

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

S

A STUDY OF THE

 RAW COTTON AND THE YARN AND SHEETING MANUFACTURED FROM THREE GRADES OF AMERICAN UPLAND COTTONBY
The Bureau of Agricultural Economics and The Bureaw of Home Economics
In Cooperation with Clemson Agricultural College

United States Department of Agryculture，Wabhingtonv D．C． \％ MIV 111934

A STUDY OF THE RAW COTTON AND THE YARN AND SHEETING MANUFACTURED FROM THREE GRADES OF AMERICAN UPLAND COTTON

 in romprotion with rlemson Agricultural rollege

CONTENTS

Page
Setting of the Problem, by Robert. W. Webb, sening colton technalogist, birision of Cotion Marieting. Bureau of Auricuithral Economics
The Mandacturine Prosdare and Some properties of the Kaw Coton, Internediate Yrodacts,

 Materials nand methods.
Resible of tests
Concluslons
Sersiceabity of the Fanries, by Margaret h. Ifays, assistant physist, nad Huth E. Elmquist, assistant chemist, Textiles and Clothint Dirision, Bureat of home Efonumbes.
Wcrring lest
Inthorators test
Resalis
 Ruth E. Elmquist, assistant chemist, Textifes ant (' othing Division, Bureaty of Dome Economies. Azalysis of desized sheetims
lroning culimment ond
foning equipment and procedure
Meusimements of deterioration
piscussinn of restlls.

SETTING OF THE PRORLEM

By hobint w. Wemb
The prineiples underiyng the program of stambarlization of cotton quality of the Departhent of Agriculture are predicated upon the relationships which mdoubtedly exist between the properties of cotton fibers and their spinning behavior or efficiency, on the one hand, and between the properties of cotton fibers and the quality of the yarns and fabrics manufactured from them, on the other. Presumably, many different fiber properties are eoncerned in quatity. Practical standards bave been promulgated, however, only for length of staple, for grade, and for preparation of long-staple cotton (15, 51,52). That the staple and grade standards, so far as they go, have proved themselves to be of mach service is evidened by the fact that they are now

[^0]$$
10881^{\circ}-34-1
$$
in common ase not only throughont this country but in every ather country of the world where American cotton is used in large quantities.

Because of the lack of scientific data upon which to base an acenrate system of cotton classification and of the probable time it would require to obtain them, the original basis of the standards and of their graduations necessarily was sought in the experience of the trade, and in the capacities of practical cotton judges to reomenize quality variations. Although relations of staple length of raw cotton to the strength and fineness of yarns are generally recognized. they are neither thoroughly understood nor mathematically evaluated. ${ }^{s}$ Studies have been made by Willis on the relation of the grade of cotton to its spinning behavior, visible waste. yarn properties, and fabric quality (55), but only fragmentary information of an experimental nature is arabable on the relation of cuality of the raw cotton. as indieated by classification, to wearing ruality and servicenbility of the resultine fabries.

It was this need of such tedmieal thata that prompted, in 1928, the beginning of a rooperative affort between the Burent of Agsicultural Economies and the Bureat of Fome Economies to make a more complete stuty of white cothons solected to reporsent a relatively wide rance of grates. It seemed chesirable to know not only the properties of the raw cottons, their behaviors during subjection to the manofacturing processes. and the quality of their yarns and fabries but also the readions of the finished products when subjected to servier I Imuleringe and irominge. Sheeding was chosen berause of the relative simplietity of its emstruetion and the possibilities of wiving it miform and controlled service.

The infial stady reported in this bulletin has cmbarad American upland White cotton from the Texas area. crop of 1928-29. representing. acoorling to the C'nivorsal Stambards a bale of each of the frades of Gond Midilling. Midelinge and Strict Good Ordinary, and, aceording to the official stapherese, approximately 1 iuch in staple length. The proceture employed in the mamufacture of the sheeting and the ohservations protaining to the behavior of the cottons diring manafache and to some properties of the raw cotons and of their intermediate products, yarns, and fabries are presenterd in the second part of the bulletin. The studies that deal with the serviceability and the resistance ol the fabrics to ironing conditions are reported in the third and lourth parts, respectively.

THE MANUFACTITRING PROCEDLRE ANI SOME PROPERTIES OF THE RAW COTTON, INTERMEDIATE PRODUCTS, YARNS, AND FABRICS ${ }^{4}$

In the ['niversal Standarde for armes of coteon, thred olements of quality, namely. coion, leaf and other fareign matter. and prepara-

[^1]tion are considered ($4 \pi, 51,53^{\circ}$). The possible instability of color, the graduations of the three factor ranges, and the pitch of the different scales give zise to a number of fundamental and practical problems. Some matters of major interest. for example, are the importance of color; the degree to which differences of color in raw cottons reflect themselves through manufactured products in the gray, bleached, and variously dyed states; and the nature and extent to which the grade standards furnish a precise index of the manufacturing utility of a cotton, other things being equal, with respect to staple length and character insofar as the present concepts of these quality factors are concerned. It is recognized. however, that, in addition to the quality of the raw cotton employed, the organization, conditions, and procedure of manufacture, the construction of the manufactured product, and its intended purpose constitute other technical factors which, in rarious ways and degrees, may influence the quality of resulting cotton goods, the cost of their manufacture, and the evaluation of the quality of the raw cotton.
In an effort to furnish comparable material and data as a background for assistance in determining the importance of those quality elements embraced in or associnted with the grade standards, three bales of cotton selected to represent a rolatively wide range of grades for so-called "White American upland cotton" have been manufactured mader the best controlled and comparable conditions available and have been studied with respect to certain fiber, yarn, and fabric properties. A description of the materials, conditions, and procedure employed in the experimental manfacture of the sheetings and the information obtained from those studies are presented here.

MATEREALS AND METHODS

Since portions of each of the three bales finally selected were to be manufactured into a sheeting. it was desirable to select cottons of such character and staple as to conform as closely as possible to those used in greatest quantity for sheeting. Investigution showed that at the time of this experiment. as a rule, a "hard" cotton about 1 inch in staple length was used. Three bales of approximately the same staple and character but representing three different grades wete purchased from a local market at Houston, Tex. Care was exercised that cach bale within itself be as nearly uniform as possible in character. leaf, forvign matter. preparation, eolor, staple length, and regularity of fiber length, as disenssed by Palmer (45). To this end, ench bale was "fannel" at the head (by removing the tie near the topend) and the lint was examined ewery 3 inches for uniformity of grade, staple, and chatacter.

At the spinning laboratory when the bogring and ties were removed from sath wottor a bire sample was taken from near the top, middle, and hettom of each of the thee bales in an effort to obtain

[^2]three samples that would iurnish a true and comparable basis for study of the different cottons. These sumples were submitted to the Appeal Board of Review Examiners of the United States Department of Agriculture, Was'ington, D.C., for classification. The Board found the samples to be of Good Middling, Middling, and Strict Good Ordinary grades. respectively, the Middling sample, however, having a slightly rougher preparation than the other two. They called the staple length of the Good Middling and Strict Good Ordinary samples 1 inch, but two times out of three they called the Middling sample $11 / 32$ inches, the other time 1 inch. The board found the samples to be regular with respect to staple, medium with respect to body, and normal with respect to strength. These designations represent average characteristics. So far as the board is able to determine, the samples from the three grades did not differ from each other with respect to any of these character elements. The cottons will be identified in subsequent tables not only by their respective grade designations but also numerically by the positions of each in the scale of the nine grades for White cotton beginning with the highest grade.
It is evident from the above deseriptiens that enttons representing a considerable range in grade were obtained. The finding of the Board that the Middling sample was slightly longer was confirmed by fiber length arrays. As shown subsequently, howevar, this difference in length, because of its small magnitude, couht not have accounted for much of the relatively higher strength of the products from this bale; nevertheless, these slight differences well might be kept in mind when considering the results from the Middling bale.
Color measurements showed that, in comparison with a set of averages of moasurements for the nine White grades of the official standards of the United States, the Good Middling bale was bright but not creamy; in fact, its color was close to that of a bright Strict Middling. The Middling bale was creamier than the average and near the upper range of this grade. The color of the Strict Good Ordinary bale was close to the aterage for this grade.

MANDEACTLRING CONDITIONG AND PARTICULARG

In qeneral, the organization and machine speeds and settings were the same for the three cottons and conform to those customarily used by commercial phants for the mamfacture of sheetings.

When the ties and bagging hed been removed from the bales a quantity of cotton from each was weighed and passed through an opener. These quantities were then placed in separate bins and allowed to condition for at least $2 \pm$ hours, after which they were reweighed and passed throngh the following machines:

For the manufacture of the sheoting, two counts were spun: 21s with a twist multiplier of 4.50 for the warp yarns and 26 s with a
twist multiplier of 3.75 for the filling yarns. For comparative purposes. 21 s warp yarns also were spun with twist multipliers of 4.25 and 4.75. In addition, 28 s warp yarns were spun with the same 3 twist multipliers to provide further information, since cottons of this staple length are uspally consitered suitable for connts: in this zange. The organization, speeds, and settings employed for the manafacture of eath of the the selected cothens into yarn are :hown in tables 1 and 2.
 from the $;$ velerted roftons

[^3] the is netertrod mollons

1 Thorsandith of an inchi.
${ }^{2}$ Menaret from ceniet of ernter of rolls.
The following machines were used to prepare the warp yarns for weaving: Wind wa wer. and whater.

Inasmath as the arailable laboratory equipment was not of a size to permit the warping and shand of the yams, these processes were carqed out by a comanereab plant.

The sheoting were woven on an 82-ind phan foom. making 108 picks per minnte. The foblowiter specifeations were followed ns cosely as fossuble in making the eray sheofings:

$$
\begin{aligned}
& \text { Fams- 21s waply and ofs taliug (singhe yams). }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Width- } 72 \text { inches. }
\end{aligned}
$$

[^4]The treatment given the fabries at the finishing phants was as follows: Kier boifing with 3 percent caustic solit solution at 30 pounds steam pressure: soluring with thre fourths to 1 percent sulpharic acid solution, chemicking with one fourth of 1 percent available chorme sohtion. thomogil washar preparatory to finishing: water manglinge, starch manginge drying, dampening, calendering, and manufacturing into sherets.

The ingredients nused in the starelinge operation consisted of a combination of comstareh man a sapenified fallow soffening material.
During the manafacture of the three eotom at the poinming and waring laboratories, the rabave homidity was hed as nembly constant as possible by means of an antomatically controlled hunidifyitur system in cach rom. The "ppropytate hanilifying heads were turned on 1 on more hours before $l_{\text {curiming the daily operation of }}$ bach machine and they were allowed to operate, as geverned by the controls, watil the end of the working da, or the time when the madhines were stopped. The centrols were arfonted to maintain 50 perent redative humidity in the picker room, fin pereent in the card room, To pereent in the spinning rom, and (is pereene in the weave room. Althongh the relative humidity employed in the weave room was slighty lowe than that usmaly a inopted by commercial plants, the records show that the number of stoppages for broken warp conts was for the most part very dow. In this case. therefore it was mot necessary to maintain a higher refative homidity. During the mambacture of the garns, homby reminge we mate of wet- and
 rom. Simitar obervations were made in the weare remm by means of a sling bechumeter. The arerages of the dry-bulb temperatures so obtamet. the percenting of relative humidity calculated from the temperature radings. and the time regnired for processing are Whown in table 3. The regain determine for samples of stock taken at the varions manfacturing pucesese is shown in table 4 .
 of refotire hmoidity turing prorcssing, tand number of howrx required for
 ciollohs.

[^5]Tabie 4.-Yereonfuyc of moisture regain in samples tahen at differcm processes
in the manufacture of sheeting from the 3 selected cotions

Kind of sample	Moisturo rectain		
	Goos Midldiag (No.3)	Aitiding (No.5)	Strict Good Ordinary (.) O ह)
	Percent	Percent	Procht 7
Raw stock (baie).	6. 6.6	8.82	4.87
Breaker picher hap	6.4	7.35	6.50
Findiher jicker lny.	6. 99	4.78	6. 6.5
Card laps -	6.50	6. 30	${ }_{5}^{6.63}$
Card shver - -	\%. 61	6.55	5. 5.87
	6. 6 \%	6. 5.51	3.87
Roving in spinning creel ${ }^{\text {a }}$	7.58	7.73	7. 7.4
Yarn ${ }^{\text {2 }}$............... .	7.88	7.49	7.44

[^6]merhods
(1) Moisture regain: Samples weighing 20 grams each were taken at the beginning and at successive stages throughout the manfincture of the yams. These samples were dried to a constant weight in an oven at 221° to $230^{\circ} \mathrm{F}$. according to the methods recommended by the American Society for Testing Materials (3). The regain is obtained hy expressing the loss in weight as a percentage of the dry weight of the sample.
(2) Fiber length: Samples from the raw material and from the prolucts of sucressive stages of manufacture were sorted arecording to length on the Suter-Webl sorter, as described by Webb (\%). and the length at the 20 -percent point in the comulative weight-length array, reading from the longest fibers, was used as a masis for comparison. The results oltained by two or more surtings were asemged.
(3) Percentage of waste: At each mannfacturing proerss in which the renewal of waste is of primary impertance, weighings were made of stock fed, stock delivered, and each type of waste removed. From these data the percentages of waste for each of the three lots of cotton were calculated. The small discrepancy usmaly moted betwen the weigh of stock fed and the stm of the weights of stock delivered and waste recovered is accounted for by invisible loss or gain. Such losses or gains usually contribute so small a percentange of the waste content of cottons that they may be regarded as relatively insignificant.
(4) Strength of yarns (skein) : 25 sample bobbins of cach twist find maber of warp yarn spun were used for strength and size tests." skeins of 120 yards each were reeled from the bohbins and allowed to condition for at least 3 hours in an atmosphere of $6 \overline{5}$ percent relative bumidity at $70^{\circ} \mathrm{F}$. Each skein was then broken on a standard type, motnr-driven yarn tester and sized on a

[^7]direct yarn-numbering quadrant. ${ }^{10}$. Since it generally is impossible, for a number of reasons, to spin a specified size of yarn, the breaking strengths were adjusted to the specified size according to the usual custom by assuming that, within small limits, they are inversely proportional to the size.
(5) Strength of yarns (single strand): Five bobbins each of 21 s and 28 warp yarn spun with a 4.50 twist multipher from each of the three lots were conditioned for about 4 hours in an atmosphere of 65 percent relative humidity at a temperature of 70° to $73^{\circ} \mathrm{F}$. Approximately one hundred and fifty 12 -inch lengths of yarn from each bobbin were broken successively on a Moscrop automatic singlestrand yarn tester.

