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This appendix reports documentation of our methods and reports summary statistics and results 

from supplementary analyses excluded from the main AJAE paper due to space limitations.  

Summary statistics for the different years and payment quintiles are given in Table A1.  Figures 

A1 and A2 show features of the estimated GAM model reported in the main paper. Tables A2, 

A3, and A4 report results from supplementary analyses. 

We first document some technical details of the generalized additive model (GAM) and 

present figures showing fitted non-parametric components of a key model reported in the main 

paper.  We then report results from a linear model with state fixed effects for comparison to the 

GAM and a series of regional models that show our main finding—that concentration growth has 

occurred much more rapidly in areas with higher per-acre payments—is both extensive and 

robust: we find the relationship both across and within regions and with a set of non-parametric 

control functions that are even more flexible than the pooled model reported in the main paper. 

 

The Generalized Additive Model 

As specified in the main paper, our GAM model is: 

 

(2)   Δci = Xiβ + f(xi,yi) + gc(c0i) + ga(a0i) + gs(s0i) + εi 

 

where Δc is the percent change in concentration, (c1- c0)/ ½(c1 + c0),  f(x,y) is a smooth function of 

zip code centroids (x, y), and gc(c0), ga(a0), and gs(s0) are smooth functions of initial 

concentration (c0), ratio of cropland to zip code area  (a0), and sales-per-acre (s0), respectively.   

These control variables were chosen because they are likely correlated with land quality and 

land-quality is the most plausible source of a spurious correlation between payments and 

concentration growth (land quality is linked to payment levels because of the way agricultural 

program are designed and land quality may also be tied to concentration growth via 

technological or demographic channels).   
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Payment effects are estimated with the parametric component of the model, Xiβ, to 

facilitate ease of interpretation.  The matrix X includes indicator variables detonating zip codes 

with zero payments and each of five payment quintiles, and β is a vector of payment-category 

effects. Although the payment effects are parametric, because we have divided observations into 

six discrete ordered payment groups, the form of the relationship is flexible.  The additive 

separability of the non-parametric partial effects constrains the functional form, but much less 

than a standard linear model.1   

One may think of the spatial surface f(x, y) as ‘smoothed’ location fixed effects.  Using 

state fixed effects rather than the smooth spatial surface creates false discontinuities near state 

borders, which reduces efficiency and may induce bias.  The smooth non-parametric surface 

eliminates these sharp discontinuities.  The smooth functions of the other control variables allow 

for non-linearities and capture effects of high-leverage points (those far from the mean).  

We estimate the smooth functions using “loess”, short for “local polynomial regression,” 

which fits the smooth functions by repeatedly estimating weighted linear regressions using only 

points local to each fitted point. Locations of the fitted points are selected such that divide the 

covariate space into sections with similar numbers of observations using a “k-d tree.”2  Each 

fitted point then is estimated with a separate simple weighted linear regression using observed 

points local to each fitted point.  Among the observed points considered local, the weights are 

higher for observed points near the fitted point as compared to observed points further away.  

This process is repeated for all fitted points.  Points between the fitted points are estimated by 

interpolation of the fitted points.  Loess or any other standard non-parametric procedure (such as 

cubic splines) can by used to estimate each non-parametric component of the model, although 

loess is more robust to outliers due to a re-weighting scheme.  The smooth functions are 

                                                           
1 Two-dimensional smooth functions (like f(x,y) in our model) are now easily estimable with standard non-
parametric techniques, even for large data sets.  This was more difficult with large data sets a decade ago.  Smooth 
functions of three or more dimensions are extremely expensive and will not be feasible for large data sets for many 
years.  High dimensional smooth estimates also require a lot of data to adequately fill the volume of the space. 
2 Loosely speaking, a k-d tree divides the covariate space into sections using quantiles of the covariate joint 
distribution so that roughly equal numbers of observed points will lie in spaces between fitted points.  In multiple 
dimensions, this can be somewhat complicated.  See Cleveland and Grosse (1991). 
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estimated simultaneously with payment effects parameters (β) using a Gauss-Seidel backfitting 

method, as described and implemented by Hastie.  See this reference for more technical details 

about the procedure as originally conceived and Wood (2006) for modern implementation using 

