

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

STAR'T

MERDCOFY RISOLUIUN IESI CKAR!
*

ETHE EXTERNAL ANATOMY OF THE PARLATORIA DATE SCALE, PARLATORIA BLANCHARDI TARGIONI TOZZETTI, WITH STUDIES OF THE HEAD SKELETON AND ASSOCIATED PARTS

By

F. S. STICTKNEY

Associate Entomolorgiat Divigian of Fruit Insects Bureau of Entomology and Plant Quarantine

United States Department of Agriculture, Washington, D.C.

THE EXTERNAL ANATOMY OF THE PARLATORIA DATE SCALE, PARLATORIA BLANCHARDI TARGIONI TOZZETTI, WITH STUDIES OF THE HEAD SKELETON AND ASSOCIATED PARTS:

By F.S. Stickney
Associate entomologist, Division of Itruit Insects, Buran of Entomology amb Mant Quarantine

	Pago	Extermainatomy-Continucd.	Page
Introduction	1	Fourth-stage mato ...	39
Stmbels used in inustrutions	3	Alhit make.	4
Estoram amalomy.	5	Seales	8
Epr--.....-	5	The liend skeleman and ntsocinted	50
First strge (mate mid cm	5	Adalt fommie or tyire	50
Second-stay forme.-	i.	Varintions from tyre ha othe	62
Adole fentile.			-68
Sucond-staye mate	38	Literature cfted.	60

INTRODUCTION

Several species of palnis found in the date-growing districts of the United States have been shown to be susceptible to the attacks of a scale insect which appears to be the Parlatoria date scale (Parlatoria blanchardi Targioni Tozzetti). This species is considered to be the most dangerous insect enemy of the date palm. An indication of the degree to which this insect may infest the fruit and leaves of the date palm is shown in plates 1 and 2. In order to determine whether the scale attacking these palms was actually Parlatoria blenchardi and to establish in detail, for all stages, the identity of this species, a thorough study of the external amatomy of the insect has been made.

The palms from which materinl was secured for use in this study were the date palm (Phoenia dactylifera L.), the Canary Island

[^0]palm (P. conariensis Hort. ex Chaband), the Washingtonia palm (TVashingtonia filifera Wendl.), and the doum palm (Hyphaene thebaica Mart.). These are the only palms, or for that matter the only species of plants, upon which the Parlatoria date scale is lnown to occur in this country. The date palm was inported in an infested condition. The other species have been found free from scale except where the trees were located so near to date palms as to render the sotrce of infestation evident. The Camary Island palm, apparently is readily attacked. A tree of this species clistant 30 or more feet from date palms showed as heary infestation as the date palms themselves. On the other hand, Washingtonia polms fully as old as the Canary Island palm, which were rubbing branches with old, heavily infested date palms, bore merely a light scattering of seales. The individuals present, however, were completing their life cycles; to what extent the generations finally succumbed and were succeederl by fresh recruits from the date palm, was oot determined. The doum palms found infested were 30 feet from the nearest dute palm. They were more heavily infested than were the Wasingetomia palms but not so heavily atacked as were the Camary Island palms. It is highly probable that the Parlatoria clate scale will infest any kind of paim if it can exist as well as it appears, to do on such different gencra as Phocniz, Washingtonia, and Hyphaene.

The study of everg distinguishable extemal situcture of the boly in all instata of both sexes was undertaken from individuals collected from each host (except the third and fonth male instars, in which no specimene from Washingtonia palm were used), and included a critical comparison of the corresponding structures on each side of the meson of each individual. The results of this study are fully presented in the text and in illustrations.

No clear evidence was found that the insect from each species of palm was any other than Porlatoria blanchardi, and in consequence the description of the condition of each part of the body is based on the specimens studied from all four host palms.

The segmentation of the thoras is based on an interpretation by R. E. Snodgrass. of the Burean of Entomology, that the spiracles are located on the auterior sections and the legs on the posterior sections of the thomacic serments. The following condition appears to prevail in all stages: On the venter, the prothorax and anterior section of the mesothorax are indistinguishably fused, and are referred to as the "mesoprothorax," the posterior section of the mesothorax and the two sections of the metathorax are distinct, and the first abdominal segment has been crowded out by the caudal migration of the thoracic parts; on the dorsum, the thres primary thoracic segments appear to be neither divided nor fused, except in the aduit male, and the first abdominal segment has not been obliterated.
In the divided figures, all representing particular individuals (from the date palm if not otherwise specified), the right side represents the dorsal aspect and the left side the ventral aspect; therefore, owing to the variations between the two aspects, the margins do not always precisely corresponit. The bars of the pores on these figures, though located beneath the surface, are drawn solid to differ-

entiate the parts clearly. Similar structures shown comparatively on a figure are drawn to the same scale. In the figures no setae or pures have been duplicated aing the margins.

The endoskeleton of the head and the associated parts have also been discussed in detail and fully illustrated. The endoskeleton is represented with surface tissue removed in order to indicate its constituents the more clearly.

The terms "dextron" and" sinistron" refer to the right and left sides, respectively, of the insect from a dorsal view. Except where it seemed necessary for clearness to mention the structures on both sides of the body, the general discussion deals only with those of a single side, but in the average measurements and numbers of the parts both sides of the specimens are included, though as separate units, unless otherwise indicated. Words in common use are employed where possible to indicate particular structures or groups of structures; technical terms are used only where they seem necessary and clearly appropriate.

A segment referred to simply by number is the respective abdominal one.

In the cliscussion of the pores in all strges possessing them, the invaginated tubular type deseribed for the first stage is the type referred to, unless otherwise indicated.
In the original description of (Aonidia) Parlatoria b7anchardh, Targioni Tozzetti (14)" described for both sexes one more nymphal stage than the writer has observed in his investigations. A study of the structures of the bodies of individuals in process of molting has led to the conclusion that Targioni Tozzetti may have mistaken individuals of different ages of the same stage as representing separate stages, because such individuals appeared to be quite different, owing to growth, change in contour, and inerease in sclerotization.

SYMBOLS USED ON ILLUSTRATIONS

a, antus.
aSob, aleveloping cighth abrlominal sersment of adult.
lab-9ab, first to nintl ablumimal segments.
Sabs, matrisinal setar of ninth athtominal segment.
ac, antecosial suture.
aca, anal sclerotic area.
acs, precoxnl britge.
adold, developing asiott elaw.
adeo, deroloping adulf eoxis.
adfe, لevelopin; rdult femus.
atia, developing adalt tarsus.
allti, feveloping adalt tibia,
aiftr, aleveloping adult trochanter.
all alar buttress.
alo, nlur lobe.
(emet, anterior section of metratorit. an, inteman.
ana, faterior notal wing acelabulum. anp, anterior notal wing process. $a p$, anterior naturinal plate.
$a r$, anal ridge.
(8 , antennal seta.
$1 a s-5 a s$, first to fifth antemmat sefae ass, anterjor smbunarginai seta.
wh, prealax briage.
Inaz-4afr, first to fourdi axilhary sclerites.
anc, ixillary cord.
bat, base of antenur.
bb, basal bir.
bhs, border head seta.
barn, base of mandibls.
buto, bast of Itaxill:a.
bpen, base ot penis.
bht, base of salfory plunger.
bs, basistornnm.
but, bulla.
comr caudal membathe aticulating narainst rostrum.
cart, candal rostral thickenimg.
cemp, cephatic membrame articulatian against rostrum.
cort, cephalic rostral thickening.
cha, selerutic area.
whe, eitulal head setta.

[^1]cla, chens.
cts. clypeolabral suture.
co, cosal.
cout, crumena.
$d a$, differentiated area.
db, disfal 'mar.
aba, dorsill bend.
ams, corsai marginal seta.
 marginal setae.
dor, dorsal orifice of head kemeton for cgress of rostralis.
ap, process of dorsal surftice.
diph, Corsal prominnoe at apex of rostrum.
dw, developing wing of subsefuent stage.
e, eyc.
co, extermal opming.
fen, anepisterman.
2ep, katenisternum.
rpm, ejumeron.
of, external tracheal thickening.
f, furea.
fe, fomur.
fs, Threisternam.
gb, globular bise of spinelike luickching of rostrum.
of, genaceroris.
gosh, genital sheath.
hat, hateris.
in, invagimation of alimentary tomet.
ing, inferarea.
ingab, mouth of invagination of winth ablominal segment.
ine, infercosta.
iuf, intersegmental furca.
inl, line of jnvagnation.
inm, imvagination of mundibilar and mexilhry bars.
inp, hevagitation of maryugent twhe. ing, invagination of mababiblar shemb. it, futernal tmeheal thickening.
ith. interarea.
nlonl, first to fifh lobes.
$t u$, line of apposition or sides of inraginated tube.
7ap, hateral apodeme.
16 , lateral band.
le, leg.
7mes, Jateral mesal seta.
rs , large rostral seta.
m, median vein.
mab, marginal bulging.
mar, membranous ace oll seuthlum.
nop, mesal hotly furce.
mer, mouth of crumens.
near, meatus.
mes, messal sota.
meso, mesothorax.
net, membranous tube.
metu, metathoriax.
mhs, mesal bead seta.
Imhi-3mhs, frst to third mestl head setae.
mis, minule invarimated seta.
$m n$, mandible.
mnb, mandibular brace,
mmiz, mane thular pocket.
mus, mandibular sheath.
mut, mandibular tendon.
mof, mouth of furea.
$m p$ marghat pore.
mpl, marginal plate.
mpr, maxiliary process.
mrb, matghal raseti pore.
ms, marginal seta.
$m x$, maxilha.
mat, maxilary brace.
mop, maxillary pocket.
mas, maxillary sheath.
math. maxilary tendon.
0 , hatermal vagina oneming.
oc, esophagus.
i, pore.
m, proeess area of ventral surfice.
poab, developing ninth abdominal seg-
ment: of fourh stage.
mp, posterior body pore.
w, precosta.
mox, pustcomal bridge.
pth, prominenee of dersnl band.
inc, pritrome.
pen, yenis.
ph, jharynx.
$m b r$, phragma.
phs, nharymgen sclerite.
m, pheural sclerite.
${ }^{n} h$, pleural acetabulum.
the, menal wing condeyle.
mo, poroize structure.
phw, phargheal hateral wall.
pmes, posterior section of mesothorax. pmot, posterior section of metathorax. $m h_{\text {, }}$ nosterive nom wing acetabuhm. mp, posterior notal wing process.
mo, pore opening.
mo, postcosta.
fos, mesothoracie postsentellim.
m, posterior marginal plate.
$p r$, prothorax.
pra, thirol-stage antemm (male).
$\mathrm{mol}_{\text {, third-stage leg (anale). }}^{\text {a }}$.
mp, primary pore.
prs, suture between head and prothorax.
ps, pheural setr.
pse, mesuthoracic praescutum.
pus, pasterior submarginal seta.
We: pharyngeal tube bulblize chanber.
pte, pharmicell tenton.
th, wharyugen tube.
pua, developing antema of fonrtistage male.
prea, developing cosa of fourth-stage mnle.
${ }^{n} n t r$, daveloping trochanter of fourthstage male.
po, bostalne bridge.
r, rostrum.
ra, raised ares of head.
rah, radial vein.
rap, rulmentary anterior glate.
ro, rostral condyle.
rg, ring of genaceroris.
ri, ritge.
r5l, $16 l$, rudimentary fifth and sixth lobes.
rol, restalis loop.
ros, rostralis.
$r p p$, rudimentary fosterior jilate.
Irse, 2rsc, first and second rostral sclerites.
rsg, rosirn groove.
satl, silyary duct.
sap, Salivary zump.
scts, small intumat setia.
Istit, Qamb, first and second salivary tencons.
sbp, sutare between maxiliary brace and process.
sc, subcostal vein.
scl. mesothonace seutellum.
sct, mesthomace sentmo.
sde, salivary-duct bublike chamber.
sen, secondary mote.
ses, apparent suture betweon sixth and
serontla abominal segments.
ske, condyle of ventral surface membrune.
slp, spinelike pocess.
smp, submarginal porc.
$s p$, spiracle.
spa, spimacularia.
spe, spiracerotis.
spi, spinclike projuclion.
sph, sutivary phanger.
sps, spiracalar snomarginal seta.
spu, spur.
si, selerotic ring.
srn, shlmairghal misel pore.
srs, small rostrud seta.
Ss, sulmaargimal setn.
sss, secondary submarginal suta.
st, stylns.
str, spinelike thickening of rostrim,
sua, superaren.
suo, suprreosta.
sw, swallings of gentinl sherth.
f, mehes.
tif, tarsus.
$t c_{\mathrm{r}}$ feeth.
leil, tegults.
if. tibia.
tht. Tentos of salivary plunger.
the the twoming of pharyasend wall.
10 : tochinnter.
urha. madetermand selerolic areas.
use, undetermined sulerite.
za, vagiza.
rb, ventral bimd.
rehin, va;imal selemic area.
wma, rentral mombranous area.
童m(\%), ventrill mestil pore.
thes, ventral marginal seta.
Somex, 9 om , eighth and ninth ventral morginal sctar
v_{j}, process on ventral surface.
vir, ventrn prowinence at apex of rostryan.
*s, ventmil surace.
vor, rentml surface ridge.
tu. valva.
wheha, rivuiny sclerotic aren.
w, wing oc wing pme.

Broken Iines \qquad Ridges (or indienting commeetions hetween different aspects of the same structure).
Gross intching-a- Suace.
Dashes_-o----- Siclemotic parts or a solid hackground.
Doterel limes_-..-. tontinnes of structures below surface.
Stippled arens_-_- Membemons fissute.

EXTERNAL ANATOMY

Lag

The cuticic of the eger was too delicate to show any features. except a single pair of spines (fig. 1, (r, II) situated near the ventrocephalic margin of the head. These spines showed slight variations in form and degree of sclerotization. They were approximately 4μ in diameter and only moderately rased above the surface.

FIRST STAGE (MALE AND FEMALE)

Twenty-eight males in process of molting, al which time the sex can be detemined by the prewen of the second-instar male within the first-instar cutiele, all possessed a single prominent spar (fig. 1, $A, s p u$) on the onter margin of the tibia. This spur appears to be a stout seta, though the presence of the colys is difficult to detect with certainty. Twenty-four specimens definitely determined to
be females showed the following conditions regarding this spur: 16 hatd no spur on any leg; of those with a single spur, 2 had it on the right prothoracic, 1 on the left prothoracic, and 2 on the left metathoracic leg; of the 3 individuals with 2 spurs, 1 had these on both prothoracic legs, 1 on the right prothoracic and right metathoracic legs, and 1 on the right prothoracic and right mesothoracic legs. Many other individuals were observed from time to time in which there occurred either a single spur on all 6 legs, suggesting the male, or, usually, none on my leg, suggesting the female. Occasionally 1 spur occurred on 1 leg, but ravely were there 2 on any 2 legs, again suggesting the female.
The foregoing data regraing the presence or absence of this spur indicate that there is sex differentiation in this stage. Since no other sexual characters were dise evered, however, it appeared desirable to discuss the two sexes of this stage together. Two of each sex from each of the four pams, 16 in all, were stodied in detail.

The contour of the bocly is roundly oval at first, as shown in figure 1, A, which represents a newly hatched made from a Cannry Island palm. The average length and width of 12 males and 4 females that were newly hatched were $0.26 \mathrm{am}(0.16 \mathrm{~mm}$, respectively. In individuals ready to molt the lateral contour is somewhat more sharply oval. The average Jength and width, respectively, of 26 males ready to molt collected from the four host palms were 0.39 and 0.28 mm , and of 21 such femates, 0.41 and 0.20 mm .

dORSAL ASPECT OF THE BODY

buny seombets
The pygidhum is considered to be composed of four segments, the sixth to the ninth abdominal, inclusive, on the basis of the number and position of the sela, pores, plates, and lobes. Xt is a fused piece in which the segments are indistinguishable apart except for the presence of the candal portion of what is considered to tee the suture (ses) between the sixth and seventh abdominal segments. There are several distinct areas in the younger nymphs, but as the individual develops the sclerotization becomes heary and gradually covers the whole pygidium. The general size and shape of the remaining body egments are indicated in figure 1, A.

SETAE

Four large setae, the border heal setac (bhs), are invarinbly located on each side along the margin of the heard. Posterior to the two cephalic border head setae ocem two smatier setae, the mesal head setae (m / s). Posterior to the mesal hem setae is a smmler one, the caudal head seta (chs). All the setac on the head are situated typically as represented in figure 1. Located mesally on the thorax and abdomen is a characteristic curved row of six small setae, the mesul setae (mes). The cephalic one is near the meson apparently on the prothorax. The other five occur successively on the immediately following segments. Th two specimens there was no seta on cither side of the third abdominal segment. Nearly half way between the meson and the margin on the mesothorax and on the metathorax are setac that are slighty latere than the mesal setae and

are called the lateral mesal setae (lmes). These two setae are constant in occurrence and almost so in position. Near the margin apparently on the prothorax and along the margin of apparently each abolominal segment at rerulat intervals also oceurs a seta, called a margina seta (ms). What is considered to be the ninth abdominal seta (fig $2,9 a b s$) is crowded beyond the margin and much reduced in size.

The average diameters, in microns, of the calyces of the various groups of dorsal setae of the head and body are as follows: Sixth, seventh, and eighth abdominal marginal, 2.3 ; fitth abobominal margimal, 1.9 ; first, second, third, and tourth abdominal marginal and anterior border head (three), 1.5 ; posterior horder head, mesal head, prothoracic margimal. Iateral mesal, 1.4; catdal head, mesal body, and ninth abolominal marginat, 1.2.

1.27:

The eye (e) is always present as a dome-shaper structure, about 8_{μ} in diameter by $3_{\mu} \mu$ in thickness, and ordinarily is sitated on the margin of the body, between the two postecior border head setae.

pones

Only one kind of poro is present (fig, $1, D, E$), the invaginated tubular type having an externa opening ($c o$) surrounded by a lightly scierotic ring ($s \mathrm{r}$) and a lonir deliente tube (met) ending in two bats. The basal bar (bb), which is apparently a union of what is ustally considered the two bars of the pores of other diaspine species, is but little more solerotic than the tolbe, and of about the sume width, but it is distinctly hervier on the lateral marion. The distal bar ($a b$) normally is expanded somewhat apically, more heavily sclerotic than the basal one, ant capped by the "bulla" (bu) of MacGillivay ($8, p$. 223), a struct are extending through the distal bar, narow at the base and expanted apiendiy. It is probable that the secretions puss from the wax cell through the bulla.

