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Abstract

We develop a method to characterize the location as well as the time
of approach of optimal steady states in single-state, infinite-horizon, au-
tonomous models. The method is based on a simple function of the
state variable which is defined in terms of the model’s primitives. The
actual implementation does not require to solve the underlying dynamic
optimization problem (which often does not admit a closed-form solu-
tion). Applying the method to a generic class of resource management
problems, we show how it identifies the set of candidate steady states
and determines, for each steady state, whether the corresponding ap-
proach time is finite or infinite.
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1 Introduction

An important property of intertemporal economic systems concerns their

long-run stability or, more precisely, whether or not they converge to a steady

state. When they do, two questions immediately arise regarding the location

of the optimal steady state and the time it takes to approach it. While

the conditions needed for the stability of multi-state processes are often hard

to specify and/or verify (see Sorger 1989, and references cited there), the

conditions ensuring the global stability of single-state, autonomous processes

are rather straightforward. In this work we study the optimal steady-state

location and approach time of the latter type of processes. For this purpose,

we introduce a simple method based on a function of the state variable which

can be obtained from the model’s primitives without the need to actually solve

the underlying dynamic optimization problem. We then apply the method to

a generic class of resource management models.

In the context of natural resource management, the steady-state location

concerns issues such as whether the resource should eventually be depleted

(led to extinction) or some finite stock must always be reserved for future

use. Alternatively, one can investigate the conditions or regulatory measures

that give rise to more conservative exploitation relative to some benchmark,

by comparing the location of the corresponding steady states (for examples of

this type of analysis, see Tsur and Zemel 2004). The steady-state approach

time has initially been examined in the context of nonrenewable resources (e.g.,

minerals) that are both finite and essential (see Dasgupta and Heal 1974, and

references cited therein), with the main insight that the larger the alterna-

tive price of the mineral resource, the longer it should take to deplete it (in
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the limit, when the alternative price is infinite, depletion occurs asymptoti-

cally). In other settings, questions regarding the steady-state approach time

are sometimes posed in such concrete terms as “when is it optimal to exhaust

a resource in finite time?” (Akao and Farzin 2007) or “when should we stop

extracting a nonrenewable resource?” (Schumacher 2011). Similar questions

arise in the context of capital accumulation (investment) and growth models,

where the capital stock or capital per (quality-adjusted) labor converge in the

long run to constant levels.

The steady-state location problem has been studied by Tsur and Zemel

(2001) by means of a function of the state variable, denoted L(·) and defined in

terms of the model’s primitives, which serves to formulate necessary conditions

for optimal steady states. This L-method identifies the set of candidate

optimal steady states. When the method suggests a unique candidate, the

optimal state trajectory converges to it from any initial state. Otherwise, the

optimal steady state to which the system converges may depend on the initial

state.

The present work extends Tsur and Zemel’s (2001) analysis in two ways.

First, an additional necessary condition is specified in terms of the slope of L(·),

which significantly narrows down the list of candidates for optimal steady-state

in models admitting multiple candidates. Second, the L function formalism

is used to determine whether the approach time to the steady state is finite

or infinite, thereby addressing the second question in a straightforward man-

ner. It turns out that both questions (the steady state location and time

of approach) require merely an algebraic study of the associated L(·) func-

tion which can be easily carried out without the need to solve the underlying

dynamic optimization problem, which often admits no explicit (closed-form)
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solution.

The next section lays out the setup for a general infinite-horizon dynamic

optimization problem, defines the corresponding L(·) function and briefly sum-

marizes the results of Tsur and Zemel (2001). Section 3 presents the new re-

sults – the extended necessary condition for an optimal steady state as well as

the characterization of the steady-state approach time. Section 4 applies our

method to a generic model of natural resource management, considering, in

turn, nonrenewable and renewable resources. The formal proofs are presented

in Section 5 and Section 6 concludes.

2 Setup

Let X(t) and c(t) denote, respectively, the state (stock) and control (action

flow) of an economic system at time t. The action c(t) affects the state’s

evolution according to

Ẋ(t) = g(X(t), c(t)) (2.1)

and gives rise to the instantaneous benefit f(X(t), c(t)). The policy {c(t); t ≥ 0}

generates the payoff ∫ ∞

0

f(X(t), c(t))e−ρtdt, (2.2)

where ρ is the time rate of discount. The instantaneous benefit and the state

dynamics functions, f(·, ·) and g(·, ·), are twice continuously differentiable and
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satisfy1

fc > 0, fcc < 0, gc ≤ −α < 0, gcc ≤ 0, fX ≥ 0, (2.3)

for all X ∈ (X, X̄) and feasible c, where α is a given positive constant and the

subscripts X and c denote partial derivatives with respect to these variables.

A feasible policy satisfies X(t) ∈ [X, X̄] and c(t) ∈ C ≡ [c, c̄] for all t ≥ 0,

where X < X̄ are given state bounds and c < c̄ are given action bounds. The

lower and upper bounds X and X̄ can be determined by physical or regulatory

constraints (e.g., natural resource stocks and produced capital stocks cannot

turn negative, or a regulator may impose some positive lower bound on these

stocks). Alternatively, these bounds can be induced by the action feasibility

constraint c ∈ C (e.g., the initial stock of a nonrenewable resource or the

carrying capacity stock of a renewable biomass resource determine the upper

bound X̄ if the exploitation rate is restricted to be non-negative). This

distinction will turn out to be important in the analysis below.

