

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

USE OF THE EXPONENTIAL YIELD CURVE IN FERTILIZER EXPERIMENTS

\author{

By W. J. Seillman
 Principal Agricullural Economist, Division of Farm Manapenent and Costs, Bureau of Agricultural Economics:
 CONTENTS
 | | | | Page |
| :---: | :---: | :---: | :---: |
| Yield curve for a single variablegionth factor- | 6 | with three variable factors-Continued | |
| Determination of the constents of the exponential ourve | | Optimum acreage to which to apply ferti- | |
| Graphic method | 5 | iner costung a fixed amount. | 31 |
| Logarithmic meti | 7 | Form of the rithd curve of plant | ${ }_{46}^{41}$ |
| New method | 9 | Derivation of the exponential yind curv | 5 |
| Demonstration usiog experimental | | One-variable form. | $5 i$ |
| | 16 | General form | 54 |
| Ammonia series | 19 | Plan for obtaining data | 55 |
| Phosphoric ac | 30 | Series of plots | S |
| Potash series. | 21 | Use or check plots | 57 |
| All tbree variables | 21 | Other finctors to be coos | 58 |
| Final calcuinted yitl | 25 | Summary | 9 |
| Field of check plots | 25 | Appondi | 59 |
| Optimum fertilizer formulas | 27 | Tables of vane of Ba and | 68 |
| Optimum quantity of fertilizer | 32 | Literature cited. | $\begin{aligned} & 08 \\ & 68 \end{aligned}$ |

INTRODUCTION

The objective of early experimental work with fertilizers was to find which of the necessary plant-food elements the soil could, and which it could not, supply in quantities sufficient for the needs of the growing crop.

It was soon learned that the plant-food elements most commonly deficient in the soil are nitrogen, phosphorus, and potassium. Accordingly, these three elements were widely used in fertilizer tests, the aim being to determine the relative degree of deficiency of each in specific cases. These tests gave results of sufficient value to permit the development of an extensive fertilizer industry. Other experiments have had for their object a comparison of different sources of the various plant-food elements. Such experiments are necessary in any system of experimentation with fertilizers.

Recognition of the fact that nitrogen, phosphoric acid, and potash are most frequently needed in fertilizers made it obvious that experiments of two kinds were needed. One kind had for its object the determining of the most profitable combination of fertilizer elements, that is, the most profitable fertilizer formula, for a given soil and crop;

[^0]the other kind had for its object the determining of the most prefitable quantity of this most profitable formula.

One group of experimenters gave particular attention to the problem of best fertilizer formulas, and devised an ingenious and effective system of experimentation which has given valuable information as to best formulas for given ceses.
Others instituted series of experiments intended to determine the most profitable quantities of the various fertilizer elements and the various combinations to use in given cases.

The results of these two lines of experimentation are the basis of present fertilizer practice in the United States.
To cover the full range of fertilizer formulas and the full range of quantities of even a few formulas requires a large number of experimental plots. To obtain adequate answers to the problems of best formulas and best quantities of fertilizers to apply in a given case by the methods mentioned therefore entrils large expenditures of both time and funds.

An equation expressing even approximately the relation botween plant growth and quantity of plent food applied in fertilizers would enable the experimenter to carry on investigations of both these problems with a relstively small number of experimental plots. At the same time it would give more accurate answers to the two problems than could be otherwise obtained.

The economic bearing of such an equation is obvious. The ability to determine even approximately the formula for any quantity of fertilizer that will give the most profit, and the quantity of fertilizer made according to the best formula for that quantity that would result in the greatest profit per acre, should lead to less waste and greater profit in the use of fertilizer.

A large number of experiments have been performed in which the quantity of one or more growth factors was varied. When the results of these experiments are graphed, yields being used as ordinates and quantities of a growth factor as abscissas, a large proportion of the resulting cuves are strikingly similar in form. (Fig. 1.) In fact, the proportion is so large as to suggest that in many cases those that do not give such a curve fail to do so because of large experimental errors in the work.

A curve that can be fitted satisfactorily to these experimental results would make it possible to calculate the yield from any quantity of the growth factor in question, the only experimental data needed being those required for finding accurate values for the constants of the equation.

In recent years it has been shown that either of the equations

$$
\begin{equation*}
Y=M-A R^{x} \tag{1}
\end{equation*}
$$

or

$$
\begin{equation*}
y=a+b x+c x^{2} \tag{A}
\end{equation*}
$$

meets these requirements. Within the range of the data used in determining the constants in either of these equations, each gives a curve that fits experimental results satisfactorily. Over a considerable proportion of their range the two curves are closely similar in form.

It is shown later, however, that equation (1) has certain important advantages as compared with equation (A). It may be used with satisfactory asults for calculating yields far beyond the limits of the experimental results used in determining the constants of the equation. This is not the case with equation (A).

Ail even more important advantage of equation (1) is that it may be written in a generalized form (p. 22) that permits it to be used, when its constants have been determined, for calculating the yield to be expected from any combination of fertilizer elements, in any quantity of fertilizer. Again, the generalized form of the equation by differentiation may be converted into a set of equations, one ior each variable growth factor, by means of which the most profitable quantities of nitrogen and potash to use with any quantity of phos-

FIGURE 1.-EXpONENTIAL Yielo GURVE FOR A Single VAriable Growth Factor
Yo fs the yield when none of the factor is applied in tertilizer, y_{1} the increase in yield due to f unit of the factor applied in fertilizer, $y 2$ the increase for 2 units, and so on. Y is the ackun yield for x units of tbe factor, and M and A are the respective limits approached by Y and v as x increases ladefnitely. Lines a, b, c, d, ete., are the increments in yifth due to the frst, setond, third, fourth, elc., units apphed. These increments tend to form a decrensing yeometric scries, of
whith a is the ratia.
phoric acid, as well as the most profitable quantity of this most profitable combination to use in a given case, can be determined.

These facts appear to justify at least the tentative adoption of equation (1) as the mathematical expression of the quantitative relation between plant growth and the quantity of a growth factor available. Further research may result in a more accurate expression for this relation. But the fact that equation (1) does permit satisfactory curve fitting, and thus greatly reduces the amount of experimental
work required for at least an approximate solution to both the problem of best formula and the problem of best quantity of fertilizer having this formulc, would seem to justify the tentative use of the equation as a basis for planning and interpreting experimental work with fertilizers.

The uses to which equation (1) and its generalized form adapted to two or more variable growth factors may be applied are set forth in the following pages.
On certain soils very small applications of a fertilizer constituent give no increase in yield. As the quantity applied increases, a point is finally reached beyond which the yield begins to increase, and the increase proceeds from that point to follow a well-defined curve of normal increase. The small quantity thus having no effect on yield has been referred to by soil chemists as "absorbed" nitrogen, phosphoric acid, or potesh, as the case may be. Perhaps the term "occlusion" might be preferred for this phenomenon. The reason for the failure of the small quantity of the growth factor to produce any effect on yield is as yet not definitely. known. The fact appears to be that it is not available to the growing plant. This bulletin gives a method of deternining, by means of the yield curve, the quantity of a plant-food element thus rendered unavailable.
This deternination has economic value. It sometimes happens that a farmer can not obtain as much fertilizer as he knows he needs, but must distribute what he can obtain over a considerable acreage. It would be a complete waste to apply less than the quantity taken up by the soil and held in a condition unavailable to the growing crop. With knowledge of the quantity that would be absorbed, or occluded, and thus rendered unavailable, and of the increase in yield to be expected from applications over and above this quantity, the fertilizer obtainable can be distributed at the rate that will give the highest net return.

Certain other soils are said to absorb a definite proportion of the potash applied to them, irrespective of the quantity applied. In these cases the method described herein is not applicable. There is a possibility, however, that when further work with the yibld curve has been done, a method may be devised for measuring this type of absorption by means of the curve, especially if it should be demonstrated that the effect factor (11$)^{2}$ of potash is constant for all soils not exhibiting these absorption phenomena.

The fact that the yield curve offiers a means of determining from the yield of a relatively small number of experimental plots, the quantities of available nitrogen, phosphoric acid, and potash in the soil, makes the curve available for determining (1) the quantity of available nitrogen aidded to the soil by a green-manure crop; (2) the effect of lime or other soil amendments, including tillage practices, on the availability of plant-food elements in the soil; (3) the rate at which each plant-food element is exhausted in any system of crop management; and (4) the rate at which plant-food elements accumulate in the soil when fertilizers are applied in excessive quantities, thus permitting judicious modification of fertilizer practice with a view to preventing extravagant use of fertilizers which may result in accumulations that might become injurious to the crop.

[^1]
YIELD CURVE FOR A SINGLE VARIABLE GROWTH FACTOR

The form of yield curve employed in this bulletin is known as the exponential yield curve. Its derivation and the reasons for preferring it are discussed later (p. 51). The curve assumes different shapes for different numbers of variable growth factors. The form assumed when a single growth factor is varied is shown in Figure 1. The equation of this form is

$$
\begin{equation*}
Y=M-A R^{\mathrm{x}} \tag{1}
\end{equation*}
$$

in which Y is the yield obtained when x units of the growth factor are applied in fertilizers, the unit being any convenisnt quantity of the factor. M is the limit approached by Y as x increases indefinitely, or the theoretical maximum yield possible with any number of units of the growth factor. A is the theoretical maximum incrense in yield obtainable by increasing x indefinitely. R is the ratio of a decreasing geometric series the terms of which are the respective increments in yield due to successive uniti increments in x. In Figure 1, lines a, b, c, d, e, etc., represent these increments; R is therefore the ratio of the series a, b, c, d, e, etc. This means that if b is a given percentage of a, then c tends to be the same percentage of b, d this same percentage of c, and so on.

The value of R in any given case depends on the size of unit in which x is measured, on the nature of the variable growth factor, and on the conditions of the experiment.

In Figure 1, $Y_{x=0}$ is the yield when none of the growth factor is supplied in fertilizers; that is, it is the yield due to the quantity of the growth factor available in the unfertilized soil. M is the limit approached by the curve as x increases indefinitely. The line at height M is an asymptote to the curve. The question mark at the lower left corner of the figure merely calls attention to whatever quantity of the growth factor may be available in the soil.

determination of the constants of the exponential curve

Several methods are available for finding the value of the constants of the yield equation. These vary in the reliability of the values found. Some of them are given below.

To iliustrate these methods, and to compare the results they give, some results obtained by the Michigan Agricultural Experiment Station in applying varying quantities of potash ($\left.\mathrm{K}_{2} \mathrm{O}\right)$ to potatoes grown on muck soil are used. In addition to potash, eack plot received phosphoric acid $\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)$ at the rate of 300 pounds of 16 per cent superphosphate per acre. One lundred pounds of 50 per cent muriate of potash (50 pounds of $\mathrm{K}_{2} \mathrm{O}$) is taken as the unit of x.