R software.3   

The key modeling decision concerns the share of points considered local to each fitted 

point on the smooth functions.  For the models reported in the main paper, each fitted point on 

the smooth spatial surface was estimated using the nearest 5 percent of zip codes, which is the 

smallest share that was computationally feasible for the two-dimensional spatial surface covering 

all sample zip codes in the U.S.  For consistency, we used the same share for the one-

dimensional concentration function.4  The other key modeling decisions include the number of 

fitted points used to estimate each curve or surface and the kernel used to weight observations 

according to their distance from each fitted point. These decisions generally have little influence 

on results.  For these we used the default values in our software package.5 

With respect to the control variables (location, initial concentration, sales-per-acre, and 

the ratio of cropland are to zip code area) the generalized additive model is very flexible.  A 

potential shortcoming to using such a flexible model is that the many degrees of freedom can 

limit statistical power or prevent identification of the model altogether.  This is not a problem in 

the current application because the sample is large (approximately 21,500 zip codes in each 

panel).  Because the purpose of using non-parametric controls is to check the robustness of our 

estimates, making the controls as flexible as possible lends greater credibility to the estimated 

effects of payments.  Moreover, our focus is on payment effects, not effects of the controls, so 

                                                           
3 Briefly, the backfitting algorithm first fits the parametric components of the model and then uses the residuals to 
estimate the first additively separable non-parametric function; the residuals from non-parametric estimates are then 
used to estimate the second non-parametric function; the parametric components are then re-estimated by 
subtracting the fitted values of the two non-parametric function from the dependent variables; and so on, iterating 
until estimated functions on successive iterations converge. 
4 Depending on the application, many model-selection criteria have been developed to aid model selection, including 
cross-validation and methods based on the Akaike information criterion (AIC) or unbiased risk estimator (UBRE) 
(Hurvich and Simonoff, 1998; Wood, 2004). Our choice of 5% for the single-dimension smoothes appear to over-fit.  
Given the large number of observations and a principal focus on payment effects rather that control effects, the 
resulting loss in degrees of freedom comes at a low cost. 
5 The software package used was the public domain package ‘R’ with the ‘gam’ package by Hastie (see www.r-
project.org). 
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tangible interpretation of the non-parametric components is less important than for the 

parametric components.   

In the main paper we reported estimated payment effects for models relating two 

concentration growth measures (for cropland and farmland) for each 2-year panel and a long-run 

panel examining concentration changes from 1987 to 2002. We also reported summaries of the 

overall fit and statistical significance of each non-parametric function.  Here we present figures 

showing the smooth functions for the long-run analysis of cropland. Figure A1 shows estimates 

of the single dimension functions, gc(c0), ga(a0), and gs(s0), and figure A2 shows a contour plot of 

the smooth function of location, f(x,y).  Figure A1 shows a strong downward slope of g(c0), 

indicating that zip codes with the higher initial concentration generally have less growth in 

concentration.  A logical interpretation of this relationship is regression toward the mean, or 

trend. Particularly at the zip code level, changes in concentration growth are not entirely 

permanent, perhaps reflecting, in part, transitory events or even response errors, so extreme 

values are likely to moderate over time.  The negative relationship is not surprising given the 

large standard deviation of concentration growth rates across zip codes (about 81 and 72 

percentage points for long panels of cropland and farmland concentration growth, respectively).  

Figure A1 also shows the fitted smooth curves of initial crop sales per-acre of cropland (s0) and 

the initial ratio of cropland area to zip code area (a0), which are less statistically significant than 

initial concentration.  Figure A2 displays the contour plot of the fitted spatial surface f(x, y) for 

the long panel of cropland concentration growth. The fitted surface uses between 70.7 and 87.3 

non-parametric degrees of freedom.  In comparison to state fixed effects, which use 48 degrees 

of freedom, the surface may be viewed as somewhat more location specific.   