There is a series of pores atong the margin of the body, one on each segment except the ninth abdominal ond, which is too smail to possess a pore (fig. 2). On the prothorax the pore is on the ventral surface. The head is peculiar in possessing two pores, the caudal pore on the dorsal surface and the cephalic one on the ventral, and known, respectively, us the rentral and dorsal marginal pores ($m p$). The largest pore is on the eighth abdominal segment, amp measures uniformly about 15μ from the external opening, which is about 1.7μ wide, to the apex of the distal bar. The tube and the extermal opening are of practically the same width. The pores gradually decrease in size toward the head, the head pores being 9.5μ long and having a tube width of 1.2μ. The external opening Soes not decrease in the same proportion as the tube, and on the head the latter appears to expand somewhat on reaching the exterior. No marginal pore was ever observed to be absent. These pores are always locaterl cephalad of the marginal setue of this surface on the two posterior segments of the thorax and on the abdomen.
Pores ocerre messily on the thoracic and the second abdominal segments and are of about the same size as the marginal pores of the same segments. They always occur lateracl of the mesal setae of these serments and may be called the mesal body pores (mbp). One of these pores is so situated that it is difficult to determine whether it is on the prothorax or the head. On two specimens of each sex the metathoracic pores were absent.

PRATEG

On the pygidimm are three sets of projections that may be called plates (ap, p_{1}), the "squamulae" of Green (4). The cephalic halt of the anterior plate of cach set nearly alwiys projects to at point and is slightly sclerotic. Its posterior margin makes a distinct eurve caudad toward a pore, merging with the ring of the pore. The candal half of ench anterior plate is a little less sclerotic, and may or may not be toothed. The posterior plate of each set is characteristically broad, with a trotherl distal margin, delicate and difficult to see execpt in well-stained specimens. At the base of cach posterior plate is a dorsal marginal seta.
The plates on the righth abdominal segment will be called the first or median set of plates, those on the seveath segment the second set of plates, and those on the sixth segment the thind set of piates. On the fomen and fitth abommal segments anterior plates may or may not be present, but usually are fomd on at least one side of the meson. Posterior plates of these segments seemed to be absent. or at most rudimentary, theugh there was oceasionally a slight bulging. In figure 1 -is a good example of mudimentary plates on the fourtly abdominal segment (ral, $r / p)$) The phates secm miguestionably to have arisen as bulgings from the body margin. Owing to the rudimentary condition of some of then, their exfact nunber is sometimes doubtial. An examination of 2 male and 2 temale specineras from each of the 4 host patms revealed math variation in the development of the 3 posterior pairs of these phates. The first or inner pair was sometimes absent, and the number of teeth ranged from 2 to 4 , with an average of almost exactly 3 . In only one specimen was the second pair of plates Iacking, and the plates that were dentate had from 3 to

6 teeth, with an average of 4.7. A few of the third plates were also lacking, 2 were rudimentary only, and the remainder showed from 2 to 6 teeth, with ain average of exactly 4 .

LOBES
The marginal lobes (12 to 51) ate also apparently outgrowths from the caudal margin of the body. When large and heavily sclerotic, they are ensity reeogrized. The smaller and more delicate ones might be overlooked except through careful observation, especially as to their positions with regard to the neighboring sebae, pores, and plates. For example, a lobe oceurs immediately caudad of a margmal seta and pore on abdominal segments 5,6 , and 7 , and sometimes the fourth abdominal serment appears to possess a lobe. Each one is in the same relative position with respect to the setae, pores. and plates of that serment. The first Lobe is apparently absent (fig. 2). The position of the latge, strongly sclerotic lole indicates rather certainly that it is the second lobe.

The dimensions and extent of noteling or dentation of these margrinal lobes in 2 female ami 2 una specinens from emech of the 4 host palms may be summarized as follows: The second Iobe varied only slightly in dimensions, the length ranging from 19 to 23_{μ}, with the average 22μ, and the width from 6 to 7μ. with the average 6.75μ. Except in a single specimen, in which it was entire, the margin of this lobe had a distinct noteh at the imer apical corner, and usually 1. but sometimes 2, compurable noteles in the outer literal edge. The lightly sclerotic and distally slightly convex third lobe ranged in length, as measured from boily margin to tip, from 1 to 4μ, with the average 2.1μ, and had a width range of from 1 to 6μ, with the avcrage 5.2μ. The wielth was usually more than twice the length. The apical margin was frequently minutely serrate, but more often exhibited from 3 to 7 teeth, or an average of 4.3. The nonselerotic and variable fourth lobe may be rudimentary or lacking; when present it may be pointed or rounded at the apex or more or less truncate, and cither serme or with from 2 to 8 teeth on the outer margin. The length of the fourth Jobe in the individuals showing it ranged from 1 to 4μ, with an average of 1.8μ; the width ranged from 1.5 to 8μ, with in average of 4 .an. The fifth lobe was rately present and res?mbled the fourth in its variability. Its length ranged from 1 to 2_{μ}, with an average of 1.6μ; its width from 1 to 6μ, with an average of 3.6μ. With the exception of one side of one specimen, on which of teeth were lound, this lole was neither serrate nor clentate at the apex. In most of the individuals a slipht bulge occurred on the third abdominal segment, which might be taken for a sixth lobe (267). This slight bulge also occurred on the fourth serment in nearly every case, bat in most instances it was wot sufficiently differentinted from the margin to be considered a separate structure. Even the fourth lobe may sonetimes be considered to be rudimentary, as when only 1 to 1.5 , in length. Indeed, only the second and third lobes would usially be observed as such. It is readily seen that in this stage the namber of lobes would be practically woithless as a point in classification. The number of notehes would also have to be used with caution, for the number on different individuals, and even on the lobes of the two sides of the same individual, fre-
quently differs, and there may even be no nothes at all. The number of teeth of the third lobe could hardly prove of value, for not only do they vary but they may be reduced to hardly more than serrations.

ANOS

The anus (a) in 13 individuals averaged 6μ in diameter and was located approximately 23μ cephalad of the caudal margin of the second lobe. There was little difference in this position in young and old individuals. The position of the anns with respect to the segments could not be determined with certainty. A sclerotic area (aca) is always present immediately cephalad of it, and extends partly down on the sides.

VENTRAL ASPECT OF THE BODX

BODS EECMEENTE

There is no indication of sutures between the head, prothorax, and anterior section of the mesolhorax, except possibly caudomesally between the head and prothorax, but the segmentation of the remaining thoracic segments is distinguishable practically throughout. The metathoracic leg lies sufficiently cuadad to bulge against the second abdominal segment. The succeeding abdominal segments to and including the sixth are distinct. This means that the pygidium, if considered to be the single infexible caudal piece, inctudes for this surface three segments, the seventh, cighth, and minth abdominal ones. There are no particular areas on the ventral surface of the pygidium, though it is more heavily sclerotic than the remainder of the surface. Its sclerotization, however, is somewhat less marked than on the dorsum. Cephalomesad on the pygidium are at least three rows of small spinelike processes ($s l p$). Two rows of these little processes occur on every segment along the meson, cephalad to the mesothorax, which, however, has but one. A rather small invagination, called the intersegmental furca (inf), occasionally occurs betyeen the mesothorax ind the metathorax. The size of the segments is much the same as on the dorsal surface. The ninth abdominal serment is distinctly invaginated and greatly reduced in size (fig. 2).

ANTENNA

The lengih and width of each of the five segments of both antennae of each of the 16 individuals were measured. These measurements, in microns, were as follows: Basal, length range 8 to 11, average 9.4, width range 10 to 12 , average 11 ; second, length range 7 to 10, average 8.3 , width range ô to 8 , average 7.1 ; third, length range 7 to 9 , average 8.5 , width range 6 to 7 , average 6.4 ; fourth, length range 4 to 6 , average 5.2 , width range 5 to 6 , average 5.5 ; fifth, length range 24 to 29 , average 26 , width 6 .

All the basal segments possessed 1 long and 2 relatively small setae; the second segments, 2 small setae; the third, 1 seta; and the fourth, 1 moderately long fleshy seta. There was no appreciable variation in the number and size of these setae on any specimen. Some variation did occur, however, on the fifth segment, where from 3 to 5 fleshy setae were found, the number present sometimes being different on the antennae of the same individuals. Their position on the segment
varies freely. Two very long and slender setae arise from the distal end of the segment. There are also two small structures, which from the resemblance to similar structures in other scale insects may be considered as minute invaginated setae (mis), always present on this segment as figured.

GETAE
Between the antenne are three small setac on each side (1mhs to $3 \mathrm{~m} / \mathrm{s}$) ; none of these was ever olscerved to be absent. Eight mesal setae (mes) were always found on the thoracic and abdominal segments.
A pair of large setac, the marginal setac ($m s$), occur near the margin of each of the following segments: Mesoprothorax, posterior section of the mesothomax, and anterior section of the metathorax. The ceplatic one of each pair is usually more mesad than the other. Sometimes one or both are almost. if not quite, on the dorsal surface. The marginal setae continue caudad, one on each of the abdominal serments. They are similar in size to the thoracic setae, except for the eighth aldominal une (svms, fig. 2), which is very large and long, and the ninth abdominal one (9abs, fig. 2), which, in contrast to the eigroth, is extremely small, in fact the smallest seta on the body. A ventril and a dorsal marginal seta of the abdomen constitute a pair in the same series with the thoracic pairs. The ventral ones are alyays ecphalad of the dorsal ones. No seta of these pairs was ever missing.
Along the submargin of the body there is a row of small setae, one on each abdominal segnent except the firat and the ninth, which may be known as the ventral submarginal setac (ss). Each one is atways present, and comparatively constant in position. On the posterior section of the mesothoras, near its cephalic border and about two thirds of the distance to the marrin, is a seta which should probably be included in the shbmarginal series. It is larger than the other submarginal setae, but not so large as the marginal pairs.
The yentral setae muy be grouped as follows atcerding to the calyx diameters in microns: With diameter 2.7, the eirhth abdominal marginal; with 1.9 , the fifth, sixth, and seventh abdominal marginal; with 1.7, the thoracic marginal and the first to fourth, inclusive, abdominal marginal; with 1.5, the mesothoracic submarginal; with 1.2 , the mesal head, mesal body, und remaning subnarginal; with 0.8 , the ninth abdominal marginal.

4.4.ES

The three legs are similar in every noticeable respect (except possibly size), including the number, size, and position of the setae on the sclerites; therefore, a description of one will apply to all. Distally the coxa (eo) bears two large acetabula, and between these a large. broadly rounded condyle, articulating ngainst two large, rather sharp pointed condyles of the trochanter, apparently allowing a limited rocking motion. At the base it is drawn out into a narrow, strongly sclerotic condyle, that articulates nomaty flatly a arainst a prominent selerite, which Mow (billivay has called the "epistemm" but is termed here simply the "pletral sclerite" $(p 7)$. There is probably a rather limited action letween the coxa and the pleural sclerite. The latter possesses an internal projection, usually stout
and rounded, designated as the " lateral apodeme" (lap). The trochanter ($t r$) ariculates freely against the coxa. The femur ($f e$) is apparently rigidly attached to the trochanter, but articulates freely against the tibia ($t i$) by means of two small condyles, the cephalic one strongly sclerotic and the caudal one membranous. The tibia and tarsus are apparently fused. The claw (cla) is toothless.

The length and width of ail segments of all 6 legs were measured for each of the 16 individuals. As would be expected, slight variations were noted even on different sides of the same individual. There was also a slight variation in aworge size of the segments, the prothoracic ones being the smatlest, and the mesothoracic ones next. The range and the average of the length and width of the parts of the metathoracic leg, expressed in microns, are as follows: Coxa, lenrth zange 16 to St, average 18.4 , widh range 12 to 16 , average 13.6; trochanter, length range 10 to 13 , avorage 12.1 , width range 8 to 10 , average 9 ; femur, length range 29 to 35 , average 32.3 , width range 12 to 13 , average 12.2 ; tibia plus tarsus, length range 28 to 35 , averuge 32.1, width range 5 to 0 , average $\overline{5} .8$; claw, length range 12 to 16 , average 13.4 , width 3.

The coxa bears 3 small setae, 1 of them on the dorsal surface. The seta sitnated neme the basal condyle is easily overlooked. The trochanter bears 2 setae, both on the ventral surface, a very large, the other very small and easily missed. In addition, there are 4 porelike structures (p / s), 2 each on opposite surfaces. The lemur bears no setae. The tibia-tarsus has, hesides the spur previously disenssed, 1 moderately large seta on the inner surface, immediately cepalad of a notch. Two long setae occur at the distal end on the outer margin. The inner strface of the thickened base of the claw also bears a pair of setac.

Simonales
In mounted material the spiracles ($s p$) are ustally hidden by the legs. The spiracle proper is considered as merely the external opening, which is rather large and surromded by a prominent sclerite, the peritreme (fig. 1, $B,(c, p e)$. In all specimens the peritreme appeared crescent-shaped, the ring being unrecognizable. The trachea (t) decreases in diameter from the spiracle. A creseent-shaped sclerotic area, the external thiciening (ef) of the trachen, occurs not far within. Somewhat farther inside occurs a ringlike sclerotic area, the intermal thickening ($i t$). which is of the same diameter as the trachea proper. The somewhat trimpet-shaped sclerite attached to the peritreme has been called by Mactillivray the "spimacularia" ($s p a$). In this stage its smmil end is directed mesad. The two pairs of spiracles are nearly equal in size. The diameter of the peritreme, meaning the straight distance across the largest crescent-shaped sclerite, is typicaly about 6μ. The spimealaria is about 12_{μ} long and is curved, with one or more ridges extending the length of it.
On the posterior section of the metuthoras laterad of the legy is a strongly sclerotic stracture (usc) typically of the size and shape shown in fgure $1, A, F$. It possesses an inner enrving piece which resembles the peritreme of a spiracle. It is always present. If the segment laterad of the leg is considered to be a part of the first abdominal segment, this sclerite is in position to be a vestigial spiracle.

ROSTHALIS ${ }^{2}$

One structure associated with the endoskeleton of the head，the mouth－stylets bundle or rostralis（ros，rol），will be discussed here， as regards its position and dimensions，because of the＂xcellent com－ parisons that can be made between it and other body parts．The rostralis，in issuing from the head．is always directed caudad within the body nearly to the anal opening，where it bends deeply cephalad， curving gently，first mesad and finally laterad，to the prothorax， where it forms a lorp and retraces its path as far as the base of the rostrum．The length of the rostralis from the bases of the mandibles and maxillae to its tip varies with the individual．Its average length in 17 specimens was 0.64 mm ，the shortest being 0.59 mm and the longest 0.75 mm ．

SECOND－STAGE FEMALE

Twenty individuals， 8 from date palm and 4 each from the other 3 palms，were studied．In newly molted ones．as represented in figure 3，A ，the contour of the body is roundly oral，somewhat sharper at the ends than in newly hatched firs－stage nymphs．The average length of 15 newly molted imtivilutils wais 0.39 mm ，and the average width 0.30 mm ．

DORSAL ASPECT OF THE BODY
HODY SMRMENT
The prgidium is more extensive than in the first stage，for the rudiments of the suture betwen the sixth and seventh segments are absent．The segments of the pygidium tre easily detemined from the number and position of the selae，pores，plates，and lobes in this region．The ninth segment is much less refluced than in the first stage．The selerotic areas of the pygidinm are well defined in the newly molted specimens，and practically uniform in appearance．A distinctive，small，acutely oval sclerotic area is situated submargin－ ally on the sixth ablominal segment（uchit）．In older individuals the sclerotization spreads over the entire pygidiam，obliferating any definite sclerotic arens．In the younger specimens．however，these areas can be homologized with those of the first stage．The remain－ ing segments of the boly are essentially like those in the preceding stage．

今心に，

Four large cephalic setae and one smaller caudal seta（b／hs）are always present near the margin of the head，on each side of the meson．The exact position of cach may vary somewhat，but the gen－ eral position is as shown．In 3 individuals a still smaller seta was also present posterior to them，in 1 case occurring on both sides and in the other 2 on one side only．On another specimen a large seta occurred on etch side，anterior to the 5 usual ones．On 5 specimens this kind of setal occurred on one sifle only．These were the only exceptions observed．These setae appear to be homologous with those of the first stage，and therefore may be called the border head setae．

[^2]The smaller posterior seta is an extra one in this stage, but is considered as belonging to this gromp. The pair of mesal head sctae of the first stage were not observed.

A small setat (chs) always oceurs, renerally cephalolaterad but sometimes immediately cephalad of the endoskeleton. It is considered to be homologous with the caudal head seta of the first stage.
The mesal setac, except what is considered to be the prothoracic one, are lacking in this stage. This seta (mes) does not occur in the
first stare, but occurs in the second-stage male, as well as all the other setae of this set. It was missing on both sides in two speeimens; in another specimen it was absent only from one side; in all the other specimens it was present on both sides. It is evident, however, that it is not a constant structure in this stage.

Two lateral mesal setae are situated in essentially the same locations as they are in the first stage. None was ever observed to be missing.

The marginal setae are all present as in the first stage. An additionnl, smaller seta occurs associated with, and caudomesad of, the prothoracic marginal one. Two plates always occur between the setae on the first 4 ablominai segments, 3 plates between them on the next 3 posterior segments, and 2 between them on the eighth serment. The marginal setae are always present.

All the setac of this surface show rather closely, though not exactly, a characteristic size. For insiance, no "small" seta ever occurs " large", or vice versa. These dorsal setae may be grouped as follows on the basis of racasurements, in microns, of numerons calyes: With diameter 3.2 , the fifth, sixth, and seventh abdominal marginal; with diameter 3 , the four large border head, the eighth abdominal marerinal, and the anterior prothoracic marginal; with diameter 2.3, first to fourth, inclusive, and ninth abdominal marginal ; with diameter 1.0, posterior prothoracic marginal, posterior border head, and lateral mesal; with diameter 1.5, caudal head and mesal booly.

Exe
The eye is mearly always distinguishable, but is evidently in a vestigial condition.

PORES

In the first stage the pores show no particular variations except that in general they are somewhat smaller anteriorward. In the second-stage female the pores show a considerable range in size, shape, amp degrece of selerotization. No pores were observed on the head. In most instances a minute pore ($m b p$), rather variable in position, was noted on the prothorax and on the mesothomax. On the first abrlominal segment 1 marginal pore is present, as in the first slage; on the second to fifth abdominal segments, inclusive, 2 occur; on the sixth, seventh, and eighth abdominal segments there is only 1 , and on the ninth noue. The marginal pores are situated at the head of prominent incisions, which are especially deep on the sixth, serenth, and eighth abdominal segments. On the segments having 2 incisions the anterior one is always the deeper. In this stage the marginal pores are shorter and broader than in the first stage, and the rings about the external openings are more strongly sclerotic. The basal bars are broader and also much more strongly sclerotic, but the distal bars are narrow and the sclerotization is relatively slight. The bulla is practically the same in the two stages. As in the first stage, the size of the pores gradually decreases cephalad. For example, a typical pore on the eighth segment, measured from the extermal opening to the distal border of the distal bar, was 13μ long, the width of the basal bar $\overline{5} .5 \mu$, and the width of the sclerotic
ring about the opening 8μ; in contrast, a pore of the first segment, mensured over the same limits, was 8.6μ long, 3.5μ across the basal bar, and 5μ across the selerotic ring.

