletin for this parasite, namely, Aphodius granarius and Passalus cornutus.

When fed to beetles, eggs of Physocephalus sexalatus hatched within 24 hours and developed to the infective stage in 36 days. Eggs of this parasite contained riable embryos after being kept at a temperature of from -4° to $2^{\circ} \mathrm{C}$. for 20 days. Two new intermediate hosts for this parasite are reported in this bulletin, namely, Ataenius cognatus and Passalus cornutus.

The larvae of Metastrongylus salmi have been successfully reared to the third stage in carthworms, Lambricus terrestris and Helodrilus caliginosus var. trapezoides. Third-stage harvae may remain alive in the body of the earthworn for at least 4 months.

In a study of the development of Metastrongylus elongatus and Choerastrongylus pudendotectus, third-stage larvae of these parasites have been found in the bodies of earthworms as late as 9 months after experimental infection. Lungworm eggs eliminated with the feces of swine do not hatch outside the host. The surface of the eggshell is corrugated.

Egos of Ascaris summ were found to reach the infective stage in 16 days at $33^{\circ} \mathrm{C}$., in 18 days at 30°, and in 28 days at 22° to 24°. The infectivity of the egg was deternined by the molting of the embryo within the shell and by the ability of the eggs to produce
an infestation when fed to guinea pigs. Nonmolted embryos were not infective to guinea pigs.
Eggs of Trichuris suis were found to contain fully developed embryos in 18 days when kept at $37.5^{\circ} \mathrm{C}$. in 22 days at 33°, in 54 days at room temperature (22° to 24°), and in about 7 months outdoors when kept anderground; the temperature outdoors during the 7 months was from 6.1° to 24.5°.

Eggs of Hyostrongylus rubidus cuitured at room temperature hatched and the larvae developed to the infective stage in 7 days. Third-stage laryae fed to guinea pigs developed in the stomach without undergoing further migration and reached the fifth stage in from 17 to 19 days. In the proparasitic larval stages of H. rubidus sex was differentiated by the position of the posterior cell of fom giant cells in the body cavity of the larva. Preparasitic larvae in which this giant cell is anterior to the genital primordium develop into males, wherens those in which this ecll is slightity lateral or postcrior to the genital primordium develop into females. The general development of the male and female reproductive systems was traced in the four larral stages of this parasite. Third-stage larvac of H. rubidus showed the following characteristios: (1) They failed to penctrate the shin of young rats or guinea pigs; (2) they were resistant to a temperature of 3° to $5^{\circ} \mathrm{C}$. for 6 diays, but not to a temperature of -5° to 1° for 30 days; (3) their vitality was destroyed when they were kept at -20° for 9 hours; (4) they were killed when subjected to air drying for 4 hours; (5) in water-charconl culture, they survived for $21 / 2$ monthis but not for $3 / 2$ months.

Eggs of Oesophayostomum dentatum cultured at roon temperature hatched, and the larvae developed to the infective strge in about 6 days. Third-stage laryae of O. dentatum showed the following characteristics: (1) They failed to penetrate the skin of young rats under experimental condition; (2) some larve showed signs of life when exposed to -19° to $-29^{\circ} \mathrm{C}$. for 10 days; however, their vitality was destroyed when kept at a temperature of -15° to -29° for 31 days; (3) larvae were killed when subjected to air drying for 22 hours; (4) larvae kept in water-charcoal culture for about 10 months appeared normal.

Eggs of Stephanurus dentatus cuitured at room temperature (22° to 24° C.), hatched and the harvac developed to the infective stage in about 5 days. Third-stage larvae have been found to possess the following characteristics: (1) They failed to penctrate the skin of 2-day-old rats; (2) they succmbed after I homr's exposure to air drying at room temperature; (3) their vitality was not destroyed when they were exposed for 6 hours at -19° but an exposure for 9 hours at that temperature proved fiatal; (4) they were found to be normal after being kopt in water-and-charcoal media for 40 days.

The life of Strongyloides ransomi in feces-and-charcoal cultures kept in bottles at roon temperature did not exceed 11 to 13 days. Strongyliform laryae were found to perish when subjected to air drying for about 20 minates, and when subjected to $-15^{\circ} \mathrm{C}$. for 25 days.
It was determined that the shape of the buccal cavity usually serves to differentinte between the third-stage larvae of the various parasites discussed in this bulletin.

