

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

UNITED STATES DEPARTMENT OF AGRICULTURE

WASHINGTON, D.C.

THE BIOLOGY OF CREMASTUS FLAVOORBITALIS (CAMERON), AN ICHNEUMONID PARASITE OF THE EUROPEAN CORN BORER

By W. G. Brabeer, assistant entomologist, and E. D. Burasss, junior entomologist, Division of Cercul and Horage lnsects, Bureau of Entomology and Ilant Quarantine ${ }^{1}$

CONTENTS

Biolagy-Continued.	Pago
Erathing, mrowth	7
Eabits of the ndu	10
Matag	10
Oriposition	12
Sex proporions	12
Sersonal history	12
Distribution	13
Summary.	14
Literaturoctted	15

INTRODUCTION

Cremasius flavoorbitatis (Cumeron) is a larval parasite of the European corn borer (Pyouusta nubilulis Hbn.) in the Crient. It was first introduced into the United States in the winter of 1928-20 and was liberated during the summer of 1929 to aid in the biological control of the corn borer in this country. Recently imported stock has also been received at the Bureau of Entomology laboratory at Moorestown, N.f., and liberated in Pennsylvania as a parasite of the orientalfruit moth (Grapholitha molesta Busck).
C. fatoorbitalis is an ichneumonid parasite belonging to the subfamifyOphioninae. It was first described as Tarytia fuavo-onbitalis by Cameron (1) ${ }^{2}$ in 1907. In a recent paper by Cushman (2) it is shown that favoorbitalis is the correct designation for this species and that the name C. hymeniae, first used by Viereck (10) and later by a number of other writers, is a synonym.

[^0]The main purpose of this bulletin is to present descriptions of the immature stages of this insect, the results of studies of its biology, and information concerning the status of the species as a parasite of the European corn borer.

HOST RELATIONSHIPS

Under the name Cremastus hymeniae, C. thavoorbitalis is recorded by Viereck (1.) as sucessfully reared from Hymenia fascialis Cram., the Hawaian beet webworm, by H. O. Marsi in Honolulu.
Morley ($3, p .506$) states that this insect is parasitic in India on Euzophera perticchla Rag., Lutigastra: catalaundis Dup., Eucosma paragramma Meyr., and Chilo simplex Butl.

The greatest mumber of hosts recorded for this parasite was compiled by Swezey ($1 ; \%, 7,13 ; 9$) in Hawaii. They are given below.

Piycitidae: Gemphantis iondorn Mew and G. temhi Sw.

Eucasmidae: Adcmoncura futsifatceltom W:alsin.. Arguroploce illenide (1uth),
 (Butt.).
Carpasinides : Hetcrocrosse grominiotor Walsm.
 (Walsm.).

Cymorlidas: Prochrod dimorphe mask.
Swerey (8) reports this insect as valuable in the control of the sugarcane leaf rather, (omiodes acepta, and the coormut leaf roller, O. blurkilumi.
(Gushman (2) records that the national collection inchudes specimens of ${ }^{\circ}$. fla onobitalis trom dapan reared lrom I'yransta mulilalis
 fuscintis Cramer and $Z I$. remprolix Fabs; and from the Philippine 1slands irrona ('rocidolomia binotalis Zell.

The junior writer has bred this species under hamatory conditions from I'yraustu nubilalis, the European com borer.

DESCRIPTIONS

ADULT

(ameron ($1,7,589$) described the female of ('remastus faveorbitalis in 1901 ans Taytior flaro-opbitalis. Morley (s) described both male and fenale of the species in 1913.
'The following is a bried description of the adult, designed to distimusish it from other parastes of the European corn borer:

It has a slender, testaceous body with broad and rather abbreviated wings. The face is distinctly punctate, with the epistoma elevated amd the clypens distinctly discerete and apically margined.

