

This document is discoverable and free to researchers across the globe due to the work of AgEcon Search.

Help ensure our sustainability. Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu
aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only. No other use, including posting to another Internet site, is permitted without permission from the copyright owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

START

UNITED STATES DEPARTMENT OF AGRICULTURE
 WASHINGTON, D. C.

AN ECONOMIC STUDY OF BROOMCORN PRODUCTION ${ }^{\text {: }}$

By R. S. Washburn, Assistant Agricultaral Economist, Dich in of Farm Management and Costs, Bureau of Agricultural Economics, and J. H. Martin, Senior Agronomist, Division of Cereal Crops and Diseuses, Bureau of Pland Industry. in Cooperation with the Agricultural Experiment Stations of Illinois and Kansas

	Puge	Cs-Contimued.	Page
Introd	λ	Cost of production	2I
Trend of broomcorn productio	2	Anmual broomcora yicids........-........	25
Oright and intrornction of	2	Virintion in labor and power require-	
Shifts of broomiom growing	3	men	35
Quantity of broomeorn prod	4	Kanses	$2 \hat{i}$
Price and supply of bropmeot	7	Usual fink prockice in growing brommeorn	
Early prices.	7	and the major competing cash crop...-	97
Recent prices	8	Hracties that should increase grafts---	29
Competition of other produ	15	Cost of productio	29
Esport demand for American broomcorn-	12		32
Reiation of supply of broomeorn to price received.	14	Tsund fold practice ia growing bromeorn and the major compting cash crop.-.	32
Acresge of broomcorn needed to produco		Practioas that should increase profits.--	33
	17		33
Cost of production aud returas from broomcorn and competing cash crops.	17	Choice of competing cash crops.-.-..........-	3
nhiois. ${ }^{\text {a }}$,	18	Net ietaras per acre from broomcorn and competing ensh erojs	36
Bnd the mafor competing cash erop	18		40
Fractices thet should increase profits...-	20	Literature cited	41

INTRODUCTION

Broomcorn is unique among our agricultural products in that the brush has practically only one use-the making of brooms. A surplus of broomcorn brush can not be used as food for livestock and is not utilized in other industries. More extensive use of brooms is not stimulated by lower prices, and the export market is decidediy limited. The consumption of broomcorn brush therefore has almost a fixed limit. A short supply of broomcorn brush often results in a very high price, and an oversupply forces the price down to a point that is disastrous to growers.

Broomcorn probably can be grown in nearly every State. Violent fluctuations in production and prices and the heavy cash expense necessary in harvesting and preparing the brush for market frequentiy make broomeorn one of the most speculative of farm crops.

[^0]
TREND OF BROOMCORN PRODUCTION

ORIGIN AND INTRODUCTION OF BROOMCORN

The origin of the broomcorn plant has never been determined. It belongs to the group of plants known as sorghums (Holcus sorghum L., Andropogon sorghum, Brot., Sorgham vulgare Pers.) but differs from other sorghums in that the branches of the head are produced in the form of a brush. Broomcorn has not been found growing indigenously in Africa nor in Asia, except in Russian Turkestan, although some of the types of sorghums from China and India have brushy heads which can be used for brooms.

Broomcorn probably has been grown in Europe for more than 300 years. Heuze strtes that it was introduced into Europe in 1596 (9,v:1, p. 293). ${ }^{2}$ Possibly it was grown in Europe previous to that date. Apparently the earliest definite report of broomeorn growing in Europe was that of Caspar Bauhin, who states that it was grown in Italy in $1658(6, p, 510-516)$. At present, broomeorn is grown to a considerable extent in norithern Italy, southern France, Hungary, and, to a limited extent, in many other foreign countries.

The introdyfien of broomcorn into the Einited States has been credited to Benjamin Franklin according to the following story:

Doctor Franklin chanced te see an imported corn whisk in the possession of a Jady, and whilst examining it as a novelty, he espied a grain of it still attached to the stalk. This le took and planted, und so we at length have got it in abunance among us ($16, v, 2, p .487$).

The date of introduction is not definitely known.
Another writer has given a somewhat different version of its introduction; he indicates that the plant came from India.

The seed of brooncorn is a native of the East India, and it is said that Benj. Franklin, while in England, in the year 1725 acquired a seed from a whisp he notice a lady using. He brought it to America, planted and propagated it (7 , p. 8-9).

This latter origin is doubtful as broomeorn is not now, and apparently never has been, grown in India except experimentally.

According to Themas Jefterson, broomcorn was grown to some extent in Virginia as early ns 1781: "Besides these plants, which are native, our farms produce wheat, rye, barley, oats, buckwheat and broomeorn" (11, p. 42).

The growing of broomcorn on a commercial scale in this country began in the Connecticut Valley at Hadiey, Mass. "According to the Hampshire Gazette, Samuel Hopkins of Hadley was the first to raise broomcorn in this vieinity, about 1778" (12).

Rev. Enoch Hale of Westhampton, in his Diary, May 19, 1785, records that he "sowed broomeorn;" and a few hijls may have been planted in severai gardens before 1797. Levi Dickinson of Hadiey, however, is entitled to the credit of conceiving the plan of raising broomcorn abundantly, and of supplying the country with brooms. * * *.

Levi Dickinson, a native of Wethersfield, Conn., obtained a little broomseed, and pianted some hills in his garden, on the upper part of the old back-street of Hadley, in 1797. From the seed of this he pianted half an acre of broomeorn in 1798,- the first half acre cultivated for brooms in America. In 1799 he planted an acre, and more in succeeding years. * **

In 1855, assessors of Hadley returned 906 aeres of broomcorn, producing 700 lbs. per acre, worth at 10 cents per pound, 63,420 dollars; and 60 bushels of seed

[^1]per acre, worth at 40 cents per bushel, 21,744 dollars. They returned brooms made in Hadley, 541,120 valued at 118,550 dollars, and 35,000 brushes worth 2,625 dollars ($18, p .368-\$ 68$).

There were 41 places in Hadley making brooms.

SHIFTS OF bROOMCORN GROWING

Shortly after broomcorn had become established in Massachusetts the production began to shift westward. Soon broomcorn became an important crop in the Mohawk Valley of New York. It was grown extensively by Shakers. "The Shaker community at Watervliet, N. Y., are said to have first made brooms for sale in 1798" (5, p. 11). Production later moved westward from New York and had assumed considerable importance in the Scioto Valley of Olio by 1846 .

* * * Mr. Eaton, of Chilliccthe, who I understand has this season grown the same crop [broomcorn] near Circleville and Chillicothe, in all to the amount of 1000 acres, which has been very nicely prepared, put in bales and pressed, and has already gone forward to be slipped to England, where the owner has wiorkmen employed in manufacturing it into brooms (10).

During the late fifties the crop became established in Illinois. One farmer near Rockford, Ill., was reported to have'grown 800 acres of broomeorn in 1859 (2). John Cofer, of Arcola, Ill., a member of the Illinois Legislature, was reported to have begun the cultivation of broomcorn in east-central Illinois in 1861, where it is still grown extensively. He obtained the seed in Tennessee (15).

During the seventies, considerable broomcorn was grown west of the Mississippi. In Kansas, where the crop is still important, production began in 1870.

McPherson County is given credit for having produced the first broomcorn in Kansas. It was in the year 1869 that a Swedish family by the name of Hawkinson came to McPherson County from tlinois. They brought with them quite a lot of broomeorn seed. Knowing that it was a paying sod crop, in the spriag of 1870 they pianted 80 acres on their claim which they had staked out near Marquette in McPherson County (8).

The Smoky Hill and Arkansas Valleys were the chiof centers of broomcorn production in Kansas for many years.

The first census reports on broomcorn are for production in the year 1879. Broomcorn was grown to some extent in New York, Ohio, Nebraska, Towa, Missouti, and Califormia, but even at this early date about 60 per cent of the production was in Illinois and Kansas. The shifts westward were into sections ol higher temperatures more favorable for the production of high-quality broomcorn. The following quotation mentions some causes of the shift in production, which occurred more than 75 years ago:

About 1850 the farmers upon the western prairies began the raising of broom corn, exclusively for the brush. It was of larger growth, long and straight, cut while green, and kiln-dried [probably shed cured], and was muoh better than the brush raised in this [Connecticut] valley, and soon cecupied the market. The brooms made from the western brusil were of handsome color, the brush having been cut before ripening, they were stronger and a better broom in every way, the outside being covered with the hurls of the brush and no broom made from the native brush could compete with them.

Sixty years has made a great change; the broom-conn industry has left the Connecticut Valley, never to return, and the raising of tobacco and onions seems to hive taken the place of broom corn, as the crops relied upon by the farmer for bringing him ready money (12).

By 1889 Nebraska was third in importance as a broumcorn State and was exceeded only by Kansas and Illinois. Bromeorn had largely disappeared from New York and Ohio. The crop in Illinois had become more concentrated in the enst-central portion of the State and had shifted westward both in Kansas and Nebraska.
Acreage in 1899 showed some increase in Missouri, while acreage in Nebraskn had declined. Illinois had become the most important of the broomeorn States, while the increase in acreage in Kansas was only moderate. The crop had made its appearance in Texas, Colorado, and Oklahoma. In the decade 1889-1899 the increase in total broomcorn acreage in the United States was approximately 90 per cent.
By 1909 broonicorn had largely disappeared from Iowa, Missouri, and Nebraska. The crop in Illinois had declined materially, whereas there was a marked increase in acrenge in Oklahoma. In 1909 Oklahoma was the leading broomcorn State. Broomcorn had advanced into New Mexico and had moved toward the southwese in Kansas. In Ollahoma the broomcoru ncreage of greatest density was in the northwestern part of the State, although the industry became establisbed in the Lindsay district of south-central Ollahoma about this time. The crop in Iilinois was confmed to the east-central part of the State. During the decade 1899-1909 the increase in total United States broomcorn acroage was approximately 83 per cent.

Broomcorn had become firmly established in the semiarid region of the Southwest by 1919. It had largely disappeared from central Kansas, but had become important in the southwestern part of the State, and was of considerable importance in New Mexico and Colorado. South-central Ollahoma, including the lindsay district, as well as western Oklahoma were sentions of heavy production. A new broomcorn district appeared in the lower Rio Grande Valley in Texas.

By 1929 broomcorn acreage with the exception of that in eastcentral Illinois was practically all concentrated in the Southwest. Broomoorn acrage in the lower Rio Grande Valley of Texas had largely disappeared, while that of Colorado and New Mexico had increased materially. Southeastern Colorado and northeastern New Mexico were important broomcorn regions. The most recent expansion of broomcorn growing has been in southeastern Colorado and northeastern New Mexico.

As broomeorn is drought resistant, it is adnpted to the semiarid conditions of the Plains States, where the choice of cash crops is limited. East-central Iilinois and the Lindsay district of Oklahoma are the only humid sections in this country in which broomeorn is grown extensively at present. There the farmers produce a high quality of brush and have a well-established market. Broomcorn has been more profitable for them than have most other crops because of good yields and relatively high prices.

QUANTITY OF BROOMCORN PRODUCED

With the exception of a slight production in Texas and Missouri, broomcorn at present is concentrated in Oklahoma, New Mexico, Colorado, Kansas, and Illinois. The reported production in the United States, according to the census, reached a total of 14,736 short tons in 1879. Census reports by 10 -year periods, show an increase to 56,515 short tons in 1919. The first reports on acreage devoted to
broomeorn production are for 1889 , in which 93,423 acres were grown ns compared with 337,806 acres in 1919. (Table 1.) Starting with 1919, acreage and production are shown in Table 2 as estimated by the - United States Department of Agricultur;.

Tabie 1.-Broomeorn acreage and production by States, census years 1879-1989.

State end division	Acrenge 1					Froduction					
	1889	1808	1009	1019	1929	1878	1888	1288	1809	1918	1020
Massachusetts \qquad Connecticut \qquad New York. \qquad New Jersey. \qquad Pannsylvana \qquad North Atlantic.		Acres		Actes	Acres	Shari	Short	Short	Short	Short	Short
		11.					(2)	(2)			
	1	(${ }^{\text {a }}$	(3)	(4)	2.	2	(${ }^{1}$	(1)	1	(2)	(2)
	993	350				1,403	225	101	,		
	6	1 I	11	14		14.	2	2	3		
	57	221	108	946	47	129	18.	55	22	147	9
	I, 0.58	599	123	963	40	1.632	215	I60	28	153	9
Ohio.	1, 57, ${ }^{\text {a }}$	802	170	735	52	752	401	200	46	$17{ }^{103}$	18
Indiana	413	815	323	613	166	215	7 T	192	77	123	34
Illinois.	34,340	95, 137	38,452	16, 409	21,403	5, 822	7,960	30,333	B, 655	4, 622	5,378
Michigso	13		4			31	3	12	,		
Wisconsin	1.57	B4	28	11		101	46.	19	7	3	
Minnesota	89	140	13	7	12	34	21	38	5	2	2
Iowa.	t, 103	2, 220	150	168	19.	58.	283	589	38.	52	7
Missouri	2, 618	10, 219	5. 339	3,072	087	1,580	526	1, 847	887	350	146
Nortl Pakots											
South Dajot	237	238	(64	89	11.		58	50	18	14	2
Nebreska	16,792	6, 627	458	506	150	876	3, 257	1,3147	79	- 85	42
Kansas	30, 717	34,383	41,064	11,447	40, 8i2	2,842	5, 405	5, 1002	4,384	1,403	6,973
North Central.--	88, 047	150, 208	81, 069	33, 0.64	72,681	12.839	18, 044	40,624	15, 201	7, 192	12, 602
Delaware. Marylant Virginio. West VirgIna North Carolina South Carolina Georgia. Florida.	I4	4	13			4	1	2	2	2	
	8	83	19	$23 ⿺$	2	20	2	18	10.	40	${ }^{(2)}$
	140	1,762	j07	360	39	(1)4	22.	332	23	58	17
	31.	82	45	125	1	63	7	16	15.	20	(2)
	15	(17)	15	71	17		3	15	3	12.	3
	54	21	2	2			7.	6	(2)	1	(2)
	33	31	22	160.	20		4	9.		$2 \cdot 3$	4
	171	34						2			
South Allantie.	466	2, 0041	223	961	80	151	144	400	57	158	24
Kenturisy..............-	155	838	342	353	50		46	192	78	59	11
	1, 439	3, 444	1, :378	2, 247	380		205	508	174	392	57
Alahama.	6.1	152	52	205	28		J3	28	g	20	5
Mississippi	43	214	154	309	$3{ }^{3}$		12.	72	30	44	1
Arkansas.	135.	878	332	011	190		27	152	53.	141	62
Loulisigna	24	107	320	297	47		¢ ${ }^{6}$	21	46	34	10
Oklahoma	3 Sif)	312,763	216, 350	235, 733	124, 0170		¢ 8	${ }^{\circ} 1,783$	21, 371	35, 796	17, 838
Texas.	500	3,743	5, 448	30, 748	10, 0,68		158	819	1,184	7, 146	J, 492
South Central...	2,550	22, 141	228, 3416	2íc, 803	135, 801		475	3, 678	22, 945	43, 638	10, 574
İabo.	13.			17	11	(2)	2	(2)		4	5
Wyomin				15							
Calarado	301	1, 24 [5, 031	10,588	(4, 248	2	30	113	594	2.314	9, 200
New Mrexico	102	14	4.470	13, 113	38, 036		12.	3.	322	2, 638	0,150
Arizona.		30	14	50		(3)		11	3	10	4
Utah.	$1 \mathrm{~B}^{1}$			23			7		${ }^{(3)}$		
Washington	65	$6{ }^{7}$	183			8	11	10	23		
Oregon											
Calfornia	85	1, 004	1, 023	2,178	114	58	30, 3	573	307	390	24
Far Western.....	1,302	3,641	11, 321	25, 095	103, 032	114	368	72	1,240	5, 373	15, 380
United Slates....	83, 423	178, 384	320, 102	$3: 8,806$	311, (04, ${ }^{\text {a }}$	14,736	$1 \mathrm{D}_{1} 2 \mathrm{2} 8$	45, 47]	30, 480	55, 515	43,508

[^2]1 Not reported in 1870
${ }^{2}$ Leses than I ton.
3 Not reported.