LITERATURE CITED

(1) Anonymous.
1847. trachins spimatis. Amm, ahed Mag. Nat. Hist. 19: 358-359.
(2)
 Deut, Khin. 11: 429-430.
(3)

Alegsandrint, G. C.
1929. habásitologa delá pomo e phela anlmalil domestici. 574 pp., illus. Toriuo.
(4) Alicath, J. Je:
1931. infective larvae of physochplaletg sexatatte in mats. Jour Parasitol. 18: 47.
(5) \qquad 1032. LIFE HISTORY OF THE RADBIT STOMACI WORM, OMELSCOLDES conicult. Jour. Agr, Research 44: 401-419, illus.
(6)
1933. the fipemamental thansmishon of tha swine lungworm, metastroncivics mongatis, to docs. ilour. Parasitol. 19: 242.
(i)
1933. rifh develobment of the swine stomach worm, irostrongifets humidets, in munea mes. Jour. Parasitol. 20: 97.
(8)
 tus mithoes and devedorment of mate and female hephodectue sesmens. four. Parasitol. 20: 127-128.
(9) and McTarosh, A.

 Parasitol. 20: 62.
(10) $73 \mathrm{AsTha}, 11 . \mathrm{C}$.
1806. On the anatomy and phatiglogy of the nematodd, pabastece and freer wimh obspryattons on thetic zoologicala position and afpinities to the echinoderms. Phil. Trahs. London 150: 545-638, iHus.
(11) Bernard, P. N., and Batche, J.

1913-14. inflemete de mode de pénetration cutaníe ou huccale du stelhandres dentatus sule les hocadisationg de fe NEMATODE DANS fohganjsme bu bonc mi gur son évoloTron. Compt. Rend. Acatl. Sci. [Poris] 157: 74-76, 1913; Ann. Inst. Pasteur 2 S : 450-460, illus., 1914.
(12) Bundek, J. de, mid Bauder, J. A. IR. F.
1026. contribetion \AA h'Gutede du déveloldement des strongylidés (schsénostomes) du gros intestin chez le cheval.. Amn, Parasitol. Humaine et Compar, 4: [87]-96.
(13) Brows, H. W.
1928. Fontheie studies on the longevity of tife fggs of ascabis tombricoides and A. subar. Jour. Parasitol. 15: [14]-22, illus.
(14) Bruns, H .
1907. binige bemerkengen tubm angulllula (stronayloidme) integ'halas. München Med. Wehnschr. 5d: 932-936.
(15) Cameron, T. W. M.
1923. ON Thie blobociy of phe infective lahy of movodontus thigonocermalus (rud.) of sheer. Jour. Felminthol. 1: [205]-214.
(16) Chmpoon, B. G., and Cirmwoon, M. B.
1933. the histulogical anatomy of cephalobetheg pabllliger cobs, 1920 . Zischr. Wiss. Biol., Abt. B, Ztschr. Zellrorsch. Mikros. Ahat. 19: [309]-355, illus.
Clorea, J.
1012. iber brihorpeha shathta molin ads dem magen des hausfonwerass. Zool. Jahrth, Abt. System, Geogr. u. Biol. Tiere. 32: |285|-294, illus.
(18) Connola, [T. S.]

- 1866. discovery of thachins.]3rit. Med. Jour. (1866) I: 302.
(19) Conj, W. W., Otto, G. F., and Spmoder, I. A.

1930. investigation on ascalis humbricoides and the assomiated
intestinal helminthe of man in sofithmbetery virginta.
Aner, Jonr, Hyg. 11: $1-55$, ilhs.
(20)
--and Srols, N. R.
 IN Mrins. Amer. Jour. Hyg. 14: 650-689, illus.

- Stoll, N. R., Riler, W. A., and Sweet, W. C.

1929. studes on hookwohm, ascaris and thenchis in panama. yif. Quanthative studies on the distribution of ascabis fombric:oddes and thichehis thelliura in panama. Amer. Jour. Jily., Monog. Ser. 9: 1b1-209, illus.
Cram, f. 13.
1930. the mficence of low temphrateres and of pishefectants on the eges of abcaras fembricoides. dour. Agr. Research 27: 167-17 5 .
Davaine, C. J.
1931. Recubhehes stie de développement er la propagation dut
 Jour. Physiol. Fomme 2: 29n-300.
firstens, A.
1932. veber mis ceberphactiag bes mensehmeyen spelwuras (ascarts lembricoldes), Verhandl. Versamml. (iesell. Kinderheilk. Deat. Naturf. u. Acrtze Wiss. (1s91) 9: 1-16.
Pibighe, J., and Jitievsen, H.
1933. CONTHBLTIONS to The blology and mohriolagy or sprop-
 Steenstrupp Fodel, Fobenibavi 2, Halvbind no. 25, 28 pp.
Foster, W. D.
1934. The houndwonms or domestic swine, witio spectal heperence to two species parasitic in tire stomacil U. S. Dept. of

J914, ombervations on the begis of ascabis emembeodes. Jour. Parasitol. 1: [3] \}-36, illus.
(28) Fullibrome f.