Photographs of the aldits are shown in plate $1, A$ and B.
EGG
The egg of ('remastus flavorlitalis is elongate-ovoid or kidneyshaped, with both ends bluntly rounded. The chorion is smooth,
bearing no spines or external processes. It is pearly white. The average length is 0.513 mm , and the average width through the center of the egg is 0.16 r mm (fig. 1). At the time of hatching the mature embryo is folded, jacklinife fashion, within the chorion of the egg, i.e., the head and tail are bent forward on the remainder of the body within the shell.

The duration of the egg stage is 84 hours or $31 / 2$ days. (All statements concerning the duration of the various stages of this insect are based on observations made at a constant temperature of $80^{\circ} \mathrm{F}$. and a constant relative humidity of 70 percent.)

LARYA

Three instars of the larva of Cremastus favoorbitalis have been observed by the writers. Their descriptions follow.

THET INSTAK

The primary larra of C. favoorbitalis is of the crudate or tailed type. It has a hearily sclerotized, testaccons head. The body is divided into 13 segments. The last abdomimal segment is developed into a long, narrow, tapering tail. The body is creamy white and has no spines or hairs. The first instar lasts 5 days. During this period the body changes markedly in appearance and in size. The head, however, remains the

Figune I.- Wipg of Grcmastres fivooruttelis, $\times 50$. same throughout these changes.

One day after hatching the larva has an arerage Iength, ineluding the tail, of 1.3 mm and an average width at the widest part of the body of 0.15 mm . The length of the tail is approximately half the entire length of the body and presents a ruffecl or uneven appearance. Each of the 12 remaining loody seerments has a double row of "scallops" running around" the body in the middle of each segment (fig. 2, A). Apparently this structure permits the body to expand more readily.

The 2-rlay-old larra (fig. 2, B) measures 2.5 mm in length and 0.19 mm in width. The tail is still approximately half the entire length of the body. The remairing body segments are nearly smooth, having only vestiges of thair ruffles.

At the time of molting into the second instar, 5 days after the hatehing of the egg, the farva (fig. 2, ($)$ averages 3.6 mm in length and 0.31 mm in diameter. The tail is now obout one-third the entire length of the body. The body segments have become expanded to their maximum size, leaving no trace whatsoever of the scalloperl appearance that was in cridence carlier.
In the first instar the larval head is testaceous, heavily sclerotized, somewhat thimble-shaped, and has on the dorsal surface two groowes originating at the posterior boundary of the head and running anteriorly about three-fourths of its length. A slight ridge on each side of the head extends posteriorly from the insertion of the mandibles. On the dorsal portion of the hend between the grooves there are no spines or sensory hairs (fig. 3). Laterally (fig. 4) there are seven pairs of small spines on the head: One spine (a) at the anterior end of the hend about one-half the distance between the mouth parts and the end of the dorsal groove; one spine (c)
slightly ventrad and slightly caudad of the anterior end of the dorsal groove; a group of three spines (b, d, f), which might beconnected by a curve, midway between the mandible and the dorsal.

 oviposition, showing annular rings, $\times 75 ; B$, larva 144 hours after oriposition, $\times 45$: C, larva 240 hours after oviposition, $\times 30$.
groove; one spine (h) in a caudad-central position near the lateral ridge; and one spine (k) in a central-posterior position. Theventral surface (fig. 5) supports three pairs of small spines and one pair of large spines. One pair of spines (e) is. situated on the.
anterior portion caudad of the mout', parts and is separated by :about the width of two mandibles. Another pair (g) is midway on the head and is separated by the width of one mandible. The third pair (i) is on the posterior part of the head and is separated by a distance twice as great as that between the preceding pair. The large spines (j) are situated immedintely caudad of the third pair of small spines and are separated by the same distance. These large spines axe set on tubercles.

First-instar larvae of C. faroonbitalis possess distinctly defined mouth parts. The entire month-part structure is circular in shape (fig. 6, 4). The labral region is semicireular and has within its borders several areas that are but thinly sclerotized. One large area within the labral region is located in a dorsal position. Laterad and slightly ventrad of this are two smaller areas within the labral structure. Supplmentary to these are eight minute similarly constracted areas. There are no spines or hairs. In the oral cavity there are two larye spines. The maxillary and labial region consists of two pairs of triangular structures, their apices directed toward the center of the oral cavity. The mandibles are simple, strongly curved, and rather sharply pointed. The mandibular condyle is well developed (fig. G, B).