Sometimes a marginal po: was absent. Of the 20 specimens studied, 7 lacked, on the dextron, the posterior pore of the fifth segmont, 1 lacked, on the sinistron, the posterior pore of this segment, while 1 lacked also, on the dextion, the posterior pore of the fourth ablominal segment. Only in these instances were missing pores noted. Apparently the extra pores of these 2 segments, especially those of the fifth segment, are not so well established as those of segments 2 and 3 . The fact that, where a segment normaliy has 2 pores, the anterior one is always present seems to indicate that it is the primary pore (p, p), that is, the pore homologous with the one on that segrnent in the first statere.

The mesal pores of the first stage are probably represented in this one by a series of small pores (mbp) found, for the most part, along the submargin of the body. They are much smaller than those of the first stage. On the abdominal segments they are cleurly distinguished from the marginal pores by their size and position. A small pore occurs typically on each of the first 5 abolominal serments, the one on the fifth being usually somewhat langer than the others, and the one on the fourth frepuently so. The pore on the third abdominal segment is generally distinetly more mesade than the others. The position of these pores along the stumargin varies considerably in clifferent individuals. The size of the 2 pores on segments 4 and 5 varies considerably. Also, 1 or nore of them may be lacking on one or both sides of the body. Contrariwise, there may be more pores present than the typical 5 on either or buth sides, and 1 may occur on one or both side's of the sixth serment, in which case the additional pores are renerally consikerably mesad of the others. In short, this series of pores is decifledy unstable in character. The dimensions of the small pores, in microns, are about as follows: Length from extermal opening to distal border of distal bar 5 , width of bars and tube 1 , width of ring ibout opening 1.9.

The caudal margin of the body bears a series of lones, narrow, delicate pores, the marginal raised pores (mprp), which always open at the distal ends of projections; therefore, if a projection is lacking, so is the pore. These projections are the plates subsequently discussed. The caudal pores averare about 35μ in length. There is a gradual decrease until they average but 13μ in length on the first, second, and third segments. The tubes are flexible, and may curve moderately or sharply to either right or left. The bars are similar in form and sclerotization to those of the mesal body pores, but the distal ones are normally somewhat expanded. On the other hand, these distal bars may be found in a collapsed condition (fig. 5, L), as are occasionally any of the smallier pores of the body. The rings are little, if at all, expmaded, owing undoubtedly to their confined Tinits on the plates.

> PATES

Typically 18 marginal plates (mpl) are present on each side of the body. Rarely 1 or 2 may be alssent or an additional 1 may be prescut. They vary somewhat in size and shape, more so on ab-
dominal segments 5 and 6 than on the other segments. These plates appear to be undifferentiated projections of the margin.

The plates on the five posterior segmerts usually have small, sharp projections, called "tectl.". A prominent distal, forked pair is nearly always present, except on the plates of abdominal sarment 5 . The anterior phate of this segment xarely is toothed, and the 2 posterior plates either have no teeth or a varying number up to 10 , nsueliy 5 or 6 , irregular in size and position. The plates of abdominal segment 6 bear a large number of teeth, the forked distal ones and generally 3 or 4 addifional hateral ones, sometimes more or less, and sometimes 1 or 2 teeth miy orem on the mesal side of the plate. The plates of abdominal segments 7,8 , and 9 bear characteristically the distal forkel ones and but ravely more than 1 or 2 in addition. On the anterior plates, and on the single plate on segment 9 , the additional teeth are (ypically on the mesal sides; on the other plates, typicaly on the lateral sides. The teeth may be rather difficult to see, even on niedy stainel specimens. They weer in all sizes, some distinct, others so infiniterimal that it is a question whether they are prewent at all. Farthermore, it is sometimes doubtrul whether a thotblike projection is really on a plate or merely on the imer marein of the body proper.

Although the maryinal mised pores never appear apart from the phates, some of the plates ocrasionally ecent devod of pores. The poreless phates were seen only on the fifth and sixth abdominal segments and were always in a rudimentary condition.

Structurally the margimal plates appear to be similar to the submarrimal raisol pores of the thomacic segments and are considered honolegons with them.

3. mas s

The number of Iobes om each side in this stage is, rather definitely, 4. The locations for the fifth, sixth and serenth lobes are indicated, however by marginal bulgings (mab). The typieal size and shape of the lobes is shown in figure 3,-1. The measurements, in microns, of the labes on the 20 specimens studied were as follows: First lobe, length range it to 21 , werage 17.2 , width range 7 to 9 , average 8.6 ; second lobe, length range 13 to 18 , average 14.9, width range is to 7 , a verage 6.1 ; third lobe, length mage 7 to 16 , areage 12.2 , width range 3 to 7 , average 5 ; fourth loke, length mange 5 to 10 , average 10.6, width range 3 to 7 , average 5.2 .

The first 3 pairs of lobes were ahways present and distinetly sclerotic, the third pair a little less so, apmarenty, than the preceding 2 , and they showed practically no variation from the typical shape. The first 2 pairs always had cyen apical contours; the thiud pair, however, possessed a distinct lateral notch on each side of the meson in 2 specimens, amd in another specimen 1 of the thied pair was irregubuly margined. The third pair also showed a wider range of dimensions than the other 2 ; in short, it was less fixed in its characteristics. The fouth pair of lobes were even less fixed than the third. In about half the individuals they were not murh less sclerotic than the third parr; in other specimens little or no sclerotization was noted. In half of the individuals the apical contour of the fourth lobe was very nearly, if not quite, even. The fourth lobe hat distinctly irregular apical contours on both sides of the meson
in 7 specimens, and on one side only in 2 specimens. Another individual had a typical notch on the fourth lobe on euch side of the meson. The variation in size was more marked than in the third pair. In 1 individual the fourth lobe could not be distinguished on one side, and in many specimens it might casily have been overlowked by one unfamiliar with its charmeteristics.

ANU\&

The anus averaged 10μ in diameter for the 20 indivirluals studied; the range was slight, from 9 to 12μ. The distance on the dorsal surface from the distal margin of the median lobes maged from 50 to 77_{μ}, with an a verage of $7 h_{\mu}$; the differenee in distance appeared to be independent of the ages of individuals. A distinetly selerotic column extends from the base of the median lobe to the lateral matrgin of the anus. This colum is in the position where a suture would lex expected, and may indicate the division betwen segments 8 and 9 . The anus is situated along the cephalic matgin of this column, and would, therefore, apparently be either betweer the dighth and ninth segments or along the cephalic margin of the latter. Most morpholo. gists, however, consider the anus as belonging to the tenth segment in other insects. In this case the tenth segment would be reduced to an indistinguishable vestige. Rather significantly, another sclerotic column extends cephatad and mesad from the second lobe in the position for a suture between serments 7 and 8 . A hearily selerotic square area (aca) was present as in the first stage, inmediately cephalad of the anus.

VENTRAL ASPECT OF THE BODY

nons smomerits

The segments are essentially like those of the preceding stage, except that there is no evilence of amy suture between the sixth and seventh abdominal segments and the pygidinm is somewhat more extensive.

ANTENNA

The antenna (en) is nerer absent. It is a tubercular stracture (fir. 3, B) composed largely of what appear to be only 3 or usually 4 stonit projections, irreguar in size and position, that are frequently so smoothed pat as to be semvely, if at all, distinguishable from one another. The antema bewis a prominent seta (as), which is fleshy, characteristically turved, and uniformly about 12μ long. This setit was never absent. In abwut one fourth of the individuals a very small additional setal (sas) could be distinguished. This was absent, however, in the specimen figured. The positions of the setac on the antemnae are not lefinite, owing to the irvegularity of the projections on them. The antema with its projections averages about as long as broad, that is, 7μ.

> BETAE

Of the mesal heat setate. only the cemital pait was ever present. In 12 individuals, including the one figured, this seta was missing; in
the remaining 8 it was present on one or both sides. It is evident that these setae have nearly dismpeared from this stage.

The mesal setate difler from those of the first stage in the addition of a seta on the masothorax, giving this segment 2 , and the addition of 1 seta on each of ablominal segments 4 to 7 , inclusive. The extra ones are situated laterad of the primaty setat, typically as shown in the figure. The primary setac are situated similarly to those in the first stuge. As would be expected, none of the primary setae was ever absent, but in 3 specimens 1 of the new setue was lacking on the seventh ablominal segment.

The marminal setac occur similarly to those in the first stage, except for the lack of one on the posterior section of the metathorax, and the great reduction in size of the one on the aighth abrlominal segment, which is here just slightly smaller than the others, and the one on the ninth, which is appreciably smaller but not so smatl as it is in the first stage. A slight varintion in size is frequently observed among the other setae of this series. Measurements of the distance separating the two members of each of the thoracie paits of those marginal setae in the 40 cisos showed mach variation, as indicated by the following enumeration, given in microns: Between prothoricie pair, i to 14 ; between mesothoracic, 14 to 36 ; between metathoracice, 20 to 43 . The mamginal seate were constant in their presence.

The submargimal setae differ from those of the preceding stane by the absence of the ones on the posterior section of the mesothomx and the eighth abdeminal segment. and the presence of 1 on each of the 2 sed ions of the metathoras and of 2 ot the mesoprothorax. 'The position of the submargimel setae is fixed on the abdomen, but considerably Jess so on the thoracie segmems. The typical location of refl is as represented in the figme. 'Ihe setat of this series on the sinistron of the metathorax was absent in 1 indivinual, and the more laterad of the posterion setio from the dextron of the prothorax was absent in mother individual.

The ventral setae may be arranged in the following gronps on the basis of measurements in microns, of the calyx diameters: With diameter 2.5 , prothoracie and mesothomeic marcinal; with diameter 2.3. first to seventh, inclusive abohminal maramat, and metathoracie margimal; with diameter 1.9, mesothoracic mesal, pygidial mesal, rirhth ablominal marginal, and mesoprothoracie anterior submarrimal; with dinmeter 1.5 , all other messal and submarerimal ; with diameter 1.2 , ninth aboloninal margimal.

poles

No pores were observed on the head. Near the margin of the thoracie segments, except the posterion section of the metathorax, a number of pores with surface openings oceur. The posterior one ($m p$) on each segment, because of its generally slightly harger size, is considered to be homologrous to the marginal pores; the others are called submarginal pores ($s m p$) bot appeat to be a continuation of the mesal body pores (mbp) oceurring on the dorsm of the abdomen. The submarginal pores on the mesoprothorax are distinctly smaller than the other submarginal pores. On the remaining 2 segments possessing them the submarginal pores vary somewhat in
size, and on all the segments they vary in position. The marrinal pores seem to be constant in number, 1 occurring on ench of the thoracie segments except the posterior section of the metathorax, which apparently lacks on this surface both marginal and submarginal pores. The submargina pores vary in number. On the 20 specimens studied they occurred as follows, those on cach side of the body being counted separately: On the mesoprothorax no pores in 3 cases, 1 porc in 2 cases, 2 pores in 12 cases, 3 pores in 22 cases, 4 pores in 1 case; posterior section of the messthoma, 1 pore in 11 cases, 2 pores in 27 cases, 3 pores in 2 eases; anterior section of the metathorax, no pores in 11 cases, I pore in 29 cases. A count of the marginal and submarginal pores of both surfaces of the abdomen and thorax, up to and including the marginal pore of the mesoprothorax but not the litte subnarginal ones of this segment, of 178 specimens from all 4 hast palms showed a range on each side of the body of 15 to 20 pores, and an arerage of 17.4 pores.

Near the meson on the mesoprothorax is a minute pore, about in μ Iong by 0.7μ wide across the bars (fig. $5, L$). The sclerotic ring is, however, abont as wide as in the average small pore. In 2 specimens no pore was observed on one side. Another pore, almost equally as small, always ocears on the posterior section of the mesothorax. in the neighborhood of the anterior mesal seta. These 2 pores are called ventral mesal pores (emep). Two were present on the dextron of the posterion section of the mesothorax of 1 individual.

No mesal pores were noted on the abdomen.
On the pusterior section of the metathomx there is always a single raised pore. On each of the 2 immediately anterior segments-that is, the anterior section of the metathorax mal the postrior section of the mesothorax-are usually 2 , ocemsionally only 1 , and rarely 3. On the mesoprothorax 1 individual possessed 1 pere on the dextron. These raised pores are considered to be merely a contimation of the raised pores from the margin of the ablomen on the dorsm, and are in eyery particular like the subuargimal maised pores of the anterior abdominal segments of that sarface. They may therefore be called the ventral submatrinat raiset pores ($s p p$). There appears to be no clear connecting limk between the raised pores and the surface pores. The former always have tubes longer in proportion to the width than the latter (fig. $b, A H, N, O$), and there never seems to be any donbt as to whether a pore is raised or not. However, the structural details of both are apparently identical, and so there is little doubt that they are homologons.

Pores of the disk type (spe) orem only on the mesoprothomax, inmediately cephatad of each spiracle, the "spiraceroris" of MacGillivray (δ). This term is considered more desirable than. for instance, "spiracular pore", because it maikes it possible to distinguish clearly the types by mame, and to distinguish these defnitely from the 1 or 2 small messl pores which atso occur near the spinacles. The spiracerores (fig. 3, (') are slightly masef, doubty ringet, typically with a sharp sclerotic projection, a section of the lateral raised wall, extending from the outer ring to the boly surface; and they bear from 2 to 5 pore openings, which are always located apparently at the ends of central sclerotic thickenings. In a pore with $\overline{5}$ openings the central thickening assumes the appearance of a star, with
the openings apparently in the apices of the rays. The spiracerores with 5 openings were all practically 4.5μ in diameter, and those with fewer pore openings were very slightly smaller, depending somewhat upon the number of openings. Occusionally the openings were too indistinct to count. The number of openings may vary on different sides of the meson of the same indivilual. One specimen possessed 1 pore with $\overline{5}$ openings on one sirle, and 2 pores. 1 with 5 and 1 with 3 openings, on the other side. In an examination of 195 specimens, in which each side of the body was counted separately, 3 pores occurred once and 2 pores six times; all the remaining specimens possessed 1 pore on each side.

1.5OS

Cerfain vestigial protuberances (fig. $3, D, E, F$), either membramons or selerotic, or partly both, as occurs occasiomally, may be considered as leas, since they are similar to harger structures in the same locations in the second-stare male which are definitely recogniged as legss. Thirtern indivituals harl one or more of these protuberances. In one instaner the protuberance, a mesothoracic one, was relatively large and somewhit sclerotic (fig. 3, E). Hoke
(0) has mentioned the presence of vistigial legs in both this stage and the adult femate of a lemeaspid.

SHRRACTHK

The spiractes (fig. 3, A. sp) differ from those of the preceding stage most noticealsy in the fare that the larger ends of the spirarolariate are directed mosad, thas in opposite direction to those of the first stage. The peritreme is always ringlike in this stage. The tracheal thickenings and the ridge of the spiraculariae are present. with thorlfications. The two pairs are subequal in size, about 20μ long, including the latoral boundary of the peritwene, by 8μ across the widest part of the spiracularia. The peritreme is ulmost uniformly 5μ in diameter.

10STRALIR

The rostralis is considerably longer in proportion to the size of the body than in the first stage. Measurements of its length in 8 specimens showed a range of from 2.31 to 2.50 mm , with an average of 2.53 mm . In the newly molted individual of this stage the rostralis is from 6 to 7 times the boly length, whereas at the beginning of the first stage it is less than 3 times as long as the body. The position of the rostralis in the body of prepared specimens varies widely, no 2 individuls showing it alike. The end loop is rather dofinite in size, however, averaging 45μ long by 20μ wide. The rounded contour of the loop suggests its relative stiffness.

ADULT FEMALE

Thirty-two individuals, cight from each palm, were studied. The contour of the body (fig. 4, A) is slightly elongate ova, broadest across the base of the posterior half, from which there is a rather sharp slope caudad and a gentle slope cephalad. The body does not change in shape and increases but little in size after molting. The average fur a number of clder individuals is somewhat larger, but

 dorsol marginal seta of fifth abdominal begment; X, large dorsal marghat seta of
 $0, \pi, 2-x, \times 2,000 ; 1, \times 150 ; 8, \times 42 ; 1, \times 240$.
frequently an overlapping of size among the individuals of different ages has been noted. A tabulation of lengths and widthes of 45 newly molted specimens and of 40 older ovipositing specimens showed mach variation throughout; it may be summarzed as folJows: Newly molted individuals, length 0.52 to 0.85 mm , average 0.7 mm , width 0.4 to 0.66 mm , average 0.53 mm ; older ovipositing individuals, length 0.61 to 0.84 mm , average 0.74 mm , width 0.5 to 0.68 mm , average 0.59 mm .

DORSAL ASPECT OF THE BODY

The segments of the pygidium are differentiated in essentially the same way as in the preceding stagres. The selerotic arcas of the pygidian are characteristic in the newer forms, graduaty becoming indistinguishable as sclerotization spreads over the entive pygidium. These areas can be realily homologized with those of the second sage. The remaining segments of the body can be detected in newly molted individuals, but are less distinct than in the immature mentars.
swise
On the anterior part of the head are 5 setae which are apparently homologons with the border head setae of the preceding stages. They are rather constant in presence, comparatively su in size, ind Iess so in exact position. In only 2 ont of the $6 \cdot$ groups examined were any setae absent. On the dextron of 2 indivisluals the most anterior seta of the group was missing, but an extra posterior seta was present on one side in 3 specimens and on both sides in 1 specimen.

The caudal head seta is absent in this stage.
The mesal seta of the prothorax and the 2 lateral mesal setac of the preceding stage are present.

The marginal setae becur essentially as in the preceding stage. The ventminarginal setae of the abdomen occur practically on the dorsal surface. The ventral setae are always cephatad of the dorsal ones. The relation of the setue to the neighboring plates is noteworthy. Typically 2 plates occur between the pairs on ablominal segments 2 to 8 , and $\{$ plate between the setac of each pair on segments 2 to 7 , inclusive. This is, however, by no means a fived condition. No plate ever occurs between the setae of the pairs on the pighth and ninth segments, and only 1 phate between these 2 puirs. A single seta, the clorsal one, which is never missing, is bome by the first segment. Of nearly $\$ 00$ segments examined, 21 showed 1 marginal seta absent and in 4 cases both were absent.

The setae (exeluding the ventral abdominat marginal setac) may be segregated into several groaps on the basis of the diameter, in microns, of their calyces, as follows: With dimmeter 4.2, fifth, sixth, and seventh abdominal marginal; with dianeter 4.0 , the four anterior border head and the cighth abdominal marginal; with diameter 3.6, cephalolateral prothoracie murginal and the first to fourth, inclusive, abdominal marginal; with diumeter 3.2 , posterior border head and caudomesul prothoracic marginal; with diameter 2.8 , mesal, fateral mesal, and nintla abdominal margimal.