 

Alternative Model Specifications 

For comparison to the GAM results, tables A2 and A3 report results from linear models 

with state fixed effects.  Specifically, for each panel and concentration measure, the tables report 

estimates of the model: 
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(3)    Δci = Xiβ + bg  log(c0i) + ba log(a0i) + bs log(s0i) + vs +  εi 

 

Where bg, ba, and bs are coefficients on the logs of initial concentration, ratios of cropland area to 

zip code area, and sales-per-acre, vs is the state fixed effect, and ε is the error.  We take logs of 

the control variables due their highly skewed distributions.  The estimated payment effects are 

similar to those estimated by the GAM model, but the goodness of fit (R2) of the models are 

approximately one-third greater in the GAM models. 

 Finally, in Table A4 we report estimated concentration growth, adjusted for controls, for 

GAM models estimated separately for each of the nine USDA-ERS resource regions.  The map 

in figure A3 shows the nine regions.   Because payments per acre can vary markedly between 

regions, we redefine the payment quintiles so they are specific to each region.  That is, in each 

region, each payment quintile includes 20% of the zip codes within that region. Since each GAM 

regression includes only a fraction of the total number of observations, each fitted point in the 

smooth loess-estimated functions uses 15% of the local observations in each region rather than 

5% of all observations as in the pooled model in the main paper.  Thus, despite the higher 

percent of observations used to estimate each fitted point, the number of points used to fit each 

point is smaller for the regional regressions than for the pooled regression, and the overall 

goodness of fit is higher.  Estimates of payment effects are not sensitive to the degree of 

smoothing for shares between 10% and 50%.  For shares less than 10%, estimates sometimes do 

not converge.   

The reported percentages in table A4 give predictions for the area-weighted average 

growth in concentration across all zip codes in each region with all payment levels set the 

quintile delineated by each the row.  The overall estimated payment effects are similar to the 

pooled model.  The estimates also show how concentration growth increases systematically both 

within and between regions, with low per-acre payment areas (e.g., The Fruitful Rim) having 
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generally lower concentration growth rates than high per-acre payment areas (e.g., The 

Heartland). 
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Table A1. Distribution of Zip Codes, Farms, and Land by Payments-Per-Acre Category 
 Payments per Acre of Cropland/Farmland in Beginning Year 
Panel Years No 

Payments Quintile 1 Quintile 2 Quintile 3 Quintile 4 Quintile 5 

Cropland       
1987-1992       
     Payments per acre 0 0.01-5.75 5.76-15.74 15.74-27.26 27.26-41.81 >41.81 
     % of zip codes 9.2 18.2 18.2 18.2 18.2 18.2 
     % of farms 2.3 15.2 21.0 20.8 20.7 20.0 
     % of cropland 0.6 4.9 9.6 21.9 31.0 32.0 
1992-1997       
     Payments per acre 0 0.01-3.27 3.28-7.16 7.17-11.28 11.28-16.97 >16.97 
     % of zip codes 10.5 17.9 17.9 17.9 17.9 17.9 
     % of farms 2.7 18.0 21.4 21.1 20.2 16.5 
     % of cropland 0.6 6.1 12.2 23.4 31.1 26.5 
1997-2002       
     Payments per acre 0 0.01-2.99 3.00-6.82 6.83-10.43 10.44-14.70 >14.70 
     % of zip codes 9.7 18.1 18.1 18.1 18.1 18.1 
     % of farms 2.5 16.7 20.3 21.7 21.7 17.2 
     % of cropland 0.5 5.4 12.5 25.0 31.1 25.5 
Long panel        
     Payments per acre 0 0.01-5.75 5.76-15.74 15.74-27.26 27.26-41.81 >41.81 
     % of zip codes 9.2 18.2 18.2 18.2 18.2 18.2 
     % of farms 2.3 15.2 21.0 20.8 20.7 20.0 
     % of cropland 0.6 4.9 9.6 21.9 31.0 32.0 
       