SECOND INSTAR
The larval period of the second instar lasts but 1 day. The parasite, however, is markedly dit-

 splines. ferent in appearance from what it was during the first instar. It measures on the arerage 3.8 mm in length and 0.7 mm in width. The head has become rounded and is very thinly sclerotized. The talil has been reduced to a very short robist process (fig. $7, A$). The mandibles are very lighty sclerotizet and are less strongly curved; they are nearly triangular and stout (fig. $7, B$).

THIMD LNOTAB

The mature or third-instar larwa of Cremastus flavoorbitalis measures 8.2 mm in length and 2.05 mm in width and is dirty white. The body consists of 13 segments. The spiracles are situated on the first thoracic and the first eight abdominal segments. The wing buds are visible on the mesothoracic and metathoracic segments, and the leg buds are visible through the wall of the three thoracic seg-

Figenp 4.-Lateral view of head of hrst-lnstar larya of Crchastut flavoorbitalis, showhig phacement of spines.

Fioung 5.-Ventral view of head of first-jnatur larva of Oremastus favoorbitaliy, blowing placement of spines.
ments. The caticle is void of spines or other large processes, but is composed of many fine tubercles. The tail is still further reduced (fig. $7, C$).

The terminology used in this bulletin in relation to the nomenclature of the structures of the head follows that of Vance and Smith (11). The detailed description follows.

Head hemispherical, thinly sclerotized, generully creamy white in color, and corered with many short protuberances; antennal fossae large, lightly sclerotized; metopic suture present; frontal region not well differentinted into a labrum; bilobea near oral cavity; two labral sensillae present; four papillae or frontal verion, two dorsolisterad of the sensillae, two on the lobes in the oral cavity; superior pleatostomal ramus short, lirhtly selerotized ind lightly pigmented, ly rown; genal region possessing six regnariy arrimged setae; hyjostoma heavily selerotized, deeply pismented, brown, blunt at lateral end, narrow, becoming wider at junction of stipital solerome and inferior plearostomal ramts; inferior pleurostomal ramus short, nuxrow, becoming wider at juncture of hypostoma and stipital sclerome; stipital sclerome narrow, becoming wider at junction with hypostoma; maxillary selerome curved, blunt, heavily sclerotized, brown, thick near inner end, suddenly becoming thin, eonnecting with hypostoma at lateral end; maxillary region possessing a palpus and two deftnitely arranged setae; silk duct opening U-shaped, lying directly ventrad of oral cavity; one pair of labial paipi and two pairs of setae present in labial region, which is surrounded by a thickened border; border heavily sclerotizell in dorsmi porten, becoming loss so at ventral portion; three definitely arrunged setae present on labiobase on each side of thickenexl border (fig. 8); mandible simple, sickleshaped, bearing no spines or teeth ($\mathrm{fg} .7, \mathrm{D}$).

The third larval instar is 2 days in duration.

COCOON

The cocoon of Cremastus flavoorbitalis is oblong oval in shape and on an average measures 8.85 mm in length and 3.34 min in width. There is, however, a marked variation in the dimensions of cocoons, the range being from 7 to 10 mm in length and from 2.5 to 4 mm in width. The coloration of the cocoon is not constant, as it varies from \tan to dark brown. In most cases there is a lighter narrow band about the middle. Some cocoons, however, are without this faint marking. The cocoon (pl. 1, D) is enveloped in a loose but finely woven silk sheath (pl. $1, E$). The average length of the period spent in the cocoon is 10 days.

PRETUHA AND 2MTA

Oremastus flavoorbifalis spends the first 3 days of its cocoon existence as a prepupa of the usual hymenopterous type.
At the time of molting, the pupa is nearly white, with the exception of the darkened eye spots. In the course of several darys the

 B, mandibic of first-instar larva.
pupa darkens, and a few days before eclosion it takes on the markings and general appearance of the adtult insect. The male pupa is generally smaller than the female. The ovipositor of the female extends beyond the tip of the abdomen and lies fiat against the dorsal surface.