The optimal policy is the feasible policy that maximizes (2.2) subject to

(2.1) given X(0) = X0. We assume that an optimal policy exists and de-

note the corresponding value function (the payoff under the optimal policy) by

v(X0). Since the (single state) dynamic optimization problem under consider-

ation is infinite-horizon and autonomous, the ensuing optimal state trajectory

is monotonic in time (see Hartl 1987). As it is also bounded, the optimal state

process must converge to a steady state, which we denote by X̂ ∈ [X, X̄].

1The assumptions regarding the signs of fc and gc might appear restrictive (e.g., in
investment models, where X(t) is the capital stock and c(t) is the investment rate, gc > 0
and fc < 0) but in fact they imply no loss of generality: one can always formulate the model
in terms of the control −c instead of c, keeping the requirement that fcgc < 0. In either case,
the condition |gc| ≥ α > 0 implies that c is influential in controlling the state evolution. A
similar comment applies to fX when X represents a damaging state, e.g., a pollution stock.
We maintain the sign convention of Assumption 2.3 for the sake of concreteness.
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Suppose that the constant-state function M(X), defined by

g(X,M(X)) = 0, (2.4)

is single-valued and corresponds to a feasible policy for all X ∈ [X , X̄]. It

follows from (2.3)-(2.4) that

M ′(X) = −gX(X,M(X))/gc(X,M(X)) (2.5)

is well defined. Adopting the policy c =M(X) leaves the process at the state

X indefinitely, yielding the payoff

W (X) ≡ f(X,M(X))/ρ ≤ v(X), (2.6)

where the rightmost relation holds as an equality only at the optimal steady

state X̂. Define the function

L(X) ≡ ρfc(X,M(X))/gc(X,M(X)) + ρW ′(X),

which, noting (2.5), can be expressed as

L(X) =
fc(X,M(X))

gc(X,M(X))
[ρ− gX(X,M(X))] + fX(X,M(X)). (2.7)

The function L(·) serves to formulate the following necessary conditions

for the location of the optimal steady state X̂ (see Tsur and Zemel 2001):

Proposition 1 (necessary conditions for the location of X̂). X̂ ∈ (X , X̄) only

if L(X̂) = 0; X̂ = X only if L(X) ≤ 0; X̂ = X̄ only if L(X̄) ≥ 0.

The proofs of all propositions are presented in Section 5.

We refer to the states where L(·) vanishes as the roots of L. Proposition

1 identifies the optimal steady state as either a root of L or one of the state

bounds. It determines X̂ uniquely in the following cases:
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Corollary 1. (i) If L(·) crosses zero once from above in [X , X̄], then X̂ falls

on the unique root of L(·). (ii) If L(X) > 0 for all X ∈ [X , X̄], then X̂ = X̄.

(iii) If L(X) < 0 for all X ∈ [X , X̄], then X̂ = X .

In other cases, e.g., when L(·) obtains multiple roots in [X , X̄], the proposition

cannot determine X̂ uniquely, although it restricts significantly the list of

candidate steady states. In the next section we extend the proposition by

restricting this list even further and use L(·) to determine whether the steady-

state is approached at a finite time or asymptotically.

3 Steady states properties

We begin with the following useful extension of Proposition 1:

Proposition 2. A root of L(·) can be an optimal steady state only if L′(X) < 0.

Proposition 2 narrows the list of candidates for an optimal steady-state by

ruling out roots of L(·) in which L(·) crosses zero from below. Processes initi-

ated in the vicinity of such roots will be either repelled to the other direction

or else proceed to this root and continue past it on the way towards a steady

state behind it.

We turn now to study whether the steady-state approach time is finite or

infinite. To that end, we distinguish between steady states at which L(·)

vanishes and those at which L(·) does not. We refer to the former as uncon-

strained steady states and to the latter as constrained steady states. Note

that unconstrained steady states (with L(X̂) = 0 and L′(X̂) < 0) can fall any-

where in [X , X̄], including the upper and lower bounds, whereas constrained

steady-states must fall on one of the bounds (X or X̄). The modifier “un-

constrained” indicates that the steady-state X̂ would remain optimal even if
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the constraint X(t) ∈ [X , X̄] were slightly relaxed, whereas the “constrained”

modifier indicates that a change in the relevant bound (X or X̄) would entail

a different steady state. Let T denote the time it takes the optimal state

process to approach the steady-state. The following result characterizes T for

unconstrained steady states:

Proposition 3 (approach time to unconstrained steady states). Under as-

sumption (2.3) and X(0) ̸= X̂, the approach to unconstrained steady states is

asymptotic, i.e., T = ∞.

Roughly speaking, this property stems from the continuity of the optimal

action (control) process. As the state process approaches the steady state,

the control approaches the constant-state rate M(X̂), so the rate of further

change in the state becomes small. Note the importance of the curvature

condition regarding f in assumption (2.3) for this characterization. Indeed, if

both f and g are linear in the control, a most rapid approach path (Spence and

Starrett 1975) can bring the process to X̂ within a minimal (finite) time T ,

followed by a discontinuous jump of c(t) to the constant-state control M(X̂)

at t = T .