On this machine a 12 -inch strand of yarn is grasped at one end by a movable jaw, the other end being attuched to a calibrated spiral spring. Tension is applied to the yarn and to the spiral spring

until the yarn breaks. When this oceurs, the maximum elongation of the spring is recorded on a chart by maths of a needle point which pierces the chat, the results being read directly in ounces. Figure 1 shows a section of the type of chart used in comection with this machine.

In this test the data recoried on the perforated chart were later assembled in tabular form, and the average strength of yarn of each lot was calculated. The avergges thus calculated were corrected for the exact yarn number (21 s or 28 s) by assuming that, withm their ranges, the strength of the yarn is inversely proportional to the count. In making the corrections the average sizes of the 25 skeins of 21 s and $28 s$ yarm, respectively, spun with a 4.50 twist multiplier, were used.

[^8](6) Brilliance: Measurements of brilliance were made on the raw material and on products of succossive stages of manufacture by means of a Keuffel \& Esser disk colormeter. The instrument and the method have been described by Nickerson, (41, 42, 43). Briefly, it consists in so adjusting the area of a set of four color disks that the light coming from them is equal in hue, brilliance, and chrom to that coming from the sample. The colors from the disks are mixed by a rotating prism, and adjustment is facilitated by comparing the light from the two sources on adjacent half-circular fields. The expression of brilliance is made in equidistant units from black to white, as illustrated in the Munsell Book of Color (38).
(7) Spectrophotometric measurement: Spectrophotometric measurements were made on a Keuffel \& Esser color analyzer, the reflections at different wave lengths being expressed as a fraction of those from a magnesium carbonate block, as described by Keuffel (31).
(8) Tensile strength of fabries: Fifteen samples of fabric were cut warpwise and 15 fillingswise from both the gray and the finished fabric woven for each of the three cottons. Three samples, each approximately 7 by $11 / 4$ inches in size, were conditioned overnight in an atmosphere of 65 percent relative humidity at a constant teruperature of $70^{\circ} \mathrm{F}$. The "strip" method (3) of testing the fabric was userl, each specimen being raveled to a width of 1 inch before being tested. The fabries were broken on a regular powerdriven tester of the inclimation balance type, with the jaws of the machine set 3 inches aput and the bottom or pulsing jaw moving at at rate of 12 inches per minute. For purposes of correction. the actual constructions of the cloths were determined by combing the warp and filling threads per iach of fabric, observations being made in six places on large samples of both the gray and the bleached fabries.
(9) Bursting strength of fabrics: Three specimens of each fabric were exposed for at least 3 hours in an atmosphere of 65 percent relative hamidity at about $7^{\circ}{ }^{\circ} \mathrm{F}$. Each specimen was then tested in five places on a hand-operated Mullen bursting-strength tester. From the data for bursting strengeth per square inch thus obtaised m average was cabolated.

RESUL'TS OF TESTS

The perentapes of each type of waste removed from each of the cottons by the pickers and card, hased on net weight of cotton fed to these particular machines, are listed in table 5. Figure 2 shows graphically the percentares of the fractionated and total wastes based on the weight of cotton fed to the opener breaker.

Examining the resuits for total visible waste for the three 1 -inch cottons, it is observed that a waste of 6.40 percent was obtained for the (rood Mikdling grale; (6.06 pervent for the Minding; asid 12.99 pereent for the Strict (rood Ordinary. The pereentages for Good Middling and Strict Good Ordinary are well within the range of those usually obtained for such grides unter similar picking and carding conditions. That for the Midiling cotton, however, may be considered somewhat low for this grade. These comparisons are
made on a basis of a large amotint of data compiled at the spinning laboratory and of ohservations elsewhere.
 whe the cord in the mannfacturf of the is selected rottons

Kiad of wasto	Wiste pereentage ${ }^{1}$		
	$\begin{aligned} & \text { Gocid } \\ & M i(1 d)] \text { ng } \\ & (N(6.3) \end{aligned}$	Middeling (No. 5)	$\begin{aligned} & \text { Srlet Good } \\ & \text { (Srdinary } \\ & (\text { NO. } 8 \text {) } \end{aligned}$
Picker waste:			
Breaker:	${ }^{3}$ creent	Percent	Percent
luwisible			
Fintsher:		, $\cdot 1$. 5
Visible	. 85	. S $^{\text {S }}$	2.
Carl turisible	. 13	. 06	. 4
Card whiste:			
Cymater mad doter stips.	2. 214	2, 161	3.30
Molers mid fly--- --. .-.	8	6. 3	5.18
Sverpings. .-......	.13	. 63	. 05
Totul visible...	505	5. 01	0.01
Total invisitue.	. 31	. 42	St
Picker armb terd waste:			
Tonal risible.	6. 50	6. CH	
Toral invistble.	. 30	. 80	1.24

: The waste percendago for emeh eleaning matine is baserf on the net weight of totton fed io that par-

 the ofrener pieker. Insisible waste is tigured similarly.
${ }^{2}$ Jruisible gajn.

Licume :- ['pernatages of pleker and ward waste from the three selected cottons. (Based on net welglat fell to opeuen.)

The lemgths of fibue at the es pereent point in the cumblative weight-dength armys for samples of the raw cotton and for thone
taken at certain stages of processing from each of the three cottons tested are shown in table 6 .
 sive stagcs in the mannfacture of its werp farn from the a selected cottom

Kind of sample

' Length calculated at the 25 percent point in the cumalative weight array, reading from the langest nbers.

The standard error of the difference between any two reported lengths is about pius or minus 0.018 inch. With this figure in mind, it is seen that the fiber length of the different products from the Good Middling cotton did not change significantly during the course of mannfacture, nor did the Strict Good Ordinary cotton change significantly prior to the spimning process. The Middling cotton fiber length appears to have increased at the finisher picker lap and to have decreased again during the spinning process. But the small quantity of waste removed is not sufficient to explain this apparent increase in length at the finisher picker. Besides, no corresponding increase in the fiber lengths of the other two grades was noted at this point. It is conclucled, therefore, that the greater fiber lengths for the finisher picker lap and fine frame roving in the case of Middling cotton resulted from slight errors, either in the measurements on the products or in failure to obtain representative samples. It is of interest. however, that the relationships of fiber lengths in the yarns are in general agreement with those in the raw cottons.

ENJ bREAKAMt: DUtiING SPINNING

The number of ents breaking per hundred spindles per hour for the 21s yarns of 4.50 twist multiplier are shown in table 7 .
 is sederted cohtoms

Count of ymin	End breakuse		
	$\underset{\substack{\text { Clooding } \\(\mathrm{No}, 3)}}{ }$	$\underset{\substack{\text { Midding } \\ \text { (No. 5) }}}{ }$	Strict (rood Oreinary (No.8)
21s....... .	Ends (0. 0.5	Ends 0.84	Ends 1.41

[^9]The results for the three selected cottons are seen to increase directly as the grade becomes lower.

STRENGTE AND IRREGDLGUITY OF WAHP YAKNS (EKEIN)

The breaking strengths of skeins prepared from 21 s and 285 warp yarns for each twist multiplier for each of the 3 grades are shown in table 8. The skein strengths ure plotted in figure 3.

Xable S.-4veraffe strength of yarm per skein for the 3 xelected coltons

By reference to table 8 and figrere 3 it can be seen that the skein strengths of yarns spun from the Good Middling and Midding cottons are approximately equai and much higher than those from the Strict Good Ordinary cotton. The close agreement of the strength of the yarn from Middling to that of the yarns from Good Middling probably may be considered by some to be due to the slightly greater staple length of the Middling bale. However, on a basis of several
hundred bales of Amorican uphand coton, ranging from 18 to $11 / 4$ inches, spun in the haboratory at Clemson College, on-inch increase in staple length has given on the average for ves yarn an increase of only 2.07 pounds, or 2.15 percent, when bised apon the averatre strength of 22 s yan span from 1-inch staple. It is obvions, therefoze, that other reasons acconnt for the close agreement. The two higher grades produced yams of excelfent struath for cotton of their length, whereas those from the Jowest grade are considered fair. These comparisons also are made on a basis of results compiled at the spinning laboratory.

The inverularity of yarm as indicated by the highest, lowest. and average skein-breaking strength and size, and the average deviation and extreme variation of both breaking strengrh and size for 21 s warp yams spun with 4.50 twist multiplier, are shown in table 9 .

Dable 9--Highest, Towent, and accutge hrcaking strenghths and sizes and per centage of uveruge devition and crifome twriktion of bredk and siac of 215 tourn yarns of 4.50 hatiot multipher spun from. the' 3 selfected colloms

I Calculated by summating ail ceviations from the meab without repard to sign, then averaging and expressing as a percentage of the memn.
${ }_{3}$ Expressed as a percentage of the mena.
3 Average of 25 observalions.
The differences in irregularity are seen to be small, any advantage of regularity being associated with the yarns from the Strict Good Ordinary bale.

The correctel average single-strand breaking strenyths and percentage of average devintion from 21 s and 28 s warp yarns of 4.50 twist multiplier are shown in table 10 and presented graphically in figure 4. Frequency curves of the breaking strengthe of the 21 s yarns are shown in figure 5 and of the 28 s yams in figure 6. These curves show tho relative dispersion and skewness for cach of the three grades.

The results of the single-strand strength tests. insofar as the relative order of yarn strengrth of the hrec eotons is conerned, confirm those of the ske:s tests. The cottons of the Good Midding and Midding grades gave very neary equal strengths. whereas the cotton of the fowest grade. Stint (rood Ordinary, gave yarns of considerably lower strength. In the case of the 21s yarns, the strength decreased in the order of grade; hat for the 28 s yams the intermerliate grade furnished the greatest strength, and the lowest grade exhibited the
least strength. It is well to point ont that, as sized in the skein, the 28 s yam from the Middling cotton was about 2.5 percent heavier than that from either of the other two grades. Since no correction to specified size was employed in the single yarns, this probably accomsts in part for the change in the order of strengeths.

 the is siderted eothons

 as a perrexbaye of the tuxas.

Relatively. the results of the singlest mand strength lests for 21 s Yarns show a slightly greater diflerence between (iood Middling and Middling than do the skein strength tests for these grades (figs. 2 and 4). It may be whembated from the resulte of both methods of testing upon both combs of yam that the strength of yarms spon from the Strict (fond Ordinary cotton manges from 10 to 18 percent below that of yarns spm from the cotton of Goons Midelling grade.

Data having been presented conceming both the skein and the single-strand strength of the yauns, it is of interest to ascertain the
relation existing between these two sets of wahes. A skein of yam, as placed on the risual type of strength tester, contains the equivalent of 160 single strands of yarn each 27 inches in length. Theoretically, if all the individual strengths were realized in breaking a skein. the ratio of skein strength to single strand strength woukd be 160:1.

 mantiactured from the thre selected eotrons. Each curve represents approximately
 data whtch were not eorveted for size of yim.

 mandacturad from hire soleded catoms Each curve represents appoximately Tati
 data whteh wre mot corterterl for sian of yarn.

This ratio is not actually realized. however. since there is a tendency for the weaker strands to break first, followed by slipping of many of the stronger threads. The ratio of skein strength to single-strand strength for each of the yarns under consideration under the conditions of thas test is as shown in table 11.

Grade	Size of yarn	
	215	2380
Good Middling (No.3)	1054.0:1	121.4:1
Stricl (lood Ordiniry (No s	112. 4 : 1	$11.8 .8=1$
Theoretical -. -		$160.8: 1$ $160.0: 3$

The resulte of this test indicate that in the case of 21 s yarn a greater proportion of the singrestand shength was realized in the skeins as the grade became lower, whereas for the 28 y yarn the reverse was the case.

As in the case of the skein strengths, the 21s yarn from the lowest grade was most regular: but in the case of ess, this grade gave the most irregolar yarn. followed in order by the intermediate and the highest grade.

Coler tomearmements wre made on samples of the cotton from the raw sterck, the breaker and finisher laps, and the finished gray and bleaches material. 'The retation of brillianee to errade, as the raw stock passed hrongh the broaker and finisher and then into the gray and bleachad aloth. is shown in table 12 and graphically in
figure 7 .
 mannfartarad fromer the as wected cotions

Kind at sanifle		Brilliance 1		
		tibul Atidilitur (No. 3)	$\begin{aligned} & \text { A1 iveding } \\ & \text { Nos } \end{aligned}$	Stricl (iood Ordlnary (No, B)
Raw stock		¢. 66	S. 0_{0}	7.50
Braker-picker Jars		4. 4 2	$\times 10$	7.7!
Finsisher-miderer luf		19.08	s. ${ }^{\text {cis }}$	7.84
Gray roxh		4is $\times 1$	S. 23	7.57
Henthed ckath		1, 80	4.20	4.40

An examination of the randte shows that the brilliance of the raw stock and of products varies with the grade: that is, the higher the grade the erreater the brilianer. (ienerally, the Middling cotton is nearer in brillianee to the (iood Midlling cotton than to the Strict Good Ordinary. The breaker-iap) samples momened a triffe datker. than the raw storlk, permaps owing to the faet that the eotton was opened up and the trash loosened. Samples from the finisher-picker lap showed up brightar than those from aither the breaker-picker lap or the raw stock, indicating that some of the trash had been removed.

The brilliance measurements reported for the gray and bleached cloths are the result of determinations made on a sumple of several layers stretched over a white background, sufficient layers being taken to overcome any effect of the background. It is seen that these figures are in all cases lower than those of the finisher-picker lap. This is owing, no doubt, to the fact that the cotton, although itself a trifle brighter, in the form of choth caused more shadows than occurved in the finisher-picker lap. The measumements of the graty cloth indicate a difference in brillime betwern the Gool Middling and Strict Good Ordinary cottons which is comparable to the difference in the raw sterk. After bleaching. the brilliance is raised considerably, the low grades being raised relatively more than the high.