BIOLOGY

HATCHING, GROWTH, AND DEVELOPMENT

While instances have been noted in which as many as five eggs of C. flavoorbitalis bave been deposited in a single host, in no case has more than one larva of the parasite been known to develop beyond the first instar. The mechanics of this mortality of the supernumerary individuals is not lnown. However, in the case of these larvae, phagocytosis usuaily taikes place immediately after they have hatched from the eggs. This condition was reported by Thompson and Parker (10) in connection with Eulimeria crassifemur (Thomson), another ichneumonid parasite of the European corn borer. It is
thought that in the case of Aphidius larvae (5) the first parasite to emerge from the egg emits a cytolytic enzyme that affects the younger larvae as well as the tissues of the host itself, thereby eliminating the extra individuals. Muesebeck and Parker (4, p. 344), in counection with Hyposoter disparis Viereck, a parasite of

the gypsy moth, suggest that the earg or larva dies apparently before encystinent occurs becruse the medium in which the parasite finds itself is not altogether suited to its development.

The egg floats freely within the body cavity of the host and hatches after $31 / 2$ days. The presence of the larval parasite in the body of

ADILLSE. LAFRVA AND COCIOMS GF CREMASTUS FLAVODREITALIS

CAGES USED IN EXPEFIMENTS WITH CIPEMASTUS FLAVOQHGITALIS.

the host seemingly has no effect on the pliysical condition of the borer while the parasite is small. For 5 days the larva remains in this instar, changing in body form, as has been indicated elsewhere in this bulletin. The second instar lasts but 1 day. One day after the parasite has molted into the third instar, the host larva spins a loose web, attaching itself to any convenient surface, and reclines in a characteristic hammocklike position and remains quiescent. It then begins to darken at both ends, and this blackening steadily progresses toward the center of the larva. When the host has become completely clarkened, usially 2 days after the molt of the parasite into the third instar, the Cromashus larva makes its first appearance on the outside,

emerging throngrl a hole in the middle of the host. There is no external feerling.

Emopean corn-bomer lavac parasitized by Cremaktus flavoorbitalis are usmally smaller than the nomparasitized laryar, at least a few days prior to the issome of the parasite larya from the host. Fend measurements of larvae after the parasite hat ieft the body would seem to indicate that the host larvac were in the fourth instar. This is probubly incorrect. In the case of larvae parasitized by Chelonus amulipes it was found that the head capsules were distinctly smaller than those of nomparaitizel larvac of the same instar. It is possible to assme, then, that the host larvae are in the fifth instar at the time that the parasitus issue from the hosts.

The larva immediately upon issuance (pl. 1, O) begins to spin a cocoon, cementing it to any nearby surface. The head capsule and the dried-up body of the host larva (pI. 1, E) are usually attached by a few loosio threads. When the operation of cocoon spinning is completed, tie parasite is in the prepupal stage and stays as such for 3 days; then it expels the larval meconium and molts into a typical white hymenopterous pupa. The pupa gradually develops and darkens for 7 days, at which time the adult sheds the pupal skin, chews an irregular hole at one end of the cocoon (pi. 1, D), and emerges.

At Kobe, Japan, C. A. Clark ${ }^{3}$ found that in the laboratory the life cycle was about 26 days in July and August.

Adults were kept in wooden cages, each cage containing a piece of lump sugar, fastened to a glass slide by means of a drop of melted beeswax. (The cages when not in use were kept in a cool cellar and covered with moist burlap.)