1922. ueber ben infektionsweg bft ascabis. Klin. Wehnselir. I: | 1922. leber des iles. |
| :--- |
| $984 \quad 08 \mathrm{~S}$, |

 Schiffs th. Tropen Hyg. 27: 413-420.
(30)
 UND BEMERKJNGEN DIE JÖNGSTEN STADIEN VON THMOOCRPRAfets pmomtuts. Arch. Schiffs u. Trupen Hyg. 27: 421-425, illus.
(3I) Gatli-Valemio, 13.
 Centbl. Bakt. [etc.] (I, Originale) 75: 46-53, ilius.
(32) Genoblst, L .
1923. he genbl mepastrongybes molin, 186t. Bull. Soc. Pati. Exol. 16; 622-630, illus.
(33) Gowal, C., and Movert, A.
1885. sulad storla naturale p sula significato eminico-patologico deblef casi defye angulatile integtinali e stercoraha. Atti R. Accad. Sci, Torino (18s,j-8($) 21$ (1): $55-50$. (Aiso in Arch. Sci. Med., Torino 10 (3): 03-107. 1886.)
(34) Gonest, R.
1907. beitrag te mebensonscuichte von stmonghootoen atu dem Affen tind dem schafe. Arl). K. Gsndhtsamt. 25: [485]-493, illus.
(35) Goodey, ' 1 '.
1922. a binjle methon of expermbentation for skin infection Whrif hook-wom lanvae. Roy. Soe. Med. Proc., Sec. Trop. 1) iscases and Parasitiol. $\overline{5}$ (4): $10-20$.

Gooner, T '.
1924. the anatomy or oesophagostomum dentatum (aud.) a nematode larasite of the big, witil obsfinvations on the stietetoue and bology of mhf free-hiving habvae. dour. Hel-

1924, obgervations on hyostrongithes rubidus hassali and Stiles iges) halif igi, flom the spomach of the pio, with A Note on sproncitus atrentapes (mohn 1800). Jotr. Helminthol. 2: [191]-197, ilhes.
Gimassi, G. B.
1887. Thehocephabus und ascams bntwombent. pabliminamote. Centhi. Bakt. [ete.]. (I)I: 131-132.
(3) \qquad and Panona, C .
 N: probablamente d'anguiflela intestinale. Arch. Sci. Med, Torino, v. 3, no. $2, \mathrm{arl} .10,14 \mathrm{pp}$, ilhus.
\qquad
1887. I. Nuove ossenvazion sulbterthogena bel mitaboonema
 pocemia. Ati R. Acead, Naz. Lincei, Rem. Cl. Sici. Fis., Mat.
 108.
(41) Hahe M. C.
1922. the egos and tarvale of swine pabastres. Vel. Med. 17 ; 289-292, illus.
[1924.] woms marabites of domesticated anmals parasimes of swine. 160 mp ., thus. $1 \mathrm{p} . \mathrm{p}$.
(14)
1929. Ahturobods as merrmednem hosts of helminftis. Smibhsh. Mise Collect., v. 81, no. 15, 77 pp.
Mamane, 0 .
1895. Dhe nomathelminthen, beträce zuh konntios hbrat entWhembng mares babes fin bheg bibevsieschichte. Heft 2, illus. Jena.
(45) Hasfoawa, T?
1925. Bxperimental studies on the development of thichocebhaLus. [Abstract] Jnpon Med. World is (4): 105 .
(46) namst, G.
 Tragung der eingeweidewürmers. Göttingen Univ. (GeorgAugustus Dners) Naehr. K. Gescil. Wiss. 1851 (10): 260-264.