The yields per acre of four plots thus fertilized were:

```
Plot 1 (no potash)
Plot 2 (1 unit of potash)
Plot 3 (2 units of potash)
    33I bushels.
Plot 4 (3 units of potash)

\section*{GRAPHIC METHOD}

A crude but simple and often useful method of finding at least a rough approximation to the value of the constants of the yield equation is as follows:

First, graph the experimental results, as is done in Figure 2 for the data given above. After fixing each point representing a yield, draw
through these points as smooth a curve as may be and as nearly as possible of the form shown in Figure 1. If the yields correspond closely to the theory of the curve, as they appear to do in Figure 2, the curve will pass through, or very near to, each point; but if the yields are irregular, the experimental errors being large, the curve should be drawn of the general form of Figure 1, more or less steeply according to the location of the dots, and as nearly as possible in such manner as to make the squares of the deviations a minimum. The deviations here referred to are the vertical distances of the yield points from the curve.

Equation (L) may now be written for three points on the curve of Figure 1, these points being chosen in the following way:

One of the points should have the smallest and another the largest abscissa for which the yield is known, or can be read from the curve; the third point should have an abscissa half way between those of the other two.

For the curve of Figure 2, the points that meet these requirements are those whose abscissas are \(0,1.5\), and 3. The corresponding values of \(Y\) are 91,295 (read from the curve), and 381.

Using equation (1) for these three points, the observation equations are
\[
\begin{align*}
91 & =M-A  \tag{A}\\
295 & =M-A R^{1.5}  \tag{B}\\
381 & =M-A R^{3} \tag{C}
\end{align*}
\]

To evaluate \(R\), subtract ( \(A\) ) from (B) and (B) from (C), giving
\[
\begin{align*}
204 & =A-A R^{1.5}=A\left(1-R^{1.5}\right)  \tag{D}\\
86 & =A R^{1,5}-A R^{3}=A R^{1.5}\left(1-R^{1.6}\right) \tag{E}
\end{align*}
\]

Dividing (E) by (D),
\[
R^{1,4}=\frac{86}{204}=0.42157
\]

Then
\[
\begin{aligned}
& 1.5 \log R=\log 0.42157=\overline{\mathrm{I}} .624,8697=-0.375,1303 \\
& \log R=-\mathbf{0} .250,0869=\overline{\mathrm{I}} .749,9131
\end{aligned}
\]
whence
\[
R=0.56223 .
\]

Since
\[
R^{1.5}=0.42157 \text {, it follows that } 1-R^{2.5}=0.57843 .
\]

From (D), it is seen that
\[
A=\frac{204}{0.57 S 43}=352.68 .
\]

The value of \(M\) may now be obtained from any one of the equations (A) to (C). From (A)
\[
M=91+A=91+352.68=443.68
\]

The values of \(R^{x}\) are then found to be:

Using the indicated values of \(M, A\), and \(R^{x}\) in equation (1) the calculated yielda are: Plot 1, 91 bushels; plot 2, 245.39 bushels; plot 3, 332.2 bushels; and plot 4, 381 bushels. The calculated yields differ from the observed yields by 5.61 bushels on plot 2 ard by 1.2 bushels on plot 3. Squaring each and adding, the sum of the squares of the differences between calculated and observed yields on the four plots (two of which are zero) is 32.9121 . Values of M. \(A\), and \(R\), which give the smallest sum of squared differences or residuals are the most probable values. The roughness of the method and size of the sum ( 32.9121 ) suggest that better values for the constants may be found.

\section*{LOGARITHMIC METHOD}

The logarithmic method may be used for determining the values of \(M, A\), and \(R\) of the exponential yield curve in cases where the successive observations result in positive increments as \(x\) increases. If any observation is a smaller number than the previous observation this method can not be used, as a negative number as such has no logarithm.

Letting \(z\) represent the increment of \(Y\) due to a unit increment of \(x\), equation (1), \(Y=M-A R^{x}\), becomes
\[
\begin{equation*}
Y+z=M-A R^{x+1} \tag{A}
\end{equation*}
\]
whence by subtraction
and
\[
z=A R^{x}-A R^{x+1}=A R^{x}(1-R)=A(1-R) R^{x}
\]
\[
\begin{equation*}
\log z=\log [A(1-R)]+x \log R \tag{B}
\end{equation*}
\]

Equation (B) is solved by the method of least squares, for which the form used in Table 1 is convenient. The observations are entered in the columns at the left. The values of \(z\) are then entered opposite the corresponding values of \(x\) and the observation equations
(C), (D), and (E) are made up by substituting the proper values for \(\log 2\) and for \(x\).
Table 1.-Example of work for determining \(R\) and \(A\) by the logarithmic method \([\log z=\log [A(1-R)]+x \log R]\)


The normal equation (F) for \(\log [A(1-R)]\) is obtained by adding the three observations as they stand, since the coefficient of this unknown is 1 in each observation equation.

The normal equation (G) for \(\log R\) is obtained by multiplying each observation equation through by the coefficient of \(\log R\) in that equation and adding the resulting equations.

Equations (F) and ( \(G\) ) are then solved by the usual methods of algebra, and the values of \(A\) and of \(R\) are obtained therefrom, as indicated in Table 1.

The value of \(M\) is found by writing an observation equation based on equation (1) for each value of \(x\), thus
\[
\begin{aligned}
91 & =M-A \\
251 & =M-A R \\
331 & =M-A R^{2} \\
381 & =M-A R^{3}
\end{aligned}
\]

Since the coefficient of \(M\) is 1 in each of these equations, the normal equation for \(M\) is the sum of the four as they stand, or
\[
1,054=4 M-A\left(1+R+R^{2}+R^{3}\right)
\]
whence
\[
M=\frac{1}{4}\left[1,054+A\left(1+R+R^{2}+R^{3}\right)\right]
\]

But the values of \(A\) (349.58) and of \(R(0.559017)\) have been found. (Table 1.)

The value of the parenthesis is
\[
1.000000+0.559017+0.312500+0.174693=2.046210
\]

Therefore
\[
M=\frac{1}{4}[1,054+349.58(2.046210)]=442.33
\]

Using these values of \(M L, A\), and \(R\) the computed yields of the four plots are 92.75 bushels on plot 1, 246.91 bushels on plot 2, 333.09 bushels on plot 3 , and 381.26 bushels on plot 4 . The corresponding residuals from the observed yields were respectively \(1.75,-4.09\), 2.09 , and 0.26 . The sum of the squares of these residuals is 24.2263 as compared with the 32.9121 obtaned by the graphic method. The logarithnic method thus gives better results than does the graphic method.
The value of an unknown determined by the method of Jeast squares, called its most probable value, is the arithmetical mean of its value in each of the observation equations. Now the arithmetical mean of \(n\) quantities is \(\frac{1}{n}\) of their sum.

The value of an unknown determined from the most probable value of its logarithm is therefore the geometric, not the arithmetical, mean of the measurements, direct or indirect, made on the unknown; for when the logarithms of \(n\) quantities are added, the sum is the logarithm of their product; when the sum is divided by \(n\) the quotient is the logarithm of the \(n\)th root of their product, which \(n\)th root is the geometric mean of the \(n\) quantities. The only condition under which the arithmetical and geometric means of a series of numbers arc equal is that all numbers in the series be equal. This condition arises in statistical work only when there are no errors of observation, a condition that practically never occurs. Hence the value of a quantity obtained from the most probable value of its logarithm is not the most probable value of the quantity.
There is thus an error in the logarithmic method here outlined. The greater the errors of observation in the data employed, the greater is the magnitude of this error. With fairly good observed values the error is not large. To illustrate:

Arithmetical mean:
\[
\frac{1}{4}(49+52+45+54)=50
\]

Geometric mean:
\[
\sqrt[2]{49.52 .4 \overline{5} .54}=49.88
\]

When the errors of observation are such as to render some of the values of \(z\) negative, the logarithmic method is not applicable at all. for a negative quantity, as such, has no logarithm.

\section*{NEW METHOD}

The author's new method applics the principle of lenst squares directly to observation equations based on the equation (1), \(\mathrm{Y}=\) \(\mathrm{M}-A R^{x}\). Development of the neccssary normal equations in general terms is explained. Solution of the normal equations-finding the
most probable values of \(M, A\), and \(R\)-has been reduced to plain arithmetic. Finding the value of \(R\), however, can only be done by suecessive approximations, so that the work involved is formidable and should not be undertaken without adequate equipment for making the computations.

Using \(a, b, c, d\) _--- to represent observed values of \(x\), and \(Y_{a}, Y_{b}\), \(Y_{c}, Y_{d} \ldots \ldots\) to represent corresponding values of \(Y\), the several observation equations may be written:
\[
\left.\begin{array}{l}
Y_{a}=M-A R^{a} \\
Y_{b}=M-A R^{b} \\
Y_{c}=M-A R^{c}  \tag{A}\\
Y_{d}=M-A R^{d}
\end{array}\right\}
\]
and so on.
Normal equations for \(M, A\), and \(R\) are worked out applying the general rule, of which the example used under the logarithmic method is a special case. This general rule for finding the normal equation for any variable in a set of observation equations is: Multiply each equation through by the derivative of that equation with respect to the variable in question and add the resulting equations. The derivatives of equation (1) with respect to \(M, A\), and \(R\) are:

For M the derivative is 1.
For \(A\) the derivative is \(R^{x}\).
For \(R\) the derivative is \(A x R^{x-1}\).
The normal equation for \(M\) is therefore the sum of the observation equations ( \(A\) ) as they stand; this gives
\[
\Sigma Y=n M-A \Sigma R^{x},
\]
from which, transposing and dividing through by \(n\)
\[
\begin{equation*}
M=\frac{1}{n}\left[\Sigma Y+A \Sigma R^{z}\right] \tag{2}
\end{equation*}
\]

In these expressions \(\Sigma Y\) is the sum of the quantities represented by \(Y_{a}, Y_{b}, Y_{c}, Y_{d} \ldots-, n\) is the number of observation equations, and \(A \Sigma R^{s}\) is the sum of the several values \(R^{a}, R^{b}, R^{c}, R^{d}\) _--. multiplied by \(A\).

The normal equation for \(A\) is obtained by multiplying the first observation equation through by \(R^{a}\) (the value of \(R^{x}\), the derivative of \(A\) in (A) above,) the second by \(R^{b}\), and so on, and adding the resulting equations. The resulting normal equation may be reduced to the form
\[
\begin{equation*}
A=\frac{n \Sigma Y R^{x}-\Sigma Y \Sigma R^{x}}{\left(\Sigma R^{x}\right)^{2}-n \Sigma R^{\Sigma x}} \tag{3}
\end{equation*}
\]

The normal equation for \(R\), is obtained by multiplying the first observation equation through by \(A a R^{a-1}\), (the derivative for \(R\) in (A) above), the second by \(A b R^{b-1}\), and so on, and adding the resulting equations. The normal equation so written may be reduced for convenience of subsequent quantitative computation to the form
\[
\begin{equation*}
\Lambda^{\prime}=\frac{n \Sigma Y x R^{x}-\Sigma Y \Sigma x R^{x}}{\Sigma R^{x} \Sigma x R^{x}-n \Sigma x R^{2 x}} \tag{4}
\end{equation*}
\]

The \(A^{\prime}\) of equation (4) and the \(A\) of equation (3) are identical in value; the prime mark is used in equation (4) as a convenient, means of distinguishing between the two formulas.

\section*{SOLUTLON OF TIIE NORMAL EOGATIONS}

The problem of finding the most probable values of \(M, A\), and \(R\) in equation (1) now resolves itself into that of finding that value of \(R\) that will make \(A^{\prime}\) equal to \(A\). This can be done only by the method of trial and error. The solution is demonstrated with the data considered under the graphic and logarithmic methods.

The procedure found to be most convenient for solving the equations is here given, using Table 2 in the demonstration. The quantities for which values are wanted as steps in the computation are entered on the blank form, and the values are entered as they are arrived at. Six sections were used in this problem and will usually be enough for finding the value of \(R\). The acturl working sheets should provide for as many lines as there are obscrvation equations; for economy of printing only the four needed in this 4-plot problem are shown in Table 2. The symbols not previously used will be explained later; they are all used in other phases of the gencral problem and are provided for in the table.

The table of values of \(R^{x}\), prepared by Y. Kutsumai of the Hawaiian Sugar Experiment Station (Table 18), reduces the labor of computation materially.

The most probable values of \(M, A\), and \(R\) are those that render the sum of the squares of the residuals a minimum. The residuals sre the remainders obtained by subtracting the observed walues from the calculated values of \(Y\). For the problem now in hand the sum obtained by the graphic method was 32.9121 ; that obtained by the logarithmic method was 24.2263 . Hence the values of \(M, A\), and \(R\) obtained by the logarithmic method approach more nearly the values sought than those obtained by the graphic method.

The values of \(R\) found by these two methods were-
By the graphic method, \(R=0.56223\).
By the logarithmic method, \(R=0.559017\).
Since the second value of \(R\) is smaller than the first and the sum of the squared residuals is smaller than for the other, it is probable that the most probable value of \(R\) is smaller than 0.559017. Computation by the author's method may then start with \(R=0.55\). (The alternative to use of either of the above methods or both for approximating the value of \(R\) as a preliminary to computation by the author's new method is more trials by the more onerous method.)
In the upper left section of Table 2 trinl is made with \(R=0.55\). Opposite the given values of \(x\) are placed the observed values of \(Y\), then the corresponding values of \(R^{x}\), the values of \(R^{3}\) and higher powers of \(R\) being obtained from Table 18. The figures in the column headed \(x R^{x}\) are the indicated products of the figures in the first and third columns. The figures in the column headed \(R^{2 z}\) are the squares of those in the column headed \(R^{x}\). By addition the values of \(\Sigma Y, \Sigma R^{x}\), \(\Sigma x R^{x}\), and \(\Sigma R^{2 x}\) are obtained.

The next step is to find the value of \(A\) and of \(A^{\prime}\), equations (3) and (4). The numerator of equation (3), \(N\), consisting of a positive term, \(n \Sigma Y R^{z}\), and a negative term, \(-\Sigma Y \Sigma R^{x}\), is worked. Then the denominator, \(D\), is worked out, the division performed, and the value of \(A(=346.161475)\) set down. The value of \(A^{\prime}\) is found in the sar:e way.

Tabse 2.-Arrangcment' of work for computing \(R, M\), and \(A\) by the new method. Same data as in graphic and logarithmic methods
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{Y}=\mathrm{M}-\mathrm{AR}\) & \[
A=\frac{N}{D}
\] & \(N=n \sum Y R=-2 V^{\prime} \partial R^{*}\) & \(D=2 R=2 R x-n 2 R r^{2}\) \\
\hline \(M P=\frac{1}{n}\left(2 Y-A D R^{x}\right)\) & \[
A^{\prime}=\frac{N^{\prime}}{D^{\prime}}
\] &  & \(D^{\prime}=\Sigma R 2 \Sigma \Sigma R^{x}-n \Sigma \tau R^{\prime *}\) \\
\hline \(n=\) number of observations \(=1\) & \(E=A-A^{\prime}\) & \(\eta=0 \log M-\log A) / \log R\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Ftom & \(x\) & Y & \(R^{*}\) & \({ }^{\text {rex }}\) & \(R^{2 x}\) & \(R^{*}\) & \(x R^{x}\) & \(5^{3 x}\) \\
\hline & 9 & 91 & 1.0 & 0.0 & & 1.0 & 0.0 & \\
\hline \({ }^{2}\) & 1 & 251 & . 54 & . 55 & . 3025 & -54 & . 548 & . 2018 \\
\hline & \({ }_{3}^{2}\) & 331 & \begin{tabular}{l}
.3095 \\
.106375 \\
\hline
\end{tabular} & - 60850 & . 01727681 & . 21515464 & . 5832 & . 0284885 \\
\hline & & 1,054 & 2,018573 & 1. 054125 & 1. 42 LCS & 1, 880004 & 1,505582 & 1.401426 \\
\hline \multirow[t]{7}{*}{} & \multicolumn{5}{|l|}{\multirow[t]{7}{*}{}} & \multicolumn{3}{|l|}{\multirow[t]{7}{*}{}} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline \multirow[b]{2}{*}{Itm} & & & & & & & & \multirow[b]{2}{*}{\(R^{37}\)} \\
\hline & \(x\) & \(Y\) & \(R^{x}\) & \(x\) fix & \(R^{2 s}\) & r: & zR \({ }^{\text {x }}\) & \\
\hline \multirow[t]{4}{*}{\[
\mid
\]} & 0 & 91 & 1.0 & 0. 0 & 1.0 & 1.0 & 0.0 & \multirow[t]{4}{*}{\[
\begin{aligned}
& 1.0 \\
& .290521 \\
& .084402 \\
& .024521
\end{aligned}
\]} \\
\hline & 1 & 231 & -5,38 & . 538 & . 2589474 & . 539 & 539 & \\
\hline & 2 & 331 & . 2833444 & . 578888 & . 033778 & . 290521 & . 581042 & \\
\hline & 3 & 381 & . 155721 & . 467163 & . 024249 & . 156501 & . 969773 & \\
\hline S. & & 1,054 & 1.983165 & 1. 584051 & 1.397471 & 1.086112 & 1.588815 & 1.309444 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{7}{*}{}} & & & & & \multicolumn{3}{|l|}{\multirow[t]{4}{*}{}} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{341.721372
341.83724}} \\
\hline & & & & & & & & \\
\hline & & & & & & \multicolumn{3}{|l|}{-. 115852} \\
\hline ftem & \% & \(Y\) & \(\Omega=\) & \(2 R^{\text {r }}\) & \(n^{2 r}\) & \(R^{\text {a }}\) & \(\pm R^{*}\) & \(R^{74}\) \\
\hline \multirow[t]{4}{*}{} & \multirow[b]{4}{*}{0
\(\frac{1}{2}\)
\(\frac{2}{3}\)} & \multirow[t]{4}{*}{91
251
331
331
31} & \multirow[t]{4}{*}{1.0
.5891
.288582
.155808} & \multirow[t]{4}{*}{\begin{tabular}{l}
0.0 \\
.5381 \\
.589104 \\
.487424 \\
\hline
\end{tabular}} & \multirow[t]{4}{*}{\[
\begin{aligned}
& 1.7 \\
& .289552 \\
& .083810 \\
& .024276
\end{aligned}
\]} & \multirow[t]{4}{*}{\begin{tabular}{l}
1.0 \\
.5382 .283650
.155805
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
0.0 \\
. 5382 579318 467685
\end{tabular}} & \multirow[t]{4}{*}{\begin{tabular}{l}
1.0 \\
\(+289659\) 083902
.024303 \\
. 02430
\end{tabular}} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline \(\Sigma\) & & 1, 054 & 1. 983460 & 1. 584628 & 1. 397668 & 1.083754 & 1.585208 & 1.307864 \\
\hline \multicolumn{2}{|l|}{\multirow[t]{7}{*}{}} & & & & & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{}} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline & & & & & & \multicolumn{2}{|l|}{3.144053- \(2.121488=\)} & \multirow[t]{2}{*}{1.023165} \\
\hline & & & & & & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\begin{tabular}{l}
341.407800 \\
341.1001299 \\
\(-.091200\)
\end{tabular}}} \\
\hline & & & & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \(x\) & \(R^{x}\) & \(\mathrm{H}^{2}\) & \(M\) & \[
\begin{aligned}
& Y \text { (cal- } \\
& \text { culated) }
\end{aligned}
\] & \[
Y \text { fob }
\]
servedi & \(\varepsilon\) & \(e^{*}\) & \[
R \quad 0.538188-0.2600680
\] \\
\hline 0 & 1.0 & 341.40 & 432.81 & 01.41 & 91 & 0.41 & 0.1681 & \(\begin{array}{ccc}1 & 341.401 & 2.5332835 \\ M & 432.81 & 2.0362973\end{array}\) \\
\hline 1 & . .538188 & 183.74 & 432.81 & 249.07 & 251 & \(-1.93\) & 3.7249 & Unlt of \(x 50\) pounds of K2O. \\
\hline \(\stackrel{2}{2}\) & . 280046 & 98.80 & +32.81 & 333,92 & 331 & 2.02 & 8. 5264 & Q \(=0.3820\) units \(=19.145\) \\
\hline 3 & . 155888 & 53.22 & 432.81 & 376, 50 & 381 & -1.41 & 1.0881 & pounds per scre. \\
\hline & 1. 083718 & & & & & & 14.4075 & \\
\hline
\end{tabular}

\footnotetext{
1 The guthor's work shects were mimeographed blank forms, with spaces provided for 8 values of \(x\). The biank linas have been onatted in printing. See text for davelopment of the work recorded on this form. Table 18 and a computing maching are practicel aecessities,
}

To obtain the value of the positive term, \(n \Sigma Y R^{x}\), of \(N\), for example, set up 91 ( \(=91\) times 1.0) in the computing machine; add to it 251 times 0.55 ; add to that 331 times 0.3025 ; and then 381 times 0.166375 ; the sum so accumulated (the \(\Sigma Y R^{x}\) ) is then multiplied by \(n\), in this case 4. The result, \(1,570.265500\) is recorded as the first term of \(N\) in the line below the columns of Table 2.

The second (negative) term of \(N\) is \(\Sigma Y \Sigma R^{x}=1,054\) times 2.018875= \(2,127.894250\). The algebraic sum of the two terms of \(N\) is -557.628750.

The reader should now be able to follow the procedure in obtaining the values of \(D, N^{\prime}\), and \(D^{\prime}\).

Note that the negative terms of both \(N\) and \(D\) are larger than the positive terms. If the positive terms are computed first they may be subtracted from the negative terms without resetting the negative terms in the machine. The negative terms of \(N^{\prime}\) and \(D^{\prime}\) are smaller than the positive and may be advantageously computed first.

The difference \(E\), between \(A\) and \(A^{\prime}\) in this case, with \(R=0.55\) is -1.586053 . When the correct value of \(R\) is obtrined, \(E\) will be zero. Under the conditions of this problem a negative value of \(E\) indicates that the value of \(R\) under test is too large. (See discussion of critical values of \(R\) below for conditions indicating the opposite situation.) Accordingly the value of \(R=0.54\) is tried. (The computations are shown in the upper right section of Table 2.) This time \(E\) becomes -0.257127 , much nearer zero, but still negative, indicating that \(R\) is somewhat less than 0.54 .

With two values of \(E\) available, some work may be saved by graphing the values as in Figure 3 (1) before proceeding with further trials. A line drawn through the two computed values of \(E\) crosses the zero line at about 0.538 . Hence the next value of \(R\) tasted is 0.538 . It should be noted here thai the graph of \(E\) is somewhat curved, being convex downward. This curvature of the graph of \(E\) is the more marized the fewer the decimal places in the value of \(R\) under test.

Because of this curvature, the straight line used does not give the exact value of \(R\), as the true graph of \(E\) probably crosses the zero line somewhat to the right of 0.538 .

The value of \(E\) when \(R\) is placed at 0.538 comes out 0.023444 , positire, indicating that \(R\) is greater than 0.538 . The value of \(E\) when \(R\) is placed at 0.539 is -0.115852 , negative, indicating a value of \(R\) less than 0.539. These last two values of \(E\) are graphed on a larger scale in Figure 3 (2), the \(E\) line crossing the zero line at about 0.53818 .

Ordinarily it would not be necessary to carry the computation of \(R\) beyond this point, but since a comparison is desired between methods 1,2 , and 3 the values \(R=0.5381\) and \(R=0.5382\) are tested with the results given in Table 2. The line drawn through the values of \(E\) for these values of \(R\) crosses the zero line at a point indicating a value of 0.538188 for \(R\). (Fig. 3 (2).)

The last two values of \(A\) are also graphed in Figure 3 (3). At \(R=\) \(0.538188 A\) is 341.401 . These are taken as the most probable values of \(A\) and of \(R\). These two accepted values are then used to find the most probable value of \(M\). The steps in finding \(M\) are: Compute the values of \(R^{x}\) using the accepted value of \(R\), entering them on the form (at the bottom); multiply each by \(A\) and enter them; add this column (giving \(A \Sigma R^{x}\) ). Add to this sum the sum of the observed yields ( \(\Sigma Y\) ); divide by \(n\). The value of \(M\) comes out 432.81 .
The calculated values of \(Y\) are obtained subtracting each value in the column headed \(A P^{x}\) from 432.81. The differences between the calculated and the observed yields (column headed " \(e\) ") are entered, squared, and the squares totaled ( \(\Sigma e^{2}=14.4075\) ). The smaller this sum is, the more accurate is the fit. The values of \(M, A\), and \(R\) found by the new method are thus considerably more satisfactory than those found by the simpler methods, for the sum of the squared residuals is much smaller.

There are numerous other methods of finding the approximate values of \(M, A\), and \(R\), but those given are sufficient for practical purposes.

\section*{CRITICAL VAIEES OF \(X\)}

The work of finding the value of \(R\) is complicated in some cases by the fact that for certain values of \(R\) the value of \(D^{\prime}\) (Table 2) becomes zero, thus making \(A^{\prime}\) infinite.

When the values of \(x\) used include zero, and consist of the consecutive numbers \(0,1,2,3\), etc., \(D^{\prime}\) is always positive, so that the complication mentioned does not occur. In these cases \(E\) is positive for all values of \(R\) less than the true value, and negative for all values greater than the true value.
But if the given values of \(x\) do not include zero, and consist of the consecutive numbers \(1,2,3,4\), etc., then there is always a value of \(R\), here called its critical value, for which \(D^{\prime}=0\). The critical values of \(R\) for series of \(x\) values commonly occurring in experimental work are as follows:
\begin{tabular}{|c|c|}
\hline Series of \(x\) values & Criticel value of \(R\) \\
\hline \(1,2,3,4\) & 0.621173 \\
\hline \(1,2,3,4,5\) & 661689 \\
\hline 1, 2, 3, 4, 5, 6 & . 694225 \\
\hline 1, 2, 3, 4, 5, 6, & . 720886 \\
\hline 1, 2, 3, 4, 5, 6, & . 743354 \\
\hline 1, 2, 3, 4, 5, 6, & . 762477 \\
\hline
\end{tabular}

Let \(R_{m}\) represent the most probable value of \(R\),
\(R_{t}\) the value under test, and
\(R_{c}\) the critical value.
Figure 4 and the relations stated in tabular form below will aid in determining whether a given positive or negative value of \(E\) indicates that \(R_{\mathrm{t}}\) is too large or too small.

In each of the three drawings of Figure 4 the abscissas are values of \(R\), while the ordinates are values of \(A\) and \(A^{\prime}\). The most probable value of \(R\), symbolized by \(R_{m}\), is the abscissa of the point, \(X\), at which the graph of \(A^{\prime}\) crosses that of \(A\). At this point \(A^{\prime}=A\) and \(E=0\). The critical value of \(R\), symbolized by \(R_{c}\), is the abscissa of the point at which \(D^{\prime}\) (not showa in the drawing) becomes zero and \(A^{\prime}\) becomes infinite.

It is readily seen in Figure 4 (1), which represents cases having no critical value for \(R\), that is, in which \(D^{\prime}\) does not become zero for any value of \(R\), that a positive \(E\) shows \(R_{t}\) to be too small, while a negative \(E\) shows \(R_{\text {t }}\) to be too large.

1)

Figure 4.-Grafhs of The Values of a and a'
\(A\) and \(A^{\prime}\) are egual at some value of \(R\), called its most prohable vilue ( \(R_{m}\) ). In nxperimental series which do not include a value for \(x=0\) there is always a ctitical value of \(R\left(R_{e}\right)\) whleh renders \(A^{\prime}\) nfinlte. Section 2 Illustrates cases in which \(R_{m}\) is smaller than \(I_{r_{i}}\) section 3 , cases when \(R_{\infty}\) is larger than \(R_{\text {t }}\). Section \(I\) covers these tases in which the values of a are consedutive uumbers beginting with 0 .

In Figure 4 (2) and Figure 4 (3) the relations between \(R_{i}\) and \(R_{m}\) may be stated as follows:

When preliminary tests (by the graphic or the logarithmic method indicate that \(R_{m}\) is less than \(R_{c}\) (fig. 4 (2)), then a negative \(E\) indicates that \(R_{t}\) is too small and a positive \(E\) indicates that \(R_{t}\) is too large.

When \(R_{m}\) is greater than \(R_{\mathrm{c}}\) (fig. 4 (3)), then a negative \(E\) indicates that \(R_{\mathrm{t}}\) is too large and a positive \(E\) indicates that \(R_{\mathrm{t}}\) is too small.

Oecasionally \(R_{m}\) lies so near to \(R_{c}\) that the value of \(R_{m}\) determined by preliminary tests may lie on the wrong side of \(R_{c}\). Suppose, for instance, that the preliminary value of \(R_{m}\) is slightly greater than \(R_{c}\), (fig. 4 (3)), while the true value of \(R_{m}\) is slightly less than \(R_{c}\) (fig. 4 (2)). In such a case a few trials of \(R\) values greater than \(R_{c}\) will show that as \(R_{i}\) decreases, \(A^{\prime}\) rapidly increases, which shows that Figure 4 (2) and not Figure 4 (3) applies.

If for values of \(R_{t}\) slightly less than \(R_{c}\) the value of \(A^{\prime}\) increases rapidly for slight increases in \(R_{t}\), then \(R_{m}\) is greater than \(R_{t}\).

For irregular series of \(x\) values it is necessary to work out the values of \(D^{\prime}\) for a series of \(R\) values to determine the critical value of \(R\), if any such value exists.

\section*{AVAILABLE PLANT FOOD IN THE BOIL}

The quantity of a plant-food element available in the soil without any fertilizer application, designated as \(q\), may be computed at this stage. The value of \(q\) is the value of \(x\) in equation (i) when \(Y\) is zero; that is, \(q\) equals \(x\) in the equation \(0=M-A R^{x}\), which reduces to
\[
\begin{equation*}
x=\frac{\log M-\log A}{\log R}=q \tag{5}
\end{equation*}
\]

This value of \(x\) is the point at which the yield curve crosses the \(x\) axis. This point lies to the left of the origin; hence \(q\) comes out negative. The negative sign is to be disregarded, for the origin was arbitrarily placed.

The data of this example show that \(q\) is 19.145 pounds of potash ( \(\mathrm{K}_{2} \mathrm{O}\) ) per acre. (Table 2.)

\section*{demonstration USing experimental results with three variable factors}

The preceding discussion relates to a case in which a single plantfood element (potassium as \(\mathrm{K}_{2} \mathrm{O}\) ) was varied. In what follows the same principles are applied to a case in which varying quantities of nitrogen, phosphoric acid, and potash were applied to the same crop, the elements being varied one at a time; that is, plots receiving different quantities of nitrogen all received the same quantity of phosphoric acid and the same quantity of potash, those receiring different quantities of phosphoric acid received the same quantity of nitrogen and the same quantity of potash, and so on.

The data used below are from a series of experiments with fertilizers for tobacco, conducted at Tifton, Ga., by W. W. Garner and his associates, of the Bureau of Plant Industry, in cooperation with the State College of Agriculture and tho Constal Plain Experiment Station of that State. These duta were kindly supplied by Doctor Garner.

The essential facts are given in Table 3.
Table 3.-Fertilizers applied and yields oblained in the tobacco experiments at Tifton, Ga.
[Rate of fertilizer application, 1,000 pounds per acre]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{Plot No.} & \multicolumn{3}{|l|}{Analysis of fertilizer anjulicd} & \multicolumn{6}{|c|}{Y'ields of tobliceo jer acre in-} \\
\hline & NH3 & \(\mathrm{P}_{2} \mathrm{O}_{6}\) & \(\mathrm{K}_{2} \mathrm{O}\) & 1924 & 1025 & 3030 & 1027 & 1928 & 1829 \\
\hline 1. & Per crnt & Per cemf & Per cent & Pouniz & Pominds & Pounts & Pounts & Pounds & Poutdda \\
\hline 2. & 4. & 8 & 5
5 & 1,281 & 1.571
\(J_{+} 572\) & 1,294 & 1, 309 & 1,182
1,051 & 1,452 \\
\hline 3. & 3 & 8 & 5 & 1,200 & \(\mathrm{J}_{1} 4\) 4 4 & 1,157 & 1,352 & 975 & 1,073 \\
\hline 4 & 2 & 8 & 5 & 1, (0) 4 & 1, 3618 & 1, \%13 & 1,351 & 930 &  \\
\hline 5. & 0 & 8 & 5 & 807 & 1, 12 2 f & 914 & 1. 427 & 603 & 960 \\
\hline \({ }^{8}\) & ! & 0 & 0 & 519 & 169 & 484 & 503 & 401 & 501 \\
\hline \({ }_{8}\) & 3 & 12 & \(\pm\) & 1,115 & 1, 163 & 1, 230 & 1,306 & 973 & 1. 133 \\
\hline 8. & 3 & 10 & 5 & 1, 214 & 1, 1,076 & 1.150 & 1. 165 & 1, 015 & 1,134 \\
\hline 9. & 3 & \% & 5 & 1,217 & 1,550 & 1,047 & 1.236 & \% 979 & 1. 163 \\
\hline 10. & 3 & 7 & 5 & 1, 214 & 1,717 & 1, 173 & 1. 236 & 1,067 & 1.096 \\
\hline 11. & 3 & 0 & 5 & 1, 24 & 1, 1,63 & 1. 091 & 1,233 & - 228 & 1, 276 \\
\hline 12. & 3 & 4 & 5 & 1,285 & 1, 600 & 1, 0978 & 1, 206 & 8195 & 1, 100 \\
\hline 13 & 3 & 0 & 5 & 1,210 & 1, \(400^{\circ}\) & \({ }^{1935}\) & 550 & 5019 & 14.5 \\
\hline 141 & \(\hat{0}\) & 0 & 0 & 78.8 & 170 & 74) & 5301 & 495 & 518 \\
\hline 15 & 3 & 8 & 8 & 1,2133 & 1. 313 & 1,230 & 1,441. & I, 132 & 1.039 \\
\hline 16. & 3 & 8 & 0 & 1,150 & 1, 735 & 1,187 & 1,318 & 1, 010 & 1, 138 \\
\hline 17. & 3 & 8 & 4 & 1, 16.16 & 1, 752 & 1, 004 & 1,211 & I, \(102{ }^{2}\) & 930 \\
\hline 18. & 3 & 8 & 3 & 1. 112 & I, 518 & 1, IU2 & 1,240 & 93 & 1,190 \\
\hline 19. & 3 & 8 & 2 & 1,184 & 1,347 & 1,024 & 1, 160 & \(8{ }^{\text {8 }}\) & \({ }^{1003}\) \\
\hline 20. & 3 & 8 & 0 & 590 & 1,018 & 激; & 1181 & 570 & 834 \\
\hline
\end{tabular}

\footnotetext{
1 Check plot.
}

The yields shown in Table 3 are graphed in Figure 5. The graphs in the first column are based on the yields from plots 1 to 5 , in which ammonia is the variable; those in the second column relate to plots 7 to 13 , in which phosphoric acid is the variable; and those in the last column relate to plots 15 to 20 , in which the variable is potash. The numbers attached to the lines indicate the year, the first year being 1924. The yields on all plots were extraordinarily high in the second year (1925). Where these yields were used they were reduced by a


FlGure 5.-Yields on Tobacco Experimental plots at tifton, Ga.. 1924-1929
These nre the yields shown in Table 3 nnd the averayes used in the emmputalions. The sefarntion into proups of thret years is to avorid confusion of lides. The reasons for selecting the soverni
 and the ant of \(x\) (bhe growth factor) was 1 yer conl, or 10 pounds, of exth of the three plant foods.
factor which reducell the average of all nitrogen plots in 1925 to the average of the first and third years. This was done to avoid exaggeration of yields due to a very unusual season in 1925. The graphs in each column are separated into groups of three each to avoid confusion from so many overlapping lines and to bring out certain relations that are discussed below.

The graphs show a number of things of great interest. In the nitrogen series, curves 1 and 2 are almost identical in form, whereas curve 3 departs from this form very slightly. The graphs for later
years show, strikingly, a cumulative effect of the nitrogen. This effect begins to show plainly the fourth year, and is very marked in each year following, more so the sixth than the fifth year.

The hypothesis is suggested that after the experiment had oontinued for about three years the resulting cumulative effect of the increased organic matter, presumably from the decaying roots and stubble of the larger crops on the more heavily fertilized nots, began to affect the yield on the latter plots. The yields in these later years on the plots receiving much nitrogen were influenced not only by the nitrogen applied from year to year but also by the increasing reserve of organic matter in the soil.

In the lower part of the first column of Figure 5 a curve is shown of tho average yields the fifth and sixth years. This curve has the form of the lower part of a curve representing the effect of varying two or more growth factors. (Fig. 11.) In this case the factors concerned are presumably nitrogen in fertilizer and plant food mude available by the decay of remains from previous crops, the latter increasing from year to year. Had the series included plots receiving more nitrogen, this curve (including the part extending beyond the limits shown in the drawing) would presumably have approximately the form of that of Figure 11.

If the above interpretation is correct, it is obvious that a formula intended to express \(\mathrm{s}^{2}\) aly the relation between yield and quantity of fertilizer applied would not apply to the results of an experiment continued for many years, at least so far as nitrogen is concerned.

In the computations that follow, the ammonia results used are the average results for the first threc years of the experiment (the secondyear results being adjusted as described above), because the yields in later years presumably do not represent merely the relation between. yield and current applications of fertilizer.

The phosphoric acid plots (graphs in second column of fig. 5) show the reverse side of the same picture. The soil on which these plots were Iocated had been heavily fertilized with phosphoric acid for many years. Judging by the first-year results, the soil was supplied with ail the available phosphates the plants could use, so far as effect on yield is concerned, for the plot receiving no phosphates that year yielded aboud as well as the others.

But as time went on, the situation changed markedly. The yield on the plot receiving no phosphoric acid fell off rapidly as the store of available phosphoric acid in the soil was reduced. The yields on this plot were very low and almost identical in ench of the last three years. Apparently the rate of exhaustion of phosphoric acid on the nophosphnteplot (No. 13) was yery rapid during the first four years, and by that time the phosphoric acid supply had nearly reached the minimum that the soil could develop regularly.