The only structure observed that might be taken for the eye was a prominent, well-sclerotized, rounded thbercle, which occurs cephatolaterad of the anterior spiracle near the dorsal margin of the body. Berlese ($1, v .4$) indicates the presence of an eye, even to showing the optic nerve leading to it, in a related species. Yet the writer considers that here this tubercular structure might not be an eye, for reasons given below. It. appears to be distinctly more caudally situated than what is taken to be the eye in other stages of this species, occurring near the hirst pair of margimal setae cepthalad of the posterior section of the mesothormx, and in some specimens even as far candad as one of these setac and may be almost tonching one of them. If this pair of setae is a contimution cephalad of the series of marginal setae, then one or both of them may be expected to oceur cither on the anterior section of the mesothorax or on the prothorux. It hardly seems likely that both of these segments may be reduced nearly to the vanishing point in the vicinity of the tubercle. Also the eye, though pronounced in the first-stage female, appears to be vestigial in the second stage, but the tubercle is large and strongly developed in the alult. Hovever, in other species of Partatorict (cight examined) no structure that might be clearly taken for the eye was discernible in the adult female, though in this stage of one species (P. ziziphuss Lucas) vecurs a structure that probably has no relation to the eye but gives evidence, as will be indicated in the following section, of being homologous with the tubercle in P. blanchardi. Whether or not the tubercle under discussion is an eye can probably best le settled by tracing the optic nerve, a task not possible with the writer's material.

rohes

In other species of Parlatoria typically I to 3 or 4 raised pores occur on the ventrolateral surface of the body cephalolaterad of the anterior spiracle and apmently on the thome. These pores vary considembly in location, wat in no case was one noted definitely on the dorsal surface. Usually the rim around the extermal opening of a pore is very large and heavily sclerotic, as compared with the remainder of the pore. In general aspect a rim resembles the tubercle mentioned in the preceding section, suggesting that the latter might possibly be homologous with these raised pores by a small modification in position from the ventral to the dorsal margin, and in structure through the disappearance of all parts of a pore except the rim. In the adult femmle of Parlatoria ziziphus, as well as in that of P. blanchardi, the raised type of pore was not seen cephalad of the anterior spiracle, but in P. ziaiphus laterad of the anterior spiracle on the margin of the body occurs a prominent, rounded knob; which may be sclerotic distally but membranous basally. This knob may ur may not bear a seta, apparently one of the pairs homologous with the pair occurring near the tubercle in P. blanchardh. If this is so, then the latter would seem to be homologous with at least part of the knob. Until a better understanding of this tubercle is obtained, it is considered simply as an undetermined sclerite (usc). Close observation of the tubercle will usually reveal
a faint differential area ($d a$) in it. The trbercle ranges from 12 to 18μ in diameter and from 10 to 12μ in height. It was present in all but 2 individuals, being absent from both sides in 1 specimen and from the sinistron in nother. No more than 1 of these structures occurred on a side in the 32 individuals studied in cletail, but among some other specimens 1 possessed on one side 2 well-developed and well-separated tubercles.

No pores of any kind were definitely recognized on the thorax of the 32 specimens studied in detail, but it is likely that one or more very minute, invaginated surface pores may have been present, for such appeared to be the case in some other specimens.

Two linds of marginal pore, are distinguished on the abdomen, primary pores and econdary pores (fig. $4, S, p r p, s e p$). The primary pores. or the pores considered homologrons to those similarly situated in the second-stage female. are apparently constant in occurrence. The first segment lacks I pore; their presence on the remaining segments agrees with that in the preceding stage. Those on segments 2 and 3 may vary a little in position, and usually are situated within the marerin; those on the other segments are practically fixed in position and ocear characteristicaly at the head of certain definite incisions. The secondary pores, or the extra ones found in this stage, are trenerally located somewhat, within the margin, except on the sixth and minth segments. On the 32 individuals studied. anywhere from 0 to 5 of these secondary pores occurred on any one segment from the second to the sixth; on the seventh and eighth there were 0,1 or 2 . In a special count of 1.040 margins of specimens from all 4 host palms the range in number of prinary and secondary pores on each side of the body was fiom 12 to 39 , and the average 25.1 .

The structure of the marginal pores of this stage is essentially like that of those of the second state, and here again they gradually jncrease in size posteriorward, with an accompanying increase in sclerotization of the rings about the extemal openings. There is little increase in size of the pores of this stage over those of the preceding stage. The pores of the last segene or so generatly appear farger, with hardly any more sclerotization about the rings. but with broader tabes and bars; and the parts of the pores may vary somewhat in proportions.

Within the prore opeang a black line ($7 a$) is frectuently scen (fig. 4. L, M). Hoke (5) states that the clear area about the line represents a mombune stretched across the opening, and that the black line itself is a slit in the membrane, the actual opening into the pore. Sometimes this slit camot be located, either open or closed (fig. 4, I, J). Occasionally, with a pore in just the right position, by racking the fine adjastment of the microscope, the slit can be made apparently to move from the opening a distance down the tube. Furthermore, the slit does not always occur in the center of the opening, and it can be made to move across the ring by racking the mieroscope cither up or down. These facts make it almost conclusive that the slit (l lt) is simply the line of apposition of the sides of the tube when it is in a collapsed condition, and that when the slit cannot be found the tube either is not collapsed or is curved so that a sharp line cannot be detected. Usuaily the pores, wherever they occur on the body (of
this and other stares also), are in a collapsed condition in prepared material, and the liack lines are generully distinct.

In this stage the mesal pores are scattered rather promiscuously over the segments of the abdomen, the arrangement shown in the figure being typical. The range in number on a side is from 4 to 18. The number on different sides of the meson of a single individual may vary as greatiy as between individuals. On all segments except the sixth ubdominal segment these pores are small. Nearly all those on the sixth serment were of medium size, the few exceptions noted being small. The following is a stummary of the numbers of these pores found in the 32 individuals, thone on each side of the body being counted separately: First abdominal segroent, range 0 to 3 , average, when present, 1.5 , wholly lacking in 75 percent of cases; second abdominal serment, mange 0 to 4 , a verage, when present, 2.2 , wholly lacking in 23 percent of cases; thircl abdominal serment, range 1 to 0 , average 2.9 ; fourth abiominal secment, range 0 to 5 , average, when present, 2.55 , lacking in a single came: fifth aldominal segment, range 1 to 4, average 1.94 ; sisth abdominal segment, range 1 to 2 , average, when present, 1.2 , lacking in only 6 percent of the cases; total number present on one side of body 4 to 18 , average 10.6 .
The marginal raised pores are essentially like those of the preceding stage, in both structure and size. In this stage the chapacteristic number is 21 , as compared with 18 in the preceding one, owing to the increase in number of plates, outside of which a pore is never found. Plates were frequently absent on the more anterior abdominal segments, which meant that the accompanying pores wero absent as well.

PLi:TEES

The plates are similar to those of the second stage in structure and contour. On abdominal segments 2, 3 , and 4 they are sultriangular and without teeth, but they suay vary considerably in size. The anterior plate of abdominal segment 4 is characteristically lomg. The plates on abdominal sernent 5 are decidedyy variable in outline, but on the whole broad and toothed. Those of abdominal serment 6 are predominantly broad and toothed also, and the anterior one of this semment is comparatively leng. Occasionally a plate on ald. dominai segment 5 or 6 was much redneed in size, ats in the second stace. The pore accompanying the plate was present unless the plate was actually rudimentary. The remaining 6 plates are always long, narrow, and toothed. Abdominal segments 2 to 7 , inclusive, bear 3 plates each; semment 8, 2; and serment 9, 1 ((ig. 4, S). No plates were ever absent from the pyridium, i. e., on segments 6 to 9 , inclusive, but on any other segments 1 was commonly missing, and occasionally 2 , while even 3 were lacking in 2 calses. In both of these cases the phates were missing on the sinistron of the third abdominal segment. From 2 to 3 extra phates were sometimes found on each margin of the second abrominal segment, and 1 extra plate sometimes on one or both margins of the fourth abdominal segment.

The total number of abdominal plates present on one side of any of the 32 specimens was found to range from 14 to 25 , with an average of 20.

The teeth of the plates are essentially the same in number，size， and position as in the second stage．

Jomes

The first，second，and third lobes average very slightly larger than in the second stage．The contours are essentially the same，except that the third lobes are more frequently notched on the lateral sides． In many of the 32 individuals it was found that this notch either was lacking or was indistinct or replaced by three smaller notches．

The fourth lobe is considerably more ructimentary in this stage than in the preceding one．In more than half of the 04 calses in the 32 specinens this lobe was lacking or rudimentary or small and mem－ branous and obscurely defined．In other specimens it maged from being only fantly sclerotic along its distal margin to being appar－ ently capable of definition and as large as 5 by 5μ ．The apical mar－ gin in these harger examples was often toothed．the number of teeth ranging from 2 to 8 ．

> ANTS

The amus is essentially in the same location as in the second stage． It is，however，farther removed from the distal border of the median lobe，ateraging for the 32 specimens 103μ ，with a range of from 8.5 to 110^{μ} ．The dimeter averaged 14μ ．The heavily sclerotic square area of the second stage，immediately cephatad of the anus，is also present in this stage．

VENTRAL ASPECT OF THE BODY
moby niommats
The parts are essentially like those of the second－stage female， except that the sutures are less distinet．

Aฟ゙รษNズA
The antenma is essentially the same as that of the preceding stage， but is slightly larger，averaging S_{μ} in length and width．The fieshy seta is uniformy about 18μ long．

A mesal head scta reappears in this stage．The two mesal head setae are more nearly comstant than the one of the second stage．

A mesal sela，apparentiy not present in the pieceding stage，occurs here immediately candad of the head skeleton．There is here，as in the preceding stage，a pair of mesal setic on the mesothorax．There is also an additional mesal seta on each of abdominal segments 3 to \boldsymbol{T} ，inclusive．They oceur cbaracteristically as shown．Three speci－ mens latked setae homologous with the ones of the second stage， while in 32 cases out of 640 the new setac were absent in this stage． It happened that the specimen figured dicl not possess one of the new setae on the dextron of the third and fifth abdominal segments．

The thomacic marginal setue occur similarly as in the preceding stage except for some variation in position．The two anterior pairs
are spaced typically about $3 \check{0} \mu$ apart, and the posterior pair about 18μ apart. Frequent variation, however, is shown in this particular. The ventral marginal seta of the posterior section of the metathorax is missing here, as in the second stage.

An increase in submarginal setae takes place on the thorax, there being generally 2 and sometimes 3 on the mesoprothorax, 3 on the posterior section of the mesothorix, and 1 on each of the 2 sections of the metathorax. What are considered to be the new setac are so labeled (sss) in the figure. All the submarginal setie are characteristically sman, exept the 3 most lateral ones of the mesoprothorax, which are of moderate size. A pair of submarerimal setae appear to be associated with each pair of marginal setace on the thomeje segments. There is also a pair on the posterior section of the metathorax, which may be considered as associnted with the dorsal marginal seta of the first abdominal segment. These paired setae of the submargimal series may be called the anterior and posteriou: submarginal setac ($a s, 0,4 s$). This leaves several setae near the anterior spiracle in a sepmate grouping, the spiracular submargrinal setae (sps). The pairs of submarimal setoe, as well as all those posterior to these, are relatively constant in position, but those of the spiracular group are rather vamable, and weally one or more are at a moderate flistance from the spiracle. The anterior and posterior submarginal setae on the prothorax and on the posterior section of the metathorax whe each missiner once, and the anterion one of the mesothomx twice; none of the others was ever absent. In the spirarolar aroup) a morlerate-sized one was present in all but 5 instances, while 3 small setae were present in 12 instances, 4 in 45 instances, and 5 in 7 instances out of the total of 64 . The submarginal setate of the ablominal segments are similar in number and position to those of the second stage. On the abdomen 11 submarginal setate ont of a possible 384 were missing. The setac on the ventrat surface (inclading ventral abolominal marginal) may be arranged in several groups on the basis of the diameter, in microns, of the calys enp, as follows: With diameter 4.0. mesoprothoracie narcrimal; with diameter 3.6, mesothomeic marginal; with diameter 3.2 , metathoracic marginal, second to seventh, inclusive, abolominal mareimal, and mesoprothomace sabmarginal paired; with diameter 2.8 , mosal head. eiphth abdominal matrimal, mesoprothoracie medium-sized spiracular and mesothoracic smbargimal; with diameter 2.3 , mesal setae and all remaining submargimal and spiracilar; with diameter 1.6 , ninth abominal margimal.
hours
There are usually 1 or 2 small pores oa the mesoprothorax, both laterad in position but somewhat away from the horder. A few scattered pores are present near the border on the mesothorax, which are on the average shightly harger than the mesoprothoracic pores. On both sections of the metathomx, distinctly near the border, is a rather closely bunched group of pores, which are considered to be a combination of the marginat and summarginal pores of the precoling stage. The two types cannot be separated on any of these segments. It has alreaty been mentioned that the marginal pores of the abdomen gradnally decrease in size anteriorwari. This decrease continues until the pores on the mesoprothoras resemble any of the small
pores of the body, such as the dorsal mesal pores ($m b p$) of the abdomen. For convenience all pores discussed above on the ventral surface will be called simply the submarginal pores. From at tabulation of the numbers of these vental submarginal pores, based on the 32 individuals under discussion, the following summary has been drawn: Mesoprothoracic pores, minge 0 to 2 , lacking in 37 percent of cases considered, average, when present, 1.5 ; mesothoracic, range 1 to 14, average 6 ; anterior section of metathoracic, range sta ta a verage 12 ; posterior section of metathorax, range 1 to 14, average 6.6 .

The small rentral mesal pore (omep) of the preceding stane laterad of the head skeleton is present in this one, too.

The fourth and fiftla abolominal serments may each bear a smatl pore in the neighborhood of the messal setae. The sixth and seventh abolominal sernents usualy have 1 or 2 similar small pores each, rather posterior in position. In is cases there was also a pore on the eighth segment. None of these abdominal pores were present in the preceding stages. They are called the posterior body pores ($p b p$). A smmany of a tahatation of the number and oecurreace of these posterior body pores on each side of the borly in the 32 individuals studied gave the following results for the fourth to eighth abdominal segments, inelusive: Fourth, winge 0 to 1 , ladking in 45 percent of cases; fifth. range 0 to 1 , lacking in ty percent of eases; sixth, range 0 to 3 , average, when preent, $1 . f$, lacking in 14 percent of eases; seventh, range 0 to 2 , average, when present, 1.3 , lacking in only 3 pereent of cases; eighth, tange 0 to I, lacking in 92 perent of cuses.
The raised fores are in structure essentially like those of the second stage, and similarly phaced. The mesoprothoran never showed a baised pore; it will be remembered that in but a single instane did one orem there in the preceding stage. The mesothorax rarely has a raised pore, in contrast to the 1,2 , or 3 which were the rule in the preceding stare. The anterior section of the metathoma, on the other hant, has them in nearly equal numbers in the two stages, but the posterior section of the metathorax possesses generally from i to 4 , whereas in the preceding stage no more than 1 was ever fomd on this segment. The mambers of raised submarginal pores, comating those from each side of the body sepatrately, in the 32 specimens studied, were as follows: Mesothoran, range 0 to 3 , average, when present, 1.3, hacking in 90 percent of cases; anterion section of the metathorax, range 0 to 3 , average, when present, 1.6 , lacking in 30 percent of cases; posterior section of the metathorax, range 0 to 4 , average, when present, 1.9. acking in 10 percent of cases.
The spiracerores are similar in all respects, inclading size, to those of the second stage. In a eonnt of $2,37 \mathrm{~S}$ groups on specimens from all 4 host palms the range in number of pores in cach group was from 0 to 5 , and the average 2.1. The number of openings in each pore was usually 5 , sometimes 4 , occasionally only 3 , and in one instince 7.

Of the same type of pore, and essentially like the spiracerores, are two groups oceluring on ench side of the meson on the pygidium, near the vagina, probably on the sixth abdominal segment. These are the " genacerores" (gc) of MacGillivray (8); they are commonly
termed the "circumgenital " or "pararenital "pores, but the writer prefers the more technical word, both because they are of a different type from the usual pores and beenase this term clearly distinguishes them from the posterior body pores which also occur near the genital opening. The genacerores are harger than the spiracerores, being almost uniformly 5.5μ in thameter; also they are somewhat more strongly sclerotic. A part of the outer ring of this type of pore cun be seen in the genacerores better than in the spiracerores. A side view shows the ring to be distinetly raised above the pore openings, the parts on each side, in focus, appearing as sharp enrving lines (fitr. $4, N)$. By focusing either up or down, the curving lines can be made to extend over and meet, forming a dome over the openings. A casual glance suggests that these are covered by a dome-shaped membrane, but a careful examination shows that what is seen is merely the edge of the ring on the more elevated side of the pore. (The openings are indicated by the dotted line in the figure.) A perfect side view wonkl of course, not show the dome. Occasionally an inclividual is fomd with 1 and even 2 gemarerores on the median line, clearly separated from the others. The pores of the groups are orensionally so seattered or so bunched together that it is differnt, if not impossible, to separate the groups.

An commeration of the genacerores included in each group in 1.091 specimens selected at rankom from the fon host palms gave a range of from 1 to 14 and an averape of 8.1 for each anterior group, and a range of from 0 to 10 and an average of 5.8 for each posterior group.

Lyas

The legs are apparently absent.

GIPRMCLER

Both pairs of spiracnlariac are livected laterad. The anterior pair were on the arerage slighty shorter but a hatte wider, than the posterior pair. The rance in lengels of the former was from 21 to 30μ, with an averare length of 27μ; of the later from 27 to 36μ, with an areage of 25μ. The spiracmaria of the former averated in width 18μ; of the later. $1 T_{p}$. The spitacle itself was approximately 9μ in diameter for both pairs.

リオGlN.

Before exge deposition begins the vagina is always shapod as shown in figme 4, A. The walls appear to be mather thick, the actual free tobe leing the area limited by the mesal doted line. At the anterior end is a chatacteristie and diblinet selerotic area (fig. $4, F$, metha). When eqg deposition bugins, the vagina is either ruptured to a shapeless piece or is evarinated (fig. t, \mathcal{F}), sometimes both. "In length the vagim averaged, for 00 specimens, 77μ from the external opening to the anterion selerolic area, the ranre being from 68 to $90 p$. On the same number of specimens the valva (m) averaged 20μ cephatal of the anss, the mange being from 11 to 36 at. The valua is lacated probably between the seventh and the eighth abdominal segments.