Heams, W. B., and Freebons, S. i3.
1916. "tungwonms." a preliminaby heroty on thentment, with Some obsellyations regahonis mie epidemonogy and life Hisfory of the mabasmy. Calif. Agr. Expt. Sta. Circ. 148, 8 pp ., illus.
(49) Hobmaren, A., and Hobmalbr, M.
1929. DEE ENTWICKBDNG DER Fhnve des hongenwurmes meragino gybos blongatus (strongibus pabadoxus) des bohweines und hif livasionsweg, sowig vohidupice miteellung über die entwicklung von choehosthongivids brevivaginatus. München. Tieriath. Wehaschr. 80: [365]-360, illus.
(50)

- and Hobmaler, M.

1929. biohome von chobrostrongylus (metasthongivus) fude wotectus (hlevivaginatus) aus der lunge bes schw ines,

 Mänchen. Tierienti. Wehnsehr. 80: [433]-436, ilhus.
(51) -....and Mobsatien, M.
1930. Entwicklung und myasion von memastiongyius blongatos dell hunge. Klin. Wehnschr. 8: 1625.
(52) Новмдier, M.
1931. Die entwicklungagesfithete und die pathologiscile badhu-
 monn). Munchen. Tieritratl. Wehusehr. 76: [361]-366, 388 302, [409]-413, 436-440, illus.
Keldzilt, A. E.
 Jour. Jabl. and Clin. Med. 1S: $371 \cdot 374$, illns.
(54) Kobayasur, H .
1932. hesistanch of tife ego of ascabis abminst formadidehide. Mitt. Med. Hoelseh. \% Keijo, pp, 3746.
(\%) Kubss, H. A.
1933. studes on the genus sthonghlotdes (nematodes). Amer. Jour. 11vg. 16: 450-491, iltus.
(50) K乇̈ehenmelsfer, [Gi.] T. [H.].
1934. on anmal and vegetable pabasites of the muman body, a manual of theme natumal history, blagnosis and treatment. Transl. from 2d German ed. be E. Lankester. v. 1, illus. Loudon.
(57) lamchtenstern, 0 .
 Bakt. [efe.1 (1) 25: 226-231.
Т,носклит, R.
 (Georg-Augustus triv.) Nachr. K. Geself, Wiss. $18(00$ (13): 13і)-138.
\qquad $-$
1935. rnjersuchungen buer trarfina gpimals. zugletcit bin beitrag \%un kenviniss der wulahlankigeten. 57 p.p, illus. Jeipzig and Heidedberg. (Anll. 2, stark vermehrte u. mangearb., 120 pp . illus. Leipzig and Heidelberg. 1866.)
1936. De whaschlichen pabasiten und die vontinen hemië́hrenoen
 und abryte. v. 2, ifg. 1, illus. Jeipzig and Heideberg. [v. 2, Ifg. 3. Leipzig and Feidelberg. 1876.)
1937. heber dim mbbenstieschicitto der sogenannten angullula stheroratis und deren beqibitungen \%u der sog, a. intestrinams. Ber. Verhamd. K. Sichs. Gesell. Wiss. Leipzig, Math.-Plys. Cl. (1852) 34: 85-107.
(62) Linden, (G., vox, and Zenneck, J.
1938. Lnterscobioncen über die entwichelung der freilerenden generationen der lungenwdrama. Centbl. Bakt. [etc.] (I, Originale) 76: 14i-178, fhus.
(63) Innstow, O. F. 13 .
 Аи\%. 9: 525-52S.
(ij) I.sist, T.
1939. Mhmãge \%UR entwighblongsgeschmity dea nematoden. 32 pp. Jemar. (Tnaug, Diss.).
(60) Jooss, A.
1940. the anatomy and life-histony of agchyostoma buodenale nebs. a monographt. 158 pp ., illus. Cairo. (Egypt. Govt.
(60) Sthool Med. Rec. 3.)
1941. von wíthmer tind abthiopoden mervohgerupene mokizankungen. In Handbuch der Tropenkrankheiten, v. 1, pp. 77209. Leipzig.
(67)
1942. the anatomy and lafi metomy of aghuylostoma duodenabe, dob. a monotirami, lary 2 . The digelopment in the fiee State. Egypt. Min. Eifl, Rec. Sehool Med, 4: [159]-613, iths.
(G8) 1,0ckER, J. ${ }^{2}$.
1943. some cross thansmission explements whit congylonema oh rominant orlan. Jour. Parasitol. 10: 134-141.
(69) Lucker, J. TP.
1944. DEVELORMENT OF THE SWINE NEMATODE STRONGYLOLDES RANSOMI and the behavior of tts infective larva. IV. S. Dept. Agr. Tech. Bull. 437, 32 pp., illus.
(70) McCoy, O. R.
1945. the growth of hookworm larval on pure cultcres of bacTERAA. Science (n, s.) 60: 74-75.
(7i) Marchi, P.
1946. monograpla sulda storia genemta fe suma anatomia dehla spropreia obtesa rgd. Mem. R. Accad. Sci. Torino (2) 25: 1-30, ilhs.
(72) Matutis, $\mathrm{H} . \mathrm{N}$.
1947. THE COMMON INTESTINAL ROENDWORM OF SWINE (ASCARIS LCMhamompes. Nebr. Agr, Expt. Sta. Circ. 17, 11 pp., illus.
1948. stedies on the Ascamis tembricomes. Nobr. Agr. Expt. Sta. Researeli Bull. 37, 78 pp., illus.
(74) Madpas, E.
1949. La mee et henkystement cite les nématodes. Arch. Zool. Expt. et Gén. (3) $7:\{503\}-628$, illus.
(7a) Midra, K., and Nishtuchi, N.
1950. ©eber beprechtete end cebefrechtete ascaridenhier im MENSCHLCHEN KOTE. Centh]. Bakt. [ete.] II, Originale) 32: 637-641, illus.
(тб) Мӧмnя, H. O .
1951. THE LIFE-BLSTORIES OF TRICHOSTHONGYLES instablils AND T. hecates of sheep in sormhafnca. Tmion So. Africa Dept. Agr. Rept. Dir. Vet, Fid, and Researel 11-12: \{231\}-251, illus.
(77)
1952. stedes on the blonomirs of the free-eiving stageg of trifhosthongyles spfe and other parasitic nematodes. Lnion S. Africa Dept. Agr. Rept. Dir. Vet. Resenteh 16: 175-198.
(78) Morris, R. S.
1953. the vability of parasitic ova in two percent fohmabin, WITH ESPECLAL REFEGENCE TO ASCABLS DEMBRICOIDES. Johns Hopkins Hosp. Bull. 22: 299-300.
179)