Doctor Garner stated that the effect of phosphates on the quality of tobacco is so marked that it pays to use more of this fertilizer constituent than is necessary from the standpoint of yield alone. This effect appears to be produced by influencing the date of maturity of the crop. To secure the best quality of product the crop must be harvested while the weather is still quile warm. Heavy applications of phosphates hasten maturity, and hence result in a product of higher quality.

In general, the longer the growing season of a crop the greater the yield, other things being equal, though exceptions to this rule occur. There is some evidence in the graph at the bottom of the middle section of Figure 5 that yields are slightly lower on those plots receiving the heaviest applications of phosphoric axid. This may be due to the increasing earliness of the crop with increasing doses of phosphates.

So far as yields alone are concerned, the results from the phosphate plots for the first year of the experiment are the only ones that give a. true picture of the fertilizer relations of the soil at the time the experiment began. The yields that year indicate that the crop had all the phosphoric acid it could use in making increased yields. The curve for the average of the last three years (bottom of middle section of fig. 5) indicates, however, that it took about 60 pounds of phosphoric acid \(\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)\) a year to maintain maximum yields. Quality of product may demand more than 60 pounds, possibly at the expense of slightly reduced yields due to earlier maturity of the crop.

In the computations that follow, use is made of average yields on plots 11,12 , and 13 of the phosphoric acid series for the last three years, for the reason that these jields permit an estimate of the reduction in yield due to earlier maturity caused by large phosphate applications, as will be seen later.

The potash curyes in Figure 5 show neither the cumulative effect of heavy applications seen in the ammonia curves nor the exhaustive effect of light appliczitions seen in the phosphoric acid curves. For this reason the average rasults for the six years were used in the computations, with the setiond-year results adjusted as previously stated.

The computed values found in what follows are not to be regarded as final, since these experiments were planned for a different purpose. Particularly the absence of a complete series of check plots affects the results from the standpoint of the present purpose. Nevertheless the results illustrate very satisfactorily the methods of computation required for a series of plots fertilized as suggested later in this paper.

It will be observed that, the nitrogen datia in Table 3 are given in units of ammonia. These data could easily be converted into terms of nitrogen, since a pound of ammonia contains fourteen-seventeenths of a pound of nitrogen. But this would necessitate carrying out extensive calculations with fractional values of \(x\). The computations are therefore carried out on the ammonia basis. In the final results the conversion of pounds of ammonia into pounds of nitrogen may easily be accomplished.

\section*{AMMONIA SERIES}
(Plots 1 (0) 5)
The yields used for the ammonia series were the average yields of plots 1 to 5 for the first three years of the experiment, with secondyear yields reduced as previously explained. A preliminary reading on the value of \(R\) was obtained by the graphic method, and the values of \(M, A\), and \(R\) in the equation \(Y=M-A R^{x}\) were then calculated by the author's new method.
The results were
\[
\begin{aligned}
R & =0.69787 \\
A & =436.02 \\
M & =1323.44
\end{aligned}
\]

The unit of \(x\) used was 10 pounds of ammonia \(\left(\mathrm{NH}_{3}\right)\) per acre. To check the values found, calculated and observed yields were compared as follows:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Plot & 2 & \(R^{2}\) & \(A R=\) & \(Y\) (calculated) & \(Y\) (observed) & \(e\) \\
\hline 5 & 0 & 1.0 & 436.02 & \% 887.42 & P 890 & -2.58 \\
\hline 4 & 2 & . 18702 & 212.35 & 1,111.09 & 1,095 & 16.09 \\
\hline 3 & 3 & . 33488 & 149.19 & 1, 175.25 & 3. 131 & -5.75 \\
\hline 2 & 4 & +23719 & 139.42 & 1. 220.02 & 1. 2418 & -27.98 \\
\hline 2 & 5 & . 16553 & 72.17 & \(1,251.27\) & 3; 231 & 39.27 \\
\hline
\end{tabular}

The greatest residual is slightly more than 2 per cent of the corresponding observed yield, which must be considered fair agreement between theory and practice.

\section*{FHOSPHORIC ACID SERIES}
(Plots 7 to 13)
The effect of phosphates in increasing yields is shown by those plots receiving 0,40 , and 60 pounds of phosphoric acid ( \(\mathrm{P}_{2} \mathrm{O}_{5}\) ). Higher applications gave no further increase; indeed, there appears to be a slight decrease in yield from them. This is presumably due to the effect of heavy applications in hastening the maturity of the crop. By using the yields from 0,40 , and 60 pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}\) some measure of this hastening effect can be obtained. The constants of the yield equation are, therefore, calculated from the yields of those plots receiving 0,40 , and 60 pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}\).

The observation equations based on these plots are:
\[
\begin{align*}
& \text { Plot } 13, x=0, \quad 504=M-A  \tag{A}\\
& \text { Plot } 12, x=4,1,067=M-A R^{+}  \tag{B}\\
& \text {Plot } 11, x=6,1,143=M-A R^{1} \tag{C}
\end{align*}
\]

There being three equations between the three unknowns, they may be solved directly by the methods of algebra.
Subtracting (A) from (B) and (B) from (C),
\[
\begin{align*}
563 & =A\left(1-R^{4}\right)  \tag{D}\\
76 & =A R^{1}\left(1-R^{2}\right) \tag{E}
\end{align*}
\]

Dividing (E) by (D),
\[
\frac{R^{4}}{1+R^{2}}=0.13499112
\]

The solution of this eguation gives \(R=0.66412\), whence \(R^{4}=0.19453\).
Substituting this value of \(R^{3}\) in (D), and dividing through by ( \(1-R^{\mathrm{y}}\) ),
\[
A=\frac{563}{0.80547}=698.97,
\]
whence, using equation (A) since \(Y_{0}=504.00, M=1202.97^{3}\).
The yields of each of the plots in the phosphoric acid series may now be calculated by the equation
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{as follows} & \multicolumn{7}{|c|}{\(Y=M-A R^{x}\)} \\
\hline & & & & & & & \\
\hline & Put No. & \(x\) & \(\mathrm{ra}^{ \pm}\) & \(A R^{=}\) & Calcuinted & \(Y\) Onserved & \(Y e\) \\
\hline & 13 & 0 & 1. 00000 & 088, 07 & [(x)4, 00 & 504 & 0 \\
\hline & 12 & 4 & - 19955 & 133. 97 & 1,0017.00 & 1,067 & 0 \\
\hline & 11 & 0 & -68580 & 53.97 & 1, 14.3. 00 & 1, 143 & 0 \\
\hline & 10 & 7 & . 05688 & 34.83 & 1, 103, 14 & 1. 133 & 30, 34 \\
\hline & 8 & 8 & . 02513 & 17. 57 & 1,185.40 & \(\mathrm{I}_{1} 124\) & 59.40 \\
\hline & 8 & 10 & . 017 CCO & 11.67 & 1, 191,30 & J, 121 & 70.30 \\
\hline & 7 & 12 & , 00738 & f. 34 & 1, 267.83 & 1,137 & 60.83 \\
\hline
\end{tabular}

\footnotetext{
In etfuation ( 1 ), \(N\) is the theoretical maximum yield valuo of 7 , while at is the heoretical maximum Increase in yleid irom \(x=0\); hence, if \(Y 0\) represont the yleid at \(x=0, ~ M=A+Y\).
}

The residuals (e) in the \({ }^{\text {Inst }}\) column presumably show the decrease in yield due to earlicr maturity from the heavier applications of phosphates. This is doubtless more than compensated by increase in quality, and consequently in pere.

\section*{POTASF SERIES}

\section*{(PloLs 15 t 20 )}

The potash plots (last section of fig. 5) show neither the cumulative effect of large doses as the ammonia plots do, nor the gradual depletion on the lightly fertilized plots as the phosphoric acid plots do. The yields, however, are relatively irregular, and the values of \(M\), \(A\), and \(R\) calculated from them are less relinble than are those from the other series. In the absence of the trends above referred to, the 6 -year average yield of each plot was used in the computations, the yields in 1925 being reduced to make the average that year comparable with the average of the first and third years.

The constants were evaluated by the author's new method, with the following result:
\[
\begin{gathered}
R=0.64364 \\
A=492.61 \\
M=1,24.85
\end{gathered}
\]

In these computations 10 pounds of potash \(\left(\mathrm{K}_{2} \mathrm{O}\right)\) was used as the unit of \(x\).

From the above values the yield of each plot may be calculated from the usual yield equation, as follows:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline PlotiNo. & I & \(R^{*}\) & \(A R^{\prime}=\) & Culumated \(Y\) & Onserved Y & \(r\) \\
\hline 20 & 0 & 1. 000000 & 492, 61 & 324 & TSI & 1. 24 \\
\hline 19 & 2 & . 41427 & 2\%. 07 & 1,020. 75 & 1, 624 & \(-.22\) \\
\hline 18 & 3 & . 200004 & 131. 3.5 & 1, 083.50 & 1,110 & \(-16.50\) \\
\hline 17 & 4 & + 17162 & 84. 54 & f, 140.31 & 1, 125 & 15.31 \\
\hline to & 6 & . 07110 & 35.02 & \(1,189.83\) & 1,175 & 14. 83 \\
\hline 15 & 8 & +02045 & 14.51 & J, 210.34 & 1,225 & -14.60 \\
\hline
\end{tabular}

Having worked ont the constants of equation (1) for each of the fertilizer elements separately, the next step is to apply the results to equation (7), in which all three elements are variable. This is done in the following pages.

Data are now at hand for computing the quantities of available plant-food elements in the soil of this experimental field. These data, from the three preceding series, are:

Ammonia series: \(M=1,323.44, R=0.69787\), and \(A=436.02\),
Phosphoric acid series: \(M=1,202.97, R=0.66412\), and \(A=698.97\).
Potastl series: \(M=1,224,85, R=0.94364\), and \(A=492.61\).
Substituting these values in equation (5), and remembering that the unit of each element is 10 pounds, we find that the values of \(q\) (the quantity available in the soil) for ench of the series are

Ammonia scries, 30.89 pounds \(\mathrm{NH}_{3}\).
Phosphoric acid series, 13.25 pounds \(\mathrm{P}_{2} \mathrm{O}_{5}\).
Potash series 20.66 pounds \(\mathrm{K}_{2} \mathrm{O}\).

\section*{all three varlableg taken together}

The three values of \(A\) found above are the limiting values of \(Y\), (1), when amomnia alone varies, and phosphoric acid and potash are held constant at 80 and 50 pounds per acre, respectively; (2), when
phosphoric acid varies and ammonia and potash remain constant at 30 and 50 pounds per acre, respectively; and so on.

It is necessary now to find the value of \(A\) which represents the limiting value of \(Y\) when all three of the fertilizer constituents vary. The computations involve finding the value of ( \(1-R^{x}\) ) for many values of \(x\). To save labor, a table of values of \(\left(1-R^{x}\right)\) for all values of \(x\) likely to occur in such computations is appended. (Table 19). It is used in a manner similar to that in which a logarithmic table is used. \({ }^{4}\) Values of \(x\) are given in the first column and the corresponding values of \(1-R^{x}\) in the columns to the right. The figure in the second decimal place in the value of \(x\) is placed at the head of a column of values of \(1-R^{x}\), as in a table of logarithms. The table is calculated for \(R=0.8\). Hence it is necessary to convert the units of ammonia, phosphoric acid, and potash thus far used into new units that will give each \(R\) the value 0.8 .

If \(R\) represent the ratio of any serics of yield increments due to successive unit increnses in a given growth factor, then the number, \(u\), of such units that must be used as a new unit in order that \(R\) shall equal 0.8 is the value of \(u\) in the equation \(R^{u}=0.8\).

Passing to logarithres, \(u \log R=\log 0.8\), whence
\[
\begin{equation*}
u=\frac{\log 0.8}{\log R}=\frac{-0.0969100}{\log R} \tag{6}
\end{equation*}
\]

The values found for \(R\) in the preceding work, with their logarithms, are

> Ammonin series; \(R=0.69787\); and \(\log R=-0.156225 .5\)
> Phosphoric acid serios: \(R=0.66412\); and lag \(R=-0.177534\),
> Potash series: \(R=0.64364 ;\) and \(\log R=-0.1913570\).

Substituting these values of \(\log R\) in equation ( 6 ) above, we obtain the following values of \(u\) : Ammonia series, 0.6203 ; phosphoric acid series, 0.5452 ; potash serics, 0.5064 . Since the old units of ench growth factor are 10 pounds each, the equivalent new units are respectively
\[
\text { Ammonia serics, } 6.203 \text { pounds. }
\]

Phosphorie acid series, 5.452 pounds.
Potash scries, 5.064 pounds.
The most general form of the yield equation, when all three fercilizer constituents vary, is
\[
\begin{equation*}
y=A\left(1-R^{n+a}\right)\left(1-R^{p+b}\right)\left(1-R^{k+c}\right) \tag{7}
\end{equation*}
\]

The derivation of this equation is given later. The significance of the quantities involved is as follows:
\(y=\) yield per acre.
\(A=\) limit appronched by \(y\) as \(a, b\), and \(c\) increase.
\(R=\) the ratio of the series of inerements in yield for successive unit increments in \(a, b\), or \(c\), the size of the unit in each case being such as to make \(R=0.8\).
\(n, p\), and \(k=\) the respective quantities, in the above units, of nitrogen (ammonia in the case under consideration), phosphoric acid, and potash available in the soil.
\(a, b\), and \(c=\) the respective quantities of these three fertilizer elements in the fertilizer applied.

\footnotetext{
- The use of this table is explained on p. 60.
}

To use equation (7) it is necessary to express \(n, p, k, a, b\), and \(c\) in terms of the new units mentioned above. To aid in doing this, some of the data developed in preceding pages are here brought together.

For \(n\) and \(a\) the new unit is 6.203 pounds of \(\mathrm{NH}_{3}\).
For \(p\) and \(b\) the new unit is 5.452 pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
For \(k\) and \(c\) the new unit is 5.064 pounds of \(\mathrm{K}_{2} \mathrm{O}\).
The value of \(n, 30 . \varepsilon 9\) pounds, is 4.98 new units.
The value of \(p, 13.25\) pounds, is 2.43 new units.
The value of \(h, 20.66\) pounds, is 4.08 new units.
Table 4 shows in the first group of three columns the plant-food elements applied in fertilizer to each of Garner's plots, in units of 10 pounds (1 per cent of 1,000 pounds). In the next group the same quantities are shown in pounds (per acre, of course). In the third group these quantities are expressed in the new units, narnely, units of the magnitude required to make theratio ( \(R\) ) of eachseries equalo.8.

Table 4.-Plant food available on cach plot in the tobacco experiments
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{Plot No.} & \multicolumn{9}{|c|}{Phant foxi mphiect, in terms of-} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{Total arallhblo
nes
Units)
(in}} \\
\hline & \multicolumn{3}{|l|}{Units of 10 founds} & \multicolumn{3}{|c|}{Pounds} & \multicolumn{3}{|c|}{New mits} & & & \\
\hline &  & \({ }_{2} \mathrm{p}_{2} \mathrm{O}_{5}\) & \(\stackrel{\mathrm{K}_{2} \mathrm{O}}{8}\) & \(\mathrm{Nif3}_{\substack{ \\0}}\) & \(\mathrm{PaO}_{\mathrm{b}} \mathrm{O}\), & \(\mathrm{K}_{8} \mathrm{O}\) & \(\mathrm{NH}_{4}\) & \(\mathrm{PaO}_{6} \mathrm{O}\) s, & \(\mathrm{K}_{4} \mathrm{O}\), & \[
\underset{n+n,}{N_{1},}
\] & \begin{tabular}{l}
\(\mathrm{P}_{1} \mathrm{O}_{5}\) \\
\(p+b\) \\
\hline\(+b\)
\end{tabular} & \(\underset{\substack{\mathrm{K} 2 \mathrm{O} \\ k+c}}{ }\) \\
\hline & 5 & 8 & 5 & 50 & 80 & \({ }_{5}^{6}\) & 8.06 & \({ }^{14.67}\) & 9. 87 & \({ }^{13.04}\) & 17.10 & 13.85 \\
\hline & \({ }_{3}^{4}\) & 888888 & 5 & 30 & \({ }_{80}^{80}\) & 50 & 9.45 & & \({ }_{8.87}^{9.87}\) & 11.43 & \begin{tabular}{l}
17.10 \\
17 \\
\hline 10
\end{tabular} &  \\
\hline & 2 & 8 & 5 & 20 & \(8{ }_{80}\) & 50 & 3.22 & \({ }_{14,67}\) & \({ }^{6.87}\) & 8.20 & 1710 & 13.35 \\
\hline & \(\bigcirc\) & \({ }_{8}^{8}\) & 5 & 0 & \({ }_{80}^{80}\) & 5 & & \({ }_{0}^{15.67}\) & \({ }_{0}^{0.87}\) & 4.98 & \({ }^{17} 1.10\) & - 13.95 \\
\hline & 3 & 12 & 5 & 30 & 120 & 50 & 4.84 & 220 & 9. 87 & 9. 8.18 & 24. 44 & 13. 85 \\
\hline & 3 & 989 & 5 & \({ }_{3}^{30}\) & \({ }_{90}^{100}\) & 5 & \({ }^{4} 4.54\) & \({ }_{18}^{18.54}\) & 8.87 & ¢9.82 & 20.77 & +13.95 \\
\hline & 3 & 7 & 5 & 30 & \({ }_{70}\) & 50 & 4.8 & 12.84 & \({ }_{8.87}\) & \({ }_{8.82} 9\) & \({ }^{38} 81\) & \({ }_{13,05}^{13.93}\) \\
\hline & 3 & 4 & 5 & \({ }_{30}^{30}\) & 6 & 500 & & \({ }_{7}^{41.01}\) & \({ }^{9.87}\) & \({ }^{\text {P }} 888\) & \({ }^{138} 4\) & 33.95 \\
\hline \({ }^{3} 8\) & 3 & 0 & 5 & 330 & 0 & 50 & & \({ }_{0}^{7.34}\) & \({ }_{8.87}^{9.87}\) & \({ }_{9.82}^{8.82}\) & \({ }^{9} 2.75\) & \({ }_{13.25}^{13.95}\) \\
\hline & \({ }_{3}^{8}\) & \(\stackrel{8}{8}\) & 8 & 30 & 80 & 8 & & 0 & \({ }^{0} 5.80\) &  & \(\xrightarrow{2}\) & 4.08 \\
\hline & \({ }_{3}\) & 8 & 9 & 30 & 80 & 60 & 4.81 & 14.67 & 11.85 & \({ }^{1.82}\) & 27.10 & 15.03 \\
\hline & 3 & 8 & \({ }_{3}^{4}\) & 30
30
30 & \({ }_{80}^{80}\) & 40
30 & ci. 4.84 & 14.67 & \({ }^{7} 7.00\) & 9.82 & \({ }^{17} 170\) & 11.98 \\
\hline & 3 & 8 & & \({ }^{31}\) & col & 20 & 4.84 & 14.67 & 3.05 & & 1-10 & 8.01 \\
\hline & 3 & s & 0 & 30 & 80 & 0 & 4. 84 & 1.1 .67 & 0 & 9. 82 & 17. 10 & 4.08 \\
\hline
\end{tabular}

1 guantity available in the soll phus quantity naphed in fortitizer.
2 Cheek plots; no fertilizer apphied.
In the last group of three columns the numbers are obtained by adding the value of \(n\), which is 4.98 in the new units, to ench number in the \(a\) column of the preceding group, the value of \(p\), or 2.43 , to each number in the \(b\) column, and the value of \(k\), or 4.08 , to each number in the \(c\) column.

The last group of three columns thus shows the total quantity of each food element available to the crop on each of the 20 plots. It includes both the plant-food elements in fertilizers applied ( \(a, b, c\) ), and those available in the soil before the fertilizers were applied \((n, p, h)\).

It is now possible by means of equation (7), Table 4, and Table 19, to find a value of the 4 of equation ( 7 ) for each of the 20 plots. In the case of plot 1 , for instance, equation (7) becomes
\[
\begin{equation*}
y=A\left(1-R^{13.0^{4}}\right)\left(1-R^{17.19}\right)\left(1-R^{13.05}\right) \tag{A}
\end{equation*}
\]
the value of \(R\) being 0.8 . From Table 19 it will be found that
\[
\begin{aligned}
& 1-R^{13.04}=0.94551 \\
& 1-R^{17.10}=0.97798 \\
& 1-R^{13.95}=0.95553
\end{aligned}
\]

The calculated yield for this plot (p. 20) is \(1,251.27\) pounds. Substituting this value and the above values of the three parentheses in equation (A) above, transposing both members, and then dividing through by the parentheses
\[
A=1,251.27 /(0.94551)(0.97798)(0.95553)=1,416.15 \text { pounds }
\]

Table 5.-Computation of the value of A for the plots of the tobacco cxperiments \(\left[A=\frac{\text { Calculated yield }}{\text { Product }} \frac{y}{\left(1-R^{n+u}\right)\left(1-\Omega^{p+b}\right)\left(1-R^{2}+\tau\right)} . \quad\right.\) Data of Table 4 \(]\)


1 These yields are those previously calenthted. See text for each series of plots.
: This is ( \(1-R\) R for the series. Sce last group of columas of Table 4 for the several values of \(x\) to be used in entering Table 10 ,

In a similar manner the value of \(A\) for each of the remaining plots was obtained, the results for all except the two check plots being shown in Table 5.

The slight variations in the value of \(A\) in the ammonia series, from 1,415.57 to 1,416.15, are due to omission of decimals in the preceding computations. A similar remark applies to the \(A\) of the phosphate series, plots 7 to 13 , and to that in the potash series, plots 15 to 20.

There are thus three values of \(A\), mamely -
the extreme difference between which is about 0.5 per cent of their magnitude.

In arriving at each of these values, three factors were multiplied together. In each case, one factor is derived from data wholly independent of the others. The fact that the three values agree so closely indicates a high degree of fitness in the theory of the yield equation
\[
\begin{equation*}
y=A\left(1-R^{n+a}\right)\left(1-R^{x+b}\right)\left(1-R^{k+c}\right) \tag{7}
\end{equation*}
\]
from which the values are derived.

\section*{FINAL CALCULATED YJELDS}

Using the average \(u f\) the three values of \(A\) in the above equation, and multiplying this by each of the "products" in the next to last column, Table \(5_{\text {s }}\) the final calculated yield of each of the experimental plots is obtained. In Table 6 these are compared with the observed yields.

Table 6.-Final calculated yield of each plot compared with the observed yield
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Plot \(\mathrm{N}_{\text {O }}\) & Calculated \(Y\) & observed & \(c\) & \(100 \mathrm{e} Y\) & Plot No. & \begin{tabular}{l}
Calctr- \\
hated \(Y\)
\end{tabular} & \[
\frac{\text { Observed }}{Y}
\] & \(\epsilon\) & \(100 \mathrm{e} / \mathrm{Y}\) \\
\hline & 1,250 & 1,231 & 29 & 1,5 & 11. & \(1{ }_{1} 141\) & 1,143 & -2 & -. 2 \\
\hline & 1,215 & 1,248 & \(-20\) & -2. 3 & 12 & 1,005 & 1, 0037 & -2 & \(-.2\) \\
\hline & 1,174 & 1,181 & -7 & \(-6\) & 13 & 502 & 504 & -2 & \(-.4\) \\
\hline & 1, 110 & 1,095 & 15 & 1.4 & 14. & & & & \\
\hline & 887 & 890 & -3 & -. 3 & 15. & 1,214 & 1.225 & -11 & \(-.9\) \\
\hline & & & & & 16. & 1,104 & 1, 175 & 19 & 1.6 \\
\hline & 1,195 & 1, 137 & 58 & 5. 1 & 17. & 1. 144 & 1, 12i & 19 & 1.7 \\
\hline & 1,189 & 1,121 & 68 & 6. 1 & 18 & 1, 097 & I, 110 & -13 & -1.2 \\
\hline & 1, 183 & 1,120 & 57 & 5.1 & 19 & 1,024 & I, 021 & 3 & . 3 \\
\hline & 1,181 & 1,133 & 28 & 2.5 & 20. & 734 & 731 & 3 & . 4 \\
\hline
\end{tabular}
\({ }^{1}\) Cheak plot.
The column headed \(e\) in Table 6 shows the difference between the final calculated yields aud the observed yields. In the next column these differences are expressed as percentages of the observed yields.
Plots 7 to 10 of the phosphoric acid series show what is presumably the reduction in yield due to the effect of large doses of phosphate, a reduction probably much more than compensated for by increase in quality of product (tobacco). Thus, on plot 7 the calculated yield is 58 pounds more than the observed yielt. This is presumably the reduction in yield due to the earlier maturity caused by the large application of phosphoric acid.
Of the remaining plots, 13 show residuals of less than 2 per cent, 8 of them less than 1 per cent. The remaining residual is 2.3 per cent.

This must be regarded as nothing less than remarkably close agreement between calculated and observed yields.

\section*{MELD OF CHECK PLOTS}

Two plots, Nos. 6 and 14, received no fertilizer applications. The yield calculated for these plots by the yield formula is only 238 pounds, whereas the actual average yield for the last three years on plot 6 was 503 pounds, and on plot 14, 498 pounds. The reason for this discrepancy is that the lower part of the phosphate curye represents yield increases due in part to current applications and in part to varying rates of phosphate exhaustion. Extrapolations down-
ward by this curve do not give correct results. But these disturbing conditions do not exist for the upper part of this curve, so that extrapolation upwards should give correct results.

If the soil had not been so fully stocked with available phosphates at the beginning of the experiment, and if the first-year results alnne had been used in the computations, then the yield of the check plots could have been calculated by the yield equation.

A hint as to the rate of phosphate exhaustion on plot 13 , which received no phosphates, but did receive ammonia at the rate of 30 pounds and potash at the rate of 50 pounds per acre, is seen in Figure 6 , where a comparison is riven between the yields on plot 13 , plot 11 , which received phosphoric acid at the rate of 60 pounds per acre, along with 30 poumes of ammonia and 50 pounds of potash, and plot 14, which received no fertilizers.


Figure 6.-Yields of Tobacco on Three Plots in the Phosphoric AcID SERIES
Flot 13 gives a hint as to the rate of exaustion of phosphoric acid. Wad it received ro ammonin or potash, fis yield in the sirth year presumally weuld have been 238 pounds, indicated by the arrow. Plot 14 received no fertilizer. Plot 11 roceived conpleto ertilizer, 6 p pounds jhosphoric actu along wih 30 pounds of ammonia and 50 pounds of potash.

By the fourth year the yield on plot 13 had fallen about to the level of that on plot 14, and remained there during the remainder of the period. Had it received no ammonia or potash the last three years, its yield the last year would presumably have been 238 pounds, indicated by the arrow.

The exhaustion of phosphates in the case of plot 13 was presumably much greater than in the case of plot 14, for during the early years of the experiment the yields on plot 13 were much greater than on plot 14, neither plot having received any phosphates.

While, as stated above, the lower part of the phosphate curve (middle section, fig. 5 , at bottom) does not give a true picture because of the nature of the data on which it is based, the same can not be said of the other curves or of the upper part of this one. The upper part of each of the three curves presents what is presumably a true picture. This being the case, extrapolation upwards by means of the yield formula should give reliable results. The close agreement of
the maximum possible yields for the three series tends to confirm this statement.
For a series of experiments planned as suggested later in this bulle-tin, and carried out on a uniform scil, the equation, if the theory on which it is based is true, should enable one to extrapolate either upward or downward indefinitely. The formula, of course, ceases to apply when the fertilizer application becomes so large as to be injurious to the crop. The effect of phosphates in hastening maturity may also cause departures of calculated from observed yields. The curve therefore offers a means of determining the reduction in yield due to the earlier maturity.

\section*{OPTIMUM FERTTLIZER FORMULAS}

A method of determining the most profitable quantity of ammonia \(\left(\mathrm{NH}_{3}\right)\) and of potash ( \(\mathrm{K}_{2} \mathrm{O}\) ) to use with any given quantity of phosphoric acid ( \(\mathrm{P}_{2} \mathrm{O}_{5}\) ) follows.

Certain of the items of cost per unit of product are proporticnal to area. These incluce plowing, preparation of seed bed, planting, tillage, and sometimes part of the work of harvesting. Thus, in the case of sugar beets or potatoes, the cost of rumning the digger is proportional to acreage.

It is true that the amount of work done in preparing seed bed and in tillage, spraying, etc., may vary widely, and the amount and charncter of such work does affect the yield; but on most farms there are fixed standards for such tasks, and the work done is strictly proportional to acreage. The formulas developed below apply only to cases in which work of this lind is standardized and varies with acreage.

Certain unit costs yary strictly with yield per acre. Thus, grading, sacking or crating, hauling to storage or to market, and the like depend on yield, not on acreage.

Certain other costs are intermediate in character between the above two classes. Thus, in husking corn, for instance, the amount of labor required depends partly on area and partly on yield per acre. It costs slightly more per bushel to husk a field of corn yielding 40 bushels per acre than one yielding 60 or 80 bushels.

In considering these intermediate items from the standpoint of optimum applications of the various fertilizer ingredients it should be remembered that, in most cases, only slight variations in yield are involved. Thus, it may be a question whether a fertilizer application necessary to obtain a yield of 79 bushels or 80 bushels of corn would be most profitable. The varintion in cost per bushel as between these yields for the one item of husking is too small to measure. There will therefore be no serious error if such costs are regarded as varying with yield. This point is discussed later in some detail.
In the case of some crops there are other factors of cost that vary partly with area and partly with yield. A heavy crop of sugarcane, for instance, requires less tillage and weeding than a light crop (8). Even in this case, however, when the question is between a yiold of 19 tons and one of 20 tons, the difference in cost of this item is slight, and may be neglected without serious error.

In what follows the argument proceeds as if all items of cost mny be regarded as varying with either area or yield per acre. In some cases this will involve a small degree of error, but not sufficient to
vitiate the results, as will be seen later. In the case of sugar beets, where the harvesting is done by contract, at so much per acre, which -is a common practice, the error does not enter.

In the subsequent discussion use is made of the following symbols:
\(a=\) units of available ammonia ( \(\mathrm{NH}_{3}\) ) in fertilizer applied.
\(b=\) units of available phosphoric acid ( \(\mathrm{P}_{2} \mathrm{O}_{6}\) ) in fertilizer.
\(c=\) units of available potash ( \(\mathrm{K}_{2} \mathrm{O}\) ) in fertilizer.
\(a^{\prime}=a+q^{\prime}\);
\(b^{\prime}=b+q^{\prime \prime}\)
\(c^{\prime}=c+g^{\prime \prime \prime}\).
\(C=\) sum of acre costs proportional to area.
\(H=\) costs per unit proportional to yield (the harvesting and marketing costs).
\(k=\) units of available potash in an acre of soil.
\(m=0.434,2945\), -the modulus of the common system of logarithtas.
\(M=\) maximum limit of \(y\).
\(n=\) units of available ammonia in an acre of soil.
\(p=u n i t s\) of available phosphoric acid in an acre of soil.
\(f=\) profit per acre.
\(q^{\prime}=\) units of \(\mathrm{NH}_{3}\) absorbed per acre.
\(q^{\prime \prime}=\) units of \(\mathrm{P}_{2} \mathrm{O}_{5}\) absorbed per aure.
\(q^{\prime \prime \prime}=\) units of \(\mathrm{K}_{2} \mathrm{O}\) absorbed per acre.
\(Q=m / t M(-\log R)\).
\(r^{\prime}=\) cost of a unit of ammonia (including cost of applicntion).
\(r^{\prime \prime}=\) cost of a unit of phosphorie acid (ineluding cost of application).
\(r^{\prime \prime \prime}=\) cost of a unit of potash.
\(R=\) ratio of series of increments in \(\psi\) due to successive unit increments of nitrogen, phosphoric acid, or potash, \(=0.8\).
\(R^{\prime}=R_{1_{1}}=R^{n+a}\).
\(R^{\prime \prime}=R_{x_{2}}=R^{p+t}\).
\(R^{\prime \prime \prime}=R^{x_{3}}=R^{k+c}\).
\(s=r^{\prime}\left(a^{\prime}+r^{\prime \prime} b^{\prime}+r^{\prime \prime \prime} c^{\prime}=\right.\) cost of fertilizer per acte.
\(s^{\prime}=r^{\prime} R^{\prime \prime}+r^{\prime \prime}\left(1-R^{\prime \prime}\right)\),
\(s^{\prime \prime \prime}=r^{\prime \prime \prime} R^{\prime \prime}+r^{\prime \prime}\left(1-R^{\prime \prime}\right)\).
\(S^{\prime}=1-R^{r}\).
\(S^{\prime \prime}=1-R^{\prime \prime}\).
\(S^{\prime \prime \prime}=1-R^{\prime \prime \prime}\).
\(v=V-H=\) value of a unit of product less unit costs proportional to yieid (harvesting and marketing costs).
\(V=\) value at market of a unit of product.
\(x^{\prime}=\) units of \(\mathrm{NH}_{s}\) per acre \(=n+\) a.
\(z^{\prime \prime}=\) units of \(\mathrm{P}_{2} \mathrm{O}_{5}\) per acre \(=p+b\).
\(x^{\prime \prime \prime}=\) units of \(K_{2} O\) per acre \(=k+c\).
\(y=\) yield per acre.
Let \(P=\) profit per acre. Then
\[
\begin{align*}
P & =V y-H y-r^{\prime} a^{\prime}-r^{\prime \prime} b^{\prime}-r^{\prime \prime \prime} c^{\prime}-C \\
& =v y-r^{\prime} a^{\prime}-r^{\prime \prime} b^{\prime}-r^{\prime \prime \prime} c^{\prime}-C^{\prime} \tag{A}
\end{align*}
\]

Considering first the most profitable application of ammonia, the problem is to find the value of \(a^{\prime}\) that will render \(P_{\text {a maximum. This }}\) value is obtained by placing equal to zero the partial derivative of \(P\) with respect to \(a^{\prime}\).

Differentiating (A) with respect to \(a^{\prime}\), and noting that, since \(a^{\prime}=\) \(a+q^{\prime}, \mathrm{d} a^{\prime}=\mathrm{d} a\),
\[
\begin{equation*}
\frac{\mathrm{d} P}{\mathrm{~d} a}=v \frac{\mathrm{~d} y}{\mathrm{~d} a}-r^{\prime}=0 \tag{B}
\end{equation*}
\]

Now \(y=M S^{\prime} S^{\prime \prime} S^{\prime \prime \prime}\), in which \(M\) has the same significance as the \(A\) of formula (7) on page 22. Substituting this value of \(y\) in (B) and
performing the indicated differentiation, the result may be reduced to the form shown in equation (C) below.
\[
\begin{equation*}
R^{\prime} S^{\prime \prime} S^{\prime \prime \prime}=\frac{m r^{\prime}}{v M(-\log \bar{R})} \tag{C}
\end{equation*}
\]
in which \(m=0.4342945\), the modulus of the common system of logarithms.
Letting \(Q=m / v M(-\log R)\), this may be written
\[
\begin{equation*}
R^{\prime} S^{\prime \prime} S^{\prime \prime \prime}=Q r^{\prime} \tag{D}
\end{equation*}
\]

The corresponding equations for \(\mathrm{P}_{2} \mathrm{O}_{5}\) and \(\mathrm{K}_{2} \mathrm{O}\), obtained in a similar manner, are
and
\[
\begin{align*}
& S^{\prime} R^{\prime \prime} S^{\prime \prime \prime}=Q r^{\prime \prime}  \tag{E}\\
& S^{\prime} S^{\prime \prime} R^{\prime \prime \prime}=Q r^{\prime \prime \prime} \tag{F}
\end{align*}
\]

To solve these equations for \(R^{\prime}\) and \(R^{\prime \prime \prime}\) in terms of \(R^{\prime \prime}\), multiply (D) by ( \(S^{\prime}\) ), (E) by ( \(S^{\prime \prime}\) ), and (F) by ( \(S^{\prime \prime \prime}\) ); and divide (D) by \(R^{\prime}\), (E) by \(R^{\prime \prime}\), and ( F ) by \(R^{\prime \prime \prime}\). This gives
\[
\begin{align*}
& S^{\prime} S^{\prime \prime} S^{\prime \prime \prime}=Q r^{\prime}\left(N^{\prime \prime}\right) / R^{\prime}  \tag{G}\\
& S^{\prime} S^{\prime \prime} S^{\prime \prime \prime}=Q r^{\prime \prime}\left(S^{\prime \prime}\right) / R^{\prime \prime}  \tag{H}\\
& S^{\prime} S^{\prime \prime} S^{\prime \prime \prime}=Q r^{\prime \prime \prime}\left(S^{\prime \prime \prime}\right) / R^{\prime \prime \prime} \tag{I}
\end{align*}
\]

Equating the second members of \((G)\) and \((H)\),
\[
Q r^{\prime}\left(S^{\prime}\right) / R^{\prime}=Q r^{\prime \prime}\left(S^{\prime \prime}\right) / R^{\prime \prime}
\]

Multiplying through by \(R^{\prime} R^{\prime \prime}\), and dividing through by \(Q\),
\[
r^{\prime} R^{\prime \prime}\left(S^{\prime \prime}\right)=r^{\prime} R^{\prime}\left(S^{\prime \prime}\right)
\]

Restoring the values of \(S^{\prime}\) and \(S^{\prime \prime}\),
\[
r^{\prime} R^{\prime \prime}-r^{\prime} R^{\prime} R^{\prime \prime}=r^{\prime \prime} R^{\prime}-r^{\prime \prime} R^{\prime} R^{\prime \prime}
\]

Transposing, and changing signs
\[
r^{\prime} R^{\prime} R^{\prime \prime}+r^{\prime \prime} R^{\prime}-r^{\prime} R^{\prime} R^{\prime \prime}=r^{\prime} R^{\prime \prime}
\]

Factoring, \(R^{\prime}\left(r^{\prime} R^{\prime \prime}+r^{\prime \prime}-r^{\prime \prime} R^{\prime \prime}\right)=r^{\prime} R^{\prime \prime}\).
Dividing,
\[
\begin{equation*}
R^{\prime}=\frac{r^{\prime} R^{\prime \prime}}{r^{\prime} R^{\prime \prime}+r^{\prime \prime}\left(1-R^{\prime \prime}\right)}=\frac{r^{\prime} R^{\prime \prime}}{s^{\prime}} \tag{9}
\end{equation*}
\]

Equating the second members of (H) and (I),
\[
Q r^{\prime \prime}\left(S^{\prime \prime}\right) / R^{\prime \prime}=Q r^{\prime \prime \prime}\left(S^{\prime \prime \prime}\right) / R^{\prime \prime \prime}
\]

Proceeding as in the case of \(R^{\prime}\), the value of \(R^{\prime \prime \prime}\) is found to be
\[
\begin{equation*}
R^{\prime \prime \prime}=\frac{r^{\prime \prime \prime} R^{\prime \prime}}{r^{\prime \prime \prime} R^{\prime \prime}+r^{\prime \prime}\left(1-R^{\prime \prime}\right)}=\frac{r^{\prime \prime \prime} R^{\prime \prime}}{s^{\prime \prime \prime}} \tag{10}
\end{equation*}
\]

Equations (9) and (10) now permit the determination of the most profitable quantities of \(\mathrm{NH}_{3}\) and \(\mathrm{K}_{2} \mathrm{O}\) to use with any quantity of \(\mathrm{P}_{2} \mathrm{O}_{5}\) within the toxic limit of these substances. The data required are as follows:

\footnotetext{
\(r^{\prime}=\$ 1.088=6.203\) pounds of \(\mathrm{NH}_{3}\) at \(\$ 0.1754=\) cost of a unit of \(\mathrm{NH}_{3}\).
\(r^{\prime \prime}=\$ 0.393=5.452\) pounds of \(\mathrm{P}_{2} \mathrm{O}_{2}^{\prime}\) at \(\$ 0.0720=\) cost of a unit of \(\mathrm{P}_{2} \mathrm{O}_{5}\).
}
```