- Less than 1 acto.

5 Includes Indian Perrilory.

Table 2.-Broomcorn acreage and produstion for principal producing Stales, 1.919-1031

Estimates of Division of Crop and IAvestock Estimates, U. S. Department of Agriculture.
There is considerable variation in the yield of broomcorn from year to year. (Fig. 1.) Yields in Kansas have been lower in recent years than in the early years of the industry in that State. This lower yield is due, in a large measure, to the fact that the acreage of broomcorn is being more nearly confined to the less productive semiarid sections of the State. During the last two decades the trend in yields in Illinois has been downward. This may be partly the result of soil exhaustion and partly of more careful sorting of the brush at harvest. The tendency during recent years has been to leave unharvested the brush of poor quality and that of lodged crops. The average yield for the United States during the years 1915-1931
was 325 pound 3 per acre. to 449 pounds (in 1915). to 4. The two factors, varying yield and variation in the acreage planted, have caused wide fluctuations in yearly production.

PRICE AND SUPPLY OF BROOMCORN

EARI.Y PRICES

Almost from the beginning of production in the United States broomcorn has been subject to considerable price fluctuation, largely as a result of varying supply. In eariier deys the growers made the brush into brooms. Soon broomcorn became of greater commercis. importance and was marketed directly. Accurnte data on the prices paid for broomeorn during the nineteenth century are not arailable, but newspapers and periodicals occasionnlly contained statements of prices. In 1825 broomcorn standing in the field was

FIGURE i.-YEARLY YIELD OF BROOMCORN PER ACRE
In genern, the yied of broomeorn in recent years has beon lower than in tho early years of the industry.
valued et $\$ 25$ to $\$ 50$ per acre for yields of 300 to 700 pounds of brush per acre. In 1832 the price of broomcorn at Hadley, Mass., was about $\$ 100$ per ton; in 1835 it advanced to $\$ 250$ per ton for some of the best-quality brush. During the spring of 1836 the price had advanced to $\$ 300$ per ton (1).
In the years following 1836 the price of broomcorn varied from $\$ 60$ to $\$ 320$ per ton, depending upon the quality and the supply. From about 1850 to 1870 the price varied from $\$ 100$ to $\$ 200$ per ton in Massachusetts and New York. A large crop in northern Illinois sold for $\$ 85$ per ton in 1859 .

Even in the years previous to 1873 price fluctuations often made broomcorn a very speculative crop.
The broomeorn interest is a very fluctuating one. The price for the last few years has been about 6 cents for the common kind, and 8 for the other. This last at the close of the [Givil] War brought as high as 18 cents per pound (8).

In 1877, the average price of broomcorn in Kansas was reported as $\$ 75$ per ton. (Table 3.) During the 38 years 1877 to 191.4 the
price in Kansas ranged from $\$ 32$ in 1896 to $\$ 138$ in 1909. In only 3 of these years, 1909, 1911, and 1913, did the price exceed $\$ 90$. In 28 of the 38 years the price ranged from $\$ 60$ to $\$ 90$ and in 7 years the price was less than $\$ 60$ per ton. The 10 years from 1890 to 1899 was a period of relatively low prices.

Prices in Illinois, resching $\$ 198$ per ton in 1909 (Table 3), were for the most part higher than those in Kansas. From 1877 to 1914, inclusive, the price exceeded $\$ 90$ per ton during 14 years, and was less than $\$ 60$ during 7 years. The lowest price was $\$ 38$ per ton in 1895.

Table 5.-Broomcorn: Average price per ton received by producers in Kansas and Illinois, 1877-1914

Year	Kan5Rs	Ilinois	Year	Kanses	Minnois	Year	Kınsns	Illinois	Year	Kansas	Ilinois
	Dolitrs	Dollars		Dollars	Dotfirs		Doliary	Doltars		Dollarat	Dollars
1876	75.00	71.20	1887	70.00	(14. 60	1827.	41.46	53.06	1907.	66.10	01.00
1878.	75.02	49.0	1888	70.00	57.00	1808.	44. 68	55.00	15108	64. 26	89.00
1888	70.00	86. 75	1889.	70.00	08.00	1819.	14. 38	171.00	1909.	138.27	198.00
18.	69.98	77.40	1890	60.00	04.00	1100.	70. 18	70,00	1910	81, 12	116.00
1881.	89.80	128.50	1891.	65.00	117.00	1 ab d.	80.00	105.00	1911	120.50	177.00
1892	89.98	80.00	1892.	65.00	94. 00	$1 \mathrm{CNO}_{2}$	59. 76	70.00	1912	03. 38	98. 00
1883	69. 98	90.00	1893.	49.60	57.00	1903	74.36	01.00	1913	95.30	122.00
1884	50.56	72.00	1894	63.30	89.00	1904.	61.16	77.00	1914	65.54	87.00
1885	76.12	94.00	1895	40.40	38.00	1905	62.70	86.00	11.	6. 0.	\%.a
1886	70.00	78.00	1806.	32.40.	54.00	1906.	61.84	90.00			

Gomplled from biennial reports of the Kansus State Board of Agriculture and from the statistleal report of the Yllimois Stale Board of Agriculture for Dec. 1, 1914, p. B.

FIgURE 2.-FARM PRICES OF Broomcorn in the United States. 1915-1931
The price of broomcorn advanced over the perfod 1015-1017, but innlike that of most other agricultural commodities it did not advanes during the remainder of the Worid War period

RECENT PRICES

There are no definite dnily price quotations on broomcorn such as are available for most other farm commodities. Prices announced by buyers are usually stated in general terms and are not based on a definite grade or quality (4). Sales of broomcorn brush fy growers at present are usually made on the farm through individual bargaining. Growers who have only a few bales of brush, or those rather remote
from other growers, often have difficulty in getting buyers to come out to look at their broomcorn. For this reason broomcom for the general market is grown more advantageously in established districts where it can be more readily marketed.

The United States farm price and that in four individual States are shown graphically in Figure 2. For the period 1915-1931 prices for the country as a whole ranged from about $\$ 72$ per ton in 1921 to about $\$ 293$ in 1917. Prices in Illinois were considarably higher than those in the other States, particularly Colorado. Since 1915, in all but two years, the Illinois price has been at least $\$ 50$ higher than the Colorado price. This price differential is mainly due to the better quality of broomcorn in Illinois, but to some extent it is due to the advantage in Illinois of lower freight rates to eastern consuming centers. Broomcorn in Mlinois is less subject to drought injury and in most instances is grown, harvested, cured, and stored with more care than in Colorado.
Monthly prices for broomcorn tor five States, are shown for the years, 1910 to 1925, in Table 4. These prices are not complete for all months, but they tend to show how prices fluctuated during the different years and from year to year. In many years rather violent changes in the price of broomcorn occurred between June and August during the time that the new crop was coming on the market.

Table 4.-Farm price per ton for broomcorn in Illinois, Kansas, Missouri, Oklahema, and Texas, by months, 1910-1925:

State and year	Jan.	Feb.	Mar.	Ajpr.	May	June	Juty	Aug.	Sept.	oct.	Nov.	Dee.
Ininols:	Dotis.	Dolls.	Dolls.	Dotis.	Dolls.	Dolts.	Dolis.	Dofts.	Dotst.	Dolls.	Dotts.	Dolit.
1910	211	${ }^{217}$	217	$\frac{222}{85}$	${ }_{290}^{209}$	${ }^{154}$	${ }_{77}^{196}$		${ }_{128}^{168}$		104	${ }_{158}^{103}$
1011	$\underset{142}{17}$	125	125	110	120	108	100	100	${ }_{93}$	100	105	
1913	83	77	7	St	60	92	93	105	140	131	140	113
1014	110	135	${ }^{120}$	110	110	105	10	100		100	${ }^{20}$	
1015		85	85	${ }^{9} 9$	105	122	120	97	130	${ }_{190}^{100}$	${ }_{192}^{125}$	${ }_{230}^{136}$
1916	140	1	140	${ }_{3}^{124}$							450	
1018		3×3	425	350		340			(is	400	400	250
193	150			200	200				${ }_{141}^{230}$	- 320	270	
${ }_{1921}^{1920}$	105	140	136	145	10°	105	101	103	105	112	125	130
1922	100	120	100	375		300		300	3.30	205	236	- 300
192	2i9	105	105	195	75	S	50	155	210	200	${ }^{150}$	125
1025	130	125	125	120	115	15	140	155	235	${ }^{235}$	195	207
nsas:												
1001	10	${ }_{02}^{103}$	${ }^{65}$	115	$\frac{556}{75}$		70		$6{ }^{6}$	$\stackrel{132}{75}$	760	¢90
1013	10t	${ }_{5} 5$	$\frac{75}{75}$	${ }_{45}$	30		45	$5 i$	76	85	$\begin{aligned} & 10 \\ & 93 \end{aligned}$	82
199	70	${ }_{69} 7$	7	78	8	6	$\stackrel{8}{65}$	88	63	75	\% 5	95
1996	165	92	.95	110	90		110	115	${ }_{2} 130$	175	109	${ }^{193}$
1917	${ }^{174}$	$\underset{\substack{180 \\ 235}}{1}$	187	$\stackrel{320}{180}$	$\stackrel{23}{27}$				${ }_{275}$	220	${ }_{7} 175$	
1919	131	103	82	120	85	78			100	120	150	127
1023		${ }^{158}$		$\stackrel{104}{50}$	$\begin{array}{r}105 \\ 57 \\ \hline\end{array}$	115 40	124 40	$\begin{aligned} & 130 \\ & 58 \end{aligned}$	+140	${ }_{60}$	80	
1922	${ }_{88}$	85	$6{ }^{62}$	76	85				160	${ }^{198}$	${ }^{221}$	250
103.	${ }^{250}$	202	300	331	300	250	300			1198	18	124
1924	118	${ }^{980} 8$	0	78	4	5	103	130	1,	${ }^{188}$	178	124
Missouri:												
391	00	87				75						
1392	+105	${ }_{80}^{121}$		115	${ }^{125}$	105 75	${ }_{70} 9$	70	30 80	${ }_{80}^{10}$	82 120	${ }^{127}$
1914	72	8.8	0	Ba_{0}	so	10	00	90		8	$\begin{aligned} & 80 \\ & 85 \end{aligned}$	

1 Monthly prices since 1925 are not available.

Table 4.-Farm price per ton jor broomcorn in Illinois, Kansas, Missouri, Oklahoma, and Texas, by months, 1910-1925-Continued

State and year	J8n.	Feb.	Mar.	Apr.	Mray	June	Juy	Aug.	Sept.	Oct.	Nov.	Dec.
Missouri-Con.	Dolts. 154	Dotis.	Dolls.	Dolls.	Dolls.	Dolls.	Dolls.	Dolts.	Dolls.	Dolls.	Dolls.	Dollis.
1917.-------											332	
1918.			315						450	400	312	
1919				210	105				220	215		200
1920	205								150	120	145	140
1921.	150	125	125	125	125	135	135	125	125	125	125	125
1022	125	125	125	125	125	125	125	125	125	150	225	300
1923	200		237	200	225	270	300	225	200	185	188	200
1024.	210	185	190	170	175	170	160	170	175	175	100	150
1925	125		150	00	75	75	80	100	140	235	220	200
Oklatoma:												
1910	156 65	17 01	180 65	181 69	150 55	125 52	14 71	214	85 80	76 113	71 113	105
1012	90	78	100	95	75	73	84	80	15	60	58	54
1913..........	40	51	48	55	55	58	50	100	110	102	93	90
1911.	08	93	89	88	84	85	85	95	78	60	65	55
1915	65	73	65	67	72	75	75	80	77	87	50	97
1910	97	102	100	00	100	100	38	122	128	104	173	161
1017	175	10.5	197	200	250	225	182	310	242	253	255	259
1018.	280	220	210	200	1975	170	250	250	260	248	162	158
1019	176	133	154	145	93	110	130	164	184	160	149	149
1020.	180	121.	121	14.4	1 n \%	150	113	163	153	124	120	75
1821	55	54	5.4	50	55	76	80	50	84	64	04	85
1022.----------	61	85	78	75	82	90	83	135	177	199	2 3	218
1823	230	250	246	208	218	205	200	100	170	180	170	185
1924------------	100	80	50	85	85	85		180	140	120	85	82
1925------------	80	78	48	102	81	$\overline{17}$	93	147	132	153	186	112
Texas:												
1910	153 70	187 74	190	188 73	198 78	100 SS	116	115	87 77	198 114	80 100	73 86
1912...---------	70	80	100	96	St	105	100	88	775	14 77	76	$6-1$
1013	55	50	48	48	55	50	65	67	70	85	81	82
1914.	80	76		5	83		83	83	80	60	60	68
1015	60	5	60	62	115	75	65	80	75	78	85	90
1016	± 6	08	94	85	87	10	88	90	108	125	131	350
1017	160	183	189	198	173	1.57	244	242	285	255	365	225
191R.----------	270	315	$2 \square^{\circ} \mathrm{O}$	220	240	310	274	200	267	270	220	235
1010.----.-.	190	172	215	110	2310	117	135	12f;	128	129	140	137
1020..........	130	75	150	147	143	157	134	105	129	90	118	99
1921.--.....--	90	75	76	79	70	75	70	71	60	98	75	78
1822	72	80			83	82						
1923.	10 O		158	1.5	111	200	175	125	150	150	150	225
1924		200	200					150	150		100	120
1025			88	125	\%	83	78	82	148	00	117	111

Division of Crop and Livestock Estimates.
Table 5 gives the average farm price received for broomcorn on the farms visited during the cost study discussed later. In the majority of instances these prices for standard broomcorn are higher than the average State price as shown in Figure 2. This is to be expected since the broomcorn produced on these selected farms was probably of better quality than that for the State as a whole. In addition, the prices shown in Table 5 for Oklahoma are for standard broomcorn only, while the State averages for Oklahoma and Kansas are for standard and dwarf broomcorn combined. Illinois produces standard broomcorn only.

