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Note: The material contained herein is supplementary to the article named in the title and
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Appendix A
This Claim uses equation (2) and the definition of a competitive equilibrium with no

income flight. For the reader’s convenience, equation (2) and the definition are repeated

here:

(1) α ≤ αI ≡ ρps + w̄ + σpw.

Definition 1 A competitive equilibrium with water trading restrictions σ is characterized by

a service price p∗s and welfare level ū
∗ such that (i) the service good market clears

(4) Gs
p (p

∗
s, w̄) = e0 (p∗s) ū

∗ + ρ [1− αI (p
∗
s)]

and (ii) aggregate income is equal to aggregate expenditures

(5) e (p∗s) ū
∗ = Gs (p∗s, w̄) +Ga (p∗s, σ) + w̄ +WR (ps, σ)

where αI (p
∗
s) ≡ ρp∗s + w̄ + σpw.

Claim 1 The change in the service price and average utility level given a change in water

trading restrictions are given by:

dps
dσ

=
pw (e

0αI − eρ)¡
Gs
pp − e00ū+ ρ2

¢
e

(6)

dū

dσ
=

pwαI

e
> 0.(7)
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Proof. Take the total derivative of expressions (1), (4), and (5) with respect to ps and

σ to get

dαI = ρdps + pwdσ(16)

Gs
ppdps = e00ūdps + e0dū− ρdαI(17)

e0ūdps + edū = Gs
pdps − [1− αI ]dαI + pwdσ.(18)

using π(α)− π(αI) = α− αI . Use equation (4) to simplify expression (18) to

(19) e
dū

dσ
= αIpw,

and substitute equation (16) into expression (17), and rearrange terms to get

(20)
£
Gs
pp − e00ū+ ρ2

¤ dps
dσ

= e0
dū

dσ
− ρpw.

Solving system (19) and (20) yields (6) and (7). Substituting (6) into (16) leads to

dαI

dσ
= pw

ρ [αIe
0/e− ρ] +Gs

pp − e00ū+ ρ2

Gs
pp − e00ū+ ρ2

=
pw
ps

ραIs(ps) + psG
s
pp − pse

00ū
Gs
pp − e00ū+ ρ2

> 0
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Appendix B

Corollary 1 (i) Household service consumption increases as σ increases

dxc

dσ
(·) ≥ 0

(ii) Aggregate service sector profit decreases (increases) as the service price decreases (in-

creases) in σ, with
dGs

dσ
= Gs

p (ps, w̄)
dps
dσ

.

(iii) If the service price is decreasing in σ, then agricultural service income necessarily falls

with increased water trading. If the service price is increasing in σ, then the impact of water

trading on agricultural service income is ambiguous, given by

d

dσ
{ρps [1− αI ]} = ρ

½
dps
dσ

[1− αI ]− ps
dαI

dσ

¾
.

(iv) The rents to each land quality fall (increase) as the service price is increasing (decreasing)

in σ, with
dπ

dσ
= −ρdps

dσ

for all α > αI .

Proof. Point (ii), (iii) and (iv) are derived using the definitions of the corresponding

aggregate revenue functions. For claim (i), As xc (p, ū) = e0 (p) ū, we have

dxc

dσ
= e00 (p) ū

dp

dσ
+ e0 (p)

dū

dσ
.

where e00 < 0, e0 > 0, and
dū

dσ
> 0. Consequently, when the service good price falls,

dxc

dσ
is positive and household service consumption increases. On the other hand, if the service

good price increases, we have

dys

dσ
= Gs

pp (p, w̄)
dp

dσ
> 0.

Since agricultural production falls, the demand for services coming from the agricultural

sector falls. Hence, if aggregate service output increases it must follow that household

service consumption increases. This also tells us when the service price increases, e0 (p) dū
dσ

>

−e00 (p) ū dp
dσ
, i.e., the welfare effects of increased water trading, e0 dū

dσ
, dominate the price effects

−e00ū dp
dσ
.
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Appendix C
We use the following Lemma to prove Claim 2. This Lemma uses the definition of a com-

petitive equilibrium under income flight, repeated here as:

Definition 2 A competitive equilibrium with income flight, water trading restrictions σ, and

open labor markets is characterized by a service price p∗s and welfare level ū
∗
γ such that (i)

the service good market clears

(11) Gs
p (p

∗
s, w̄) = e0 (p∗s) ū

∗
γ (1− γα∗I) + ρ (1− α∗I) ,

and (ii) aggregate expenditure is equal to aggregate income

(12) e (p∗s) ū
∗
γ (1− γα∗I) = Gs (p∗s, w̄) +

Z 1

α∗I

[π(α)− π(α∗I)]dα+ (σpw + w̄) (1− γα∗I)

where α∗I ≡ ρp∗s + w̄ + σpw.