$r^{\prime \prime \prime}=\$ 0.385=5.064$ pounds of $\mathrm{K}_{2} \mathrm{O}$ at $\$ 0.0760=$ cost of a unit of $\mathrm{K}_{2} \mathrm{O}$.
$u_{1}=\mathrm{R}$ unit. f $\mathrm{NH}_{3}=6.203$ pounds.
$u_{2}=\mathrm{a}$ unit $\left\{\mathrm{P}_{2} \mathrm{O}_{5}=5.452\right.$ pounds.
$u_{3}=\mathrm{a}$ unit of $\mathrm{K}_{2} \mathrm{O}=5.064$ pounds.
$n=4.98$;
$p=2.43$;
$k=4$.08.

```

The values are worked out for several cases in Table 7, the procedure of which is illustrated by the column headed "For \(b=20\) pounds"; that is, if 20 pounds of phosphoric acid, \(\mathrm{P}_{2} \mathrm{O}_{5}\) are to be used, what are the corresponding most profitable quantities of ammonia, \(\mathrm{NH}_{3}\), and of potash, \(\mathrm{K}_{2} \mathrm{O}\), to use?
\begin{tabular}{|c|c|}
\hline Convert pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}\) into units: \(20 \div 5.452, b_{\text {_ }}\) & - 3.67 \\
\hline & \\
\hline Add these, giving the \(x\) of the & \\
\hline In Table 19 find ( \(1-R^{x}\) ) at 6.10 , or \(1-R^{\prime \prime}\) & 74364 \\
\hline whence, subtractiag fron & 25636 \\
\hline Mutapl & 27892 \\
\hline utipy, ( - \({ }^{\prime \prime}\) ' by \(r^{\prime \prime}\), which is 0.393 , giving & 29225 \\
\hline \% 7 & \\
\hline viding \(T R\) ljoy gives \(R\) & \\
\hline whenee, subtracting from 1 , \(1-R^{\prime}\), or & \\
\hline cree, & \\
\hline & \\
\hline
\end{tabular}

Since \(a\) is negative, it does not pay to use any ammonia, \(\mathrm{NH}_{3}\), in this case when only 20 pounds of phosphoric acid are applied.

The correct quantity of potash is calculated in the lower section of the table. The reader should now be able to follow the procedure indicated. When 20 pounds of phosphoric acid are used, 10.6 pounds of potash are indicated as the most profitable application.

Table 7.-Computation of most profitable quantities of ammonia and of potash to use with given quantities of phosphoric acid
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Step in con & \[
\substack{\text { Far } \\ \text { for } \\ \text { founds }}
\] & \[
\begin{gathered}
\text { For } \\
\text { for } \\
\text { pornds }
\end{gathered}
\] & \[
\begin{gathered}
\text { For } \\
\text { boter } \\
\text { pouds }
\end{gathered}
\] & \[
\underset{\substack{\text { For } \\ \text { bota } \\ \text { pounds }}}{ }
\] & pounds & \[
\begin{gathered}
\text { cor } \\
\text { Bound } \\
\text { pound }
\end{gathered}
\] & \[
\left\lvert\, \begin{aligned}
& \text { For } \\
& b=0 \\
& \text { poxile } \\
& \text { poadd }
\end{aligned}\right.
\] & \({ }_{\substack { \text { a } \\ \begin{subarray}{c}{\text { forfor } \\ \text { pounds }{ \text { a } \\ \begin{subarray} { c } { \text { forfor } \\ \text { pounds } } } \\{\hline}\end{subarray}}\) \\
\hline & \% 0.3 , 3 & \({ }_{4}^{1.85}\) & \({ }^{3.67}\) & \({ }^{7}\) & & & & \\
\hline &  & 340 & & & -95011 & \({ }^{109}\) & & \\
\hline T, & cossisse & - &  & Stis & -06438 & \({ }^{0239365}\) & -1056 & 0 \\
\hline sfort \({ }^{\text {a }}\) & 100 & (exioz & 5711 & -47205 & - & 4631 & & \\
\hline \({ }_{1}\) & 5 & (extil & & & \({ }^{21292}\) & & & 析 \\
\hline  & -1.51 & -2.03 & 3.91 & & \({ }^{8}\) & & & 12 \\
\hline andin & -21.5 5 & & & & & & & \({ }^{24} 26\) \\
\hline  & & & & & & & \({ }^{\text {cosic }}\) & \\
\hline \(1-R^{\underline{\prime \prime}}\) & & & & Loss & \({ }_{\text {a }}\) & & & \\
\hline  & & & & & & & ceis 28.8 & 24. 52.8 \\
\hline pounds.. & \[
-3
\] & 1.2 & & & & & & \\
\hline
\end{tabular}

1 Find in the previous work or in Table is or compute as indicated in lext.
Figure 7 was constructed from data in Table 7 and additional data similarily calculated. The abscissas of the figure are pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}\) per acre. For any one abscissa, the ordinates of the two curves show the quantities, in pounds per acre, of \(\mathrm{NH}_{3}\) and \(\mathrm{K}_{2} \mathrm{O}\) to use for greatest
profit. Thus, at 70 pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}\) the ordinate of the \(\mathrm{NH}_{3}\) curve is 37.3 ; of the \(\mathrm{K}_{2} \mathrm{O}\) curve, 57. The exact quantities of \(\mathrm{NH}_{3}\) and \(\mathrm{K}_{2} \mathrm{O}\) to use with any quantity of \(\mathrm{P}_{2} \mathrm{O}_{5}\) are easily calculated by the method of Table 7.

The method of converting quantities of fertilizer constituents per acre into fertiizer formulas may be illustrated from the data in any column of Table 7. In the column headed "For \(b=60\) pounds" for instence, it is shown that the optimum quantities of ammonia and


FIGURE 7.-QUANTITY OF AMMONIA AND OF POTASH ASSOCIATED WITH PHOSPHORIC ACID IN THE OFTIMUM FERTILIZER ANALYSIS FOR TOBACCO AT TIFTON, GA.

The compatation showed the optimun fertilizer formala for tohateo int this series of experiments.
 tion of phosphoric acid tuby be read direetly. Thus, ammonia will rat jay if less than \(3 \mathbf{3}\) jounds of \(\mathrm{P}_{2} \mathrm{O}_{5}\) ure used.
potash to use with 60 pounds of phosphoric acid in this case (trabacco at Tifton, Ga.) are
Potash.
\(47 . S\) pounds

To find the quantity and analysis (formula) of fertilizer containing these quantities of the three constituents, with, say, 12 per eent of phosphoric acid, proceed as follows:

60 pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}=12.0\) per cent of 500 pounds.
26.5 pounds of \(\mathrm{NH}_{3}=5.3\) per cent of 500 ponnds.
47.8 pounds of \(15: 0=9.6\) per cent of 500 pounds.

Hence in this case 500 pounds of a \(5.3-12-9.6\) fertilizer will contain plant-food elements in the right proportion to make the profit greatest from a fertilizer containing 60 pounds of phosphoric acid.

The foregoing problem has been worked out on the assumption that none of the plant food in fertilizers is absorbed, or occluded, by the soil. When the phenomenon of absorption is present, it is allowed for at this point by adding to the 60 pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}, 26.5\) pounds of \(\mathrm{NH}_{3}\), and 47.8 pounds of \(\mathrm{K}_{2} \mathrm{O}\) above, the quantity, in pounds per acre, of each of the plant-food elements absorbed. Thus, if 7.2 pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}\) is absorbed, use \(60+7.2=67.2\) pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}\) instead of 60 pounds. Similarly for the other elements. This, of course, changes the formula of the fertilizer, which would then be as follows:

> 67.2 pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}=12\) per cent of 560 pounds.
> 26.5 pounds of \(\mathrm{NH}_{5}=4.73\) per cent of 560 pounds.
> 47.8 pounds of \(\mathrm{K}_{2} \mathrm{O}=8.54\) per cent of 560 pounds.

The formula then becomes 4.7-12-8.5 instead of 5.3-12-9.6.

\section*{OPTIMUM QUANTTTY OF FERTLLIZER}

In the preceding section a method was given for finding the most profitable quantities of ammonia ( \(\mathrm{NH}_{3}\) ) and potash ( \(\mathrm{K}_{2} \mathrm{O}\) ) to use with any quantity of phosphoric acid \(\left(\mathrm{P}_{2} \mathrm{O}_{5}\right)\). It remains now to find the most profitable quantity of fertilizer having the optimum analysis (formula) for that quantity to use in any given case.
Equation (8), page 29, obtained by differentiating \(P\) with respect to \(c\) js
\[
\begin{equation*}
\left(1-R^{\prime}\right)\left(1-R^{\prime \prime}\right) R^{\prime \prime \prime}=Q r^{\prime \prime \prime} \tag{8}
\end{equation*}
\]

Substituting in equation (8) the values of \(R^{\prime}\) and \(R^{\prime \prime \prime}\) from (9) and ( 10 ),
\[
\left[1-\frac{r^{\prime} R^{\prime \prime}}{r^{\prime \prime}\left(1-R^{\prime \prime}\right)+r^{\prime} R^{\prime \prime}}\right]\left[1-R^{\prime \prime}\right]\left[\frac{r^{\prime \prime \prime} R^{\prime \prime}}{r^{\prime \prime}\left(1-R^{\prime \prime}\right)+r^{\prime \prime \prime} R^{\prime \prime}}\right]=Q r^{\prime \prime \prime}
\]
which may be reduced to
\[
\begin{equation*}
\frac{r^{\prime \prime} S^{\prime \prime} \cdot R^{\prime \prime} S^{\prime \prime}}{s^{\prime} \cdot s^{\prime \prime \prime}}-Q=0 \tag{11}
\end{equation*}
\]

This is an equation of the third degree in \(R^{\prime \prime}\), best solved by the method of trial and error. The work involved in solving it for a specific case is outlined later.

Being of the third degree, the equation has three roots. One of them is imaginary, another is negative, while the third root represents a maximum value of \(P\) (profit per acre). It is this last value that is sought.

Let \(T\) represent the fraction in equation (11); then
\[
\begin{equation*}
T-Q=0 \tag{12}
\end{equation*}
\]

The problem now is to solve equation (12).
The solution of this equation is given in Table 8. Note that \(R^{\prime \prime}=R^{p+4}\), in which \(R=0.8, p=2.43\) (units of 5.452 pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}\) ), and \(b\) is the quantity of \(\mathrm{P}_{2} \mathrm{O}_{5}\) applied in fertilizer, in units of 5.452
pounds. Assigning \(b\) a value in pounds, and then reducing this value to units, the value of \(R^{\prime \prime}\) is fixed.

Table 8.-Computation of \(T\) of equation (19) for the tobacco experiments 1 \(T=\frac{r^{\prime \prime}\left(1-R^{\prime \prime}\right) \cdot r^{\prime \prime \prime}\left(1-P^{\prime \prime}\right)}{\left[F R^{\prime \prime}+r^{\prime \prime}\left(1-R^{\prime \prime}\right)\right]\left[r^{\prime \prime \prime} R^{\prime \prime}+r^{\prime \prime}\left(1-R^{\prime \prime}\right)\right.} \quad\) value of \(Q\) is \(0.0202 k\)
[The values of the quantities are those grevinusiy used in this demonstration]


1 The jrowdure, howerer, is getarul in application.
F find in the previous work or in Fable fif or compate es indiented.
Before explaining the procedure of the table, it may be stated that the value of \(T\) was calrulated for a series of values of \(b\) (in pounds) by the procedure of the table and Figure 8 was constructed from data thus obtained. In that figure the value of \(T\) may be read off for any value of \(b\) (in poun is) from 0 to 120 . The solution of equation (12) involves finding a value of \(b\) for which \(T=Q\), indicated at \(X\) in Figure 8. The value of \(Q\) is \(m / v A(-\log R)\) (p. 28). Since \(m=0.4342945\), and for the special case under consideration (tobacco at Tifton, Ga.) \(\hat{v}=0.14, A=1414.53\) (p.24), and \(-\log R=0.0969100\); the value of \(Q\) is 0.02263. Figure 8 shows that \(T=Q\) at about \(b=101\). This gives a starting point for Table 8 , the procedure of which is like that of Table 7 . The first value of \(b\) tried in the table was 101; the second was 101.1, the column calculated on the basis of \(b=101\) being omitted to economize space. For \(b=101.1\), the resulting value of \(T\) is 0.02281 , a little too large. The next trial was for \(b=101.2\), giving \(T=0.02275\). The Iast trial, with \(b=101.3\), gave \(T=0.02263\), which is exactly the value sought.

When the value of \(b\) that renders \(T=Q\) is found, the proper quantities of ammonia and of potash to use with that quantity of phosphoric acid may be computed as indicated in the lower part of Table S, steps 15 to 24 . Thus it appears that the upplication per acre giving the maximum profit in this cuse is

\footnotetext{

71.6 pounds.

86.3 pounds.

1553430-33-3
}

Conversion of these quantities of plant foods into terms of a fertilizer is accomplished by deciding on some percentage of one of them, and computing the associated percentages of the others. Thus, if the fertilizer to be used is based on 12 per cent of phosphoric acid, 844.2 pounds of fertilizer will be needed in this case, for \(101.3 \div 0.12=\) 844.2. This quantity of fertilizer must have 8.5 per cent of ammonia to furnish 71.6 pounds ( \(71.6 \div 8.442\) ), and 10.2 per cent of potash to furnish 86.2 pounds ( \(86.2 \div 8.442\) ). Hence 844.2 pounds of \(8.5-12-\) 10.2 fertiiizer will give the largest profit per aere in this casc.

If the phenomenon of plant-food absorption is present, it is taken care of at this point by adding to the above 71.6 pounds of \(\mathrm{NH}_{3}, 101.3\) pounds of \(\mathrm{P}_{2} \mathrm{O}_{5}\), and 86.2 pounds of \(\mathrm{K}_{2} \mathrm{O}\), the quantity in pounds per acre, of each element absorbed. This modifies the formula, as well as the quantity per acre of fertilizer to apply. The profit per acre is reduced by the cost of the plant-food elements absorbed.


FIgure b.-Value of \(T\) For Diffement applications of Phosphoric ACID IN THE TOEACCO EXPERIMENTS AT TIFTON. GA.
As dereloped in the text, the point of intersection, \(X\), at whicll \(T\) equals \(Q\), shows the guantits of phosphoric acid per acre to use for preatest proflit per acre for tobaceont Tiflom. Oa. This fuanity vories for different erops and for dilierent soils. The fumntities of ammonia arkl potash to be applied with Lhis quantity of phosphoric acith are found tirectly from Figure 7 , or computed from crable 8.

If the fertilizer is to contain 10 per cent of \(\mathrm{P}_{2} \mathrm{O}_{3}\), then
\(101.3=10\) per cent of 1,013 pounds.
\(71.6=7.1\) per cent of 1,013 pounds.
\(86.2=8.5\) per cent of 1,013 pounds.

That is, 1,013 pounds of a \(7.1-10-8.5\) fertilizer is most profitable. These results do not take into consideration the effect of heavy applications of phosphoric acid in hastening maturity of the crop, with resulting increase in quality, and presumably decrease in yield. They are therefore only approximate in the case considered. This difficulty does not arise in cases in whick phosphoric acid does not have the effects mentioned.

The item of harvesting.-It has already been pointed out that it costs slightly less per pound to harvest a crop when the acre yield is large than when it is small. Thus, it should cost slightly less per pound to harvest a tobacco crop yielding 1,200 pounds per acre than one yielding 1,000 pounds.

In the case of tobacco, the one item that may vary in this manner is that of cutting and hauling the crop to the barn. In the preceding computations this variation was ignored.

To find what effect such variation may have on the restlts of the computations, note that, in the case of tobacco, the total cost of this item is ordinarily about 1.2 cents per pound. Suppose the item decreases to 1 cent because of the larger yield from adequate applications of fertilizer. This would change the value of \(v\) used in the computations from \(\$ 0.14\) to \(\$ 0.142\). Since \(Q=m / v A(-\log R)\), this change in \(v\) reduces the value of \(Q\) from 0.02263 to 0.02195 . The corresponding value of \(T\), arrived at by the procedure of Table 8, is obtained when \(a, b\), and \(c\) have the values shown below. The values of \(a, b\), and \(c\) when \(v=\$ 0.14\) are shown for comparison, as are also the yields corresponding to these fertilizer combinations.
\begin{tabular}{rcc}
\(y=\) & \(\$ 0.14\) & \(\$ 0.142\). \\
\(a=\) & 71.6 & 74.4 pounds of \(\mathrm{NH}_{3}\). \\
\(b\) & \(=101.3\) & 102.0 pounds of \(\mathrm{P}_{2} \mathrm{O}_{3}\). \\
\(c=\) & 86.2 & 86.8 pounds of \(\mathrm{K}_{2} 0\). \\
Optimum & \(y=\) & \(=353.80\)
\end{tabular}

It is obvious that an increase in yield amounting to \(1,354.08-\) \(1,353.56=0.22\) pound could not measurably affect the cost per pound of harvesting. Hence the inaceuracy due to changing cost per pound. of harresting is negligible, and the results arrived at are dependable when the experimental data are adequate and there are no complications due to effect of the fertilizer on quality of product or date of maturity of the crop.

Eiffect of market price.-In the formulas, \(v\) is the value per pound of crop product less cost of harvesting and marketing. It has been assumed in the computations that \(v=14\) cents in the case under consideration. The magnitude of \(v\) affects the resuts because of the presence of \(v\) as a factor in the denominator of \(Q\), to which \(T\) should be equal. The values of \(Q=\frac{0.003166}{v}\), for several values of \(v\) are:
\begin{tabular}{lr}
\(\$ n\) \\
\(\$ 0.10\) & \(0.0(=T)\) \\
\(\$ 0.12\) & 0.0268 \\
\(\$ 0.14\) & .02463 \\
\(\$ 0.16\) & .02080
\end{tabular}

The corresponding values of \(b\), read from the curve of Figure \(S\), and of \(c\) and \(c\) read from Figure 7, are:

When \(v\) is \(\$ 0.10, b\) is 94.0 pounds, \(a\) is 63.5 pounds, and \(c\) is 79.0 pounds. When \(v\) is \(\$ 0.12, b\) is 99.5 pounds, \(a\) is 69.5 pounds, and \(c\) is 84.5 pounds. When \(u\) is \(\$ 0.14, b\) is 101.0 pounds, \(a\) is 71.5 pounds, and \(c\) is 86.0 pounds. When \(v\) is \(\$ 0.16, b\) is 102.5 pounds, \(a\) is 73.0 pounds, and \(c\) is 87.5 pounds.
Converting these into fertilizer containing 10 per eent of \(\mathrm{P}_{2} \mathrm{O}_{5}\) :
\[
\begin{aligned}
& r=\$ 0.10 \quad 94.0 \text { pounds } P_{2} O_{5}=10 \text { per cent of } 940 \text { pounds. } \\
& 63.5 \text { pounds } \mathrm{NH}_{3}=6.8 \text { per cent of } 940 \text { pounds. } \\
& 79.0 \text { pounds } \mathrm{k}, \mathrm{O}=8.4 \text { per cent of } 940 \text { pounds. } \\
& 90.5 \text { pounds } \mathrm{P}_{2} \mathrm{O}_{5}=10 \text { per cent of } 995 \text { pounds. } \\
& 69.5 \text { pounds } \mathrm{NH}_{3}=7 \text { per cent of } 995 \text { potands. } \\
& 8.5 \text { pounds } \mathrm{K} 0=8.5 \text { per cent of } 995 \text { pounds. } \\
& r=\$ 0.14 \quad 101.0 \text { pounds } \mathrm{P}_{2} \mathrm{O}_{5}=10 \text { per cent of } 1,010 \text { pounds. } \\
& 71.5 \text { pounds } \mathrm{NH}_{3}=7.1 \text { per cent of } 1,010 \text { pounds. } \\
& 86.0 \text { pounds } \mathrm{K}, \mathrm{O}=8.5 \text { per cent of } 1,010 \text { pountes. } \\
& \eta=\$ 0.16 \\
& 102.5 \text { pounds } \mathrm{P}_{2} \mathrm{O}_{5}=10 \text { per cent of } 1,025 \text { pounds. } \\
& 73.0 \text { pounds } \mathrm{NH}_{3}=7.1 \text { per cent of } 1,025 \text { pounds. } \\
& 87.5 \text { pounds } \mathrm{K}_{2} \mathrm{O}=8.5 \text { per cent of } 1,025 \text { pounds. }
\end{aligned}
\]

These results may be summarized thus:
\begin{tabular}{lr}
\(p\) & Most prontable fertilizer application \\
\(\$ 0.10\) & 940 pounds of \(6.8-10-8.4\) goods. \\
\(\$ 0.12\) & 995 pounds of \(7.0-10-8.5\) goods. \\
\(\$ 0.14\) & 1,010 pounds of \(7.1-10-8.5\) goods.
\end{tabular}

From this the conclusion appears to be justified that, with a range in price of tobaceo from 10 to 16 cents a pound (market price less cost of harvesting and marketing), the standard application of fertilizer to tobaceo at Tifton, Ga., should be from 900 to 1,000 pounds of about \(7-10-8.5\) fertilizer.

As before stated, this does not take into account the effect of heavy applications of \(\mathrm{P}_{2} \mathrm{O}_{\text {s }}\) in hastening the maturity of the crop, mod consequently increasing the quality of the product.

In spite of the limitations just mentioned, these results should be of value in arriving it correct fertilizer practice for the locality concerned.

\section*{OPTIM UM ACREAGE TO WHICH TO APPLY FERTILIZER COSTING A FIXED AMOUNT}

Ocensions not infrequently arise in which farmers for one reason or another are unable to procure as much fertilizer as they would like to use. It is therefore desirable to have formulas that make it possible to determine the optimum acreage to which a given amount (value) of fertilizer should be applied. In working out these formulas the following symbols are employed:
```