Constrained steady states (where L(X̂) ̸= 0) must fall on one of the bounds

X or X̄ (see Proposition 1), and the approach time to such steady states

depends on the following two classifications: (1) Is the feasibility constraint

c ∈ C binding at the steady state? (it is not binding if M(X̂) lies in the

interior of C); and (2) is the resource essential at X̂? i.e., whether or not

fc(X,M(X)) → ∞ as X → X̂. Typically, the latter property is relevant only

at the lower bound, where X̂ = X and M(X) is too small to meet essential

needs (e.g., non-renewable resources that are being depleted or regenerating
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resources on the way towards extinction). Indeed, if X̂ = X̄, the resource is

not essential at X̂. To see this, recall that fcc < 0 hence the divergence of fc

implies that M ′(X) < 0 in the vicinity of X̄. Thus, gX(X̄,M(X̄)) < 0 (see

(2.5)) hence ρ − gX(X̄,M(X̄)) > 0 and (2.7) implies L(X̄) = −∞, violating

the condition in Proposition 1 for X̄ to be an optimal steady state. At the

other bound, where X̂ = X, we refer to a resource as essential or nonessential

depending on whether fc(X,M(X)) is infinite or finite, respectively.

The properties of T for constrained steady states are summarized in:

Proposition 4 (approach time to constrained steady-states). Suppose X̂ ̸= X0

and L(X̂) ̸= 0 (so X̂ must fall on either the upper or lower state bound): (i) If

the feasibility constraint c ∈ C is not binding at X̂, then T = ∞ or T < ∞

depending on whether the resource is essential or nonessential, respectively.

(ii) If the feasibility constraint c ∈ C is binding at X̂ and |gX(X̂,M(X̂))| <∞,

then T = ∞.

The asymptotic steady-state approach (T = ∞) in case (ii) owes to the

feasibility constraint on the action c near the steady state. In case (i) this

constraint is not binding, but for essential resources the divergence of the

marginal benefit near the steady state acts as an effective c-constraint, giving

rise again to asymptotic steady-state approach.

In summary, optimal, bounded, one-dimensional state trajectories of infinite-

horizon, autonomous problems converge to a steady state. Propositions 1 and

2 identify the set of candidates for an optimal steady-state and Propositions

3 and 4 determine whether the steady-state approach time is finite or infinite.

These properties are formulated in terms of the function L(·) which can be

obtained from the model’s primitives without the need to actually solve the
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underlying dynamic optimization problem. The latter feature is particularly

useful in the context of problems which do not admit a closed-form solution

and the determination of T using standard methods is not trivial, as demon-

strated in the next section.

4 Application to resource management

We apply the above framework to natural resource management models,

where X(t) represents the remaining resource stock and c(t) is the rate of

exploitation (mining, extraction, harvesting) at time t. The net benefit func-

tion takes the form f(X, c) = u(c) − Z(X)c, where u(·) is an increasing and

strictly concave utility function and Z(·) ≥ 0 is a non-increasing and convex

unit extraction cost. The resource dynamics is specified as

g(X, c) = R(X)− c (4.1)

where R(·) is the recharge (growth, regeneration) function. For nonrenewable

resources, R(X) = 0 for all X, whereas for renewable resources R(X) is posi-

tive over some interval (0, X̄). The resource exploitation policy {c(t), t ≥ 0}

is feasible if c(t) ≥ 0 and X(t) ≥ 0 for all t ≥ 0. This policy generates the

payoff ∫ ∞

0

[u(c(t))− Z(X(t))c(t)]e−ρtdt (4.2)

and the optimal policy is the feasible policy that maximizes (4.2) subject to

the state dynamics constraint (4.1) given the initial stock X0.

This formulation is widely used in the resource economics literature and

many properties of the ensuing optimal policies are well known (see, e.g.,

Clark 1976, Dasgupta and Heal 1979). It therefore serves well the purpose of

demonstrating the use of the above analysis for locating the optimal steady
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states and determining the associated approach times without actually solving

the dynamic optimization problems. We discuss nonrenewable and renewable

resources in turn.

4.1 Nonrenewable resources

With a vanishing R(X), (2.1) specializes to

Ẋ(t) = −c(t). (4.3)

The state process is non-increasing hence the upper bound is set as X̄ = X0.

The constant-state function M(X) vanishes identically for all X and L(·) of

(2.7) specializes to

L(X) = ρ[Z(X)− u′(0)]. (4.4)

Consider first a non-essential resource with u′(0) <∞. The function L(·)

decreases and Proposition 1 identifies the unique optimal steady-state

X̂ =


0 if Z(0)− u′(0) ≤ 0

Z−1(u′(0)) if Z(0)− u′(0) > 0 and Z(X0)− u′(0) < 0

X0 if Z(X0)− u′(0) ≥ 0

, (4.5)

thereby determining whether the resource will be depleted (X̂ = 0), exploited

but not depleted (X̂ ∈ (0, X0)) or not exploited at all (X̂ = X0).

From (4.4)-(4.5), we see that if u′(0) ∈ (Z(X0), Z(0)], then X̂ = Z−1(u′(0))

is unconstrained (L(X̂) = 0). Thus, the approach to X̂ is asymptotic, with

T = ∞ (cf. Proposition 3). If u′(0) > Z(0) then X̂ = 0 is constrained

(L(X̂) < 0) and according to Proposition 4(i), depletion occurs at a finite

time. In this case, the marginal benefit u′(0) is sufficiently large to jus-

tify early depletion, but the resource is nonessential (since u′(0) < ∞). If

u′(0) ≤ Z(X0), the extraction cost exceeds the marginal benefit at all states
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and the resource does not admit profitable exploitation (c = 0, X̂ = X0 and

T = 0).