ROSTRAELS

In length the rostralis averages abont the same in proportion to the length of the body as in the second stage. From a tabulation of the lengths of the body in relation to the lengths of the correspondiug rostralis it is evident that the two are not directly proportional. In 25 specimens examined in this respect the general average ratio between length of body and length of rostralis was 1 to 6.25 ; the lowest ratio noted was 1 to 4.6 , the highest 1 to 9.3 ; the average length of the rostralis in these specimens was 4.18 mm , the range from 3.07 to 4.92 mm ; the average length of the body was 0.67 mm , the range from 0.49 to 0.84 mm .

The position of the rostratis within the body is inverolar in prepared specimens, but the end loop is characteristic in shape, and a veraged 50μ long by $1 k^{\prime} \mu$ wide.

SECOND-STAGE MALE

Twenty-four individuals, 8 each from the date and Canary Island palmes and 4 each from the Whanghomia and doum palms, were stadied. The newly molled indivintals (fig. i, A) areage very slighty smaller than the second-stare fomates, althomesh the sizes overlap fredy, The average dimensions for 40 newly molted individuals of this stage were 0.30 mm long and 0.28 mm wide: the length range was from 0.33 to 0.3 m mo the width range from 0.27 to 0.29 man. Whan mewly molted the two sexes cannot te distinguishect by eontour, but in time the body of the mate beromes clongate-omal, in contrast to the more roundly owal looly of the femile. Seventeen fully matured examples of this stage just ready to molt showed an arerige drngilh of 0.61 mon and an average width of 0.38 mm .

DONSAL ASPECT OF THEA BODY

buny sbimpints
The segments are similar in those of the second-stage female.

SB: RAE
The borter head setne are similar in muber and size, and practically se in orenrenoe, to those of the serome-stage female. The only variation from the normal 4 large ones and 1 medium one was in 1 specimen that pussessed an extra large cephalic seta on the dextron.

The menal head setie of the first stage are retained in this stage. As a rule they are slightly smaller than the larger border head setae. Th no instance was oue nissing.

The eandal hoal selfa of the first stage and of the second-stage female is also present lere in moderate siza. There is an additional seta in the series. a very sman one peneratly, candolaterad of the other. 'The primary seta was never missing, but the new seta was missing four times from one side and twier from both sides, in the 24 individuals sturlied.
The thoracic and abominal mesal sutue of the first stage are all retained, also the prothoracic mesal seta of the second-stage female.

Fiocran 5.-Second-shage mule: A, Bety (domsal surface at right of observer) ; B, gro-

 pore of courth mimominal sebment; 0 , sthmargimi ralsed pore of metathorax. $A, \times 365 ; B-0, \times 1,040$.
$33018^{\circ}-34=4$

All these setac are small, their calyces approximately 1.9μ in diameter. The position of these setae is characteristic, similar to that in the first stage, except that the second abclominal one is usually situated distinctly mesad of the neiglaboring ones. The posterior prothoracic one was absent once from the sinistron.

The lateral mesal and marginal setae are similar to those of the second-stage female in number, position, size, and occurrence. The caudal one of the marginal series on the prothorax was absent once on the sinistron of one specimen.

PY:
The eye is nearly always recognizert, usually distinct and rather well developed, but occasionally it appears to be hardly more than vestigial.
I.0.utres

The marginal pores are essentially like those of the second-stage female. except that characteristirally an extra pore may be present on sme or more of the following segments: Mesothorax, metathomas, and first and second abrlominal segments. These extra pores are included in the secontary pore series. The secondary pores on the first and second abdominal segments thay be reduced in size or absent; also on the foreth and fifth abilominal segments they may be absent. The single marginal pores on the mesothorax and the metathoras were considered as belonging to the secondary pore series teeanse of their positions and generally stonter proportions than those of the neiglaboring pures of this surface.

The pores corresponding to the mesal bedy pores of the secomotstage female are present in this stage in greater nambers. maniny toward the meson, and the posterior ones average larger in size. There is, however, no fundamental difference between them. A distinctive lateral row of the pores occurs here, as in the second-stage female, with the addition of 1 or 2 pores near the margin on the metathoras. A typical example of the mamber and position of pores on the segments is shown for the individual fignturd. The sizes, in microns, of the mesal boly pores on the abolomens of the 24 specimens, together with a comparison of the si\%es of these pores anong themselves, have been summarized as follows: First abdomimal serment, range 1 to 5 , iverage 3.14 with 83.5 percent of the 151 individual pores smant, $1+.5$ percent medium, and 2 percent large medium; second abdominal segment, range 1 to 4 , average 3.0 , with all the pores smath: third abdomimal segnent, range 1 to 3 , average 2.9 , with 84 percent of the 137 pores small, 9.5 percent medium, and (0.5 latge medium: fourth abrlominal segment, range 1 to 4 , average 2.3 , with 60 percent of the 112 pores small, 12.5 percent medium, 23 pereent large mediam, and 4.5 percent large; fifth abdominal segment, range 1 to 3 , average 2.0 , with 42 percent of the 95 pores smahl, 10.5 percent medium, 33 pereent large medium, and 14.5 percent large : sixth abdominal segment, mage i to 3 , average 2.0 , with 9.5 percent of the 95 ores small, 33 percent medium, 9.5 percent large medium, and 48 percent large.

The marginal raised pores are in all essentials similar to the corresponding ones of the second-stuge female, with approximately the same variations of occurrence.

PLATfA, LORES, NNO ANUS
These structures also are similar in every noticeable particular, includingo occurrence, to those in the second-stage female.

VENTRAL ASPECT OF THE BODY

HODY SFEXIENTS
The segmentation of the body appears to be similar in all respects to that of the second-stage female.

ANTENNA

The antema resembles that of the second-stage female except that its largest projection is somewhat more elongute.

SETAE

The three mesal head setae of the first stare are all present. The mesal and the marginal setae are similar to those of the second-stage female. The ventral marginal seta of the eighth abolominal segment is, however, distinctly smaller than the one in the second-stage female. The subnarginal setae are similar to those of the secondstage female, except that the eighth abdominal one is retained and there is occasionally an extra one on the mesoprothorax and one on the posterior section of the mesothorax. All the setae of this surface, excluding the extra ones near the margin of the mesothoras: are constant in occurrence.

PORES

The marginal pores on the posterior section of the mesothorax and the anterior section of the metathorax are difficult to distinguish from the submarginal pores. From their position it is interpreted that the caudal one on each of these segments is the true marginal and primary pore. As in the second-stage female, the caudal pore of the mesoprothorax is distinctly larger than the more cephalic ones, and is considered to be a marginal pore. As compared with the secontstage female, an extra subnarginal pore frequently occurs on the posterior section of the mesothorax and the anterior section of the metathorax. The submarginal pores are slightly larger and more sclerotic than those of the second-stage female. A small submarginal pore was occasionally observed on the head, usuatly mesad of the antenna. A count of the marginal and submarginal pores of both surfaces, up to and including the marginal pore of the mesoprothorax but not the little subuarginal pores of this segment, on 25. specimens from all 4 host paims, showed a range of from 18 to 27 pores, and an average of 21.2 pores, on each side of the body.
The mesal pores (omep) of the thorax occur as in the second-staue female, except that the one on the posterior section of the mesothorax appear's to be frequently absent.
A single small pore is always found on the submargin of each of the fourth to seventh abdominal segments, and one is usually present near the meson of each of the second to sixth abdominal segments. All these may be known as the posterior body pores ($p b p$). None, it
will be remembered, appeared in the second-stage female, but, as has been mentioned, the addlt female does have some pores on the posterior part of the abdomen similar in every respect to the pores here.

In contrast to the single occurvence of a raised pore on the mesoprothorax in the second-stage female, this pore was observed 13 times in this stage. Also 2 raised pores on the posterior section of the metathorax were observed 4 times in this stuge, but not once in the second-stage female.

The spiraceroris is essentially like that of the second-stage female. From an examination of 218 specimens, considering ach side independently, 2 pores occurred once, no pores 4 times, and a single pore in all the remaining cases.

1.EGS

The legs are in most instances distinct on all three segments as very snall protuberances, which are generally somewhat sclerotic at the tips. They are frequently plainly separated into seqments (fir. b, $B, C)$. Though always consiclered as present, they are undoubtedy in a vestigial condition, but not so mach so as in the second-stage female. The dotted areas about the legs in figure $5, A$, represent the deyeloping third-stage legs, which do not actualy appear in an individual as young as the one represented, This also holds true for the dotted area about the antenna, representing the developing thirdstage antenna. These areas are placed here as a matier of convenience, being in fact the only extraneots structures shown on the figure.

> SPIRACEES

The spiracles are essentially like those of the second-stage female.

> ROSTILALIS

The rostralis does not differ in any noticeable particular from that of the second-stage female, and is not shown in the figure.

THIRD-STAGE MALE

Seven specimens, 4 from the date palm, 2 from the doum palm, and 1 from the Canary Island palm, were studied. The body is elongate-oval (fig, G. A), and the average length and width of 6 of the specimens was 0.69 and 0.69 mm , respectively. The figure shows the typical condition of the various structures.

All pores, plates, and lobes, as well as the eye and the pygidium, are absent. The spirncles show no unasual features, and will not be discussed.

DORSAL ASPEGT OF THE BODY

nomy sfoments

A part of the suture (prs) between the head and the prothorax can be detected only with dificulty, All the other segments are distinct except the ninth abominal one, which is much reduced but apparently can be at least partially diferentiated by an indentation in the body margin.

SETAE

Four setne along the submargin of the head are consiclered to be the border head setac. The 2 anterior ones are comparatively large

and always present; the 2 posterior ones are always small, and 1 of them was missing in 3 instranes.
The large and smatl setar close together near the meson of the head aro interprete: as the mesal head setae. Each one may be either large or small; neither was ever missing.

The seta cephalolaterod of the anterior margin of the encloskeleton is considered to be the curdal head seta. It is variable in size, and was absent 4 times out of a possible 14.

The mesal setae are present on the mesothorax, the mefathorax, and the first three abdominal segments. They are constant in presence and position.
Both lateral mesal setae of the preceding stages are present here. They were never missing and were always in the same relative positions.

The dorsal marginal setae are limited to the metathorax and the abdomen, one occurring on each segment. The metathoracic seta is small, and was absent from both sides on fom specimens. All the setae on the abdomen were always present, and were nenty uniform in size and position.

The ventral marginal setac occur very near the margin, and it is usually a question as to whether the anterior ones are on the ventral or the dorsal surface. In the figure they are shown on the dorsal surface. They are usually somewhat smaller than the dorsal setae and, except on the ninth segment, are always situated cephalad of the latter. With a single exception, they were always found on abdominal segments 6 to 9 ; one specimen lacked one seta on the sinistron of the sixth abdominal segment. The eighth abolominal seta (Soms) is unusually large.

ANUS

The anus is located about 15μ from the caunal margin of the body, and is 9μ in diameter. It is narrowly selerotic. A characteristic ridge (ar) curves caudolaterad from it.

ventral aspect of the body

hoin serment
The ninth abdominal segment ($9 a b$) over much its greater extent is very lons and marrow. All except the very base is invaginated, represented in the figmre by the nessal dotted area. The onter dotted area (pgab) represents thie ninth abslomimal serment of the fourth instar in a similarly invaginated condition, developing around it .

sirlam

The 3 mesal head setae were present in every instance but 3; the cephalic one was missing from both sides in 1 specimen and from one side in another.
A mesal seta oecurred on the fourth and fifth abdominal segments, and a pair of them on the sixth and seventh abdominal segments. One of these was absent from the sinistron of the fifth and sixth abdominal segments of a single specimen. One specimen showed 2 setae on a side on all 4 of these segments and, in addition, a very small seta on each site of the thixt segment. Another specimen showed 2 setae on the dextrai side of the fourth abdominal segment, and a third specimen had 2 on the dextron of the fourth and fifth abdominal segments. A ventral subnarginal seta always occurred on the eighth abolominal segment, and was present in 7 instances on the seventh and in 2 on the sisth,

In this stage the measurements of the setae from both surfaces have been considered together. They may be grouped as follows, according to the diameters, in microns, of their calyces: With diameter 4.7 , the eighth abdominal veniral marginal; with diameter 2.4 , two cephalic border head, outer dorsal missal head, and first to seventh, inclusive, abdominal dorsal marginal; with diameter 2.1, inner dorsal mesal head, caudal head, lateral mesal, dorsal mesal of thorax, dorsal marginal of metathorax, and eighth abdominal dorsal marginal, remaining ventral abdominal marginal, and the ventral mesial head; with dianueter 1.9, two posterior border head, ventral mesal of abdomen, submarginal; with diameter 1.6 , ninth ablominal dorsal marginal; with diameter 1.4, antennal.

Antienna

The antenna develops within the body of the second-stage male (fig. s. A) in a telescoped condition, the cross dots in the figure representing the lines of the major invarinations. Three segments of the antenna are generally recognized, two short basal ones directed caudolaterad and a long discal segment bent more caudad. The antenna is typically about 360μ long by 160μ wide. It possesses no noticeable structures except near the tip, where it generally bears a very small seta (as), a short spinelike projection (spi), and 2 or 3 small clear areas ($p 7 s$) which are probably sensory in nature. In the older individuals the fourth-stage antenna is visible within as a partially invaginated structure, owing to its much greater length. It is in a decidedly crumpled-up condition near the bend, on account of its crowded quarters, and folds are present in it nearer the tip.

Legas

The segments are in part distinctly sclerotic. A characteristic spinclike projection is present nenr the tip of each leg. The developing fourth-stage leg is plainly visible in the older individuals. It is so much Ionger than the third-stage leg that the coxa appears to have been crowded entirely out of the leg into the body proper.

WINE IAls
The wing pads (w), when present, arise on the lateral margins of this surface, typically ats shown, and are always well developed. From an examination of 49 males of this stage obtained from all the host palms considered, the wing pads were absent in 55 percent of the specimens.

FOURTH-STAGE MALE

Nine specimens, 4 each from the date and Canary Island palms and 1 from the doum palm, were stadied. The body is approximately the same size :s in the third stare, though it averages somewhat longer from tip to tip, owing to the extencled position of the ninth abdominal segment (fig. (f, B). The average length and width of the body, for the specimens studied, were 0.72 and 0.26 mm , respectively.

As in the third-stage male, all pores, plates, and lobes, as well as the eyes and the pygidium, are absent. The spiracles are well developed but appear to possess no features worthy of discussion.

DDRSAL ASPECT OF THE BODY

Bow SBGMENqS

The extended caudal piece is readily seen to be simply the ninth abdominal segment. The characteristic segmentation is as figured. A distinct ridge (ri) extends along the meson from near the posterior margin of the head to the middle of the mesothorax. In emerging, the adult splits the skin along the meson from the cephalic border just to the caudal end of this ridge, which evidently has something to do with the molting process. The lateral split takes place along the subuargin of the head, between the posterior border head setae, as far as the prothorax. The position and extent of the splitting of the third-stage skin correspond to those of the fourth.

Sis'TM
All the setae of this surface are essentially like those of the third stage in size, position, and occurence, except that the marginal metathoracic one was not observed and the eighth ventrai abdomimal marginal seta is similar in size to the other marginal setae in this stage; also the cephadic border head seta appears to be situated nearly, if not quite, on the ventral surface.

WLNt R.JIS

The wing pads axise from the submargin of the mesothorax on this surface. They fold over onio the ventral aspect, about half of the wing pad occurring on each surface, typically as represented. The adult wing developing within the fourth-stage one, being somewhat longer than the latter, js a little folded near the base, as indicated by the short dotted lines. When present the wing pads always appear well developed. In this stage they were absent in 40 percent of 99 specimens examined from all the host palms.

ANUS

This structure is apparently situated on the ninth abdominal segment, just caudad of the anterior margin. Its distance from the caudal tip of the segment avemged, for anl individats, 104μ, the approximate length of the segment. The diameter of the anus averaged 12μ.

VENTRAL ASPECT OF THE BODY

BODE SBCMENTS

A noticeable feature of okder individuals is the developing ninth abdominal segment, or the stylus (st), of the adult within the body. The stylus is so long that only about half af it can come within the fourth-stage projection. The base of the stylus extends cephalad nearly to the third abdominal segment of the fourth instar, and in consequence the eighth abtominal segment of the adult is forced forward to this extent.
setas:
Four head setae, apparently belonging to the messal group, are present in this stage, in contrast to the three present in all the preceding male stages. One seta was absent in a single instance. The mesal and the submarginal setae occur essentially as in the preceding stage.

ANTENNA

This structure averaged, for the nine specimens, 280μ long by 24μ wide. Indentations along the outer basal hat are the only distinct segmental indications. In oluer individuals the adult matema is plainly discemible within the fouth stare. There is sufficient room for it to develop cutirely within the latfer: without such folding as takes place within the third stage. A short spinelike projection almays occurs at the apex of the antenna; a rery smatl seta (as) and 1 or 2 small, apparently sensury structures (p / s) are generally present also.

```
t.EAS
```

The segmentation can be made out more readily than in the third instar. The outer margin of a leg projects characteristically about hatf the distance between the buse and the tip. This bulging is to accommodate parts of the adult femur and tibia (adfe, adti). The legrs of the fourth instar also have the short spine (spi) at their apices.

adult male

Sixteen individuals. four from each palm, were studied. The averare length and width of 15 individuals were 0.50 and 0.20 mm , respectively. Their size varied considerably, from one individual measuring 0.64 mm long by 0.16 mm wide, to one mensuring 0.86 mm long by 0.22 mm wide. These wide variations were noted in other specimens, not only of the adult, but of the third and fourth instars as well. The specimen figured (fig. $7, A$) represents an individua) from the doum paim.

There are no pores present that can definitely be recognized as such; plates and lobes are alivo absent.

DORSAL ASPECT OF THE BODY

boby Segisfints

A narrow sclerotic area (chas) extends coudolaterally across the meson of the head. and may limit its candomesal margin. The anterior margin of this area projects some distance from the meson cephalolaterad, decreasing rapially to a line, and then curving sharply cephalomesad near the towsal margin of the eye. producing within a distinctly raised area (ra) that always bears four of the head setae.
The strongly sclerotic framework covering the central part of the body is considered to embrace the mesothoran. Between the mesothoras and the sclerotic area (cha) and a lateral indentation, that is, int position to be the prothoracie suture ($p^{\prime \prime s}$), lies the prothorax.

The sclerites of the mesothorax may be defined as follows: The praescutam (psc), appea, ing from the dorsum as a narrow, carving, strongly sclerotic band ange the mesocephatic margin and a broader

extension laterally; a wide, more or less membranous area immediately caudad of the praescutum and extending to the articulation of the wing, the scutum (sct); a sclerotic band in the center of the framework, the scutellum ($s c l$) ; a broad membranous area immediately caudad of the sciteilum, followed by a narrower, curving, strongly sclerotic band, both parts constituting the postscutellum (pos). Berlese ($1, v .4, p p .101-102,161$) gives the postscutellum as belonging to the metathorax.