$a=$ units of arailable NH_{3} in fertilizer.
$b=$ units of available $\mathrm{P}_{2} \mathrm{O}_{9}$ in fertilizer.
$c=$ units of avalable $\mathrm{K}_{2}()$ in fertilizer.
$a^{\prime}=a+q^{\prime}$.
$b^{\prime}=b+q^{\prime \prime}$.
$c^{\prime}=c+q^{\prime \prime \prime}$.
$q=$ орtimum acreage.
$\mathrm{C}=$ sum of costs proportional tu ares other than fertilizer.
$E=$ total enst of fertilizer.
$k=$ units of avaiabile $\mathrm{K}_{2} \mathrm{O}$ in an ace of soil.
$\log _{2} R=$ natural logarithus of $R=-0.223144$.
$M=$ upper limitias value of y.
$n=$ units of available NH: in an acere of stiol.
$y=$ units of available $\mathrm{P}_{2} \mathrm{O}_{\mathrm{s}}$ in an atere of soil.
$p^{\prime}=$ profit from an acre of the crop.
$P=g p^{\prime}=$ profit from the entire crop.
$q^{\prime}=$ units of NH_{y} absurbed by an acre of soid.
$q^{\prime \prime}$ = unite of $\mathrm{P}_{2} \mathrm{O}_{\mathrm{t}}$ absorbed by an acre of soil.
$q^{\prime \prime \prime}=$ units of $\mathrm{K}_{2} \mathrm{O}$ abhsorbed by an atere of sofil.
$r^{\prime}=$ cost or a mit of NH_{y}.
$r^{\prime \prime}=$ cost of a unit of $\mathrm{P}_{2} \mathrm{O}_{5}$.
$r^{\prime \prime \prime}=$ cost of a unit of $\mathrm{K}_{2} \mathrm{O}$.
$R=0.8$.
$R^{\prime}=R^{n+1 s}$.
$R^{\prime \prime}=R^{n+6}$.
$R^{\prime \prime \prime}=R^{k+c}$.
$s=r^{\prime} a^{\prime}+r^{\prime \prime} b^{\prime}+r^{\prime \prime \prime} c^{\prime}$ cost of fertilizer per acre.
$s^{\prime}=r^{\prime} R^{\prime}+r^{\prime \prime}\left(1-R^{\prime \prime}\right)$.
$s^{\prime \prime \prime}=r^{\prime \prime \prime} R^{\prime \prime}+r^{\prime \prime}\left(1-R^{\prime \prime}\right)$.
$S^{\prime}=1-R^{\prime}$.
$S^{\prime \prime}=1-R^{\prime \prime}$.
$S^{\prime \prime \prime}=1-R^{\prime \prime \prime}$.
$y=$ value of a unit of erop produce less cost of harvesting and marketing.
$y=y i e l d$ per acre.
$y_{0}=$ yield per acre when tho fertilizer is applied.

```

Three cases are to be considered.
Case 1. Only the acreage to be planted that will give a maximum profit from the crop.

The profit per acre is expressed by the formula
\[
p^{\prime}=v y-\frac{K}{g}-C
\]

The profit on the entire crop is
\[
\begin{equation*}
P=g p^{\prime}=g v y-K-g C \tag{A}
\end{equation*}
\]

The acreage to be planted, \(g\), equals the total cost of the fertilizer divided by the amount applied per acre; that is, \(g=K /\left(r^{\prime} a^{\prime}+r^{\prime \prime} b^{\prime}+\right.\) \(\left.r^{\prime \prime \prime} c^{\prime}\right)=K / s\). The yield per acre is \(y=M S^{\prime} S^{\prime \prime} S^{\prime \prime \prime}\).

Substituting these values of \(y\) and \(g\) in equation (A),
\[
\begin{equation*}
P=\frac{K v M S^{\prime} S^{\prime \prime} S^{\prime \prime \prime}-K C}{s}-K \tag{B}
\end{equation*}
\]

To obtain the values of \(a, b\), and \(c\) that render \(P\) a maximum differentiate equation (B) with respect to \(a\), then with respect to \(b\), and then with respect to \(c\), and place each of the resulting derivatives equal to zero. When this is done the three resulting equations are:
\[
\begin{gather*}
\log _{d} R s R^{\prime} S^{\prime \prime} S^{\prime \prime \prime}+r^{\prime} S^{\prime} S^{\prime \prime} S^{\prime \prime \prime}=\frac{r^{\prime} C}{v M}  \tag{C}\\
\log _{e} R s S^{\prime} R^{\prime \prime} S^{\prime \prime \prime}+r^{\prime \prime} S^{\prime} S^{\prime \prime} S^{\prime \prime \prime}=\frac{r^{\prime \prime} O}{v M}  \tag{D}\\
\log _{e} R s S^{\prime} S^{\prime \prime} R^{\prime \prime \prime}+r^{\prime \prime \prime} S^{\prime} S^{\prime \prime} S^{\prime \prime \prime}=\frac{r^{\prime \prime \prime} C}{v M} \tag{E}
\end{gather*}
\]

Eliminating \(S^{\prime \prime \prime}\) from equations (C) and (D), the value of \(R^{\prime}\) is found to be
\[
\begin{equation*}
R^{\prime}=r^{\prime} R^{\prime \prime} / s^{\prime} \tag{F}
\end{equation*}
\]

In a similar manner from equations (D) and (E) it is found that
\[
\begin{equation*}
R^{\prime \prime \prime}=r^{\prime \prime \prime} R^{\prime \prime} / s^{\prime \prime \prime} \tag{G}
\end{equation*}
\]

Note that the results in equations (F) and (G) are identical with those obtained previously.

To find the value of \(R^{\prime \prime}\) substitute in equation (E) the values of \(R^{\prime}\) and \(R^{\prime \prime \prime}\) from equations (F) and (G). When the resulting equation is reduced to its simplest form it is
\[
\begin{equation*}
v A \log _{e} R s r^{\prime \prime} R^{\prime \prime} S^{\prime \prime 2}+v M r^{\prime \prime 2} S^{\prime \prime 3}-C s^{\prime} s^{\prime \prime \prime}=0 \tag{H}
\end{equation*}
\]

The solution of equation (H) is demonstrated in Table 9, using the data of Doctor Garmer's experimental results with tobacco. The reader should now be able to follow the computations according to the indiented directions in the explanatory column of the table.
```