When u′(c) → ∞ as c ↓ 0, L(X) = −∞ at all X ∈ [0, X0] and Proposition

1 implies depletion (X̂ = 0). Since fc(X̂,M(X̂)) = u′(0) − Z(0) = ∞,

the resource is essential and Proposition 4(i) implies asymptotic depletion

(T = ∞).

The special case in which the extraction cost is constant, say Z(X) = z,

corresponds to Hotelling’s (1931) model. In this case L(X) = ρ[z − u′(0)]

is constant and Proposition 1 implies that X̂ = X0 or X̂ = 0 depending on

whether z ≥ u′(0) or z < u′(0), respectively. In the former case the resource

does not admit profitable exploitation. In the latter case the steady state

X̂ = 0 is constrained (since L(0) < 0) and according to Proposition 4, the

steady state will be approached at a finite time or asymptotically depending on

whether the resource is non-essential (u′(0) is finite) or essential (u′(0) = ∞).

4.2 Renewable resources

The stock of a renewable resource evolves according to

Ẋ(t) = R(X(t))− c(t), (4.6)

where the recharge function R(·) varies across resource types. In all cases

we assume the existence of some state X̄ > 0 (corresponding to the resource

maximal volume or carrying capacity) with R(X̄) = 0 and R(X) ≤ 0 for all

X > X̄. With exogenous recharge, e.g. precipitation feeding water sources,

R(·) is typically decreasing and concave over [0, X̄]. When the recharge is

due to growth (regeneration) as in biomass resources (e.g. a fishery or forests)

R(·) initially increases and reaches a peak at the maximum-sustainable-yield
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stock, XMSY , and decreases thereafter to vanish at the carrying capacity stock

X̄.

The management problem entails finding the feasible policy {c(t), t ≥ 0}

that maximizes (4.2) subject to (4.6), given the initial stockX0. The constant-

stock function is M(X) = R(X) and equation (2.7) specializes to

L(X) = −[ρ−R ′(X)][u′(R(X))− Z(X)]− Z ′(X)R(X) . (4.7)

We discuss water and biomass resources in turn.

4.2.1 Water resources

Suppose that the recharge function is decreasing and concave, as is typ-

ically the case for water resources (see Tsur and Zemel 2004, and references

cited therein). The state X̄ represents a full reservoir, with R(X̄) = 0 and

R ′(X̄) > −∞. Differentiating (4.7) gives

L′(X) = R ′′(X)[u′(R(X))− Z(X)]

− {[ρ−R ′(X)][u′′(R(X))R ′(X)− Z ′(X)] + Z ′′(X)R(X) + Z ′(X)R ′(X)} .
(4.8)

The expression inside the curly brackets is positive. Setting L(X̂) = 0 in (4.7)

gives

u′(R(X̂))− Z(X̂) =
−Z ′(X̂)R(X̂)

ρ−R ′(X̂)
≥ 0 , (4.9)

hence the first term of (4.8) is negative at X = X̂, ensuring that L′(X̂) < 0

at any root X̂. It follows that L(·) can have at most one root in [0, X̄], in

which case the optimal steady state is uniquely identified by Proposition 1 as

follows:

X̂ =


0 if L(0) < 0

L−1(0) if L(0) ≥ 0 and L(X̄) ≤ 0

X̄ if L(X̄) > 0

.
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Denoting

Λ(X) ≡ −Z ′(X)R(X)

ρ−R ′(X)
≥ 0 , (4.10)

we specify the steady state in terms of the model’s primitives

X̂ =


0 if u′(R(0)) > Z(0) + Λ(0)

L−1(0) if u′(R(0)) ≤ Z(0) + Λ(0) and u′(0) ≥ Z(X̄)

X̄ if u′(0) < Z(X̄)

. (4.11)

When u′(R(0)) ≤ Z(0) + Λ(0) and u′(0) > Z(X̄), the steady-state is uncon-

strained and, according to Proposition 3, is approached asymptotically, with

T = ∞. When u′(R(0)) > Z(0)+Λ(0), the steady-state X̂ = 0 is constrained

(L(0) < 0) and the resource is nonessential (since R(0) > 0 and Z(0) > 0

ensure that u′(R(0)) − Z(0) < ∞). Thus, according to Proposition 4(i),

depletion occurs at a finite time. Finally, when u′(0) ≤ Z(X̄), the unit ex-

traction cost exceeds the highest price the resource can obtain and the resource

does not admit profitable exploitation. The constant-state rate M(X̄) = 0

lies at the boundary of C hence, although the resource is nonessential at X̄,

the feasibility constraint c ≥ 0 implies that the water reservoir is filled to its

full capacity X̂ = X̄ asymptotically (unless X(0) = X̄, see Proposition 4(ii)).

The vanishing of L(·) at unconstrained steady states bears a simple eco-

nomic interpretation. Writing (4.9) as

u′(R(X̂)) = Z(X̂) + Λ(X̂), (4.12)

we recall that optimal management requires that at each point of time the

marginal value of extraction equals the full cost of the resource, which consists

of the unit extraction cost Z(·) plus the shadow price (scarcity rent, royalty, in

situ value) of the resource. The second term on the right-hand side of (4.12)

is identified by (4.10) as the shadow price of the resource at the steady state:
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Increasing the stock by dX decreases the unit extraction cost by −Z ′(X̂)dX

and the total extraction cost by −Z ′(X̂)R(X̂)dX. The present value of this

change in cost flow is imputed at the effective discount rate ρ−R ′(X̂) (which

accounts also for the change in recharge rate R(·) due to the change in stock).