The maximum recorded longevity of Cremastus adults under laboratory conditions was 66 days. The average longevity was 38.78 days.

habits of the adult

The adult of Cremastus flavoorbitalis is quite positively responsive to light, is very active, and exhibits a restless temperament. When several adults are placed in a cage, especially if it is small, their activities in trying to escape are very pronounced. In several instances in mating stadies, adults were introduced into a specially prepared cellophane cage, but their efforts to bent their way through the sides of the structure were so frantic that the use of these cages had to be abandoned. When first introduced into cloth-covered cages, although noticeably irritable, they calm down in a few minutes and content themselves with incessant ramblings over the end of the cage nearest the light. At temperatures below $70^{\circ} \mathrm{F}$. they are quiescent and do not become active until the temperature rises above that point.

The adults will feed on sweetened water, honey, or invert sugar, such as glucose.

MATING

In the rearing of Cremastus flavoorbitalis in the laboratory, the problem of mating in captivity was the most difficult one encountered. Many attempts were made to overcome this so that it might be possible to rear this parasite in large numbers.
Matings were secured in abundance on only one occasion, on July 2,1931 . At that time 75 males and 65 females were introduced intor a cloth mating cage. This cage ($\mathrm{pl} .2, A$) is 9 inches in height, 18 inches in width at the open end, and 18 inches in length, tapering. toward the front or closed end, which is 9 by 9 inches. The open back is equipped with a 9 - by 18 -inch cellulod-covered frame, which. is held in place by elestic bands.

The cage was placed on a table in a third-story room, so that the small end was facing a closed window and no direct sunlight shone

[^1]on the cage. The temperature inside the cage was 74° to $76^{\circ} \mathrm{F}$. On the outside it was $82^{\circ} \mathrm{F}$. This cage was dampened, and sand was placed in the bottom of it, before the parasite adults, which were 2 days old, were introduced. Almost immediately after admission to the cage, the parasites began to show some attraction for each other, although this had not been observed before. When the cage had become nearly dry, one mating occurred. The sides of the cage were again moistened with a sprayer and a stream of air allowed to enter the rear of the cage in such a way that the insects received only a part of the effect of the breeze. This ueration was continued for 5 minutes and then stopped. For 5 or 10 mimates thereafter matings occurred in such rapid succession that it was extremely difficult to remove the mated females.

Experiments were made to discover whether foods other than sugar, different temperatures, different lights, or different times of day had any effect on the mating of C. flavoorthitalis, but only occasional matings occurred.

The mating preliminaries are very bricf and mating itself lasts from 1 to 5 mimates. During mating a pair may be greatly disturbed without the act being interrupted.
D. W. Jones, of the Arlington, Mass., laboratory, states that Cuemastus flavoorbitazis sometines mates very readily inmediately alter the cover of the liberation can has been removed and the insects have flown out into the open. This experience suggested that perhaps the insects would mate if they were not confined to a small place, but observations of specimens in the emergence cages, which have a screen area of approximately 32 square feet, indicated that apparently this had no bearing on the problem. What the determining factor is that controls the mating instinct in this particular parasite is problematical.

oviposition

The cage (pl. 2, B) used in this study of oviposition consists of a wooder framework 2 by 4 by $51 / 2$ inches, covered with cloth on the sides. The top is of celluloid and contains a hole in the center, which is closed with a stopper. The bottom, which is detachable, consists of a 4 - by $51 / 2$-inch wooden frame on which either cloth or celluloid has been tacked. The celluloid-covered bottom is considered more sutisfactory because the borers do not make holes in it as readily as they do in cloth. This whole equipment is held together by means of elastic bands.

The cage was prepared for use by placing a thin layer (one-eighth inch) of finely diced pens on the detached bottom of the cage. It was then fastened together with the bands, care being taken that the peas remained in their original position. Ten-day-old incu-bator-reared host larvae were then inserted through the opening in the top of the cage and the stopper was replaced. This whole equipment was pluced in the incubator (regulated for $80^{\circ} \mathrm{F}$. and 70 percent relative humidity) overnight to allow the borers to become webbed up in the peas. It is possible to prevent the wandering of the larvae from the pea stratum on the bottom by placing the cage in a glass-bottomed cabinet so that the light reaching the cage comes through the bottom only.