Spectrophot-metrice measurements "of the reflections at each of seven different wave lemgths from the gray and from the bleached -loth are shown in table 13 and presented graphically in figure 8 .

These monamements of reflection by wave length. when ploted on a logarithmie seale. show results very similar to those obtained from the brilliance measurements. Brilliance is measured in units equal to the eye and bears a definite relation to perrentare of tight reflected. It bas been thought by some to bear a logarithmic relationship and. althongh this does not auree preedsely with the Munself scale, it is used in figure 8 in order to show the general relationship. The two sots of figures cannot be precisely adjusted, since the illmination under which they were measured and the thickness of the material differed for the two measurements. The grades maintain aproximately relative positions with respect to relative reflertion of the wave Iengths measured. The reflections of the gray cloths. which are a light dull yellow in color, were less from the blar end of the spectram than from the ered end. The

[^10]bleachen doths opave a much higher refative reflection throughot the range of ware lengths, and the reflections did not differ apperciably for the different waye lengths. This is a fact which corresponds to their whitems, sinee tie higher and fatter the corve, the whiter the volor.
 monnfactured font the se seferded cottons

1 Resalts engreseal relative ta the rellection of matuesian carbonante.

 the firne seferten coltoms.

The gray fabrics from the different grales differed noticeably in Wheir appeatame to the eye in cobre, hester ame amount of foreign matter present on the surface. The gray fabric prepared from the Good Madding cotton was a bright, cemany white, with a very smail quantity of fine pin trash. That prepared from the Middling cotton had a slightly darker, grayish-ycllow cast, muel duller than that made from the (iond Midiling cotton, and the trash was a little more noticeable. The gray fibute propared from the Strict Geof Ordinary cotton hal a still harkir. graysh-vellow color and considerably more pin trash than that from the Middling cotton.

That a quantitative relationhip betwen quade and surface foreign matter might be established for the gray fabrics, the average number of particles of trash in a surface area of 9 square inches was detemined. This wese tone by placing a mat with a 3 -inch suare opening on the smooth surface of the cloth and comating the particles in each of 20 such areas. The average number of particles of foreign matter observed per 3 -inch square on the grave from each of the three grades was as follows:

Acrrage nnmber of particles perd by 3-inch squan

The bieathed wample from each of the three grades differed littie as to pin trash. practically all of this materal having been removed in the finishing process. When the finished tabrics were placed siffe by side, however, a difference m eobor and luster between the (dood Midding and Striet (Iowd Ordinary cotton was easily discernible. Differences between the fabrics from the Midding cotton and those from either of the other grades were mach less noticeable.

FENSTLE SHEFNGTH (BFTHE FABRES
The averages for the namber of threads per inch both warpwise and fillingwise for the gray and bleachod fabries are shown in table 14. and the corresponding strenghs ate shown in table is.
 3) selected rathoms

4 Each averake rempesents fo mbervationv
 swflons

timuls	
Gent Middling (Nin : Mickling (No. 5) Serict Gead Ordinary (x'a, ki	

[^11]It nay be seen from table it that the momber of warp threads per inch of the finished sheetings was consideraby higher than that of the gray whereas the number of filling threads per inch was more nearly the same. This change in construction is explained by the fact that, in the finishing process, the fabrics shank on an average of 10 inches in width, from 22 to 62 inches, the length changing but slightly, approximately 3 percent.

Table 16 and figure 9 show the figures of table 15 convertea to a comparable basis, namely. a construction of 04 by 64 threads per inch. The corrected tensile strength of the fabrics in all cases, except that of the bleachol fabric tested warpwise. decreased with the grade. In the casce of the exception noted, the fabric from the (oood Midding had a somewhat lower strength than that from the Midaling cotton but a consilerably higher streagth than that from the Strict Good Ordinary cotton. In all cases the fabrics from Middling showed a strength mueh closer to that of fabrics from (iood Midding than to that of fabrics from Strict Good Ordinary.
 faclurced from the 3 wedected collons

Grade	T2usib strength correctext for of by 64 constrextion)		
	¢iray il meached		
	Warpwise: Fining- wise	Whrowise	Flinge wise
(ioul Minding (No. 3)	Pounds Pounds	${ }^{2}$ mathts	Pounds
Mielding (No. 5)	60.71	S5.78	42.7
Striet (fond Grdimary (No w		S4. 46.4	398 38.4 8.

 Eepresents the arerabe of io ubservations.)

On an aremge the corrected strength of the bleached tabric, as determined hy the strip wethod, decreases (6.0 pereent wapwise and 19.5 percent fillingwise.

The arerage bursting strength per square inch for the gray and beached fibrics from cach of the three grades is shown in table it and figure 10 .
 fuctured from the s stewed cotions

${ }^{1}$ Each average represents 15 tests made on a Mublen tester.

The results show very lithe diflerence in strength betwen the fabries, either gray or bleached manufactured from the (food Midding and Midding cottons. The fabries mandactured from the two higher grades were much stronger than those manufactured from the Strict Good Ordinary cotton. The finishing process apparentiy lowered the bursting stragth of the fabrics abent one thitd. For the gray fabme, it was onderved that in the majority of cases the filling threads hroke as the fabric burst, whereas in the finished labrics the warp threads broke in every instance.

CONCLUSIONS

The more important results obtained in the manufacture of the three selected cottons into sheeting and from certain studies made on their fibers, intermediate products, yarms, and fabries under the conditions, as described, are listed as follows:

As compared with previous results obtained from cottons of the same gralles and similar staple the percentare of waste removed from the Grood Midding and Strict Good Ordinary cottons was abont average. On the other hand. the waste from the Midrling cotton was somewhat lowet than wombld be pxpected for this grade.

The longth of fibers diflered slightly for the three bales, that for the Middling bale being a trifie longer than that for the other two. On a basis of previons results, however, the small differences in length of raw cotton would not be expected to account for the relatively higher strength of the products from this bale.

The lenerth of fibers from the thace bales of cotton did not clature appreciably in the comse of the mannfactaring processes.

The momber of ends breaking per 100 spindfes per hour increased as the grade berame lower and was more than double for the Striet Good Ordinary than for the Good Midelling cotton.
both skein and single-strand tests on 21 s and 2 ses wamp yams showed the dood Middling and Midding eottons to have approximately ergand smength. The Strict Good Ordinary coton mave rame From 10 to 18 pereent weaker by both skein ami singlemtrami teris Than either of the other erades of this test.

In both the skein and the sugh-stand strenget tests on 21.4 wap Gam. the Strict (bood Ordinary eoton stowed slight! more rexitJarity than for either of the other two grades. This reghlarity was correated with regularity of size in the skein tests. In the singlostrand test: of 2 sis wap yim, the reghlarity decreased with the grade.

The brilfiance of the eotoms decreased as the arade became Wower. The cottons of the there arades remaned heit relative positions with respect to brillianee thronghout the manufacturing processes. but the spread berame smalley after bleaching.

Spectrophotomedric measumements of the reflection of hight from the gray and bleached fabrics for each of the there grazles agreed. in gencral, with the brillamer measurements. The eray cloth. becatise of its yedlow color, wave a dreater reflection towird the red end of the spectrom, while the bleached cloth, on the other hand.
 of wave lengths used.

The arerage number of fine particles of foreign matter in the dray doch increased greatly as the grade became lower, but they largely dismppeared aller the finishing proeess.

A reclaction in the width of the dray fabrie from ie inches to about 62 inches occurred as a result of the finishing process, whereas the lenarth increased approximately 3 percent.

The corrected tensile strength of strips of gray and of bleached fabrics decreased as the grado beame lower except in one ease in whieh the bleached fibbric from the Midilking cotton tested warpwise was stronger than the corresponding fabric from the Good Middling. Relatively, the tensile stremeth of the fabric trom the Micklling cotton was much nearer that from the Good Middling than that of the

Strict Good Ordinary cotton. On an average the corrected strength of the bleached fabric as determined by the strip method decreases 6.9 percent warpwise and 19.5 percent fillingwise over that of the gray fabric.

The bursting strength of the gray and of the bleached fabrics from the Good Middling and Middling cotton was about equal and was much higher than that of the gray and of the bleached fabric made from the Strict Good Ordinary cotton. Bleaching resulted in a reduction of approximately 33 pereent in bursting strength per square inch for the fabrics manufactured from each of the three grades.

Discrepancies between observation and expertation, noted in a few instances particularly in the case of the Midhing bale, are not surprising when it is considered that many of the important fiber properties which are involved in cotton quality are beyond the province of the grade factors and the grade designations. These fiber properties, moreover, may vary greatly for a given grade and it must be evident that only insotare as they collectively assume mean values for a given bale can that bale be said to represent the particular grade category.

SERVICEABHLITY OF THE FABRICS

Hy Mamahet R. Inarg and Rumit E. Ebmquist

In connection with investigations of various aspects of cotton utilization the Department is ittempting to asaluate different grades and varieties of cotton in terms of their relative usefulness in finished fabrics. In this stady, sheetings made from American mpland cotton, selected to represent the Good Midding, Midding, and Strict (iood Ordinary grades, were submitted to laboratory and wearing tests. For details of the construction and manufacture of these fabrics see paye 6.

No investigations of the durability of known grades of cotton when woren into fabrics are reported in the literature although a few studies have been mate of the reaction to landering of fabrics made of cotton of miknown rrate and staple. The effect of repeated washing on some damasks, sheetings, and shirtings was published by Griffith and her coworkers (ids) and the durability of ginghams and five white cotton fabrics when sabjected to launderIng was reported by (iinter amd Rhooles (a) . Fury and Edgar (21,22) amyyed jog commercial bramis of sheeting and the deteriomation of 5 of these due to laundering was studed by Griffith and Eldgar ($2 ⿰ 氵 2 \mathrm{i}$). MacDonald (36) reported 30 investigation by Consemers' Ressareh, Ince, in cooperation with the New England Lamdries, on the loss dae to washing and to washing phas ironing of 10 brands of sheets having the largest volume of sales in 3 Boston stores. A preliminary report (5) has been published by the Cotton Textile Institute of a stady begme in 1928. in which 24 mill brands of sheeting were smbjected to actual service in the Geasslands Hospital in Westehester County, N.Y. Carpenter ${ }^{12}$ and Miller ${ }^{2 i}$ have compared the deterioration of sheets washed at at

[^12]commercial laundry and in the laboratory. The effect of commercial laundering on 24 brands of shects was also investigated by Milard (I) in a study in which they were washed 160 times without wear.

The grade and staple of the raw cotton used in the fabrics was not taken into consideration by these investigators and they did not follow the chemical changes produced by laundering. In the present study, changes in the chemical, as well as the physical characteristics of the sheetings were investigated.

WEARING TEST

No laboratory test has yet been devised which approximates actual service conditions. Therefore, in order to study the reaction of these grades of cotton to wear, the finished sheets were put into service in a Washington hotel. ${ }^{14}$ This hotel maintains its own laundry and the staff cooperated to control the conditions both of the use and the laundering ot the sheets. Variables in faondering procedure due to changes in persomel during the $21 / 2$ years the test was in progress, were rot significant.
Thirty sheets of cach of the three grades of cotton were marked with an individual identifying number. Before being used, they were given 2 hot rinses tud 1 cold rinse to remove the finishing material. After the excess of water was removed by extraction, they were ironed. dried thoronghly, and pat into service on a transientguest floor of the hotel. The beds had no rough erges on the frames or spmings whith would canse mothe wear.

Two sheets were used per bed ach day, the wide fem always being placed at the head of the beel. It is assamed that ower a bong period each was user an equal momber of times as the top and as the bottom shect, and that the wear was unifom at any testing period. All sheets, except those removed for testing, were ised as long as serviceable. Arcording to the bofel rontine, thase bambered one day were mot put on the berds miti the next day, but were stored overnight to permit thorough drying. Approximately half of the lot was used sach tay so all the shoets were in amosit continuotus service even though some of the beeds were not oecupied every night.
Fach morning the used sheets were collected and sent to the hotel laundey, where they were held until a worker from the Butazo of Home Economics arrived to watch the washing process. A record was kept of the time required for cach suds. rinse, extraction, and iroming for every day any of the sheets were washed. Any variation in methord was noter on this record.
For the first 4 months the washing procedure was a 15 -minute suds, which was started cold and into which the steam was turned after a few minutes' running, 2 hot rinses, each 3 to 5 minutes, and 2 cold rinses, each 3 minates long. Due to personnel changes in the lamdry the method used for the remander of the time was a cold breakdown of 6 minates, it hot suds (approximately $160^{\circ} \mathrm{F}$.) of 10 minates, sometimes another sulds, depending on the lond, 3 hot rinses (120° to 130°) of 3 to 6 minutes each, and 1 or 2 cold rinses $\left(90^{\circ}\right.$ to 100°), each 3 to 5 minutes. As it was not possible to control the washimg

[^13]temperatme automaticnlly, only approximate temperatures are reported.

The first year, a soap solution was used of such concentration that the wheel contained one fourtly of a pound of soap chips and one eighth of a pound of soda in 8 to 10 gallons of water. The remainder of the time soap chips alone were used. In accordance with the regular hotel practice, no bleaching was tone and bluing was added to the last cold rinse only during a month each spring.

After rinsing, the sheets were extracted \uparrow to 12 mimates and then ironed, selvage to selvage, through a 4 -roller mangle heated with steam at 65 to 70 pounds pressure. The sheets were always folded by hand.

The daily record of the identifying number of each sheet washed was obtained when it was folded. Thas it was possible to determine exactly how many times a given sheet was lamdered. A chart was kept for each sheet, breaks being recorded thereon as they orearred. The area, kind of break, and number of washes at which eath break appeared were recorded. The sheets were then repaired in the hote? mending room and retumed to service.

Ordinary stains were removed by the regular washing or by soaking in the soap tank overnight and then rewashing. This and any other necessary stain-removal treatment was recorted. Sheets for testing were selected at random and of these only two had ever been phaced in the soap tink to remove stains.