4.2.2 Biomass resources

For biomass resources, the function R(·) represents the natural growth rate

which increases from R(0) = 0 at all X ∈ [0, XMSY ), reaches a peak at the

maximum-sustainable-yield state XMSY and decreases over X ∈ (XMSY , X̄]

until reaching zero again at the carrying capacity state X̄. Over its decreasing

domain, the function R(·) is concave.

If L(X̄) ≥ 0 then u′(0) < Z(X) for all X ∈ (0, X̄) and the resource does

not admit profitable exploitation. To study harvesting policies, we suppose

that L(X̄) < 0. If L(X) < 0 for all X > 0 then, according to Proposition

1, the unique steady state is X̂ = 0, where the biomass resource is brought

to extinction. If, in addition, L(0) = 0 then, according to Proposition 3,

extinction occurs asymptotically. If L(0) < 0 then, according to Proposition

4-(i), extinction occurs asymptotically or at a finite time depending on whether

the resource is essential (i.e., u′(0) is unbounded) or nonessential (u′(0) is

finite).

When L(0) > 0 the function L(·) obtains at least one root in (0, X̄), at

which (4.12) holds. According to Propositions 1-2, only roots of L(·) at which

L′(·) < 0 are legitimate candidates for optimal steady states. The approach to

such (unconstrained) states is asymptotic (unless X(0) = X̂). If only one such

root exists, it is the optimal steady state to which the optimal stock process

converges from any X(0) ∈ (0, X̄]. If multiple roots exist, depending on the
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specifications of u(·), Z(·) and R(·), each (legitimate) root may or may not

have a nonempty basin of attraction. In some cases, a global maximum exists,

which attracts the process from any initial state. In other cases, the optimal

steady state varies with the initial stock. In such cases, the optimal root

must be determined by evaluating the objective associated with each of the

legitimate steady states, since the local analysis embodied in the L−function

formalism cannot provide global information (see the discussion in Tsur and

Zemel 2001).

5 Proofs

This section presents the proofs of Propositions 1-4. It also illustrates the

optimal constrained steady-state arrival times, characterized in Proposition 4,

by means of simple examples of the resource management problem of Section

4 for which explicit solutions are readily available. These examples illuminate

the underlying factors determining whether the steady-state approach time is

finite or infinite.

For the sake of completeness, we reproduce here the variational argument

used by Tsur and Zemel (2001) to prove Proposition 1:

Proof of Proposition 1. For any feasible state X we compare the constant-

state valueW (X) obtained from the policy C =M(X) with the value obtained

from a small variation from this policy. If the variation policy yields a value

that exceeds W (X), then the constant-state policy is not optimal at X and

this state does not qualify as an optimal steady state. Choose the arbitrarily

small constants h > 0 and δ and consider the following variation policy:

chδ(t) =

{
M(X) + δ/gc(X,M(X)) if t ≤ h

M(X(h)) if t > h
.
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For the short period t ≤ h, this policy deviates slightly from the constant

state policy, then it enters a steady state at X(h). During the first period,

Ẋ = δ + o(hδ) which brings the state at t = h to X(h) = X + hδ + o(hδ).

The contribution of this period to the objective is evaluated (up to o(hδ)) as2∫ h

0

f(X(t),M(X)+
δ

gc
) exp(−ρt)dt =

∫ h

0

ρW (X) exp(−ρt)dt+fc(X,M(X))

gc(X,M(X))
hδ.

The contribution of the constant-state policy c =M(X(h)) during the period

t > h is approximated up to o(hδ) terms as∫ ∞

h

f(X(h),M(X(h))) exp(−ρt)dt =

∫ ∞

h

ρW (X(h)) exp(−ρt)dt

=

∫ ∞

h

ρW (X) exp(−ρt)dt + W ′(X)hδ.

Summing the contributions of the two periods gives the value V hδ(X) obtained

with chδ. Recalling (2.7), we find

V hδ(X)−W (X) = L(X)hδ/ρ+ o(hδ).

The sign of δ can be freely chosen, while h > 0. Now, if L(X) ̸= 0 we can set

sign(δ) =sign(L(X)) which gives V hδ(X) > W (X) and X is not an optimal

steady state. Thus, only the roots of L(·) qualify as legitimate candidates for

X̂. The only possible exceptions are the bounds X and X̄. Choosing δ > 0

is not feasible at X̄ because this policy would lead the process outside the

feasible domain. It follows that X̄ cannot be excluded as an optimal steady

state if L(X̄) > 0. A similar argument holds for the lower bound X if L is

negative at this state.

We introduce some general derivations and definitions that are used in

the following proofs. A steady state X̂ at which the constraint c ∈ C ≡ [c, c̄]

2o(hδ) indicates terms such that o(hδ)/(hδ) → 0 as hδ → 0.
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is binding (i.e., M(X̂) ∈ ∂C ≡ {c, c̄}) is referred to as c-constrained. A

steady state X̂ is called s-constrained if it falls on one of the bounds, X or X̄,

which is a result of a physical or a regulatory constraint (see discussion below

equation (2.3)). With λ(t) denoting the current-value costate, the current-

value Hamiltonian corresponding to the problem of maximizing the objective

(2.2) subject to the dynamic constraint (2.1), given the initial state X0, is

H = f(X, c) + λg(X, c).