Farmland       
1987-1992       
     Payments per acre 0 0.01-1.06 1.07-4.18 4.19-10.90 10.91-22.41 >22.41 
     % of zip codes 9.4 18.1 18.1 18.1 18.1 18.1 
     % of farms 2.3 15.8 19.7 20.0 21.1 21.1 
     % of farmland 3.5 21.7 17.7 19.5 20.2 17.4 
1992-1997       
     Payments per acre 0 0.01-0.65 0.66-2.12 2.13-4.87 4.88-9.29 >9.29 
     % of zip codes 10.7 17.9 17.9 17.9 17.9 17.9 
     % of farms 2.8 18.1 20.4 19.5 20.6 18.7 
     % of farmland 2.1 22.6 18.4 18.6 20.0 18.3 
1997-2002       
     Payments per acre 0 0.01-0.58 0.59-1.98 1.99-4.69 4.70-9.11 >9.11 
     % of zip codes 9.8 18.0 18.0 18.0 18.0 18.0 
     % of farms 2.5 16.5 20.2 20.1 21.1 19.7 
     % of farmland 2.7 24.1 17.5 19.4 19.3 17.0 
Long panel        
     Payments per acre 0 0.01-1.06 1.07-4.18 4.19-10.90 10.91-22.41 >22.41 
     % of zip codes 9.4 18.1 18.1 18.1 18.1 18.1 
     % of farms 2.3 15.8 19.7 20.0 21.1 21.1 
     % of farmland 3.5 21.7 17.7 19.5 20.2 17.4 
       

Note: All payments converted to 1997 dollars using the consumer price index. 
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Figure A1. Estimated Non-Parametric Controls for 1987-2002 Change in Cropland Concentration 
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Figure A2.  Estimated Spatial Surface, f(x,y) for pooled model of 1987-2002 Change in Cropland Concentration. 

 
Notes:  White indicates zip codes dropped from the analysis due to missing observations or extreme outliers.  All other variables fixed at population medians.
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Table A2. State Fixed Effects Models for Cropland Concentration Growth 

Model Variable Estimate Std. 
Error 

t 

Payment Quintile #1 0.018 0.016 1.12 
Payment Quintile #2 0.084 0.017 5.10 
Payment Quintile #3 0.187 0.017 10.73 
Payment Quintile #4 0.275 0.018 15.10 
Payment Quintile #5 0.276 0.018 14.97 
Log(1987 Crop 

Sales/Acre) 0.022 0.004 5.85 

Log(1987 Concentration) -0.213 0.005 -46.08 

Panel #1 
 
Dependent 
Variable 

 
% Change in 
Concentration, 
1987 - 1992 

 
R2:   0.115 
R2-Adj: 0.113 

Log(1987 Cropland Area 
/ Zip Code Area) 0.061 0.004 17.14 

Payment Quintile #1 0.022 0.015 1.45 
Payment Quintile #2 0.086 0.016 5.39 
Payment Quintile #3 0.165 0.017 9.89 
Payment Quintile #4 0.212 0.017 12.39 
Payment Quintile #5 0.237 0.017 14.23 
Log(1992 Crop 

Sales/Acre) 0.037 0.004 10.13 

Log(1992 Concentration) -0.194 0.005 -43.03 

Panel #2 
 
Dependent 
Variable 

 
% Change in 
Concentration, 
1992 - 1997 

 
R2:   0.096 
R2-Adj: 0.094 

Log(1992 Cropland Area 
/ Zip Code Area) 0.051 0.004 13.73 

Payment Quintile #1 0.107 0.018 6.05 
Payment Quintile #2 0.169 0.018 9.22 
Payment Quintile #3 0.264 0.019 13.61 
Payment Quintile #4 0.318 0.020 15.86 
Payment Quintile #5 0.250 0.020 12.76 
Log(1997 Crop 

Sales/Acre) 0.042 0.004 10.34 

Log(1997 Concentration -0.210 0.005 -43.66 

Panel #3 
 
Dependent 
Variable 

 
% Change in 
Concentration, 
1997 - 2002 

 
R2:   0.105 
R2-Adj: 0.103 

Log(1997 Cropland Area 
/ Zip Code Area) 0.058 0.004 14.03 

Payment Quintile #1 0.193 0.033 5.89 
Payment Quintile #2 0.239 0.033 7.18 
Payment Quintile #3 0.391 0.034 11.39 
Payment Quintile #4 0.532 0.035 15.16 
Payment Quintile #5 0.569 0.035 16.12 
Log(1987 Crop 

