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This document includes the proofs of Propositions 2 and 3, a corollary, the analysis of the steady 

state, and a sensitivity analysis of the numerical results. The organization generally follows that 

of the article. 

Proof of Proposition 2 

For a particular allocation of the land and taking into account that there is only one technology 

available, we can focus on equation (11) of the paper given by ( )  0,  1, 2,
iu i i ipf c x iτ υ− − + = =  

to determine the change in input as a response to a change in the tax. By the implicit function 

theorem, we obtain that 
  

∂u
∂τ

=
1

pfuu

< 0 . Thus, at each land quality, the employed input is 

decreasing in the input tax. Moreover, the marginal land quality  under the tax is determined 

such that   

εm

pf − cu − I − τu = 0 . Totally differentiating this expression with respect to τ , we 

obtain the change in the extensive margin as a result of a change in the tax. Consequently, an 

increase in the input tax decreases not only the employed input but also the amount of cultivated 

land. Therefore, there exists a unique relationship between the tax and the aggregated emissions, 

  
∂ z
∂τ

= γ(ε)∂u(ε)
∂τ

x(ε)
εm

ε1∫ l(ε)dε − γ(εm )u(εm )x(εm )l(εm )
dεm

dτ
< 0 , 

 that is, an increase in the input tax decreases the aggregated emissions.  

Moreover, let us assume that  The optimal differentiated input tax, 

, is decreasing in land quality, since it is proportional to the pollution coefficient , 

which in turn decreases with 

τ DU (t) > τ *(t,εm
* ).

  τ
*(t,ε*) γ i (ε)

 ε . Thus, for every land quality in production, i.e., mε ε> , the 

spatially uniform input tax will be higher than the optimal spatially differentiated tax. Knowing 

that 0u τ∂ ∂ < , at each land quality the implementation of a spatially uniform input tax would 
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lead to a lower level of input use compared to the socially optimal input use. Consequently, if 

were greater than   , the generated emissions in the presence of a spatially uniform 

tax would be lower than the optimal level of emissions. Mathematically we have 

  τ
DU (t) τ *(t,εm

* )

γ(ε)u
εm

U

ε1∫
  
z DU ≡ DU (ε)xDU (ε)l(ε)dε < z* ≡ γ(ε)u*(ε)x*(ε)

εm
*

ε1∫ l(ε)dε , 

where the superscript DU denotes the corresponding values of the variables in the presence of 

the optimal spatially uniform tax. As this is a contradiction with the assumption that aggregate 

emissions have to be identical for both policies, one can conclude that  has to be smaller 

than 

τ DU (t)

* *( , )mt ε .  τ

Corollary: The value of the function V(z) of problem (2) is equivalent to the sum of the 

Aggregate Net Income of the farmers, ANI(τ ), ( ), and the collected taxes, T τ  where τ indicates a 

technologically and spatially differentiated tax on the variable input u. The intertemporal 

maximization of V(z), with respect to z, or of V ANI( T ((τ ) = τ τ )  with respect to )+ τ  leads to 

the same optimal trajectories of the variables in stage 1 and 2. Hence, the optimization process 

of V can either be formulated as a function of z or as a function of τ.  

Proof of the Corollary 

The equivalence of V(z) and V(τ) =ANI(τ) + T(τ) can be seen by observing that the first-order 

conditions of (3) - (4) and (11) – (12) provide the same optimal values of the variables u(ε) and 

x(ε) granted that the tax τ  leads to the pollution z. Consequently, the necessary condition (5) will 

be also be satisfied. Taking into account that taxes revert to society, the social net benefit of 

farming is given by the aggregate net income of the farmers, ANI, plus the collected taxes, ( )T τ . 