1555430-33-4

```

Table 9.-Compufation of the optimum acreage to which to apply fertilizer costing a fixed amount
[\$100 to be spent for ferthizer. \(p=\$ 0.14\). Data are those of the tobaceo experimental results]
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & Step in computation & First trial & Second trina & Third trial & Foharth trin & Fifth trin] & Sixth trial \\
\hline \multirow[t]{7}{*}{} & \(b\), in & 10.0 & 11.0 & 11.1 & 11.2 & 11.3 & \\
\hline & \(p+b_{0}\) in un & 12. 43 & 13.43 & 13. 53 & 13.63 & 13.73 & 13.67 \\
\hline & - \({ }^{p+\mathrm{R}} \mathrm{B}\) & . 6337578 & . 35005 & . 85118 & . 58238 & . 05329 & . 952208 \\
\hline & \(\mathrm{r}^{\prime} \mathrm{R}^{\text {Prob }}\) & -067024 & -.139454 & .0488138 & -017\% & . 04681 & . 01748 \\
\hline & \(r^{\prime \prime}\left(1-R^{3+}+6\right)\) & . 3688465 & \(\cdots\) & . 3 31880 & . 354290 & . 050820 & . 05151506 \\
\hline & Add steps 5 nd & . 4342 '383 & . 42776 & , 426954 & . 426200 &  & . 4255901 \\
\hline & giving \(R^{\text {n }}\) & & & & & & \\
\hline 9 & \(1-R^{\text {n+a }}\) & . 844350 & - 872939 & - 824569 & & & . 1200634 \\
\hline 10 & \(n+t, \ln\) unit & 8.34 & 9.25 & 0.34 & \({ }_{9} \cdot 13\) & 0. 54 & \({ }^{-871004}\) \\
\hline 11 & a , in unit & 3. 36 & 4.27 & 4.36 & 4.45 & 4 & \\
\hline 12 & \(a^{\prime}\left(=a+q^{\prime}\right)\) & 3.36 & 4.27 & 4.38 & 4.45 & 4.50 & 4.49 \\
\hline 13 &  & . 024038 & . 019336 & . 018803 & . 018391 & . 0170 & . 018225 \\
\hline \multirow[t]{2}{*}{1} & Add steps B and 13.- & . 362501 & . 392805 & . \(30240 \%\) & +393617 & . 39262 & . 382021 \\
\hline & Divide stejs is by step 14, givine \(R^{t+}\) & & & & & & \\
\hline 18 & \(1-R^{\text {tc }}\) & \[
\begin{aligned}
& .041238 \\
& .988762
\end{aligned}
\] & .048793 & \[
\text { . } 94892
\] & \[
.016342
\] & . 045502 & COHFI \\
\hline 17 & \(k+c\), in uni & 12.52 & 13.52 & 13.62 & 13.82 & 13.829 & \({ }^{13} .953589\) \\
\hline 15 & \(c_{\text {c in units }}\) & 8.44 & 9.44 & 0.54 & 9. 01 & 9.4 & 13.70 \\
\hline 19 & \(c^{\prime}\left(=c+y^{\prime \prime}\right)\) & 8.44 & 9.414 & 0.54 & 9.6 & \({ }_{\text {a. }}\) & 0.68 \\
\hline 20 & \(\theta^{\prime}\left(=0+4^{\prime}\right)\), in & 10.00 & 11.00 & 11. 10 & 1 1 .20 & 11.30 & 9. 81 \\
\hline 21 & & 3.66 & 4.045760 & 2. 4.74 & +1. 31600 & 4. 11.350400 & 1. 24 \\
\hline 22 & & 3.93 & 4. 323 & 4. 362 & 4.401000 & 4. 4 Cextic & 4. 117320 \\
\hline 23 & & 3. 25 & 3. 034 & 3. 673 & 3.712400 & 3. 7 TxM0 & 3. 726800 \\
\hline \multirow[t]{2}{*}{25} & Add steps \(21,22\).
Multiply step 24 & 19. & 12.60 & 12. 78 & 12.954000 & 13. 141200 & 13.029240 \\
\hline & log. \(R\) ) & 70.021 & 556.795 & H. 749 & 2.4050 & 580.710929 & 595.763405 \\
\hline 26
28 & \(\mathrm{T}^{\prime \prime}\left(\right.\) (step 4) \({ }^{\text {atep }}\) (stin \({ }^{\text {a }}\) & . 0215637 & -017718 & 047363 & .017033 & . 016638 & . 01685 \\
\hline 27 & 26 & -10.3310木d &  & - 8 cors & & & \\
\hline 28 &  & 25.207548 & 20.22i82i & 26.330 & 20.40.5022 & 20.4475is & -9. 321765 \\
\hline 29 & (Sten 7) (slep 1) (-C).-- & -17.1283 &  & -18. 682200 & -16.733337 & -14. 50178 & - 16.721768 \\
\hline 30 & Add step 27 ard step \({ }^{\text {a }}\) - & -27.45936 & -26.657035 & -26.533 & -30.478410 & -28.302209 & -26. +135233 \\
\hline 31 & Add step 28 and step 30-... & -2.251548 & \(-.430\) & -. 213 & -. 060388 & . 105338 & . 01110 \\
\hline
\end{tabular}

\footnotetext{
The mamber of units of \(b(=11,24)\) is apmoximated by graphim the vitues of steps 3 at in.2 and 11.3 . When the corrett valuo of bis reached, step \(3!\) is zern. Thunning the cemputation shows that 11.24 is close enough.
Optimam average \(=9=K \div-\operatorname{step} 24=\frac{100}{7.0 \mathrm{x} \times 24}=7.625\).
Using a 10 per cent \(\mathrm{P}_{2} \mathrm{O}_{5}\) fortilizer, 613 pounds win be needed ( \(=11.21\) units of 5.452 pounds).
Assotiated ammonia \(=a^{\prime}=a+q^{\prime}=4.49\) units of 0.203 pounds \(=27.85\) pounds whith is 4 , 65 per cent of 613 pounds.

}

The problem has been worked out for a case in which the fixed amount spent for fertilizer is \(\$ 100\), and on the assumption that there is no plant-food absorption; that is, that all three values of \(q\) are zero. Other than \(v\), taken as \(\$ 0.14\), and \(M=1,414.53\), the values of the quanitities are those previously reached. The answer in this case is: 613 pounds per acre of a \(4.5-10-8\) fertilizer applied to 7.675 acres will give the maximum profit when only \(\$ 100\) is to be spent for fertilizer.

Note that several trials more than those shown in Table 9 may be needed, but the trials may best begin with a value of \(b\) about that giving the best results in the previous work. Whole units may be used in establishing the approximate value of \(b\), then tenths. The second decimal place may be determined by graphing. Two decimal places in the value of \(b\) will give sufficentiy close results.
Case 2. Maximum profit per dollar's worth of fertilizer.

The equation expressing the profit on the entire amount of fertilizer is
\[
\begin{equation*}
P=g v\left(y-y_{0}\right)-K \tag{A}
\end{equation*}
\]
in which the values of \(g\) and of \(y\) are those used in case 1. When these values are substituted in equation (A) and the resulting equation is differentiated with respect to \(a\), to \(b\), and to \(c\), the derivarives placed equal to zero give valucs of \(R^{\prime}\) and of \(R^{\prime \prime}\) the same as found in case 1. When these values are substituted in the equation formed by placing the derivative with respect to \(c\) equal to zero, the equation reduced to its simplest form becomes
\[
M \log _{\mathrm{e}} R s r^{\prime \prime} R^{\prime \prime} S^{\prime \prime 2}+M r^{\prime \prime} S^{\prime / 3}-y_{o} s^{\prime} s^{\prime \prime \prime}=0
\]

The solution of this equation for the tobacco experimental results is given in Table 10.

Table 10.-Computation of the application that will yield the maximum profit per dollar's worth of fertilizer
[Data are those of the tobaceoexperimental results. In addition to the evaluations renched in case 1 the following are needed: \(M\) log. \(R=-315.64 ; \quad M r^{\prime \prime 2}=218.472744 ;\) and \(50=237.373\) ]

ions are carried out in fall, as steps 14,21 , and 22 show the quantitics of \(b,=3.87\), and \(=4,47\) were approximations reached by graphing and prove to be close enough, The computations are carried out in full, as steps 14,21 , and 22 show the quantitics of plant foods to be used in making up the fertilizer and steps 23,24 , and 25 sliow the cost per acre.

When plant-food absorption is not involved, the application that will give most profit per dollar's worth of fertilizer is one made up with 3.87 units, or 21.1 pounds, of phosphoric acid, and 2.28 units, or 11.55 pounds, of potash, worth together \(\$ 2.40\) per acre. No nitrogen is to be used in this fertilizer. Using 10 per cent of phosphoric acid, the analysis works out as \(0-10-\overline{6} .5\), worth \(\$ 22.75\) per ton.

One might fertilize 41.67 acres with \(\$ 100\) worth of fertilizer at this rate. This does not mean that it would be profitable to spread the fertilizer so thinly; there might, in fact, be a heavy loss on the entire acreage. Still the increase in yield attributable to the fertilizer would be greater from such an application than that from any other.

When plant food is absorbed the computations are the same except for the values of some of the items. The three columns on the right side of Table 10 illustrate the work when it is known that phosphonic acid is absorbed by the soil, assuming a rate amounting to 1.32 units. The application which gave most profit per dollar's worth of fertilizer when there was no absorption proves to be too small (first trial). The second trial shows that 4.4 units is also too small, but the two trials provide means of approximating the figure to use in the third trial-graphing on a large scale indicates a value slightly larger than 4.47 units of \(b\), (actually 4.4736 ), but computation proves that 4.47 is close enough. The results in this case call for an application of about 316 pounds of \(0-10-4.65\) fertilizer on 29.5 acres. The \(\$ 100\) available would buy 4.656 tons of this fertilizer, and the cost would be \(\$ 21.48\) per ton.

Case 3. Fixed acreage, \(H\); fixed expenditure for fertilizer, \(K\); optimum acreage, \(g\), to which to apply the fertilizer.

In this case the profit from the \(H\) acres is
\[
\begin{align*}
P & =g v y+(H-g) v y_{0}-H C-K \\
& =g v\left(y-y_{0}\right)+H v y-H C-K \tag{A}
\end{align*}
\]

Note that the variable term of equation (A) is identical with the variable term of the corresponding equation in case 2 . This means that the three derivatives of the equation are identical with those of the preceding case. The solution of the problem is also identical, so that this case is in reality merely a matter of finding the fertilizer formula, the application per acre, and the number of acres required to yield the greatest profit per dollar invested in fertilizer.

But in this case the actual acres planted may be larger than the number recuired to give maximum profit per dollar's worth of fertilizer, so that the profit or loss from the entire crop may not be the same as in case 2.

In general the solution of the problem of greatest profit per dollar invested in fertilizer is of limited importance. The more important problem in cases where the value of fertilizer available is fixed is to find the optimum acreage to grow (and fertitize) in order to obtain maximum profit from the entire crop.

\section*{ABSORPTION, OR OCCLUSION, OF PLANT FOOD}

As stated in the introduction, on some soils applications of a growth factor up to a certain (usually small) quantity appear to have no effect on yields. A number of such cases are cited below. For some reason not yet definitely understood, these small applications are not available to the growing crop. Soil chemists who have
recognized the phenomenon refer to it as "absorption." In the absence of a better term based on more complete understanding, it will here be referred to as plant-food absorption by the soil. As suggested in the introduction, perhaps a better term would be plantfood occlusion by the soil.

When the amount of the growth factor applied exceeds the quantity thus held unavailable in the soil, the yield begins to increase, and appears to follow quite accurately the exponential yield curve.

According to \(O\). W. Willcox, in a letter to the author, there are soils in Hawaii which absorb some 60 per cent of all the potash applied to them, irrespective of the quantity applied. Such cases would require different treatment from that outlined below, but may be brought within the scope of the yield carve when more knowledge is available of the "eflect factors" discussed by Willcox (11):

When plant-food absorption of the first type above described occurs, the yield of a plot receiving none of the variable growth factor, that is, the yield of an unfertilized check plot, does not lie on the yield curve; it therefore can not be properly used in determining the constants of the yield equation. That this difficulty may be obviated by disregarding the yield on plots receiving none of the variable factor is shown by the data presented below.

Figure 9 shows the yields of corn on four plots fertilized with different quantities of phosphoric acid and a check plot receiving no phosphoric acid at the Snowshoe branch of the Pennsylvania State station (9). In this figure it is seen that the yield on the plot receiving no phosphoric acid is not in line with the remaining yields. The constants in the yield equation in this caso were calculated from the yields of plots receiving, respectively, \(1,2,3\), and 4 units of phosphoric acid, a unit being 24 pounds.

The yield curve appears to offer a means of calculating the amount of the plant-food element absorbed by the soil. The method of finding this amount is to find the abscissa of the curve at the point at which the yield as indicated by the curve is equal to the yield without fertilizer. In Figure 9 this point is seen to lie at 0.3 unit, or 7.2 pounds of phosphoric acid, to the right of the origin.

If this interpretation is correct, then the yield should have been the same for any quantity of phosphoric acid from 0 up to 7.2 pounds per acre.

The corn for which the curve of Figure 9 was constructed was grown in rotation with oats, wheat, and hay. The oats and wheat exhibit the same absorption phenomenon, the amount of absorption for oats being approximately the same as for corn, while for wheat it was considerably larger (6). This is consistent with the known fact that corm can extract frem the soil considerably larger quantities of phosphoric acid than can wheat.

On the hay plot receiving no phosphoric acid there was a large growth of weeds, which vitiated the yield for that plot, so that it can not be included here.

The constants in the yield curve for the corn, oats, and wheat in this Pennsylvania experiment were first calculated from the yields of all five of the plots, including the check plot which received no phosphoric acid. They were then recalculated omitting the yield on the check plot. A comparison of the departures of the curve from the observed yields for the twr cases is shown in Table 11.

Table 11.-Improvement in fil of yield curve when phosphoric acid absorption is taken into account
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow{3}{*}{\(\pm\)} & \multicolumn{6}{|c|}{Errors in caiculated yields of-} \\
\hline & \multicolumn{2}{|r|}{Corn} & \multicolumn{2}{|r|}{Oats} & \multicolumn{2}{|r|}{Wheat} \\
\hline & \(X_{4}\) in & \(Y_{0}\) out & \(\mathrm{Y}_{0} \mathrm{in}\) & \(X_{0}\) out & \(Y_{0}{ }_{\text {in }}\) & Yoout \\
\hline 0. & \(-0.28\) & & -0.13 & & -0. 13 & \\
\hline 1 & . 07 & \(-0.12\) & \(\begin{array}{r}.45 \\ -30 \\ \hline\end{array}\) & -0.07 & - 44 & -0.01 \\
\hline 3. & -1.02 & -. 64 & -. 35 & \(-.38\) & -. 36 & -. 1 \\
\hline 4. & . 60 & . 28 & . 34 & . 17 & . 34 & . 11 \\
\hline Avorage of stuares & . 38 & . 18 & . 11 & . 06 & . 11 & . 01 \\
\hline
\end{tabular}

The first column for each crop shows the residuals when the yield on the check plot is included, the second, when the check plot is


FIgure 9.-MEASLRING Aesorption of Phosphoric acid
The observed yields (bushels of emorn par acre) on the plols rexiving phosphoric acid lie close to the exponentinl yiek ewre. The yield on the check phot, which received no phosphoric acid, 8.8 bushels does not lie on the curve. The amount of absorption is shown by the abstissa of the break in the ctarve, which acours at the polnt \(x=0.3\) in this case 7.2 potands of phosphorie acid per acre. (Tho data ware oblained froru Bulletin dia of the Pennsylvania Agritultarad Experimont Station (9).)
omitted. In the case of corn, omitting the check plot more than doubled the accuracy of the fit, the measure in the one case being 0.38 and in the other 0.18 ; that is, the fit of the curve in the second
column is more than twice as good as in the first. A nearly similar increase in closeness of fit is seen in the case of oats. In the case of wheat, improvement in fit by omitting the check plot is still more marked. These results are consistent with the fact that the amount of absorption, when measured by the method of Figure 9, in the case of oats is slightly less, in the case of wheat markedly greater, than in the case of corn. The check-plot yield in the oats series is therefore slightly less distant, that in the wheat series considerably more distant, from the yield curve than that in the corn series.

Part of the improvement in fit observed in these cases may be due to the fact that the yield curve can be made to fit four observations


Figure 10.-Measuring the Absorption of Nitrogen
In this series, also the ohseryed siofds lie elose to the exponential yield eurve conmuted from thene yigld curve at the recelving no nitrogen produced 9.1 gramis of erop, which would lie on the yield curve at the point where \(x=0.343\) nonti of nitroyen per pot, the metasure of nitropen absorption of the soils used in the experiment. Data from Nitklas and Miller ( \((\) ).
more accurately than it can five, assuming the errors of experiment to be of similar magnitude in the two cases. That it is not all due to this cause can easily be shown by omitting the plot receiving four units of phosphoric acid and calculating the constants from the remaining four (including the check plot). When this is done, it will be found that the fit is even poorer than when the five plots are included.

Figure 10 shows a similar situation in the case of nitrogen. Niklas and Miller ( 9 ) have assembled nine series of experiments in which nitrogen was the variable fertilizer clement, each of which clearly exhibits the phenomenon of nitrogen absorption. Figure 10 is a graphic presentation of one of these nine serics. The constants in the yield equation were calculated first with the check plot receiving
no nitrogen included, and second with this plot omitted. Both the exponential curve of Mitscherlich and the parabolic curye advocated by Niklas and Miller were applied to each of the nine series.
Table 12 gives a comparison of the average squared residuals for both curves, with and without the check plot. In the case of the parabolic curve the fit is improved in six of the nine cases by omitting the unfertilized plot. In the case of the exponential curve the fit is improved in each of the nine cases. This indicates strongly that the check plot does not belong in the series. Figure 10 indicates that 0.343 unit of nitrogen, each unit being 0.5 gram, was absorbed, and had no effect on the yield.

Table 12.-Improvement in fit of curves when nitrogen absorftion is taken in accouni
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Series \({ }^{3}\)} & \multicolumn{4}{|l|}{A veruge squared residuals frotn the-} \\
\hline & \multicolumn{2}{|l|}{Parabolic curve} & \multicolumn{2}{|l|}{Exponential curve} \\
\hline & Vo inchuded & \(y_{0}\) omitted & Ho included & \%o omitled \\
\hline & 13.93 & 8. 20 & 17. 78 & 13. 60 \\
\hline & 80.59 & 1. 1.06 & 33.61 & 13.25 \\
\hline 6. & 12.78 & 5. 46 & 33. 51 & 6.00 \\
\hline 8. & 5.47 & 5. 13 & 5. 9 & 3. 20 \\
\hline 9. & 10.87 & 19 & S. 67 & 3. (1) \\
\hline 10 & 3.85 & 4.02 & 6. 20 & 2. 17 \\
\hline 11. & 13. 50 & 5.45 & 15.97
5.82 & 7. 18
-18
-18 \\
\hline
\end{tabular}

1 Nine experiments assembled by Nikhas and Miller (3), in which nitrogen was the variable fertilizer element.

The data for Figure 10 and Table 12 were obtained from pot experiments.

The presence of this absorption phenomenon is indicated by the large positive residuals for the plot receiving one unit of fertilizer when the check plot is included, as aeen in Table 11. In the case of corn, this residual is 0.67 , the largest positive residual in the series. In the case of oate, it is 0.45 , and in the case of wheat, 0.44 , in each case being the largest positive residual in the series. Similar remarks are applicable to the nitrogen series dealt with by Niklas and Miller (3).
\(1 t\) is readily seen that the yields of check plots receiving no fertilizer should not be used in calculating the constants of the yield equation in cases where plant-food absorption by the soil occurs. In conducting fertilizer experiments on sueh soils the standard check plots should receive at least as much of each growth factor as the soil is capable of rendering unavailable.

But plots receiving no fertilizer have certain economic importance, as pointed out in the introduction. The knowledge they give is of value in cases in which it seems necessary to spread a limited yuantity of fertilizer over a large acrenge. Where it is feasible to do so, therefore, plots receiving no fertilizer may be included along with the standard check plots receiving fixed amounts of each factor (p. 58).

\section*{FORM OF THE YIELD CURVE}

Amongst European soil scientists there has been much discussion of the form of the yield curve. Mitscherlich and those who support his contentions claim that an exponential curve represents the relation between yield and amount of a growth factor made available to the growing plant. A considerable number of other scientists, including. Niklas and Miller, (3) contend that a parabolic eurve is the true yield curve. In the article referred to, Nikias and Miller bring together 12 series of experiments by various soil scientists, and make a comparison of the fit of the two curves in each of the 12 series. They had not recognized the presence of the phenomenon of nitrogen absorption which appears to be present in nine of their series, so in their calculations they included the yield of plots receiving no fertilizer. They determined the constants of the parabolic equation for each series by the method of least squares, and calculated the resulting residuals. They compared these residuals with those arrived at by Mitscherlich, who used some method of approximation, and not the method of least squares, in arriving at the constants in his equation. In general, the fit of the parabolic curve was better than that of the exponential curve when the comparison was made on this basis.

The present writer has recalculated by the method of least squares, the constants of both curves for each of the 12 series, omitting the check plot in the case of the nitrogen series, and finds that in 6 of the 12 cases the exponential curve, and in the remaining 6 the parabolic curve, gives the best fit. These results therefore offer no basis for determining which of the curves comes nearest to expressing the true relation between yield and fertilizer applied.

The exponential equation, however, contains only two constants, whereas the parabolic equation contains three constants. It is well known that the larger the number of constants in an equation the wider the range of observations it can be made to fit. If the number of constants equals the number of observations, the fit can be mude exact. The fact, therefore, that a 2 -constant curve fits the observed results in 12 series (of 4 to 8 observations each) as well as a 3 -constant curve is an indication that the 2 -constant curve may more nearly express the existing relation than does the 3 -constant curve.

A comparison of much greater significance is made in Tables 13 and 14. The assumption appears to be justified that a curve which really expresses the relation between yield and fertilizer application should give accurate results when it is used to extrapolate yields beyond the range of yields used in determining the constants in the equation, provided the yields used are accurate. \(A\) comparison of extrapolation with the two curves is given in Table 13 for the phosphoric acid series, and in Table 14 for seven of the nitrogen series used by Niklas and Miller in their article (3). The two remaining nitrogen series were short, with their terms equally spaced, and did not lend themselves well to a comparison of this kind.

In the case of the phosphoric acid series (Table 13) there was no indication of phosphoric acid absorption. It also happened that the last plet received four times as much fertilizer as the preceding plot. The constants in each equation were therefore calculated from the yields on the first three plots, the residuals in each case all being zero. The equations thus obttined were then used for extrapolating the yield of the fourth plot. The actual yield of the fourth plot in the
first series was 50.6 . The yield calculated by the exponential curve was 51.7 , the residual, that is, the difference between the observed and the calculated yield, being 1.1. This must be considered highly accurate extrapolation. In the case of the parabolic curve the calculated yield of the fourth plot was 5.0 , the residual being -45.6 , a very poor result. In the case of series 2 neither curve gave very good results, presumably because of inaccuracy in the yields of one or more of the three preceding plots. It will be observed, however, that while the observed yield was 52.5 on the fourth plot, the yield calculated by the parabolic curve was -129.8, a result extraordinarily poor.

In the case of series 3 the comparison gives little advantage to either curve, both results being poor.

It is obvious that a comparison of this kind, to be decisive, must be based on yields ascertained with a very high degree of accuracy. A small experimental error in the case of any one plot, where the constants are calculated from only three plots, makes a marked difference in the results of extrapolation. Though the result of this comparison is distinctly more favorable to the exponential curve than to the parabolic, the data on which the comparison is based are too limited to be definitely conclusive.

In Table 14 the comparison is more nearly conclusive. It shows the residuals for seven experimental series in which nitrogen was the variable growth factor. In each series the constants of both yield equations were calculated (by the method of least squares) from the yields of the first five plots, and the yields of the remaining three plots were then calculated by the equation thus obtained.

Table 13.-Results of extrapolation by means of the parabolic curve ( \(P\) ) and the exponential curve ( \(E\) ), the constants of each being computed from three observations
[Curves fited to \(x=0, x=0.10\), and \(x=0.25\); crrors at these points are 0.]
\begin{tabular}{c} 
Series : \\
\hline
\end{tabular}

1 Phosphorie acid serios of Niklas and Miller (3).
It will be observed that in series \(7,9,10\), and 11 , the fit of the parabolic curve within the range used in deternining the constants is better than that of the exponential curve. This may be interpreted as resulting from the larger number of constants in the parabolic curve. Yet in these series the extrapolation by the exponential curve is very much better in three and considerably better in the fourth than by the parabolic curve. In series 6 the exponential curve gives \(\mathfrak{a}\) better fit in the ease of the first five plots than the parabolic, and the fit of the extrupolated yields is more than eight times as accurate with this curve as with the parabolic. In series 8
the fit of the two curves to the first five yields is approximately the same, but the extrapolation is slightly in favor of the exponential curve. In series 12 the fit of the exponential curve is better than that of the parabolic although the fit of the extrapolated yields is not so good.

Of the entire scyen serics the results with the exponential curve are best in six, and with the parabolic curve in one. Here, again, it must be noted that great accuracy in the experimental yields is necessary in a comparison of this kind.

Table 14.- Fit of the parabolic curve ( \(P\) ) comparch with that of the enponential curve ( \(E\) ) in seven series, within the range of the first five observations used in computing the constanls of the curves, and extrapolations
errors within the ranoe used in computing tha constants
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Observation point} & \multicolumn{2}{|c|}{Series 0} & \multicolumn{2}{|l|}{Series 7} & \multicolumn{2}{|l|}{Series 8} & \multicolumn{2}{|l|}{Series 9} & \multicolumn{2}{|l|}{Series 10} & \multicolumn{2}{|l|}{Scries 11} & \multicolumn{2}{|l|}{Series 12} \\
\hline & P & E & P & E & 1 ? & E & P & E & P & E & P & E & P & E \\
\hline \(x=0.25\) & 211 & 1.07 & 0.04 & -0.47 & 0.08 & -0.03 & 0.09 & -0. 25 & -0. 28 & \(-0.56\) & \(-1.00\) & \(-1.03\) & 0.27 & 0.01 \\
\hline x \(=0.50\). & -4.39 & -3, 02 & -33 & & - 212 & - 88 & \(-.47\) & \(\cdot 47\) & -1.19 & -1.95 & 2.32 & \(\begin{array}{r}3.00 \\ -1.50 \\ \hline\end{array}\) & -. 28 & .21
-80 \\
\hline \(x=0.75\). & & 1.24 & -9.93 & - 1.35 & -1.04 & -86 & & -1.78 & & & --1.06 & & -. 8.30 & -.80
.94 \\
\hline \(x=1,00\)
\(x=1,25\) & \(\begin{array}{r}3.33 \\ -1.75 \\ \hline\end{array}\) & - \(\begin{array}{r}2.45 \\ -1.70 \\ \hline\end{array}\) & 1.03
-.30 & \(-\frac{293}{1.39}\) & 1.01
-.32 & 1.07
-.45 & \begin{tabular}{l}
-.67 \\
-10 \\
\hline 18
\end{tabular} & \(\begin{array}{r}-1.71 \\ \hline .80\end{array}\) & \(\begin{array}{r}1.31 \\ -\quad .34 \\ \hline\end{array}\) & . & -1.04
.08 & -2.1. & 1.36
-.55 & -. 37 \\
\hline A verage of squares & 7.33 & 4.20 & 43 & 2.4 & . 45 & . 43 & . 29 & . 87 & 1.37 & 1.75 & 1.77 & 3.00 & . 60 & . 34 \\
\hline
\end{tabular}

ERRORS OF TUE EXTRAPOLATED YLELDS
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& x=1.50 . \\
& x=1.75 . \\
& x=2.00 .
\end{aligned}
\] & \[
\begin{array}{r}
-9.36 \\
-23.40 \\
-45.57
\end{array}
\] & -4.74
-9.02
-15.30 & 4.60
14.20
22.85 & ( \(\begin{array}{r}-7.05 \\ -11.58 \\ -8.32\end{array}\) & 4.73
14.46
23.26 & \(\begin{array}{r}4.29 \\ 13.59 \\ 21.84 \\ \hline\end{array}\) & \[
\begin{array}{r}
-2.58 \\
=-16.38 \\
-36.31
\end{array}
\] & \[
\begin{array}{r}
3.85 \\
-88 \\
-2.38
\end{array}
\] & \[
\begin{array}{r}
-0.24 \\
-15.48 \\
-29.56
\end{array}
\] & \[
\begin{aligned}
& -3.90 \\
& -1.25 \\
& -1.97
\end{aligned}
\] & 3.20
-9.15
-25.16 & \[
\begin{aligned}
& 10.10 \\
& 8.81 \\
& 8.05
\end{aligned}
\] & -.05
-.03
-4.30 & \(\begin{array}{r}2.58 \\ 0.62 \\ 11.16 \\ \hline\end{array}\) \\
\hline A verage of stuares & 803.03 & 113.50 & 248.15 & 85.83 & 257.40 & 223.69 & 531.12 & 7.09 & 319.60 & 0, 47 & 105.45 & 87. 17 & 0.45 & 68.34 \\
\hline
\end{tabular}

\footnotetext{
1 Or the uitrogen series of Niklas and Miller (s) as recomputed.
}

In Tables 15 and 16, relating to series 10 of the Niklas and Miller paper, the comparison is made in a different manner. Table 15 gives the residuals for all values of \(x\) obtained from each curve when values of \(x\) from 1 to 8 were used in determining the constants in both equations.

Table 15.-Residuals in series 10 when \(Y_{1}\) to \(Y_{s}\) are used in calculating the constants in the parabolic curve ( \(P\) ) and the exponential curve ( \(E\) )
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow{2}{*}{Value of I} & \multicolumn{2}{|l|}{Residunis} & \multirow{2}{*}{Value of x} & \multicolumn{2}{|l|}{neesidums} \\
\hline & \({ }^{\text {P }}\) & \({ }^{\text {E }}\) & & P & E \\
\hline  & (1.61 &  & - & ( \(\begin{array}{r}286 \\ -1.76 \\ -1.66\end{array}\) &  \\
\hline
\end{tabular}

Tanle 16.-Relative fil and correctness of extrapolations of the parabolic curve (P) and the cxponential curve ( \(E\) ) when the values of \(Y\) used in colculating the constants are as shown in first columa
[Data of series 10]
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow{3}{*}{Vrlues of \(Y\) used in calcuiating tie conshants} & \multicolumn{4}{|c|}{A vernge of squared residunts-} \\
\hline & \multicolumn{2}{|l|}{Within range of \(y\) valuts aned} & \multicolumn{2}{|l|}{For extrapolnted values of \(Y\)} \\
\hline & 1 & E & ? & E \\
\hline \(7^{10} 10{ }^{5}\) & 1.6 & 0.51 & 688.33 & 2. 25 \\
\hline \(Y^{10} \mathrm{Y}_{3}\) & 1.38 & & 399.60 & 6. 57 \\
\hline \(Y\) to
\(Y_{1}\) to \(Y_{7}\) & 3. 49
4. 76 & 2. 23
4. 10 & 31.588
49.40 & 13.95
.50 \\
\hline & & & & \\
\hline
\end{tabular}

In Table 16 the average of the squared residuals is given for each curve when the constants are calculated (1) from yields \(Y_{1}\) to \(Y_{\text {, }}\), (2) from yields \(Y_{1}\) to \(Y_{5}\), (3) from yields \(Y_{1}\) to \(Y_{6}\), and (4) from yields \(Y_{1}\) to \(Y_{7}\). With the constants thus determined, the yields are then calculated (1) within the range of the \(Y\) values used in calculating the constants, and (2) beyond this range.

Within the range of \(Y\) values used in calculating the constants, both curves give fair agreement with observed yields, the exponential curve giving the best fit in three cases, the parabolic curve in one.

When the two curves are used in calculating the extrapolated yields, the exponential curve gives fair results in all cases, but the parabolic curve falls down badly.
It will be observed that the case in which the parabolic curve gives moderately good results is the one in which the last yield used in calculating the constants is very high. This condition tends to bend the curve upward, and thus to increase its radius of curvature.

The question which of these curves more nearly expresses the relation between yield and fertilizer application must be settled on the basis of comparisons similar to those above.

Note that in series 12 the fifth residual is negntive in the case of both curves, also the third residual, whereas the fourth residual is positive. This distribution of experimental errors tends to increase
the radius of curvature of both curves. A little study of the two curves will show that this effect in the case of the parabolic curve is greater than in the case of the exponential curve. In general, the parabolic curve appears to give good extrapolations only in cases in which the experimental errors are such as to increase considerably its radius of curvature.

Though a decision of the question between these two curves can not be made definitely on the basis of the preceding results, the fact remains that the data at hand are strongly in favor of the exponentinl curve and against the parabolic curve. Because of the greater number of constants in the parabolic curve, it can be made to fit a wider range of experimental results than can the exponential curve, but the real test comes when the two curves are used for extrapolation. In the comparisons it has been possible to make here the evidence is strongly in favor of the exponential curve.

It will probably be conceded that the exponential curve gives at least as good a fit to experimental data as the parabolic curve within the range of the yields used in computing the constants of the two curves.