Nassonov, N. V.
1890. K aNAtomi : ghologh khegeym chervel. (Russian text.) Varsharsk. Vniv. Tzviest. (6), 30 senmiabr., 16 pp.
(80) Nolf, I. 0.
1932. expermental stedies on eentan factors inflecencing the deyedopment and viablity of the ova of the hgman tricheris as compared whth the moman ascabis. Amer. Jour. Hyg. 16: 28S-322, illus.
(S1) Ortlepp, R.J.
1925. OBSERYAYIONS OE THE LIFE HISTORY OF TRIODONTOPHORES TENGLCOLLIS, A NEMATODE PARASITE OFTHE HORSE. Jour. Heiminthol. 3: $1-14$, illts.
(82) Otto, G. F.
1932. ASCAMS AND TRICHERIM IN SOETHERN LNITED STATES. JOUT. Parasitol. 18: 200-208.
1932. the appearance nid simificance of ter unfertilized egcs of ascaris mumbricotdes (inve). Jour. Parasitol. Is: \{269\}-273, illus.
(84) Otpendal, A. J. F.
1926. die darimand bei angulidasis intestinalis. Arch. Schiffs u. Tropen. Hyg. 30: $510-520$, illus.
OWEN, R.
1835. Deschithon of a meroscopic entozoon mevesting the moscles of the ncman body. Zool. Soc. London, Trans. 1: 315-324, jllus.
(86)
$P_{A L}, S$
1928. die fhasen des lebenscicles def ancichlelat acett ehrbg. UND HRE EXPERMENTELE-MORPHOLOGISCHE BEEMFLDESUNG. Ztschr. Wiss. Zool. 131: 293-344, ilhs.
(87) Perhoncito, e.
1880. osservazioni elmintologiche relative alla malattia aviluppatasi endemica negli operai del gottardo. Atti R. Accad. Naz. Jincei, Rend. Cl. Sci. Fis., Mat. e Nat. (1879-80) (3) 7:
$381-433$.
\qquad
1881. obsehyations bun le devehopphamt de vianoulledha bterCoralis (Bayay), pgetdo-rhanditis stercoralis (miti) hors De b'onganisme humain. Jour. Anat. et Physiol. [etc.] [Paris]
17: 499-519, ilhus.
(80) Raffenspmbek, H. B.
1927. vability of ascaris sugm ova exposed to weather condirrons. Vet. Med. 22: 22!-22t, illus.
1930. internal pabasites of the horse. Vet. Med. 25: 234-23S.