Table 5.-Average price pet ton of broomcorn teceived by producers on selected farms, 1924-1028

District and kind of broomeorn	1024	1425	1528	1927	102\%	A verage
East-contral llinois: SLandard	Sollnry	Doulars	Dollars	Doltars	Dollors	Dollars
Southwestern Kansnst						
Swarl...	85	139	84	05	107	105
	11.18	118	120	117	111	118
South-contral Okinhoms: Standurd	212	183	13	165	148	168

COMPETIJXON OF OTHिER PRODUCTS

Broomeorn competes only slightly with any other commodity, whereas a number of products, such as vacuum cleaners and brushes and brooms made of other materials, seriously compete with broomcorn brooms.

The number of broom factories gradually increased from the earliest estimate of 303 for 1849 to a maximum of 1,034 in 1919. Since 1919 there has been a material reduction in the number of broom establishments and a considerable decline in the value of the manufactured product. (Table 6.)

Table 6.-Number of establishments, number of wape carners, and cost and value of the product of the broom industry, in staled years

Year	Establishmernts :	Average wage earners	Wagos maik	Cost of materials	Value of mroduct	Value added by mastufactare?
	Nttrnber	Number	1,000 dollars	1,000 dollars	1,000 dollars	$1,0 C D$ doilats 412
1849	303	3, 194	286	529 844	${ }_{1}^{941} 4$	${ }_{5}^{412}$
1859	228	3,184	288 1.269	3, $\begin{array}{r}874 \\ 3.673\end{array}$	1,428 6,422	5.41 2.948
1869	1035	5,289	1,269	3, 673	6,682	2,948
10084	808	5, 109	2,363	8.301	14,432	6, 045
1914	848	5,642	2,624	7,884	314,685	6. 201
1919.	1, 234	6, 313	5,700	17,365	${ }^{3} 30,205$	12, 810
1921	459	4.302	3.872	10,417	5 18,188	7,771
1923	444	4,63	4,482	34, 093	26, 269	I1, 38
1925.	421	4,725	4,654	17,213	21,714	10, 501
1027	387	4,450	4,275	9. 176	18, 445	3, 268
1023.	404	1,542	4,160	9,648	19, 106	9,518

[^3]Although many of the small and the less efficient broom factories have ceased operation, nearly as many brooms are made now as in previous years. Much of the decline in the total annual value of brooms manufactured is the result of lower prices.

The decline, or lack of expansion, in the broom industry is primarily due to the increasing competition of other products. Perhaps the chief competitor is the vacuum cleaner. According to the census of manufacture the vaiue of electric vacuum cleaners manufactured in 1914 amounted, in round numbers, to $\$ 2,000,000$ and in 1929 to $\$ 34,000,000$, or an increase for the period of approximately sixteen times the value of the product in 1914. (Table 7.)

Table 7.-Number of eleciric vacuum cleaners manvfactared and value of product in the Uniled Slates, in slated ycars

Yoat	Number manufacturcd	Vatue er moduct:	Yeat	Number manafnciured	Value of product:
1914	Thousarads	1,000 dollors	1925	Thousands I, 108	$\begin{array}{r} 1,000 \text { dollars } \\ 30,971 \end{array}$
1110	2377	${ }^{5} 2 \mathrm{f}, 842$	15227.	1, 123	36,222
1521.	740	10,753	1023.	${ }^{3} 1,382$	334,480
[1723...	1,241	35,381			

[^4]Another contributing factor in the decline of the broom industry is the increasing importance of that portion of the brush industry having to do with the manufacture of clothes, bonnet, and hat brushes and brushes for household purposes. A majority of these compete directly with whisk brooms made from broomcorn. They are made mostly from fibers rad bristles imported from the Tropics or from Asia. The value of brushes of this type manufactured in 1927 amounted to approximately $\$ 11,000,000$. The brush industry as a whole had so expanded; that the value of the product in 1929 amounted to $\$ 46,000,000$ (Table 8) in comparison with a value for the broom industry of $\$ 19,000,000$. Carpet sweepers, dust mops, and hair push brooms also reduce the consumption of broomcorn brooms. Becanse of the keen competition of other products the outlonk for any material expansion of the broom industry does not appenr very favorable. Broomcorn brooms are still found in nearly all homes, hotels, and offices, but are used less than in former years and consequently are not worn out so quickly. Despite the increase in population in the United States, the consumption of broomcorn appears to have declined slightly since about 1924. Broomcorn brooms, however, will be used for many more years because they are more satisfactory for many purposes than is any other product yet devised.
Table 8.-Number of establishments, number of wage earners, and cost and value of the product of the brush industry, in stated years

Year	Establishments :	$\begin{gathered} \text { Average } \\ \text { wago carb- } \\ \text { ors } \end{gathered}$	Wrares yaid	Cost of materials	Vhlue of mrodinct	Volue added by manufocture ?
1849	Nitmbrer	Number	1,000 dotiars	1,000 dollins	1,000 dotars	1,000 doltars
1859	121	2.106	533			
$1800{ }^{3}$	157	2, 378	584	${ }^{684}$	2, 095	1, 103
1909 -	38.	2, 420	69	$1+313$	2,685	1,382
1014.	350	$\stackrel{1}{7}$ ¢13				7,507
1019	379	7, 0148	7	$1{ }^{1} .598$	$8 \cdot 190$	567
1021	277	6,460	6, 415	18,665	35,545	16.880
1023	306	8,719	0,203	25, 570	50.511	24, 942
1025.	302	7,836	8, 452	22, 021	45,824	23, 803
1997	302	7,673	8,244	22, 553	47,844	25, 291
1328.	303	7,261	7, 503	21, 688	15.340	23,861

U. S. Census of Manufactures, 2921, 1927, and 1920.

The cstablishments clasififed in the brush industry are engaged primarily in the manufncture or brushes ot her than rubber, such as tooth, tolilet, paint, varnisk, chothes, bonnet nad hat brushes, housebold, add industrinl brushes.

Yalue of product miaus cost of materials.
${ }^{3}$ Monetary itcms in teprociated ctrroncy worth in god approximately 80 per cent of its nominal value.
-Tho consus for 1005 and subsequent years thes not include establishments that reported products valued at less than 33,000 .

In addition, the manufacture of brushes valued as follows was reported by establishments in otber incustries: For 1914, \$046,2*3; for 1919, \$274,702; for $1921, \$ 401,227$.

EXPORT DEMAND FOR AMERICAN BROOMCORN

Except in Canada and Cuba there does not seem to be much prospect of expanding the foreign demand for American broomcorn. Among the factors affecting the demand is the wide use of other broom and brush-making material, competition of broomcorn from other nearer sources of supply, tariff barriers, and in many cases a deeprooted prejudice against the American styie of broom.

The United States exports of broomcorn for the 6-year period 1925-1930 have averaged rbout 4,400 long tons annually. (Table 9.) Canada, using about 3,000 long tons annually, provides the most inlportant market for American broomcorn. Canada produces very
little broomcorn, and unjess some other fiber is adopted as a substitute, will probably continue to be dependent on the United States for the limited quantity used in the manufacture of broomcorn products in that country. Cuba, taking an average of about 850 long tons annually, is the second largest user of American broomcorn. Exports to all other foreign countries, including Mexico and Panama, usually amount to less than 500 long tons annually.
Table 9.-Exports of broomcorn from the United States, by countries, 1925-1930

Country to whinh exported	Calenciar year					
	1825	1926	1027	1028	1928	1930
Canada.	Short tons	Short lons	Short tons	Short tons	Short tons	Shorl lons
Cubs..	4, 985	3, 343	3,4055	3,748	2,806	3,860
Mexico.	353	${ }_{214}$	822	1,021	1,183	934
Panama.	31	58	+989	$3{ }^{2}$	102	48
Other	84	136	54	105	748	39
Total.	5,501	4,572	4,534	5, 054	4,896	4,231

Complied frona reports of Foreiga Conmerce and Navisation of the United States.
Italy, Flungry, and France are the principal foreign countries in which broomeorn is produced in commercial quantities; Italy, Hungary, and the United States are the only countries producing broomcorn in excess of domestic needs. Practically all of the domestic crop in France is consumed in that country and is supplemented by imports. But there is no market in France for American broomeorn or brooms as the Italian and Hungarian product is cheaper.
In addition to broomcorn, limited quantities of broonss are exported, principally to Honduras, Panama, the Dutch West Indies, Colombia, and the Philippine Islands. Such exports in 1930 amounted to 17,167 dozens, valued at $\$ 81,384$. (Table 10.) It would require less than 250 tons of broomcorn for the manufacture of this number of brooms.
Table 10.—Expurts of brooms from the United States, by countries, calendar years, 1928-1930

Country to whtch exported	1728		1929		1030	
	Quandity	Valuo	Qunatity	Falue	Quanlity	Valua
United Kinglom.	Dozen	$\begin{array}{r}\text { Dollars } \\ 863 \\ \hline\end{array}$	Dhozen	Dollars	Dozent	Doliars
Cavada	8	5, 1634	242	1,081 3 1546	159	701
Tomiuras	2, 584	9,414	3,250	11,301	3.153	3,418 10.722
Pamama	1, 1338	8, 613	2,252	10, 222	3,153 2,103	10,732 10,034
Asexico.	-428	3, 333	2, 556	4,078	${ }^{2} 189$	10,034 3,659
Cubran-	902	5, 639	986	7,141	429	3, 3 375
Dominiean Republi	742	$4{ }^{4} 782$	229	1, 504	328	1,840
Dratch West Indfes.	897	4,253	1,047	4,517	907	4,127
Costa IVICa	484	1,611	80	2,071	801	2, $49 \pm$
Guatemala	220	2,829	274 615	1,013 2,708	167 463	- 559
Nicaramar	476	1,857	885	2,708 1,814	463	2.119
Other British \%est It	214	1, 212	240	1,814	322	1,306
HaItion	118	1,282	112	1,209 400	211	1,057
Bollva	402	1,740	1,000	6,082	795	+ 400
Chile.	134	1,200	1,431	-2,871	785 383	4,105 2,234
Colombia	.1, 105	6, 061	1,372	6,317	1, 340	2, 234
Perta----	127	1,213	433	2,229	450	2, 588
Venezuela	362	2,310	488	2,950	607	3,371
Chige --.----	322	1,424	180	2, 746	81	3, 290
Philimpline Islancis.	1.674	4,554	1,503	6,291	21544.	8.899
French Oeania ---	443	3, 505	433	1, 483	390	1,441
Onhion of South Africa	486	6,428	55	627	170	i, 985
Other countries.	831	4,775	1,381	7,845	9 O 5	5,194
Total	15, 0.12	84,585	18, 705	80,312	17, 107	81,384

[^5]
RELATION OF SUPPEY OF BROOMCORN TO PRICE REGEIVED

Broomcorn prices are not controlled by world conditions of supply and demand. The United States is by far the principal producer of ${ }_{\text {f }}$ broomcorn, exports are fairly constant, and imports are of little importance as they have seldom exceeded 100 short tons per year durug recent years. For these reasons the supply within the United States is the controlling factor determining the price received by American producers. Broomeorn supply and distribution for the last few years are shown in Table 11.

Table 11.-Supply and distribution of broomcorn in the United States, 1923-24 to 1931-82

Crop year (June 1 to May 31)	Supply						Distribution			
	Stocks on hand June 1			Produc-	$\begin{aligned} & \text { Im- } \\ & \text { ports } \end{aligned}$	Total	Export	Dornes tic use	Stocks Man had	Total
	Manu-facturers	Denl. ers :	On							
	Short	Short	Shorl	Short						
1023-24.	tons	${ }_{2}^{\text {lons }}$ 421	tons	toris	tons	tons	tonts	tons	6048	
1924-25.	15, 169	15, 489	6,133	77,700	136	114, 627	5,580	-57,020	52,027	114,627
1925-26.	20,960	25,043	6,104	31,200	${ }^{(2)}$	83, 227	4,688	48,367	20, 172	83, 227
1939-27-	16,201	3,706	3,285	54,700	(\%)	83, 872	4, 701	46,791	32,380	83, 872
1927-28.	18, 173	11,408	2,709	40, 200	103	72,773	4,367	42,518	25,888	72,73
1928-29.	18,744	5,938	1,206	53,800	(2)	79,688	4,931	40,848	27, 909	70,688
1920-30.	18,501	7, 495	823	47,300	(2)	75, 200	4,985	47,534	22,690	75, 209
1930-31	14,980	6,067	1, 04.3	49,800	(2)	72, 490	4.557	43, 953	23,980	72,490
1031-32.	17,038	4,506	2,326	144,300	(${ }^{\text {(}}$	08, 280	3.733	39,367	25, 200	68, 280

Division of Hay, Feed, and Seeds.
'Storage stocks reported by dealers include manufacturers' stocks hold by dealers at country shipping point.
1 Less than 100 tons. Not counted in total supply.
${ }^{5}$ Includes waste and brooncorn desiroyed by warebouse fire.