Below the cephalic margin of the praescutum and attached to it is a sclerotic band, the precosta ($p c$). ${ }^{4}$ Laterad of the precosta, and below the praescutum, is an undetermined sclerotic area (ucha) which may be inconspicuous or developed as shown in the figure. Laterad of this sclerotic area, and also below the praescutum, is a sclerotic piece, of characteristic form, which is in position to be the prealar wing process (ake). A differentiated area (mur), usually membranous, and varying to some extent in size and contour, is located on the meson of the scutellum. The strongly sclerotic candal section of the postscutellum is divided by a distinct sature, considered to be the antecostal suture (ac), into inn anterior part, designated the precosta ($p c$), and a posterior part. designated the posteosta ($p o c$). The postscutellum extends, without any apparent interruption, onto the pleuron. but is considered to be sepurated from the latter by the postalar bridge ($p w$).

The metathorax is guite broad laterally, but on the meson is sharply reduced to hardly more than a line by the posterior projection of the mesothorax.

The abdomen is clearly differentiated into 9 segments. The first 7 are of the usaal form, the eighth is narrowed, and the ninth is composed of a swollen base and a long, rapierike distal portion.
shise
There are 4 border heal setae, as in the third and fourth stages. The 2 cephalice ones are on the cephalomesal margin, 1 on the ventral surface and 1 on the dorsal. These were never absent. The 2 posterior ones are near the eatudateral margin. One or both of these were absent in 5 instances.

The usual 2 mesal head setae and the candal head seta are present on the raised area. The candal head seta and a posterior seta of the mesal head pair were absent from the sinistron of 1 individual.

The messal and lateral mesal setae are present here as in the two preceding stares. From 1 to 3 additional setae occur on the pleuron, cephalolaterad of the anterior lateral mesal seta. They are called the pleural setae (p / s).

The marginal setac oceur essentially as in the two preceding stages. The ventral maremal setae appeared to be placed on this surface, and occurred on either one side or the other, or both, on the fifth abdominal segment 12 times, and on the fourth segment 7 times, out of a possible 32.

The setae may be grouped as follows according to the approximate dimmeter, in microns, of their calyees: With diameter 2.4, all marginal setae on dorsum, except ninth abdominal one: with diam-

[^3]eter 2.0, all head, mesal, and lateral mesal; with diameter 1.6, ninth abdominal.

ETES

An eye is present on the dorsolateral margin, dome-shaped, and about $2 \pi \mu$ in diameter and 22μ in thickness. The eye is never absent, though occasionally it is somewhat reduced in size.

अTN ©

Targioni Tozzetti (14) states that this species is wingless; yet the writer has found the winged individuals to predominate. Not uncommonly, however, the wings were observed to be only partially developed. Of' 186 adiut males from all the host palms considered. it was found that only 25 percent were wholly wingless, 56 percent had fully developed wings, and in 19 percent the wings wete present in various degrees of development, 11 percent having them less than haif size. In all specimens the thoracic wing framework was fully developed.

The fully developed wing (fig. 6, C°) is alout $0.6+\mathrm{mm}$ long by 0.24 mm wide, shaped typically as shown in the figure. It bears numerous spinulac seatered evenly over its surface, and has two prominent reins, which are united for most of their proximal halves. Comstock ($2, p, 290$) guotes Patch (17) as indicating that the anterior vein is the radius (rad) and the postorior one the median vein (m). At the base of the wing, cephalad of the coalesced veins, oceurs a short, delicate line, called by Patch the subcostal vein (sc). A prominent lobe, the alar lobe (alo), occurs nem the posterior proximal margin. The articulation of the wing to the thorax (fig. $7, B$) agrees apparently with what Snoderrass (103) found to be the condition for the general insect wing. Two points of articulation occur on the notim, the anterior notal wing process (fig. 7, A, anp) on the lateral margin of the scutum and the posterior notal wing process ($p n p$) on the seutum and near its candal border. These two processes are bome by membranous tissue, and considerable flexibility appears to be possible. The margin of the anterior process, however, is strongly sclerotic, this sclerotization continuing cephalad as a very narrow band. Two distinct indentations oceur in the anterior process, the anterioe notal wing acetabulum (ana) and the posterior notal wing acetabulum (pma). These are actually the articulating points of the anterior process. Into the forme: fits a curving, heavy sclerite, closely attached to the wing, the first axilhay sclerite (has) ; into it, above, a heavy, narrow, roundly curving selerite, the third axillary ($3 a x$), which is deeply indented by a projection of the base of the wing. The third axillary appears to be joined so firmly to this projection as to seem almost a part of it. Below, the third axillary sclerite apparently rotates on the distal knoh of a heavy sclevite, the fourth axillary (/ax), which articulates beneath the third also with the posterior wing acetabulum. The fourth axillary is broady and concavely expanded at its base, which apparently rocks about the cephalic part of the romding margin of the posterior notal wing process. The fourth axillary selerite is so thickened on its mesal half that this region resembles a stout projection. From its shape and position it
probably acts in part as a brace to the backward movement of the wing. The strongest brace of the wing, however, is probably the axillary cord (axc), a swollen clublike projection from the posterior margin of the batse of the wing. The proximal end, which is emarsinate and strongly sclerotic, fits around the posterior notal process, and also appears capable of a rocking motion. The second axillary sclerite (oax) is situated below the wing. It is globular and articulates proximatly against the first axillary and distally against the pleural wing acetabulum (p / a).
The wing articulates against one process on the plemron, which is composed of two clements. the pleural wing acetalulum and the plenral wing condyle (plc), agatinst which abnts a sclerotic thickening on the under surfice of the wing, the alar buttress (all). This is a crescent-shaped structure. convex, facing the condyle, with it special projection from its margin as the articulating surdace. The sclerite bearing the plenal wing process is thought to be the anepisternum (/ap) of Crampton (3). It curves laterocephalad onto the ventral curface. A membramous piece is situated cephalad of the latter, and is in pecsition to be the tegula (teq). It bears the pleural setac. An undetermined subtriangular selerite (use) borders the mesocphalic margin of the tegula. From its position and shape this sclenite apjems to serve as a butferss arainst the forward movement of the wing, in math the same manor that the axillaty cord acts as a brace against the baclaward movement of the wing.

The part along the booly margin and connected to the postsentellum by the postalar bridge is designated the epimeron (epm). It is distinct from the anepistemun, and apparently possesses no wingarticulating points.

The halteris (ha) was present oecasionally as a projection from the cephalolateral margin of the metathorax. In some individuals it was dillicult to decide whether this stracture was actually present or not. Except when vestigial, oceluring as hardly more than slight bulgings from the boxly, even the sualler ones appeared in contour surprisingly like the fully developed wings being neither threadilike nor knobilike. This strueture was found to be present in only 17 percent of the 184 aduld males from all the host palas examined. When the halteris was present if was always found on both sides, but there was sometimes a noticeable diflerence in size on the two sides. The size also varied greatly from individual to individual. The range in lenged was from 3 dij down to \mathcal{Q}_{μ}. The latteris possessed no distinguishable secondary structures. though prominent distal setat are bome by other sjecries of Parlatoria.

ANUS

The anus. which is subcireular in outline, appars to be situated on the ninth abdominal seqment. It is about 12μ in diameter.

YENTRAL ASPECT OF THE BODY
HODY BEGMENTS
The homoturies of the segments were determined mainiy from the positions of the legs, spiracles, and sutures.

A delicate structure (in), apparently an invagination, oceurs on the meson immediately cephad of the prothoracic leg. This is considered to be the entrance to the alimentary tract. An internal projecting structure (f) oecturs on the meson cephalarl of the abovementioned invagination. At first grance it might be thought to be a part of the alimentary tract, but it is strongly sclerotic, and is of a definite length, ending abruptly, and is interpreted as a furca of the hear. The caudal margin of the head is delimited by a dulieate suture extending from the invagiation of the alimenary tract toward an indentation in the body margin. A narrow, undetermined sclerotic piece (usc) extends laterncephalad from this suture onto the dorsum of the head.

On the meson, in the suture separating the anterior from the posterior section of the mesothorax, a long seleratic picce (cha) occurs. It appeats to be on the surface, and for this reason is not considered to be a fura. The posterior seetion of the mesotheras is apparenty composed of two parts, a basisternum ($b s$) and a furcisternum ($f s$). Laterally the basisternm is bounded by a narrow sclerotic piece the precoxit bridee (acer). The precoxal bridge extends cephalohaterad, turns dorsad ncar the preatar wing process, abuts aganst the latter, and then, apparently, tums candad to extend along the mesal margin of the anepisteritum. It is probable that this caudal extension can be considerea as mo more that a differentiated part of the katepistemum (mentioned below). The furcisternum is connected with the plemron by a bridge. the postcoxal bridge ($p(x)$. It may sem questionable to call this bridge "postcoxail" when it is situated cephalad of the coxa. However, the coxa bas been drawn noticeably coudat, and in consequene has thrown the meighboring parts out of their usmat alimement. Shepard (12) indicates the lateral extension of the fureisternum in some typical Lepidoptera as being cephalad of the coxa. Between the basisternum and the furcisternum a small sclerotic area (cha) is located, As it also appeass to be on the surface, it is not considered to be a furca. Along the cmudal margin of the furcisternum a prominent pronged furea having a broad base arises.
As herein interpreted and indiated, the anepistemmm extends onto the venter as a narow curving piece that joins the caulal extension of the precoxal bridge. Posterior to the arepisternum, and planly separated from it, are two sclerites. Betwen these along a distinet sature, is a prominent apodeme (lap). The mesal sclerite (ep appears to be bomologous to the katepisternum of Crampton; the lateral sclerite is a contination of the epimerom of the dorsni surface. No tefinite division of the epimeron conld be distinguished. Below the line of the invagination of the apodeme is an elongate sclerotic picee, against the caudal extension of which the coxa articulates. Whether it betengs wholly to the epimeron, or partly also to the fatepistermm, could not be determined. The clongate sclerotic pieces on the prothoma and metathorax, against which the coxac artionate, are called simply the pleural sclerites ($p l$).

The metathorax is composed of two sections. A bridge (pex), corresponding to the mesothomaic pe teoxal bridge connects the posterior section of this serment to the plemal sclerite.

Except for the apparent obliteration of the first abdominal segment, all the remaining abdominal segments are similar to those of the dorsal surface.

> ANTENNA

The antennac (fig. $7, D$) may vary considerably in size, but the relative lengths of the segments are fairly constant. The average length measurements, in microns, for each segment of 15 antemae were: Basal 22.4 , second 16.9, third 37.0 , fourth 39.2 , fifth 38.0 , sixth 36.3 , seventh 36.8 , eighth 35.8 , ninth 38.4 , tenth 31.8 .

Every antemal segment bears 1 or more setae, which range from small on the basal segments to relatively large on the apical ones. There is much variation in the numbers of these present on the different segments, at tabulation of the mumbers on 16 antennae giving the following range : Bassil 1, sccond 1, third 1 to 2 , fourth 1 to 9 , fifth 1 to 7 , sixth 6 to 10 , seventh 4 to 13 , cighth 7 to 12 , ninth 2 to 13 , tenth 5 to 9 . Each segment from the third to the tenth bears from 4 to 6 irregular transverse rows of minte spines.

shtaf

There are 7 mesal head setac, 5 on the meson of a small raised area and a pair cambolaterad of the others. There were never any more than this, and on a individuals the posterior seta on the meson was absent. The mesal one of the paired candolateral setae was absent on one side in each of 2 individuals.

The mesal setae of the abdomen and the submarginal setace are present essentially in the same mombers. positions. and occurrences as in the two preceeling stages, except for the addition of a submarginal one on the ninth abolominal segment, which atso has a marginal seta.
All the setac of this surface are small, their calyces about 2μ in diameter, except the lateral one of the pair on the head. which is some what larger.

EYE

The cye is almost circular, approximately 20μ in diameter, and is situated well toward the meson.

LPXB

The prothoracie legs are the smallest, the mesothoracic ones slightly larger, and the metathomarie ones a little larger still. The tibia and tarsus are distinctly sparate, in contrast to their fusion in the first stage. The tarsus is probably one-segmented, though it is distinctly constricted near its base. giving that part the appearance of being a separate sclerite. Slight variations in the dimensions of the segments, not worthy of note, were observed. but the following measurements, in microns, of the lengths of the parts of a prothoracic log may be taken as approximately chatacteristic for all the leps: Coxa 47, trochanter 47, femur 90, tibia 90, tarsus 60, ciaw 18.

Each segrnent of the legs (fig. 7, O) bears 2 or more setac. On 7 specimens representing all the host palms considered, the parts of
the lears were fomb to bear setae as follows: Coxa 5, trochanter 2, femur 3 to 7 , tibia 10 to 17 , tarsus 16 to 20 , claw 2.

The setae on the coxa are in characteristic locations, as represented in the figure. The 2 caudal setas on the upper surface, near the articalation of the coxa to the trochanter, are generally somewhat larger than the others. The trochanter possesses a very minute seta near its proximal end, on the margin, facing the coxa; on the opposite margin, new its distal end, is a mach larger one. These setue are thus siluated on all the legs. The setae on the femur are somewhat varinhle in position. There is, however, always 1 on the margin facing the coxa, and there are 2 or more near the distal end. Those on the tibia and tarsus oreme irregulaly aromed these segments, on the distal two thirds. The tarsus always bears the larger number, asmaly 3 or 4 more. The 2 hong setae on the distal end of the tarsis and the 2 moderate-sized setae at the base of the claw are never absent.

As in the first-stage nymphal legr, 4 distinct but small poreliks spots oceur, 2 each on opposite sides, near the proximal end of the trochanter.

The tibin and the tasstr possess apparently the same sort of minute spanes as are present on the antema.

smutes

The stylus (fig. T. G). if it is considered as constituting the ninth abdominal segment. excluding its enlarged base, consists of two fundamental parts. the genital shenth ($/ s /$) which composes the outer parts of the lony catalal projection and is deeply depressed along the ventromeson. and the penis ($p e n$), a slender rapiersike orgat extending the length of the sheath and surrounded by it. The sheath has a number of swelings (sw) near its (listat end along each side. Usally there are 4 on it side, and ocemsionaly 3 or ; Each contains a dark spot or nucleus. These swellings are probably tactile in function. The penis arises within the swollen basal part of the ninth abdominal serment, and is strongly sclerotic proximaly, but gradualy becomes less so till it is almost membranous distally. Within the sheath the penis apparently is a round lube, which slowly decreases in diameter towards the tip, where it becomes suddenly pointed (fig: $7, l, F$), with the external opening, the meatus (mea) (represented by the dotted lines), on the theler or dorsal surface. Distally the penis is but lossely chasped by the shoath.

SCALES ${ }^{\text {a }}$

The seaie of the first instar is subeircular, approximately 0.4 mm in dianeter at the time of the first molt, thus just covering the exuvia catulocephalad. At this time a comparatively thick mass of wax is present. which tapers toward the margins, but the darker exuyia is plainly discernible beneath.
The color of the first exuvia of both sexes beneath the secretions is rather uniform for iny one specimen, but for different specimens, even those close logether on a single leaf, it grades from light brown

[^4]to almost black. There appear to be more of the darker forms on the date palm, bat mueh gradation of color is noted among the specimens from all four paltus.
When fully developed, the sate of the secomi-stage femule is subcircular, approximately 0.7 mm in diameter, with the first exuvia projecting beyond the anterior margin at varying angles but in a general cephalic direction. At the time of the second molt the scale extends about 0.5 mm caudad of the first exavia.

The adult female scale, when fully developed, is oral, more sharply so anteriorward, appoximately 1.3 mm long by 0.7 mm wide. The secretion extends around the anterior margin as a very narrow hand. Posteriorward this band inervases in width, extending 0.3 to 0.35 mm beyond the caudal margin of the second exuvia. The first exuvia continues to project beyond the anterior margin of the sala, in a generally cephalic direction. The second exuvia appears orange colored beneath the seale, usually with a darker central area of varying proportions. This darker area appeass back beneath the scale but greenish black when the scale is removed. It may amost cover the exavia, or it may be reduced to a small central arow-shaped area, the long point directed candad. Sometimes it is lacking entirely, tho exuvia apparing unifornty orange colored. Another specimen. almost tonching one lacking the dark aren on the exumb, may, on the other hand, have the exuma pactically covered with the dark area. The date-pmom material in the writer's collection has a larger number of specimens with comparatively extersive dark areas on the cxaviae; yet here, as woll is in the material from the other palms. all gradations in extent of the dapk area on the exaviae ocem.

The exusiae of the serond, bime, now fourth instars of the mate are too telmate to show through the howy sente covering secreted by the second instar. When fully developed, the scele covering is elongate-oval, the anterior end being somewhat sharp in contons. approximately 1.0 mm long by 0.4 mm wide. The first exuvia projects beyond the anterior margin in a general cephatic direction. It ranges from light brown to nearly black in color, each individual exuvia, however, being practicarly all the same shade. Here. too, there are more specinans with the darker exuvia in the date-patm material.

In color the scale coverings of all the stages from all four palms are white or nearly so. The older male specinens appear somewhat more yellow than the females, prombly because of the denser secretions. In size there is some slight variation among the specimens of each stage, but none distinetive lor those from any particular palm.
In molting, the ventral skin of the first instar splits crosswise just caudad of the antennac and along the hateral margin of the boly and, with all its remaining parts. rollin back onto the pygitium. This smme phenomenon takes phace in the secom-stage female, except that usually the split is somewhat mote mesal all aromed, leaving proportionately less tissue to roll biek. Apparently the entire exuviat of the second, third, and fourth male instars are pushed back to the posterior region and left in a crimpled mass.

THE HEAD SKELETON AND ASSOCIATED PARTS

Detailed accounts of the head skeleton and associated parts are given by Betlese ($1, v, 5$). List (7), and Mark (9), these being in all probability the most exhaustive treatises on the subject extant. List and Mark, particularly the latter make specilic mention of the points where their observations led them to differ with the literature of their times. Both give good biblioyraphies.