Lemma 1 At a competitive equilibrium with income flight, we have

dps
dσ

=
pw [e

0∆− e (ρ+ e0ūγγ)]¡
Gs
pp − J + ρ2

¢
e− e0Φγρ

(21)

dūγ
dσ

=
pw
©¡
Gs
pp − J + ρ2

¢
∆− γ (ρ+ ūγγe

0) ρ2Φ
ª

(1− γαI)
£¡
Gs
pp − J + ρ2h(αI)

¢
e− e0Φγρ

¤(22)

dαI

dσ
= pw

ρe0(1− γ)αI + eGs
pp − ee00ūγ (1− γαI)¡

Gs
pp − J + ρ2

¢
e− e0Φγρ

> 0,(23)

where

J = e00ūγ (1− γαI)− e0ūγγρ < 0

Φ = eūγ − (w̄ + σpw) > 0

∆ = γΦ+ (1− γ)αI > 0.

and
¡
Gs
pp − J + ρ2

¢
e− e0Φγρ > 0.

Proof. Take the total derivative of (11) with respect to ps, ūγ , and σ to get

Gs
ppdps = e00ūγ (1− γαI) dps − e0ūγγρdps − ρ2dps + e0 (1− γαI) du− e0ūγγpwdσ − ρpwdσ
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or,

(24)
£
Gs
pp − J + ρ2

¤ dps
dσ
− e0 (1− γαI)

du

dσ
= −pw [e0ūγγ + ρ] .

Next, take the total derivative of (12) with respect to ps, ūγ, and σ, and use (11) to get:

e (1− γαI) du− γeūγ [ρdps + pwdσ] = (1− γ)αIpwdσ − γ (w̄ + σpw) [ρdps + pwdσ],

hence

(25) −Φγρdps
dσ

+ e (1− γαI)
du

dσ
= pw∆,

Solving the system (24) and (25) gives (21) and (22). Φ ≥ 0 comes directly from (12),

and implies ∆ > 0. We also have

¡
Gs
pp − J + ρ2

¢
e− e0Φγρ = e

¡
Gs
pp − e00ūγ (1− γαI) + ρ2

¢
+ e0γρ (w̄ + σpw) > 0,

where (23) is deduced from (21) using dαI
dσ
= pw + ρdps

dσ
.

Similarly, Claim 2 uses equation (13) of the original document, repeated here:

(13)
dūγ
dσ

=
(1− γ)αIpw
(1− γαI) e

+ γ
dαI

dσ

h
Gs (p∗, w̄) +

R 1
α∗I
[π (α)− π(α∗I)] dα

i
(1− γαI)

2 e
.

Claim 2 (i) For γ > 0, increased water trading increases the average level of per capita

utility:
dūγ
dσ

> 0.

(ii) With complete income flight, i.e., γ = 1, the service sector price falls:

dps
dσ

¯̄̄̄
γ=1

< 0.

Proof. With complete income flight (i.e., γ = 1) we have

e0∆− e (ρ+ e0ūγγ) = −[e0(w̄ + σpw + eρ] < 0.

Hence, increased water trading always triggers a decrease in the service good price. The fact

that water trading always triggers an increase in the average utility level is deduced from

(13) using dαI
dσ

> 0.

5



Appendix D
Claim 3 uses the service good market equilibrium condition

(14) Gs
p (ps, w̄) = e0 (ps) ū+ ρ [1− αI + βmin {c, αI}] .

Claim 3 In a competitive equilibrium with labor search costs:

(i). When αI < c

dps
dσ

=
pw(1− β) [s (ps) (αI − c)− psρ]

ps
£
Gs
pp − e00 (ps) ū+ (1− β) ρ2

¤
+ (1− β) cρs (ps)

< 0,

dū

dσ
= (1− β)

pwps
e (ps)

(αI − c)
£
Gs
pp − e00 (ps) ū+ (1− β) ρ2

¤
+ (1− β) cρ2

ps
£
Gs
pp − e00 (ps) ū+ (1− β) ρ2

¤
+ (1− β) cρs (ps)

with

(15)
dū

dσ
> 0 iff αI >

c
£
Gs
pp − e00 (ps) ū

¤
Gs
pp − e00 (ps) ū+ (1− β) ρ2

.

(ii). When αI > c, we have

dū

dσ
=

pwps
e (ps)

(αI − c)
£
Gs
pp − e00 (ps) ū+ ρ2

¤
+ (1− β) cρ2

ps
£
Gs
pp − e00 (ps) ū+ ρ2

¤
+ s (ps) (1− β) cρ

> 0,

dps
dσ

=
pw[s(ps)(αI − c)− psρ

2]

ps
£
Gs
pp − e00 (ps) ū+ ρ2

¤
+ s (ps) (1− β) cρ

with
dps
dσ

> 0 iff αI − c > psρ
2/s (ps) .