The following morning the cage was removed and five mated $C_{i=2 n a s t u s ~ f e m a l e s ~ w e r e ~ i n t r o d u c e d ~ i n t o ~ i t ~ t h r o u g h ~ t h e ~ e n t r a n c e ~ h o l e ~}^{\text {for }}$ in the top. At this time the host larvac were in the fourth instar. The cage was then placed on a table near a window or on a window sill ins such a way that the light reached the inside of the cage through the bottom.
Almost immediately apon their entrance to the cage the parasite females begin to cruwl about the webbed-up peas and dry frass, intensely interested in what lies beneath. During this meandering they continually beat the peas with their antennae and prod here and there with their ovipositors. An ovipositing female has been observed to prod a webbed-up, frass-covered pea, from which the borer had escaped, just as readily as one that contained a borer, whereas a free-crawling borer rarely incited her curiosity. However, a few cases have been noted in which oviposition apparently has takea place in tree-crawling larvae. When the parasite locates a corn-borer larva in its webbing she stabs it but once with her ovipositor. All of the ovipositions noted were made in the thorax of the host larva immediately behind the head capsule. After accomplishing oviposition the parasite walks away, continually beating, and proding in search of another victim. The attacked borer thrashes its head back and forth, apparently in a vain effort to rid itself of the parasite egg.

Oviposition experiments were tried on the fall webworm ($H y$ phantria cunea Drury), the pitch-pine webworm (Tetralopha robustella Zeli.), and several undetermined webworms and borers, with no success.

SEX PROPORTIONS

The proportion of sexes in C. flavoorbitalis in samples of material sent from the Orient for parasite liberations in this country, covering a period of 2 years, is 62.1 percent females and 37.9 percent males. On the other hand, in material bred in the laboratory the percentages are about reversed, there being 68.5 percent males and only 31.5 percent females. The latter figures are based on material that was reared from apparently mated females. It is thought that this situation might arise through the diffculty in mating the parasite in captivity, since unfertilized females produce males only.

SEASONAL HISTORY

This parasite was shipped from the Orient to the Arlington, Mass., com-borer laboratory during the winter as well-developed firstinstar larvae within the mature corn-borer host larvae. These shipments reached this cumtry under refrigeration in the ship's vegetable storage room, where the temperature range was 35° to $40^{\circ} \mathrm{F}$. Dur. ing tf.e remuinder of the winter they were stored in an underground cellai, where the temjerature range was 32° to 45°, later gradually rising to nearly 55°, when the use of ise became necessary to keep the temperature below this point. The relative humidity in this cellar was kept above 90 percent.
On March 7, 1932, a sample lot was taken from refrigeration to determine the development of the species in the United States at Anlington, Mass. Dissections were made biweekly until the first of June, after which time they were made every other day. All dissections made before July i showed the parasite larvae to be in the
first instar. In July, however, all stages of development (first-, second-, and third-instar lervae, cocoons, and adults) were found in the material, showing that the stages beyond the first larval instar are so short in overwintering Cremastus that it would be possible to find all stages in the field at one time after they had started to develop.

It is not definitely known how many generations occur or when hibernation begins. C. A. Clarls says:

Winter is usually passed as immature larvae inside the overwintering cornborer larvae, but apparently a small number pass the winter in the cocoon stage, Examination of a number of cocoons collected in the field in the Kokubu seetion in February 1035 proved that not all of the individuals of this species were in the host larvae Most of the cocoons ware empty, the adults probably having emerged in the late fall montis, but a few live flavoorbitalis larvae were found, as well as one live puph (February 18, 193\%). The first spring cocoons were found on Maty 3 in Miytanonojo section in I931 and by the iniddle of May cocoons became numerous in the fields here. In Kumamoto section a full springs Generation of the parasite has been passed on nubialis larvae by the end of June. Hyperparasites * * * somewhat reduce its effectiveness * * * The parasite is usually recovered ill numbers from overwiutering borers in millet and from first summer-generation lorers on hemp on Kyushu Island. It seems to be most important in the spring, bat other sirecios (Afacroceutrus gifuensis Ashm. and Ceromasia lepitia Meig.) apparently take its place later in the summer. ${ }^{4}$

DISTRIBUTION

Cremastus flavoorbitalis is widely dispersed in the Orient. It is known to occur in Banjo in the northern part of the peninsula of Chosen ; in Kumanoto, Oita, Miyazaki, Kokubu, and Kagoshima, on the island of Kyushu; in Tokushima on Shikoku Island; at Chiba, Tochigi, Utsunomiya, and Hiroshima, on the largest island of Japan, Honshu.