Sales/Acre) 0.053 0.006 8.99 

Log(1987 Concentration) -0.276 0.006 -43.90 

Long Panel 
 
Dependent 
Variable 
 
Sum of % Change 
in Concentration,  
1987 – 1992, 
1992 – 1997, 

  1997 – 2002 
 
R2:   0.146 
R2-Adj: 0.143 

Log(1987 Cropland Area 
/ Zip Code Area) 0.091 0.005 18.87 

Notes:  This table summarizes results from ordinary least squares regressions with state fixed 
effects.  The estimated effects of the payment quintiles are relative to zip codes with no 
payments.   
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Table A3. State Fixed Effects Models for Farmland Concentration Growth 
Model Variable Estimate Std. Error t 

Payment Quintile #1 0.041 0.014 2.85 
Payment Quintile #2 0.036 0.015 2.42 
Payment Quintile #3 0.069 0.016 4.33 
Payment Quintile #4 0.113 0.017 6.69 
Payment Quintile #5 0.163 0.018 8.90 
Log(1987 Crop 

Sales/Acre) 0.005 0.003 1.39 

Log(1987 Concentration) -0.174 0.003 -52.85 

Panel #1 
 
Dependent 
Variable 
 

% Change in 
Farmland 
Concentration, 
1987 – 1992 
 

R2:   0.128 
R2-Adj: 0.126 

Log(1987 Cropland Area 
/ Zip Code Area) 0.001 0.003 0.18 

Payment Quintile #1 0.046 0.014 3.26 
Payment Quintile #2 0.035 0.014 2.48 
Payment Quintile #3 0.099 0.015 6.59 
Payment Quintile #4 0.149 0.016 9.22 
Payment Quintile #5 0.213 0.017 12.58 
Log(1992 Crop 

Sales/Acre) 0.013 0.003 3.91 

Log(1992 Concentration) -0.175 0.003 -51.45 

Panel #2 
 
Dependent 
Variable 

 
% Change in 
Farmland 
Concentration, 
1992 - 1997 

 
R2:   0.133 
R2-Adj: 0.130 

Log(1992 Cropland Area 
/ Zip Code Area) -0.008 0.003 -2.50 

Payment Quintile #1 0.080 0.015 5.17 
Payment Quintile #2 0.057 0.016 3.57 
Payment Quintile #3 0.126 0.017 7.43 
Payment Quintile #4 0.200 0.018 11.03 
Payment Quintile #5 0.266 0.020 13.60 
Log(1997 Crop 

Sales/Acre) -0.002 0.004 -0.52 

Log(1997 Concentration -0.181 0.004 -50.00 

Panel #3 
 
Dependent 
Variable 

 
% Change in 
Farmland 
Concentration, 
1997 – 2002 

 
R2:   0.124 
R2-Adj: 0.121 

Log(1997 Cropland Area 
/ Zip Code Area) -0.006 0.003 -1.89 

Payment Quintile #1 0.186 0.028 6.59 
Payment Quintile #2 0.149 0.029 5.18 
Payment Quintile #3 0.210 0.030 7.11 
Payment Quintile #4 0.360 0.031 11.77 
Payment Quintile #5 0.513 0.032 16.03 
Log(1987 Crop 

Sales/Acre) 0.007 0.005 1.35 

Log(1987 Concentration) -0.263 0.004 -61.83 

Long Panel 
 
Dependent 
Variable 
 
Sum of % Change 
in Farmland 
Concentration,  
1987 – 1992, 
1992 – 1997,  

  1997 – 2002 
 
R2:   0.204 
R2-Adj: 0.202 

Log(1987 Cropland Area 
/ Zip Code Area) -0.003 0.004 -0.70 

Notes:  This table summarizes results from ordinary least squares regressions with state fixed 
effects.  The estimated effects of the payment quintiles are the proportional change in 
concentration relative to zip codes with no payments.   
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Table A4.  Regional Analyses of Concentration Growth by Payment Quintile Adjusted with Non-Parametric Controls 
Cropland 