LABORATORY TESTS \because

One sleet of each grate of cotton was removed at intervals (table 18) and tested for weight, thread count, thickness, and hreaking and bursting strength. All samples were conditioned at least 4 hours before testing in a room maintained at $70^{\circ} \mathrm{F}$. and 6 percent relative hamidity. Fhidity, copper number, and methylene blue absorption determinations were also made at the same test periods.

BAMIDLING

The area, 22 inches wide and 51 inches long. most probably orcupied by the body as shown in the diagram given by O'Brien and Steele (44) was used for sampling (fig. 11). Breating-strength determinations were made with strigs taken at the pheces of probable maximum wear, symmetrical to the conter line and selected so that no warp or filling thrends were chuplicated. The sections B, C, and D cactz sapplied 5 wap and 5 filling strips and 3 bursting-strength sumples. In addition, the A, B, and O sections onch furnished 1 and the D section 2 samples for determining the weight per square yard of the fabric. The middle fold was lested for breaking strength in fom places both wampwise and fillingwise. Thickness and threm count were determined on the pieces used for the weight determinations. Sections A, 3 , C, and D were sampled for the fluidity and coppernumber determinations. A composite sample of all four sections was taken for the methylene blue absorptions. The remainder of the sheet was used in the ironing study (see pp. 48 to 64).

[^14]
 Whas lasted. Section A is ordinarily oreupied by the phlow, beclion 13 by the shoulders

At the beginning all tests were made on the new fabric of each grade. In order to study the effect of aging only, two control sheets of each grade of cotton were stored when the others were put into service. Every time a laundered sheet was removed for testing, breaking strength and bursting strength determinations were made on the stored fabric. The samples from these control sheets were selected to be representative of the entire sheet. none being taken closer than 12 inclies to the sel ragre.

In determining the weight, 2 -inch squares were stamped out with a die and weighed on a torsion balance reading directly in ounces per square yard. The mumber of threats in an inch both warpwise and fillingwise was deternined with a thread-counting micrometer. Thichtess was measured on the same samples with a micrometer gage graduated to read to 0.01 inch, which exerted constant pressure on a given area of the fabric. In each of these tests, the a verage of five readings was reported.

HREAKING STHENCIE

The strip method was sed for determining the breaking strength of the sheets. In accordance with the inethod recommended by the Federal Specifications Boarl ($\sigma 3$) , samples were cut $11 / 4$ by 6 inches and raveled down to exactly 1 inch. The pendulnm-type testing machine with a capacity of 150 to 300 pomels was motor iriven. the lower jaw traveling down at the rate of 12 inches per minute. The distance between the top and bottom jaws, 3 inches wide both front and back, was 3 inches. Warp and filling specimens were broken and in each case 10 values were averaged.

HCRSTING STRENGTH

The steel-hall attachment for the testing machine was used to determine the bursting strength. Samples were cut 4 by t inches and the areaqe of nime determimations reported.

SIGRINKAGE

Each sheet was measured before going into service and again after being removed. The length was measured in three places and width in five to the nemest one sixteenth of an indl. The shrinkage was calculated from these measurements.

The ftudity (viscosity) tests were made with solutions of cotton in caprammonitum hydroxide at $25^{\circ} \mathrm{C}$. by means of capillary-tube viscometers. Since the details of the nethod used were devaloped in connection with the ironing study, the description of the procedure is given on page 53.

The fiuidity values were calculated in centimeter-gram-second units by the equation $F=\underset{C(P-p)}{q}$ where F equals the fluidity, O the constant of the instrument, y the rate of flow, and the quantity $\left(P^{2}-p\right)$ the average pressure causing flow. The value of 0 is given
by the expression $\begin{gathered}\pi g d^{\prime} \\ 128 L^{\prime}\end{gathered}$ where g is the atceleration of gravity, d is the internal diameter of the capillary tule and L, the length of the capillary. The guatities d and I were 0.1 B a and 3.23 centimeters, respectively, for this stady $p^{q}-p$ in ohtained from flow pressure graphs (fig. 17) where the prewore heal. I, is ploted as abscissa and the rate of fow, q, as orblate. 'The interrept on the presure axis gires the yied malue. $/$.

compar \eviran

The method adopted was the same as that described in the ironing stuly (3 . 56). . Amalyes were made with 1.0 grame of the finely dirided conditioned materind and the resats are gecorded in grams of copper reduced per ith grams of dyy cotton.

Absommpon or merifylene mbet

The titrimetric method of Clibbens and (ieake (14) was used, in which the disinterrated material wan spated with a buffered methylenc blue solution of $\mathrm{pH}_{\mathrm{H}} \mathrm{t}$. The most wom shectings absorbed so mach methere bhe that $0.3-$ gram samples were subtituted for the 2.5 -
 methyleme hite absurption valuen may be greatly influened by the presence of tatere of alkali or soap. the materials, previous to the absorption measurements. were stepepel for 1 hour in $\frac{N}{10}$ sulphuric acill and then rimed and stercped in distilled water until the washings:
 bine per 100 grans of dry entom.

RESLITS

The change in weight of the wheets after the first wash was not appreciable, but there was a gradal lows in weight with service, as shown in table 18 . Grach No. os (Strict Good Ordinary) was always hightly lightor than grade No. "(ciom Midhting) or grade No. $\overline{6}$ (Midding). and the loss in weght for grade No. 8 at 1010 washes was the same an for grader Nos. 3 and 5 after 240 washes. This semes to indicate that alter a hoss of 20 pereent (0.8 ounce, approximately) whets are no lonere serviceable. These three cottons were all made into sheots of medimm weight, so no generalizittion can be male as to what might apply for lightweight or hearyweight shatings. In the order of inereasing weight, the grades ranked strict (iool Ordinary, Mikding. and (dood Midding.

The ralues for theral romt are atho given in table 18 . The number of warp thends per ind decrased. white the number of filting threads increased with washing. This change was expected. as the sheots were shrinking in hengh and stretching in with. All the fabrics showed a trem toward the same manber of threads in both warp and filling divections after 125) wathes. As shown in this table thichass incrased with the first washing due to shrinkage. In all cases the rariation in thickness was slight and of the same order as the error in measumg.

Ctrade of cotton				Weipht $\underset{\text { spluare }}{\text { sher }}$ yurt	Thickness
	$\underbrace{\text { Sutatier }}_{0} 10$	Namber	Namber	Onfices $1+1.07$	Inches． $16.0 \mathrm{O}_{1}$
		73	萄：	1.10	． 011
	7	70	${ }^{6} 5$	1．09	． 011
	18	G9	${ }_{65}^{65}$	3．38	． 010
	175	70	的		． 010
	200	9	发：	3.70	． 010
	925	70	69	3． 0	． 010
	2410	\％	0	3.34	． 016
	：0	号	${ }^{1} \mathrm{ES}$	${ }^{14.01}$	${ }^{1} .005$
	1	－2	63	3.9 成	．011
	\％	\％	${ }_{6}^{67}$	4．00	． 011
Mintuting（No．${ }^{\text {b }}$	120	90：	6	3.76	． 10
	1700		${ }_{6}^{60}$	3．94	． 010
	200	63	$6{ }_{6}$		．010
	2125	呺；	94	3.26	． 0 \％ 9
	210	631	70	3.44	． 009
		31	${ }^{1} 91$	${ }^{1} 3.85$	1， 010
	1	\％	6	3.80	． 011
	骂	A	（6i）	3.70	． 011
Niriet Good（ertinary（No．s）	荗			3.44	． 010
	隹	（3）	${ }_{65}$	3．3＊	.1000
	173	th	0	3.34	.010
	20018	\％	$0 \cdot$	3.24	． 010
	211	Pis	15.	3． 12	． 110

2 Aroritge of $\stackrel{y}{6}$ comerol sheds．
The arerage breaking strengths of the J ．（＇．anel I）sections and midithe fold of the sheets after various periods of wear are shown in table 19 and figure 12．In all threc rrades the meraking strength of the 13 sertion was alwass the lowest．While the C and D sections were of the same order．Contrary to the results of an amalysis of sheets previously used at the hotel（f4）．the strength of the iniddle fold was no lower than that of the section from which it was taken． The Strict Gock Ordinaty shects had it lower initial breaking strength．but the gemeral downward trend was the same for all three gradies．

The loss in breaking strengeth as compared with a new shect of rach grade is given in table 20 and ploted in figure 13．The preater loss in the breaking strength of the warp up to Ta washes is probably rlue to the loss of sizing．A comparison of the loss in strengeth of sheets washed once and $\overline{\text { a }}$ times shows that approximately half the loss in the warp during this interval took place in the first wash as dicl athost all the loss in the filling．

A lambered sheot wable appear rebatively stonger as a maule of shrinkage．For romparison．therefore the average breaking
 specification（table 21）．The index valae the average breaking strength in pomels divided by the arerage thread comit．was com－ puted for both the warp and filling directions（table 22 and fig 14 ）． The strengeth－weight factor，the sum of the warp and filling brealsing strength in pounds divided by the weight per saluate yard in ounces，
is ploted in firure 15. By both methods of comparisom, grade No. 5 is hipher than 3. which in turn is above s, exerpt for the inversion of 3 and 5 at $12{ }^{2}$ and $2-25$ washes.

: Briza methoris

TIMES LAUNDERED

1 Thatatronn p. 2l.
Bursting strength proved to lx a somewhat imacemate (est, as there was considerable wariation in the individurl walaes, particulardy on sizol fabrics. The values in the respective grades after 1 J!885 ${ }^{\circ} \ldots \mathrm{n} 34-\ldots 3$
and after To washes are within the range of the values for the controls as determined at different test periods. There was, however, a continual drop in bursting strength after 75 washes. This is shown more clearly in figure 10, in which the values of table 23 are plotted. There is a correlation betwem busting strength and fabric fature. Breaks appeared when the bursting strength was approximately 28 pounds. This ocrarred at 123 washee for Strict Good Ordinary, 163 washes for Good Middinger, and lian washes for Middling cotton, and corresponds to the average time of first break. as shown in table 24.

Mratle of cotton	Tesi period flitmes munadered defet	Intex 1		Strinkuge		Sirenethweight fretor
		Warp	Fitions	Wurp	Fillme	
Good Middling (No. 3)-n....	Vamber	30.67	30.67	percent	Percrent	4 m .7
	1	. 72		-3.1	-1.1	20.8
	${ }_{125} 7$. 6.5	. 30		+4.9	16.4
	- 150	. 16	. 27	-6i.	+6, 5	12.0
	- 175.	-41	.21	-7.2 ;	$+1.2$	11.4
	2018	-391	+ 15	-5	+4. 1	15. S
	- 3.411	-270	. 00	-5.3.	$+0 \div$	9.6
	$\triangle 0$	5.4	1, ik			$3 \because 8$
	11	. 76	. 11	-3.01	$+0.2$	21.7
	等	. 616	, 4	-6, 6	+1. 4	18.7
		. 51	堂	-7.1	\pm	${ }_{1-1.16}^{15.6}$
	1) 175	1	: 2	-7.0	+53	12.3
	20	. 3	. 18	- 7.5	+52	10.5
	295!	: 1	. 12	$-\mathrm{F}, \mathrm{m}$	$+4.0$	9.0
	210	: 31	, 10	-6.9	+3.3	80)
	31	2.81	3. 619	-2s	-0.3	120.3 68.1
	-	. ${ }^{\text {d }}$	4	-6. 5	+1. 5	18.
	18	. 44	20	-6. 7	+1.	13.7
	1515	.10	-	-6. ${ }^{\text {a }}$	+5i	11.9
	${ }^{168}$	3	\cdots	-5 5	+30	10.7
		. 21	: 10	-8,	$+\mathrm{ti.1}$	10.5
	311	. 35	:'11	-5.51	$+5.3$	7.8

userage thrent connt.

Weighturer sputure garlo in maces.
3 A
 frated afier requafal limulerings and vecar

J'est purion flimes lanndered)				Test merital thimes latumlereel)	Bursufng strengh			
				$\begin{aligned} & \text { Ginad } \\ & \text { Nitations } \\ & (\text { No. } 3) \end{aligned}$				
61.	$\underset{ }{\text { rounds }} 1$		Monurn 138.2		176		Hotudt	Pourtix 210.4
	2.1.	5663	10.6	200	25	2.7	1.1.11	
30	63.6	56, 3	H. 7				13. 13	
125	3 ck 1	11.:1	28.9		${ }^{2}$	20.8		
106	31.8	35.1	4	- 40.	11.0	(1). 0		
105			17.8					

[^15]

 time af remoring from screver for sheots made of the s seterted swhoms

Grade of cotton	First brenk weurrad			Removed from servite	
		AverAger flimes latatschered	S(t) nrad der:athand	lintit tsured	Sem-解 ${ }^{\prime}$ fintes tatat herent)
		Nithaher		Nomber 2w-291	Arumber
Mfuding (No. ${ }^{\text {a }}$.	137-205	180	,	2ey-296	
Strle Gowi Ordinary (No 0.8)	102-17	145	4)	$197-217$	208

 thedr nema ilfo.

The thenkage for theots removed from servere is shown in table 2.) and indieates that after To washes the change in dimensions was yory shight. Apparently the rain in width wis cansed by always aroning from selvage to selvage. This agreg with the observations
 reported by tha (othon Textila Jnstitate (j). The variation in shrinkage for the there difterent fabrike is mot significant.

[^16]None of the controls of all grades which were stored showed a loss in breaking strength during storage. Any variations noted in the breaking strength were of the samo orler as those due to sampling. The difference between the values at the begiming of the stuly and the average value of the controls in ench cate is insignificant. Bursting strengih dow mot show any variation that tan low attributed to the effects of storing.

The life of the sheets as measured by the manber of times laturdered is wiven in table 24 . The six of each mate used for testing are not included. When, in the judrment of the workers, the sheets were too weak to darm or patch, they were remored from service. Since this personal element was involved. the distribution of the time of first break was aloo stadied and is reported in table 94 . This first break may have been due to acedent as well as aetual wear. However, a stady of the life of the sheets and the time of first break shows that the Midding cotton wore slightly better than Good Middling and both of these outlasted the Strict Good Ordinary cotton.