The necessary conditions for (an interior) optimum include:

fc(X, c) + λgc(X, c) = 0 (5.1)

and

λ̇− ρλ = −[fX(X, c) + λgX(X, c)]. (5.2)

In infinite-horizon, autonomous problems, the optimal control can be ex-

pressed as a function of the state, say c(t) = C(X(t)). Since the Hamiltonian

is strictly concave in c (Assumption (2.3)), C(·) is single-valued and continu-

ous, hence

C(X̂) =M(X̂). (5.3)

We consider first the case in which the steady state X̂ is not c-constrained,

i.e., M(X̂) lies in the interior of C and, noting (5.3), C(X) ̸∈ ∂C for all X in

some vicinity of X̂. In this vicinity, the feasibility constraints on c can be

ignored and the interior optimum is obtained from the necessary conditions

(5.1)-(5.2).

Define the functions

A(X) = gc(X,C(X))fcc(X,C(X))− fc(X,C(X))gcc(X,C(X)), (5.4)
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B(X) = gc(X,C(X))fcX(X,C(X))− fc(X,C(X))gcX(X,C(X)) (5.5)

and

ψ(X, c) = −(ρ− gX(X, c))fc(X, c)/gc(X, c)− fX(X, c). (5.6)

Then, (5.1)-(5.2) imply

λ̇ = ψ(X,C(X)), (5.7)

while (2.7) reduces to

L(X) = −ψ(X,M(X)). (5.8)

Taking the time derivative of (5.1) and using (5.7) to eliminate λ̇, we find

C ′(X)
A(X)

g2c (X,C(X))
+

B(X)

g2c (X,C(X))
+
ψ(X,C(X))

g(X,C(X))
= 0. (5.9)

Equation (5.9) is a first order differential equation, which together with (5.3)

defines C(X) for all X. A difficulty with its implementation at X̂ arises

because the function g, appearing at the denominator of the last term, vanishes

at X̂. We distinguish between unconstrained steady states, where L(X̂) = 0,

and constrained steady states, where L(X̂) ̸= 0.

5.1 Unconstrained steady states

Proof of Proposition 2. In an unconstrained steady state, L(X̂) = 0 and the

singularity of the last term of (5.9) at X̂ is removed because ψ(X̂, C(X̂)) =

ψ(X̂,M(X̂)) = −L(X̂) = 0 (cf. (5.8)) This term, then, can be evaluated

using l’Hôpital’s rule. Using (5.8), we find

dψ(X̂, C(X̂))

dX
= −L′(X̂) + ψc(X̂, C(X̂))[C ′(X̂)−M ′(X̂)],

while (2.5) implies

dg(X,C(X))

dX
= gX(X,C(X))+gc(X,C(X))C ′(X) = gc(X,C(X))[C ′(X)−M ′(X)].
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It follows that

lim
X→X̂

{
ψ(X,C(X))

g(X,C(X))

}
=

1

gc(X̂, C(X̂))

(
−L′(X̂)

C ′(X̂)−M ′(X̂)
+ ψc(X̂, C(X̂))

)
.

The last term on the right hand side is obtained by taking the derivative of

(5.6) with respect to c,

ψc(X,C(X)) = −A(X)
ρ− gX(X,C(X))

g2c (X,C(X))
− B(X)

gc(X,C(X))
,

which reduces (5.9) in the limit X → X̂ to

A(X̂)

gc(X̂, C(X̂))

(
C ′(X̂)−M ′(X̂)− ρ

gc(X̂, C(X̂))

)
+

−L′(X̂)

C ′(X̂)−M ′(X̂)
= 0.

Denoting

∆(X) ≡ C ′(X)−M ′(X), (5.10)

we obtain the quadratic equation

∆2(X̂)− ρ

gc(X̂, C(X̂))
∆(X̂)− gc(X̂, C(X̂))L′(X̂)

A(X̂)
= 0. (5.11)

To determine which of the solutions of (5.11) corresponds to the optimal

steady-state slope-difference ∆(X̂), observe that the state X̂ is attractive only

if ∆(X̂) > 0. To see this, consider a state just below the steady state, say

Xε = X̂ − ε. To approach X̂ from below requires Ẋ = g(Xε, C(Xε)) > 0.

Recalling that g(Xε,M(Xε)) = 0 and gc < 0, this implies C(Xε) < M(Xε),

while C(X̂) =M(X̂). Thus, C ′(X̂) > M ′(X̂) and ∆(X̂) > 0.

Next, we write the solutions of (5.11) as

∆(X̂) =
ρ

−2gc(X̂, C(X̂))

(
−1±

√
1 +

4L′(X̂)g3c (X̂, C(X̂))

ρ2A(X̂)

)
. (5.12)

Since gc < 0 and A(X̂) > 0, the argument of the square-root operator above

exceeds unity only if L′(X̂) < 0. In this case, we have one positive solution
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for ∆(X̂) which can provide the boundary value C ′(X̂) =M ′(X̂) +∆(X̂) for

the differential equation (5.9). In contrast, if L′(X̂) > 0, the argument falls

short of unity and the two solutions of (5.12) are either negative or complex,

hence (5.9) does not yield a solution that converges to X̂. This rules out the

possibility that L′(X̂) > 0 at an optimal steady state, verifying Proposition 2.