In this way the functions V(z) and ANI(τ) + T(τ) are identical, and its evaluation at the optimal 
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values of the decision variables produces the same values for V(z) and V(τ). In the second stage 

we have to take into account that there is a functional relationship between z and τ as shown in 

the proof of proposition 2. Therefore, V(z) turns into V(z(τ)), and the formulation of the social 

planner’s decision problem in the second stage, problem (6), turns into   

(A1)    ( )*

0( )
( ( )) max exp ( ( ( ))) ( ( )) ,t

t
W t V z t m s t dδ

τ
τ τ

∞ −≡ −∫ t

subject to       0( ) ( ( , )) ( ),     (0) .s t z t s t s sτ ε ζ= − =   

As the first order conditions of problem (A1) coincide with those of (6), we have that 

.    W (z*(t)) =W (τ *(t))

Analysis of the steady state 

For a sustainable environmental policy, the social planner is particularly interested in the 

achievement of a steady state, defined by equations (8) and (9) with 0s ϕ= = . For any initial 

value of s within the neighborhood of s∞  where the superscript ∞ indicates the steady-state 

equilibrium value, it is possible to find a corresponding value of the shadow cost, which assures 

that the optimal environmental abatement policy leads toward the long-run optimum. Assuming 

an interior solution, equation (7) can be solved for ˆ( , )z z sϕ= . By the implicit function theorem 

we obtain   

(A2) 
ˆ ˆ1 0,     0.

zz

z z
V sϕ

∂ ∂
∂

= =
∂

≤  

Substituting into ˆ( , )z z sϕ=  (8) and (9) we obtain  

(A3)  
0

,
ˆ( , ) ,    (0) .
( ) sm

s z s s s s
ϕ δ ζ ϕ

ϕ ζ
= + −

= − =
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A linearization of the canonical system of differential equations around the steady-state 

values of ϕ  and s results in 

(A4 )   .
s

s s s s s
s

ϕ ϕ
ϕ ϕ ϕ ϕ

ϕ

∞

∞

∂ ∂
∂ ∂
∂ ∂
∂ ∂

⎛ ⎞
⎜ ⎟⎛ ⎞−⎛ ⎞ ⎜ ⎟= ⎜ ⎟⎜ ⎟ ⎜ ⎟ −⎝ ⎠ ⎝ ⎠
⎜ ⎟
⎝ ⎠

 

The implicit function theorem is also used to calculate the elements of the Jacobian matrix 

evaluated at the steady-state equilibrium with 0,sϕ = =  leading to 

(A5) 
0 0

.
1 0 0

ss

zz

m
s

J
s s

V s

ϕ ϕδ ζ
ϕ

ζ
ϕ

∂ ∂
∂

⎛ ⎞= + > = − <⎜ ⎟
⎜ ⎟=
⎜ ⎟= < = − ≤⎜

∂
∂

⎟
⎝ ⎠

∂
∂ ∂

 

Thus, the determinant of the Jacobian matrix is negative. Moreover, since the trace of the 

Jacobian matrix is equal to 0,δ > the eigenvalues have opposite signs. Therefore, the steady-state 

equilibrium is locally characterized by a saddle point. The isoclines of the phase diagram in the 

( , )s ϕ  space are given by  

(A6)    0 0    0, 0,| |s
s

d ds s
sds dsϕ

ϕ
ϕ ϕ

ϕ
ϕ ϕ

= == −

∂ ∂
∂ ∂
∂ ∂
∂

> = −

∂

<  

The resulting phase diagram is depicted in the figure A1. It shows that the stable path leading 

to the steady state is upward sloping, while the unstable path is downward sloping and, thus, the 

pollution stock and its shadow cost evolve in the same direction.  
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Figure A1: The Phase diagram in the (s, ϕ ) space. 

 

To find the optimal intertemporal path of  we totally differentiate equation (7) with 

respect to time and obtain 

ˆ( ), z t

(A7)         
ˆ 1 .

zz

dz d
dt V dt

ϕ
=  

Taking into account that  the aggregate emissions and the shadow cost evolve over 

time in opposite directions and therefore the aggregate emissions and the pollution stock also 

evolve in opposite directions. 

0,zzV ≤

Proof of Proposition 3 

The solution of problem (A1) provides the optimal differentiated tax *( , )tτ ε , or the optimal 

static but technologically and spatially differentiated tax ( )SSτ ε . Totally differentiating the 

Hamiltonian, H, associated with problem (A1) with respect to time and using the dynamic 

envelope theorem, we obtain ( )dH dm s s z s
dt ds

ϕ ϕ ζ= − − − − . Making use of equation (8), we get 
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(dH s z
dt

ϕ δ= − + ) . The efficiency losses of a dynamic policy in comparison with a static policy 

can be measured by 
 

dH
dt

−
dH
dt SS

, where the subscript SS indicates the evolution of the 

Hamiltonian in the presence of a static tax. In the case of a static tax, the changes of s and z over 

time will be small, if not even zero, and therefore the losses in efficiency can be related with the 

magnitude of the slope of H with respect to time. In other words when dH
dt

 in absolute terms is 

large, it is important to implement a dynamic policy. As shown in the previous analysis of the 

steady state, s z sζ= −  and  1

zz

z
V

ϕ=  have opposite signs, and therefore the efficiency losses of 

a static policy will be high when s  and z  do not compensate each other. This situation may arise 

as a result of two different circumstances.  

Case 1: 

We find that s z s  is large and ( )(1 1
z s

zz zz

z
V V

ϕ δ ζ= = + −ζ= − )V m  is small in absolute terms, if 

z is large, s is small, 
 
V is large, and  ϕzz  is small. This case may occur if the current stock of 

pollutant is relatively small compared to the long-run equilibrium stock ( s ).  In this situation 

the optimal pollution stock and its shadow cost increase over time and, consequently, the optimal 

spatially and temporally differentiated tax also increases over time. Therefore, the static tax will 

be higher than the initial value of the optimal spatially and temporally differentiated tax. 

< s∞

Case 2: 
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We observe that  s z sζ= −  is small and ( )(1 1
z s

zz zz

z
V V

ϕ δ ζ= = + − )V m  is large if z is small, s 

large, 
 
Vzz  small, and  ϕ  large. Case 2 is opposite to case 1 and characterizes the situation of a 

“restoration policy”;  . It requires that the tax decrease over time as a result of the decrease 

in the stock. Hence, the static tax is lower than the initial value of the optimal dynamic tax.  

s > s∞

In both cases the static tax is in between the initial and the final value of the dynamic tax. 

Therefore, the efficiency losses of a static policy are smaller, the closer the initial value stock of 

the pollutant is to the steady-state value of the stock; vice versa, we obtain the opposite result.  

In both situations, a large   and , and a small decay rate, Vz ms ζ , will make that  and  do 

not compensate each other, contributing to high efficiency losses. 

s z

Sensitivity analysis 

Since the depth of the water table in the west part of San Joaquin Valley is usually between 5 and 

15 feet, we also conducted a sensitivity analysis to evaluate how the initial severity of the 

waterlogging problem affects the efficiency of the second-best policies. Figure A2 shows the 

efficiency loss of the second-best policies for different initial water-storage capacities. The 

efficiency loss of the static but spatially differentiated tax increases with the water-storage 

capacity. This development can be explained by the fact that an initially higher water-storage 

capacity allows extending the duration of agricultural production, which, in turn, amplifies the 

error of a static tax. On the other hand, the efficiency loss of the dynamic but spatially uniform 

policy decreases with an increase in the water-storage capacity. In the case of an early 

intervention, when the initial water-storage capacity is high (25 feet), the dynamic spatially 

uniform policy outranks the static but spatially differentiated policy. Therefore, comparing 

second-best policies, in the case of an early intervention, it is more important to differentiate the 
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tax over time than over space. If the initial water-storage capacity is low (5 feet), the ranking of 

these two policies is reversed, i.e., the static but spatially differentiated policy outranks the 

dynamic spatially uniform policy. In this case, a tax policy that discriminates according to the 

heterogeneity of the land quality will be the preferred second-best policy. This analysis shows 

that: a) for the same level of heterogeneity, the efficiency losses of the different policies depend 

on the severity of the initial environmental problem, and b) the ranking of the instruments can be 

reversed over time. Finally, figure A2 also shows for any initial water storage capacity that the 

efficiency loss of the static and spatially uniform tax is always higher than of any other 

considered policy. 
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Figure A2.  Efficiency loss of the second-best uniform policies as a function of the water-storage 

capacity 
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