A summary of the record elarts showing the location and types of breaks inclieates that the maximun wear oremered in the B section and at the selvages for all three rrades. The majority of beaks were due to the failure of the filling yarms. Since the sheets were put through the mangele crosswise, creases resulted parallel to the selrages. This weakened the material so that in most cases the selvages were removed eventually and the sheets hemmed. In some instances breates even ocerred along these hems.
The values for the fluidity test, which is a mesisure of deterioration jn cotton, are given in table of for the theer shertings. The resalts show that initially the (arocl Middling and Middling cottoms are of the same order but that the Strict Geod Ordinary is weaker. In the case of all threr of the seloeted cottons there is a significant increase in fluidity with service. The appreciable rise in this fumetity after the firs wash may be attoibutest to partial removal of stareh and other sizing materials. The ralues for the Strict (kood Ordinary cotton indicate that the rariation between sheets may be greater than the amonnt of temdering resilting from 10 washes.
Flow-pressare relationships for the erprammonium solutions of the three sheetings are illustrated in figure 1 i where average rates of flow for the four sections are plottect. The slopes of the lines increase
with fluidity, since rate of flow is used as the ordinate. 'The lines of least slope in each set of diagrams represent the material after one wash; the lines of steeper slope, the material at intervals during the period of service. The stecpest line for the Good Middling and Midding groups gives the flow-pressure relationship for the materials lamdered 2.5 times, and that for the Strict Good Ordinary, atter 900 washes. The latter is steeper than the two former, showing that the Strict Good Ordinary cotton is more temiered at the end of 200 washes than are the other cottons at the end of 220 . Two hundred washings for Strict Good Ordinary and 225 for the other two sheetings are within the range of removal from service, as shown by table 4 .

Table 26.-Fluidith menaurements of zarious sections of shects made from the 3 selected cottons and temored from wercice at intereals during their mear life

[^17]The yied value, as given by the interept on the pressure axis is an inder to the abormality of a solution. This valte becomes smaller as the fabric of each grade becomes more tendered. Thas, with increasingly severe deteriomation of the cotoh. the cupammoniun stolutions apporach the normal behavior of viseous liquits. The yied ratue also deerembes aceording to the grade of cottom in the order Good Middling. Midding, and Strict Goul Ordinary. During approximately the hast third of the wear life the yield value is zero.

The fluidity relationship by grade is also illustrated graphically in figure 18. where the average of the four sections is plotted against the number of times handered. This figure shows that throughout

PRESSUEE (GRAVS PER SQUARE CENTIMETER)

 times laundered.
the period of observation the fluidity watse are higher for sheatings made of Strict Good Ordinary cotton than for those made of the other two cottons. Midding and Good Middling cotton are of the same order.
The fluidity measurements recorded in talle 26 for each of the three grades of cotton are plotted by sections of the sheet in figure 19. The order of increasing deterioration of the sections for each

grade is I), C, A, and B. This relationship is shown more clearly In figure 20 , where average values of the thre cottons are plotted. The greatest difference exists betwcen sections A and B . Section D is superior to section C, which is only slighty superier to section A.

Since section B received the mest severe wear, and section D the least, the difference between their flaidity values gives some indication of the wear factor by itself. This diflerence averages 9 percent of the total rise in fluidity. It would, of course, be greater it section D had not been worm at all, and much greater if the ratio of the
number of launderings to the number of nights used were changed from 1:1 to 1:7 to conform to usual home practice. This is contrary to the opinion expressed in the report of Millard's work (1) that the wear factor is negligible in sheets used in hospitals.

Deterioration as measured by fluidity appears to be more rapid in the last half of the wear life than in the first half. This is illustrated clearly in figure 20.

In figure 21 the filuidity values are plotted against loss in warpbreaking strength. The graph shows the existence of a linear rela-
tionship between these two quantities. This is also the finding when fluidity measurements are plotted against loss in breaking strength of the filling. Clibbens and Ridge (16), who progressively modified cotton yarns by the action of oxidizing agents and acids. found a similar correlation between fluidity and tensile strength.

 sheptings handeref morious nombirs of theng. Thu malue for ench section the average for sheetings made of the thres sottons.

The copper numbers for all three cottons are given in table 27. They aiso increase steadily, with service. Since copper t.umbers measure chemical deterioration, it is evident that wear produces a progressive chemical deterioration. Again it is apparent that Strict Good Ordinary cotton showed slightly more degradation before it was laundered and at the end of 200 washings than did the other cottons at the end of 225 washings. However. during the major
part of its wear life the Good Middling cont ined more oxidized cellulose than either of the other cottons.
In figure 22 the values for copper numbers given in table 27 are plotted by sheet sections. The degree of chemical degradation of

 were made from the 1 hree seleeted cothons and given varigus andounts of wear.
all of the fabrics increases in the order, sections D, C, A, and B. This relationship, which is the same as that obtained with the fluidity mensurements, is more apparent when the average values of the three grades are plotted, us in figure 23. The incteased deterioration of \mathcal{B} over that of the other three sections is more evident from copper
numbers than from fluidity results. The areage differene in copper numbers between B and D anounts to $91 / 2$ percent of the total. rise in this value, showing again that wear alone is significant. For both fluidity and copper momber this percentage difference decreases in the order (tood Siadding. Midding and Strict (ioond Ordinary.
 xelected coftons ond ronurved from service at inferents daring their acedr life

Cinde of cotion

${ }^{1}$ A verage of 2 sheets.
a The resulis of ald the themiotal and physical tests made on the shepet removed for (esting at this geriod showed that the sample diti not conform to the general trentd for the erule.

When copper numbers for each grade of cotton are photed arainst loss in breaking strength of the warp. the relationslip is approximately linear, as in the correlation of fluidity measurements and breaking strengths given in figure 21. Again, when fluidity values. are plotted against copper numbers an apmoach to a linear relation is apparent over the range studied. For all three grades. at any test period, the difference (expressed in percent) in the copper numbers of the laundered and minaundered materials was about four times the differener in the fluidity results.
The methylene thac absorption values (table 28 and fig. 44) show that absorption increases prorressively with wear. [nereased absorption indieates chemical deterionation. The absorption is greater for the Strict Good Ordinaty cotton after 200 washes than for the other grades after $\mathfrak{z z} 2$ washes. However. for the major part of the wear life, the order of increasing absomption is Strict Good Oedinary, Middling. and Good Middling. These findings are similar to those obtained with the copper number test.

 fumbers of thafs. Ilte valar far each serthon Is the average of that for shectings made of tise three cottons.
 sothons, tested after repedfed landerings amd weel

A verage of 2 sheots.

- The resalts of all the chemital amb physikal tasts mate on the sheme romosed for testing at this period showed that the sumple did not conform to the general trent for the grakle.

Increases in methylene blue absorption were obtained in this study as a result of wear, while in the ironing project the absorption was found to decrease as the temperature rose. At the higher temperatures, however, the rate of this decrease became smaller and the absorption tended toward a limiting value. Barr and Hadfirlkt (\%), who exposed cotton falurics to the action of sunlight, fouml that with exposure the methylene bhue absorption decreased somewhat at first

 ant
and then began to rise. Thas it is obvous that methylene blue absorption is not always a reliable quantitative test for the early stages of oxidation. Taken together with eopper number, however, it affords diagnosis of the type of degradation that hats occured.

Birtwell, Chbbens, and Ridge ($\%$) differentiate between two types of " oxycellulose", one characterized by a large increase in methylene blue absorption and a relatively small increase in copper number with progressive modification, and the other, the reducing type, by the reverse properties. They obtained the first type by treating
cotton with alkali hypobromite. The present study shows that wear and laundering also profuce this type of oxidation product since rapid increases in methylene blue absorption and small increases in copper numbers were observed.

CONCLUSIONS

Sheet: composed of Ameriean upland colton selected to represent the Good Middling, Middling, and Strict Good Ordinary grades were subjected to controled wear and hambering. The chenicat and physiad.claracteristics of the shets were determined at intervals thing their wear life.

The physical tests indicate that the sheetings of strict Goor? Ordinary colton were weaker initially and throughout their wear Iife than those made of Middling and Good Middling cotton and were slightly more deterionated at the end of 200 washings than were the others at the end of 225 washings.

As measured by copper nubber and methylene blue absorption determinations, the culhiose of the strict Good Ordinary cotton showed less degradation thronghont the major part of the wear life of the sherets than did the sellalose of the Midaling and Cood Mithding cotton. However, at 200 washings, when the sheets of Strict Goox Ordinary cotton were wom out the celluke was slightly more deteriorated than was that of the other two coltons at the end of their service after gen wathings.

Both chemical and physical tests showed that the maximum wear on the whets oceurred in the section oreupied by the shoulders. There wats mo inereased wear on the nidde fold.

Thre and one hall yenrs storage cansed no deterioration in unused sheets.
The type of oxidation product characterized by greatly increased aflinty for methylene blue was formed as a result of wear and hundering.

EFPECTS OF IRONING TEMPERATURES YPON THE FABRICS ${ }^{\circ}$

As part of a staly of the reation of varions grabes and varietios: of colton to wear and handering, data are being accumulated by the Burean of Jome Eesomiss on the physical and chemical changes whel take place during ironing in tabrics woren of known grades of cotton. Such infomation assists in erabating these grades in terms of the asefulmess of the finished fabrie and alse in formutating recommendations for lamdering procelures. Methods of analysis sensitive to small amomens of damage have been used. as well as strength tests which menture nowe obvious deterioration. This is partienarly desirable as the repated use of high temperatures just below those giving changed moasurements for laraking strength may result in an unexpertedy shorter wear life for the fabric.
Experiments in whieh cotton has been suldjected to moderate heat over protongen periods of time have been described by such ob-

[^18] (30), Bain (6), Mollering (年). Tiltman and Portitt (50), Akahira (2), Patel (46), and Rimsbottom (47). The results of these and similar studies are not applicable to ordinary ironing procedures where higher temperatures are applied to only one side of a fabric for a very short time. Even in the reports of ironing stafies from which some recommendations have been made to the mondry trade, there hat been no indication of work on known graders of cotton ander controlled conditions of pressure and moisture. In all cases srorch was detected merely by color change visible to the eye under orlinary lighting conditions; and breaking strength appears to be the only measire recorded of deterioration in the ironed cotton.

Some work with hand irons has been described by Fort (19), Knecht and Muller ((3)), and Gimore (, 33). Sinee the term scorcly has been defined so qualitatively in the published reports of these observers, it is difficult to compare their results. Fort, as well as Knedt and Muher, made comparative temperature observations by means of a the moneter inserted in the iron from the top. Their reports are vague as to the inoming combitions when the danger point for cotton was reached. Gimore, who worked with an efectrically hanted hand iron, states that there was visible yelowing on bleached cotton materials without accompanying loss in breaking strength. However. (layton ($13,2,2$) who subjected such fabrics to a heating plate at varions temperatures reports that he obtained a loss in tensile strength at temperatures far below those causing visibie seorch. This apparent contradiction may be attributed to differences in moisture combent aceording to the experimental results of Knecht amt Muller ($\beta \cdot \mu$), or it may be due to difference in the time of contact with the heated surface. In Gilmore's work the time of contact was is secomk and in Clayton's 30 seconds.

In the present investigation the tabrics used were mate under experimentally controlled conditions from selected cottons representative of known grates. They were ironed undar controlled conditions of inoisture, pressure, and temperatare with a houshond ironer (fig. 25), in which a padded roll turns against a beated metallic. shos. With the partial spectrophotometric method used for wtecting color change itr the ironed materials, it was jossible to mote thensurable effects for ironing temperatures considerably lower than those at which there was visible yellowing in ordinary daylight. Tests were made on the ironed cotton samples not only for loseses in making sf moneth hat also for changes in the chemical natare of the "loth.

ANALYSIS OF DESIZED SHEETINGS

The preparation and construction of the materials used in this staly are leseribed on page 3 and the results of the wearing tests to which the finished sheetings were subjected on page 29 . They were wowen of Good Middling, Middling, and Stret (rood Ordinary cotton respectively. The finishing process included a sodia kier-boil and chemicking with a one fouth of 1 peremt araiable chlorine solution.

[^19]Ironing studies were made on the new sheetings and also on used ones removed from service at various intervals cluring their wear life. Before being subnitted to the heat tests, the new sheets which had been treated in the finishing plant with a mixture of corn starch and a saponified tallow softening material, were desized as follows: The fabric was given a prelminary soaking and rinsing in water at 90° to $100^{\circ} \mathrm{F}$. It was then washed in a solution of neutal soap in the temperatare range 140° to 150° and rinsed in hot distilled water until the pH of the rinse water was the same as that of the distilled water used. This was followed by two separate enzymic treatments under controlled temperature conditions with thorough rinsing atter

Fucut $\because 3 .-$ Expurimental ironng equipment.
each tratment. The material was finally washed again and rinsed until the pHe of the wanh ligater was the same as that of the distilled water.
Ioss in weight due to this desizing was deternined by weighing fringed and thomourhy conditioned samples under standard atmospherge conditions (62 pereent reative hmmidity and $70^{\circ} \mathrm{F}$.). This loss ranged from 4.2 to 4.8 precent for all thre sheetings. The fat and wax content of the desized fabries. as determined by extaction with earben tetachloride actording to the genernl procedure of Clithord. Hirambotham, and Farmer ($/ 7$). Varied from 0.35 to 0.42 percent. 'Tests for chorides and sulphates rave nemative resalts. 'These tests were mada because such sats wouk prohare abmormal tembering of the cotton numer the inforence of heat.