Proof of Proposition 3. We now show that an unconstrained steady state X̂,

at which L(X̂) = 0 and L′(X̂) < 0, cannot be approached at a finite time, i.e.,

T = ∞ (except, of course, for the special case where X(0) = X̂ which gives

T = 0). Suppose to the contrary, that T is finite. Using the solution C(·)

of (5.9), the optimal state trajectory X(t) can be obtained implicitly for any

t ∈ [0, T ] from the solution of (2.1):

T − t =

∫ X̂

X(t)

dx

g(x,C(x))
. (5.13)

Assume, for the sake of concreteness, that X(0) < X̂, so the state process

increases toward X̂, i.e., Ẋ(s) = g(X(s), C(X(s)) > 0 during s ∈ [t, T ). Since

X(t) → X̂, for every ε > 0 there exists some time tε such that X̂ −X(t) < ε

for all tε ≤ t ≤ T . Denote Xε = X(tε). Then, for all X ∈ [Xε, X̂]

g(X,C(X)) = g(X̂, C(X̂)) + [gX(X̂, C(X̂)) + gc(X̂, C(X̂))C ′(X̂) +O(ε)](X − X̂)

= g(X̂,M(X̂)) + [−gc(X̂,M(X̂))∆(X̂) +O(ε)](X̂ −X)

≤ −2gc(X̂,M(X̂))∆(X̂)(X̂ −X),

where the last inequality follows when ε is chosen to be sufficiently small so

that3 O(ε) < −gc(X̂,M(X̂))∆(X̂). Thus

T − tε >
1

−2gc(X̂,M(X̂))∆(X̂)

∫ X̂

Xε

dx

X̂ − x
. (5.14)

3O(ε) denotes terms such that O(ε)/ε is bounded when ε → 0.
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The integral on the right side of (5.14) diverges for everyXε < X̂, contradicting

the assumption that T is finite. The case of decreasing state processes, with

X(t) > X̂ and g < 0 is treated in a similar manner.

5.2 Constrained steady states

When the optimal steady state is constrained, i.e, L(X̂) ̸= 0 and the steady

falls on one of the corners (X or X̄), the above derivation of T cannot be

applied because the term ψ(X̂, C(X̂))/g(X̂, C(X̂)) of (5.9) diverges since g

vanishes while L = −ψ does not. It follows that C ′(X̂), hence also ∆(X̂),

diverges so the right hand side of (5.14) does not necessarily yield an infinite

value. Indeed, if all the functions and derivatives in (2.3) are continuous and

bounded at the unconstrained steady state, then T obtains a finite value. If,

however, fc diverges at the steady state, then T may diverge as well.

Proof of Proposition 4(i): essential resources. Recall that the resource can be

essential at a constrained steady state only when the latter falls on the lower

bound X. Suppose that X̂ = X, and fc(X,M(X)) = ∞. Since L(X) must

be negative at this steady state, we find from (2.7) that L(X̂) = −∞, so that

m ≡ ρ− gX(X,M(X)) > 0. Write, recalling (5.1) and (5.6),

ψ

λ
= ρ− gX +

fXgc
fc

and observe that the first two terms on the right-hand side approach the

constant m while the third term shrinks to 0 when X(t) → X. It follows that

close enough to the steady state, λ̇/λ ≈ m hence λ(t) ≈ λ̃ exp(mt), where λ̃

is some positive constant. Fast as this exponential growth may be, it cannot

take the λ(·) process to its target value λ̂ = −fc(X,M(X))/gc(X,M(X)) = ∞

within a finite period of time. We conclude that T = ∞ in this case.
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As an example, consider the simplest nonrenewable resource management

problem obtained under the specifications f = cβ with 0 < β < 1 and g = −c,

subject to X(t) ≥ 0, given X(0) = X0. In this problem, M(X) = 0 for all X,

so fc(X,M(X)) = βM(X)β−1 = ∞ and the resource is essential. Moreover,

L(X) = −ρβM(X)β−1 = −∞ for all X. Thus, the lower bound X = 0 is the

unique steady state. Let α ≡ ρ/(1 − β) > 0. It is easy to verify that the

optimal processes for this problem are given by

c(t) = αX0e
−αt

X(t) = X0e
−αt .

Although this solution converges to the corner state with L(0) ̸= 0, we have

T = ∞ in this case, due to the divergence of fc(0, 0). Indeed, this solution im-

plies C(X) = αX, which is consistent with the value C ′(X) = α obtained from

(5.9) with the specifications A = β(1−β)Cβ−2, B = 0, ψ = ρβCβ−1, g = −C

and gc = −1. With M ′(0) = 0, ∆(0) is finite and the argument based on

(5.14) establishes the asymptotic approach to the s-constraint steady state.

Proof of Proposition 4(i): non-essential resources. Consider, first, the case in

which the upper bound X̄ is a steady state where L(X̄) is positive but fi-

nite. We show that T is finite in this case. Suppose otherwise, that T is

infinite. Since all the functions listed in assumption (2.3) are continuous and

bounded as X(t) → X̄ monotonically, then for any ε > 0 there exists some

time tε such that |ψ(X(t), C(X(t))) − ψ(X̄, C(X̄))| ≤ ε for all t > tε. Re-

calling (5.8) and C(X̄) = M(X̄), we find ψ(X(t), C(X(t))) ≤ ε − L(X̄).

Choosing ε = L(X̄)/2 > 0, equation (5.7) implies λ̇ ≤ −L(X̄)/2 for all

t > tε. Such a constant decrease in λ(·) cannot continue indefinitely be-

cause it would bring the shadow price process below the finite steady state
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value λ̂ = −fc(X̄,M(X̄))/gc(X̄,M(X̄)) in a finite time period, so the end

conditions would be violated. We conclude that T must be finite.