Assuming, then, that within the usual range of fertilizer applications in practical farming the exponential curve gives as good results as the parabolic, there is another important reason for preferring the exponential curve. It is the fact that the exponential equation may be so written as to apply to cases in which two or more growth factors vary. At present, at least, this is not the case with the parabolic curve.
Some of the advantages of this more general type of equation are:
(1) When the constants have been evaluated, the equation may be used in calculating the yield from any quantity of fertilizer of any composition, within the toxie limit of the fertilizer.
(2) It may be used in determining the most profitable amounts of nitrogen and potash to use with any desired quantity of phosphoric acid.
(3) It may be used in determining the most profitable quantity of fertilizer having the optimum analysis to use in any case.

For these reasons, it would appear to be justifiable to use the exponential curve until something better presents itself.

\section*{DERIVATION OF THE EXPONENTIAL YIELD CERVE} ONF-VARIABLE FORM
The exponential yicld curve for a single variable growth factor is illustrated in Figere 1.

In the figure, horizontal distances along the \(X\) axis represent amounts of a causal factor, vertical distances the amount of the resulting effect. Thus, if 50 pounds of potash per acre bo taken as a unit of the causul factor, then the figure shows the effect of four such units on yield of a crop. The first unit produces an increase in yield represented by \(a\); the second unit produces a further increase, \(b\); the third unit produces increase \(c\), and so on.

An important property of the curve of Figure \(I\) is that the quantities \(a, b, c, d\), etc., are the terms of a decreasing geometric series, having a constant ratio. Thus, if \(b\) is 60 per cent of \(a\), then \(c\) tends to be 60 per cent of \(b ; d, 60\) per cent of \(c\); and so on. When the guantity of the growth factor becomes large enough to become injurious to the crop, the curve no longer applies.

In the figure, the ratio of the series is 0.6 , each term of the series (after the first term) being 0.6 of the preceding term.

The curve of Figure 1 is seen to approach a horizontal line at distance \(A\) above the \(X\) axis. \(A\) is thus the limit toward which the value of the ordinate of the curve approaches as the quantity of the growth factor, potash, increases.

Observe that in Figure 1 , if we let \(y_{1}, y_{2}, y_{3}\), etc., represent, respectively, the increase in yield due to \(1,2,3\), etc.. units of the growth factor then
\[
\begin{aligned}
& y_{1}=a \\
& y_{2}=a+b \\
& y_{3}=a+b+c \\
& y_{4}=a+b+c+a \\
& y_{x}=a+b+c+\cdots+x
\end{aligned}
\]

If, now, \(R\) represent the ratio of the decreasing geometric series, \(a, b, c, d\), etc., then
\[
\begin{aligned}
& b=a R \\
& c=b R=a R^{2} \\
& d=c R=a R^{3}
\end{aligned}
\]

The equation for \(y_{x}\) may therefore be written:
\[
y_{x}=a+a R+a R^{2}+a R^{3}+\cdots+a R^{x-1}
\]

Multiplying through by \(R\),
\[
R y_{x}=a R+a R^{2}+a R^{3}+\cdots+a R^{x-1}+a R^{x}
\]

Subtracting this last from the preceding equation,
whence
\[
y_{x}(1-R)=a-a R^{x}=a\left(i-R^{x}\right)
\]
\[
y_{x}=\frac{a}{1-R}\left(\mathrm{I}-R^{x}\right),
\]
which shows the increase in yield for \(x\) units of the growth factor.
Since \(R\) is less than 1 , as \(x\) increases, \(R^{x}\) decreases; and as \(x\) approaches infinity, \(\mathrm{R}^{x}\) approaches zero. Hence, if \(A\) represent the value of \(y_{x}\) when \(x\) is infinite, we have
\[
A=\frac{a}{1-R}
\]

Substituting \(A\) for \(\frac{a}{1-R}\), and dropping the \(x\) subscript, the yield equation may be written
\[
\begin{equation*}
y=A\left(j-R^{x}\right) \tag{13}
\end{equation*}
\]

This equation expresses the relation between increase in yield and increase in a growth factor when all other growth factors are held constant.

The writer discovered this equation in 1920 (4) and later learned that it hat also been discovered in 1912 by the German experimenter Mitscherlich (2). Mitscherlich has shown that the formula has wide applicability to the soils of eastern Germany, while the present writer has shown its applicability to many soils in the United States, especially in eastern humid regions, as far west as Indiana and Michigan (7).
In the writer's carlier work, equation (13), or rather, a modified form of it seen in the equation \(Y=M-A R^{x}\), the derivation of which
is given later, was applied to experiments in which the unit of \(x\) was a given quantity of a mixed fertilizer, so that all three constituents varied together (in the same ratio). That this procedure is ordinarily justified is seen in the curve of Figure 11, in which the yield for different quantities of fertilizer is shown, the unit being 100 pounds of \(10-10-10\) fertilizer.

This curve shows results such as should be obtained in water or sand cultures, in which the total quantity of each plant-food element available to the plant is known.

The curve is at first (i. e., for small values of \(x\) ) convex downward; for higher values of \(x\) it is concave. It therefore has a point of inflection.

In ordinary fertilizer practice, especially on fairly good soils, the lower part of this curve represents growth due to plant food in the soil. Where the supply of such material in the soil is equivalent to


FIGURE It.-YIELD CURVE FOR THREE VARIABLE GROWTH FACTORS
Abscissis represent anits of ferthlaer, \(n\) unit being 100 ponnds of \(10-10-10\) fertilizer. Ordiantes represent yields. The chrve is a so-calicd \(S\) curve.
four of the units of fertilizer applied, then the part of the curve obtained by experiment would be that part to the right of the vertical line at \(x=4\). This part is seen to have about the same form as the curve of Figure 1, which applies to a single plant-food element, and the experimental results with the mixed fertilizer could be fitted to observations based on equation (1) very satisfactorily. In any case in practice, it is the upper part of the curve that is important, and this part always has a form similar to that of Figure 1.

The curve of Figure 1 represents increases in yields as the quantity of a growth factor made available to the crop increases. If \(Y_{0}\) represent vield when the quantity applied is zero, and if this yield be added to each member of equation (13), then
\[
\begin{equation*}
y+Y_{0}=A+Y_{0}-A R^{x} \tag{A}
\end{equation*}
\]

Since \(Y_{0}\) is the yield for \(x=0\) and \(y\) the increase in yield for \(x\) units of the factor, then \(y+Y_{0}\) is the actual yield, \(Y\), for \(x\) units. Also, since \(A\) is the maximum increase in yield from \(x=0\) to \(x=\infty\), then \(A+Y_{0}\) is the theoretical maximum obtainable giold, \(M\), with any
\[
155743^{\circ}-33-5
\]
quantity of the factor. Equation (A) above may therefore be written
\[
Y=M-A R^{x}
\]
which is equation (1) of the preceding discussions.

\section*{GENERAL FORM}

The German mathematician Baule (1) was the first to point out that when two or more growth factors are varied at the same time, the exponential yield equation has the form
\[
\begin{equation*}
y=A\left(1-R_{1}^{x_{1}}\right)\left(1-R_{2}^{x_{2}}\right)\left(1-R_{3}^{x_{3}}\right) \tag{14}
\end{equation*}
\]
in which \(x_{1}, x_{2}, x_{3}\), etc., are the respective total quantities of the first, second, third, etc., growth factors available to the plant, while \(R_{1}, R_{2}, R_{3}\), etc., are the ratios of the respective series of increments in yield due to successive equal increases in the respective growth factors. Mitscherlich's experiments conform to equation (14). The author has applied equation (14) to the results of some American field experiments, with very satisfactory results.

Formula (14) is adapted to water or sand cultures, in which the total quantity of nitrogen, phosphoric acid, and potash available to the growing crop is accurately known. It may be adapted to field experiments by writing it in the form
\[
\begin{equation*}
y=A\left(1-R_{1}{ }^{n+\sigma}\right)\left(1-R_{2}^{p+b}\right)\left(1-R_{3}^{k+c}\right) \tag{15}
\end{equation*}
\]
in which \(n, p\), and \(k\) are the respective quantities of available nitrogen, phosphoric acid, and potash in the unfertilized soil, while \(a, b, c\) are the respective quantities in the fertilizer applied.

This equation is ensily converted into equation (7), already given, by suitable changes in the size of units in which \(n, a, p, b, k\), and \(c\) are measured.
By means of a simple series of experimental plots, suitably arranged and fertilized, the constants \(A, n, p\), and \(k, R_{1}, R_{2}\), and \(i i_{3}\) can be determined for any crop on any soil which responds to fertilizers in accordanse with equation (1) when a single plant-food element is varied. The yields of the plots will also reveal whether there is such response in any particular case.

Since equation (5) makes it possible to determine the available nitrogen, phosphoric acid, and potash in a given soil, it is capable of measuring the effect on available plant-food elements of such soil amendments as lime, manure, a green-manure crop, etc.; also the effect on available plant food of different methods of tillage. This may be done by running one series of experimental plots on land receiving lime, manure, a green-manure crop turned under, a given type of tillage, etc., and another similar series on similar land not receiving the treatment. Such series, if planned as suggested later herein, would give the values of \(n, p\), and \(k\) for the soil on which each series is conducted. Comparison of these values for the two series would then show the effect of the treatment in rendering plant food available.

Again, plants do not use all the fertilizer elements applied to the soil, especially in the case of large applications. There may, therefore, be accumulations of fertilizer residues in heavily fertilized soils that become injurious to the succeeding crojs. Such cases have occurred in practice, particularly amongst growers of truck crops in
certain localities. Equation (5) makes it possible to measure these residue accumulations by running a series of plots year after year, changing the plots to a new location each year. Each year the available nitrogen, phosphoric acid, and potash in the soil is measured. The rate of accumulation is thus made known, and the rate at which fertilizers are applied may be so adjusted as to take account of the changing quantities of plant food in the soil.

The above-mentioned advantages of a usable yield equation may be summarized as follows: When the constants of equation (7) have been determined then this equation and equation (5) may be used to determine-
1) The yield from any quantity of the three ingredients.
(2) The most profitable fertilizer analysis.
(3) The most profitable quantity of this optimum analysis.

Equation (7) does not apply to the average results over a series of years on pexmanent or semipermanent experimental plots. The reason is that the more hearily fertilized plots change from year to year in content of available plant-food elements; hence the difference in yield between a lightly and a heavily fertilized plot, especially after the test has run several years, is due partly to difference in current applications and partly to unequal accumulations of plant-food elements in the soil.
(4) The effect of lime on the availability of plant food in the soil.
(5) The effect of a legume crop on the amourit of available nitrogen in the soil.
(6) The change in amount of available plant food in the soil as a result of any system of tillage or of fertilizer application.
It is therefore essential to move the test plots frequently; that is, as soon as cumulative effects appear, to a new location. Replication of the plots will, of course, add to the reliability of the experimental results, and hence to the deductions to be made from them. The use of several different quantities of each growth factor is equivalent to replication of the fundamental series, and requires fewer plots, as will be pointed out later.

Fertilizers also affect the quality of certain crops, especially tobacco, of which effect the equation gives no hint; it deals with yields, not with quality of the product.

Many other conditions, such, foi instance, as the length of day, the acidity of the soil, temperature, character of seed, all affect the yield of crops. Some of these may ultimately be brought in line with equation (7), but this is work for the future.
It may be remarked here that if other growth factors are found that conform to equation (1) above, they may be brought into the picture by adding a factor of the form ( \(1-R^{x}\) ) to equation (7), and an additional series of plots in which the new factor is varied. Amount of irrigation water and intensity of sunlight have been shown to follow equation (1).

\section*{PLAN FOR OBTAINING DATA}

Since the most general form of the yield equation contains seven constants, \(A, n, p_{1} k, R_{1}, R_{2}\) and \(R_{3}\), the yields from at least seven plots, suitably fertilized, are necessary to determine the value of these constants. A larger number of plots, with suitable check plots. will add materially to the accuracy of the determinations.

\section*{SERIES OF PLOTS}

In Table 17 of alternative series several series are outlined. The amount of nitrogen, phosphoric acid, or potash to use as a unit in each case is more or less an empirical matter. The units should be such that the largest application of each fertilizer constituent will produce 80 to 90 per cent of the total possible effect of that constituent. In any given case, unless something is already known of the crop response to fertilizers, it may be necessary to run a preliminary test the first year before deciding how many pounds per acre shall be taken as the unit of nitrogen, how many as the unit of phosphoric acid, and how many as the unit of potash. It is not at all essential that the unit of each constituent should be the same.

The number of units of each fertilizer constituent to use on the various plots in the series is also moze or less an arbitrary matter. The numbers suggested in the table greatly simplify the mathematical work in computing the value of the constants.

Table 17.-Alternative series of fertilizer plots
\(\left[\mathrm{a}=\mathrm{mitrogen}(\mathrm{N}) ;\right.\) d=pbosphoric acid \(\left(\mathrm{P}_{2} \mathrm{O}_{s}\right) ; \mathrm{c}=\) potash ( \(\left.\left.\mathrm{K}_{2} \mathrm{O}\right)\right]\)


\footnotetext{
\({ }^{1}\) Equivelent to 3 sets of series 2. \({ }^{2}\) Equivalont to 5 sets of series 2. Equivalert to 7 gets of series 2.
}

Series 1 of Table 17 may be called the fundamental series. It represents the absolute minimum of data required. In a preliminary note by the writer (5) a smaller number of plots was given as the minimum number required. At the time that note was written it was supposed that the values of \(R_{1}, R_{2}\), and \(R_{3}\), published by Mitscherlich, as indicated by Willcox (10), were generally applicable. It develops that they are not always applicable to the results of field experiments in the United States, so that it is necessary to determine the three \(R\) 's of the equation for each case, along with the four other constants. But this series is devoid of check plots, and would have to be replicated many times to make the yields reliable.

Series 2 is similar to series 1 , but in it every third plot is a check plot. These two series provide for the use of three different quantities of each growth factor. In use, it would require several replications of series 2 to give results sufficiently accurate.

Series 3 , in which five different quantities of each variable element are used, is, from the standpoint of reliability of results, equivalent to three replications of series 2 . Series 4 and 5 are, respectively, equivalest to five and seven replications of series 2. In careful experimental work series 4 ( 28 plots) would be about the minimum limit, and series 5 ( 37 plots) would give resuits considerably more reliable and is to be recommended. The discussion that follows is based on series 3 ( 19 plots) merely on grounds of economy of space. This series illustrates the principles involved as well as any other.

The plots in series 2 to 5 that receive 1 unit each of \(a, b\), and \(c\) are the standard check plots, and constitute every third plot in each series. A check plot begins and ends each series. Experimenters often make every fourth plot a check plot. This reduces materially the usefulness of check plots. The added accuracy obtained by making every third plot a check is well worth while in most cases. In cases in which the soil is quite variable, and thus not well adapted to experimental-plot work, every second plot might well be a check.

The check plots in the series outlined are all fertilized, ance the application is the same on all of them. The reason for this is that if the phenomenon of absorption of plant food by the soil is present, irregularities due to this phenomenon are thus avoided.

In cases in which it is desirable to measure the amount of this absorption, a separate group of plots for this purpose may be used. An outline of procedure in such cases is given later (p. 58).

\section*{USE OF CHECK PLOTS}

Check plots are used in eliminating from the computations so far as possible, the effect of unevenness in the vielding power of the soil in dufferent parts of the experimental field. These differences are adjusted in the following manner.
"Check yields" are computed for each plot. The check yield of a plot is the yield it would presumably have produced if it had had the same application of fertilizers as the check plots. The check yield of each check plot is, of course, the yield of the plot as recorded. The check yield of the series is the average of the check yields of the check plots. The check yield of the plots between check plots is the yield of the plot plus part of the difference between tipe adjacent check plots. In the 19-plot series, where every third plot is a check plot, the fractions are one-third for the plot next to the lower num-
bered check plot and two-thirds for the plot next to the higher numbered check plot. If three plots intervene between check plots, the fractions are one-fourth, one-half, and three-fourths.

This procedure assumes that the soil changes uniformly from one plot to the next. This is not strictly true, so that there is some error in the check yields. The error is greater the greater the number of plots bewween checks. Without check plots the experimental errors are often so great as to vitiate the results for any careful study.

In the 19 -plot series the check yields are of the following description, plots 1 and 4 being check plots:

On plot 1 , check pield \(\left(C_{1}\right)\) is the actual yield ( \(y_{1}\) );
\[
\begin{aligned}
& \text { on plot } 2, C_{2}=y_{2}+1 / 3\left(y_{1}-y_{1}\right) ; \\
& \text { on plot } 3, C_{3}=y_{3}+33\left(y_{4}-y_{1}\right) ; \\
& \text { on plot } 4, C_{4}=y_{4} ; \\
& \text { on phot } 5, C_{5}=y_{3}+1 / 3\left(y_{7}-y_{1}\right) ; \text { and so on through the series. }
\end{aligned}
\]

The cheek yields having been found, the relative yields of the plots are computed by dividing the actual yield ol each plot by its check yield. For the check plots the relative yields are of course 1 . Thus the relative yield ( \(C_{2}\) ) of plot 2 is \(L_{2} / C_{2}\); of plot 3 it is \(U_{3} / C_{3}\), and so on.

The "adjusted yields" of the several plots are computed by multiplying the check yield of the series (average of the yields on the check plots) by the relative yield of the plot. The adjusted yield of each check plot is the average of all of them taken together. These adjusted yields are the yields used in all subsequent calculations.

When some of the plant food applied is occluded by the soil, and it is desired to measure the amount of this occlusion, the data neceseary to do this may be obtained by inserting plots in the series listed on page 56 , as shown below.

If part of each of the three elements is occluded, insert in the series at the places indicated below, groups of 4 plots each, fertilized thus:
\begin{tabular}{llll}
\(a\) & \(b\) & a & \\
1 & 1 & 1 & check piot. \\
0 & 1 & 1 & zero plot for \(\mathrm{N}_{2}\) \\
1 & 0 & 1 & zero plot for \(\mathrm{P}_{2} \mathrm{O}_{5}\). \\
1 & 1 & 0 & zero plot for \(\mathrm{IS}_{2} \mathrm{O}\).
\end{tabular}

This group is to be inserted as follows: In series 2, (1) preceding plot 1, (2) between plots 3 and 4, (3) between plots 6 and 7 . In series 3 , (1) preceding plot 1; (2) between plots 6 and 7 ; and (3) between plots 12 and 13 . In series 4, (1) preceding plot 1, (2) between plots 9 and 10 , and (3) between plots 18 and \(19 ;\) and so on.

If the occlusion does not affect any one of the plant-food elements, the zero plots for that element may be omitted.

These insertions will, of course, change the plot numbers throughout the series.

The average adjusted yields of the three zero plots for each element are taken as the yield when that element is onitted from the fertilizer. Insertion of the group of plots at three points in the series gives three replications for each zero plot.

\section*{OTHER FACTORS TO BE CONSIDERED}

This bulletin deals only with the relation between plant growth and the quantity of nitrogen, phosphoric acid, and potash available to the growing crop. Many other factors affect the growth of plants,
such as soil acidity, magnesium, sulphur, the organic matter of the soil, tilth, date of planting, amount of sunlight, length of day, availability of soil moisture, texture of the soil, and temperature.

Some of these factors have been shown to produce yield curves similar to those discussed herein. This is the case with sunlight and soil moisture. Whether others behave in a similar manner remains for further resentch to reveal.

Additional factors that do produce yield curves simidar to those dealt with here may be taken into account by adding to the generalized yield equation a factor of the form ( \(1-R^{x}\) ) for each additional growth factor, and by adding to the list of experimental plots for each new growth factor a series of plots in which the new growth factor is varied in the same way as nitrogen, phosphoric acid, and potash are varied in the series listed.

\section*{SUMMARY}

Three methods are given for determining the constants of the exponential yield equation for a single variable growth factor. One of these methods makes possible the determination of the most probable value of the constants by the method of lenst squares.

A method of determining the amount of available plant food in the soil is outlined.

The application of the exponential yield curve to a specific case in which each of the three common plant-food elements is varied is given, including the method of passing from the 1-variable form to the general form of the equation.

A method is presented for determining the amount, if any, of each of the three common plant-food elements absorbed by the soil and held in a condition unavailable to the growing crop.

The form of the yield curve is discussed, and reasons given for preferring the exponential to the parabolic form.

The derivation of all the commonly employed forms of the exponential yield curve is presented.

Formulas are worked out for determining for specific cases the optimum fertilizer formula to use, the optimum quantity of fertilizer to apply for greatest profit per acre, and for determining the optimum formula to use and the optimum acreage to which to apply a fixed amount (value) of fertilizer for greatest profit per dollar invested in fertilizer, in both presence and absence of the phenomenon of plantfood occlusion by the soil.

Plans are outlined for obtaining, from a relatively small number of experimental plots, the data necessary for determining the constants in the exponential yield equation, and the manner of utilizing check plots as a means of eliminating, in so far as this cen be done, unevenness in the yielding power of the soil of the experimental field is discussed.

\section*{APPENDIX}

\section*{TABLES OF VALUES OF \(R^{x}\) AND OF \(1-R^{x}\)}

Tables 18 and 19 are appended because of their great usefulness in computations of the character reguired in work of the type outlined in this bulletin.

Table 18 gives the values of \(R=\) for all values of \(R\) from 0.01 to 0.99 and of \(x\) from zero to 20 . A given power of a given value of \(R\) stands on line with the value of \(R\) in the left-hand column of the page, in the column headed by the index of the power.

This table was computed by Y. Kutsunai, of the Hawaiian Sugar Experiment Station.

For convenience in computation a table of values of \(1-R^{x}\) has been prepared on the basis of \(R=0.8\), between \(x=0\) and \(x=29.99\). (Table 19.) Higher values of \(x\) rarely occur in connection with the yield equation.

As explained in the text, conversion of the actual ratio of the problem in hand to the ratio 0.8 is readily made.

To find \(1-R^{x}\) when \(x=3.27\), for example, run down the left-hand column of page 63 to the line showing the integral and first decimal place of \(x\) (3.2) and read the value in the column headed by the figure in the second decimal place (7). This is stated as 51794 and is a decimal fraction, all decimal points having been omitted in the printing.

To find \(x\) when \(1-R^{x}\) is obtained in the computations, find the \(1-R^{x}\) in the table nearest to the figure obtained and read the value of \(x\). Thus \(x\) nearest corresponding to \(1-\mathbf{R}^{x}=0.57266\) is found in the column headed 1 on line 3.8 , so that \(x\) in this case is 3.81 . Ordinarily it is not necessary to carry the value of \(x\) beyond the second decimal place. Additional decimal places are found by interpolution; the further decimal places are the quotient of the excess above the lower tabular number divided by the tabular difference.
\(R^{x}\) (when \(R=0.8\) ) may be found by subtracting the table figure for \(1-R^{2}\) from 1.00000 .

Table 18.-Values of \(R^{x}\)
[Value of \(x=0\) is I in all cuses; of \(x=1\), same as \(R\) ]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline A & \(t=1\) & \(x=3\) & \(x=+\) & \(x=5\) & \(\underline{x}=6\) & & & \(x=9\) & \(x=\) & \(x=11\) \\
\hline 0.01 & 0.0001 & 0.000001 & & & & & & & & \\
\hline . 023 & . 00004 & - 100000028 & & & & & & & & \\
\hline . 0 - & . 0016 & . 000004 & ooveros & & & & & & & \\
\hline 6 & \(\bigcirc\) & - 0003210 & -000003 & 0.000001 & & & & & & \\
\hline \% & - 0 OOP9 & . 000373 & - 0 coses & . 000002 & & & & & & \\
\hline 1 & - 00001 & \({ }^{(0) 00512}\) & -000041 & .000063 & 0.000001 & & & & & \\
\hline 0 & . 01 & - 001000 & -000100 & - 0060010 & - oxtwou & & & & & \\
\hline 12 & . 0 & -001331 & - & . 00000016 & . 0 ocociver & & & & & \\
\hline & Otte & . 002197 & 0002256 & Onoos3 & .000006 & 0.000001 & & & & \\
\hline 4 & . 01975 & - 0002744 & O00334 & -000035 & . 00000 OLS & . 00000 t & & & & \\
\hline 16 & . 0253 & -0¢09016 & O00u5 & - 0 Oovina & - 00000017 & - & & & & \\
\hline & & 004913 & 0000235 & .000142 & . 000024 & a0000 & 0.000001 & & & \\
\hline 8 & . 0324 & . 0058323 & . 0010150 & 000159 & 20034 & . 0000006 & - 0000001 & & & \\
\hline 0 & - & . 00085000 & -. 0001363030 & -000248 & -0000 6 & - 0 000037 & - & & & \\
\hline 1 & -041 & . 009336 & . 0001945 & -000308 & .00003s & .000018 & .00000 & -000001 & & \\
\hline \({ }_{23}^{23}\) & - & . 01818048 & -002343 & 00055 & . 0000113 & -000025 & 000005 & 000002 & & \\
\hline 4 & . 0.5 & :013524 & -0027988 & O0067 & -0001918 & -000034 & U0000s & -000002 & & \\
\hline & . 0225 & . 015625 & Ocasios & . 00007 T & . 00024 & -000 & 000015 & nobot & - 0000001 & \\
\hline 25 & . 0 & . 017350 & 004570 & . 001188 & . \(00 \times 369\) & . 000085 & .000022 & 05 & & \\
\hline & .0i20 & .019683 & vas314 & . 010143 & . 1000353 & . 000005 & .000035 & & 000002 & \\
\hline 28 & 0,884 & -021.952 & 0006247 & 001721 & . 000482 & . 00013 & .000038 & 000011 & 0000033 & . 000001 \\
\hline 39 & \({ }_{0}^{1841}\) & 02439 & -007073 & 003051 & & .000172 & -000050 & 000015 & & \\
\hline 31 & -00061 & -02076 & -00323 & -002430 & -00003s & . 000022 &  & 000235 & & \\
\hline 32 & . 1024 & .032768 & .010386 & . 6 Ci335 & . 001074 & . 00034 & . 000110 & 000035 & Ovoril & \\
\hline 33 & 1058 & 0,5:5037 & . 011859 & -13914 & . 01293 & (000)23 & 000014 & .000656 & 000015 & -000003 \\
\hline 4 & 1150 & 039304 & . 013363 & .00454 & .001345 & & 000179 & . 000 & 0021 & \\
\hline S & 1223 & atzis & . 025006 & 005322 & -001338 & . 000063 & 000225 & .00072 & . 000028 & \\
\hline 3i & \({ }^{1296}\) & 046456 & .01679 &  & .002174 & .00078 & 000332 & -000102 &  & \\
\hline & 1389 & cososis & .018742 & 000934 & .002:rib & . 00024 & 000351 & 0000330 & . 000006 & 000018 \\
\hline & 14+1 & 034672 & & Ofras & -033011 & - OOI 142 & 000435 & (100125 & . 0 coutis & .000024 \\
\hline 40 & 1 & O3430 & 03134 & Oosz2 & , 0 S319 & - 001312 & & .000323 & . 000081 & \\
\hline 41 & . 1681 & 008892 & 028358 & 011588 & 004720 & -0019\% & 000719 & -000327 & - 00013 & \\
\hline 42 & 1704 & 074088 & O31127 & 013009 & (00,481 & .0vas & Ooowes & 000407 & & \\
\hline & 184 & 07985 & . 634188 & 014701 & (103321 & . 002718 & 001169 & O60 & 000 & \\
\hline 4 & 13:30 & . 08518.4 & C37481 & 016922 & . 0022 za & . 0031103 & 001405 & 000618 & 000222 & 000120 \\
\hline 45 & 2025 & - 0 ¢12 23 & -12006 & -1843, & . \(\mathrm{uns30}\) & . 030373 & . 0011682 & 00075 & 000341 & \\
\hline 47 & 210 & - & 04475 & 023598 & Cosati & . 004358 & 002305 & (0xgzz & & \\
\hline & 2ast & \({ }^{-11105023}\) & -0,5us & 025450 & :012791 & . 00505871 & & \({ }^{0} 0112\) & -000525 & -000247 \\
\hline 40 & 24 & - 117448 & 0.05784 & . 023248 & 0.013841 & -0667\% & -008333 & 001623 & & - 0003351 \\
\hline 50 & 000 & OCD & 083290 & C31250 & 0158125 & . 007813 & . 0039300 & . 01 & . 000 & . 000488 \\
\hline & -200 & N & - \(0^{\text {a }}\) & & 017597 & . 0 Orys 4 & . 004537 & & & \\
\hline \({ }_{53}\) & 2200 & . 148887 & 07 & :04120 & \% 0.2164 & . 01174 & . 00052281 & 003380 & .00174 & -000972 \\
\hline
\end{tabular}

Table 18.-Values of \(R\) - Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{R}\) & 7-2 & \(x=3\) & \(x=1\) & \(7=5\) & \(\boldsymbol{x}=\mathfrak{\$}\) & \(x=7\) & \(x=8\) & \(x=9\) & \(x=10\) & \(I=11\) \\
\hline 0.54 & 0.2916 & 0.157484 & 0. 085031 & 0.045017 & 70.024785 & 0.013389 & 0.005330 & 0.003904 & 0.002108 & 0.001138 \\
\hline . 55 & . 3025 & . 1673375 & . 091500 & . 0.50388 & 8 .02,681 & . 0152024 & . 00.03373 & . 004605 & . 002533 & . 001383 \\
\hline . 88 & . 3136 & . 175616 & . 045635 & . 055073 & 3 .030881 & . 017271 & . 0 amaiz & . 00.5416 & . 0030383 & . 0016 pr \\
\hline . 57 & . 3249 & - 185193 & . 10550 & , 060169 & 98.034236 & . 019545 & . 011143 & . 0001351 & . 003620 & . 002084 \\
\hline . 58 & . 3364 & . 195112 & +113165 & . 065036 & G .038069 & .023090 & . 012 sc & . 007428 & . 004308 & . 002498 \\
\hline . 59 & . 3481 & . 2053379 & - 121175 & . 071492 & 2 .042181 & . 024887 & Ot 4083 &  & . 006111 & . 0033010 \\
\hline +60 & . 3600 & . 255000 & + ? 206600 & . 0 TTT60 & 00.046050 & . 027095 & . 0161596 & . 010078 & . 0000047 & . 008628 \\
\hline .61 & . 3721 & . 226981 & . 138458 & . 084460 & 0 , 053 520 & . 031427 & . 019171 & . 0111894 & . 007133 & . 06.351 \\
\hline +62 & -3414 & - 238388 & - 14 \% 163 & . 001613 & 3 . 056880 & . 0335216 & . 023834 & . 0131533 & +6003933 & . 00.5201 \\
\hline . 63 & . 3868 & . 2515047 & . 157530 & . 0999 P4 & 4 . 003224 & . 039390 & . 024816 & . 0115834 & . 000884 & . 0008205 \\
\hline . 64 & - 4086 & . 268151 & . 107572 & . 107364 & 4 .003519 & . 043380 & . 13814 & . 018014 & .011529 & . 007373 \\
\hline . 65 & . 4225 & . 274623 & . 178506 & . 116083 & 3 . 075418 & . 01010022 & .031884 & . 030712 & . 013463 & -0xe351 \\
\hline . 66 & - 4356 & - 288.996 & +189747 & . 125533 & 3 . 082054 & , 054455 & . ©scorat & . 023763 & . 61.5883 & . 010351 \\
\hline . 87 & . 4498 & . 300703 & . 201512 & . 135013 & 3 -. 030458 & . OXAFOT & . \(04050{ }^{2}\) & . \(027 \times 07\) & . 015208 & . 012213 \\
\hline . 68 & . 5624 & . 314133 & + 213814 & . 1453373 & 3 . 098887 & . 00720 & . 045736 & . 031087 & . 021139 & . 014375 \\
\hline . 69 & . 1761 & . 328509 & - 238977 & . 156403 & 3 +107018 & . 0751464 & . 051380 & . 1857452 & . \(024+62\) & . 0103859 \\
\hline . 70 & + 5900 & . 343000 & . 240100 & - 168970 & 0 . 117649 & . 083254 & . 057848 & . 040354 & . 628249 & . 0103 m \\
\hline . 71 & . 5041 & . 357911 & . 254117 & + 380423 & - \(12 \$ 100\) & . 090851 & . 034575 & . 04.5949 & . 032552 & . 023112 \\
\hline . 72 & . 5184 & . 373248 & . 208738 & . 193432 & 2 . 139314 & .1903306 & . 072220 & . 05109 & +037433 & . 0 2nid50 \\
\hline \(+23\) & . 5329 & . 389017 & - \(2 \times 38182\) & - 207307 & 7 + 151334 & . 130444 & . 080650 & . 058872 & . 032978 & . 0251373 \\
\hline . 74 & +5488 & . 405224 & . 229886 & . 221901 & 3 - 16s 2006 & +121513 & -0809]9 & - 0 ans \({ }^{\text {a }}\) & . 0493240 & . 036438 \\
\hline . 75 & . 5885 & . 421875 & . \(316+106\) & - 237304 & 5 -177979 & - 133484 & . 100113 & . 025085 & . 058314 & . 0422315 \\
\hline . 76 & . 57776 & . 438976 & . 333622 & + 253553 & 3 - 178700 & . 146452 & -111303 & - 084501 & - 0 C4289 & . 048846 \\
\hline - 77 & . 5229 & . 450533 & . 351530 & - 230688 & 8 . 208495 & . 160485 & . \(1235 \overline{4} 4\) & . 0935152 & - Oficizar & . 0558415 \\
\hline . 78 & - 6084 & . 474553 & - 370151 & -208717 & 7.225200 & . 175656 & . 137011 & . 100868 & . 033353 & . 03.5019 \\