The structures included in the sclerotic head framework (figs. 8, 9, 13, and 14) of the Coceidac have been called collectively the "Horrigraten" by Mark. This seems rather a fimeiful term. List's term "Schlundgerist" is not adefuate, for this tramework is composed also of certain pieces intimately tassociated with the mandibles and maxilhae. Berlese has called these structures the "rostro", which seems entirely unsuitable, since "rostrim" is a common word for the labium of the Femiptera. A particular word to designate the parts would be desirable. For lack of one, the general term" head skeleton" will be used here. The associated parts are chiefly the coiled month parts, with covering membrames, and the rostrum. They are so closely linked with the thead skeleton that all can be most conveniently diseussed in one general section. It may be mentioned here that an entire new set of all these parts is prooluced for cach instar. Mark ($)$) describes in detail the shape of the head skeleton of Aspidiotur nerib. Bouché and its constitume parts, and this detcription he indicates as essentially covering the cases of allied genera. Berlese's descriptions of the head skelefon in a number of species of the diaspidines are in general accord with that of Mark. The head skeleton of Parbatoria blanchardi is. as might be expecterl, for the most part essentially in agreement witl these two accoments.
To designate some of the bommaries of the head skeleton, the following mpublished terms of the late A. D. Mactillivray are nsed: "Interaca"," superarea", "infrecosta", "supercosta", nnd "interarct." The first four ate modifations of Mark's terms "arcus inferior", "arcus superion" "costa interior", and "costa superior", respectively. "Interarea " takes the place of the "columella" of Mark, becanse the structure it represents is in the form more of an are than of a column, and "inter" indicates its position.

adult female, or type

In the following paragraphs the head skeleton of the adult female is used as a type (iigs. 8 and 9). The ventral surface (vs) is broadest cephalad, appearing dome-shaped. It narrows slightly laterally in a caudal direction to more that half its length, then bends rather sharply caudad to a distinct point. A broadly curving riclge (fig. $9, C, v \leqslant r$) of this surface is directed towarl this point. This surface is covered by the membranous tissue characteristic of the entire body. As far as can be observed, no part of the head skeleton projects above the general surface, although the latter appears romdly raised, particularly caudad, where it dips inward. The ventral surface is the only one in contact with the external body wall.

Cephanat the ventral surface of the head sikeleton is bounded by the comparatively narrow inferarea (figs 8 and $9, B, i m a$), which
joins laterally the ventromesal margins of the pair of vaulted, curving bars, the interarcue (fiys. 8 and $9, B$, ita), which extend at right angles from the former into the lumen of the body. Along

Figune 8.-athatt female, hend skeleton and rostrum (ventral surface at left of observer). $\times 845$.
the ventrolateral margins of the interaccac, and continung the dome-shaped cephalic border of the ventral surface, the infercostae (figs. 8 and $9,4, B$, ine) begin as comparatively broad bands. About midway of their lengths they narrow noticeably, and bend
from a caudolateral direction to a caudomesal one, to about the median point of the head skeleton. Here the laterial margins connect with some membranous tissue, the ventral membranous area (figs. 8 and $9, A, v m a$), which merges into the moderately sclerotic band (fig. $9, B, 7 b$) covering the caudal halt of the entire lateral surface of the slkeleton. The infercostae are considered as continuing to a suture (fig. 8, ols). From here a narrow band (vb) extends in a curving candal direction to the meson.

The suture beginning at the caudal end of the infercostac and extending across the ventral surface is prominent, and may in this region separate the labrum from the clypeus. Berlese considers the ventral surface of the head skeleton to be a union of these sclerites. If this is so, this suture is in all probability the clypeolnbral suture. It is frequently of irregular curvatare. In the figure the long dash lines simply indicate its position, since the surface tissue is represented as removed.
Projecting catulad from the ventral ends of the interarca, and flush with the membranons tissue of the body, is a puir of spinelike processes, the ventral processes (figs. 8 and $9, B, v p$). These pro-
jections point toward very faintly sclerotic aveas near the central part of the ventral surface of the skeleton, the process areas (fig. 8, pa).

The interarcae extend dorsad from their union with the inferarcae and intercostae, and join the superarca (firs. 8 and $9, B$, sua) and the supercostae (figs. 8 and $9, B$, suc) at a common point. The superarca limits the cephalic margin of the dorsal surface of the skeleton. It is a slender bar, at first slightly arched, then dipping caudad to the meson. The supercostae are broader bars and limit the lateral margins of the cephalic half of the dorsal surface. At their candal ends they expand and merge into the broad dorsal bands (figs. 8 and $9, A, B, D b a)$, which limit the remaining part of the cephalolateral margin of the dorsal surface. Along the cephalolateral margin of each supercosta occurs a prominent projection, the clorsal process (figs. 8 and $9, B, d p$).

The dorsal bands are brondest cephalad, they narrow perceptibly caudad, and are indistingushably fused on the meson. They might, in fact, be considered as a single band across the caudal part of the dorsal surface. Their cephalomesal margins usually have one or more slight prominences (fig. 8, pab). The caudomesn margins are considerably invaginuted to form the candal boundary of the opening for the mouth parts (figs. 8 and 9, A, dor).

The ventral, lateral, and dorsal bands form a single piece, and apparently serve as a unitin holding the caudal half of the siteleton rigid. The bars apparently serve a similar function in holding the cephatic half of the skeleton rigid. Where the various bars and bands join one another the fusion is practically indistinguishable, the separation of the parts beins based on form and position.

Attached to the cephalolateral margin of each ventral membranous area is a slender bar, the mandibuher brace (figs. 8 and $\theta, A, m n b$), which curves cephalomesad around a prominent strongly sclerotic tube, the mandibular sheath (figs. 8 and $9, A, B, C$, mms), and flares slightly where it is rigidly joined to the dorsal surface of the sheath. The connections take phace Ω short distance from the cephalic open end of the sheath. The sheath curves gently caudomesad and ends probably a little ecphalad of the caudal point of the ventral surface. Because of the crowding of structures in this region, the exact location couk not be determined. The cephatic sclerotic portion of the sheath is nearly cylindrical, and is slightly smaller caudad. The heare sclerotization ends rather abraptly, at about half way caudad, the remaining portion being very delicate and easily overlooked.

Attached to the cephalohateral margin of each dorsal band is a slender bar, the manallary brace (figs 8 and $9, R$, maxb). This bar curves cephalomesad and connects with the eephatic end of a lone, triangular projection, the maxillary process (fig. $8, m p r$), which is fused to a prominent strongly sclerotic tube, the maxillary sheath (figs 8 and $9 . A, B, m x s$). This structare curves gently candomesad, and ends dorsad of, and in the same general vicinity as, the mandibular sheath. The cephalic opening of the maxillary sheath is oval, rather than romd like that of the mandibular sheath, and the sclerotization extends farther coudad; its end is less noticeable. The maxillary sheath, however, is somewhat smaller in diameter in this
region. The caudal half is delicate, its limits being difficult to distinguish because of the proximity of surrounding structures.

In all the Jiterature that the writer has seen, the shenths are apparently mistaken for the bases of the mandibles and maxillae, but the latter can be seen either partly or entirely within the sleaths; and olso, during eedysis, the new mandibles and maxillae can be easily observed entering the new sheaths while the old head skeleton and all its associnted parts are in process of being cliscarded.

The mouth bristles, or stylets, come together to form a sucking tube. This tube has trequently been called the "proloscis" by American writers, but as this term las been used to imelude a lesser number of purts in the case of other insects, or other parts than those forming the tube among the Coccidae, it is not a distinctive expression. "Bristle" has also been commonly used, but this is even less satisfactory, since it calls to mind a short, stiff, blunt structure, such as a setar or spine, just the opposite of its meaning here. List employs "Borstenbundel", which, although implying more than merely "bristle", is open to the same objections. Mark's term"Schnabel" is not precise, for it mirht be thought to refer to the rostrum. Furthermore, "snout" or "Geals" is used commonly to desirnate the prolongation of a beetle's head, including structures entirely different from the ones referred to among the scale insects. "Stylet" or "stylets" is not satisfactory for this terin bas been definitely applied to the genital armature of the male coecid, as well as to other structures of the insect body. MacGillivray uses "rostralis." Although one cannot be sure through analysis exactly what the word means, it can be seen that a structure associated wit. the rostrum is implied. Since the wort is distinctive in that; it designates nothing else, just as "rostrim" is coming to mean, anong sucking insects, solely the Jabiam, formed to hold the tube, the writer has atopted it here.

Mark (9) quotes Meczniloov (10) as stating that the mandibles and maxillao appear carly in the embryo, only to fuse later with other parts of the head, and that the bristles forming the sucking tube are entirely new structures, secreted from flasklike cells on each side of the head. Mark does not refute this statement; neither does List. The writer believes that much more evidence will have to be submitted to disprove the homology of these parts with the mandibles and maxillae.

A mandible ($m n$) and a maxilla ($m x$) develop in a single coil (fig. 10, 4) on each side of the head, eath one making about nine loops. Each is entirely separate from the other, and in specimens cleared in potash the loops frequently show considerable irregularity in size and position.

The mandibles and maxillae can readily be distinguished from one another by differences in their bases. The mandibular base is somewhat greater in dhameter than the maxilary base, but has thinner walls. The walls, furthemore, are smooth, and the end is even in contour, whereas the maxillary base has ridges in its walls and the end is greatly depressed on one side and has a prominent spinelike projection in the depression. Except for the bases, no differences in size or' form were detected between the mandibles and maxillae. Their bases are much swollen as compared with the remaining parts, but the mandibles and maxillac rapidly taper down from their bases
to slender threads, even in thickeness to their tips, which are reduced to extremely fine points, with no teeth or other imegularities discernible. The basal ends of the mandibles and maxillae are observed to be hollow, and this condition prevails in any cross section of the mandibles and maxillae, except that their tips appear to be closed.
In developing, the tips are formed first, and are in the sume position up to the time of molting (fig. 10. A), that is, just outsife the cephalic ends of the sleaths. The remaning parts are haid down successively toward the bases. In monted material the developing mandibles and maxilhae are twisted, a condition (fig. 10, E) brought about, pechaps, by the comparatively flat condition in which they seen to be at first. The ribbonlike parts are composed of thre

hollow tubules (fig. 10, \sim), which grabualy bechne a single hollow tube toward the bases, the maxillac taking the longest time to do so.

Fused nearly at right angles to the cephalie ends of the sheathe, and surrounding closely in the coils each mandible and maxilla, are very delicate membranes, the mandibular and the maxillary pockets (fig. 10, A, mnp, mxp), within which the mandibles and maxillac develop. These pockets are most distinct around the tips of the mandibles and maxiliae, and fade out toward the bases, where they appear to end blindly. No secreting ceils at the basal ends were discerned. even in sijghtly clared specimens. The pockets are considered to be invaginated contimations of the sheaths, the differences between the two being merely that of position and degree of sclerotization. A combination of sleath and pocket appears to bo
produced in order to give the tremendoasly long mandible or maxilla sufficient room in which to develop. The sheath seems to serve the secondary function of supporting the base of the mouth part aften it has slipped into the sheath. In the figure only parts of the pockets, those at each end, are shown in order to avoid too many confusing limes within the coils proper.

The mechanics involved in the foreng of the mandibles and maxillae ont of the porkets and into the sheaths is not known, though a study of the masculature would probably clanify the matter. Perhaps the coils are under considerable tention. This movement begins simultanconsly as the new shouths are molted from the old ones, the tips of the mandibles and maxilue penetrating the new sheaths as fast as the sheaths are free of the old ones. During the protes the porket tissue beromes piled up at the mouths of the sheaths, and as most of it is much smaller in diameter than the bases of the mandibles and maxilac, they probably rupture it, as a rule, when they enter the shenths. 'Hisis probability, together with the fact that the pockets are fored into munerous puckers, which undoubtedly strain the tissues severdy. explans why most specimens show but distorted fragments of the pocsels, or none at all, about the eephatic openings into the sheaths. Ocasionally the pockets of a specimen stand the strain exceptionally woll; such pockets are shown in figure 8 . The entrance of the mandibles and maxilite inte the sheathe appears to be facilitated by the construction of neighboring parts. As previonsly mentomed. the mandibutar brace is fastened rigidy to the corresponding sheath. But at the other end it is attached to a mombrane, which probably allows a certain freedom of movement through which the shonth can be bent back and forth. The maxilary beace, on the other ham, is not attached at either end to any membrane, but the ond comecting with the projection of the sheath is bent candad and marrowed at this point, and seems to be separated from the projection of the sheath by a suture (fig. $8, s b p$). This constraction woud appear to allow for at sort of pamphar action the brace being the handle of the pomp. A flexibility of morement in the sheath coud therefore be protuced, a desirable feature inasmach as the mandibles and maxillae are nearly at right angles to the shenths before penetration.

The cone-shapech struture caudad of the feat skeleton is the labium, or rostrm (fies. S and $9, B, r$), as it is particularly designated among the Flemipteral. It is one-segmented. very flesily, and deeply invaginated lengthwise on the meson of the ventral surface (fig. 11) in order to receive and hold the rostalis (fig. $9, B, r o s$). The rostrum is broadly roumed along the cephatic margin of the ventrat surface. This margin, which is strongly selerotic, is broken near the meson, the ends cirving cephatad to form condyles (figs. 8 and $9, O, r(c)$. These articulate agrainst simitar condyles (firs. 8 and $9, C$, slec) issuing from the ventral surface membrane of the body, and in opposing positions along the mesal margin of the surface membrathe (fig. $9 . B, c^{2} m p$, camr). The cephatic membrane, which is usuatly raised above the other body membrane, is attached along the lateral margins of the condyies, and artionlates against the rostrum at two moderate thickenings (figs. 8 and $9, B, c c r t$) of its margin. The caudal membrane articulates arainst the rostrum at two prominent broad thickenings (figs. 8 and $9, B$, curt). Because
it is aftached to the body soldy by membane, the rostrum has consif? wable freedom of movement in any direction.

 × 2250.

The floor of tize rostral invarination is contimons with a membranc issuing from the head skeleton. This membrane probably merges in part with the dorsal walls of the sheaths. Immediately caudad of the rostral condyles it is deeply invaginated (fig. 8 , mer), to form the crumenal ($\mathrm{Gg} .0, B, c r u$) of Mark. Caudad of the cru-
mena this membrane covers the mesil floor of two sclerites, the first and second rostrul selerites (figs. 8 and $9, B, j$ rese, $2 /$ rese). The first of these is much constricted near its center, ant there appear to bo two present, but since on the dorsal surfare the constriction does not reach the meson, Berlese was probaloy right in considering this a single piece. The second sclerito is arched, simple in outline on the ventral surface, but more complicated on the dorsal. Two ridges extend along the length of the selerite, curving toward the meson at the candal end. Pointing in mearly the sane direction is a spinelike thickening (fig. $8 . s t r$) which is attached to a globular base (fig. 8. gi). The selerite extends candolaterad of this hase to the margin. The ridges aud thickenings evidently heip to strengtinen this patit of the rostrum and to hald the rostralis in phace. On the ventral surface a similar purpose is ciflected by the tall arened portion of the selerite which lies orer the rustralis, and the strong cathdal peint which undoubterly holls and ruides the restralis. Furthermore, the membranous flow of the sclerites lies in a groove (fig. S , rag) of the sclerites, alomg which the rostralis slides.

At the caudal end of the rostrum are three pains of setace, the large rostral setae (fig. $S, h s$), which are easily observed. and the sumbli rostral setae (fig. 8, whis), which are more diflicult to see. Jorsiad of the setae are two delicate roundish promimences (fis. s. cp p, $d p r$). one above the other. The upper, or ventral, one has it distinct but delicate projection, which looks like a small seta but prolmbly is not one. These promineness ate janed on their mesal margins to the candal end of the membanous floor of the selepites. Their positions at the apex of the rostrum indicate that they probably have sensory functions.

The tip of the rostralis, in issuing to the exterior, passes over the crumena and along the membanous flow of the restrum to project slightly from the caudal end of the rostrum, modembedy against phant fissue. The remaining part of the rostralis is forec into the crumena by the unwinting of the coils.

Because in a laripe number of newly molted individuals, perhaps as many as a homerel, the rostralis, when not in the coils. was always found looped within the body. usually to its full extent, it is believerl that the rostratis is always foreel into the crmama bofore it is inserted into the plant. The fregueney with which individuals were found in this condition Eards to the conelusion that the rostralis remains for an appreciable time within the erumena. 'The mandibles and maniliac were never fothd partly unwound and partly within the crumena. Evidently as som as the exuvia is rolled out of the way the coil unwinds rapidy.

The bases of the namdibes and maxillae usablly pass down no further than the cephatic portions of their sheaths, athough the exact location varies. Sonetimes, peen in old specimens, one or more bases will partally protule from the cephate ents. others may be sunk low in the sheaths. This apparently means that the parts con finction in variens positions. Marke sates that the tips of the rostralis may enter the crumema. This lardly seems possible, cons:dering their sharpness, and has never been noted by the writer. On the contriny, in all the many specimens observed the tips have passed directiy into the rostrum while the coils were still unwound.

Before the rostralis enters the crumena, the latter is in the wrinkled condition, and typically in the position, slown in figare 12. It is readily observed in all well-stained specimens. After entrance of the rostralis the crumena is stretched to six or seven times the length of the body, and is looped within it in a manner which is decidedly irregnlar, at least in prepared specimens. After the rostralis is withdrawn from the crumena, the latter shrivels up until it is greatly reduced in length (fig. 9, B). In this condition it is also readily observed in well-stained specimens, though frequently it appen's badly distorted.

The shape and position of the rostral solenites suggest that, when the rostralis is foreed into the palm tissue, they slide back and forth upon ome another, bermy dewn all the while on the restralis. first on one side and then on the other. Since the rostralis is apparently unwomed and within the delieate crumem before the palm tissue is pencimted to any exteut, and much the greater part of it is eventually inserted into the host phant, this riew of the morhanies of the rostral parts appears reasonable.

On the median line of the skeleton, in a plame betwen the mandibles and the maxilap, is a swollem structure, the pharynx (figs. 8 and $9, B, p h$). Its walls (firs. © and 0, B, phic) ate greatly thickened laterally, but venfrodorsad they are comparaively thin. Within the walls, on each lateral side, is usually obsererl a rather distinct oval thickening (fig. 8, tper). Piercing the thickened walls of the pharynx on the median line, a small delicate tube, the pharyngeal tribe (fig. $9, B, p t u$), extends to the point where the rostratis is formed. Immediately caudad of the pharmax this tube is slistinctly expanded bulblike into the pharyngeal lube chamber (figs 8 and 9, 13 : ple). From its structure the pharyns ap-

 trance of rustralis, seconte-stage Fumalts \times GOU. pears to be a powerfal pump, and undoubtedly draws the merritive substances through tie pharyngeal tube.