Within-region 
payments per 

acre 
Heartland Northern 

Crescent 

Northern 
Great 
Plains 

Prairie 
Gateway 

Eastern 
Uplands 

Southern 
Seaboard 

Fruitful 
Rim 

Basin and 
Range 

Mississipp
i Portal  

Average 
weighted by 

farmland area 

 (Percent change in weighted median, adjusted for controls, 1987-2002) 
No Payments 26.6 10.4 23.6 4.6 6.5 6.3 -18.5 -23.4 27.7  13.7 
Quintile #1 37.1 30.1 28.9 20.7 11.6 11.7 -9.3 5.9 26.4  24.7 
Quintile #2 56.1 31.9 41.5 30.7 14.3 18.3 -11.3 11.8 38.4  35.9 
Quintile #3 59.9 38.8 52.8 40.6 21.6 18.8 -4.6 16.5 41.8  42.3 
Quintile #4 59.7 44.3 56.7 45.5 20.9 28.3 4.9 7.6 40.2  45.0 
Quintile #5 60.8 49.2 58.1 46.6 32.5 35.6 12.2 21.2 51.1  48.7 

 

Farmland 
Within-region 
payments per 

acre 
Heartland Northern 

Crescent 

Northern 
Great 
Plains 

Prairie 
Gateway 

Eastern 
Uplands 

Southern 
Seaboard 

Fruitful 
Rim 

Basin and 
Range 

Mississipp
i Portal  

Average 
weighted by 

cropland area 

 (Percent change in weighted median, adjusted for controls, 1987-2002) 
No Payments 22.4 -1.5 24.3 -3.9 3.1 0.8 -22.7 -18.7 -2.4  2.4 
Quintile #1 10.8 7.6 11.4 -11.5 9.4 3.4 -41.8 -25.5 -0.8  -5.6 
Quintile #2 26.9 13.1 17.1 -1.2 10.5 7.9 -31.6 -9.9 15  4.7 
Quintile #3 32.1 14.8 26.9 18.4 10.5 10.8 -18.8 -11.9 17.7  13.6 
Quintile #4 37.9 20.9 37.4 30.6 12.6 18.7 8.4 9.8 32.7  26.2 
Quintile #5 41 24.7 46.5 40.8 25.5 25.6 31.4 31.5 45.3  37.3 

Notes:  The table reports 1987-2002 concentration growth for each payment quintile of each region, adjusted for region-specific non-parametric controls for location and 
1987 levels of concentration, sales-per acre, and the ratio of agricultural area to zip code area. The regions are those defined by USDA’s Economic Research Service and 
are displayed in Figure A3.  Where estimates reported in the main paper were based on regressions using the pooled data of all regions, these estimates were derived 
from estimating a separate GAM regression model for each region.  Quintiles of payment levels are also region-specific, so that an equal number of zip codes are in 
quintile within each region, but the same quintile may represent different payment levels in across regions.  Since each regression includes only a fraction of the total 
number of observations, each fitted point in the smooth loess-estimated functions uses 15% of the local observations in each region rather than 5% of all observations as 
in the pooled model.  Thus, despite the higher percent, the bandwidth is effectively smaller for the regional regressions than it is for the pooled regression, and the overall 
goodness of fit is higher.  Estimates of payment effects are not sensitive to the degree of smoothing for shares between 10% and 50%.  For shares less than 10%, 
estimates sometimes do not converge.  See the main paper for a description of the GAM regression model.  The reported percentages give predictions for the area-
weighted average growth in concentration across zip codes in each region and are scaled so that the estimated average percentage for the third quintile equals the actual 
area-weighted average growth for the third quintile—that is, non-payment factors are held constant at each region’s third-quintile average. 
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Figure A3.  ERS Farm Resource Regions Used for Separate Regional Analyses. 

 