- Nov. 1 estimate.

Figure 3 shows the relation of the total United States available supply to the price received for broomcorn. Since the uses of broomcorn are almost entirely limited to the making of brooms and since the demand for domestic use is satisfied at about 45,500 short tons, a supply greater or less than these requirements, plas an annual export demand of approximately 4,500 short tons, results in a decided change in the price received.
The change in price from the preceding year, that has occurred over the period 1923-1931, as a result of a production above or below the average domestic requirement in recent years of about 45,500 short tons, plus exports of about 4,500 short tons, or a total of about 50,000 short tons is illustrated in Figure 4. In this chart the change in adjusted price from the preceding year is represented in the vertical scale, and the production of broomcorn above or below a 50,000 shortton requirement is represented in the horizontal scale. The price changes and production data have been plotted on the chart for each crop year, and the heavy diagonal line of average relationship has been drawn in free hand. For most of these years there is a rather marked correlation between the production above or below the 50,000 short-ton requirement and the change in price. In 1926 and 1930 the quality of much of the broomcorn was poor.

The line of average relationship shows that in years of a production oi approximately 10,000 short tons below average requirements broomcorn has sold at a price about $\$ 15$ per ton higher than during the pre-

FIGURE 3.-UNITED STATES SUPPLY AND ADUUSTED FARM PRICE OF BROOMCORN, \{923-24 TO 1931-32

Over the period 1923 to 1931, both total supply and price have shown a slight downtrard trend.
vious year. Likewise the price of brush has been about $\$ 15$ per ton lower than that for the previous year for a production of 10,000 short tons above average requirements. This relationship may not hold

FIGURE 4.-GROOMCORN PRODUCTION AGOVE OR BELOW THE AVERAGE REQUIREMENT OF 50.000 SHORT TONS AND THE CHANGE IN ADIUSTED PRICE FFOM THE PRECEDING YEAR. "923-1931
For these jears tho hervy diagonal line fndicates that low prifes have accompnaied nboveaverage production and vice versit.
with exactness in the future, but its general nature is evident and serves to point out the quick response in prices downward as a result of overproduction and the danger of unprofitable returns to broom-
corn growers whenever supply exceeds average requirements. In years when the quality of the brush is exceptionally good or poor, greater or smaller price changes may be expected than the normal

FIGURE 5.-UNITED States Farm Price of Broomcorn, 1915-i930. and ACREAGE, 1916-1930

Bromenorn acrage is induenced, from year to year, largely by the price received the preceding year.
relationship would indicate. Also these reactions to price may undergo a degree of change owing to changes in the general price level, as will happen in the case of other commodities.

ACREAGE OF BROOMCORN NEEDED TO PRODUCE AN ADEQUATE SUPPLY

Allowing for a yield of approximately 314 pounds of broomcorn per acre, the average yield for the five years, 1927-1931, about 320,000 acres are required for domestic use and exports, or a total of 50,000 short tons, in recent years. (Table 11.) Allowance, of course, must be made for variation in yields, but an acreage greater than that is likely to result in unfavorable prices to broomeorn growers.

The acreage planted to broomcorn in a given year is influenced largely by the prices received for the previous crop. Figure 5 shows that during the 17 -year period, 1915 to 1931 , in all years except two, a decrease in price over that of the previous year was followed by a reduction in the acreage of broomcorn planted the following year and an increase in price was followed by an increase in acreage. The exceptions were 1921 and 1928 . The tendency to increase acreage following a year of increasing prices works to the material disadventage of the broomcorn grower.

COST OF PRODUCTION AND RETURNS FROM BROOMCORN AND COMPETING CASH CROPS
To obtain data relative to methods and costs of producing broomcorn, growers were interviewed in three representative broomcorn districts and detailed facts were obtained concerning methods and costs of producing broomeorn in 1928. In addition, enough information was obtained to afford a basis for comparison of the net returns from broomcorn and the major competing cash crop as determined by natural conditions and different price relationships in each of the important districts. The districts surveyed were: (1) Coles and Cumberland Counties in enst-central Illinois; (2) Seward and Stevens Counties in southwestern Kansas; and (3) Garvin and McClain Counties in south-central Oillaboma. Coles and Cumberland are the principal broomcorn-produeing cotnties in Mlinois. Seward and Stevens Counties are typical broomeorn-producing sections of southwestern Kansas, the Oklahoma panhandle, southeastern Colorado, and northeastern New Mexico. Garvin and McClain Counties are representative of broomcorn production in south-central Okiahoma.

The study is based on 189 farm records. The number of farms studied in each district, together with the average acreage of the various crops grown on these farms, is shown in Table 12.

Table 12.-Distribution of crop acreage on sclected farms, by Stale and district, 1928
Whate and district

In all three districts the growing of cash crops, rather than mixed farming or the production of Livestock, represents the prevailing farming system. At least one important cash crop in addition to broomcorn was grown on every farm visited. The major competing cash crop in east-central Ilinois is corn (maize); in southwestern Kansas it is grain sorghums, mainly milo, and in south-central Ollahoma it is cotton. Broomcorn is not the leading cash crop in any district, although in south-central Oklahoma the acreage of broomcorn in usually slightly greater than that of cotton on the farms on. which broomcorn is grown. There is considerable variation from year to year in the acreage of broomcorn grown in each district, owing largely to the competition between broomcorn and the major competing cash crop. Broomcorn competes directly with corn, sorghums, and cotton for labor previous to harvest and is a crop of especial financial risk whenever production exceeds the normal requirement.
Most of the broomcorn farmers keep only enough cows to supply milk for home use. The Illinois farmers had an average of 3 brood sows, the Kunsas farmers had 1, and the Oklahoma farmers had 2 per farm. Sheep are not common in any of the districts. About 100 chickens are kept on most of the firms in each of the three districts. In addition, on a few farms turkeys, guinea fowls, and geese are found.
In the following secsions, cost of production and the returns from broomcorn and the major competing cash crops are presented by districts.

ILLINOIS

East-central Illinois has been an important broomeorn district for many years. Standard broomcorn only is grown. The average annual precipitation is about 38 inches. As rains frequently occur during the harvesting period, all of the brush is cured in sheds. Most of the broomeorn is grown on dark prairie soils. It is usually grown in a rotation following corn, wheat, or oats, except where it follows broomcorn. Winter wheat occasionally winter kills, and when this oceurs part of the land may be planted to broomcorn.

USUAL FIELD PRACTICE IN GROWING BROOMGORN AND THE MAJOR COMPETING CASH CROP
In general the methods of growing broomcorn are nearly identical with those of growing corn. On the other hand, the methods of harvesting and curing broomeorn are peculiar to that crop.

The mitial soil preparation in seed-bed preparation for broomeorn consists mainly of plowing. Ninety-three of one hundred broomcorn growers plowed their land, and seven double disked twice without plowing. Most of the lind that was not plowed for broomeorn had been plowed in the fall previous to seeding to whent which was subsequently winterkilled. Most of the plowing in Illinois is done with 2 -bottom tractor plows. The plowed land is usually disked and harrowed before planting. The growers plant broomcorn with ordinary 2-row corn planters equipped with special broomcorn-phanting plates. Broomcorn requires replanting more frequently than does corn because the seeds and young plants are more tender and becauso uniform stands are more necessary. Corn is ustally given one more cultivation than broomcorn. In other respects the preharvest work
on com is almost identical with that on broomcorn. The usual rate of planting broomcorn is 1 bushel to 20 ncres; that for corn is 1 bushel to 8 acres. Most of the planting is done in May and the remainder in April or June.

The methods of harvesting broomcorn depend upon the height of the stalks and the local custom. Broomeorn harvest usually begins in August and continues through September. All of the crop is tabled and cut. Tabling is done by men who walk backward between two rows, break the stalks over about waist-high, and overlap the upper portion of the stalks at an angle ncross the rows to form a flat so-called table with two rows. The heads of one row then extend horizontally out beyond the edge of the adjoining row in a couvenient position for cutting. (Fig. 6.) The stem is cut at an angle with a special knife at

Ficune b.-Field of broomeorn, fartiy tabled, ghowing the harvested hemes lying in piles on the table
a point 6 to 8 inches from the base of the brush. The brush is bunched or piled in convenient armfuls on altcrnate tables. This operation of tabling and cutting broomeorn alone requires nearly twice the total man labor involved in harvesting, aribbing, and delivering to the loenl elevator the corn produced on an acre of land, if, as is usual, the corn is husked from the standing stalks and delivered to the elevator in double box wagons.

The brush is hanled on special dump racks about 12 to 16 feet long. (Fig. 7.) The wagons straddle the empty table and are loaded. by two men working on opposite sides. The bunches are laid in two tiers on the rack with the seed ends of the brush outside. The brush is hauled to the broomeorn seeder where the rack, known as a dump or float, is tipped down and then pulled out from under the load, which slips to the ground.

The process of removing the seed from the brush is known as threshing, seeding, or scraping. The threshing is done before the brush is cured. Most of the broomcorn is threshed with large power sceders (fig. 8) that require crews of 10 to 30 men.

Curing sheds are usually built in the form of stalls or bins, $7 / 2$ feet wide and any desired length. The stalls in most of the sheds run lengthwise of the shed. A stsll. $71 / 2$ feet wide, 24 feet long, and 10 feet high holds $11 / 2$ tons of cured brush piled 3 inches deep on the siats. The slats are $:$ by 2 inch strips laid across the cleats, which are 1 by 4 inch boards spaced 2 inches apart.

The brush is taken directly from the seeder to the slats in the shed. Seeding before curing results in a better quality of brush than seeding done after curing because fewcr of the fine fibers are removed. The large amount of labor necessary in seeding broomeorn is due mainly to the care devoted to keeping the brush straight, even, and untangled. Several men are occupied in carrying the brush in small armfuls to the feeding table and several in carrying it from the machine to the

Figure 7.-broumbarn dump rack ased in Illinois
shed and placing it on the slats. The remaining men sort and untangle the brush and even up the ends to facilitate uniform threshing. A tractor is the tsual source of power to operate the seeder; but in some instances the seeder is motunted on motor trucks, and the power is taken from the truck motor.

Broomeorn is usually baled immediately after it is cured or as soon thereafter as possible. Curing usually requires 10 to 14 days. About one-half of the crop is "bulked down" before being baled. Bulking down consists in removing the brush from the slats and piling it on the floor of the shed. This prevents appreciable shrinkage from further drying, reduces the number of men necessary for baling, and makes room for additional brash. Each bale is tied with Give strands of Nos. 9,10 , or 11 size wire. The bales vary in weight from 250 to 400 pounds, averaging about 333 pounds.

Practices that should increase profits

Broomeorn has been grown for many years and good practices have been generally adopted. There appears to be little opportunity for improving on the methods followed by the better growers.

Some saving in labor would probably result from the more general use of tractor plows and disks and of 2 -row cultivators. (Table 15.) Baling brush directly from the slats uithout bulking down will reduce the total man-labor requirement by about 15 hours per ton and will save some cash expense when hired fabor is employed for bulking. Prompt baling will eliminate the ne," sity for bulking to avoid shrinkage and still make shed space avaihable for more brush.

COST OE PRODUCTION

Producing broomcorn on an extensive scale requires more capital than does the major competing eash crop in each district. Some specinl broomsorn equipment is necessary, ε nd a relatively large cash outlay for labor to harvest the crop is essential to successful production of isromem.

Finune 8.-Side view of a self-fed hrounnedrn secder
The principal items entering into the cost of broomcorn production are man labor, horse and tractor work, seed, taxes, use of equipment, and land. The cost of producing broomcorn is summarized in Table 13. These cost estimates are based on the usual field practice and cost rates ns in 1928.

Under the usual field practice of using tructors for plowing and disking, with a yield of 600 pounds of brush ver acre, farmers produce an acre of broomcorn with about 42 hours of minn labor, $17 \frac{1}{2}$ hours of horse work, and $21 / 2$ hours of tractor work. These requirements amount to 141 hours of man labor, 59 hours of horse work, and 8 hours of tractor work per ton.

Materials such as sced and baling wire are a relatively small item of expense, amounting to 48 cents per acre, or $\$ 1.60$ per ton of brush.

Other costs, including taxes, fire insurance on the brush, use of machinery, use of brooncorn shed, losses due to abandoned acreage, replanting, and overhead expenses, amount to about $\$ 7.50$ per acre.

In 1928 broomeorn land in east-central Illinois was valued at about $\$ 150$ per acre. Interest charges are frequently considered a part of production costs, and when figured at 5 per cent of this land valuation, amount to $\$ 7.50$ per acre.

Table 13.-Cost of producing standard broomcorn brush, according to the usual field practice and al cost rates prevailing in $1928{ }^{1}$ in eastcentral Illinois

1 Man labor previous to harvest chargeci at 22 cents per hour, harvest labor except that done on a contract basis, nt to cents per hour, horse work at 13 cents per hour, and tractor work at 8 sents per hour.
${ }^{2}$ Based on a yer hour. of 000 pounds per acro.
3 All work done on a contract basis has been reduced to hours of man labor and horse and tractor work, but is charged at the contraci rate for such work.

- Charged it the custom rate of $\$ 5$ per acre plus value of board,
(charged at the custom rate of $\$ 1$ per acre.
- Charged at the custom rate of 20 cents per bate of 333 younds.
- Charged at the custom rate of $\$ 1$ per acre.

Including interest on land, the total cost in 1928 amounted to $\$ 36$ per acre. The cost per ton amounted to about $\$ 121$ on the basis of a yield of 600 pounds per acre. This yield is somewhat higher than the average for the State but is representative of average yields obtained on the better broomcorn soils in Illinois. Excluding interest charges, the cost per acre amounted to about $\$ 29$.
The cost analysis just presented considered all legitimate items of cost, including the labor of the farmer and members of his family. It should be kept in mind, however, that many of the cost itens are noncash. A division of the cost of broomcorn production into cash and noncash items may explain why some men are able to continue in the business of brooncorn growing for a time when producing at a total cost that is higher than the market price. In many instances much of the labor is performed by the farmer and his family, and where his land, machinery, and work stock are free of indebtedness a large part of the expense that correctly enters into cost of production is not an actual cash outlay. Growers who had no indebtedness, hired no preharvest labor, hired no field boss, exchanged labor for baling, and hauled the crop to market themselves could produce broomcorn in 1928 for an actual cash outlay of approximately $\$ 19$ per acre or 53 per cent of the total cost of production. (Table 14.) This applies more particularly to farmers with medium acreages who did not need to hire preharvest labor.