The treatment of the case in which the lower bound X is a steady state

where L(X) is negative but finite is similar. If T = ∞, one finds that λ̇ is

larger than the positive constant −L(X)/2 for all t > tε, implying that λ(·)

exceeds the finite steady state value λ̂ = −fc(X,M(X))/gc(X,M(X) after a

finite time, violating the end conditions. The steady-state entrance time T ,

then, must be finite also in this case.

As an explicit example for the characterization of a non-essential resource,

consider again the nonrenewable resource with g = −c but change the spec-

ification of the benefit function to f = βc − c2/2, where β > 0 is a given

constant. We find again M(X) = 0 hence fc(X,M(X)) = β < ∞ and the

resource is not essential. For any state X, L(X) = −ρβ < 0 hence only the

lower bound X = 0 can be an optimal steady state. The optimal policy in

this case is given by

c(t) =

{
β − λ0e

ρt if t < T

0 if t ≥ T
, (5.15)

where the constants λ0 and T are determined by the conditions

λ0e
ρT = β ↔ c(T ) = 0; X0 − βT + λ0

∫ T

0

eρtdt = 0 ↔ X(T ) = 0.

Eliminating λ0, we determine T implicitly from the equation

e−ρT = 1 +
ρX0

β
− ρT (5.16)

which admits a unique finite solution 0 < T < X0/β + 1/ρ, while

λ0 = β + ρX0 − βρT. (5.17)
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The C(·) function is expressed implicitly as

ρ[X(t)−X0] = C(X0)− C(X(t))− β log

[
β − C(X(t))

β − C(X0)

]
,

where C(X0) = c(0) = β − λ0. Taking the derivative with respect to X we

find

C ′(X)
C(X)

β − C(X)
= ρ. (5.18)

It follows that C ′(0) = ∞ because C(0) = c(T ) = 0. Thus, the argument

based on (5.14) to establish an asymptotic approach is not valid in this case.

Proof of Proposition 4(ii). We consider the case in which X̂ is c-constrained,

with L(X̂) ̸= 0 and C(X) = M(X̂) for all X in some vicinity of X̂ and

M(X̂) ∈ ∂C is determined by the c-constraint, while |gX(X̂,M(X̂))| <∞. We

assume, without loss of generality, that X̂ = X̄ so that the process increases

towards X̂ with g(·, ·) > 0. Thus, gX(X̂,M(X̂)) is negative and finite in this

case. Consider the vicinity X̂ −X < ε for some ε > 0 and write

g(X,C(X)) = g(X,M(X̂)) = g(X̂,M(X̂)) + gX(X̃,M(X̂))[X − X̂]

for some X̃ ∈ (X, X̂), hence

0 < g(X,C(X)) = [gX(X̂,M(X̂))+O(ε)][X− X̂] < −2gX(X̂,M(X̂))[X̂−X].

Repeating the arguments used to derive (5.14), we obtain

T − tε >
1

−2gX(X̂,M(X̂))

∫ X̂

Xε

dx

X̂ − x
,

and the integral diverges for every Xε < X̂, hence T = ∞. The case X̂ = X

with g(·, ·) < 0 and gX(·, ·) > 0 is treated in the same manner.
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Consider, for example, the water resource management problem of the

previous section with the specification R(X) = X̄2 − X2 and Z(X̄) > u′(0).

As shown above, the high unit cost of water extraction leaves no room for

profitable exploitation and the stock approaches the upper bound X̄ with

c = 0 hence the steady state is c-constrained. Under this policy, the state

evolution is governed by Ẋ = X̄2 −X2 which is readily integrated, yielding

X(t) = X̄
(X̄ +X0) exp (2X̄t)− (X̄ −X0)

(X̄ +X0) exp (2X̄t) + (X̄ −X0)
,

hence T = ∞ in agreement with the proposition. Observe that C ′(X̄) = 0

even though the resource is not essential at this c-constrained steady state,

in contrast to the divergence of C ′(·) for non-essential resources at their s-

constrained boundaries. This difference underlies the different characteriza-

tion of the corresponding arrival times.

6 Concluding comments

Two questions come up in any intertemporal planning problem: the first

concerns the location of the final destination; the second deals with how long

it takes to get there. The straightforward way to address these questions

is to solve the underlying optimization problem and examine the long-term

behavior of the state processes under the optimal policy. This approach may

be quite cumbersome as it requires the parametric specification of all functions

involved and often (when closed-form solutions are not available) resorts to

numerical techniques. The alternative approach developed here addresses

these questions for single-state processes via a simple algebraic method which

avoids the solution of the underlying dynamic optimization problem.

The proposed method introduces the function L(·) of the state variable,
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which is used to formulate necessary conditions for optimal steady states.

In many cases of interest, the necessary conditions narrow down the list of

candidate steady states to a singleton, and the optimal state process converges

to this unique state from any initial point. If several candidates meet the

conditions, the optimal policy may depend on the initial state. The final

choice, then, is determined by comparing the objective corresponding to each

candidate.

The value obtained by the L(·)-function at an optimal steady state deter-

mines whether the corresponding time of approach is finite or infinite. Steady

states at which L(·) vanishes are always approached asymptotically. Other-

wise, the time of approach depends on whether the constraints on the action

(control) are binding at this state and on whether the resource is essential

(i.e., the marginal benefit and L(·) diverge at the steady state) or non-essential

(hence L(·) is finite).

Applying the method to a generic class of resource management models, we

show how it can locate the candidates for an optimal steady state and, to each,

characterize the time of approach under the optimal policy. The procedure

can be similarly applied to any intertemporal planning problem that can be

cast as a single-state, infinite-horizon, autonomous model.
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