\hline . 79 & . 5241 & . 493030 & +359561 & . 30740 ta & 6 . 243087 & . 193035 & . 151711 & - 119852 & -096983 & - 074798 \\
\hline . 80 & - 6800 & . 513000 & - 409700 & . 3275040 & 5 .272144 & . 209715 & . 167722 & . 132218 & . 10737 & cerser \\
\hline . 81 & . 65561 & . 531441 & . 43304048 & - 388178 & 8.292430 & . 203768 & . 185332 & . 150095 & . \(1215 \%\) & . \(0984 \times 7\) \\
\hline . 82 & . 6724 & . 561309 & .452123 & + 370140 & ( 304907 & . 219295 & . 204114 & +162530 & . 13744 & 112\%07 \\
\hline . 83 & . 6889 & . 571787 & . 472483 & - 373901 & 1 . 326940 & . 21361 & . 225229 & . 186450 & . 156160 & .128-83 \\
\hline . 84 & . 7050 & . 592704 & .497871 & . 418212 & \(2+3512088\) & . 295090 & . 2478876 & . 208216 & -174901 & . 146917 \\
\hline . 85 & . 7225 & . 614125 & . 522000 C & . 443705 & 5 .3nik & . 32057 & . 272491 & .231617 & . 1968 & -167343 \\
\hline . 86 & . 7398 & + \(63 \times 1059\) & . 547008 & . 470423 & 7 . 404567 & . 347928 & . 299218 & . 253387 & - 221302 & - 100319 \\
\hline . 82 & . 7569 & . 658503 & - 57 \% 968 & - 4\%892 & 1. & - 37225 & +328212 & - 28554 & . 249483 & .216128 \\
\hline . 88 & . 7344 & . 081472 & - 593605 & . 52723 & \(2 . .484404\) & . 788876 & . 35.8035 & . 216478 & + 788501 & . 245781 \\
\hline . 89 & . 7821 & -704879 & . 627422 & -5.5840 & 6 . 498281 & . 44.813 & . 383859 & . 350350 & . 311817 & . 277517 \\
\hline . 80 & . 8100 & . 729000 & . 656100 & . 590100 & - 531441 & . 478297 & . 430568 & . 387420 & . 349688 & . 313815 \\
\hline . 91 & . 8281 & . 753571 & . 685150 & . 624032 & \(2-.567808\) & . 516 尔 51 & . 4702043 & - 527930 & . 380410 & -354369 \\
\hline . 82 & . 8464 & . 77868 & + 716393 & . £59\%M2 & 2 , f0¢0335 & . 557817 & . 513219 & . 472161 & -434388 & . 399637 \\
\hline . 83 & . 8649 & . 804357 & -748063 & . 69.6585 & S . 6 Hfmm & . 601704 & . 5.59258 & . 520411 & -483982 & . 4.50104 \\
\hline . 84 & . 8838 & . \(83058{ }^{\text {a }}\) & - 780749 & . 733004 & 1 . 0 St \(3^{2}+0\) & . \(6 \pm 8478\) & . \(2 \times 0569\) & - 5\%2995 & + 5.38081 .5 & . 5063293 \\
\hline . 85 & . 9025 & . 857375 & . 814506 & . 713751 & 1 - 3 35092 & . 698337 & +693530 & . 630249 & . 593737 & . 568509 \\
\hline . 96 & . 8216 & . 854736 & + 8.59347 & . 815373 & 3 . 32508 & . 751447 & . 721390 & . 302534 & - 696483 & . 838239 \\
\hline . 87 & . 8409 & . 912673 & . 885293 & . 85883 & 4 . Sxixyz & . 5020 c 3 & -763743 & - 760231 & . 737424 & - 715301 \\
\hline . 98 & - 4638 & . 941182 & . 922343 & - Mospa & 1 8ststa & . SO 8195 & . \(8 \mathrm{~N} \times 703\) & - 83974 & -87073 & 800\%31 \\
\hline . 99 & . 0301 & -270№ & . 960506 & . 950.180 & \(30 . .941480\) & . 332 D 95 & . 023845 & . 913517 & . 045382 & . 895 \\
\hline & & & & & & & & & & \\
\hline \(R\) & & & & & \(=15\) & \(x=16\) & \(x=17\) & \(z=18\) & \(x=13\) & I=20 \\
\hline 0. 30 & 0.0000 & & & & & & & & & \\
\hline . 31 & . 0000 & & & & & & & & & \\
\hline +32 & . 000 & & & & & & & & & \\
\hline . 33 & . 000 & 00280.000 & 0001 & & & & & & & \\
\hline .34 & . 00 & 002 .0000 & 0001 & & & & & & & \\
\hline . 25 & . 0000 & 003.000 & 0001 & & & & & & & \\
\hline . 38 & . 000 & 005 . 0000 & 00020 & 000001 & & & & & & \\
\hline . 37 & . 01000 & 007 . 000 & 0002 & C000 & & & & & & \\
\hline . 38 & . 000 & 009 - OnO & 00123 & 0000 & & & & & & \\
\hline . 30 & . 0000 & 012 . 0000 & 0005 & 000, 2 & 0.600COI & & & & & \\
\hline . 40 & . 000 & 017 . 010 & \(0 \times 07\) & 00003 & 3006以 & & & & & \\
\hline . 11 & . 0000 & 0\% . 00 & \(0 \times 080\) & 000034 & . 0001902 & \(0.000 \times 101\) & & & & \\
\hline . 42 & . 000 & 030.00 & 30:3 & DOSOS & . \(0 \times 00002\) & .000001 & & & & \\
\hline . 43 & . 000 & Oto . 00 & NOI7 & 00007 & . 0000003 & . 000001 & 0.000001 & & & \\
\hline . 44 & . 000 & \(53 . .00\) & 00023 . & 00010 & . 000004 & . 0000002 & .000001 & & & \\
\hline . 45 & . 000 & 009 . 00 & 0031 . 00 & 00014 & (0000059 & . 000003 & . 0000001 & 0.070001 & & \\
\hline + 40 & . 600 & . 0040 & 0031 - 00 & 00010 & . 000009 & . 00000 s & . ThOMR & . 0000001 & & \\
\hline . 47 & - 000 & 110 & 0055 & ONO30 & . 0000012 & . 000000 ) & - 00000\% & . 0000001 & 0.00000! & \\
\hline . 48 & . 000 & 150 . 000 & 00172 . 0 & OCOM & . 0000017 & . 000008 & . 0000009 & - 0000002 & . 0000001 & \\
\hline . 49 & . 000 & 192 . 00 & OOM & 90076 & . 0100023 & , 00001] & . 0000105 & . 000003 & . 0000001 & 0.000 mas \\
\hline . 30 & . 000 & 244 \} 00 & 0123 , 0 & 000093 & - 0000031 & . CDOOE 5 & . 00000018 & . \(000000{ }^{4}\) & . 0000012 & . 00010001 \\
\hline . 51 & . 000 & \(310=.00\) & 0158 51.0 & O00R3 & . 0000041 & . 000021 & . 0000011 & . 0000005 & . 0000003 & . OO 0001 \\
\hline . 52 & . 000 & 391 & OX 13 . & O0163 & . 000005 & ,000029 & . 0000015 & . 4000008 & . 000000 F & . 0077002 \\
\hline . 53 & . 000 & & 0200 - & (k)133 & . 0000073 & . 000048 & . 0000221 & . 0000011 & . 0000006 & .000003 \\
\hline . 54 & . 000 & 135 . 00 & 1332 . & 00179 & . 0000017 & . 01000032 & . 000002 x & . 000005 & . 000008 & . 000000 OH \\
\hline . 55 & . 000 & 703 , 0 & 042! . & On232 & + 00010127 & . \(01 \times 970\) & . 0000339 & . 0000021 & . 0900012 & coomer \\
\hline . 56 & . 000 & & 0533 - 1 & OX2018 & . 000167 & . 0000094 & , \(00000 \mathrm{~S}^{2}\) & . 000002 & . 000010 & (000009 \\
\hline . 57 & . 00 & 176 - 00 & 0070 . 0 & (1)882 & . 0000218 & . 0000124 & . 00007 7: & . 0000040 & . 000003 & . 000013 \\
\hline +58 & . 001 & 49 . 000 & 0811 . 0 & (0)488 & . 0000283 & . 610134 & . 0000 y 9 s & . 0000055 & . 0000032 & . 000016 \\
\hline . 59 & . 001 & 779 . 00 & 1050 - 00 & 00819 & +000335 & . 600214 & . 0000127 & . 0000075 & . 0000044 & . 0000026 \\
\hline , 60 & . 002 & 177.00 & 1306 - & 00784 & . 000470 & . 0902282 & . 000169 & . 000102 & . 0000061 & . 0000137 \\
\hline
\end{tabular}

Table 18．－Values of \(R^{2}\)－Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{R}\) & t＝12 & \(x=13\) & \(\underline{=14}\) & \(x=15\) & \(x=16\) & \({ }^{2}=17\) & \(\mathrm{I}=18\) & \(x=19\) & \(x=30\) \\
\hline 0.61 & 0.002654 & 0.001619 & 0．000389 & 0.000002 & 0.000358 & 0． 0007224 & 0.000137 & 0．0noss & 0．00005 5 \\
\hline 62 & & ． 0022000 & 001240 & C07 & － 000477 & 0 Onass & －000023 & ．noolt & \\
\hline ：64 & ． 001727 & ． 0003027 & \({ }^{0} \mathbf{0 0 1 5 3 4}\) &  &  & comesis & O0024 & － 0 000 0 2sers & \\
\hline ． 65 & －dosc & ． 0333697 & OK2303 & ． 015159 & 001015 & －опиa & 000123 & noteris & 000181 \\
\hline ．6f & ． 000 R 2 s 2 & & 002376 & ． 001964 & 0001216 & 000ssfit & 000565 & ．000373 & 00024 \\
\hline ．07 & ． 038183 & & & 002 & 001 & 001105 & 0007 & & \\
\hline －68 & ． & & 迷5 & 003 & 00203 & 01 & 000 & & \\
\hline & －0134it & OMasa & Ons & cosk27 & 0 & 0018 & 00125 & & \\
\hline ． 71 & ． 016410 & ． 011651 & ． 009272 & 0063：3 & \({ }_{0} 004175\) & ．00201 & －002102 & \(\infty\) & \\
\hline \(\cdot{ }^{72}\) & ． 019 & ．013074 & ． 0140031 & ． 017244 & 035216 & ． 0375 & ． 002704 & ． 001919 & \(001+12\) \\
\hline & & 01078 & 290 & 008 & ． 0 Os， 04 & 004748 & ．00366 & ．002330 & 00184 \\
\hline － & 0 & \％ 0375 & \％17503 & －01020 & ． 0 O2938 & & ． 0 O4， & \({ }^{00327} 6\) & 020425 \\
\hline ． 76 & ， & 0，2821 & 021448 &  & －12038 & 000415 & －05isf & －0， & \\
\hline & O－S & ． 032 & 0235756 & 019939 & 01 & 011758 & ． 0009354 & 006971 & \({ }_{0}^{065363}\) \\
\hline \(\stackrel{78}{79}\) & － & \({ }^{-0314588}\) & （03085 & 02134 & 0185 & 0 & ． 011421 & 008998 & Oomsti \\
\hline & & & & & & 022518 & －018014 & 114312 & －011529 \\
\hline & & & 053335 & ． 042391 & 034337 & ．1027813 & ． 0272538 & 015824 & ． 014781 \\
\hline ． 82 & ． 0 & ． 075 & ． 0621473 & 003 & － & 034204 & 03504， & & \\
\hline \(\bigcirc\) & －10 & & －03208 & ． 01118 & 0：060 &  & －03439 & 1290006 & ．024075 \\
\hline 85 & ． 142 & ． 21 & 10270 & ．087354 & －0，425 & 06313 & 053 & 19 & O383F9 \\
\hline & & & 1054 & ． 104106 & ．089531 & ． 076997 & ．006217 & 0.05947 & 74 \\
\hline S & & & ． 142321 & 19 & 107\％2 & 083719 & d & 070236 & ． 06174 \\
\hline 相 & & 31291 & －117016 & ． & ， & －113817 & －100130 & 088140 & \\
\hline 90 & － 28243830 & & & 174121 & ． 15 Smig & A3 & ．122750 & 100247 & \\
\hline ． 91 & ． 224475 & ． 2934 & 267042 & 243005 & \({ }^{2021137}\) & 20135 & 18324 & －10663 & 1510， \\
\hline 82 & ． 36 & ， 388 & ． 311193 & & ， & \({ }^{242322}\) & 222 & 235101 & 185693 \\
\hline ． 93 & －118595 & & ． 3620 （24 & \％ & ． 113132 & & \({ }^{20} 38\) & － & 9 \\
\hline －14 & ． 4.59396 & & － 4887623 & \({ }_{4}\) & & & & 308034 & \\
\hline 96 & ． 112710 & ． 588201 & \({ }^{\text {－} 567673}\) & 迷 & － 4010 & 418120 & & \％ 3734 & ． 3454858 \\
\hline ． 97 & & ．fiz3027 & －652236 & \(2 \sqrt{11}\) & & & \％ & －550623 & ：54374 \\
\hline 08 & & & & & & ，09322 & & & \\
\hline 09 & ． 8868385 & ． 8 Ti521 & ． 8688746 & ． 860008 & 851458 & ． \(842 \mathrm{l} / 3\) & 831515 & ． 820169 & ．817007 \\
\hline
\end{tabular}

Table 19．－Values of \(1-R^{x}\) when \(R=0.8\)
［All values are decimal fractions；that is，decimal points to be added］
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\pm\) & 0 & 1 & 2 & 3 & 4 & \(\sqrt{5}\) & 6 & 7 & 8 & 9 \\
\hline 0.0 & 00000 & 00223 & （0）445 & 00607 & 00889 & 01110 & 01330 & 01550 & 01760 & 01988 \\
\hline － 1 & 02207 & 02425 & 02642 & 02859 & 03070 & 03292 & 023507 & 03725 & 03937 & 04151 \\
\hline ． 2 & D4365 & 04578 & 04791 & 05003 & 05215 & 05420 & 050363 & 0.5847 & 06057 & \(00^{3} 2085\) \\
\hline ． 3 & 00175 & 0 ORXS4 & 06882 & 07099 & 07 cos & 07513 & 07719 & 07925 & 081350 & 08335 \\
\hline ． 4 & 0 R 539 & 08743 & 05946 & 09140 & 09352 & 09551 & 09765 & 097850 & 1015 & 10357 \\
\hline ． 5 & 10967 & 10757 & 10950 & 11154 & 11352 & 11550 & 11747 & \(1124{ }^{\text {a }}\) & 12140 & 12336 \\
\hline ． 6 & 12531 & 12726 & 12920 & 13114 & 13308 & 13501 & 13004 & 13887 & 14079 & 14270 \\
\hline .7 & 15481 & 140512 & 14842 & 15632 & 55221 & 15410 & 15.598 & 15787 & 15975 & 16162 \\
\hline ． 8 & 10349 & 18535 & 16721 & 16907 & 17002 & 17277 & 17461 & 1764.5 & 17829 & 18012 \\
\hline ． 9 & 18105 & 18377 & 18554 & 18741 & 18922 & 10102 & 19283 & 19163 & 19042 & 1982 L \\
\hline 1.0 & 20000 & 20178 & 20356 & 20533 & 20711 & 20888 & 2100－ & 21240 & 21415 & 21590 \\
\hline 1.1 & 21705 & 21940 & 22114 & 22287 & 22461. & 22034 & 22006 & 22278 & 23150 & 23321 \\
\hline 1.2 & 23402 & 23662 & 23832 & 24002 & 24178 & 24341 & 24509 & 24617 & 24845 & 25013 \\
\hline I． 3 & 25180 & 25347 & 25513 & 25079 & 25845 & 20810 & 26170 & 23340 & 26501 & \(25 \times 18\) \\
\hline 1.4 & 20831 & 209594 & 27157 & 27319 & 27461 & 27643 & 27804 & 27985 & 28126 & 28286 \\
\hline 1.5 & 28448 & 288065 & 28754 & 28033 & 29082 & 29240 & 29397 & 29555 & 29712 & 29896 \\
\hline 1.6 & 30025 & 30181 & 30336 & 30492 & 30047 & 30801 & 30955 & 31100 & 31263 & 31410 \\
\hline 1.7 & 31569 & 31722 & 31874 & 32026 & 32177 & 32838 & 32479 & 32030 & 32780 & 32030 \\
\hline 1.8 & 33079 & 33228 & 33377 & 33526 & 3.3675 & 33822 & 33969 & 34116 & 3 y 243 & 34410 \\
\hline 1.8 & 34556 & 34702 & 34847 & 34982 & 35137 & 35282 & 35429 & 35570 & 35714 & 35857 \\
\hline 2.0 & 36000 & 313143 & 36285 & 36427 & 30569 & 33710 & 36851 & 30992 & 37132 & 37272 \\
\hline 2．， 1 & 37412 & 37552 & 37801 & 37830 & 37959 & 38106 & 38945 & 38382 & 38520 & 38057 \\
\hline 2.2 & 38793 & 38930 & 30040 & 39202 & 39837 & 35472 & 39007 & 39742 & 38970 & 40010 \\
\hline 23 & 40144 & 40277 & 40.10 & 40543 & 40976 & 40808 & 40940 & 41072 & 41203 & 41334 \\
\hline 2.1 & 41405 & 41505 & 41725 & 41855 & 41985 & 42114 & 42243 & 42572 & 42501 & 42029 \\
\hline 2.5 & 42757 & 42894 & 43012 & 48139 & 43245 & 481302 & 43518 & 43694 & 43769 & 43805 \\
\hline 2.6 & 44020 & 44145 & 442651 & 44383 & 44917 & 4 4 4 HI & 44764 & 44897 & 45010 & 45133 \\
\hline 2.7 & 45255 & 45377 & 4，5490 & 450120 & 45742 & 45383 & 45983 & 46104 & 49224 & 4 40344 \\
\hline 2，8 & 416463 & 415 & 417702 & 46820 & 40330 & 47057 & 47175 & 47293 & 47410 & 47528 \\
\hline 2.0 & 47645 & 47761 & 47878 & 47414 & 48110 & 48226 & 48341 & 48958 & 48571 & 4808 \\
\hline 3.0 & 48800 & 48914 & 48023 & 49141 & 40255 & 40308 & 40481 & 41594 & 49704 & 40818 \\
\hline 3.1 & 46930 & 50042 & 50153 & 50264 & 50375 & 50485 & 50556 & 50700 & 50810 & 50925 \\
\hline
\end{tabular}

Table 19.-Values of \(1-R=\) when \(R=0.5\)-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(\boldsymbol{x}\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 3.2 & 51035 & 61144 & 51253 & 51381 & 51450 & 51578 & 51630 & 51794 & 5190 t & 52008 \\
\hline 3.3 & 52115 & 52222 & 52520 & 52435 & 52541 & 52347 & 52752 & 52857 & 52908 & 53065 \\
\hline 3.4 & 53172 & 53270 & 53380 & 53484 & 53588 & 53692 & 54935 & 33808 & 54000 & 54103 \\
\hline 3.5 & 54205 & 54307 & 54408 & 54511 & 54012 & 54713 & 5-1814 & 54915 & 55018 & 55116 \\
\hline 3.6 & 55216 & 55316 & 55415 & 55515 & 55614 & 55713 & 55811 & 55910 & 500188 & 58103 \\
\hline 3.7 & 50204 & 50302 & 58390 &  & 56593 & 566890 & 50787 & 509\%3 & 50979 & 57075 \\
\hline 3.8 & 57171 & 57269 & 57361 & 57456 & 57591 & 57846 & 5740 & 57884 & 57923 & 5802 \\
\hline 3.9 & 58116 & 582093 & 58302 & 55395 & 58485 & 53580 & \(5981{ }^{\text {a }}\) &  & 6S5 & 6SP48 \\
\hline 4.0 & 59040 & \(5913 \pm\) & 59222 & 50313 & 59404 & 5949 & 50585 & 69055 & 69765 & 508.54 \\
\hline 4.1 & 53945 & 60033 & 00122 & 60211 & 60300 & 60388 & 6047 & 60505S & f50063 & 00740 \\
\hline 4.2 & 60888 & 60915: & 61002 & 01089 & 61170 & 61362 & 01319 & \(61+35\) & 61521 & 01607 \\
\hline 4. 3 & 61692 & 61778 & 61863 & 61948 & 620.33 & 02117 & (tayy & 62380 & 62380 & 62354 \\
\hline 4.4 & 62538 & 62521 & 62704 & 62988 & 62870 & 02053 & 63038 & 63118 & \$3200 & 63252 \\
\hline 4.5 & 63335 & 63446 & 63527 & 43409 & 63690 & 0377 & 63551 & Cus 3 & 12012 & ¢H003 \\
\hline 4.6 & 64173 & 64253 & 64332 & 64412 & 6491 & 64570 & G1019 & G7\% & \(6{ }^{6} 502\) & 4-4883 \\
\hline 4.7 & 64863 & 05041 & 65119 & 65197 &  & 05352 & 654 29 & 6s506 & 05.583 & 65c00 \\
\hline 4.8 & 65736 & 65813 & 65859 & 05965 & 06041 & 60.17 & 66192 & 66248 & 066343 & 66418 \\
\hline 4.9 & \({ }^{66703}\) & 66567 & G¢0 42 & 60710 & 60\% 70 & 9085r & 66938 & 02012 & 67055 & 67?59 \\
\hline 5.0 & 67732 & 073025 & 67378 & 07451 & 07523 & 67596 & 07 c - 8 & 07540 & 07812 & Gigs3 \\
\hline 5.1 & 67955 & 6sicz 7 & 68498 & 65169 & 08240 & 619311 & 08381 & GStai & 68522 & 68592 \\
\hline 5.2 & 08562 & 03732 & 68992 & 08871 & 08941 & 69019 & 09059 & 69148 & 64217 & 00235 \\
\hline 5.3 & 09354 & 69422 & 69190 & 69558 & 09026 & 696194 & 69761 & (f)82 & 645006 & 60303 \\
\hline 5.4 & 70030 & 70097 & 70164 & 70230 & 70290 & 70363 & 70429 & 70445 & 30560 & 70628 \\
\hline 5.5 & 70691 & 70757 & 70822 & 70887 & 70952 & 71010 & 71031 & 71146 & 71210 & 71274 \\
\hline 5.6 & 71338 & 71402 & 71460 & 71529 & \(-1592\) & 71056 & 71719 & 71782 & 71845 & 71908 \\
\hline 5. 7 & 71971 & 72033 & 72095 & 72158 & 72220 & 72232 & 32544 & 72406 & 72407 & 72528 \\
\hline 5.8 & 72589 & 22050 & 72711 & 72772 & 72833 & 72593 & 72954 & 73014 & 78074 & \% 3134 \\
\hline 5.9 & 23194 & ? 3254 & 73313 & 73373 & 73432 & 73498 & \% \({ }_{6} 551\) & 73610 & 73688 & 7327 \\
\hline 60 & 73788 & 73844 & 73902 & 73060 & 74018 & 74026 & 74134 & 74192 & 74248 & 74307 \\
\hline 6.1 & 24304 & 74421 & 74478 & 24535 & 74592 & 74819 & 74705 & 74781 & 74818 & 74874 \\
\hline 6.2 & 74930 & 74888 & 75041 & \({ }_{7} 75007\) & 75153 & 75208 & 75263 & 75318 & 75373 & 75429 \\
\hline 6.3 & 75488 & 75538 & 75392 & 75647 & 75701 & 75755 & 751809 & 75863 & 75917 & 75970 \\
\hline 6.1 & \(7 \mathrm{COP24}\) & 7 COTH & 76131 & 76184 & 76837 & 76290 & 76343 & 76396 & 79448 & 76950 \\
\hline 6.5 & 76.553 & 76005 & 76658 & 76210 & 76761 & 70513 & 76505 & 76917 & 70908 & 7 T 019 \\
\hline \({ }^{\text {72. }} 6\) & \(\overline{7} 9071\) & 7172 & 77173 & 77224 & 77274 & 74325 & 72375 & \({ }_{4} 76938\) &  & 76018
7520 \\
\hline 6.7 & 77558 & 77680 & \%7676 & 77220 & 776 & 7882 & 77875 & 75424 & 77973 & 78022 \\
\hline 6.8 & 78071 & 78120 & 78109 & 78215 & 78256 & 78915 & 78363 & 78111 & 78459 & 78507 \\
\hline 6.9 & 28.556 & T 56803 & 78651 & 78588 & 78.46 & 28703 & 78840 & 78688 & 78945 & 73982 \\
\hline 7.0 & 79028 & 79075 & 79122 & 79168 & 70215 & 50201 & 70305 & 79354 & 79400 & 704 50 \\
\hline 5.1 & 79491 & 79537 & 78593 & 7968 & 79074 & 79519 & 707E4 & 78800 & 79854 & 7\%965 \\
\hline 7.2 & 79034 & 75889 & 80033 & 80078 & 80122 & 80160 & 50211 & 80255 & \(802 \times 9\) & 80343 \\
\hline 7.3 & 80380 & 80430 & 80574 & 80517 & 80561 & 50604 &  & 80600 & 80733 & 80720 \\
\hline 7. 4 & 80819 & 80862 & 80905 & 80947 & 80150 & 81032 & 81094 & \(81: 17\) & 8115 & 81201 \\
\hline 7.5 & 81242 & 81284 & 81320 & 81367 & 81469 & 81451 & 81.492 & 81533 & 81574 & 81615 \\
\hline 7. 6 & 81856 & 81693 & 81738 & 8179 & 81819 & \(818 \pm 0\) & 81900 & 81911 & 81983 & \(8 \times 21\) \\
\hline 7.7 & 82001 & 82101 & 82141 & 82181 & 8292 & 82260 & 81300 & 882315 & 883 H & 82418 \\
\hline 7.8 & 82457 & 82.116 & 82575 & 82514 & 826613 & 82062 & 82000 & 82\%29 & 82768 & 8 S08 \\
\hline 7.9 & 82244 & 82382 & 82320 & 82359 & \(8 \times 197\) & 83635 & 83072 & 8310 & 83148 & 83185 \\
\hline 8.0 & 83223 & 83200 & \(83 \times 25\) & 83435 & 8342 &  & \(83+46\) & 83433 & 883580 & 835 \\
\hline 8.1 & 838543 & 835000 & \(83 \times 68\) & 83702 & 83730 & 83775 & \({ }_{8} 8811\) & 88383 & 83520
83883 & 835919 \\
\hline 8.2 & 831755 & 83991 & 84027 & 84032 & 84093 & 88133 & 84168 & 8420 & 89240 & 8:27-4 \\
\hline 8.3 & 84309 & B 4344 & 84378 & 8414 & 84449 & 8 & 84518 & \({ }_{8}^{81552}\) & \({ }_{84195}\) & \(8 \mathrm{SH21}\) \\
\hline 84 & 84555 & 84696 & 84724 & 84758 & 84792 & 84530 & 8885 & 81893 & \(8+527\) & 84900 \\
\hline 85 & 84904 & 81027 & 85091 & 85994 & 85127 & 85101 & 89.194 & 85.227 & 85259 & 85992 \\
\hline 8.6 & 85335 & 85358 & 850351 & 85423 & \(85+50\) & 85488 & 85520 & 85552 & 85.585 &  \\
\hline 8.7 & \(850-50\) & 85081 & 85713 & 85745 & 85776 & 85898 & 8580 & 8t572 & 85903 & \(5 \sin 38\) \\
\hline 88 & 850560 & 858977 & 50028 & 86059 & 8 SOSO & 86121 & 86152 & 80183 & 86214 & 50245 \\
\hline 8.8 & 86274 & 80300 & 863138 & 8 C 369 & 88397 & 86423 & \(8 \times 45\) & 8f188 & \(8{ }^{8} 518\) & 88 ¢f8 \\
\hline 0,0 & 86578 & 89008 & 860388 & 50008 & 80495 & \(8 \mathrm{Cr}^{2} 2\) & 8675 & 80786 & \(8{ }^{8} 1819\) & 88.45 \\
\hline 9.1 & 88875 & 80904 & 889333 & 86592 & 86901 & \(\mathrm{SrOLS}^{2}\) & 87049 & \({ }_{8}{ }^{2} 078\) & 88197 & 8-1315 \\
\hline 9.2 & 87164 & 87193 & 87221 & 87350 & 87278 & 87300 & 88395 & 87363 & 8 SH & 88149 \\
\hline 9.3 & 87447 & 81475 & 87.503 & 87531 & 87550 & 8763 & 8 8 914 & 8704 ? & 87680 & 887697 \\
\hline 9.4 & 87724 & 8752 & 87779 & 87806 & 87833 & 85800 & 87885 & 87915 & \(8{ }^{8} 8\) & 87088 \\
\hline 9.5 & 87095 & 89022 & 89049 & 88075 & 88102 & 83128 & 88155 & 88181 & 88200 & 88234 \\
\hline 9.6 & 88250 & 8823 & 88312 & 85338 & 88304 & 8 8390 & 88410 & 88472 & \(88+05\) & \({ }_{8894}\) \\
\hline 9.7 & 88519 & 88545 & \(885 \%\) & 88590 & 88621 & \(8 \mathrm{SNSO}^{4}\) & 8853 & 88697 & 857 & 8Sit7 \\
\hline 0.8 & 88773 & 88798 & 88873 & 88847 & 88872 & 88597 & 88922 & 85947 & 88971 & 88996 \\
\hline 10.9 & 80020 & 89045 & 89069 & 865094 & 89118 & 89142 & 89168 & 80190 & 89215 & 889219 \\
\hline 10.0 & 89203 & 89237 & 880310 & 89334 & 89358 & 89382 & 89405 & \(8(4 \times 3\) & 89453 & 89476 \\
\hline 10.1 & 80500 & 89593 & 89546 & 80570 & 815043 & 8 Sinf & B6\%239 & 84662 & 89285 & 89708 \\
\hline 10.2 & 89731 & 80754 & \(80 \% 16\) & 808003 & 89822 & 83845 & 808838 & 88890 & 889813 & 8351836 \\
\hline 16.3 & 88485 & 89050 & 00063 & (100225 & \(50 \times 14_{7}\) & 90003 & D00691 & 50113 & 50135 &  \\
\hline 10.4 & 80179 & 20201 & 90273 & 90245 & 90267 & 90288 & 50310 & 00332 & 90354 & \({ }_{60375}\) \\
\hline 10.5 & 90370 & 90418 & 40439 & 609450 & 90482 & 90503 & 90524 & 30545 & \(50 \leq 60\) & 40587 \\
\hline 10.6 & 90608 & 30029 & 90650 & 40071 & 90992 & 90712 & 00733 & 607E4 & 90774 & 90605 \\
\hline 10.7
10.8 & 60815 & 90830 & 90856 & \$0877 & 90897 & 90917 & 90937 & 20958 & 90078 & 40308 \\
\hline 10.8
10.9 & 91018 & 91038 & 91058 & 91078 & 010318 & 91118 & 01138 & 0115 & 9117 & 91197 \\
\hline 10.8
11.0 & 91216 & 91236 & 91255 & 91275 & 91294 & 91314 & 91233 & 91352 & 91372 & 91301 \\
\hline 11.1 & 91600 & 91429 & 91448 & 9146\% & 01488 & 91505 & 91524 & 01543 & 91502 & 03581 \\
\hline 11.2 & 417885 & 91463 & 91822 & 91846 & 01858 & 91878 & 91811 & 01730 & 93548 & 91767 \\
\hline 11.3 & 91306 & 91984 & 62002 & 920\%3 & 92038 & 02055 & 92073 & \}raty & 97930 & 21938 \\
\hline 11,4 & 8214 & 92161 & 92179 & 02103 & 02213 & \$12231 & 52248 & 22203 & 52283 & 152300 \\
\hline
\end{tabular}

Table 19.-Values of \(1-R^{x}\) when \(R=0.8\)-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \(x\) & 0 & I & 2 & 3 & 4 & 6 & 6 & 7 & § & 9 \\
\hline 11.5 & 92317 & 92334 & 02351 & 5238 & 82385 & 92402 & 92419 & 92430 & 92453 & 02470 \\
\hline 11.6 & 92487 & 92503 & 92520 & 92537 & 92553 & 82570 & 02588 & 92803 & 92610 & 822030 \\
\hline 11.7 & \({ }_{92814}^{983}\) & 92869 & 92088 & 02701 & 92718 & 9273.1 & 92750 & \({ }_{92} 960\) & 02782 & 92798 \\
\hline 11.8 & 92814 & 92830 & 92846 & 92862 & 92878 & 92894 & 92910 & 92925 & 42942 & 92957 \\
\hline 11.9 & \({ }^{92973}\) & 92389 & 938004 & 93020 & 93035 & 93051 & 93066 & 93082 & 932107 & 93113 \\
\hline 120 & 93128 & 93143 & 93159 & 93174 & 93189 & 93204 & 93219 & 03235 & 93250 & 94385 \\
\hline 12.1 & \({ }^{832850}\) & 033295 & 883310 & 93324 & 93339 & \({ }^{93} 3854\) & \({ }^{183369}\) & 9 & 03389 & 93413 \\
\hline 122 & 93428 & D 3443 & 83457 & \({ }^{93472}\) & 93486 & 03,01 & 93515 & 93530 & 93644 & 93559 \\
\hline 12.3
124 & 93573 & \({ }^{938587}\) & 038002 & \({ }_{0}^{03816}\) & 83430 & 93964 & 93658 & 983673 & 43667 & 93701 \\
\hline 124 & \({ }^{23715}\) & \({ }^{98329}\) & \({ }^{93743}\) & 93757 & 93771 & \({ }^{93785}\) & 93788 & 93812 & 93826 & 93340 \\
\hline \begin{tabular}{l}
12.5 \\
12 \\
\hline 18
\end{tabular} & \({ }_{693859}\) & 33867
4
4003 & \({ }_{9}^{93881}\) & 98895 & 93908 & 93922 & 93935 & 93048 & 431062 & 93976 \\
\hline 12.7 & 94129 & \({ }_{3}^{24135}\) & \({ }_{94148}^{94016}\) & 934023 & H043 & 94056 & 94069 & 84082 & 94095 & \({ }^{24109}\) \\
\hline 12.8 & 04252 & 34204 & \({ }_{94275}\) & 444219 & \({ }_{94174}\) & \({ }^{94187}\) & 94200
94328 &  & \({ }_{9}^{6953}\) & \({ }_{9}^{94339}\) \\
\hline 12.9 & 93878 & 94391 & 94403 & 94416 & 31428 & \(94.14!\) & 9453 & 594465 & \(9_{94 \% 818}\) & -94490 \\
\hline 13.0 & \({ }^{(1)} 51502\) & 94515 & 94527 & 94 \% 39 & 94551 & 944503 & 94575 & 0.585 & 04600 & 94012 \\
\hline 13.1 & H0\%4 & 04638 & 8.8648 & 94860 & 94671 & 94683 & 97695 & 94707 & 94719 & 94731 \\
\hline 13.2 & \(9-142\) & 0 0tis & و4760 & [ 417 TH & \(04 \div 89\) & \(9+801\) & 94812 & 94824 & 04835 & 94847 \\
\hline 13.3 & E4S58 & 94 Bro & 94881 & 448893 & 9 m (0)4 & 94915 & 04927 & 94938 & 04940 & 94961 \\
\hline 13.4 & \({ }^{94992}\) & \begin{tabular}{l}
94163 \\
050 \\
\hline 0
\end{tabular} & 94994 & 95005 & 4t5in & 95038 & \({ }^{65039}\) & \({ }^{55050}\) & Psoril & 85072 \\
\hline \({ }^{33.5}\) & 95191 & \({ }^{95094}\) & 95105 & 95116 & 95136 & 95137 & 95148 & 95159 & 95170 & 95181 \\
\hline 13.0 & 95191 & 95202 & 95213 & 45223 & 415934 & 03245 & 9525.5 & 945959 & 0527ia & 95\% \({ }^{\text {\% }}\) \\
\hline 13.7
13.8 & \({ }^{95297}\) & 95398 & \({ }^{95318}\) & \({ }^{96329}\) & 85339 & 96349 & 95340 & 05370 & \({ }^{2} 53881\) & 85291 \\
\hline 13.8
13.9 & 95401 & 95411 & 95422 & 95432 & 95 f 42 & 93553 & W5402 & 95172 & 115483 & 95493 \\
\hline 13.9
14.0 & \({ }_{9}^{95503}\) & 015513 & \(4 \mathrm{H}, 553\) & 9.5633 & 0.5543 & 93553 & 95563 & 45.552 & 95.582 & ¢5592 \\
\hline 14.0
14.1 & 95002 & 95612 & 95621 & 95831 & [5C41 & 95651 & \$3,660 & 85670 & 485880 & 95689 \\
\hline 14.1 & 95099 & \({ }^{95709}\) & 9618 & 95728 & 95937 & 95741 & 951556 & 85700 & 957\% & 95784 \\
\hline 14.3 & \({ }^{95}\) & \({ }^{35503}\) & \({ }^{95813}\) & 65892 & 95831 & 95,911 & 95850 & 95850 & 355888 & 96878 \\
\hline 14.4 & 95978 & \({ }_{95987}\) &  & 969004 & \({ }_{90013} 95938\) & \({ }_{965092}^{95932}\) & \({ }_{9}^{953941}\) & 95951 & 95960 & 95909 \\
\hline 14.5 & Procis & 46075 & 960084 & 906092 & 90101 & 10110 & 96119 & 96127 & 00136 & 0014 \\
\hline 14.6 & 90153 & 96162 & 96170 & 66179 & 90187 & 90180 & 96204 & 96213 & 06221 & 96230 \\
\hline 14.7 & 96238 & 90246 & \(0_{06255}\) & 98263 & 9624 & 90.38 & 00288 & 96993 & 90304 & 06313 \\
\hline 14.8 & 96321 & 96329 & 96337 & 96346 & 00354 &  & 90370 & 46378 & 903sc & 90393 \\
\hline 14.8 & 96402 & 90410 & 96418 & 96420 & PGP13f & 90442 & 90+50 & 90.58 & 10,4ifl & 96474 \\
\hline 25.0 & 90, 52 & 980487 & Deasit & D0:505 & Q6ibl3 & 96591 & 90653 & 906533 & 09544 & 08551 \\
\hline 15.1 & 96565 & 96567 & 806574 & Des52 & 96550 & 96697 & 50005 & 06612 & P0620 & 96038 \\
\hline 15.2 & 00635 & \(9 \mathrm{grj3}\) & \({ }^{9} \mathbf{6} 650\) & 40065 & 900665 & 96072 & 90680 & \({ }^{2} 06067\) & 96095 & \({ }_{96702}\) \\
\hline 15.3 & 9609 & \(0 \mathrm{OHF7}\) & 00724 & Mis31 & 90735 & 96740 & \(\mathrm{PaF37}^{\text {a }}\) & Tisfo & 106768 & 96icis \\
\hline 15,4 & 6\%82 & 96769 & 96790 & 51808 & 90311 & 96818 & \(9 \times 825\) & M6332 & 00838 & 96846 \\
\hline 15.5
15.6 & 108853 & 90860 & 98867 & 96874 & 96581 & 906888 & 06895 & 96902 & 00049 & 06916 \\
\hline 15.6
15.7 & 09693 & 09029 & 96833 & 96043 & 90950 & 96957 & 96963 & 96070 & 969\%1 & 96385 \\
\hline 15.8 & 97057 & 090003 & \({ }_{97070}^{9604}\) & \({ }_{9} 97070\) & 97017 & 9624 & 15020 & 97437 & 9804 & 97050 \\
\hline 35. 0 & 97122 & 97123 & 97135 & 97143 & 47147 & 50151 & 97160 & \({ }_{67166} 19762\) & \({ }^{197173}\) & \({ }^{97115}\) \\
\hline 16.0 & 97185 & 97192 & \({ }^{97198}\) & 97204 & 67210 & 87215 & 97223 & 972x & 0723 & 07241 \\
\hline 10. 1 & \({ }^{67247}\) & 07253 & 97200 & 872065 & 97272 & 978 & 9is, 1 & \%7290 & 177296 & 97302 \\
\hline 16.2 & 97308 & 9731.4 & 97320 & 4 y 220 & 97332 & 97335 & 07344 & 517350 & 97356 & 97362 \\
\hline 10.3 & 96308 & \({ }^{937373}\) & [8379 & 917335 & 97391 & 97799 & 97463 & 97403 & 4, 4 d4 & 97420 \\
\hline 16.4 & 97427 & 97431 & 9745 & 97443 & 97744 & 97454 & 97460 & \(97+65\) & 97471 & 97477 \\
\hline 10.5 & 97482 & 97488 & 97401 & 97490 & 97505 & 97510 & 97516 & 97521 & \(8752 \overline{7}\) & 07532 \\
\hline 16.6 & 97388 & 0754 & 97549 & 0755 & gzif6 & 07565 & 97571 & 97576 & 97581 & 97587 \\
\hline \begin{tabular}{l}
10.7 \\
\hline 10.8
\end{tabular} & \({ }^{075192}\) & \({ }_{977055} 975\) & 937003
97650 & \({ }^{97608}\) & 97014 & 97819 & 97624 & 97630 & \({ }^{07635}\) & 97640 \\
\hline 18.9 & 95097 & 87702 & YT703 & 97613 & 97178 &  & 9 OCTi & 9 its 2 & \({ }^{9} 7687\) & 97682 \\
\hline 17.0 & 0748 & 97753 & 9753 & 97763 & 97008 & \(077 \%\) & \(97 \%\) & 97733 & 97\%38 & 9\%743 \\
\hline 17.1 & 9768 & 97803 & 97808 & 07813 & 87817 & 97822 & 97827 & 07832 & 9783 & 97842 \\
\hline 17.2 & \({ }^{97846}\) & 97851 & 97856 & 078 EB & 97804 & 97870 & 97875 & 07880 & 97885 & 97889 \\
\hline 17.3 & 9788 & 97890 & 97903 & 9 maO & 97913 & 97917 & 97922 & 97027 & 97931 & 87936 \\
\hline 17.4 & 97940 & 97645 & 97950 & 97954 & 97850 & 07963 & 97008 & \(9797 ?\) & \({ }^{07977}\) & 97981 \\
\hline 17.5
17.0 & 97980 & 97390 & 97985 & 07989 & 9 OSOOH & 05008 & 98013 & 05017 & Csoz2 & \$28026 \\
\hline 17.0
1.7 & 98030 & 988135 & 98039 & 98643 & 98048 & \(\underline{9 c c i s 2}\) & 88050 & 08061 & 2806, & 08009 \\
\hline 17.8 & 88116 & 98120 & \({ }_{98125}\) & 98120 & Oncsi & 888093 & 50, & 28104 & 98105 & 08112 \\
\hline 17.9 & \({ }^{103158}\) & 98162 & 4 SICO & \$8170 & 98174 & \({ }_{98178}\) & 9817 \({ }^{9818}\) & 3148
8166 & \({ }_{98190}\) & \({ }_{6815}\) \\
\hline 18.0 & 188109 & 98203 & 98207 & U821L & 98215 & 9\%219 & 98223 & 98220 & 88230 & 9823i \\
\hline 18. 1 & 98238 & 08242 & 88240 & 98250 & 08254 & \$062.58 & 49202 & 88266 & \(\underline{18260}\) & 88873 \\
\hline 18.2 & 9887 & 88281 & 005285 & 88280 & 888292 & 88295 & 188300 & 08304 & 98308 & 98311 \\
\hline 18.3.4 & \({ }_{898315}\) & 980]19 & 98323 & 08322 & 98330 & 98334 & g93as & 88341 & 123345 & 88349 \\
\hline 38.4 & \begin{tabular}{l}
18852 \\
88380 \\
\hline 8080
\end{tabular} & 98365
48302 & 82360 & \(9836{ }^{\text {a }}\) & [83317 & 98371 & 8837 & 13\%78 & 98332 & 88185 \\
\hline 18.6 & (18124 & \(198+28\) & 98131 & 09635 & (1867.103 & \({ }_{98442}\) & 93410 & & 0 SH 17 & 10842I \\
\hline 18.7 & 98459 & (\%8462 & 08460 & 184635 & 98472 & 28470 & 98480 & 0483 & 28486 & \$884,90 \\
\hline 18.8 & 88494 & 98407 & 88500 & 88503 & \$8500 & 48510 & ¢8513 & 28510 & 98520 & \({ }_{98523}\) \\
\hline 18. \({ }^{\text {b }}\) & 88520 & 08530 & 98533 & \{85334 & 083530 & \(0 \mathrm{SS43}\) & 08546 & 9S549 & 18.552 & 488556 \\
\hline 19.0 & 08.501 & grs5ic & 98565 & 48968 & 88859 & 98556 & 28578 & 48581 & 088584 & 485597 \\
\hline 18.2 & 98591 & \({ }_{9}^{985925}\) & (18597 & 98800 & \({ }^{83003}\) & \({ }_{98000}^{98000}\) & 08800 & 08012 & 98810 & 08619 \\
\hline 19.3 & 98652 & 9ec5 & 98558 & 08051 & 128604 & Skect & \({ }^{\text {g }}\) & 68673 & 98dic & \({ }_{088649}\) \\
\hline 18.4 & 48282 &  & 96868 & 98001 & 14804 & 1 LbSt 517 & 98469 & 18702 & 98705 & 98708 \\
\hline 19.5 & 88711 & 98714 & 98717 & 98720 & [3722 & 98745 & 48728 & 08731 & 08734 & 08737 \\
\hline 19.6 & 98738 & 988742 & 88745 & 93748 & 98751 & 级753 & 9875i & 88759 & 98762 & 08745 \\
\hline 18.7 & 88707 & 48770 & 88773 & 96775 & 98778 & 68781 & 98784 & 88780 & 9878 & 1878 \\
\hline
\end{tabular}

Table 19.-Values of \(1-R^{2}\) when \(R=0.5\)-Continued


Table 19.-Values of \(i-R^{2}\) when \(R=0.8\)-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline I & 0 & \(\pm\) & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline 28.0 & 98807 & \(9 \% 067\) & 0350: & 90805 & 90906 & 90409 & 90609 & 00810 & 50910 & \(4 \times 810\) \\
\hline 28. & 99331 & 90811 & 95812 & 99812 & 510813 & 43813 & 29813 & 70S14 & 98914 & 9395 \\
\hline 28.2 & 99815 & 94815 & 99816 & 95816 & gest & \(0 \mathrm{CK5}\) ! 7 & 59817 & 90818 & 92918 & 90519 \\
\hline 28.3 &  & 99880 & 9983 & 908\% \({ }^{\text {a }}\) & 90821 & 99521 & 9951 & 90822 & 93922 & 928823 \\
\hline 28.4 & yeSz & 90823 & 08024 & 94824 & 5 y 1525 & \(\mathrm{CO}_{3} 925\) & 93825 & 98520 & 99825 & 99827 \\
\hline 23.5 & 90377 & 08827 & 00832 & 0982 & 90329 & 90820 & 96429 & 42833 & \(9 \times 1840\) & 95930 \\
\hline 28.6 & 90831 & 0us3] & 99532 & 99832 & 010332 & \{ 6\(\} \leq 33\) & 93533 & 92833 & \(0 \times 334\) & 99934 \\
\hline 237 & 98835 & 99835 & 199835 & 99836 & 461836 & [9\%39 & 09336 & 93037 & G983 \({ }^{\text {ch }}\) & 9933 \\
\hline 23.8 & 85538 & 00.639 & 99539 & 00836 & 99540 & 9 PS 40 & 00540 & 9884 t & 05391 & 93811 \\
\hline 28.0 & 50982 & 40842 & 00812 & 90813 & W1343 & \% 3 & OSStis & 03544 & 2013+5 & 90345 \\
\hline 29.0 & 99845 & y,k 46 & 0.1538 & TMS4 6 & \(00^{105}\) & 90317 & 0984 & 99858 & 96438 & 9948 \\
\hline 2. 1 & (1)S 40 & 97519 & 00649 & 93550 & 99850 & 583850 & 09551 & 99851 & 90451 & 93952 \\
\hline 22.2 & 938552 & 09552 & 59853 & 935 3 & 99853 & \(8935-4\) & 96551 & moss 4 & 18\%55 & 09585 \\
\hline 29.3 & W13555 & 58850 & 510358 & MS56 & 99557 & 99557 & 89854 & 9035 5 & 9xR5 & 93885 \\
\hline 23.1 & 99858 & YPS 59 & 921850 & 969559 & 99890 & 99500 & 98S 60 & 90861 & 98881 & 989501 \\
\hline 29.5 & 98862 & 9¢9002 & 593802 & 518962 & \(9 \times 103\) & 93803 & 98.3 & 09504 & 98951 & 09804 \\
\hline 22.6 & (1) 803 & 99865 & 90865 & (13806 & 90S60 & 18sen & 92560 & \(0 \mathrm{~N} \mathrm{SO}_{4}\) & OSS07 & [ASC7 \\
\hline 29. 7 & 94863 &  & [10603 & 98369 & 99869 & 64809 & OASc9 & 90870 & 93870 & 96950 \\
\hline 29,8 & \({ }_{633} 71\) & 909:1 & 何3t & 938: & 9082 & ¢035 \({ }^{2}\) & 9385\% & 04853 & CMET3 & 99875 \\
\hline 29:9 & 99S73 & 95\%34 & 9938 & 94874 & 99875 & 58975 & 99875 & 99875 & 99870 & 0 M 515 \\
\hline
\end{tabular}

\section*{LITERATURE CITED}
(1) Batle, B.
1918. zu mitscherlichs gfsefz der pirsiologischen beziehungen. Landw. Jahrb. 51 : [363]-385, illus.
(2) Mitscherlich, E. A.
1912. zdm Gesetz vom minimum. eine antwort an th. pfeiffer und seine mytarberter. Landw. Vers. Stal. 77: [ \(\ddagger 13]-428\), illus.
(3) Niklas, H., and Milter, M.
1927. beiträge ger mathematischex fobmethenung des mathägeeSEtzes. Ztschr. Pflanzenernahr., Düngung u. Bodenk. (A) 8: 289-297, illus.
(4) Smidmant, W. J.
1921. a blan for the condect of fehthizele expemments. Jour:
(5) \(\qquad\) Amer. Soc. Agron. 13:304-310.
1930. A NEW hasis fur fehmazen exphiments. Science (n. b.) 71: 135-136.
(6)
1931. measuming absorbed phonfitates and nimoten. Science (a, s.) 73: 215-216, illus.
(7) ———and Lang, E.
1924. the lan of mminisming herrens . . . 178 p . Yonkers-onHudson.
(8) Venhet, J. A., and Ketsunaf, Y.
1928. the field eqlation and its ablflcation to sugar cane agriculture. Hawaii, Planters' Rec. 32 : \(\mathrm{G} 1-78\), illus.
(9) Whire, I. W., and Holaen, F. J.
1921. soll fartilitt experiments on dekalb, volusha, and westmoneland solls. Pemn. Agr. Expt. Sta. Bul. 166, 23 p., illus.
(i0) Willcox, O. W.
1929. Some new fondamentais in plant moloot, agriculture and the food rhonlem. Science (n. s.) 69:609-613.
(11)
1930. phanciphes of aghomology; ont, tile laws of plant growth in helation to chop production. 96 p., illus. New York.

\section*{ORGANIZATION OF THE UNITED STATES DEPARTMENT OF ACRICULTURE WHEN THIIS PUBliCation was last printed}


This bulletin is a contribution from

Bureat of Agricullural Economics
Division of Farm Management and Costs.

Nils A. Olsen, Chief.
C. L. Holmes, Princijal Agrichltural Economist, in Charge.
```


[^0]: Pacter Sphrnan died July 11, 1831. In the uneompleted manuseript aeknowledgenent was made of the valuable aid renderod by Mrs. Florene O. Thomas in making che computetious, and by S . W. Mondum,
 matter of the ropert. Aftor Doetor Spillman's death Mr. Mendum completed the pronuscript.

[^1]: ${ }^{5}$ Italic numbers in parentheses refer to Literutura Cited, is, 60 ,