The weight per sutare yard, hiokness (as measured with a micrometer thickness gage expeting at constant pressura). hat threat count of the new dewizd sheothrs ate given in table 29.
 the s scherted cottons

Crade of cothom	Weizht	Thickness	Threat count	
			W'ars	Filliys
	Ontees per sflare yfrd			
Good Heddling (No. 3)....	4.1-1.2	$0.0113-0.0123$	73	
Strict Cood Ordinary (No , 8)	$4.0-1.9$ $3.5-1.19$. $01.10-0120$	73	65

IRONING EGLIPMENT AND PROCEDURE

An esperially constructed househohi iromer having a roll 26 inches long and i inches in dianeter was used for applying heat to the fabrics. In order to hold the high temperatures desifed, an 1, soowatt heating element was provided in the shoe. This element, of the flat ribbon type, was well embedded in a composition insulating mat terial and whet placed in position next to the metallic matss of the shoe was further insialated from the rear frame by layers of abbestos. A sheet of copper about 23 inches long was placed between the insulated heating element and the nutal mass of the shoe to serve as an equalizer of temperature over the thost used area of the shoe. By means of a variable resistane phaced in the heating cireuit, it was possible to compensate for changes, ju the line voltage as well as for cooling eflects produced by the fillorics while being ironed.
The temperature of the hented shoe was determined from potentiometric readings of the electromative force genemated when the themocomple junction with its leads was phaced in the metal just below the ironing surface. Preliminary measurements hat been made to determine the necessary depth of immersion of the thernoelement in the iron mats of the shere. ${ }^{\text {a }}$
All thernocouphes thent in this work were mate from no. $30 \mathrm{~B} . \& \mathrm{~S}$. gage chromel and constantan wires which had been enameled and then womed with asbestos. On aceromi of the necersary forward and backward motion of the shoe in starting or stopping, it seemed alvisable to use rather sturty materials. As has been ronfirmed recently by Kraty and Broderick ($\cdot 4$) : the chromei-constantau conbination also gave the advantage of a comparatively high elertromotive liowe per degree of temperature change. Eat he the mocouple was calibrated by the raites states Burean of Standards, but ne apprectable differene was fommb.

Preliminary themocomple membements taken for a distance of 1.) inches along the central portion of the eb-inch shoe gave pratetically no variation over that distame. Accordingly, for the ironing of samples 1 s inches wide, it was only necessary to make temperature observations in the midde portion of the surface in contact with the sample. There was then no danger of short circuits from thermocouples placed at various positions in the metal. The total ironing surface of the shor momotel to approximately $1+40$ spure inches.

[^20]'The revolving roll of the ironer wats well padidel with two layers of 登-inch knit cotton padding and two layers of napped, doniblefaced cotton felt. Over this, covers of preshrum mushin were useal. These were changed often to aroid possible contamination of the experimental samples from any oxidized cellabose which might be formed on the covers with repeated use. The palding was flutfed up and aivel often so as to prevent uneven packing on the roll.
Measurements upon the compressed springs at the back of the shoo indiented an arriage pressure between thie padded roh and the heated shoe of $11 / 4$ to $11 / 2$ pounds per square inch. This same pressure setting was maintained throughout the stuty.

Preparatory to ironing, sheeting samples 19 by 10 inches were conditioned at 65 percent relative humidity and $70^{\circ} \mathrm{F}$. for 6 loors, a length of time sufficient according to the results deseribed by sommer (4). In order to estimate the moisture content, weighings were made of representative conditioned samples before and after deying to constant weight at $105^{\circ} \mathrm{C}$. The values thus obtaine for moisture content are: Good. Misdling, 6.22 to 6.25 percent; Middingr, 6.18 to (i.32 percent; Strict Good Ordinary, 6.34 to 6.45 percent.

In order to keep the moisture content constant before ironing. each conditioned sample was wound on a moisture-proof roll between two similar pieces of conditioned cloth. The roll was then wrupped in moistne-proof material and placed in a covered container which had been standing open in the conditioning room. Weighings of samples which had been wrapped as deseribed showed the moisture content to be practically unchanged even after the rolls had been removed from the conditioning rom for 1 week. This finding confirms the experience of Guest and Potsdamer (:37) in their work on falmice conditioning.
Each sample wats run through the ironer once. The entire time requived for any part of a given sample to pass the heated metalic shoe was ahout $21 / 2$ secomds.

The stirface of the roll just before making contact with the heated metal was 38° to 40° (. for the major portion of the work. However, some obereations were also recorded when the surface of the roll hath a temperature range of $12 f^{\circ}$ to 130°. In the conrse of honserhold ironing. the roll surface sometimes rises to these temperatures. due to the turning of the roll against the heated shoe when no artieles are being paswed through the ironer. In order to estimate the approximate temperature of the roll surface, the thermo element. covered with a beat-retaining pad, was placed in position on a thin copper sheet which comid be easily bent to make close contact with the roll. (hhecks madd with this arrangenent under known conditions shawe it to be saticiently accurate for this parpore.

MEASL「REAENTS OF DETERIORATION

Menampoments wire male pipon the ironed samples to defect changes in breaking strength. in surface color: and in the ehemical natire of the cloth. The same tests were made on undamaged control samples of the smme warp and the same filling taken from the imFordiate vidjuity of the samples on which measturements were made. For the tesults recorded in this report, the values oltatned from
the control samples from any one grade of sheeting were averaged, and the test results expressed with reference to the average control value for the type of sheeting involved. The lowest ironing temperature tabulated is $145^{\circ} \mathrm{C}$. since preliminary tests showed that the samples ironed at that temperature gave the same results as mironed samples.

bBEAKtNe sthengoty

Strips 6 inches long and 1 inch wide were used for the tensilestrength measurements, which were obtained ander stantard conditions of humidity and temperature with a Scott tester having a 3 -inch back and front jaw and a distance between the top and bottom jaws of 3 inches. The rate of separation of the jaws was 12 inches per minute.

surrice mbrimgance

Tests for changes in color were made by means of a partial spectrophotometric methol described by Appel (1). The intensity of light reffected by the samples was measured with reference to a standard magnesium oxide surface for the following range of wave lengths: $703,651,578,546.1,501,435.8$, and 405 millimicrons. The meastrements of the light reflection in the violet range (mercury lines 435.8 and 405 milfinicrons) were the most effective in detecting slight surface changes due to ironing. and it was possible to distinguish the damaged from the undamaged samples by observations for wave length 435.8 millimicrons.

The general arrangement of the apparatus and the position of the sample in its rotary holder is shown in figure 26. ${ }^{19}$ The test sample and the standard white surface are mounted in interchangeable positions on the sliding platform. For an observation this is moved back so that the sample and standard are directly under the source of light. The 220 -volt mercury are lamp, as well as the 1,000 -watt tungsten filament lamp, are mounted in the sliding carriage, which may be shifted to the right or left, according to the illumination desired for the sample. Readings are obtained with the Martens photometer. which is fixed in position so that the line of vision is perpendicular to the reflecting surface moderneath. A more detailed description of this apparatus has been published by Appel (4).

FLUIDYET in coldrammonita boention

Fluidicy (viscosity) tests were found to be a satisfactory means of measuring a tendered condition in ironed samples. These tests depend upon the fact that a cuprammonium hydroxide solution of the damaged cotem flows thromgin a capillary lube more rapidy than does a similar solution of the modamared cloth. The general method of observation followed that of Hersehel and Bulkley (is8), in which the time of fow for sucessive 0 -ec portions is ohtained. Figure 27 illastrates the partioniar arrangement of the fludity tubes issed in this laboratory. The constant temperature bath used accommodates 4 tubes, allowing 3 to come to the required temperature ($25^{\circ} \mathrm{C}$.) while measurements are being mate on the forth. The average

[^21]diameter of each capilhary tube was obtained from flow tests with oils, the viscosities of which had been determined by the United States Bureau of Standards.

While the cuprammonimm solution used for these fludity measurements was of the same general type employed by Clibbens and

Figent $20 .-1$ dinatas lot the measurement of hriat reflectance.
Geake (15) modifications were made in its analysis (11, 12). A solution containing 1.5 grams of copper, 200 grams of ammonia, and less than 0.5 gram of nitrite per liter was carefully prepared. As it was necessary during prepuration to protect the solution from both heat and light, ice and a covering impervious to light were placed around the tube containing the electrolytically prepared copper and
the concentrated ammonium hydroxide to which 10 grams of sucrose per liter had been added. Purified air was bubbled through this mixture until the desired concentration of copper was reached. After the final solution had been analyzed and diluted to the proper concentration of copper and anmonia, it was stored in an atmosphere of

Figurd 27.-Viscometer arranuement: A. Viscometer th piass facket: B, air outlet tuhe; O, phot used for welght; D, axis leading to stirres: E, capillary tabe fu position for nogervation; F, pubber connection ; O, viscometer tabe grabunte ia cuble centimetere.
nitrogen in a cool, dark jlace. As this solution decomposes under certain conditions within upproximately 1 month, new solutions were made op from time to tine.

The fabric test samples for the flaidity measurements were finely divided in a nonheating mill, which had a cutting action and was equipped with 1 -millimeter openings through which the disinte-
grated fabric passed. Solution was also facilitated by the use of steel cylinder stirrers. Breakage of viscometers was avoided when the stirrers were fitted with spiral sieel springs at each end as recommended by Neale and Giringfellow (.if). After the finely divided cotton was thoroughly conditioned under: standard procedure, sufficient amounts were weighed out to make (bis-pereent solntions of this cotton in the fluidity talus. These tabes were then filled with cuprammonium, slip, eed into black edoth jackets and rotated ovemight on a special visensity wherl. This wherl. mate of solid comporition boam, has four thmes the earacity of the bicycle wheel used by Chbbers and Geake ($1 / \mathrm{i}$). It is equipped on both sides with metal fasteners into which the tubes ran be pressed easily. This elmantues the loss of thme amd the diffenty which would be incolved in trinding the tubes to the spokes of the bicyele wheel. When the cotton was farally dissolved in the eaprammomium, the solution was ready to be run through the capillaries of the fluidity tubes.

The fluidity results recorded in table 30 have been caleulated from the formala $F=\frac{q}{C(P-p)}$, where F is the findity in reciprocal poises, (l is an instrumental constant, q is the rate of flow in cubie centimeters prer weond, and the quantity, $\left(L^{\prime}-p\right)$, the average pressure cansing fow (grams per square eentmeter). (Comparison of the cotton solutions vith a true risoous liguid showed them to fee for all practical parposes withm the range for which the flow may be expressed in the form of flublity as calculated by the above fommata ($/ 5$). The instrumental constant $($ is define in centi-meter-gran-second units by the quantity $\begin{gathered}\pi g d^{*} \\ 128 L\end{gathered}$, where g is the acceleration of mravity. d is the inner diameter of the capillary tube, and L is the length. In the present work the values d and L were 0.1136 centimeters and 3.23 centimeters. respectively. Kinetic eneroy corrections were for the most part of no signifiance for meatmemonts upon the materials used.

The rubio $\frac{q}{1-p}$ was obtained from flow-presware graphe such as are shown in figure 28, where the orfinates reperent the rate of flow \% and the aborissate the correspending value of the pressure head, P. The yieh wathe. p, is given by the distance from the origin to the intersection of the stmight line graph with the presure axis. The method of Forsehed ame bubley (3S) was used in determining the avenare pressure heads.
conlear stambik
Determinations of copper number and of methylene blue absorption gave additional information both as to the extent and type of the degradation products formed in the ironing of the cotton materials. A method of determining the copper number of cotton and its use as a measure of the deterionation of this liber hats been discussed by Elmquist (18). In this study, a smple of the fabric weighing 1.0 grams was prepared in the same way ontlined in that paper. However, in order to insure results that would be readily reproducible from day to day, the finely divided samples were treated with

Braindys solution instead of Fehlingr＇s solution（10）．Each of these samples，which had been phaced in Erfemeyer flasks fitted with Bunsen valve stoppers，was heated for ${ }^{3}$ hours in an oil bath thermo－ statically controlled at 100°（ ．The copper number，as reported． is the mimber of grams of copper retuecel from an alkatine solution of cmpric sulalate by 100 grams of dry cotton．

Crade of coltor	Trmper 1 nhare of 1 roming －hatate i	Flumdity	comper number	Acthys－ ene blue absars โin	fellete ancer rela－ lwe to आақпесі－ um oxitle （wase lentith． 435i．6		Fillims
Fimod Mandiug（Nin，3\％．．	${ }^{\circ} \mathrm{C}$ ：	Ractims． nof phisws：					
	14.	13 sm	0． 122 ti	1π			foturnd
	293	13，3s	14，	17	．+12 ．	fi． 0	＋6．
		13.24 ，	5	1． 11 ：	$\times 32$	fi． 0	12.0
	等等：	1337	＋3）；	－	95	6i． 0	420
	管1	13．4＇	析	1.73	520	6i． 0.	42
	－	13 ma	（1901		504 ：	fil 0	120
	3183	1380.	． 1×1	1．59	如	61.11.	42，
	3.11				－	910	＋2．
	K17	－ 1511	． 5111	$1{ }^{15}$	第。	\cdots	第：
	11.	13.18 F	414	1	xin	\％	3 B
	2lis	13 ！ Na_{1}	141	1 E	S	䂭品	37
	21：	1.18	111	1 \％	A13	行 s	：7
	－	$\begin{array}{lll}11 & 18 \\ 11 & 18 \\ \text { \％}\end{array}$	151	13	4ts）	沄へ1	辰：
	－	＋11	A．14；	1，tim：		水	澵；
	ars		．1．	1.72	\％	5	极
	34	1.78	T2	－	731：		
	3：\％	15%	N	\dagger	ith	191	\％
	117	114	178	1%	A2：	［11）	\％
	21：	11.41	178	17	412	：त110	洷
	－18	11.8	183	$1 \underset{1}{\square}$	4×3	［0） 0 ：	3 O
	等	1.454	8	17		［in） 11 ：	38
	家	11.45	in	13	\％	50） 11	32.
	\％ifis	$1 \cdot \frac{1}{4 i}$	2M1	$1{ }^{1 / 4}$ ：	\％	\％10	31920
	（2\％	16．11	\％at		71	\％	\％
	313	［is 3if	， 51 ；	$18{ }^{1}$	$7{ }_{4}$	4%	具