Table 14. -Estimated cash and noncash cost per acre of producing broomeorn in east-central Illinois, 19291

[^6]No farmer wishes to produce commodities at prices so low as to return him only his cash costs. He wants the best pay he can get for his labor and use of land and equipment. Howeyer, if he does not have anything better to do, he may continue to raise broomeorn if it
will return anything oyer cash costs, even though it is less than a reason ble return on his noncash cost elements. Farmers who had particularly efficient harvest crews or who produced their own seed reduced their cash costs still more. Farmers who employed one hired man during the cropping season increased their preharvest cash costs by appnoximately 93 cents per acre.

Ot the expenses in broomcorn production harvesting constiiutes by far the greatest proportion of the eash costs. According to the standards set up in Table 14, tabling and cutting alone, which is entirely a cash cost, mmounted to 19 per cent of the total cost of producing broomeorn in 1928. Because of the large amount of labor required for the harrest operations and the necessity for their timely performance it is difficult to reduce the cash cost of these operations.

In the case of broomcom, it a considerable ncreage is grown the large cash expense involves a large total farm expenditure and hence a greater element of risk than in the case of corn, for in the case of corn the eash cost of production per acre, as well as the total cost, is materially less. Assuming a yield of broomcorn of 600 pounds per acre and a price of $\$ 150$ per ton, approximate averages on the farms visited in 1928, the net return above total costs was approximately $\$ 8.50$ per acre and above cash costs about $\$ 26$.

ANNUAL BROOMCORN YRELDS

The yield of broomeorn is influenced by a number of factors such as soil fertility, weather, insects, fungous disenses, stand, crop management, etc., and is a factor of great importance in determining the profits from broomeorn production. Yields of broomeorn on the 100 farms visited in east-central Illinois avernged 583 pounds to the acre for the 5-year period 1924-1928. The average vield per acre on these selected farms was 636 pounds in 1924, 618 pounds in 1925, 520 pounds in 1926, 507 pounds in 1927, and 632 pounds in 1928 . In most years they were somewhat higher than the corresponding yield for the State as a whole. The average of the 100 farms for $192{ }^{\circ}$ (632 pounds) reflects a wide range in yield as follows:

Yield group pounds per acre:	Nimber of tarms	Field group, pounds jer acre-	Numbser of farms
100 and under-.........	- 0	Contimed.	
101-200.	1.	501-600.	19
201-300.	- 3	601-700	33
301-400	$\cdots 5$	701-800.	17
401-500.-.	- 13	Over 800	9

On the basis of the avergge price of $\$ 1.49$ per ton received for standard broomeoru in 1928 on the farms visited, the quantity of broomicorn required to cover cost of production, including interest eharges, was 488 pounds per acre. If interest charges are exeluded, about 386 pounds per acre would cover total costs. About 260 pounds would cover the cash costs as shown in Table 14.

Variation in labor and power requirements

There is considemble variation in the labor and power requirements in producing an atre ol broomeorm. On 100 broomeorn farms the preharvest man-labor requirements varied from 1.7 to 13.3 man -hours per acre. Horse-hour requirements varied from 3.8 to 36 hours per acre. The majority of the farms stadied showed man-labor recuise-
ments of from 8 to 10 hours per acre; also a considerable number of farms were represented in the class having man-hour requirements of 4 to 6 and 6 to 8 man-hours per acre. A considerable part of this variation is due to differences in land preparation and cultivation and, more particularly with reference to hours of horse work, to whether tractor or horse-drawn implements are utilized. Replanting, where necessary, required considerable extra labor. On a majority of the farms tractor power was used for plowing andl disking and on approximately one-fourth of the farms 2 -row cultivators were used. The use of a 2 -row cultivator, as compared with the 1 -row machine, 'resulted in the saving of slightly more than 1.5 man-hours and nearly 1 horse-hour per acre. The average man hours for plowing with tractor-drawn plows were 1.1 less per acre than when this operation was performed with horse-drawn plows, and 1.3 hours of tractor power were required as against 9.7 hours of horse work. A similar relation with regard to man labor and horse work exists when tractordrawn disks were used. (Table 15.)
T.isle 15.-Comparison of requirements per acre of major fiedd operations when done with horse and when done with tractor power in east-central Illinois

Operatiort	Mran aud horse			Man nad tractor		
	Reports studied	Hours pear acre		Reports studied	Hours per acre	
		Man	110rsc		Man	Tractor
Plowing-	28	2.4	9.9	${ }_{80} 8$	1.3	1.3
Disking--	27	1.8	7.4	72	1.0	1.0
Cultivating. 1-row	73	3.4	f. 8	1	2.0	2.0
Cultivating, 2 -row	25	1,8	6.0	1	. 0	. 0

By far the greatest amount of man labor is used in harvesting and marketing broomcorn. The man labor required for this work constituted 80 per cent of the total labor involved in producing and marketing the crop. The harvest win-labor requirements varied from 17.4 to 60.5 man -hours per acre. Horse-hour requirements varied from 1.9 to 14.9 hours per acre. The majority of the farms had man-labor requirements of 30 to 35 hours per acre. Nearly as much time is required to harvest an acre of low-yielding broomcorn as to harvest a high-yielding crop. Stalks must all be tabled in order to facilitate the bunching and hauling of the brush, but in high-yielding fields less sorting and discarding of poor heads is necessary. If broomcorn lodges badly the labor in harvesting is so great that the crop often is abandoned.

Yield per acre is the factor exerting the greatest influence on the men-labor required per unit of product. The influence of yield on the man-hours per ton required to harvest broomcorn is illustrated in Figure 9 . In general, as the yield per acre increased, the man-hours per ton decreased. The range in yield was from 130 to 880 pounds per acre. The average yield was 583 pounds per acre. The labor for harvesting broomcorn by growers who had yields of less than 300 pounds per acre varied from 176 to 261 man-hours per ton. Those who had yields of over 700 pounds per acre required only 45 to 150 manhours per ton, or an average of less than 100 man-hours to harvest the crop.

KANSAS

Southwestern Kansas, typified by Seward and Stevens Counties, produces both standard and dwarf broomeorn. The standard varieties vary in height from 7 to 11 feet; dwarf varieties usually attain a height of from 4 to 6 feet. The annual precipitation in this section is about 18 to 20 inches. Usually very littie rainfail occurs during the broomcorn harvesting period, and most of the broomcorn is cured in ricks in the open.

Broomcorn is produced principally on soils that are too sandy for successful wheat production. It usually occupies part of the acreage that would otherwise be devoted to grain sorghums, the major competing cash crop, and is usually grown in rotation with sorghums, corn, or wheat but is sometimes grown on the same land for two or more consecutive years. It is usually produced on land that grew grain sorghums the previous year.

Figure 9.--YIELO per agre and Man-Hours per Ton requtreo to harVEST BROOMCORN IN EAST-CENTRAL ILLINOIS

Each dot remresonts one farm and its pasition indicates the yleld per here gnd tho man-hours per tom required in harvest broomeorn on that farm. Those farmers with high yieds handied their broomcorn with far less hbor jer ton than did those with low yieds.

USUAL FIELD PRACTLEE IN GROWING BROOMCORN AND THE MAJOR COMPETHNG

 CASH CROPThe methods of growing broomcorn in southwestern Kansas are similar to those used in growing grain sorghums. Practically the same implements are used in preparing the seed bed, in planting, and in cultivating; and the preharvest cost of the sorghums is essentially the same as that of broomeora. Thirty-two of the fifty-three growers interviewed in Kansas listed their land when preparing for broomeorn, 8 plowed, and 13 disked without plowing. Most of the listing is done with horse-drawn machines and most of the plowed land is disked and harrowed belore planting. The listed land is commonly listed again and planted at the same time by using the planting attachraent on the lister. Most of the growers use 2 -row lister planters. Most of the brooncorn is planted during the first half of June and the remainder at any time between May 1 and early July.

The usual rate of planting both broomeorn and milo is 1 bushelper 20 to 24 acres.

Broomcorn harvest begins about the last of August and continues through September and most of October. When standard broomcorn attains a height of 8 or 9 feet, it is tabled, as it is in Illinois and Oklahoma. Usually the Black Spanish variety, the one generally grown under limited moisture conditions in Kansas, does not attain a height sufficient to form a good table. The most common method of harvesting standard broomeorn therefore, is to break the upper part of the stalk at a height of about 5 feet. This leaves the brush suspended downward at a convenient height for cutting the stem. The usual practice is to walk along the row and break the stalks forward. When the end of the row is reached the harvester turns around and cuts back along the row. When the stalks do not exceed 7 feet in height the brush is frequently cut from the standing stalks without brealing. Only rarely is standard broomcorn pulled from the stalk. The corn binder is used only when the labor a vailable is not sufficient to harvest the brush before it is overripe. The brush is later cut from the stalk by hand.

Dwarf broomcorn is practically all pulled or "jerked" from the standing stalks. This method is possible because of the weak attachment at the base of the brush handle or peduncle. In pulling broomcorn the worker grasps the top or "flag" leaf of the stalk in one hand and the brush in the other hand and puls outward with each hand. The hands thus separate with a quick jerking motion and at the same time give a sharp pull on the brish. As the handle of the brush snaps free from the stalk at the base, the brush is separated from the sheath with the proper length of handle attached. When the brush does not mature uniformly the fields are gone over two or three times.

In western Kansas shed curing is not common, and the brush usually is piled directly from the wagon in ricks about 4 feet wide, 3 to 5 feet high, and of any convenient length. As a protection to the brush, which otherwise might absorb ground moisture, timbers, fodder, or straw usually are placed on the ground on which the brush is ricked. The brush is laid with the seed ends outward to the sides in two tiers runing the length of the rick with the butts or handles overlapping slightly. Some brush is laid lengthwise in the center of the rick to keep the middle full. The rick is topped out by increasing the lap of the butts to fill the middle and draw in the sides and finally by laying a single tier. The brusk is allowed to cure in the rick two to three weeks before it is threshed and baled.

Threshing and baling is done with the same kind of machines as in Illinois, but the brush is cured with the seed attached. Threshing and baling are done at the same time, the bunches of brush being carried directly from the thresher to the baler.

The harvesting of milo, the chief competing cash crop in this area, is accomplished with far less labor than is required for broomcorn. The common method of harvesting milo consists of cutting the heads from the standing stalks and hauling to ricks, from which it is later threshed; then the grain is hauled to market. This method of harvesting milo requires approximately one-fourth the man labor required to harvest an acre of broomcorn. The labor in harvesting milo can be further reduced by the less common practice of using a header or combine.

PRACTICES THAT SHOULD INCREASE PROFTTS

In most instances broomcorn growers would profit by the use of better seed. At the time of this study many of the fields were not pure, or they contained smutty broomcorn. Broomcorn seed should be fully mature and should be obtained from a field of a pure and uniform variety grown at some distance from any other sorghum field. All seed should be treated for smut unless it is known to be free from this disease.

Experiments conducted at the Oklahoma Dry Land Field Station at Woodward show that Scarborough broomcorn produces a better quality of brush and yields better than the Evergreen Dwarf (Oklahoma dwarf variety). Either of these dwarf varieties will outyield the Black Spanish standard variety except under conditions of drought or early frost but may be inferior in quality. (14)

Prompt harvesting would result in a better quality of brush than is frequently obtained in western Kansas but necessitates the hiring of additional labor and increases somewhat the cash cost of harvesting.

In most seasons shed curing and threshing before curing will result in a price for the brush more than sufficient to cover the additional expense.

Sheds suitable for broomcorn storage can be built at an expense ranging from $\$ 30$ to $\$ 40$ per ton capacity. Slats necessary for a ton of brush at 7 cents each cost about $\$ 18.50$. Allowing for insurance, depreciation, repairs, replacements of slats, interest on the investment, and about three man-hours per ton additional labor to shed the brush, the additional cost of shed-cured over rick-cured brush should not exceed $\$ 4.50$ to $\$ 5$ per ton, if the shed is filled twice each season. In an ordinary season shed-cured brush usually sells at $\$ 5$ to $\$ 10$ per ton higher than rick-cured brush because of less bleaching and better threshing of the shed-cured crop. In wet seasons such as 1930, however, the brush may be so damaged from exposure in either the rick or bale that the price is cut $\$ 20$ to $\$ 40$ per ton. In such years the saving as a result of shed curing the brush would pay for the additional cost of shed curing for several seasons. In a very favorable harvesting season shed-cured brush sells for about the same price as rick-cured brush. Only 9 of the 53 growers interviewed in Kansas shed-cured any of their broomeorn in 1928.

COST OF PRODUCTION

In southwestern Kansas, where it is not the general custom to shed-cure the brush and where less tillage and less cultivation are required, the requirements of man labor and horse work are somewhat less than in the more intensive standard broomcorn sections. For a yield of 333 pounds of standard broomcorn per acre about 24 hours of man labor and 17 hours of horse work per acre are required. These requirements amount to 145 hours of man labor and about 104 hours of horse work per ton. (Table 16.) The labor in harvesting dwarf broomcorn is ebout 15 man-hours less per ton than for standard broomeorn.

Materials such as seed and baling wire cost about 25 cents der acre or $\$ 1.50$ per ton.
Other costs, including taxes, use of machinery, loss on abandoned acreage, and overhead expense, amount to about $\$ 2$ per acre.

