%‘““‘“\N Ag Econ sxes
/‘ RESEARCH IN AGRICUITURAL & APPLIED ECONOMICS

The World’s Largest Open Access Agricultural & Applied Economics Digital Library

This document is discoverable and free to researchers across the
globe due to the work of AgEcon Search.

Help ensure our sustainability.

Give to AgEcon Search

AgEcon Search
http://ageconsearch.umn.edu

aesearch@umn.edu

Papers downloaded from AgEcon Search may be used for non-commercial purposes and personal study only.
No other use, including posting to another Internet site, is permitted without permission from the copyright
owner (not AgEcon Search), or as allowed under the provisions of Fair Use, U.S. Copyright Act, Title 17 U.S.C.

No endorsement of AgEcon Search or its fundraising activities by the author(s) of the following work or their
employer(s) is intended or implied.


https://shorturl.at/nIvhR
mailto:aesearch@umn.edu
http://ageconsearch.umn.edu/

The Stata Journal (2010)
10, Number 4, pp. 686—688

Stata tip 92: Manual implementation of permutations
and bootstraps

Lars Angquist

Institute of Preventive Medicine
Copenhagen University Hospitals
Copenhagen, Denmark
la@ipm.regionh.dk

In mathematics, a permutation might be seen as a reordering of an ordered set of
abstract elements (see, for example, Fraleigh [2002])m whereas in data analysis—when
facing empirical data—this concept may correspond to a reordering of an ordered set
of observations. Vaguely speaking, in statistics and significance testing, this might
be an interesting concept when simulating under a null hypothesis corresponding to,
in some sense, a null association or an effect (most often an outcome) of one specific
variable with respect to another one. Here one basically keeps the dataset constant
except for the values, which are instead randomly permuted, corresponding to the core
variable. Because all permutations are generally equally likely (at least if properly
dealing with potential confounding) under the null hypothesis of no association, this
is a way, through such simulations, of estimating the corresponding null distribution
underlying, for instance, related p-values.

For similar reasons, one may apply the bootstrap simulation procedure. Here one
does not reorder observations (or in general elements) but rather simulates from the
empirical distribution based on this very set. In simulation terminology, the boot-
strap and permutation procedures in this sense correspond to a uniformly random
selection of values from the empirical distribution with and without replacement, re-
spectively. For more information, see, for example, Manly (2007) for permutations,
Davison and Hinkley (1997) for bootstraps, and Robert and Casella (2004) for stochas-
tic simulation, in general.

In Stata, one may—given some assumed framework—use the commands permute
and bootstrap to perform tasks related to permutation-based and bootstrap-based
significance tests, respectively. Sometimes however, whether it arises as a need to be
more specific or because one simply wants to keep more detailed control over the actual
data manipulations, it might be favorable to perform some related manual labor at your
computer keyboard. This tip is about the general structure of a solution for such a task.

Permuting: Assume that you have a variable of interest, permvar, that you want to
permute in the sense noted above. Typing

1. The set of all possible reorderings (permutations) includes the permutation that actually leaves the
order intact. This is called the identity permutation.

© 2010 StataCorp LP st0214



L. Angquist 687

generate id=_n

generate double u=runiform()

sort u

local type: type permvar

generate “type” upermvar=permvar [id]

in Stata will give you an additional column (upermvar) of permuted values. In the first
command, a new variable, id, that corresponds to the current sort order is created!? Tn
the second command, a column is generated with values uniformly distributed between
0 and 1. Because the values of u were randomly generated, sorting on u puts the
observations in a random order. The next command saves the variable type of permvar
in the local macro type so that the type can be applied to the new variable in the last
command. The last command stores the permutation in the new variable upermvar:
each new value is a value of permvar from a randomly selected observation. (The
random selection is controlled by the id variable, which was put in a random order by
the sort command.)

To reduce the risk of tied values with respect to the (inherently discrete) random
draws, and moreover to further increase the, so to speak, randomness of the derived
values, one might replace the code lines 2-3 with the following:

generate double ul=runiform()
generate double u2=runiform()
sort ul u2

The randomness reference corresponds to the fact that computer-generated random
numbers are random only to the extent permitted by the implementation of what is
termed pseudorandom numbers (see, for instance, Knuth [1998]). To achieve repro-
ducible results, one might take advantage of this pseudorandomness by explicitly stating
a starting point, that is, a seed value, for the deterministic algorithm:

set seed 760130

The number must be a positive integer. For instance, this command might be used when
assuring that different methods give equivalent results or, for example, with respect to
estimated variances of certain derived estimates of interest, when comparing methods
with respect to efficiency performanceﬁ

2. In other words, this construction is based on the observation number indicator _n, which equals 1,
2, ..., N through the present observations (rows), where N is the number of observations in the
dataset (generally reachable in a similar fashion through _N in Stata). Moreover, one approach to
retaining a sort order, irrespective of the content of an executed program, is by taking advantage
of the sortpreserve option (see help program or Newson [2004]).

3. You might use your personal birthdate as an easily remembered seed value. This is in fact used in
the above case, though I am not revealing which date format I used; see help dates and times. I
thank Claus Holst for this tip!



688 Stata tip 92

Bootstrapping: A related but slightly different variant of the above schedule might be
used to derive a bootstrapped variable called ubootsvar. It is based on the empirical
distribution formed or constituted by the present observations of the original variable
bootsvar.

generate u=ceil (runiform()*_N)
generate ubootsvar=bootsvar [u]

Here the uniformly distributed values are not used to decide on a sort order (the un-
derlying index values), but rather to directly constitute index values by making them
be part of a uniformly distributed simulation of values on the integers 1, 2, ..., N. To
achieve this, the so-called ceiling function, ceil(), is used. For more information on
runiform(), see help runiform or Buis (2007E (with respect to its use for simula-
tions); further, ceil() and the related £loor () function are described in|Cox (2003).

Moreover, one might implement the above code structures into loops based on,
for instance, foreach or forvalues. Under such circumstances, one might also take
advantage of both usage of temporary variables (see help tempvar) and the specific
matrix-oriented environment of Mata (see help mata) though the general structure
described here might to some extent serve as a guideline or a template for such cases,
as well. Once ready, strap your boots and let the permutation begin!

References
Buis, M. L. 2007. Stata tip 48: Discrete uses for uniform(). Stata Journal 7: 434-435.
Cox, N. J. 2003. Stata tip 2: Building with floors and ceilings. Stata Journal 3: 446-447.

Davison, A. C., and D. V. Hinkley. 1997. Bootstrap Methods and Their Application.
Cambridge: Cambridge University Press.

Fraleigh, J. B. 2002. A First Course in Abstract Algebra. 7Tth ed. Reading, MA: Addison—
Wesley.

Knuth, D. E. 1998. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms. 3rd ed. Reading, MA: Addison—Wesley.

Manly, B. F. J. 2007. Randomization, Bootstrap and Monte Carlo Methods in Biology.
3rd ed. Boca Raton, FL: Chapman & Hall/CRC.

Newson, R. 2004. Stata tip 5: Ensuring programs preserve dataset sort order. Stata
Journal 4: 94.

Robert, C. P., and G. Casella. 2004. Monte Carlo Statistical Methods. 2nd ed. New
York: Springer.

4. The uniform() function was improved in Stata 11 and was renamed runiform().