Rallelet, [A.]
1884, developpement expermmental du trichocebifale du culen. Bull. et Mém. Soc. Cent. Med. Vet. (n. s. 2) 38: 449-452.
Ransom, R, H.
1906. THE lape histohy of mhe twisted wheworm fammonchus contontus) of sheel and other huminants. $₹$. S. Dept. Agr., Bur. Anim. Indus. Circ. 93, 7 pp. illus.
(93)
———and Cras, E. B.
1921. The coumse of mghation of ascamis haryae. Amer. Jolit. Trop. Med.: $129-159$, illus.
(04) \qquad and Cram, E. B.
1921. The counse of migration of ascaris labyae from the inteb. tine to the lungs. Ahat. Rec. 20: 207.
(05)
--and Fosten, W. D.
1917. hape mistolit of ascaris lumbricomes ano belated yobms.
(96) --_ and Foster, Fry Note). Fout. Agr. Research 11: 395-398.
1910. RECENT DISCOVERIES CONCEINSNG THE hFE histohy of ascabis LDMABricoines. four. Parasitol. 5: [93]-99.
(97)
———and Fosten, W. D.
1920. obseryations on the hify histomy of ascabis mumbiticoides. U. S. Dept. Agr. Bull. 817,47 pp., illus.
(98) - and Halle, M. C.

1915-16. The life histohy of oongrlonema seutatum. Jone. Parnsitol. 1: $[154]$, 1915; 2: [80]-86, 1916.
(99) - and Mals, M. C.
1917. A Fubtheit note on the hife-history of gongylonema soutaтum. Jour. Parasitoi. 3: [177]-181.
100) Ross, l. C., and Kauzal, G.
1929. preliminaby note on the pre-parasitic stages in tee lefe cycie of stepuanurdos dentatog diesing, is30, Aust. Vet. Jour. 5 (2): 77-78,
(101) - and Kauzal,
1932. The jife crile of stephandides dentatus deising, i839; tite kidney worm of pigs, with obsemvations on trs foconomic impolitanoe in autrralih amd suggestions for its conthol. Aust. Gouncil Sci. and Indus. Rescarch, Bull. $58,80 \mathrm{pp}$., illus.
(102) IRosis, R.
1916. TME life habtory of ascaris jumaricomes. Brit. Med. Jour. (191 (b) 2: 60-61.
(103) Rovella, Gi.
1888. hicemehe sugli organi gentital deglt sthongyloides \{angule (104) Schang, P. JU
1927. EVOLUTIon dei, "hyostrongylus rubidus" agente de la gaspritis parasitaria de los cerdos. Rev. Cent. Et. Med. Vet. Buenos Aires 118: 459-470.
(105) Schneider, A.
1866. monograpilie dew nematoden. 357 pp., illus. Berlit.
(106) Scuuckmann, W., von, and Zunker, M.
1930. ZUR ENTWICKLUNG DER SCHWEINE-LONGGNWÖRMER. Ztschr. Infektionskrank. u. Hyg. Hanstiere 38: [233]-246.
(107) Schutrmans Stekhoven, J. H., Jr.
1928. mesearches on nemas and thelk taryab, hit strongyloides stercoralats bayay. Ztsehr. Parasitenk. I: [23k]-261, illus.
(10S) Schwartz, B.
1925. preparastic stages in the hife history of the cattle hookworm (bustomen pllebotomtin). Jour. Agr. Research 29: 451-458, illus.
(109) \qquad and Alicata, J. E.
1029. the development of metastrongyots elongatus dio m. prdendotectes in their intermediate hosts. (Abstract) Jour. Parasitol. 16: 105.
\qquad and Alichta, T. E.
1030. hyecies of the sematode gencs sthongyloides idarasitic in domestic swive. Jour. Agr. Rescarch 40: 11-23, illus.

- - aud Alicata, J. E.