In 1928 broomcorn land was valued at $\$ 25$ per acre in southwestern Kansas．Interast charges are frequently considered a part of pro－ duction costs and when figured at 5 per cent of this land value they amount to $\$ 1^{1} 25$ per acre．

Table 16．－Cost of producing standard broomcorn brush，according to the usual field practice and at cost rates prevailing in 1928 ${ }^{1}$ in southwesiern Kansas

Item	Size of cres				Quantity and cost＊									
	$\stackrel{:}{9}$				Peracre			Perton						
					突先	戠等	落	立需	忽彦	\％				
Labor and power： Preharvest－														
List（2－rour lister）	1	0	10	I	0， 6	3.6	\＄0．48	3.6	21.6	䋈．88				
Plant（2－row lister）．	，	11	16	1	． 13	3.6	． 48	3.18	21.6	${ }^{3} 88$				
Throw out（2－row curler）	1	4	16	1	． 6	2.1	． 36	3.6	14.4	2.16				
Hnrrow（2－section 0－fotl）	1	4	20	1	． 5	20	． 30	3.0	12.0	1.80				
Throw in（2－row curler）－－．．．－	1	4	16	1	＋6	2.4	－ 36	3.6	14.4	2.10				
Misecllaneous					． 8	． 8	． 24	4.8	4.8	1． 44				
Earvest ${ }^{\text {a }}$－ Break and cut $4 . \ldots ~$	7		5	1	14.0		f． 60	84． 0						
Houl und rlek（wagon）－－－－－－－－－1．	2		9	1	2.2	2.2	1． 10	13.2	13.2	6．60				
Seed and bale－ Farm crew．														
Form crew－－．．．．．．．．．．．．－．	18 2		$\text {) } \xi \mathcal{E}$	1	$\left\{\begin{array}{c}3 . \frac{2}{3} \\ .3\end{array}\right.$	\} .3	$\left\{\begin{array}{c}\text { I．} 28 \\ .60\end{array}\right.$	19.2 1.8	\} 1.8	$\left(\begin{array}{l}7.18 \\ 5.80\end{array}\right.$				
Hutl to market（contract． 12 miles with track）${ }^{6}$ Miscellnneous	1			1			（ $\begin{array}{r}.10 \\ .40\end{array}$	1.8 1.8 3		2．40				
					． 5		＋ 30	3.0		1.20				
Total					24.2	17.3	11.70	$1+5.2$	103.8	70.30				
Total．	－．－－	．．．．．．				－．．－．＂	． 25	－－－－．－	．．．．．．．．	I． 50				
Other costs：														
Tares．．．							． 30			1．80				
Ust of machitriry－－－							． 22			1.32				
Loss on abandoned acreago．							＋ 12			． T^{2}				
Overhead．．．－．．．．．．．．．．．．．－							1.35			8． 50				
I＇otal							1.05			11.94				
Thtal cost exclusive of interest． Interest on land，at 5 per cent．							13.04			83． 64				
							1.25			7． 50				
Total cost including in－ terest							15． 19			91.14				

[^7]Including interest on land the total cost in 1928 was about $\$ 15$ per acre．On the basis of a yield of 333 pounds per acre the cost per ton amounted to $\$ 91$ ．Excluding interest charges the cost per acre amounted to about $\$ 14$ ．The 5 －year average yield（1924－1928）for
the 53 farms visited was 295 pounds per acre. The average for 1928, 329 pounds per acre, reflects a wide range in yields as follows:

Yield group, pounds per acre:	Numher	Yield group, pounds per acre-	Number of farms
100 and under...........	-- 1	Continued.	
101-200.	4	401-500	- 7
201-300	18	501-600	
301-400.	19	Over 600	3

About one-third of these growers had yields of from 300 to 400 pounds per acre in 1928. Where yields are the same, because of less labor in harvesting, the cost of producing dwarf broomcorn is about $\$ 6$ per ton less than that of standard broomcorn. Costs in southwestern Kansas are similar to those in Colorado, New Mexico, and northwestern Oklahoma.

Growers who have no indebtedness, hire no preharvest labor, hire no field boss, exchange labor for seeding and baling and haul the crop to market themselves could produce broomcorn in 1928 for an actual cash outlay of approximately 49 per cent of the total cost of production. (Table 17.) This applies more particularly to farmers with medium acreages who do not have to hire preharvest labor. Farmers who had particularly efficient harvest crews or who produced their own seed reduced their cash costs still more. Farmers who employed one hired man during the cropping season increased their cash costs by about 37 cents per acre.

Table 17.-Estimated cash and noncash cost per acre of producing broomcorn in southwestern Kansas, 1923

tidem	Cash cost juer nere		Nomensla cost per acre	
Preharvest:	Dollars	Per cent	Dollary	fer cent
Man labar.			0.74	+. ${ }^{\text {¢ }}$
Eiorse work.			1. 48	9.7
Harvest:				
Break and cut ${ }^{\text {a }}$	4.80	31.6	. 80	5.3
Haiz] and rlek ${ }^{1}$ -	. 41	2.9	-6fis	4. 4
Seed nod bale ${ }^{\text {d }}$, 90	6.9	1.23	8.4
Haul to markex			. 40	2.6
Miscellaneous.			, 20	1.3
Materials:				
Seed.--	. 15	1.0		
3nling wire	. 10	.7		
Other costs:				
Taxes .-.-----	. 30	2.0		
Use of machinery --...	, 11	. 7	+ 11	. 7
Loss on abandoned marenge			. 12	+ 8
Overbead - - - - .	. 67	4.4	. 68	4.5
Interest on lond.			1. 25	8.2
'Total	$7.4 \bar{i}$	44.2	7. 72	50.8

[^8]Breaking and cutting constitute by far the greater proportion of the cash costs of producing broomcorn. According to standards set up in Table 17 this item amounted to nearly two-thirds of the cash cost of producing broomcorn in 1928.

On the basis of the average 1928 price of $\$ 111$ per ton received for standard broomeorn on the farms visited in Kansas, the quantity of broomcorn required to cover total cost of production, including interest charges, was 274 pounds per acre and, excluding interest charges, 251 pounds per acre. Onc hundred thirty-five pounds per acre would cover the cash costs as shown in Table 17.

Where a considerable acreage of broomcorn is grown the large expense for harvesting entails a large total farm expenditure and involves a greater element of risk than in the case of milo. With milo the cash cost of production per acre as well as the total cost is materinlly less than in the case of broomcorn. Assuming a yield of broomeorn of 333 pounds per acre and a price of $\$ 111$ per ton, which were approximate averages on the farms visited in 1928, the net returns above total costs were about $\$ 3.30$ per acre and above cash costs $\$ 11$.

OKLAHOMA

The so-called "Lindsay district" in Garvin and McClain Counties, south-central OHlahoma, has long been recognized as a source of highquality standard broomeorn brush. The average annual precipitation is about 33 inches. Rains during the broomcorn-harvest season are frequent enough to necessitate the use of sheds for stoling and curing the brush. The soils in the river valley near Lindsay are mostly a dark sandy loam with some gumbo. Gray loam soils predominate on the uplands.

Broomcorn is usually grown in a rotation with corn and cotton, although it is sometimes grown on the same land for two or more consecutive years.

USUAL FEELD PRACTICE IN GROWING BIROOMCORN AND THE MAJOR COMPETRNG CASH CKOP

Of 36 growers interviewed, 26 plowed, 9 listed, and 1 disked as the first step in preparing the seed bed for broomeorn. Two-bottom horse-drawn plows are common. Following plowing, most of the land was disked and harrowed before planting. A majority of growers use 1 -row lister planters, but on some farms 2 -row corn planters with disk furrow opener attachments are used for planting broomcorn.

The preharvest workin preparing the seed bed, and planting and cultivating cotton is essentially the same as for broomcorn except that cotton is usually given two more cultivations and is generally hoed twice. These added operations result in a preharvest cotton labor and power requirement per acre that is about 13 man-hours and approximately 5 horse-hours greater than for broomcorn.

The usual rate of planting broomcorn is 1 bushel of seed to 12 to 16 acres on the bottom lands. Planting begins the last of March and continues until July, most of the planting being done in April.

The method of harvesting broomcorn is very similar to that employed in Ilinois. Harvesting begins in July and continues through September. All of the crop is tabled and cut and hauled from the field. The brush is seeded before being cured and is placed in curing sheds as in Illinois. Baling begins 10 to 21 days after the brush is put in the shed. Curing sheds are built with the stalls running crosswise of the shed, whereas the stalls in most of the sheds in Illinois
run lengthwise of the sheds. The crop is all baled directly from the slats even though the sheds are filled two or three times.

The total mian labor and horse work required to produce and market an acre of cotton vielding 200 pounds per acre is approximately 55 man-hours and 38 horse-hours. In the case of cotton the preharvest man-hours are considerably greater than for broomcorn, whereas the harvest man-hours are slightly fewer.

PraCTICES THAT SHOULD INCREASE PROFITS

Farmers generally recognize that planting with a corn phater is conducive to better stands than is lister planting. Much of the broomcorn is planted in the Lindsay district in April and early May, Experiments have shown that higher yields are usually obtained from planting after than before May 15 (14).

Black Spanish broomcorn usually produces a rather short brush and yields less than the standard Evergreen variety. Growers should consider carefully the question whether the lower yields of the Black Spanish variety are compensated by a sufficiently higher selling price.
The price of $\$ 10$ per bushel for broomeorn seed in 1928 was a considerably higher cost expenditure than was necessary. Pure locally grown certified seed could be obtained at not more than one-half the price paid for seed shipped in from Illinois. More Oklahoma farmers should specialize in the growing of high-quality broomeorn seed for planting in their State.

Man labor previous to harvest could be materially reduced by the use of larger implements, as is shown by lower labor requirements in Jllinois and Kansas, where the use of 2-row planters and other large implements is common. (T'ubles 13 and 16.) Another practice con ducive to economical production of broomcorn would be the paying of harvest labor by the acre, as is common in Tlinois, instead of by the hour. A considerable saving in the cost of harvesting broomcorn may easily be effected by the inereased output per man when payment is made on tire contract-acre basis.

COST OF PRODUCTION

In south-central OkJahom, where the yield is slightly less than in Illinois and where it is not the usual practice to use tractor power, the man labor per acre amounted to about 44 hours and the horse work to about 38 hours for a yield of 500 pounds per aere. On a ton basis it takes about 175 hours of man labor and 152 hours of horse work. (Table 18.)

Table 18．－－Cost of producing standard broomeorn brush according to the usual field practices and at cost rates prevailing in 1988， 1 in south－central Oklahoma

Item	Size of erow				Quantity and cost＊					
					Per acte			Per tor		
	劳	$\begin{aligned} & \text { 品 } \\ & \text { 葡 } \end{aligned}$					䓵		镸	茳
Labor and nower： Preharvest－ Plow（2－hottom 14－ineh）－ Disk or single list（Toot double disk or 1 －row lister） Hartow（2－section 9 －foot） \qquad Plant（ t －row lister） \qquad Miscell＠neous．．．．．．．．．．．．．． \qquad	1		Acres	1$!$113		10.0	\＄1．44	10.0	40.0	\＄5． 75
		4			25					
		．	8		1.3	5． 2	． 75	5． 2	20.8	299
		1	$\stackrel{8}{8}$		1.5	2.0 5.2	． 275	2.0 5.2	8	1．15
			8		3.5	7.6	1． 42	15.2	30.4	5．70
		4	12		1.020.03.1	． 8	． 2.	4.0	3.2	$\begin{array}{r} 28.00 \\ 5.58 \end{array}$
Tablo and ciut．－	$\stackrel{3}{3}$			1		\cdots	7． 00	$\begin{aligned} & 80.0 \\ & 12.4 \end{aligned}$	124	
Huml to shed．										
Seed and shed－ Farm crew．	12511		$\begin{gathered} \text { Tons } \\ 15 \end{gathered}$				1． 47	16． 8		588
Contract（ （pawer seeder）				1		．．．．．	1． 50	． 8		6.00
Farm erex Contract 5				1	2.8	$\} .4$	． 98	11.2	16	$\left\{\begin{array}{l}3.92 \\ 2.80\end{array}\right.$
								． 8		
wheon－－．．．．．．．．．．．－－	1		3	1	$\begin{aligned} & .8 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 20 \end{aligned}$	． 44	3.24.6	8.8	1． 762.201.60.54
lioustubout．．．．										
								3.2		
Miscellaneus．－．－．．．．－－－．．．．．－					． 4		． 14	1.6		
Total				．．．．．	43.8	37，9	19.38	175.6	151.0	77． 50
Materials： Seed 31／a poands at 21 cents jer pouni \qquad Baling wiro． \qquad							． 70	－．．．．		280.60
Total．							． 85	．．．．．ar－		3． 40
Other costs： Tares．．							2.00			8.00
Fire insumance on brash 0.							－ 41	－－．．．．．．		1．64
Use of tmachinery－i．a							1.30			
Low on absatoned nereage								．．．．．．		5.55 2． 12
Overhead．．．．．．．．．．．．．．．．							$\begin{array}{r} .73 \\ 2.39 \end{array}$			2．12
Total．							7． 46			28． 84
Total enst exclusive of inlerest Interest on land at 5 per cent ．．．．．．．．．							$\begin{array}{r} 27.697 \\ 1.25 \end{array}$			
										10.74
Total cost，inetuding ins－ terest							33.04			135． 74

[^9]Materials such as seed and baling wire amount to 85 cents per acre or $\$ 3.40$ per ton．

Other costs，including taxes，fire insurance on the brush，use of machinery，use of broomcorn shed，losses due to abandoned acreage， and overhead expenses，amount to about $\$ 7.50$ per acre．

Including interest on land value, the total cost in 1928 was $\$ 34$ per acre. Excluding interest charges, the cost per acre amounted to about $\$ 27.70$. The cost per ton amounted to about $\$ 136$ on the basis of a yield of 500 pounds per acre. This yield is somewhat higher than the average for the Stace but is representative of average yields obtained on the better broomcora soils. The yields obtained on the 36 farms yisited averaged 419 pounds per acre in 1928. The 5 -year average yield (1924-1928) was 484 pounds per acre. In 1928 about one-third of the growers bad yields of from 400 to 500 pounds per acre. The range in yield on these farms was as follows:
Yield group, pounds per acre: $\begin{gathered}\text { Number } \\ \text { of farms }\end{gathered}$ 100 and under
Yield group, pounds peracre-
Number Continued.
401-500 11
101-200
Over 600 2

Broomcorn growers who have no indebtedness, hire no preharvest labor, hire no field boss, exchange labor for baling, and haul the crop to market themselves could produce broomcorn in 1928 for an actual cash outlay of approximately 50 per cent of the total cost of production. (Table 19.) This applies more particularly to farmers with medium acreages who do not have to bire preharvest labor. Farmers who had particularly efficient harvest crews or who produced their own seed reduced their cash costs. Farmers who employed one hired man during the cropping season increased their preharvest cash costs in Oklahoma by about 91 cents per acre.

Table 19.-Estimated cash and noncash cost per acre of producing broomeorn in soulh-central Ohilahoma, 1923:

Itent	Cnsh cost jer acre		Noncasin cost por घere	
Preharvest:	Detiars	Per cent	Deltars	Pet cent
Man lutior.			1.82	
Horse Iabor.			3.08	0.1
Harvest:				
Tabie nud cut.	7.00	20.8		
Hatil to shert ${ }^{\text {P }}$	1.03	3.2	.31	. 1
Seed and shret.	2. 07	8.7		
Tiador ${ }^{\text {a }}$ -	.10	1.8	. 08	2.1
Inard to markel.			. 44	1.3
Roustabrat-			. 51	1.6
Arisoulianenus.			. 14	. 4
Materials:				
${ }_{\text {Stating wiro. }}$. 70	2.1		
Other costs:	.1)	4		
Tpxes.	2.00	5.9	\cdots	
Fhe insurume on hrish.	. 41	1.2		
Use of machisisy .-....	. 27	. 6	. 24	+
Use of broatciarn shm,	. 70	2.1	$\cdot 69$	2.0
Lrass on abandoned neruase	1. 10	3.1	1. 23	3
Interest on lathi.......			8.25	18.1
'Total.	17.08	[14,3	18.8	40.7

[^10]Of the cash expense in broomcorn production, that of tabling and cutting constitutes by far the greater part of the cash costs. According to the standards set up in Table 19, this item amounted to about 40 per cent of the cash cost of producing broomcorn in Oklahoma in 1928.

Although the total Iabor requirements for growing cotton are somewhat higher than those for growing broomcorn, the large cash expenditure at harvest time, when a considerable acreage is grown, makes the element of risk greater than in the case of cotton, where harvesting work can be extended over a relatively longer period and affords a greater opportunity for the use of family labor.

On the basis of an average farm price of $\$ 150$ in 1928 , the quantity of broomcorn required to cover cost of production, including interest charges, was 453 pounds per acre. Excluding interest charges, about 369 pounds per acre would cover total costs, and about 227 pounds per acre would cover the cash costs.

CHOICE OF COMPETING CASH CROPS

In each of the three districts studied there is another major cash crop which is in direct competition with broomcorn for the farm acreage. In Illinois this major competing cash crop is corn, in Kansas it is kafir and milo, and in Oklahoma it is cotton. (Table 12.) The comparative acreage devoted to broomeorn and the competing cash crop in cach district changes materially from year to year; it depends mainly on the farmer's judgment as to which one will return the greater proft.
In selecting his crop enterprises a broomcorn grower should carefully consider the conditions under which he works, such as his fanancial resources, equipment for growing broomcorn and other crops, keeping his labor and power profitably employed, feed requirements for his livestock, and the like. He should nttempt to adjust his crop acreage in such a manner as to realize the greatest net returns for his labor and management.

Relative net return per acre is only one of several factors that should be considered, but in the case of broomeorn and the major competing cash crop in each district, net return per acre as a measure of the choice of crop enterprises has many things in its favor. Brooncorn and its rivals are intertilled crops and, prior to harvest, require the attention of the farmer at the same time of the year, require the same tillage implements, and there is little difference in eflects in increasing or decreasing the productiveness of the soil. Another factor that influences choice of crops is the personal likes or dislikes of farmers. Many farmers dislike to grow broomcorn because of a slin irritation caused by the fine hairs which are separated from the broomcorn chaff in threshing. Most farmers can overcome personal preference, however, if by so doing ${ }^{1}$ ey can make more money.

NET RETURNS PER ACIE FROM BROOMCORN AND COMPETING CASEI CROPS

The net returns per acre with different yields nad prices for broomcorn and the major competing cash crop in each district are shown in Tables 20, 21, 22, 23, 24, and 25 . The costs as shown are those of 1928; costs have receded somewhat since that time. The prices shown include these in 1928 as well as those in effect at present. The estimated net returns per acre were determined by subtracting
from the grose returns at the prices indicated, the cost of producing the different crops. The preharvest cost of growing broomeorn and the competing cash crop in each district is nearly the same. The differences in production costs are chiefly due to the influence of yield on the cost of harvesting and marketing the several crops. For each crop, costs up to harvest have been held constant regardless of yield. As an example of + tre application of these data, the comparative net returns from broomeorn and the major competing cash crop in each district will be examined.

Table 20.-Net returns per acre from broomeorn, computed al stated yields and prices and at cost rates prevailing in 1928 in east-central Illinois

$\left\lvert\, \begin{gathered} \text { Farm } \\ \text { price } \\ \text { per ton } \end{gathered}\right.$	Net returns per acre when yielit is-					
		$\underset{\substack{400 \text { poumels } \\ \text { costing } \\ \$ 34.06}}{ }$	500 nounds costing $\$ 35.15$	co pounds costins $\$ 36.32$		800 pounds costing $\$ \$ 3.58$
Doliara	Soliars	Doliars	Dollata	Dollars	Dollars	Dollars
	-23. 93	-22.06	-20.19	-18.32	-16.45	-14.53
80	-20. 13	-18.06	-15.19	-12.32	-9. 45	-0.68
100	-17.83	-14.0t	-10.19	-6. 32	-2,45	1, 42
120	- 14.03	-10.00	-5. 19	-. 32	4. 65	9.42
140	- 11.93	- 8.00	-19	5.68	1.35	17.42
100 180	-8.93	-2.06	4.81	11.08	18.35	25. 42
200	-2.93	5.98	1.8.81	17.88	${ }_{32.55}^{25.55}$	41.42

Table 21.-Nei returns per acre from corn, computed at stated yields and prices and at cost rates prevailing in 1028 in east-central Illinois

	Net returns iner acre when yield is-						
$\begin{aligned} & \text { pmee } \\ & \text { pushe! } \end{aligned}$	25 bushels $\$ 22.76$	30 bushels costhin $\$ 23.53$	35 bushels ©nating	40 bushels ${ }^{\text {costing }}$	$\begin{gathered} 45 \text { bushels } \\ \text { costing } \\ \$ 5.81 \end{gathered}$	$\begin{aligned} & 50 \text { bustals } \\ & \text { cosifins } \\ & \$ 26.57 \end{aligned}$	55 bushels costink $\$ 27.43$
Dotlars	Dolture	Dollate	Doltars	Doltars	Dollats	Doldart	Dethars
0.20	-17.75	-17. $\mathrm{in}^{\text {a }}$	-17. $\% 3$	-17.05	-10.81	-18.55	-10.43
. 30	$\rightarrow 15.27$	-14.53	-13.78	-13.05	- 52.31	- 11.57	-10,93
. 40	-12.76	-11. 53	-10.29	-9.05	- 7.81	-6.55	-5.43
. 50	-10.28	-8. 53	-6.75	-5.05	-3.31	-1.57	. 07
. 60	-7.70	-5. 53	-3.23	-1.05	1. 10	3.43	5. 57
. 70	-5.20	-253	. 24	4.95	5.69	8. 313	11.07
. 80	-2.70	. 47	3.71	6. 05	10. 19	13.43	16, 57
. 10	-. 20	3.47	7.21	10. 95	14.69	IB. 43	22.07
1.00	2.24	0.47	10.71	14.05	178. 19	23.43	27.57

Table 22.-Nel returns per ucre from broomeorn, computed at siated yields and prices and at cost rates prevailing in 1028 in southwestern Kansas

$\left\{\begin{array}{l} \text { Farm } \\ \text { price } \\ \text { per lon } \end{array}\right.$	Net returns jer acre when yield is-						
	200 mpunds costing $\$ 3.30$		$\begin{gathered} 300 \text { poninds } \\ \left.\begin{array}{c} \text { costing } \\ \$ 11.8 \& \end{array}\right) \end{gathered}$	$\underset{\substack{350 \\ \text { cositing } \\ \$ 15.31}}{\substack{\text { porn } \\ \$ 1}}$	$\begin{aligned} & 400 \text { pounds } \\ & \text { conting } \\ & \$ 15.58 \end{aligned}$	$\begin{gathered} 160 \text { pounds } \\ \substack{\text { onilinf } \\ \$ 16.25} \end{gathered}$	$\left\lvert\, \begin{gathered} 500 \text { pounds } \\ \text { costins } \\ \$ 18.72 \end{gathered}\right.$
$\begin{gathered} \text { Dollars } \\ 40 \\ 00 \\ 80 \\ 100 \\ 120 \\ 140 \\ 180 \\ 180 \end{gathered}$		Doltars $=1.37$ -6.87 -4.37 -1.87 .104 3.123 5.103 8.13	Doltars -8.84 -2.81 3. 18 6. 18 9.16 12. 16	$\begin{array}{r} \text { Doltars } \\ -8.31 \\ -4.81 \\ -1.31 \\ 9.19 \\ 5.09 \\ 9.14 \\ 12.160 \\ 16.14 \end{array}$	Dolfars -7.78 .22 4.22 8.22 12.23 10.22 20.22	Dotlars -7.25 -2.75 1.75 1.75 10.25 10.75 15.25 15.75 24.25	Dolldry -0.72 -1.72 3.28 8.28 13.28 18.28 23.28 28.28

Table 23.-Net returns per acre from milo, computed al stated yields and prices and at cost rates prewailing in 1028 in southwestern Kansas

Farm prics bushel	Net returns per acre when sield is-								
	10 bushels	15 buslels	20 bushels	25 lunghels	30 mushels	35 bushels	10 lumshels	45 bushels	50 bushels
	$\underset{\substack { \text { costink } \\ \begin{subarray}{c}{\text { c. } 29{ \text { costink } \\ \begin{subarray} { c } { \text { c. } 2 9 } }\end{subarray}}{ }$	cosligig	costing	$\underset{\substack{\text { costigs } \\ \$ 10.40}}{ }$	cosling $\$ 10.18$	costins	costing	costing 313.26	costing $\$ 15.84$
Dollars	Dollars	Dothars	Dallara	Dellurs	Dollars	Dollars	Doltars	Doliars	Dolhars
0. 20	-6, 29	-5. 80	-5, 15	-5. 40	-4, 48		-4, fis	-4. 24	-3.8. 8
. 30	-5.29	-4.36	-3.45	-2. 40	-1. 1.15	-1.06		. 24	I. 10
- 40	-4.29	-2.86	-1.45	$\checkmark .10$	1. 02	2.44	3.32	4.74	द. 16
. 50	-3.29	-1.36	. 5.5	2.10	4.03	5.14	7.32	¢ 24	11. 16
. 60	-2.29	14	2.55	4.60	7.02	9.1.1	11.32	13.74	16.1917
. 70	-1.2v	1. 64	4.55	7.10	10.0?	12.94	15. 32	18.24	21.16
. 80	-. 29	3. 14	6, 55	9. da $^{\text {a }}$	13,02	16. 44	19.32	22.74	24it. 10
. 90	. 71	4. GH	8. 55	12. 10	161.02	13194	23.32	27.24	31.10

Table 24.-Net returns per acre from broomcorn, computed at stated yields and prices, and at cast rates prevailing in 1928 in sonth-central Ohlahoma

Farm price per toll	ivet reluras per acre whan siold is--					
	200 prounts 40sting $\$ 28.60$	300 pounds costing $\$ 30.38$	400 pontids costing \$32.16	500 pounds costing $\$ 33.14$	(00) pounds costing $\$ 35.72$	700 jounds costinis $\$ 37.50$
$\begin{gathered} \text { Dolfars } \\ 00 \\ 80 \\ 100 \\ 120 \\ 140 \\ 160 \\ 180 \\ 200 \end{gathered}$	Dollars -22.60 -20.60 -18.60 -16.60 -14.60 -12.100 -10.60 -8.60	Doltars -21.38 -18.38 -15.38 -12.38 -8.38 -6. 38 -3.38 $-.38$	Dollars -20.16 -16.16 -12.16 -8.16 -4.16 -.16 -3.84 3. 7.84	$\begin{array}{r} \text { Dollurs } \\ -18.44 \\ -13.94 \\ -8.94 \\ -3.94 \\ 1.06 \\ 6.06 \\ 11.06 \\ 10.06 \end{array}$	$\begin{array}{r} \text { Dollars } \\ -17.72 \\ -11.72 \\ -5.72 \\ .28 \\ 6.28 \\ 12.28 \\ 18.28 \\ 24.28 \end{array}$	$\begin{array}{r} \text { Boilars } \\ -10.50 \\ -0.50 \\ -2.50 \\ 4.50 \\ 11.50 \\ 18.50 \\ 25.50 \\ 32.50 \end{array}$

Table 25.-Nei returns per acte from collon, computed al stated yichls aud prices and ai cost rates prevailing in 1925 in south-central Oklahoma

Farm per pound	Nel returns per acre when yield is-								
	100 pountids coslfint $\underset{\substack{\text { costing } \\ \$ 2106}}{ }$	${ }^{2} \mathbf{~} \mathbf{2} 2.17$	200 pounds costing sestas \$23.28	$\begin{gathered} 250 \\ \text { pounts } \\ \text { costiug } \\ \$ 2.38 \end{gathered}$	300 pornts costing 	$\underset{\substack{350 \\ \text { pountl } \\ \text { costing } \\ \$ 26.61}}{ }$ $\$ 26.61$	$\begin{gathered} 400 \\ \text { pounds } \\ \text { cositris } \\ \$ 27.72 \end{gathered}$		$\begin{gathered} t 00 \\ \text { trontins } \\ \text { costing } \\ \$ 29.04 \end{gathered}$
Dollar	Dollark	Dothats	Doilurs	Ioltars	Dollars	Doidars	Dollars	Dollars	Dollars
0.06	-15.00	-13.17	-11. 28	-93.39	-7.50	-5. 61	-3,72	-1.83	0, 06
. 07	-14.06	-11.67	-8.28	-6. 89	-4. 50	-2.11	. 28	2. $6 \overline{7}$	5.06
	-13.06	-10.17		-4.39	-1.50	1.35	4,28	7.17	10.00
. 010	-12.06	-8.67	-5.28	-1. 818	1.50	4.83	8.28	11.67	15.06
	- 11.08	-7.17	-3.28	-181	4. 50	8.39	12.28	10. 17	20.00
. 11	-10.00	-6.67	-1.28	3.11	7. 50	11.83	11.28	20.67	25.06
					10.50	15.39	20.28	25.17	30.06
. 13	-8.08	-2.67	272	8.11	13.20	18.89	24.28	29.07	35.06
. 14	-7.06	-1. 17	4. 72	10.61	16.50	22.38	23.28	34.17	40.03
. 15	-6.06	. 43	6. 72	13.11	10. 50	25.89	32.28	38.07	45.06
.10	-5.06	1.83		15. 61	22.50	20.35		43.17	50.00
. 17	-4.06	3. 33	15.72	18.11	25,50	32, 8 Bj	40. 28	47. 67	55. 0 ¢
. 18	-3.06	4.83	${ }^{12} 72$	20.01	98.50	38.35	44.28	\% 6.17	00.08
. 10	-2.06	t. 33	14.72	23.11	${ }^{31.50}$	39.89	48.28	${ }^{50} 1.67$	${ }^{\text {ati. }} 08$
.20	-1.06	7.83	10.72	25.61	34.50	43.36	33.28	61.17	70.06

In east-central Illinois, with a yield of 600 pounds of broomcorn per acre and a price of $\$ 160$ per ton and a yield of 40 bushels of corn selling at 70 cents per bushel (which are approximate averages on the
farms visited), the net per-acre advantage of broomcorn over corn amounts to approximately $\$ 8.73$ per acre. With these yields, corn at 90 cents per bushel would give approximately the same net returns per acre as broom corn at $\$ 160$ per ton. On the basis of yields of 600 pounds of broomcorn and 40 bushels of corn, prices of approximately $\$ 125$ per ton for broomcorn and 65 cents per bushel for corn were required in order to show any profit in 1928.

In southwestern Kansas, with a yield of 300 pounds of standard broomcorn per acre and a price of $\$ 120$ per ton, and a yield of 20 bushels of milo per acre, selling at 70 cents per bushel (approximate averages on the farms visited), the net per-acre advantage of milo over breomcorn amounts to approximately $\$ 1.39$ per acre. With these yields, broomcorn at $\$ 140$ per ton would give approximately the same net returns per acre as milo at 80 cents per bushel. On the basis of yields of 300 pounds of broomcorn and 20 bushels of milo, approximately $\$ 100$ per ton must have been realized for broomcorn and 50 cents per bushel for milo in order to show any profit in 1928.

In the Lindsay district of south-central OkJahoma, with a yield of 500 pounds of broomcorn and a price of $\$ 170$ per ton and a yield of 200 pounds of cotton selling at 15 cents per pound (approximate averages on the farms visited), the net per-acre advantage of cotton over broomcorn amounts to approximately $\$ 1.84$ per acre. With these yields, broomcorn at $\$ 180$ per ton would give approximately the same net returns per acre as cotton at 17 cents per pound. On the basis of a 500 -pound yield of broomcorn and a 200 -pound yield of cotton, $\$ 140$ per ton must have been realized from broomcorn and 12 cents per pound from cotton in order to show any profit in 1928.

The cost per acre of producing broomcorn is considerably greater than that of producing corn, nilo, or cotton. Broomcorn must be harvested promptly, which involves a large cash expense when production is on a large scale. On the other hand, the harvesting of corn, milo, and cotton can be extended over a considerable period of time and gives a better opportunity than broomcorn for the use of family labor. In addition, on the basis of the average yield that can be expected and with prices any lower than those reçuired to show some profit, the losses from broomcorn would be greater than that from corn, milo, or cotton.
From the management standpoint, broomeorn has an advantage in that it can be harvested in ample time for seeding whent on the same land and earlier than can corn. From the marketing standpoint corn and milo may be sold or fed to livestock whereas broomcorn and cotton must be sold directly. Because of heavy expenditures for hired labor at harvest time and wide fluctuations in broomcorn prices, broomcorn is more speculative than the competing cash crop in the districts under consideration. On the basis of average yields and prices, broomcorn appears to have had a slight advantage over corn in Illinois, whereas in western Kansas and in the Lindsay district of Oklahoma, the relative net returns from milo and cotton, were slightly greater than from broomeorn.

As is well known, costs vary on individual farms, owing to differences in yields and other contributing factors, and no formala can be set up which will be applicable to all farms. Yield per acre, however, is the principal factor causing variations in costs, and the net returns per acre have been adjusted for the yield factor as well as for price
differences. Having a fair idea of the yield that can be expected and using a price based on the price outlook for the two competing crops, individual farmers should be able to use the data to advantage in adjusting their crop acreage between broomcorn and the competing cash crop.

SUMMARY

The growing of broomcorn on a commercial scale in this country began in the Connecticut Valley at Hadley, Mass., in 1798. Since that time broomcorn production, with the exception of that in eastcentral Illinois, has gradunlly shifted westward until, at present, it has become practically concentrated in the Southwest. As broomcorn is drought-resistant, it is adapted to the semiarid conditions of the Plains States, where the choice of casb crops is himited.

The average yield of brooncorn brush in the United States is about 322 pounds per acre. During the 17 -year period 1915-1931 the yearly production of broomcern hats fluctuated from 29,500 to 81,000 tons.

Broomcorn competes only slightly with any other commodity whereas a number of products-such as vacuum cleaners and brushes and brooms made of materials other than brooncorn-severly compete with broomcorn brooms. The lack of expansion in the broom industry is primarily due to the increasing competition of these other products, chiefly vacuum cleaners. Since the uses of broomcom are alnost entirely limited to the making of brooms and since the demand for domestic use is satisfied at about 45,500 tons, a supply greater or less than these requirements, plus the annual export demand of approximately 4,500 tons, results in a decided change in the price received. Violent fluctuations in production and prices frequently make broomcorn one of the most speculative of farm crops.

In each district in which cost-of-production studies were made there is a major competing cash crop. In enst-central Illinois it is corn (maize); in southwestern Kansas it is grain sorghums, mainly milo, and in south-central Oklahomr it is cotton.

Broomeorn produced on an extensive seale requires more capital than does the major competing cash crop in each of these districts. Some special broomeorn equipment is necessary and a relatively large eash outlay for labor to harvest the erop is essential to successful production of broomcon.

Costs of producing broomeorn in 1928 in Illinois, Kansas, and Oklahoma ranged from $\$ 91$ to $\$ 136$ per ton, of which eash costs represented approximately 50 per cent.

The principal item of cost is man labor. The 5 -year average vields for the districts studied ranged from 295 to 583 pounds of brush per acre, while the yields required to pay costs, including interest charges, ranged from 274 to 488 pounds per acre.

On the basis of average yields and prices, broomcorn appears to have had a slight advantage over corn in Illinois wherens the relative net returns from milo in Kansas and cotton in Oklahoma were slightly greater than from broomeorn.

LITERATURE CITED

(1) AnONYMOUS.
1836. a broom conn mania. Genesee Farmer and Gard. Jour. 6 (17): 135.
(2) -
1859. broom corn in inhinors. Genesee Farmer (2) 20:336.
(3)
1930. MCPHERSON CODNTY FARMER BRODGHT BROOM CORN TO KANSAS. Broom-corn Rev. 19 (5):9.
(4) Alguire, G. B.
1922. Marketing bboom corn. U. S. Dept. Agr. Bul. 1019, 32 p., ilus.
(5) Amprican Agriculturist.
1894. BROOM-CORN AND BROOMS. Writtell and compiled by the editors of the American Agriculturist. New and Rev. ed., 59 p. New York.
(6) BAJHIN, K.
1658. THEATRI BOTANICI SIVE HISTORIAE GLANTARUM EX VETERUM ET RECENTIORUM PLACITIS PROPRIAQ. OBSERVATIONE CINCINNATAE. 683 col., \{36] p., illus. Basiber.
(7) [Feeming, S. P.]
1929. ANCIENT LORE ON BYOOM CORN. Broom and Broomeorn News 18 (22) : 8-9.
(8) G., F.
1873. colture of broom corn. Cult. and Country Gent. 38:643-644.
(9) Hevize, G.

1893-1895. les plantes indostmielles. Efl. 3, 4 v. Paris.
(10) Howard, J. R.
1846. FARMING IN OHIO. BROOM COHN. Cultivator (n. s.) 3(1):21.
(I1) Jeffenson, T.
1853. Notes of the state of virginga. 275 p ., illus. Richmond, Vg.
(12) JONES, C.
1905. THE BROOM CORN INDUSTRY IN THB CODNTIES OF FRANKLIN AND HAMPSHIRE, AND IN THE TOWN OF DEERFIELD IN PARTICULAR. In History and Proceedings of the Pocumtuck Valley Memorial Association, 1899-1904. v. 4, pp. 105-1I1. Deerfield.
(13) Jond, S.
1863. HISTORY OF HADLEY, INCLUDING TXE EARLY HISTORY OF HATFEELD, SOUTH HADLEY, AMHERST, AND GRANBY, MASSACHUSETTS. pp. 1-440. Northampton.
(14) SiEGLINGER, J. B.
1928. BROOM CORN EXPORIMENTS AT THE UNITED STATES DRY-EAND FLELD STAMIN, WOODWARD, OKLA. U. S. Dept. Agr. Tech. Bul. 51. 32 p., illus.
(15) Tarbox, G. S.
1923. A proom conn spony. Broom and Broom Corn News I2 (1):8.
(16) Watson, J. F.
1859. anNals of piilladelfela and pennsylvania. v. 2, p. 487.

ORGANIZATION OF THE UNITED STATES DEPARTMENT OF AGRICULTURE WHEN THIS PUBLICATION WAS LAST PRINTED

This bulletin is a joint contribution from

Burcau of Agricullural Economics
Division of Farm Management and cosls-
Bureau of Plant Industry
Division of Cereal Crops and Diseases

Nils A. Olsen, Chief.
C. L. Yolmes, Principal Agricullural Economist, in Charge. William a. Taylor, Chief. M. A. McOall, Principal Agronomist, in Charge.

[^0]: ${ }^{1}$ Aeknowledgment is due F. C. M. Case, hend of the department of farm orgbotration and management, Minois Agriculturar Experiment Station, amd w, E. Grimes, bead of the departmeat of agricultrat oconomics Kanses Acrieutaral Experment Station, for copperation in phangiog the study in their respective Stetes. Credte is also duo Yeter Nefson, formerly of the Illinpis Apricutural Experiment Jtation, and R. T. Nichois, formerty of the Kansas Agricuitural Experiment Sation, for assistanco in collacting the besic field data.

[^1]: ${ }^{2}$ Inalio numbers in parenthesos refer to Literature Cited, p. 41

[^2]: Unfted Slates census repuoris.

[^3]: 1 D. S. Census of Mannactures, 1921, 1927, and 1023, The establishmonts classifted in the broum industry are emgeged primarily in the rambsheture of breoms, whtw brooms, ete., made from brommora, but some are made of bristles, and others, such os street or pust brooms, are made of henviet material.
 :Value of product minas cost of materials.
 3 Monetary jtams in deprecinted currency worth in goid approximately 80 per cont of its nominal vnine.
 4 The census for 1009 and stbsenuent yebrs doas not includas considerable numbet of small establishments that reported products velited at less than $\$ 5,000$.
 In uddition, the manafictare of brooms vaited as folous was remorted by establishments in other Industries: For 1814, \$167,4fi6; for 1919, \$220,705; for 1921, \$290,697.

[^4]: U. S. Census of Manufactares, 1921, 1927, and 1920,
 : Does not Inelude establishments that reported products walued nt joss than $\$ 5,000$.

 2 In addition, vecutm cleaners to the palus of $\$ 027,54 t$ were made by insnufacturers who dict not report ths atunber.

[^5]: Foroign Commerca and Navlgation of the United States and offeinl records of the Bureau of Forelgn and Domestic Commerce.

[^6]: 1 On the basis of the krower nwning his latd and equipment freo from indebtedness and hiring no help; prevlous to harvest. If I inath is hirad freviaus to laryest, the eash cost of prehurvest tabor would ho approximately 93 cents per nere.

 I On the basls of a casla uxpense for all of the man labor.
 I On thie basis of a custom clargo of 20 cents par bake.

[^7]: ${ }^{2}$ Man labor，previous to harvest，is charged at a conts per hour．larvest labor excent that done on a costract basis at 40 cents per hour，and horse work at 10 cents per hour．
 ${ }^{2}$ Fulsed on a yield of 333 pounds＇per acre．
 3 All work done on a contract basis has been reduced to hours of man labor and thorsa work，but is charged at the entract rate for such work．
 TDwart broomeorn is pulled from the standing staik whel reyuires about 70 man－hours per ton for a
 respects the cost of producing dwari broomrorn is pratileally the same as for standad bromeorn．
 ＊Charged at the custom rate of 90 cents per bale of 333 pounds．
 －Charged at the custorn rate of 40 cents per hale of 333 pounds．

[^8]: 1 On the basis of the grower otrning his land and equipnunt freo from indebledness and hiting no holp provinus to hurvest. If i man is hired previous to hurvest the cush cost of jreharvest Inbor would be gpprox mately 37 cents fer ncre.

 2 On a basis of a casil expense for 9% of thie tarvest labor.
 : On the basts of a cash expense for y/a of the man labor.

 - On the basis of a cusiom cliarge of 90 cents jer bale and exchange lahor for the farm crew.

[^9]: 1 Man labor previous to harvest charged at 173 conts per hour，haryest work，except that done on a con－ tract basis，at 35 cents per hour，supervition at 50 ennts per hour，and horse work al 10 cents per hour．
 1 Brsed on a sielif of 500 pounds per acre．
 ${ }^{2}$ All work done on a contract bass has been redueed to hours of man labor and thorse work but is charged at the contraet rate for sueh work．
 © Charged at the custom rate of st per bate of 333 pounts．
 －Churiged al the custom pate of 40 cents per bale of tas pounds．
 6 Insed on a pretinium rate of $\$ 1,50$ per $\$ 100$ of valuation for the first monti and at 55 cents per $\$ 100$ of voluation for the second month．

[^10]: provinus to harvest. If i man is hired previnus to harvest the enth wist of prebarvest hator woudd be arpmoximately ot conts yer acre.
 iOn tha hasis of a cish expense for all of the man faimer,
 On the busls of a custom charge of to eents per bale.