Cremastus flavoorbitalis is of most importance in Kunamoto, Kokubu, and Miyakonojo sections, but is also found in considerable numbers in Titsunomiya and Hiroshima sections, where it is of some value as a nubilalis parasite. It seems to be of particular importance as a parasite in Kumamoto section, where parasitization of over 30 percent has been recorlert, though the average parasitization is considerably lower than this.

It has been recorded (3) in India from Pusa, Chapra, and Katihar, Bengal; Deesa and Surat, Bombuy; Quilon and Travancore, Madras; Trincomali and Peradeniya, Ceylon; and Bhamo, Burma. Specimens were also taken on shipboart 4 miles off Tuticorin and 10 miles off Coconada, Madras coast.

There are specimens in the national collection (:) from Japan, Hawaii, and the Philippines, and in the Baker collection from Singapore.

This species was probably introduced into Hawaii, as it was unknown there until 1910 (7). It appeared first in the lowlamis but has now spread to the monntains and all uver the island of Oahu.
This parasite has been liberated in the United States and Canada. The names of the places, the seasons of liberation, and the number of parasites released, are given below.
Massachuisetts: Armington, 1930, 2; 1032, 15; total, 17. Saugus, 1029, 220; 1930,$371 ; 1931,18$; total, 609 . Bridgewater, 1031, 1,660; 1932, 1.488; total, 3,148 . Swansea, 1.932, 1,668. Medford, 1032, 503. Peabody, 1939, 705.

[^2]Rhode Island: East Providence, 1929, 116; 1930, 16; total, 139. Portsmouth, 1932, 522; 1933, 360; total, 882.

Connecticut: East Lyme, 1929, $2 \overline{5} ; 1930,93 ; 1981,203 ; 1932,315 ;$ total, 636.
Ohio: Jerusulem Township (Lucas County), 1932, 2,321 ; Damuscus Township (Eenry County), 1032, 2.824.
New York: Glenville, 1930, 276 ; Jamesiort, 1933, 141; Eastport, 1933, 92.
Onturlo, Canada: Bellevilie, 1932, 1,371; 1933, 160; total, $1,631$.
Tutal by States and lerovinces: Massachusetts, 6,740 ; Ohio, 5,145; Rhode Island, 1,014; Connecticut, 630 ; New York, 509; Ontario, 1,531. Grand total, 10,575.

In 1931, 141 Iremastur Alavombitalis were sent from Japan to Guam but probably were not liberated.

The first recovery of this species in the United States was made at Saugas, Mass., in 1029. It was also taken ais Piovidence, R.I., the same year. In 1931 the species was taken at Bridgewater, Mass. In 1932 it was recovered in Lucas County, Ohio, and in fair numbers in the greater Buston area, showing successful initial establishment.

SUMMARY

Cremastus flavoorbitalis (Cameron) is an uriental ichneumonid parasite of the European com borer. In Hawaii it has a large number of hosts and is instrumental in the control of the coconat leaf roller and the sugareme leaf roller.
The adult is a yellowish wasplike insect about one-third of an inch in length. The eqg is pearly white, clongate-ovoid, and bears no spines or extermi processes. The duration of the egg stage is $31 / 2$ days. The first larval instar lasts 5 days. The primary larva has a long tail. One day after hatching the larva presents a sufled or "scalloped" appearance, two rows of scallops to every scerment. One day later this rufle hats nearly disappeared, and on the fifth day it has disampeared entirely, and the body has become robust. The head of the first-instar latra is thimble-shaped and bens several well-lefined spines and setae. The mouth parts are well developed. The second haral instar lasts but a day. The tail has been reduced in length to become a wery sbort process. The head is rounded and thinly sclerotized. The mandibles are triangular and lightly sclerotized. The mature harva has 18 body semments. Spiracles are found on the first thoracic and first 8 abdominal segments. The tail is still further reduced. The head and mouth parts are well differentiated. Mandibles are simple and sickle-shaped. This instar lasts 2 days. The cocuon is nsually grayish tan with a lighter band about the middle. It is enveloped in a finely woven silk sheath. The time spent in the cocoon is 10 doys. During the first 3 days of this period the insect is a prepupa. The newly formed pupa is nearly white.
The egg is laid in the body of the host larya and floats freely within its walls. While as many as five eqgs may be deposited, only one develops beyond the first stage. One day after the parasite molts to the third instar the host larva spins a loose web, attaches itself to a convenjent surface in a characteristic hammockilike fashion, and commences to turn dark from the ends toward the middle. The Cremastus larya makes its appearance through a hole in the middle portion of the host during the late fifth instar of the host. The parasite larva immediately begins to spin its cocoon.

After shedding its pupal skin, the adult emerges through an irregular hole at one end of the cocoon. The adult is positively phototropic, very active, and very restless. Adults fed on sweetened water, honey, or glucose. The maximum recorded longevity is 66 days. The insect does not mate readily in captivity. Females oviposit readily in spun-up corn-borer larvae of the fourth or early fifth instar. Ordinarily they do not deposit eggs in free-crawling borers.

Parasites reach this country in the winter as well developed firstinstar larvae within the overwintering borers. Under natural conditions they emerge as adults during the first part of July at Arlington. Miass.

Cremustus favoorbitalis is witely dispersed in the Orient. It is found guite generally in the Hawaiian Islands. It has been liberated in sections of Massachusetts, Rhode Island, Connecticut. New Tork. Ohio, and Ontario, and has been recovered from the greater Boston area in Massachusetts, from Provilence, R.I., and from Luctas County, Ohio.

LITERATURE CITED

(1) Cammon, F.
1006. on the pabasitio inmenoptelth condecteb iy majon o. G. numse
 17 : 57S-547.
Cumpman. F. A.

 $35: 73-75$.
(3) Morter. C.

 tilus. Pomrlon.

(5) Stwecte, It.
 Dint. Noc. Amer. 19: 119-153, j持s.
(${ }^{(j)}$ Swezer, (). 13.
 gopmbin La Hawhy. Hawnii Ent. Soc. Iroc. (1014-10) 3:
(7)

(S)

10亿6. HECENT JNTIOATCTIONS OF BENETICLIL TASECTS IN ILAWAII. JOUR: E(0). Jnt. J!): T14-720.
(9)

]Reserreh $40: 3 \leq 1-34 \overline{1}$, jllus.
(11) Vaxce, A. M. ahe smati. H. D.

1!31. mescriplons of six new gexemi Anb Thllty one New species of

ORGANZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

'His balletin is a contribution from
Burcau of Enfomology ani flant Qurantine_ Lee A. Strono, Chief. Dietsion of Cercal tha fornge Juscets_-_ P. N. Anvani, Principal Entomolouist, in Charye.

[^3]

[^0]: The writers gratefuliy acknowledge thele ladehedmess to D. W. Tones, S. M. Dobanian and A. M. Vance for ther crlticlams mad holpiol sursistlons Gurlag the prephration of the

 Itaic numbers in phrmineses refor to Literndure dited, p. $1 \mathrm{I}_{2}$.

[^1]: ${ }^{2}$ C. A. Clark, assistant entomologist, Burean of Entomology, United States Eepartment of Agrlculure, was in eliarge of Europeran torn borer parasite investigations in the Orient from the full of 1930 to the spring of 1932.

[^2]: ${ }^{4}$ From Clark's unpublished report on corn-borer work in the Orient.

[^3]: U, S. GOVERH:NENY PAINTING OFFICE) 1 \&34