Proof. First consider the case αI ≤ c. As

WR− SC = −(1− αI)π(αI) + σpw − βαIπ(αI − c)− c(αI − α0)

we have

Ga +WR − SC =

Z 1

αI

[π(α)− π(αI)]dα+ σpw + β

Z αI

0

[π(α)− π(αI − c)]dα− c(αI − α0)

=

Z 1

αI

(α− αI)dα+ σpw + β

Z αI

0

(α− αI + c)dα− c(αI − α0)

The analog to Walras’ Law in Definition 1 is given by

(26) e(p)ū = Gs (ps) + w̄ +Ga +WR− SC.
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Totally differentiating the above expression leads to

e0ūdp+ edū = Gs
pdp− [1− (1− β)(αI − c)](ρdp+ pwdσ) + dσpw.

Using the market clearing condition (14), we get

(27) edū = (1− β)[(αI − c)pwdσ − cρdp].

Differentiating (14) gives

Gs
ppdp = e00dpū+ (1− β)e0/e[(αI − c)pwdσ − cρdp]− ρ(1− β)(ρdp+ pwdσ)

which upon rearranging terms yields

dp

dσ
=

pw(1− β)[s(ps)(αI − c)− psρ]

ps[Gs
pp − e00ū+ (1− β)ρ2] + (1− β)cρs(ps)

< 0

Plugging back into (27) leads to

dū

dσ
= (1− β)

pwps
e(ps)

(αI − c)[Gs
pp − e00ū+ (1− β)ρ2] + (1− β)cρ2

ps[Gs
pp − e00ū+ (1− β)ρ2] + (1− β)cρs(ps)

which gives the result. Consider now the case αI > c. Expanding (26), differentiating and

rearranging terms gives

e(p)ū = Gs (ps) + w̄ − c(αI − α0) +

Z 1

αI

[α− αI]dα+ β

Z αI

αI−c
[α− αI + c]dα+ σpw

or

e0dp+ edū = Gs
pdp− [1− αI + βc+ (1− β)c](ρdp+ pwdσ) + dσpw

Using (14), the above expression simplifies to

(28) edū = (αI − c)pwdσ − c(1− β)ρdp.

Differentiating (14) gives

Gs
ppdp = e00dpū+ e0/e[(αI − c)pwdσ − c(1− β)ρdp]− ρ(ρdp+ pwdσ)

which upon rearranging terms yields

dps
dσ

=
pw[s(p

∗
s)(α

∗
I − c)− p∗sρ

2]

p∗s[Gs
pp − e00(p∗s)ū+ ρ2] + s(p∗s)c(1− β)ρ

.
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Plugging back into (14) leads to

dū

dσ
=

pwp
∗
s

e(p∗s)
(α∗I − c)[Gs

pp − e00(p∗s)ū+ ρ2] + c(1− β)ρ2

p∗s[Gs
pp − e00(p∗s)ū+ ρ2] + s(p∗s)c(1− β)ρ

.

Appendix E
Social Accounting Matrices

We now provide an overview of the procedure used to calibrate the rural economy associ-

ated with the Social Accounting Matrix (SAM) given in Table 1.1 In the following discussion

we refer to this SAM as SAM1. The baseline model assumes there is no water trading, i.e.,

σ = 0. Both SAMs are modified versions of the International Food Policy Research Institute’s

national accounts data for Sweden, 1993.

The conceptual model has three primitives that require calibrating: the service sector

production technology, the agricultural technology, and the utility function. Also required,

is calculation of the threshold value αI .

Consumption

The easiest primitive to calibrate is the utility function. We represent preferences by

the Cobb-Douglas function U (qa, qm, qs) = (qa)
ξa (qm)

ξm (qs)
1−ξa−ξm , where qa, qm, and qs

are the aggregate level of agricultural, composite import, and service good consumption.

Knowing ξa is the share of income spent on the agricultural good, we turn to SAM1 and see

that the value of aggregate consumption is 108536 and the value of agricultural consumption

is 33331.6. Then, ξa =
33331.6
108536

= 0.3071. Similar calculations yield ξm = 27299
108536

= 0.2515,

and 1− ξa − ξm = 0.4414. Given the calibrated consumption shares, one simply derives the

expenditure function

E (pa, pm, ps) u ≡ min
(qa,qm,qs)

©
paqa + pmqm + psqs : u = (qa)

0.3071 (qm)
0.2515 (qs)

0.4414ª ,
and uses Shepard’s lemma to get the aggregate demand functions for agriculture, services,

and the composite import good. As is common with calibration procedures, we set pa =

pm = ps = 1, which implies that the first entry in the “Household” column of SAM1 (27299)

is qa, the quantity of the agricultural good purchased by rural households.

1The rural economy corresponding to the SAM in Table 2 is derived analogously.
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Production

Normalize the labor endowment to unity. Then the wage bill from agriculture and the

service sector are 20992 and 25292 respectively, while commuter income is 14994. Hence,

w̄ = 20992 + 25292 + 14994 = 61277.

The share of labor demanded by the service sector is ld = 25292
w̄

= 0.4127, the share of

labor working in the urban area is ES = 14994
w̄

= 0.2447, and the share of labor working in

agriculture is equal to 1 − 0.4127 − 0.2447 = 0.3426. Then, the share of labor engaged in

non-agricultural production is equal to αI =
25292+14994

w̄
= 0.6574.

Represent the service sector production technology by the Cobb-Douglas function ys =

A (ld)
χK

1−χ
, where K is the stock of sector specific capital, A is a scaling parameter, and

χ is the output elasticity of labor, or equivalently, the cost share of labor in producing

output. Given constant returns to scale, Neoclassical theory tells us the value of service sector

output is equal to the cost of producing that output. Then, by SAM1, χ = 25292
59976

= 0.4217,

K = 34685, and the production technology must satisfy

ys = 59976 = A (0.4127)0.4127 (34685)1−0.4127 ⇒ A = 186.29.

Given the calibrated values of χ and A, the service sector GDP function is given by

G̃s (ps, w̄,K) ≡ max
l

©
ps · 186.29 · l0.4127 (34685)0.5873 − 61277 · l : l ∈ (0, 1)

ª
.

One then applies Hotelling’s lemma to the sectoral GDP function G̃s (ps, w̄,K) , and derives

the service sector’s supply and labor demand functions.

Finally, recall that in the conceptual model, the agricultural GDP function is given by

Ga (ps, σ) ≡
Z 1

αI

[α− (ρps + w̄ + pw)] dα =

Z 1

αI

[α− (ρps + 61277 + pw)] dα.

Consider first, the exogenous parameters ρ and pw. To calibrate these values, note the ob-

served value of service demand, 12071, is equal to ρ (1− αI) , or 12071 = ρ · 0.3426 ⇒ ρ =

35234. Likewise, the observed value of water demand is 5700, hence pw = 5700
0.35

= 16286.

With pa = 1, the integral
R 1
αI
α dα is theoretical model’s level of aggregate agricultural

output. To calibrate the sectoral agricultural production technology we represent the aggre-
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gate agricultural output function by

(29) ya =

Z H

α̃I

Bαdα =

Z H

ρps+w̄+σpw
B

Bαdα.

where the value of best and worst quality land are respectively H and α̃I. To transform (29)

so it is consistent with a labor supply normalized to unity, use the following function:

ya =

Z H/H

α̃I/H

BH2αdα =

Z 1

ρps+w̄+σpw
BH

BH2αdα.

To calibrate agriculture’s cost function we use , where the cost function is given byZ 1

ρ+w̄
BH

[(ρps + w̄ + pw)C] dα

and C is a scaling parameter.

Given pa = ps = 1 and σ = 0, the parameters B,C, and H must satisfy the following

system of equations: R 1
96511
BH

BH2αdα = 45637 (ya)R 1
96511
BH

113153Cdα = 38763 (cost)

96511
BH

= 0.6574, (α∗I)

the solution of which is B = 134065, C = 1.00001, and H = 0.907366.

The above calibrated values are then used to calculate the equilibria defined in Definitions

1 and 2, which replicate the values in SAM1 and SAM2, where SAM2 is the SAM given in

Table 2. Assume all entries are in million US dollar equivalents

Table 1: The Social Accounting Matrix, consumption shares and production cost shares

where s (ps) > ψ (ps)
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1993 Production Activities Commodities Productive Factors
Prod. Activities Manuf Ag Serv Manuf Ag Serv Labor Captial Land Water Household Capital Trade Total Receipts
     Manuf. 0
     Ag 45637 45637
     Serv 59976 59976
Commodities
     Manuf. 27299 27299
     Ag 33331.6 12305 45637
     Serv 12071 47905 59976
Factors
     Labor 20992 25292 14994 61277
     Capital 34685 34685
     Land 6874 6874
     Water 5700 0 5700
Households 61277 34684.5 6874 5700 108536
Capital 0
Trade 27299 27299
Total Expenditures 0 45637 59976 27299 45637 59976 61277 34685 6874 5700 108536 0 27299 482894

Ag Serv Household Expenditure Shares
Labor Share 0.4600 0.4217 Food 0.3071
Capital Share 0.5783 Manuf 0.2515
Land Share 0.1506 Serv 0.4414
Water Share 0.1249
Service share 0.2645

Table 2: The Social Accounting Matrix, consumption shares and production cost shares

where s (ps) < ψ (ps)

SAM 2: s (ps) < ψ (ps)
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