1031. Concernige tile life history of hungworms of swise. fonu. Parasitol. 18: 21-27, illus.
\qquad and Price, E . W.
1032. observaptons on tife life hhtory of staphantite dentatue. Jour. Parasitol. 15: 140̄-146.
(113) ———and Price, E. W.
1033. The lipe history of than wine kidney worm. Science ($\mathrm{n} . \mathrm{s}$.) 70: 613-614.
-_-and Pute, E. W.
1034. wefeton of pigs throcgh the skix wimithe larval of The swise kidney wora, stephancuts pbatatus. dour. Amer. Vet. Mer. Assoc. (n. s. 32) 79: 359-375.
(115) Seurat, L. G.
1035. stir l'évolution di physocephales mexamtos (moln). Compt. Rend. Soc. Biol. [Paris $]$ 75: $517-520$, illus.
1036. Sur les premiers stages éyohttifs dee spiropteres. Compt, Rend. Soc. Biol. [Paris] 78: $561-565$, ilhts.

- 10

1916. conthauthons a l'étcde des formes hanvaites des nématodes parasites hettronénes. Bull. Sci. France et Belg. (7) 49: 297-377, illus.
1917. contrinetions vocvelles a l'étcde des pormes latyabes des nématodes parasites hetéroxénes. Bull. Biol. France et Belg. (1918) 52: 344-378, illus.
1918. histothe naturelle des mématodes de la berbérie. premiere Partie. horpholocie, développement, éthologie et affinttês des Nematodes. 221 pp ., illus. Alger.
(120) Shipley, A. E.

189t. Notes on nematode parasites from the animals in the zoological gatrens, hondon. Zool. Soc. London Proc. 3: 532-535, illus.
(121) Skrjabin, K. J., and Bekensky, P. W.
1925. WURMENZOOTIE DER SCHWEINE, VERURSACHT DCRGH HYOstrongyles rubides in ressland. Berlin. Tieräratl. Wehnschr. 41: 52-53.
(122) Spindlem, L. A.
1929. the relation of moistere to the distribetion of human thicheris and ascabis. Am. Jour. Hyg. 10: 476-496, ilhas.
(123)
1929. a stedy of the temperatere and molstere requirement th the development of the eggo of the dog tricherid (trichuris yczpis). Jour. Parasitol. 16: [41]-46.
1931. vlability of eggs and laryae of stepranurcs pentatus. Jour. Parasitol. IS: $4 \overline{5}$.
1933. Skiv penethation tests with infective larvae of the swine gidney worm, stephantrus dentatus. four. Parasitol. 20: 76.
(126) Stewart, F. H.
1916. On the hff-histony of ascabis lembricoides. Brit. Med. Jour. (1016) 2: 5-7, 753-754, illus.
\qquad
1916. fumther experiments on Ascaris infection. Brit. Med. Johir. (1916) 2: 480-488.
1917. on the development of ascaris lumbutcoides min and ascarts gulld duj. in time rat and mouse. Parasitology 9: 213-227, ihus.
(129)
1918. on the life history of ascaris lumhricoidas l. Parasitology 10: 197-205.
(130) Stiles, G. W.
1891. sur la dent des embryons d'ascabis. (notes bur les parasites. t.) Compl. Rend. Soc. Biol. [Pªris.] (9) 3: 465-466.
(131)
1892. on the anatomy of myzommus scotatos (aumler 18ib) STLLEE, 1892. pp. 12G-133, illus. Teipzig. (Separat-abdruck aus der Festschrift zum Sielenzigstengeburtstage Rudolt Leuckarts.)
(132) Stoll, N. R.
1932. note on me-hfection mider "Naruhal" conditions witila gut nematode of the rabhit, Jour. Parasitol. 19: [54]-60, illus.
(133) Taylen, L.
1900. oun present fnowledge of the ktusey worm (sclenostoma pinguicola of swine. U. S. Dept. Agr', Bur. Anim. Thdis. Anth. Rept. (1899) 16: 612-637, illus.
(134) Theleer, A., and Robertson, W.
1915. investications into the wife-histoily of the wine-wohm in ostmobes. Union Sonth Afrien Dept. Agr. Dir. Vet. Researel Rept. 3-4: [291\}-345, ilhus.
(135) VEghas, F.
391.5. The anatomy and hife histoit of the haemonchus contontus (rud.). Union So. Africa Dept. Agr. Dir. Vet. Researelt Rept. 3-4: [347]-500, illus.
(136) Wharrox, I. D.
1915. tie eggs of ascamis Lumbricoides. Philippinc Jour. Sci. 10 (Sec. D, Gen. Biol. Ethnol., and Anthropol.): 111-115̄.
(137) Yokogawa, S.
1922. the develorment of heligmosomism moris, a nematode from tile intestine of the wild rat. Parasitology 14: 127-166, illus.
(138) Yorke, W., and Maplestone, P. A.
1926. the nematode pafasties of vertebilates. $\overline{5} 36$ pp, illus. London.
(139) Yoshida, S.
1020. on the resistance of ascaris egg. Jolit. Parasitol. 6: 132-139.
(140) Zebrowski, G.
1922. A premiminary report on hog lung-woma. Ind. Acad. Sci, Proc. 1921: 265-281, ilhis.
1925. studies in hige history and conthol of hog hivaworm, Ihed. Acad. Sci. Proc. (1924) 34: 353-366, illus,
(142) Zenker, F. A.
1860. ueber die thichinhn-krankheit des mengehen. Arch. Path. Asat. u. Plysiol. [Virchow] (n. F. B) IS: $561-\overline{\text { in }} 2$.
(143) Zinn, W.
1899. vebeh anguldela intestinalig. Centbl, Bakt. fete.] (3) $26:$ 696-702, illus.

ORGANTATION OP THE UNTED STATES DEPARTMENT OF AGRICULTURE when this publication was last printed

Secretary of Agriculture
Henry A. Walmace.
Under Secretary Rexpord G. Tugwell.
Assistant Secretary M. L. Wilson.
Director of Extension Work.
C. W. Warburton.
Director of Personnel W. W. Stockberger.
Director of Information M. S. Eisenhower.
Director of Finance. W. A. Jбмp.
Solicilor Maetin G. Weite.
Agricultural Adjustment Administration.
Burcau of Agriculural Economics.
Chester C. Davis, Administrator.
Bureau of Agricultural Engineering A. G. Black, Chief.
Bureau of Animal Industry S. H. McCrory, Chief.
Bureau of Biological Survey John R. Monler, Chief.
Bureau of Chemistry and Soils.
Ira N. Gabrielson, Chief.
Bureau of Dairy Industry H. G. Knight, Chief.
Bureau of Entomology and Plant Quarantine_
O. E. Reed, Chief.
Office of Experiment Stations
Lei A. Strong, Chief.
James T. Jardine, Chief.
Food and Drug Administration.
Whlter G. Campbell, Chief.
Forest Service Ferdinand A. Silcox, Chief.
Grain Futuret Administration
Bureau of Home Economict J. W. T. Duvel, Chief.
Library Loutbe Stanley, Chief.
Bureau of Plant Industry
Bureats of Public Roads. Claribel R. Barnett, Libtatian. Frederick D. Richey, Chief.
Weather Bureau Thomas H. MacDonald, Chief. Wilhis R. Greqg, Chief.

This bulletin is a contribution from
Bureau of Animal Induatry
Zoological Dioision.
John R. Morler, Chief.
M. C. Hall, Principal Zoologist,
Chief.

[^0]:
 doctor of philosnpity. The writer is indebted to insochates in the Zoolosicnl Div|sion for sugyestions and
 Quarmatine supplied valuallo jifformation in connection with tha st udy of the mode of eneystmeat of

 withworms tused in comnect on wilh stuilies of the life history of Metratronquins selmi.

[^1]: ${ }^{5}$ Italie mambers in pirentheses refer to Literbtare Cifed, in. gis.

[^2]: ${ }^{1}$ Larva undergolag second molt.

[^3]:

[^4]: : Larva unfergolog first malt.

[^5]: tharva untorgoing fisst molt.
 starva madergoing second molt.

[^6]: A. Fgr with fully develonasl embrjo.

 First-siace lirran: B, Newls hatcliced; C, unteriter jorition of harva undergoles first molt,
 Thirdstage farya: D, Auturior end, iaternl view: E, anterior portion, lateral vow, p, posterior partion, lateml riew; of, internl wiew or harvas' H, variations noted in talls.
 near tip of tail usually more prominent in M. elomgatun (fig. 16, H) than in M. satmi. Larvac 625μ to 665μ long by 26μ wide, enclosed in sheath of hasi molt. Cuticle.-With prominent trinsverse striations.

[^7]: 1 Measurements to uot Inclarie sheath.

[^8]: 1 harso madergotng secontl moll.

[^9]:
 Bur. Anlan. Inden. Guz. 3(2):98-108. 1033. [Minntographed.]

[^10]: Ste footmote on P. 78.