The methydene bha aborption was determined in a nentral sole－ dion of methylenc hlue bufleded with potassium dibydrogen phos－ phate and soilime hydrosisle．The ironed samples wore cutt as for the copper number and the fluidity measurements：ofherwise the method followed was that of（libbens and Geake（ly）．When the finely diviled cotton had beren thoronghly comdidioneri，e．j－ghan samples were anderd to die－ce portions of the anethylene blue solution in sjeccial tubes．Care was taken to insure thorongh wetting．Ifter standing 18 hours，the solution was separated by contrifuging and
 ronples with two molerales of mathente blte．The absorption of methylene blate in millimols pre 100 rame of dry cotton is calealated from the diflerence of titer of 10 wedore and after immersion of the cotton．

DISCUSSION OF RESULTS

In the interpretation of results oltained in this study, no change was regarded as significant which was less than 1 percent of the value given by the undamaged material. Nll changes in the ironed fabrics were corroborated by repeated tests and the reperesentative results summarized. A general examination of the values shows that a deteriomated combition exists in the test samples at froning temper-

atares considerably lower than those at which a loss in breaking strengell is first evident. There are mo striking differences in the resistanere to beat shown by the three sheetings under the experimental conditions of the present study. While there is some indication that high ironing temperatures bave less defeet on sheeting made from Strict (rool Ordinary wotton, any conchasion in regard to this must be made with some reservation. particulaty sine this material after dewizing was sonewhat lower in weight and thickness than the other two sheetings.
NEW UEGIZED SJEFTYN(SA

Representative test results for the three desizen sheotings ironed on the cooler roll surface are given in table ?0. For the desized materials, before being ironed, there is an increase in breaking strength
and surface reflectance as well as a decrease in copper number and fluidity in the following order: Strict Good Ordinary. Midding. Good Middling. The fluidity ralues and the copper numbers both give slight indication of deterioration in the desized materials ironed at 205° C.. while at $x 1^{\circ}$ ehanges of several percent are moticenble in the fludity values and even larger relative changes in the copper numbers. After the first slight indications of damare the eqper number appars to increase nore papidy than the flamity for samples ironed at the same temperatures. The semsitivenes of the cof-per-mamber determinations to the deteriorated condition in the ironed materials serms to indicate that the moxified cellulose here is entirely of the reducing type. This defluction is further strengthened by the values for the methlene bue aborption whell decrease as the temperatures rise. At the higher temperatares the rate of this decrease becomes smaller and the absorption tembs toward a limiting value. The same reducing type of oxdation produet described here was obtaned by Barr and Hadfeld (δ) when they exposed cotton fabrics to sumlight in the presence of air or oxygeh. Changes of a similar nature due to mind oxidation with chlorine were also described by Birtwell. (libhens, and Ridge (9).

There was momarkd ratiation in the amount of tendering received ly the different whetings is shown by the flow-pressare diagrams of the cuprammoniam solutions of cetton (fig. 2x. A, B, C). These graphs also whow that the vidd value as represented by the intercept on the pressure axis apparenth decreases with the lower grades of cotton. The line ; in earh indididal group was obtained with a soletion of the umbanged material. The faster flow of the solution of dabayon materiat is shown graphomily by the lines of greater stope. Fow both the Midhling and the strict (food Ordinary cotton. He a give the flow-presme relationsiap obtained with a solution of the material iromet at ase (' The data in table 30 whow that 320^{3} is in the temperature range for whed changes in breaking strength were finst evident. Dine a in the sheeting group of (tork Midding cotton represents the flow-presure relation for a solation of material ironed at 333^{2}. It this temperature the lose in the breaking strength of the (ioxd Miduling eothon hedine varied from 11 to 13 perent.

A review of the results shows that the modilied collalose obtained under the conditions of this stuty was always acrompanied by a measurable jos in the surfare reflectane of the fabres for light of wave length 43 . .8 millimicrons. Howerer, sime there are so many factors which may le responsible for surface color change, other tests must be made to determine the natme and extent of dermation. Surface changes, an mensured by the reflectance appeared at iroming tenperatares ans low an $2+20^{\circ}$ to 27° (${ }^{\circ}$.
The cerves in figure 29 alde representative of the reflectance results obtained when the dexiged materials are ironed with the cooter roll. Cure a in each group reperents the results given by the undamaged material. A comparison of the lower carves with this one shows that the greatest relative change in light reflection oecurs in the violet part of the spectrum (4.35 .8 and tom millimicrons).

Curves d and e in each group are the omly ones showing a noticeable change in the red part of the spectrum (651 and 703 millimi-
crons). These are of aperial interest since they were obtaned with samples ironed at temperatures high mough to produce measureable loss in tensile streagth (320° and 334° to 330° (V). For the samples ironed at 303* to 304° no chames in mhative reflechance can be noted
 millimicrons.

 from those of table 30 only in the higher surfere temperature of the moll (120° to $1 ; 0^{\circ}$ ($\%$). ds this is only an owasional condition in the areatre houshod ironing fromedure it seremed unneresary to make extensive ofservations with the hoter moll. 'The results oltained with the three diflement sheetings gave wo conelusions inconsistent with thome abeady dawn from table 30. They sumgest the
same type of attered comblose tharacterizel br increned fladity． higher copper numbers，and lower methylene bur abserption．The first indications of change in any of these three quantifies occurred in the temperature range $2 \because 4^{\circ}$ to $\pm 26^{\circ}$ ．and in genemb，the changes noted appeared at temperatures fully 30 bublow those giving similar resilts with the eooler roll surfore．
 twres om thesized sherthages moth from the is stheted eptlons

Ciratio of colton	ature of trowims Nirface	F＇lardist	tionpier mambiner	Methys－ （4）blite ［i＜и।	Reflect－ tiveit， um oxide ，wate kongh， 1354
（6aral Mkkling（No．3）	${ }^{\circ} \mathrm{C}$	Rrcipra－ cat points 133	（）120	17	（1．） 812
	211	13，3	，128	13	． 4.
		18 3	（H）	1%	，\times ㅈㅏㅢ
	1	13			$\cdots 1$
	－＊	13 做	4， 4		W0\％
				18 sis	7 m
	2090	11．31	43.3	！int	7×5
	5		－111	－	\cdots
	2 m	1.4 澵	． 114	1 -5	－13
	－219	13 m	111	河	Nis
	1 2rs	1．7 $\mathrm{mi}^{\text {in }}$	14	1 if	＋105
Ntriet（inal Orimary（Sto．S）	1 ） 135	1．4． 54	4ini	\％	740
	1.15	t1． 26	13\％	I	632
	25	if x 9	IT．	－	\12
	2\％	14 m	12.3	13	Ta
	品	11 m		\％	5
	23	1：12	Hes	17	
	－203			181	
	－	1，	：11		8
－．．－－．．．．．．．．．	－			－－．－－	．．

Meamements of the riode light（wave length．tons millimierons） reflected from the surfare of the ironed samples indicated a decreased reflectance at $2.20^{\circ} \mathrm{C}$ ．With the coler roll the same relative changes wernerd in the range 240° to 27° ．
Teste for braking ：trengh on sheeting of Ntrict Goof Ordinary cotton gave appoximately a 8 to 10 prem low at 292 ＂（and between 3 and is percent at 285°（ 1 ．These are at heast 30° lower than the temperature griving the same changes with the eooler roll． Similar realts were ohtained with the ofler two cotome．

The diarrans in figure Es．D．pive the flow－pressure petationship for sohutions of ased coteon shectings ironel on the wobler roll surface． The two lower lines．a．a＇were obtaner for shenting ironed at the and of the firat third of tis wear life at temperatames 333^{6} and 145°（．．respectively．The lines．b, b^{\prime} ．repersent fow－presoure relat tions for shereting in the hast thime of its pertod of nes．It is arident that a solution of the more used material shows amaller rehtive change in its flow than does the less wom materinl mater the same range of ironing temperatures．While the sesults illastrated here were obtained with sheetings of Strict（kood Ordinary rotton．the
same changes were obtaned with the Good Middding and the Middling during the last half of their wear life. A comparison of C and D in figure ts shows that the new desized sheeting has approximately the same yield value as the used material at the ond of the first thind of its wear life. but durime the last half of the period of tuse the yield value shifts to zero. This was also the finding with the two shectiuss woven from (ioorl Midelling and Middlines wottom.

The numerical values of the fluatity given by some of the mome won material for the lew and high ironing tomperatures ($45 \overline{5}^{\circ}$ and $3: 33^{\circ}$ (.) were 20.2 and 21.3 , beporively. For the sand temperatare range the copper mambers of this material were 0.son and 0.996. indienting no unnsually lare change. ('ontrary to the usual decrease in methylene blue abverphion ohtained with the newer materials. there was an increase for the more worl shedings. Flawever: at the end of the first thind of its andind life, this material waye only slight inereases in absorption, and in the first ome tenth of its wear life there wats a deridend decrase mber the same ironider conditions. If additional results conlim this chanre to an inerease in methylene bue aborption for worm materials generally under the iufturne of hat. it is possible that absorption measurments on materials heated moder condrolled comelitions wotd be used in develoging a methol to distingusish used cotton from new. The need for such a test has bero stresed by Wima and Domovan (-if) in the cxamination of filling materials owed in leolding and upholstered furniture.
 with the eoble roll at $1+3^{\circ}$ and 333° C. are shown in figure 30 . The

 by new sheeting with appoximately the same ironing temperature. However. after two thiris of its uneful life this material shows a mach erventer relative decrease in meflectance. The same relatively
 ured during the last hird of the period of use regardless of the fact that the weights becrased from :1.7 to 3.3 ounces per equare yard. This same type of surface dange was fonm with all thees sheetings. but the resilts given here were obtained with the sheeting woven from Strict Good Ordibary wition.

In viow of the incremed darkninir of the most wom materiats at high ironing temperatmes. hetrominations were made of the fat content as well as the phe watact of the mironed materials. Even for the shereting in the last periot of its weme life the fat comtent was mat fomed to be essentially different trom that of the new desized materials. The pit of the extred obtained from t-gram samples of both the wom and the na materials immered in 100 ee of builing water for 1 hom acrording to a mothoal described by New (ho) was approximately the same ins bhat of the distibled water uset. An the wom sheeting matrials used in these experinents were thoronghly rinsed in distilled water thefore being ironech. It is of conse pussible that the darkening of the fabries in their more worn state mat be sumewhat malogons to the comblition described by Fort (.00) in combetion with the bat test applied to tentered cotcon. His melhod, however. was developed as a means of detecting oxidn-
tion tendering. which may not be particularly great for materials under normal conditions of use. The yellowing effect upon oxidation products of the reducing type has also been recorded by Birtwell, Clibbens, and Ridge (I).

CONCLUSIONS

Thmer sheetinge mado from selected coltons representative of the
 maty (No, S) grader, respectively. were ironed at known temperatures with a houselahl ironer of the roll type with a pressume between $1 / 1$ and 120 poumds to the splate ind. Wath fibric sample was ernalitioned at 65 perent redative humidity and brought in shiding contact with the heated metallie show for abont 2 the seconds.

The desized materials damaed by ironing were chatacterized by
 berse and comparatisely low methyleme bhe ahsurption as well as by a deremised surface reftectane in the violet part of the :pectrom.

Similar changes were obdained in the three typer of the eting under. the ironing condition deseribed. The Striet Good Ordinary showed a sighty greator resistane to heal than the other two bit the sheeting of this colton was fonnd to be somewhat lower in weight and thicloness after desizing than were the others.
At ironing temperathres abowe 2.2° ('. dhanges were sbserved in all the she tings when the initial surface temperature of the padded roll was 38° to 10°. The first appreciable loss in tensile strength ap-
peared in the range 315° to 320°. Slight indications of chemical deteriontion were obtaned as low as $25^{\circ} 6^{\circ}$ to 255° and changes in surface reflectance first occuryed at $2+5^{\circ}$ to 247°.

When the roil surface attained a temperature from 120° to 130° ('.. indications of deterioration were obtained for ironing temperatares 22° to 30° lower than with the enoler roll. At $上 200^{\circ}$ a decrensed surface reffertance was noted for light in the violet part of the spectrim. and the first indications of chemical degradation ocrurred from $\underline{2}-t^{\circ}$ to $2 \because 6$

In the first thirel of its usefual life the worm sheeting of all there types scorched no more pasily than the new desized material. However, in the lant third of its wear life the worn material was much more easily darkened, as shown by a dereased surface reflectance at the higher temperatures. It also had a hirher metloyeme blae alsorption.
An ironing procedure was developert in this study which involved the contro. mantemance and measurement of the temperatme of the froner the eontrol of the moisture sontent of the fatbic to be irwent. and the reandation of time and pressure fartors. The methods checriberl are applicable to researely on ironing and on temperature fferto in finshing during mannfacture.

SLMMARY

 formian and to furnish a basis for stadying the relation of the gatity of raw wotom to the servere hambering, and ironing properties of falmire manimetured from them, 3 bale of American uplatile eotem
 Midelingr, Midding. and Striet (iers Ordinary yrades. appoximately i ineh in staple lengeth. and similar in chatacter. wew mambforetred into sherefing of a definite construction and sabjeeted to servier and iroming tests. The deneribed eomditions and procedures (moployed were controlled and wei omparable, insofar as passible.

Obremations were made on the bedation of the entons during manfarture and some precise memsurments were obtamen on the fibers in the raw storks and on their intermediate products. yanms, and falnies: certain physial and chemisal analyses were made on the shects as a base of decermining their servienability and their resistane to ironing eonditions. The setting of the problem, the materials ath proweture employed. the results obtained. and the specefie cemdneions drawn are presented in the distime but chencly related parts of the bulletin.
In considering the findings here reported, it should be peinted out
 made in experimental and conmercial manafacture of cottons af diflerent arales. T_{n} eretain instanes, the threr eotems have not given restats: which would be anticipated from their grade desigpations. However. the arable fartors ido mat refer ta fiber properties whid in the finm analysis mast hatedy contrel the spinange behaviar and the yan anil fabia chamateristies. Within any given grade, for instance, these fiber propertios may vary greatly and it is this variability whith mills week to overemite by mixing the stome
from a considerable number of bates. Samples in the form of individual bales taken from cottain grade materies, therwore can give
 associated with grade. It is belicred. nevertheless. that the present results are well worth whike for inclimating something of the range of results to be dotained from the different grades and for orienting the attack in future sindies.