On the median line of the pharynx lies a solerite, characteristically shied-shaped as viewed from the ventral surfaec. This is the pharyngral sclerite (figs. 8 and $9, B, p h s$), which serves, aceording to Mark, for the attachment of muscles. From the lateral aspeet (fig. $9, B$) the pharyngeal tube extends cephatiad, and appents to pass through the pharyngeal sclerite and cephatad into a large, membranous tube, the esophagns (fig. 0, B, oe). The sclerite appeats to have a direct infuence upon the operation of the tube. It is quite different in upperamee laterally and ventrally, on account of the prolongation of its base, which, however, dats not project beyond
the surface of the pharynx. Bertese (1,20 . $5, ~ p p .10-17$, figs. 185, $J S O$) ligures the pharyagenl solenite as being entirely outside the pharynx in Aspidiotus limonio Sign. (apmarenty syonymous with A. norï̈ mentioned above), and presumably he belieses this is the case for related forms.
Immediately dorsad of the pharynx, and close arainst the dorsal surface of the skeleton, is a cuplike structure, the base of which is rounded and thickened, the lower sides theckened and directed inward, and the upper sides thin and directed outward. This structure is designated the salivary pump (figes. \& and $9, B, s u p$). Arising from its center and directed cephalad is a roblike projection catled the salivary phunger (fig. $9, B, s p 7$), which expands gently, and ends in two prominences, a small ventral one and a longer dorsal one. Each prominence is capped by a smatl tendom (fige, 8 and $9, B, t p l)$. Nerly the entire lower hatf of the pman is filled by the base of the planger (fig. 9, 3, bpl).
A dolicate tube. the salivary duct (figs. 8 amd $9, B$, sud), issues from the candertoral point of the pump. extends free of the skeleton into the boty cavity some distmere cephatad. and bifurentes. Each brameh is at first directed cephatoherat, then bent rather sharply in a canden direction, and in tarn bifureates in the regrion of the rostrum. Berlese gives the salivary duct as penetating the walls of the pump (ghanda). but to the present writer it appeats to enter the pump jast cephalad of the margin of the dorsal band, bend beneath the pamp for a shore distaner, and expand into a bubhike chamber (hy. 9, B, whe). In this particular it resembles the phaymareal thbe. Beyond this the stilivary duct extemes in a catodorentral divection toward the pharygeal tube. Berlese states that it ends in a harge chamber. Nothing like this was disermible to
 geal one, and deeply imbedded in tombonons tissur, appared to be present. As far as coud be determined. this salivary-tact tube did bot extend so tar caudad as the pharymeral tube, amb ended before the rostralis was formed, indicating that the salisary tube probably connects directly with the pharygent tube.

Abont half way along cach ventral band there is joined to it a curving, stronfly sedmotic stmeture. Laterad this stmetne tapers to a point agamst the lateral band. and mesad it expands against the emudolateral side of a mandibular sheath, tapering against it both eqphatad and cankal. From its shape and position it is thought to be a tendon, and it is here designated as the mandibular tendon (figs. 8 and $0, A, B, \prime^{\prime}, m n t$). Besides coverng the entire lateral surface of a mandibutar sheath, this tendon curves slightly and covers in this regiom some of both dorsal ant ventral surfices of the sheath. The parts of the temon remnecting it with the ventral and lateral bands apparently serve as baces. On the ventral sarface, mesad of the maxillary shoth of each side. there is just visible a progection that is consiclered to be a part of the maxillary tendon (figs. 8 and $0, A, m a t$). 'This tenden covers some of the messi surface and moch of the dorsal surtace of the maxilary sheath; it tapers caudomesad, coming to an end on the dorsul surface.

With the position of these fevelons in mind, the mamer in which they operate on the parts concemed may be considered. The mandibles are apparenuly clasped, chielly laterally, and partly ventrally
and dorsally, by the mandibular tendons, and forced mesad. On the other hand, the maxillae appear to be clasped or imbedded in the maxillary tendons mainly dorsally but partly mesally, and would therefore be forced ventrally and laterally against the mandibles. The mandibutar tendons are larger, and atso much more extensive laterally, than the maxillary tendons are mesally. As a result the maxilhe are pressed aganst the mandibles directly beneath (dorsad), while the maxilla and mandible of each side are being brought together on the meson by the more powerful mandibular tendons. In this way the rostralis would be produced in the region of the catedal end of the head skeleton. The rostralis is square in cross section, with apparently a single sucking tube in the center. Unfortunately, no good cross sections of the rostralis were obtained ; so the writer hesitates to state this positively, though the cross sections he did have appeared to have the parts in these positions, as wotid be expected from the position and shape of the tembens. List (7), however, states that for Orthezia cataphractu Shaw the maxillae are placed, one dorsally and the other ventraly, in juxtaposition, a concavity in the surface of "ach prolucing a central tube, while a mandible is placed on each side, at concavity in each pressed against the median line of the maxiliae producing two secondary tubes, resulting in three sucking tubes altogether.

On the rental surface, mesad of a maxillary tendon, is another, considerably larger, printed structure, the pharyngeal tendon (figs. 8 and $9, A, p t e$). This tendon covers the lower part of the pharyns laterally and dorsally, and tapers sharply to an end on the dorsal surface. The pharynx is cupped within this tendon, which on contraction would apparently squeeze it. Perhaps, however, this tendon serves the areater purpose of holding the pharynx steady, while the powerfol walls of the pharynx do the contacting during the pamping operations. In either case the pharynx is considered to be the pump which draws the sulbstances into the alimentary tract. The bulblike chamber of the pharyngeal tube seems to serve as a vacum chamber.
Immediately dorsad of the pharyngeal tendon, and just beneath (caudad of) the salivary pomp, lies the thickest of all the tendons of the head ekeleton, the first walivary temen (figs. 8 and $9, B, 1$ sut). It is the only one which extends to the dorsat band. Cephalad this tendon expands slightly against the meson some distance below the cephatic margin of the dowal band candiad it expands more appreciably, with a small parl of it tapering out against the salivary duct. Laterally this tendon curves, and tapers sharply to a. point at the margin of the dorsal band. Caudad of the first salivary tendon lies the second (figs. 8 and $9, B$, 2sat), which tapers from the whole caudal margin of the former to the candal invagination of the dorsal band. This second salivary tendon also covers fike a sheet the whole dorsal surface of the lower part of the maxillary tendons. The mandibular tendon extends far enongh aromed dorsad to expand against the ventrolateral surface of the second salivary tendon. The salivary planger apparently works ap and down, the pump being the franework which holls the plunger steady. The tendons of the planger probably instigate its up-and-down movement. The strong first salivary tendon supports the pump and holds it in
place, as well as the part of the salivary tube penetrating it. The bulbike chamber of the tube probably serves as a varuum chamber, being similar in function to that of the pharyngeal tube. The second salivary tendon gaides the remainder of the cendal part of the tube, and probably also supports the dorsal surface of the mandibular and maxilhary tendons, mid helps to binl together in this region the free ends of the tendens.

VARIATIONS FROM TYPE IN OTHER STAGES

The head skeleton and associatect parts of the first and second instars are essentially like those of the adult female, although smaller. Jo indiate to better advantage moss of the parts of the liead skeletom and rostrma, certain parts are featured in cach of figures $1,3,4,5$, and (6 . In the first instar the ventral processes and process areas appear to be missinge, whereas in the second instar of both sexes they are prominent. The superara, inferarea, and interarca are membramons in the first instat, and sumewhat less so in the second,

 espectally the inferaren, which appromehes the solerotic condition. No sex differences were tound in the heal skeleton and associated parts of these two stiges.

Figute 13 shows the condition of the head skeletal sitructures in an carly cmbryo. It may give some indication of the formation of these parts in odeder stayes, about which it is diflieult to gain information owing to the intimate presence of the old. strongly scletotic parts. Mast of the parts can be recognized. The interaret and the Iateral and dorsal binds are mot distinguishable, but the ventral band appeats as a single curvel lime, like the bars, just as it resembles these in form in the older stares. The mandibular mat maxillary sheaths and the pharynx are distinctly incaginated, each opening into a common chamber. The membtanes of the mandibular sheath can be seen almost to the point of invagination. A thampible and a maxilla are distinct within the sheaths as simpte curving lines. At the bottom of a deep invagination (imm) a twisted line is observed to arise and connect both sheaths, cireling around the maxilary one. Considering timat one fine connects both shanths, it is thought to be a combination of the mandibular and maxillary braces. These ajpear to begin there as a single invagination. A theory of their later development is that the two braces split in the direction of the invagimation, which hecomes filled with tissue by the two braces stretching away from carh other, produring the cephatic part of the lateral binal. The plarnygeal toble is distinct leading directly into the pharyngeal sclerite. The comparatively wide mouth of the invagimation on each side of the thbe is apparenty filled later with the pharyageal wall tissue. The maxillary and pharyugeal tendons were distinct, but the mandibular tenclon was not distinguishable;
neither were the tencons associated with the salivary apparatus, though both salivary pump and duct were plainly discemible.

The head skeleton of the third-stage male is distinet, and also the outline of the rostrum, though there is no visible comnection between the two. The bars and the bands are all present, though in a membranous condition, and can be readily recognized (fig. 14, 4). The sheaths, braces mandibular and maxilhry pockets, crumena, mandibles, and maxillae cotkd not be distinguished. The pharynx, however, apparently persists. It is membranous, except for the pharyngeal sclerite, but is distinct. The salivary duct is also apparantly distinct, and seems to be divided into two tubes as far as its point of invagination. Only one tulie was distinguishable in some specinens. The salivary pump is extremely vestigial, but the faint ontline of its lower sides can be made ont. The rostran is recognized

by its iypictal shape, posifion, and constant presence. It is an matifferentited membrane.

The head skeletom of the fourth instar (iig. 1-t, ls) (an also be distinguished, but it is not so notiouble as the of the third instar on account of its smater size mad the smalle number of parts in the famerwork, which is composed of more delicate mombrane. All parts abseat in the thirct-stage male are absent in this stage, and, in addition, the superatene, the interneme, the waperestie, and the salivary pund: also, the lateral and dorsal bands are not complete, the former being ahmost heking. The remaining corresponding parts, including the rostrum, are almost, if not cquite, as noticenble as they are in the thim-stage make.

The pharygeal tube is apparenty present in the atult mate. No other parts of the head skeleton or any associated with the head skeleton eould be definitely distinguished in this instar.

Measurements, in microns, of typical head skeletons of the various instars were: First, length 66, wifth 40 ; second female, length 110 , width 83 ; adnult female, length 130. width 110; third male, length 57, width 64 ; fourth male, length 46 , width 40.

SUMMARY

The Parlatoria rlate seale (Partatoria blanehardi Targioni Tozzetti), probably the most serious insect enemy of the date palm, has 3 female and in male instars. A detailed accome is given of atl the distinguishable structures of the external amatomy and the endoskeleton of the hoad and associnted parts for all instars of both sexes. For every instar except the third and fonth mate instars, four or more specimens from each of the four known host palms were examined thoronghly. The number of individats stuclied completely ranged from 7 to 32 . All structural details proved substantially the same recardess of host. It was possible, thercfore, to group the specimens of each instar for discussion.

A variation in size, position, and ocenerence of structures and groups of structures is charncteristic, and is frequently noted specifically. Where subject to satistactory measurement, the a verare and range of sariation are recorded, the number of cases used tor each detremination ranging from 7 to 2,378 .

Sex ean apparently be cetermined in the first stage. In the specimens stuctied (s 8 males mat $2+$ females) the outer surface of the tibia of all six legs of the male possessed a prominent spine. This was lacking in two thinds of the femates examined and in the remaining thim never oecured en more than two of the legs.
The segmentation of the boty is indieated for all instars. It is based not omly on sutures, where theer are present, but alsw on the number and position of the setar, pores, phates, and lobses. The lead is not elearly differentiated exeept in the adult male. On the venter the mesothorax and metathoras are ench divided into two serments or sections, the anterion sertion of the mesothorax being fused with the prothorax, and the first abdeminal segment is appatently missing ; on the dorsum neither the mesothoma (except in the adntt male nor the motathome is apparently divided and the first ablominal serment is nomally developed. The ninth abdominai segment is much reduced on both surfaces in the first mot seromd instars and in the adult female. In the third male instar it is moderaidy reduced on the dorsum and occurs ats atm elongated invarimated projection on the renter. In the two hater male instars it is well developed as a F inated caudal projection.
The structure and distribution of pores and setar follow a rather definite pattern through the varions instars. A separation of them into certain groups is possible. In general, pores vary in atl respects more appeceitably than do sctace.

The pores are limited to two fundamental types: (1) An invaginated type, possessing ome extermal opening and within the body a single membranols tube capped by two bars, from the center of which isstes it deliente chab-shanped tube, and (2) a disk type. The invaginated type enm be divided into two kinds, one varying in size and opening on the surfuce, and the other small and opening at the
peak of a raised area. The invaginnted pores with surface openings cocur more frequently along the margin and submargin of the thorax and abdomen, but may be present elsewhere, in the first, thic two second, and the adult female instars; the raised kind is linited to the margin and sumargin of the second instars and the adult female. The disk type of pore is limited to the second instars and the adult female. In the former it is present only in the region immediately cephalad of the mesothoracic spiracles, but in the adule female in this region and also aromd the renital opening. The three later male instars possess no pores of either type.

From stage to stage there is a general increase in the number of pores along the margin and submargin of the thorax and abdomen, and also toward the mesal region of both abdominal surfaces in the adult female. In these regions the increase in number of pores is distinctly greater in the second-stage male than it is in the female of this stage.

In general, in the female instars the setae progressively increase in number on the ventromesal region of the thotax and abdomen, and aiong the submargin of the thoras. Inchuding both sides of the body, as compared with the second-stage female, the male of this stage possesses 4 to 8 more setat on each surface of the head and near the mesodorsal rerion of the thorax and ablomen, as well as an extra pair on the ventrat marerin of the eighth abolominal segment. Elsewhere the setac are esseritially alike in both sexes. In the 3 later male instars the number of selac progressively increases on the head but remains approximately the same elsewhere. These 3 instars have no setae on the ventral margin and submargin of the first 3 , and usually the next 2, abdominal segments.

Because of variability in the oceurrenee, size, and form of the lobes and plates, and in the occurrence and position of the pores, on the pygidim, this rexion of the loody should be used diagnostically with catation. The lebess and pates are in different degrees of permatnence along the cephatic margin of the pygidium, and leave little doubt of theiv origin as simply modified bulgings in the surface tissue.
In the first instar a prominent pair of lobes, which are usually considered by coccidologists to be the first pair, are determined as the second, with the first pair probably absent; but in the second stage and in the adnlt femake, the prominent pair farthest caudad are determined as the first ones.

The cye is apparently present in all instars except the third and fourth mate ones an! prosibly the adult female. In the adalt female a structure that at first resembles an eye in contom and general location may bear no relation to an eye, but this matter it still unsettled. The alult male has two pairs of well-developed eyes.
The legs persist in all instars except the adult female. In the first instar they are of the usual insect type except for a fusion of the tibia and tarsus. Those in the seronil-stage male are decidedly vestigial, varying in development from being almost lacking to plainly disecrible, with exidences of segmentation. In the secondstage female they are in general nore vestigiat than they are in the male of this stare. Those in the three later male instars show in-
creasing development and sharper segmentation, being fully developed in the adult male, with tibia and tarsus plainly separated.
The wings may or may not be present in the three later male instars. In the adult male the wings and the halteres are frecucntly in various degrees of degeneration down to comptete absence. The thoracic wing framework is always present and well developed in the adult male, but is wholly lacking in the two preceding instars. Its segmentation and the structure of the articulating parts of the wing agree in general with those found in other insects.

An undetermined structure laterad of each metathoracic leg in the first instar may be a vestige of the spiracle of the first abdominal serment.

The endoskeleton of the head is composed of a number of sclerotic bars and bands joined together into a boxlike framework without marked divisions, and of other pieces concerned in the operation of the month stylets, pharyns, and salivary duct. It is a rather complex assembly of more tham 50 different single and paired stroctures. These parts are all figured and discossech. The endoskeleton is essentially the same in all instars, except the three later male ones, in which it becomes increasingly vestigial, though parts of it are plainly evident in the third and fourth instars. Only the axternal opening to the alimentary tract and a small section of the tube ean be distinguished in the athlt mate.
The rostrum is onc-segnented and persists in distinet form in all instars except the adult male, in which it is apparently lacking. The rostrom possesses characteristic selerites and setae, and is essenttially the same in all instars exeept the third and fourth male ones. in which it is wholly membranous with no diflerentiated tissue.

The rostralis, or month stylets, ocems only in the first, the two second, and the adult temale instirs. It develops anew for each instar in coils within delicate pouches or porkets on each side of the head skeleton. Before issuing from the bolly it umwinds and moves into a delicate pouch within the body cavity. It has an aycrage length more than two but not three times that of the body in the newly batched first instar, and six timess or more that of the body in newly molted individuals of the other instars.

LITERATURE CITED

(1) Merrasha A .

 7%, illus., 189)
(ㄹ) (onsmack, T. II.

(3) Clampron, (1. 1^{\prime}.

 illus.
(4) Gumin. E. L.

1896-1922, TIE COCCHALE GF CEYBoN. is f., illus. Lomion.
(5) Hoにs, (!.

 14: $8: 37-2 \cdot 18$, illus.
(0)
 Proc. 27: $36-39$, illus.
(7) List, J. H.

18S6. ORTHEZIA CATAPHRACTA SHAW. BNND NONOGRADHEE. Ztschr. WISS. Zool. 45: 1-S4, illus.
(6) MacGinbiviay, A. D.
1921. TITE COCOHAE, TABLAS FOR THE IDENTIFICATION OF THE SUBFABILLEB

 Urinane, In.
(9) МАкк, ․ .

 illus.
(10) Mecznikov, E.
 [389]-500, illus.
(11) PATCH, M. M.

19\%3. HOMOLOMHS OF THD WING vEINS OF THE APHIDDSE PGYLIDE,
 illus.
(12) Shelpard, II. H.
1930. THE PEBURAL AND STERNAL SClMBITES OF THE LEPDDOPTEROUS

(13) Snopgiase, R, E.
3927. MORPMOLOGY AND MECHANISM OF THD INSECT THORAX. Smilhisn. Inst. Misc. Coliect:, F. 80, no. 1, 108 [3., illas.
(14) Targion TozaEt't, A.
 du samara. Món. Soc. Zool. Framee 5: 60-S2, illus.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

This bulletin is a contribution from
Burcan of Entomology and Plont Guarantiac. Lies A. Stsong, Chief. Division of Fratil Insects D. L. Van Dine,

Principal Entomologist, in Charge.

[^0]:

 to that in the Nationn Ausam at Washington, the bret collection of serab insects has the Uolted States. Thls privhere las proved rapecinhy wabable in giving opportunty for comparims tha cocd toms blesed be the witer on the matous fereies of pams
 IA tie cullection. The writer expresses his thank to I'rofesser Dergis for constant

 datescnle infestations, which were taken under feld ponditlons,

[^1]: * Italte mumbers in parentheses refer in Literature Cited, p. Bot.

[^2]: ${ }^{2}$ This term in ubed for the parts involver ilirutighout this bulletin，the restoons far its use being given on l．5t．

[^3]: the venter are those usef by sutigrass (13).

[^4]: ${ }^{6}$ Desertplons based on drted materinl.