The Gool Mindlinge and Strict (iooll Ordimary cottons furnished waste in quantity considered a rerige for their reppective grades: tho Mideling coton mave somewhat less waste than the arerage of this arade. During the couse of manufature, the length of there from the three eottons did not change appreciably. The number of ends bwown per 100 :pindle per hour inerpabed with dereasitug grade. As a resulf of the finishing procese a reduction of about dit perent oreurred in the width of the sheeting, acempanied by about ia 3 -percent incrense in lengh.

The brilliance of the raw cottons deremand as the grade became Jower and, although the spreat berame smaller after beaching. this relation was evilent for the cottons thronghout their manufacture. In seneral. the spectrophotometric measurenents mate on the fabries
 ubserved between the gray and the bleacheal fabries, as explained. Although the gray fibrics manfactured from the lower grades thowe on the areage a larger mimber of fine particles of foreign matter. the finished fabriss were pratically free of woble extraneons matter.
The yarns made from the (fool Midaling and Midding cottons wre approximately equal in stremeth: those from the strict (hood Ordinary were 10 to 18 percent weaker than those from either of the other two grates. The corrected tensile strenghth of the gray and of the bleached fabrics deceressed as the prade became lower, but the relative strength of the fibric from the Middling cotton was much nearer to that for the Good Middling than to that for the Strict Good Orlinary. The borsting strength of the gray and of the bleached fateries from the Croosl Middling and Midelling cotoons was about erplal and was much higher than that of the corresponding fabries made from the Strict Good Ordinary. Bleaching resulted in a reluction of approximately 33 percent in bursting strengtl for the fabries.
The changes in the physical and chemical characteristics of the sheetings that were marle from these three selected cottons and sabjected to controlled service and lamblering were determined at intervals cluring their wear-life. Tests were made for weight, thread count, thickness, breaking strength. bursting strength, shrinkage, fluidity in cuprammonium solution, copper number, and methylene blue absorption.

As measured by physical tests the sheets of Strict Good Ordinary cotton were weaker initially and throughout their period of wear than those made of Middling and Good Middling eotton. The latter two were of the same order. The sheets woven of Strict Goorl Ordinary were slightly more deteriorated at the end of 200 washes than were the others at the end of 225 . The copper number and methylene blue absorption tests in this study showed that the cellulose
of the Strict Good Ordmary cotton was less degraded during the major part of its wear life than was that of the other two cottons. However, in the last stages of wear it was slightly more deteriorated. The oxidation product formed was chamaterized by greatly increased affinity for methylene blue.

The maximum wear occurred on all of the sheets at the section usually occupied by the shoulders. There was no increased wear on the middile fold and no change in the mused sheets after $31 / 2$ years storage.

The new sheetings made of the selected cottons were desized and ironed under controlled conditions of temperature, time, pressure, and moisture. The ironing procedure was developed with a household ironer of the roll type in which the pressure maintained between the roll and the heated shoe was $1 \frac{1}{4}$ to $11 / 2$ pounds per square inch. The time of sliding contact of the sample with the shoe was abont $21 / 2$ seconds.

When the initial surface temperature of the padded roll was 38° to $40^{\circ} \mathrm{C}$. no changes were produced in the cottons at ironing temperatures below 245°. At the highest ironing temperatures used all desized sheetings showed a lower breaking strength, a decreased surfare reflectance in the violet purt of the spectrum, increased fluidity in cuprammonium solution, higher copper numbers, and a comparatively low methylene blue absorption.

There was some indication of a slightly greater heat resistance for the desized sheeting made from Strict Good Ordinary cotton than for the other two sheetings. Before being damaged by ironing this desized material made from Strict Good Ordinary cotton had lower values for breaking strength and surfare reflectance as well ats higher values for copper number and flaidity than the sheetings from Middling and Goox Midding cotton.

Worn shectings made of the three selected cottons were subjected to the same ironing conditions after different periods of service. During the first third of their tueful life they all showed physieal and chemical changes similar to those obtaned with the new desized materials. However. in the last third of the wear life the worn materials showed ia greater decrease in surface reflectance and a higher methylene blue tabsorption.

LITERATURE CITED

(1) Anonrmots.

192S. RHBATHONS HBPWBEN CABBON, HYDROGEN, AND ONYGBN CONTENTS IN

 Pepers 9 ; [18:]-180, ilus.
(3) Ammenn Sociery for 'Pesting Miterinds.

 Illus.
(4) Apper, w. D.

(5) Aswoctares fou Goyt. Sbaviet.
 Ime, N New York,
(6) Bain, J. W.
1927. the behayotr of celiclose on henitic. Tont. Sor. Chem. Indus. 46:103T-190T.
(7) Barr, G., and Habriedd, I. H.
1927. the natlere of the action of senlight on cotron. lome. Textile Enst. 18: T490-T4 43.
(S) - - and Hadfielb, I. II.
1030. The acton of sunlight on cotton in the pirsence and absence of oxygen. [Gt. Brit.] Dept. Sei. and Indus. Research, Fabrites Corordinathr Researeh (om.. Rpt. 2 : 9\%-112, illus.
(0) Birrwell, C., Chiesens, D. A., and Ribge, B. I?
192.. the chemical analisis of corton-oxycellulose, pabt i. .tour. Textile Inst. 16: T13-T52, illus.
(10) Burros, J. O., ind Resers, I. II.

19:1. The determination of the alpila-celdinose content anid coppar member of baper. Bur. Standarts Jour. Reventh 6: ©03-619, illtis.
(11) Berterworth. E., and Elfan, II. A,
1929. Note on the pertamination of coppra and nutmite in soldtans of ctprammonicm momoxide. Jom. Soc. chem. Indus. 48: 127T-12ST.

1029. a stanhab method for defermaniso the viscosity of celditose in cerrammonicm mymonide. Tudus. and Engin. Chem, Analyt Ed. 1 (1) ; 49-51, illus.
(13) (laytos. if. 1).
1920. the bffer of heat chon clomi. Laubtryowners Natl. Ansoc. Yablowk 1020: 2:2-2:31. [Origimal mot wem.]
(14) Cimbens. 1). A., and Geikr, A.
 methyeleng mub from beffend solethons. Jour. Textite Inst. 17: T125-T144. H14.
(15) - and Grake, λ.
jH2S. The measurement of the firidity of cotton in eqprammonirm sont hon. Jour. Textile Iust. 19: TT7-49i, Has.
(16) ———and Ritabe 13. I'.
1928. the twasie strength and fbemmio or chemicaliy momfien cotTon. Iomr, Textile Inst. 10: T389-3404, fllus.
(ii) 'bifford, P'. H., Higginhotham, La, and Faroher, R. G.
1924. 2he chemical analysis of outhen. thip bempmination of eat, Wax, and resin. Junt Textite Inst. 1\%: Tl20-T13i. illus.
(18) Elemptist; ls.

IOSI. a momfiel memiod for dethrminino the tendering of cotton. Jour. Hone Econ. 23: 6:-66.
(19) Fort M .
 maties or wool and shen. dour. Soc. Dyers ath Colourists 32 : 181-187.
(20)
1932. a ient test applabe to tendered cotmon and linen farrics. Jour. Srk. Dyers and Colourists 48: 94- 96.
(21) Ficrry, M. S.
 hemall counter. Textile World $76: 1163,1171$.
(22) - and Eloar, R.
1928. an andiysis of wide cotton sagetinos. Jour. Home Econ. 20: 429-442.
(23) (illmone, B. H.
1028. sconching temperatures of tenttles, a htide of the factors of intensity and time. Bull. Lammiryownets Natl. Assoc. U.S. and Comala and Amer. Inst. Lanmbering 11 (10):20-22, 24.
(24)

Gintek, A. E., and Rhoises, D.
1031. the puthality or wifte anjo coloned cotion matrifild. Mo. Agr. Expt. Sta. Bull. 300 : S3.
(25) Gbiffitit, M., and Digar, IR.
 Jour. Home Econ, $20: 111-130$, Hilus.
(26) - Scracite T., Berg. Y., and Bbgar, R.
 Irwa Nate Col, Jour. Sci, 3: 215-2020, illus.
(27) Geest, L. S., ahd lotsodamer, L. S.

 (Dem. 19: $13-139$, illus.
(2л) Jonsson, (i, II.
 Asso: U.S. and Cumda and Amer. Inst. Lumdering 13 ($\overline{3}$) : \$-10, illas.
(30) Justin-Mceller, B.

(31) Kerprei, ('. W.

(32) Kisechet It.

 lyers and colourists 30: 190-108.
———and Muler, E. F.
 Jour, Soc, Dyers and Colourists $41:[4 ; 3]-47$.
(34) Kratz, A. P., and Pmobehck. Fi. L.

 ditioning 4: (and-das, illus.
MoCten, I.

 Niti. Latultry Jour. 102 ($\overline{\mathrm{D}}$) : 30-31, illus.
Macmanaid, K. S.

Möldering, 0 . H.
 s,ombstorfe. Laipmiger Momatschr. Textil-Indus. 43: 24!-〔音.
(38) Mrenseat, (oron Company, Inc.
 fhe fendamental ratrachemstics of conom; a mevision and matenshon of "the athas of the menseh coion systean" . . . 42 ple, illus., Batimore.
(39) Neath, S. M., and Smanambiow, W. A.
 moxs in aqugons caratic soba-cpphamonita mydomine. Iour. Textile Inst. 23 : 'IT7T-T1S2, illts.
(40) New, A. A.

(41) Nicreason, in.
1929. a mbthon for dembimining the codob of agrictequbal phodicts.

(42)
1931. a onlorineter fom uble with mise matere. Jour. Ophical Sor. Amer et : (G40-6i2), illus.
(43)
 Amer. 21; (03-650, illus.
(4) OPbiex, R, and Steele, J.
1929. Whetr sherts weal ott. breakage on middie fold bven when Nof pressed-shoulden weak. Textite world 75: 2393, $242 \overline{4}$, illus.
(45) Patheri, A. W.
1921. tail: commerctil clabsification of amertcan cotton, with refbhence to the standamg for frade, conor, and stame E.S. Itent. Agr. Cire. 278,35 phi, illus.
(46) Pater, C. K.

19:S. the infledence of heat on tege afmintt of comton yok dibstuffs. bour, soc. Dyers and Colourists 44: 301-303.
(47) Ramsmottom, I. E. ahia Snoad, A. W.
 liesearch, Fubrics Coordinating Research Comm. lipt. 2: 26-9t,
illos. illus.
(4S) Schizer, I,
 tech. Ztsclar. 37 : $\overline{535}-537$, illus.
(49) Sommbr, H.
 That of texme parbics. Meniand Textile No. 2:016-919, illus.
Titmant, A. H., and Iohary, B. D.
 sthevers of twinoofed corton. India lubber Jour. $76: 245-$ 248. illas.
 Eronomits.
1929. phocgednas of internathonal twinershe cothon sthebabos conpenence of 1939 and thens helatong to the amministbarfon or The rimen states corron muteren and cotron standand acts. UiS.
(52)
 stares corton standards act. U.S.Dent.agr., Bur. Agr. Econ., Sers and Regulat. Ammunc. $12 \overline{2}, 23$ ph.

 matehinls. (alethoms of physical añ chemical tests). T.S. Dept. Com. Bur. Sthadards Cire. 293, 6 pp. (C.S. Gev't Master Specificatiou no. 315a).
(51) Webis. R. W.
1032. the scter-wehi cotron mben miplex sonter and tre besteting
 Testing Materiais Proc. 32 (pt. 2): 764-771, illus.
Wimis, H. H.
3927. andichetheng tests of cotyon of the white grades of the gntumshl btandahids fol: cotton. U.S. Dent. Agr. Bull. 1488, 30 pp. illas.
(50) Whne, A. W., and Ihonovan, I. D.
1932. a afehod misthgulining hetween old and new cotton fibers. Meliand Textile Mo. 4:29S-203.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICUITURE WHEN THIS PUBLICATION WAS LAST PRINTED

Ihis bulletin is a joint contribution from

[^0]:

 Wasblagton, D.C. [Mimeorraphed.]

[^1]: 1033. [In preparation for a miltiaraphord publication,]
 ards Jteserted Soelfon now umber fler lendershdp of R. W. Webl. The yarns and sheethags

 spimning activities.

[^2]: other Inboratortas of the sectlon, aperillealiy to Dorothy Nickerson for brillinnce determinatlons, spectrophotometric mensurempets, and assistance in revising the manascript; to

 manuserfpt.
 See footnote -

[^3]: ${ }^{1}$ Pormpino beater,
 2 2-blade bealer.
 ${ }^{3}$ Frome A was uncd for tho spinning test yuras and approximately half the warp yarns. Frame B was used for the remainder of the warp yarns.
 ' T , m. $=$ twist maltipler.

[^4]: Italla, S.C., for servien rablered in proparing that waps.

[^5]: 1 A veroge for 2 jremesses.
 ${ }^{2}$ A verine for gill hatiks.

 * A verade for hoth monts of 3 antr.

[^6]: 1 Average of 2 smaples.
 Avertuc of 2 Samples rected and weighed immedintely.

[^7]: "The tests were made in the laboratorles of the Division of Cotton Markethy at Washmgion, D.C.

[^8]: ${ }^{10}$ When the balance does not indicate the slar directiy, the yarn size or number may the alenhited from the tormalat:

[^9]: ${ }^{1}$ Approxisuately 2,100 to 2,400 splatle hours involyed in menelr case.

[^10]:

[^11]: I Eneh average represents is observatons.

[^12]:

 [Jnmbinglad master's thesis. vopy on the Dept. Home Deoumiks, Univ. Chtago, Chicugu.]

[^13]:

[^14]:
 Buretu staff, asisted with the chemicha determhations.

[^15]: a A reruge of euntrols for $\$$ losi perfods.

[^16]: 1 Average of if atheets.

[^17]: 1 A vertuge of 2 sheets

[^18]: 20 Gintefu! appredathon is expreshod to homa M. Buchanan, who has given mababie as-

[^19]: $15881^{\circ} \cdot 34-4$

[^20]:

[^21]:

